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Abstract

While popular messaging apps already offer end-to-end confidentially, end-to-end metadata privacy is
still far from being practical. Although several meta-data hiding systems have been developed and some
like Tor have been popular, the proposed solutions lack in one or more aspects: the Tor network is prone
to easy low-resourced attacks, and most others solely focus on anonymity for senders or receivers but do
not both. Some recent solutions do consider end-to-end anonymity, however, they put significant restric-
tions on how users use the system. Particularly, the receivers must stay online or trust online servers that
receive messages on behalf of receivers. This work presents a scalable end-to-end anonymity messaging
system, Kerblam, that overcomes the mentioned issues and restrictions. It stems from a key observa-
tion that combining the recently-emerged oblivious message retrieval (OMR) primitive with oblivious
shuffling can offer the desired end-to-end anonymity without severely restricting the number of messages
a sender may send or a receiver may receive. We build our solution using two non-colluding servers
and recent OMR protocol HomeRun and a compatible oblivious shuffle protocol. We then extend our
solution to allow larger messages by employing a novel two-server distributed oblivious RAM technique,
called ORAM−. Our performance analysis demonstrates that with the increase in the number and size
of messages, the performance improvement brought by ORAM− becomes higher. Specifically, for 220

messages of size 1KB, our scheme only needs 5.577 s to transmit a message.

1 Introduction

Many popular communication applications, such as Signal and WhatsApp, employ end-to-end encryption to
safeguard message content between parties. However, communication metadata—such as who communicated
with whom and when [SG24]—can still lead to severe consequences.

Extensive research (e.g., [DMS04, ECZB21, VSH22, Cha88, APY20]) has already been conducted to pro-
tect communication metadata. Specifically, communication metadata could be abstracted as the linkability
between a sender and a message, and/or the linkability between a message and a receiver. Many prior works
either break the linkability between the message and the sender [DMMK24, DMK22, KCGDF17], or between
the message and the receiver [JMK24], but not both. In this work, we aim to break the linkability on both
sides to protect the privacy of the sender as well as the receiver, and we call this unlinkability End-to-End
Unlinkability (EE-UL), which is the same as “Both-Side Message Unlinkability” defined in [KBS+19].

Many mailbox-based systems [AS16, LGZ18, ECZB21, EB21] that attempt to hide the link between the
sender-receiver pair in an active group of clients require the clients to send messages in batches. Additionally,
they require the sender and the receiver to trust each other (weaker security), and cannot protect the identity
of the sender (resp. recipient) from the recipient (resp. sender).
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There are a few designs that attempt to protect the privacy of both the sender and the receiver by mix-
ing/shuffling the messages. In this way, both the sender-message linkability and message-receiver linkability
are broken. However, they suffer from various drawbacks:

• Many application scenarios (e.g., messaging, payments) require to support asynchronous retrieval,
which means that a sender can send a message to a receiver even if the receiver is not currently online, and
the receiver can retrieve the message whenever it comes online. However, the current approaches cannot
naturally support it. To solve this issue, Loopix [PHE+17] and AnonPOP [GHL17] rely on online servers
(called Gateways in the Nym deployment [DHK21] of Loopix) to receive messages on the behalf of receivers.
Such strategies require additional trust assumption on such Gateways and still can become vulnerable to
intersection and traffic-analysis attacks [OJARD24].

• Tor [DMS04], with its onion service functionality, can provide protection for both the sender and
receiver side. It is extremely popular for its low latency and low bandwidth overhead. However, there have
been a large number of works (e.g., [WCN+14, PLP+16, KAL+15, LBNK24]) that successfully attacked Tor
using low resources. Moreover, Tor cannot support asynchronous message retrieval.

Application Scenarios of End-to-End Unlinkability (EE-UL). There are many scenarios where the
privacy of both the sender and the receiver is equally important. Specifically, as mentioned in [Har24],
“anonymous social media platforms have gained popularity as havens for individuals seeking to express
themselves freely without fear of judgment or exposure.” On anonymous social media platforms, each user
has an anonymous account (namely, an address). Users can communicate with each other without leaking
their real-world identifications. Breaking linkability only either on the sender or on the receiver side cannot
satisfy the privacy requirements of such anonymous social media platforms.

Another important application scenario is achieving privacy for transactions on Blockchains. With the
property of EE-UL the payment recipient could provide only a wallet address to protect their real identity.
At the same time, the sender can benefit from hiding their identity, even from the wallet owner, and avoiding
revealing association with the wallet or the possibility of being profiled/blackmailed.

1.1 Our Contribution

In this work, we design an anonymous messaging system, called Kerblam, which achieves the End-to-End
Unlinkability (EE-UL), while avoiding the above drawbacks. We summarize our contributions below.

End-to-End Anonymity without Limitations. We design an anonymous messaging system, called
Kerblam, that enjoys stronger anonymity, protecting the privacy of both sender and receiver. Kerblam is
useful for scenarios where the sender and the receiver not only desire to remain anonymous to others but
also from each other. At the same time, we depart from batch-mixing and round-based designs. As a benefit,
we can easily allow sending and receiving messages asynchronously. We formally analyze the security of our
scheme against global passive adversaries, as well as protect against relevant active attacks.

Highly Scalable Protocol. We observe that combining a fully-fledged oblivious message retrieval (OMR)
protocol and oblivious shuffling protocol can obtain end-to-end anonymity without limitations. However, it
is not scalable enough to support long messages (e.g., of size 1 KB). To solve this problem, we introduce
a new variant of ORAM, called ORAM−, which is a weaker version of standard ORAM but is enough for
communication scenarios. By introducing ORAM−, we improve the performance for 220 messages of size 1
KB by a factor of 7 (please refer to Table 1 for more details). When there are 220 messages stored by the
servers, and each message is of size 1 KB stored, the wall-clock time cost of transmitting a message is 38.942
s using a single thread and 5.577 s using 16 threads.

Novel Variant of ORAM: ORAM−. Our design of ORAM− could be of independent interest to scale other
designs. We provide a general construction of ORAM− based on tree-based ORAM, and it is particularly
suitable for metadata-private message transmission systems. Compared to the standard ORAM, the main
differences are (1) “write” and “read” operations are allowed to be distinguished, (2) block ID can be
randomly chosen from a large space, and (3) the total number of blocks is allowed to vary. These adaptations
allow significant performance for Kerblam (c.f. Table 1). We give a new formal definition for ORAM− and
show that our construction is provably secure under our definition.
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Figure 1: System Overview. We have two servers. Each receiver is associated with an address/key pair,
and the address will not leak the receiver’s real identity. When a sender wants to send a message mi to the
receiver associated with address Addri. The sender sends (mi,Addri) in an “encrypted” version to the two
servers; the receiver uses Keyi to retrieve the message mi without leaking (mi, (Addri, keyi)).

1.2 Related Work

Based on recent works [SG24, KBS+19], anonymity notions can be categorized into two main (non-exclusive)
types: (1) privacy for senders, and (2) privacy for receivers. Different protocols can provide either or both
of these properties with different anonymity levels; Our design achieves both, and we call it End-to-End
Unlinkability. Below we discuss different design paradigms of anonymous messaging systems and the kinds
of anonymity guarantees they can provide.

Mixnets. Mixnet-based designs [DMMK24, KCGDF17, LSSD22, ALU18] can achieve sender anonymity for
anonymous broadcast by shuffling the messages through several layers of mixing nodes.

Some mixnets [LGZ18, KLD20, LGZ19] deviate from anonymous-broadcast setting and introduce mail-
boxes where the sender-receiver pair of a message needs to agree on a shared secret. Although, these systems
attempt to hide the link between the sender and the receiver from a third-party observer, the sender and
receiver need to trust each other or need to use an expensive dialing protocol to set up mailboxes. This
additional trust requirement makes the anonymity guarantee strictly weaker than either sender anonymity
or receiver anonymity [KBS+19]. These designs implement mixing in batches, and that adds several re-
strictions: (1) a sender can only send messages to online receivers, (2) the anonymity set is limited to a
batch.

To achieve receiver-side privacy, and to allow the receivers to retrieve messages asynchronously, the
Nym [DHK21] deployment of Loopix [PHE+17] introduces Gateway servers: A Gateway server can collect
the messages on behalf of the receivers, and the receiver can retrieve messages when they come online. They
additionally employ cover traffic and rate-limiting for download/retrieval to obfuscate the volume metadata.
Unfortunately, without the employment of a strong Oblivious Message Retrieval (OMR) protocol, the system
is vulnerable to intersection and traffic-analysis attacks [OJARD24] with its current deployment parameters.
Provable mixing guarantees for Loopix-like systems only exist for sender anonymity and would require really
expensive latency overheads [DDKZ24].

MPC-based Designs. There are MPC-based designs [CGBM15, APY20, LYK+19, EB21] that realize
some version of secure shuffle or private-writing to achieve guarantees similar to sender anonymity. Ex-
press [ECZB21] additionally employs mailboxes, however, deviates from the requirements of batch-processing
and the sender-receiver trust requirement. Express can only hide the link between the sender and the mail-
box, but does not hide who reads from the mailbox: in that sense, Express only achieves sender anonymity.
Other designs like HomeRun [JMK24], Private Signaling (two-server version) [MSS+22] realize Oblivious
Message Retrieval (OMR) to achieve strong privacy for receivers, but they cannot protect the privacy for
senders.

Our design Kerblam employs MPC in a two-server setup: in terms of system setup, Kerblam is identical
to Express [ECZB21] and HomeRun [JMK24]. However, it achieves both sender anonymity and receiver
anonymity, where the sender and the receiver might not even trust each other, by combining secure shuffle
and OMR.
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Other Not-so-related Anonymous Messaging Systems. Tor [DMS04] is really popular for its low
latency and low bandwidth overhead; and can provide anonymity for both sides with its onion service
functionality. However, such low-latency and low-bandwidth networks can achieve only weak anonymity
guarantees [DMMK18, DMMK20], and there are many demonstrated attacks [WCN+14, PLP+16, KAL+15,
LBNK24] against Tor.

Dining-cryptographer network (DC-net) based systems [DMK22, RMSK17, BDZ+20] can achieve strong
sender anonymity for anonymous broadcast, however, they cannot provide privacy for the receiver-side.

PW-Panda and SW-Panda [HOWW19] achieve properties somewhat similar to our ORAM−. However,
in PW-Panda, the creator of a message cannot restrict who reads the message. On the other hand, in SW-
Panda, a client can access only their own data, unless there are some explicit key-sharing mechanisms among
clients. Because of such limitations, and its use of expensive primitives like fully-homomorphic encryptions,
it is not straightforward to adopt such systems to design end-to-end anonymous messaging systems.

Organization. We give the technical overview in Section 2, including the system setting and key ideas. In
Section 3, we recollect the building blocks used in our work. Then in Section 4, we give the formal description
of our scheme. The security analysis and performance evaluation can be found in Section 5 and Section 6
respectively. Section 7 provides the concluding remarks.

2 Technical Overview

2.1 System Setting

As shown in Figure 1, there are two servers that assist the users with communications. Each receiver is
associated with an address and the corresponding secret key, and we assume that the potential senders can
obtain the address without knowing the real-world identity of the receiver. For example, the address could
be an account on a social media platform, and other users on the social media platform can find the address
but do not know the identity behind the address.

Function Goals. When a sender wants to send a message mi to a receiver associated with Addri, the
sender sends an “encrypted version” of (mi,Addri) to the two servers. Then the receiver sends a retrieval
request to the two servers, proving the possession of the corresponding secret key Keyi and without leaking
Addri. Finally, the two servers send back the message mi in an “encrypted” form to the receiver. We only
assume that the total number of unretrieved messages is up to a predetermined value N , but do not limit
the number of messages waiting to be retrieved by a certain receiver.

Security Goals. Our work aims to protect the privacy of both senders and receivers. This means that even
though the sender colludes with one of the servers, they cannot find which party retrieved the message, and
vice versa. The formal security definition is given in functionality Fanon (see Figure 12).

Our protocol is suitable for situations where the sender and receiver do not know each other and do not
want to reveal their identities to each other. “Address” is the identity in our system, and sending a message
to a receiver refers to sending the message to an address. We assume that the address will not leak the
real-world identity, and the adversary can recognize the entity sending messages to the two servers, e.g., via
IP addresses. We do not protect who is sending or retrieving messages, but we do protect the linkability
between messages and entities.

Trust Assumption. We assume that the two servers are non-colluding and will not have detectable
malicious behaviors, as in the previous work [ECZB21, JMK24, MSS+22]. We explain how we defend
against malicious behaviors in Section 5.3.2. We assume senders and receivers can be malicious and can
collude with one of the two servers.

2.2 Key Idea

Our work starts with a key observation that combining an oblivious message retrieval (OMR) and an oblivious
shuffling can obtain an end-to-end anonymous messaging system. However, a direct combination has poor
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Figure 2: Design Framework of HomeRun [JMK24]. For each message, each server stores a label share.
Then, the receiver sends request label shares Lr and L′

r to the two servers respectively. The two servers

compute b⃗1 and b⃗2 and send back the two-bit vectors to the receiver. The receiver recovers the pertinent
indexes using b⃗1 and b⃗2, and then uses these indexes to retrieve the messages via PIR.

scalability and cannot support long messages on large scales. To address this issue, we introduce a new
variant of ORAM, called ORAM−, and use distributed ORAM− to achieve scalability. Next, we will first
introduce the key observation and explain how to achieve scalability.

The previous work either does not support asynchronous retrieval or relies on mailbox-based methods
that limit the number of messages a receiver can receive. The recent research [JMK24, BLMG21, LT22] on
Oblivious Message Retrieval (OMR) has gradually overcome these limitations. Moreover, we observe that
OMR can be changed to achieve end-to-end anonymity while keeping the merits.

OMR was proposed to allow the receiver to retrieve her transactions submitted on blockchains without
leaking which messages are retrieved. Therefore, OMR protects the receiver’s privacy. It can also be used for
messaging systems without blockchains, by allowing the senders directly to send messages to the server(s).
However, since the receiver knows which message is retrieved and the server(s) knows who is the sender of
each message, if the receiver colludes with the server or one of the servers, they can collaboratively find
who sent the message. Therefore, the key to further protecting the sender’s privacy is to guarantee that the
server(s) does not know the sender of each message.

To this end, we obliviously shuffle (i.e., the permutation is not known by anyone, and please see Figure 5
for more details) the list(s) stored on the server(s), before providing information to the receiver. In this way,
for a retrieved message, the server(s) cannot link it to its sender. The OMR works [JMK24, BLMG21, LT22]
all can be changed to achieve end-to-end anonymity through the way. However, to date, there are still no
efficient single-server oblivious shuffling protocols, and the single-server OMRs [BLMG21, LT22] are also not
efficient enough. Therefore, we choose HomeRun [JMK24], a two-server OMR scheme, as a basis for our
end-to-end anonymous messaging system.

2.3 Basic Construction

We first briefly recall HomeRun and then give our construction.

Recall HomeRun. The design framework is shown in Figure 2. Each server maintains a list consisting of
pairs, with each pair containing a label and a message. The label is used to identify whether a message is
pertinent to the receiver requesting retrieval. The flow of HomeRun is as follows.

• Sending:

– The sender that intends to send the message m, generates labels L and L′ according to the address
of the receiver, and sends (L,m) and (L′,m) to Server1 and Server2, respectively;
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Figure 3: Basic Scheme for Short Messages. The two servers store the label shares and message shares.
After receiving a request (including Lr or L′

r) from a receiver, the two servers collaboratively compute

vectors b⃗1 and b⃗2. Then, the two servers obliviously shuffle the message share list and bit list using the same
permutation π. At last, the two servers recover b⃗1[π(i)] + b⃗2[π(i)], if b⃗1[π(i)] + b⃗2[π(i)] = 1, the server sends
the corresponding message share [m]π(i),j to the receiver.

– The two servers append (L,m) and (L′,m) to their own lists, respectively.

• Retrieval:

– The receiver generates two labels Lr and L′
r using the secret key of her address, and sends Lr and

L′
r to Server1 and Server2, respectively;

– The two servers interact with each other to generate two bit-vectors, b⃗(1) and b⃗(2), from which the
receiver can recover the pertinent indexes (if b⃗(1)[i] + b⃗(2)[i] = 1, i is a pertinent index);

– The receiver uses the pertinent indexes to retrieve the pertinent messages from the two servers
through Private Information Retrieval (PIR).

HomeRun does not consider the privacy of senders and does not hide the content of messages from the
servers (as the messages are published on the blockchain1). Next, we will explain how to achieve EE-UL
while protecting the content of messages based on HomeRun.

Our Basic Scheme. To further hide the content of each message, the sender splits the message m into two
shares [m]1 and [m]2 such that m = [m]1 + [m]2. Then, the sender sends (L, [m]1) and (L′, [m]2) to the two
servers, respectively. In this case, each server cannot learn the message m, and the lists maintained by the
two servers are changed to those shown in Figure 3a. In our protocol (see Section 4), the labels L and L′ are
instantiated by address shares and associated strings. For simplicity, we just use the concept of label here.

Then, we leverage the oblivious shuffling FShuffle (see Figure 5) to protect the privacy of the sender.
Specifically, as shown in Figure 3b, after receiving the labels Lr and L′

r from the receiver, respectively, the

1The messages on blockchain may also be some ciphertexts.
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two servers first generate the two-bit vectors, b⃗1 and b⃗2, respectively, as in HomeRun. Instead of sending the
bit vectors to the receiver, the two servers obliviously shuffle the bit vectors and the message vectors using
the same permutation that is not known by anyone. Then, the two servers can interact with each other to
recover the pertinent indexes. Note that, different from HomeRun, the two servers here do not know the
original indexes, so the two servers can open the pertinent indexes by themselves. Finally, the two servers
send the corresponding shares of the pertinent messages to the receiver, without using PIR.

It is easy to see that after the obliviously shuffling, neither the receiver nor the servers can determine
which sender provided the pertinent messages, and thus the privacy of the sender is protected. On the other
hand, the privacy of the receiver is still protected, as the sender and the servers cannot know which original
messages are retrieved by the receiver. Note that we are not intending to protect the number of messages
retrieved by a receiver. In addition, different from the existing works in Type 3, we mix a message among
all the messages maintained by the two servers, rather than only the messages in a round. The efficiency
of our work benefits from the recent work [PRRS24] by Peceny et al. This work designed a new oblivious
shuffling protocol with high performance (please see Table 2 for more details).

However, the communication and computation complexity of the oblivious shuffling designed by Peceny
et al. [PRRS24] is O(nℓ). Therefore, if the message size ℓ and the number of messages n are both large
(e.g., ℓ = 1 KB and n = 220), the performance of this basic scheme will drastically decrease. To solve this
problem, we additionally introduce and utilize a variant of ORAM, which we call ORAM−.

2.4 Scaling via a New Variant of ORAM

As mentioned before, the above basic scheme is not efficient enough for a significant number of long messages.
To avoid the communication and computation cost of O(nℓ) for each retrieval, we leverage a variant of ORAM
structure to maintain the messages. Specifically, we change the message shares in Figure 3 to index shares,
and then the two servers use the index shares to retrieve the corresponding messages from a variant of
ORAM. In this way, the oblivious shuffling only involves the index, which is much shorter than messages.
Next, we will detail the variant of the ORAM structure.

In cloud storage scenarios [SS13b, GM11, SS13a], a client stores their data on a remote server and will
access their data later from the server. To hide the access pattern of the client, ORAM was proposed.
Therefore, originally, ORAM was used for a client who owns the data and does not have the motivation to
destroy the data, and the access pattern includes an arbitrary number of read and write operations. Please
see Definition 1 and Definition 2 for more details of ORAM. Compared with the original ORAM, the variant
needed in this work has the following differences:

• (D1): Senders and receivers are ordinary users in the system, and thus may misbehave. Therefore, we
need an ORAM structure that can support malicious clients.

• (D2): There are many senders and receivers that need to access the messages. Therefore, we need an
ORAM structure that can support multiple clients.

• (D3): We are considering an anonymous messaging system where it is not necessary to hide whether
access involves sending or retrieving data from the servers. Sending and retrieval correspond to the write
operation and the read operation in ORAM, respectively. Therefore, we do not need the ORAM structure
to hide the type of access.

• (D4): Our anonymous messaging system only considers that a sender sends a message to a receiver,
and thus a message can only be read (i.e., retrieved) once after it is written (i.e., sent) into the ORAM
structure. Therefore, the access pattern for a block in the ORAM structure is the sequence {write, read}.
Combined with the above D3, we know that the variant of ORAM just needs to break the linkability between
the write operation and the read operation.

Why Choose ORAM in Secure Computation Setting. ORAM in the malicious multi-client setting
was first considered and formalized by Maffei et al. [MMRS17]. Later, Chen et al. [CP20] significantly
improved the prior work by letting two servers emulate all operations that were previously taken by the
client; therefore, during an operation, a client only needs to secretly share the corresponding index with
these two servers, and no malicious behavior can be performed by a client. In this work, we use the same

7



Position Map

Figure 4: Tree-based ORAM

idea to support multiple malicious clients. This idea essentially follows the concept of ORAM in the secure
computation setting which is first studied by Gordon et al. [GKK+12]. We refer to Section 3.1 for more
details.

One approach towards realizing ORAM in the secure computation setting, denoted as ORAM-SC, is to de-
sign an ORAM scheme with a lower circuit complexity on the client side and then realize it by letting servers
jointly emulate all client operations. Among all ORAM schemes including hierarchical ORAM [GO96],
square-root ORAM [GO96] and tree-based ORAM [SCSL11, SvS+13], Circuit ORAM, a tree-based ORAM,
proposed by Wang et al. [WCS15] shows an optimal circuit complexity both asymptotically and practi-
cally. A recent generation of work for ORAM-SC [Ds17, VHG23, ZGY+24] derives from the function secret
sharing [BGI15, BGI16], and uses a list to store data. These protocols have low round and communica-
tion complexity but a linear computational complexity. As a result, these protocols show a better practical
performance in some specific settings even though their asymptotic complexity is worse than Circuit ORAM.

Next, we will explore the application of the tree-based ORAM-SC within our anonymous messaging system.
In Appendix A, we also explain why we do not choose the list-based ORAM-SC in our system. In a secure
computation setting, the ORAM structure (e.g., the tree and the list) would be secretly shared between
the two servers. Later, for simplicity in our explanation, we just use the original structure, but please keep
in mind that the data structure is actually stored in a secret sharing manner, and all the operations are
performed in a secure computation way.

Use Tree-based ORAM-SC. In the original ORAM (no matter tree-based ORAM or list-based ORAM),
each block is associated with a block ID , denoted as bid, and there is a fixed set B containing n block
IDs. Each access needs to specify a block ID in the set B. In our anonymous communication system,
the sender needs to insert his message into the ORAM structure, i.e., write a message into a block. Since
we aim to utilize the ORAM structure to store up to n unretrieved messages, while allowing senders to
independently select their own block IDs from the set B, it is highly likely that multiple senders will choose
the same block ID. Consequently, their messages will not be correctly written into the ORAM. To solve this
issue, we allow the senders to choose block IDs from a larger set B̃. Specifically, when we aim to store 220

unretrieved messages in the ORAM, we can set the bit-length of each block ID as ℓbid = 80 and the set
B̃ contains 280 block IDs. Then, according to the birthday paradox probability, the collision probability is

1− e
− n2

2·2ℓbid < 2−40.
While we solved logical collisions above, we also need to solve physical collisions. In other words, although

the probability that multiple senders choose the same block ID is negligible, the number of blocks maintained
by the tree-based ORAM is much smaller than 2ℓbid , and thus there may be physical collisions. Next, we first
recall the data structure in the tree-based ORAM, and then explain how to leverage it to eliminate physical
collisions.

8



We show the data structure of the tree-based ORAM in Figure 4, assuming that there are 4 blocks indexed
by {bid1, bid2, bid3, bid4}. In the tree-based ORAM, each block is also associated with a path identified by
a leaf ID lid. For a block, after being accessed, the block would be associated with a new randomly chosen
path and put into the root node2. Later, the block would be evicted from the root node to the leaf node
through the new path. When using the tree-based ORAM in our anonymous messaging system, for each
new message msg, we need to assign a block ID bidm and a path lidm for it and then write bidm||lidm||msg
into the root node as a block. The block ID can be chosen by the sender using the above way. As for
the path lidm, according to the security analysis for the original tree-based ORAM, we only need to ensure
that the paths are selected uniformly at random, without needing to ensure that each block corresponds
to a different path (e.g., in Figure 4, the blocks indexed by bid3 and bid4 share the same path indexed
by lid3 = lid4 = 3). Therefore, we do not need to consider the collision problem for the selection of paths.
However, to guarantee that paths are selected uniformly at random, we cannot allow senders to choose paths,
as senders may behave maliciously. Instead, we require the two servers to securely choose a random path,
with neither server knowing the path. Based on the analysis above, when using tree-based ORAM, there is
no need to consider any additional collision issues beyond block IDs, and thus will not incur additional costs
compared to the original tree-based ORAM.

Simplify Tree-based ORAM-SC. At this point, we have chosen the tree-based ORAM-SC to support for
malicious multiple clients, corresponding to D1 and D2. Furthermore, due to D3, D4 and our basic scheme
for providing indexes, we can further simplify the tree-based ORAM-SC, and obtain our variant ORAM−.

First, we do not need to hide the type of access (according to D3), and thus we allow different treatments
for “read” and “write” operations. In the original ORAM-SC, regardless of whether the access is “write” or
“read”, the servers need to perform the following three steps:

• Step-1: Retrieve the queried block and empty the corresponding position;

• Step-2: Add the queried block into the root node (if the access is “write”, write the new payload to
the block);

• Step-3: Perform an eviction process.

Second, in our anonymous messaging system, we assume that a message is sent from a sender to a receiver,
and thus the access pattern for a block is just a sequence {write, read} (according to D4). Therefore, the
sending operation in our anonymous messaging system only involves inserting the new message into the
ORAM structure, without needing to re-write an existing block. Therefore, we only need to perform Steps
2 and 3 for the writing. In addition, after a message is retrieved (i.e., “read”), we only need to set the
corresponding block as a dummy block. In other words, we only need to perform the above Step-1 for
reading.

Furthermore, in the original ORAM-SC, the position map needs to be maintained by a recursive process
such that the client-side storage cost is just O(1). In our anonymous messaging system, the lists containing
block IDs and path IDs are actually the position map, and the clients do not need to maintain them.
Therefore, we do not need a recursive process to query the position map.

3 Preliminary

3.1 Oblivious RAM

Encryption techniques can protect the content of data outsourced to an untrusted server, but cannot hide
the access pattern, which also leaks sensitive information about the client. Oblivious RAM (ORAM) was
introduced by Goldreich and Ostrovsky [GO96] to hide the client’s access pattern from the untrusted server.
Informally, given two equal-length sequences of operations (including read and write) on ORAM, the server
cannot distinguish the two sequences according to the physical access sequences. Next, we give the definition
provided by [FNO21].

2Here, we ignore the stash for simplicity.
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Algorithm 1 Tree-based ORAM: Access(op) // where op=(“read”, bid) or op=(“write”, bid, data∗)

1: procedure Access(op)
2: lid = PositionMap[bid] ▷ Obtain the leaf id
3: {bid||lid||data} = ReadAndRm(bid, lid) ▷ Read and remove the block
4: PositionMap[bid] = UniformRandom(0, · · · , N − 1) ▷ Assign a new path for the block
5: if op is “read” then
6: data∗ = data
7: end if
8: stash.add({bid||PositionMap[bid]||data∗}) ▷ Add the accessed block to the stash
9: Evict()

10: Return data
11: end procedure

Definition 1 (ORAM). An ORAM = (Init,Query) includes the following two polynomial-time algorithms:

• O ← Init(A,N): Initialize an ORAM object O containing an array A of length N whose elements are
from some spaceM.

• m′ ← Query(O, i,m): If m =⊥, this is a read query and returns the value m′ indexed by i ∈ [N ]; if
m ̸=⊥, this is a write query and sets the value indexed by i to m and returns m′ =⊥.

Definition 2 (Secure ORAM ). An ORAM is secure if it satisfies the following correctness and obliviousness.

Correctness. When a read is performed on index i, the result equals the value that was last written to index
i, or if a write has never been performed on index i, it returns the initial value of index i, A[i].

Obliviousness. For any initial arrays A and A′ of length N and any sequence of queries {(i1,m1), · · · , (it,mt)}
and {(i′1,m′

1), · · · , (i′t,m′
t)} where ij , i

′
j ∈ [N ] and mj ,m

′
j ∈M∪ {⊥}, the following equation is satisfied.

Acc


O ← Init(A,N),
Query(O, i1,m1),

· · ·
Query(O, it,mt)

 ≈ Acc


O′ ← Init(A′, N),
Query(O′, i′1,m

′
1),

· · ·
Query(O′, i′t,m

′
t)


where Acc() is the sequence of physical memory accesses when executing the input algorithms, and ≈

refers to computational, statistical, or perfectly indistinguishability.

Tree-based ORAM. Our work mainly relies on tree-based ORAM ([SvS+13, SCSL11, WHC+14, WCS15]).
Therefore, we briefly recall tree-based ORAM here.

In tree-based ORAM, N blocks are organized into a binary tree of height L = logN , and each node is a
bucket containing Z blocks. Each block is of the form {bid||lid||data} where bid is a block identifier and lid
is a leaf identifier specifying the path on which the block resides, and data is the payload of the block.

Each block is associated with a path identified by the leaf id lid and will be evicted through the path.
The mapping relation between blocks and paths is stored in the position map, which is held by the client.
According to [WCS15], tree-based ORAMs can be summarized into Algorithm 1, and Evict() is the key
difference between tree-based ORAM schemes. Specifically, for access to a block indexed by bid, the client
first retrieves the corresponding lid from the position map (line 2). Then, the client fetches all blocks on the
path from the server, and reads and removes the block from the path (line 3). Then, the client reassigns
a new path for this block and updates the position map (line 4). If this is a “read” operation, the client
obtains the data stored in the block, otherwise, the client updates the data field in this block. Finally, the
client adds the accessed block into the stash and executes the eviction process (lines 8-9), writing the fetched
blocks back into the tree.
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Parameters:
• Two parties: P0 and P1;

Functionality:
1. Wait for input x⃗ = (x1, · · · , xn) from P0;
2. Wait for input y⃗ = (y1, · · · , yn) from P1

3. Choose a random permutation π, compute z⃗ = (xπ(1) + yπ(1), · · · , xπ(n) + yπ(n)), and reshare z⃗ as z⃗0 and
z⃗1, such that z⃗ = z⃗0 + z⃗1;

4. Send z⃗0 and z⃗1 to P0 and P1, respectively.

Functionality FShuffle

Figure 5: Oblivious Shuffling Ideal Functionality

Parameters:
• Two parties: P0 and P1;

Functionality:
1. Wait for input x ∈ {0, 1}ℓ1 from P0;
2. Wait for input y ∈ {0, 1}ℓ1 from P1;
3. Give output b0 and b1 to P0 and P1, respectively, where b0 and b1 are boolean shares of b, where b = 1 if

x = y and b = 0 if x ̸= y.

Functionality FPET

Figure 6: Private Equality Testing Ideal Functionality

ORAM in Secure Computation. The storage of the server and the client is secret-shared between the
parties and all the operations are accomplished over secure computation. Specifically, for tree-based ORAM
in two-party secure computation, the tree and position map are secret-shared between the two parties (i.e.,
two servers in our work). For an access, each party obtains shares [bid] and [data∗], and the operations shown
in Algorithm 1 are implemented using secure computation protocols.

3.2 Oblivious Shuffling

The two parties input two vectors x⃗ = (x1, · · · , xn) and y⃗ = (y1, · · · , yn), respectively. Oblivious shuffling
permutes the vector (x1+y1, · · · , xn+yn) to z⃗ = (xπ(1)+yπ(1), · · · , xπ(n)+yπ(n)) with a permutation π not
known by P0 and P1. Then, each element zi in z⃗ is reshared to zi,0 and zi,1, such that zi,0+zi,1 = zi. Finally,
P0 and P1 obtain z⃗0 = (z1,0, · · · , zn,0) and z⃗1 = (z1,1, · · · , zn,1), respectively. We use the state-of-the-art
design by Peceny et al. [PRRS24] to instantiate oblivious shuffling.

3.3 Private Equality Test

Through the Private Equality Test (PET), two parties with items x and y can obtain bits b0 and b1,
respectively, such that if x = y, b0 ⊕ b1 = 1, otherwise, b0 ⊕ b1 = 0. We show the formal definition in
Figure 6. The performance of PET directly affects the latency of our protocol, so we implemented it using
the scheme in [CGS22], which enjoys efficient online performance.

4 Protocol Design

In this section, we will give a detailed description of our protocol. Next, we first provide the basic protocol
and then leverage a variant of ORAM to support long messages.
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There are two servers, Server1 and Server2, and multiple clients acting as senders or recipients.
Initialization:
Each Serverj (j ∈ {1, 2}) does the following:
(1) Initialize two empty vectors M⃗j = ∅ and X⃗j = ∅ (for retrieval);
Each client acting as a recipient Rcvi does the following:
(2) Randomly choose kRcvi ← Zp, and generate an address AddrRcvi = gkRcvi ∈ G; (G is a cyclic group with

prime order p and generator g.)
(3) For each potential sender Sdrj , send AddrRcvi to Sdrj .

a

aThe recipient Rcvi can do so using our own protocol acting as a sender.

Basic Protocol ΠInitialize

Figure 7: Basic protocol for initialization.

Sender: sending information to the two servers:
To send a message m to a recipient Rcvi associated with address AddrRcvi , the sender does the following:

(1) Randomly choose r
$←− Zp, and generate A = AddrrRcvi and R = gr;

(2) Randomly split A into A1 and A2, such that A = A1 ·A2;
(3) Generate the shares ([m]1, [m]2);
(4) Send ((A1, R), [m]1) to Server1 and ((A2, R), [m]2) to Server2.
Servers: preparing for retrievals:
(5) The two servers check if ((Aj , R), [m]j) is well-formed for j ∈ {1, 2}, if so, continue, otherwise ignore it.
(6) Serverj appends [m]j to M⃗j and (Aj , R) to X⃗j .

Basic Protocol ΠSend

Figure 8: Basic protocol for sending.

4.1 Basic Protocol

In the initialization phase (see Figure 7), Server1 (resp. Server2) initializes two empty vectors M⃗1 (resp. M⃗2)

and X⃗1 (resp. X⃗2). Later, M⃗j (j ∈ {1, 2}) will be used to store the messages and X⃗j (j ∈ {1, 2}) will be
used to store the information about addresses. Each recipient Rcvi uses AddrRcvi = gkRcvi as her address to
receive messages, and kRcvi is the corresponding secret key. We assume that the potential sender can obtain
the address AddrRcvi in some way, such as through a public website or secure peer-to-peer communications.

In the sending phase (see Figure 8), we assume that a sender wants to send a message m to a recipient
associated with an address AddrRcvi . The sender first generates a one-time address A = AddrrRcvi and an
associated string R = gr. Then, the sender splits the one-time address A into two shares A1 and A2, such
that A = A1 ·A2, and shares the message m into two shares [m]1 and [m]2, such that m = [m]1+[m]2. After
preparing these, the sender sends ((Aj , R), [m]j) to Serverj , where j ∈ {1, 2}. Once receiving the sending

request, Serverj appends [m]j to M⃗j and (Aj , R) to X⃗j .
In the retrieval phase (see Figure 9), the recipient first randomly splits the secret key kRcvi into two shares

kRcvi,1 and kRcvi,2, and then sends the two shares to the two senders, respectively. Obviously, if a one-time

address (Ak, Rk) corresponds to the secret key kRcvi , then Ak = R
kRcvi

k = Ak,1 ·Ak,2 where Ak,1 and Ak,2 are

the shares of Ak. Therefore, we have Ak,1·Ak,2 = R
kRcvi,1

k ·RkRcvi,2

k , i.e., Ak,1/R
kRcvi,1

k = R
kRcvi,2

k /Ak,2. Assuming

that there are n unretrieved messages, for each k ∈ [n], the two servers compute ak,1 = H1(Ak,1/R
kRcvi,1

k ) and

ak,2 = H1(R
kRcvi,2

k /Ak,2), respectively. For each pair (ak,1, ak,2), the two servers invoke FPET and obtain the
shares of equality test result bk,1 and bk,2 respectively. Then, Serverj concatenates bk,j with the corresponding

message share M⃗j [k] to obtain lk,j = bk,j ||M⃗j [k]. We denote the vector (l1,j , l2,j , · · · , ln,j) as l⃗j . Then, the

two servers invoke FShuffle with inputs l⃗1 and l⃗2 and obtain outputs g⃗1 and g⃗2, respectively. According to
the definition of FShuffle, g⃗1[k] + g⃗2[k] = l⃗1[π(k)] + l⃗2[π(k)] for any k ∈ [n] where the permutation π is not
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A recipient holding (AddrRcvi , kRcvi) wants to retrieve the messages pertinent to her.
Recipient:

1. Randomly split kRcvi into kRcvi,1 and kRcvi,2 such that kRcvi = kRcvi,1 + kRcvi,2;
2. Send kRcvi,1 to Server1 and kRcvi,2 to Server2;
3. For each k ∈ [n], once receiving [m]′k,1 and [m]′k,2 from the two servers, recover m = [m]′k,1 + [m]′k,2.

Servers:
1. The two servers do the following for each k ∈ [n] (j ∈ {1, 2}) where |X⃗1| = |X⃗2| = |M⃗1| = |M⃗2| = n:

(a) Serverj retrieves X⃗j [k] = (Ak,j , Rk);

(b) Server1 computes ak,1 = H1(Ak,1/R
kRcvi,1

k ) and Server2 computes ak,2 = H1(R
kRcvi,2

k /Ak,2), where H1

is a hash function: G→ {0, 1}ℓ3 ;
(c) Server1 and Server2 invoke FPET with inputs ak,1 and ak,2, and obtain bk,1 and bk,2 respectively;

(d) Serverj generates lk,j = bk,j ||M⃗j [k] (we denote l⃗j = (l1,j , l2,j , · · · , ln,j));

2. Server1 and Server2 invoke FShuffle with inputs l⃗1 and l⃗2, respectively, and obtain outputs g⃗1 and g⃗2,
where g⃗1[k] + g⃗2[k] = l⃗1[π(k)] + l⃗2[π(k)] for any k ∈ [n];

3. For each k ∈ [n]:
(a) Serverj retrieves g⃗j [k] = b′k,j ||[m]′k,j ;
(b) Server1 and Server2 collaboratively open b′k = b′k,1 + b′k,2;
(c) If b′k = 1, Serverj sends [m]′k,j to the recipient.

Basic Protocol ΠRetrieve

Figure 9: Basic protocol for retrieval.

known to the two servers. We denote each g⃗j [k] as b
′
k,j ||[m]′k,j . After collaboratively opening b′k = b′k,1+ b′k,2,

Serverj sends [m]′k,j to the recipient if b′k = 1.

4.2 Scaling With ORAM

Our basic protocol is not friendly for long messages, as it needs to shuffle all the messages. If the length
of each message is too large, the performance would not be practical. To solve this problem, we maintain
the messages using a variant of ORAM called ORAM−, instead of putting the messages into the above list.
Specifically, the basic scheme described in Section 4.1 is used to provide short indexes, and these indexes
can be used to retrieve the corresponding messages from ORAM−. Additionally, ORAM− is maintained by
the two servers in a secure computation way.

Next, we first give the construction of ORAM− and then give our scaling protocol by using ORAM−. See
Section 5.1 for the definition and security analysis of ORAM−.

Construction of ORAM−. Compared to classical ORAMs, our ORAM− enjoys the following features:
1. The block bid is randomly chosen;
2. An active block can only be written once and read once;
3. Each block is not initialized with an bid. When writing, an empty block would be assigned with a

specific bid and the data would be written into the block; after reading, the corresponding block would be
reset as an inactive block. When using tree-based ORAM, we do not need to evict after reading;

4. It is not necessary to hide the operation type.
Next, we construct ORAM− in Algorithm 2 based on tree-based ORAM (see Algorithm 1). Specifically,

different from tree-based ORAM, ORAM− does not have a position map, and the inputs of Read and Write
directly include the leaf id lid. For a Read operation, ORAM− only needs to return and remove the data
stored in the block indexed by bid from the path indexed by lid. For a Write operation, ORAM− adds the
block containing bid||lid||data∗ to stash and execute the eviction process.

Scaling Protocol. Next, we incorporate the above ORAM− in secure computation setting into the basic
protocol to construct a scalable protocol. The initialization phase is the same as that in the basic protocol
(i.e., Figure 7). Therefore, we only give the details about the sending and retrieval phases next, and the
differences from the basic protocol are marked with underlines.
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Algorithm 2 ORAM−

1: procedure Read(bid, lid)
2: {bid||lid||data} = ReadAndRm(bid, lid) ▷ Read and remove the block
3: Return data
4: end procedure
5: procedure Write(bid, lid, data∗)
6: stash.add({bid||lid||data∗}) ▷ Add the accessed block to the stash
7: Evict()
8: end procedure

Sender: sending information to the two servers:
The same as in the basic protocol (see Figure 8).

Servers: preparing for retrievals:
The two servers check if ((Aj , R), [m]j) it is well-formed for j ∈ {1, 2}, if so, continue, otherwise ignore it.

1. Serverj randomly chooses a block id share [bid]j
$←− {0, 1}ℓ1 and a leaf id share [lid]j

$←− {0, 1}ℓ2 ;
2. Serverj append [bid]j ||[lid]j to M⃗j and (Aj , R) to X⃗j ;
3. The two servers execute ORAM−.Write with input ([bid]1, [lid]1, [m]1) and ([bid]2, [lid]2, [m]2).

Protocol ΠSend

Figure 10: Scalable protocol for sending.

In the sending phase (see Figure 10), compared to the basic protocol, we need to generate a block id
bid and leaf id lid for each message. Later, the message m will be written into and retrieved from the block
indexed by bid. To guarantee the correctness of ORAM−, the block id should be unique and the leaf id
should be randomly chosen. Since the sender may be malicious, we cannot assume that the sender generates
bid and lid correctly. Moreover, when retrieving, the two servers can know which path identified by a leaf id
is retrieved. If the leaf id is chosen by the sender, the sender can learn some information about the recipient
by colluding with one of the servers. Therefore, we require the two servers to randomly generate the shares
of block id and leaf id, such that none of the servers and sender knows (bid, lid) and (bid, lid) are random.

After generating ([bid]j , [lid]j), Serverj appends [bid]j ||[lid]j , rather than [m]j , to M⃗j . Finally, the two
servers collaboratively execute ORAM−.Write with the shares ([bid]1, [lid]1, [m]1) and ([bid]2, [lid]2, [m]2) as
input.

In the retrieval phase (see Figure 11), different from the basic scheme where the two servers directly

retrieve the message shares from M⃗1 and M⃗2, the two servers here first obtain the shares of pertinent block
id and leaf id and then collaboratively execute ORAM−.Read to obtain the message shares [m]k,1 and [m]k,2.

4.3 Protecting Volume Information

Our protocol explained in Sections 4.1 and 4.2 leaks volume information to the adversary: how many
messages are sent by a sender, and how many messages are retrieved by a recipient. Different strategies
exist in the literature to protect against such volume information leakage. Protocols that inherently employ
rounds can use batching [LGZ18, DMK22, KLD20, ECZB21] techniques, where every user sends exactly the
same number of messages in a batch, and each recipient retrieves the exact same number of messages after
the batch is processed.

On the other hand, protocols that do not employ such batching methods utilize heuristic techniques based
on dummy messages [PHE+17, DMMK24]. Our cryptographic construction also departs from the restrictions
of rounds and batches and aims to achieve what a trusted third-party anonymizer could guarantee. Therefore
we recommend techniques based on dummy messages in order to hide such volume information. The clients
can add dummy messages to hide their overall rate of sending and receiving messages, and the amount

14



A recipient holding (AddrRcvi , kRcvi) wants to retrieve the messages pertinent to her.
Recipient:

The same as in the basic protocol (see Figure 9).
Servers:

1. The same as in the basic protocol (see Figure 9);
2. The same as in the basic protocol (see Figure 9);
3. For each k ∈ [n]:

(a) Serverj retrieves g⃗j [k] = b′k,j ||[bid]′k,j ||[lid]′k,j ;
(b) Server1 and Server2 collaboratively open b′k = b′k,1 ⊕ b′k,2;
(c) If b′k = 1, Server1 and Server2 invoke ORAM−.Read with inputs [bid]′k,1||[lid]′k,1 and [bid]′k,2||[lid]′k,2,

respectively, and obtain outputs [m]k,1 and [m]k,2, respectively;
(d) Serverj sends [m]k,j to the recipient.

Protocol ΠRetrieve

Figure 11: Scalable protocol for retrieval.

of dummy messages can be chosen based on the desired amount of privacy. A thorough analysis of such
a strategy is out of the scope of this work, and we refer to existing works [PHE+17, DMMK24] for the
quantification of dummy message rate vs. desired privacy.

5 Security Analysis

5.1 Security of ORAM−

ORAM− is a variant of ORAM, where a block is activated by a “write” operation and will be released after
a “read” operation, and the type of operation does not need to be hidden. We provide the definition of our
variant of ORAM ORAM− adopted from the definition in [FNO21]. Note that we do not consider ORAM− in
the secure computation setting here. As in previous works, the security of ORAM− in the secure computation
setting relies on the security of ORAM− and the underlying secure computation techniques.

Definition 3. ORAM− = (Init,Write,Read) includes the following three polynomial-time algorithms:
1. (St, Idx) ← Init(N, p): According to the predefined maximum number of stored messages N and the

predefined collision probability p, generate an initialized state St and an index space Idx. The collision
probability refers to the probability that multiple stored messages correspond to one index.

2. St′ ← Write(St, i,m): Write a message m that associates with an index i ∈ Idx into the current state
St, and the state St is updated to St′.

3. (St′,m)← Read(St, i): If the index i has been written before, read the message m associated with the
index i ∈ Idx from the current state St, otherwise, read m =⊥. And, update the state St to St′.

Definition 4 (Secure ORAM for Transmission). A ORAM− is secure if it satisfies the following correctness
and obliviousness.

Correctness. For an operation (St′,mr) ← Read(St, i), if the last operation about the index i is St′ ←
Write(St, i,mw), then mr = mw, otherwise (there are no previous operations on the index i, or the last
operation about the index i is also a “read” operation), mr =⊥.
Obliviousness. For any two sequences of operations {Op1(St1, i1,m1), Op2(St2, i2,m2), · · · ,Opt(Stt, it,mt)}
and {Op′1(St

′
1, i

′
1,m

′
1),

Op′2(St
′
2, i

′
2,m

′
2), · · · ,Op

′
t(St

′
t, i

′
t,m

′
t)} chosen by the adversary, that satisfy the following conditions:

• Op and Op′ are in {Write,Read};

• If the operation is Read, the corresponding mk or m′
k is ⊥;

• Opk = Op′k.
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We have,

Acc


(St1, Idx)← Init(N, p),

(St2,m1/ ⊥)← Op(St1, i1,m1),

· · ·
(Stt,mt/ ⊥)← Op(Stt, it,mt)



≈ Acc


(St′1, Idx

′)← Init(N, p),

(St′2,m
′
1/ ⊥)← Op(St′1, i

′
1,m

′
1),

· · ·
(St′t+1,m

′
t/ ⊥)← Op(St′t, i

′
t,m

′
t)


Where Acc() is the sequence of physical memory accesses when executing the input algorithms, and ≈

refers to computational, statistical, or perfectly indistinguishability.

Theorem 1. If the underlying tree-based ORAM is a secure ORAM, then our construction shown in Algo-
rithm 2 is a secure ORAM−.

Proof. For this proof, we will analyze the correctness and obliviousness of our construction, respectively.

Correctness. The correctness is obviously guaranteed by the correctness of the underlying tree-based
ORAM. For a “read” operation, it just releases an active block, and thus will not incur extra overflow. A
“write” operation in ORAM− is equivalent to writing a message to an empty block in tree-based ORAM.
Therefore, as long as the number of stored messages is less than the upper bound N , a “write” operation
will also not incur extra overflow.

As for the collisions of indexes, we can use the birthday paradox probability to set the bit-length of each
block ID as ℓbid, given the predefined maximum number of stored messages N .

Obliviousness. If there is an adversary A that can distinguish two sequences of physical memory accesses
generated by two sequences of operations run by ORAM−. Then, we can construct another adversary B that
can distinguish two sequences of physical memory accesses generated by two sequences of operations run by
ORAM. Next, we will construct the adversary B.

The adversary B maintains two tables T (0) and T (1) to store the linkability between an index for ORAM
and an index for ORAM−, and a bit indicating if an index for ORAM corresponds to a valid message.
Specifically, each entry of the tables is a tuple (idORAM, idORAM− , b) where b = 1 indicates that there is a
message associated with idORAM. The adversary B initializes the tables T (0) and T (1) by storing (idORAM, 0, 0)
for each index idORAM of ORAM.

Once receiving two operations (Op
(0)
k , i

(0)
k ,m

(0)
k )} and

(Op
(1)
k , i

(1)
k ,m

(1)
k )} from the adversary A, the adversary B generates another two operations (Õp

(0)

k , ĩ
(0)
k , m̃

(0)
k )

and (Õp
(1)

k , ĩ
(1)
k , m̃

(1)
k ), based on the following rule.

• If Op
(0)
k = Op

(1)
k = Write:

– The adversary B randomly chooses an index ĩ
(0)
k (resp. an index ĩ

(1)
k ) whose tuple is (̃i

(0)
k , 0, 0)

(resp. (̃i
(1)
k , 0, 0)) in the table T (0) (resp. T (1)), and changes the tuple to (̃i

(0)
k , i

(0)
k , 1) (resp.

(̃i
(1)
k , i

(1)
k , 1));

– The adversary B sets Õp
(0)

k = Õp
(1)

k = Write;

– The adversary B sets m̃
(0)
k = m

(0)
k and m̃

(1)
k = m

(1)
k .

• If Op
(0)
k = Op

(1)
k = Read:

– If there is a tuple (id(j), i
(j)
k , 1) in T (j) :

∗ The adversary B sets ĩ
(j)
k = id(j), and changes the tuple to (id(j), 0, 0);

∗ The adversary B sets Õp
(j)

k = Write;

∗ The adversary B sets m̃
(j)
k = 0.
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– If there is not a tuple (id(j), i
(j)
k , 1) in T (j) :

∗ The adversary B randomly chooses ĩ
(j)
k that is not in the index space of ORAM;

∗ The adversary B sets Õp
(j)

k = Write;

∗ The adversary B sets m̃
(j)
k = 0.

The adversary B sends (Õp
(0)

k , ĩ
(0)
k , m̃

(0)
k ) and (Õp

(1)

k , ĩ
(1)
k , m̃

(1)
k ) to the challenger of ORAM. The challenger

will randomly choose a bit c, and run (Õp
(c)

k , ĩ
(c)
k , m̃

(c)
k ) on ORAM to generate the physical memory access

sequence AccSeq and send back AccSeq to the adversary B. Then, the adversary B can construct another
physical memory access sequence AccSeq′ according to AccSeq, and sends AccSeq′ to the adversary A.

Next, we explain that how the adversary B can construct AccSeq′ for ORAM− according to AccSeq.
For a Write operation on ORAM−, the physical memory access includes: (1) read the stash and a path

for eviction, and (2) write blocks into the stash and the path after performing writing and eviction. The
physical memory access for ORAM is exactly the same.

For a Read operation on ORAM−, the physical memory access includes: (1) read the stash and a corre-
sponding path, and (2) write blocks into the stash and the path after releasing the corresponding block. In
ORAM, although there is an eviction process, the physical memory access is exactly the same. If there is no
active block for the index, both ORAM and ORAM− do not generate the physical memory access.

Finally, the adversary A outputs a bit c′, and then the adversary B forwards c′ to the challenger.
Since AccSeq = AccSeq′, if the adversary A can distinguish the sequences for ORAM− with non-negligible
probability, the adversary B can distinguish the sequences for ORAM with the same probability.

5.2 Security Against Passive Adversaries

5.2.1 Anonymity Definition

We focus on both sender anonymity and recipient anonymity for our protocol. With that goal, we define
an ideal functionality Fanon that can capture both properties. Our Fanon functionality, however, does not
hide the volume information corresponding to the sender: if a specific sender sends too many (or too few)
messages, that volume information is leaked to the adversary. Even a trusted third-party anonymizer that
shuffles all the messages after receiving every new message would leak such volume information, unless
dummy messages are added by the senders. We discuss how to hide such volume information based on
dummy messages in Section 4.3. We present the ideal functionality Fanon in Figure 12.

Theorem 2. Assuming the hardness of the Discrete-logarithm problem, computational security and cor-
rectness of ORAM−, and at least one of the servers is honest, our protocol Π = (ΠInitialize,ΠSend,ΠRetrieve)
UC-realizes the ideal functionality Fanon in {FPET,FShuffle,FSC−ORAM−}-hybrid world.

FSC−ORAM− denotes the ideal functionality that captures running our ORAM− in the secure computation
setting as explained in Section 2.4. We present the definition of FSC−ORAM− in Figure 14 in Appendix B. It
takes input from both servers, runs ORAM− locally without leaking the inputs, and returns the output.

To prove that our protocol UC-realizes the Fanon functionality, we show that there exists a simulator Sfull
interacting with Fanon functionality that generates a transcript that is indistinguishable from the transcript
generated by the real-world adversary A in the protocol Π. We present the description of the simulator
(Figs. 15 and 16) and the full proof in Appendix B.

5.3 Defending Against Malicious Behaviors

The security arguments presented in Section 5.2 assume that the adversary is honest-but-curious — the
compromised clients and server still follow protocol faithfully. However, malicious clients (or the malicious
server) could choose to disrupt the protocol. Below we discuss the relevant disruptive behaviors and their
defenses.
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1: The functionality maintains a set T which contains the messages and the corresponding sender and
recipient. Each element in the set is stored as a tuple (msg, sender, recipient).

2: The functionality also maintains a set R that keeps track of the messages that are retrieved.
3: Sending a message (Send):

• Upon receiving (Send,AddrRcvj ,msg) from an honest sender ui:

– store the tuple (ui,AddrRcvj ,msg) in T ;
– send (Send, ui, , ) to the simulator S.

• Upon receiving (Send, ui,AddrRcvj ,msg) from S:
– if sender ui is a corrupted party, store the tuple (ui,AddrRcvj ,msg) in T ;
– if ui is an honest party, return Invalid command to S.

4: Retrieving messages (Retrieve):

• Upon receiving (Retrieve,Rcvj) from the simulator S for a corrupted recipient Rcvj :

– select all tuples t = (msg, sender, recipient) ∈ T where t.recipient = AddrRcvj .

– Collect the msg field of those tuples in a list; shuffle the list, and send the shuffled list to S.
– Remove those tuples from T .

• Upon receiving (Retrieve, ) from an honest Rcvj :

– select all tuples t = (msg, sender, recipient) ∈ T where t.recipient = AddrRcvj .

– If there are k such tuples, send the msg field of those tuples to Rcvj as a list; remove those k
entries from T .

– Send (Retrieve,Rcvj , k) to the simulator S.
– Remove those k entries from T .

Functionality Fanon

Figure 12: An ideal functionality capturing both sender and recipient anonymity.

5.3.1 Malicious Senders

If a malicious client (sender) sends invalid Aj shares such that the intended recipient is invalid, it will only
accumulate invalid messages in the servers’ storage. Such invalid messages will not impact the functionality
or security of the system, except for slowing it down over time. To avoid such slowdown, the two servers can
periodically run any private-membership-tests techniques (e.g., vector commitments [CF15]). A malicious
sender can still overwhelm a specific recipient by sending a lot of messages; such attacks could be prevented
by rate-limiting by the servers.

Targeted attacks where a (malicious) sender tries to disrupt/modify the messages sent by others are
automatically eliminated in our design: the addresses for the blocks in ORAM− are chosen from a large
address space so that the collision probability is negligible (the bid and lid values are randomly chosen by
the servers). We can formally state the property with the following lemma and provide the proof sketch in
Appendix B.3

Lemma 1. Assuming Computational Diffie–Hellman (CDH) assumption holds for group G, a malicious
sender (possibly colluding with one of the servers) can overwrite messages sent by an honest sender only
with negligible probability . Moreover, a malicious receiver colluding with one server cannot retrieve the
messages (sent by an honest sender) intended for an honest recipient.

5.3.2 Malicious Server Colluding With Receivers

A malicious recipient could as well attempt to retrieve messages intended for other receivers. In our scheme,
we require the sender to generate a one-time address AddrrRcv for each sending, which allows us to defend
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against a malicious receiver (possibly colluding with one server) from retrieving messages intended for other
honest recipients.

Without the one-time address, for an address Addr, the two servers would hold A1 and A2, respectively,
such that A1 · A2 = Addr. We assume that a malicious receiver colludes with Server2. Then, the malicious
receiver not knowing the secret key of Addr randomly generates a secret key share k, and sends k to Server1.
Server1 will compute a1 = H1(A1/g

k). Since the receiver colludes with Server2, Server2 can compute a2 =
H2(Addr/(A2 · gk)). We can see that a1 must be equal to a2, allowing the receiver to get the corresponding
message (even though the malicious receiver cannot obtain the plain texts of these messages, the receiver
can learn how many messages are sent to the address).

HomeRun also discussed using one-time addresses to address this issue. However, their solution is not
suitable for our work, since Server1 in HomeRun can learn the one-time address belonging to a receiver.
Then, the sender can collude with the server to know the receiver, as the one-time address is generated by
the sender. In our scheme, the servers cannot know the one-time address.

5.3.3 Tampering with the stored data

Same as prior works [ECZB21, EB21], to prevent the servers from tampering with the messages, we require
the sender to include a MAC for each message. However, the malicious server might selectively modify
messages and verify on the recipient side which messages fail MAC-verification (especially when colluding
with the receiver). To address that issue, we utilize the Blind MAC verification technique using Beaver
triples, introduced in Clarion [EB21]. The beaver triples are generated as part of a preprocessing phase, and
our servers executes the Blind MAC verification before every retrieval operation. For a detailed description
of the verification technique we refer to [EB21, Section V.B].

6 Performance Evaluation

Implementation

We implement Kerblam in C++, and we will make the code public upon acceptance of the paper. The
cyclic group G is realized using the elliptic curve secp256r1 provided in OpenSSL [Ope24]. The oblivious
message retrieval part is implemented using the code of HomeRun [JMK24]. The Oblivious Shuffling is
implemented using the code of [PRRS24]3. We implement ORAM− based on circuit ORAM [WCS15] whose
code is provided in [cir24].

6.1 Experimental Evaluation

We aim to answer the following questions from our experimental evaluations:

• While trying to achieve stronger anonymity guarantees (End-to-end unlinkability), do we introduce
impractical overheads for the system?

• How much performance improvement do we gain from the scaling technique based on ORAM−?

Experimental Environment. Our experiments are conducted on machines equipped Intel(R) Core(TM)

i9-14900K with 24 cores and 128GB of RAM, running Ubuntu. We evaluate Kerblam in LAN network with
10Gbps bandwidth and 0.08 ms RTT.

6.1.1 Benchmarks

First, we present the benchmarks for the operations (equality test, shuffling, and ORAM− read and write)
run on a single thread on the servers. We show the benchmarks in Table 2.

3We received the source code by contacting the authors over emails.
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Our basic scheme (T=1) Our scalable scheme (1KB) Express (1KB) Homerun (index retrieval)
16 B 1 KB T=1 T=4 T=16 T=1 T=4 T=16 T=1 T=4 T=16

214 0.617 1.812 0.951 0.558 0.466 0.222 0.192 0.162 0.142 0.065 0.034
216 2.382 7.756 2.745 1.086 0.717 0.806 0.746 0.586 0.534 0.177 0.092
218 9.551 37.699 9.95 3.219 1.673 3.164 2.933 2.268 2.216 0.614 0.301
220 38.5 281.936 38.942 11.63 5.577 12.020 11.122 8.651 8.683 2.548 0.908

Table 1: The latency (seconds) of our basic scheme and scalable scheme. The number of messages stored by
the two servers n ∈ {214, 216, 218, 220}. The basic scheme is evaluated for message sizes of 16 B and 1 KB,
in a single thread. The scalable scheme is evaluated for the message size of 1 KB, using T = 1, 4, 16 threads.
We compare our performance with Express [ECGZB19] and Homerun [JMK24] (only index retrieval) in the
same experimental environment.

Prep.
Equality Test Shuffling ORAM− (1 KB)

Offline Online 16 B 1 KB Write Read

214 0.448 0.413 0.138 0.031 1.226 0.276 0.058
216 1.789 1.674 0.522 0.071 5.445 0.3 0.063
218 7.098 7.218 2.144 0.309 28.457 0.331 0.068
220 28.628 28.665 8.608 1.264 244.7 0.369 0.073

Table 2: The breakdown runtime (seconds) of Kerblam in a single thread, when the number of messages
stored by the two servers n ∈ {214, 216, 218, 220}. For basic protocol (see Figure 9), step 1-a and step 1-b
correspond to “Preparation”; step 1-c and step 1-d correspond to “Equality Test”; steps 2-3 correspond to
“Shuffling”. For scalable sending protocol (see Figure 10), step 3 corresponds to “ORAM− Write”. For the
scalable sending protocol (see Figure 11), step 2 corresponds to “Shuffling 16 B” and step 3 corresponds to
“ORAM− Read”.

The basic protocol (without ORAM− optimization) only includes “Preparation”, “Equality Test”, “Shuf-
fling”. We can see that for short messages (16B), the overhead for the “Shuffling” part is reasonable (less than
1.3 seconds even for 220 messages), and the equality test is the dominant part in the performance (around 8.6
seconds for 220 messages). However, for long messages of 1KB, the overhead for shuffle drastically increases
with the number of messages, and becomes the dominant part among all steps. For 220 messages this step
takes more than 244 seconds, which makes the base protocol less practical for long messages.

As we can see, the time taken for ORAM− operations grows very slowly with the number of messages. So,
for short (16B) and small number (214) of messages, ORAM− does not add much improvements. However,
for long messages of 1KB, ORAM− adds significant benefits in terms of performance. In our scalable protocol
with ORAM−, shuffling is performed on short indexes, and the actual messages are stored by ORAM−. So
we only need to use “Shuffling (16 B)”. In this case, we can see that the “Preparation” phase and “Equality
Test” phase dominate the performance.

Fortunately, the two phases are parallelizable.4 We show the performance of these two phases after
parallelization in Table 3. When the number of threads T is 4, the performance improvement is nearly 4×
for “preparation” and “equality test online”, and there is a significant performance improvement for “equality
test offline”. When T = 16, the performance improvement is not exactly proportional to T , however, there
is still a significant improvement.

6.1.2 End-to-end Performance

Now we measure the end-to-end performance of our basic protocol as well as when we optimize with ORAM−.
We present the latency (i.e., the sum of sending runtime and retrieval runtime) of our basic and scalable
scheme in Table 1.

4Since our ORAM− does not try to hide the operation (read or write), read operations do not require evictions and are
parallelizable.
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Prep. Equality Test

T=4 T=16
T=4 T=16

Offline Online Offline Online

214 0.132 0.066 0.161 0.061 0.117 0.035
216 0.477 0.189 0.718 0.175 0.525 0.094
218 1.885 0.724 2.985 0.626 2.178 0.241
220 7.456 2.836 11.878 2.468 8.396 1.035

Table 3: Parallelization of “Preparation” and “Equality Test” using T = {4, 16} threads.

We can confirm that when the message size is 16 B, the performance of our basic scheme is adequate,
especially with a relatively small number of messages (214); for n = 220, the latency is 38.5 seconds. However,
when the message size increases to 1 KB, the latency is 281.936 seconds, which is not suitable enough for
practical use. After introducing ORAM−, the latency can be reduced to 38.942 second for 220 messages of
size 1 KB, using a single thread. Further, with 16 threads, the latency goes down to only 5.577 seconds.

Comparisons with Related Protocols. We compare with Express and Homerun to claim that our per-
formance is comparable to them, despite achieving stronger anonymity properties. Additionally, a significant
component of our performance optimization stems from ORAM−, which could arguably be utilized by other
existing systems as well.

We can see in Table 1, our performance is comparable (actually slightly better than) to that of Ex-
press [ECZB21] that needs 8.651 seconds latency with 220 messages and 16 threads. For smaller number of
messages (214, 216) Express performs better than our protocol. However, as the number of messages grow,
our protocol quickly catches up because of the ORAM− optimization. The main additional overhead in our
scheme compared to HomeRun [JMK24] is introduced by the “Preparation” part, which is used to defend the
collusion between receivers and one server (as explained in Section 5.3.2). HomeRun did not consider this
attack in their evaluation. Note that the performance reported in Table 1 only considers the index retrieval
part for Homerun, and an additional 1.37s should be added for retrieving the message using a PIR scheme.

7 Conclusion

In this work, we have designed an end-to-end anonymous messaging system, Kerblam, that can protect the
privacy of both senders and receivers. In addition, we allow receivers to go offline at any time without losing
messages. Our design is based on a key observation that combining oblivious message retrieval and oblivious
shuffling can obtain end-to-end anonymity without compromising on the communication functionalities.
However, the performance of direct combination is not enough for large-scale long messages. To improve
scalability, we have proposed a novel variant of ORAM, called ORAM−. By introducing ORAM−, our Kerblam
can transmit a 1 KB message in about 5.577 seconds when there are a total of 220 unretrieved messages in
the system.
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A Why Not Choose List-based ORAM

From the analysis in Section 2.4, we have known that when using tree-based ORAM, there is no need to
consider any additional collision issues beyond block IDs. However, this is not true for list-based ORAM.

(a) Original version (b) Expanded version

Figure 13: List-based ORAM

The data structure of the list-based ORAM is shown in Figure 13a. Unlike the tree-based ORAM where
a path can contain multiple real blocks and numerous dummy blocks facilitate the movement of real blocks
along corresponding paths, list-based ORAM allocates only one position for each real block, as illustrated
in Figure 13a. Therefore, even if the senders can choose the block IDs from a large set to avoid collisions,
the number of physical positions is still just n, which will lead to collisions with overwhelming probability.
To solve the problem, we need to expand the capacity of each position to allow each position to contain
multiple blocks, as shown in Figure 13b. In this way, the positions in the expanded list-based ORAM are
equivalent to the paths in the tree-based ORAM. Therefore, even if two senders choose the same position,
their messages can still be written into ORAM successfully. To access a block in the expanded list-based
ORAM, in addition to the block ID bid, a position ID pid also needs to be provided. Then, the servers
first find the position according to pid and then search for the block according to bid in this position. A
natural question arises: how many blocks are needed in a position to guarantee that the failure probability
is negligible?

Obviously, this is a balls-into-bins problem, and we can use the following inequality [MR95]

Pr[∃ position with ≥ ρ items]

≤q

 n∑
i=ρ

(
n

i

)
·
(
1

q

)i

·
(
1− 1

q

)n−i


to set the maximum number ρ of blocks in a position, such that no position will contain more than ρ blocks
except with probability 2−λ, when the number of positions is q and the number of total real blocks is n.
Specifically, to maintain 220 unretrieved messages and achieve at most 2−40 failure probability, we can set
ρ = 20, which will lead to a significant performance decline.
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1: Upon receiving (([bid]j , [lid]j)j∈1,2,READ) from the servers:
(a) Run ORAM−.READ with inputs ([bid]1 + [bid]2, [lid]1 + [lid]2 ) as the ORAM− server.
(b) Return the output and all the transcript generated from step 1.(a) to the servers.

2: Upon receiving (([bid]j , [lid]j)j∈1,2,WRITE,msg) from the servers:
(a) Run ORAM−.WRITE with inputs ([bid]1 + [bid]2, [lid]1 + [lid]2, msg ) as the ORAM− server.
(b) Return all the transcript generated from step 2.(a) to the servers.

Functionality FSC−ORAM−

Figure 14: Ideal functionality realizing ORAM− in secure computation setting.

B Deferred Proofs about Protocols

B.1 Ideal Functionality Realizing ORAM− in Secure Computation Setting

We present the ideal functionality the realizes ORAM− in secure computation setting in Fig. 14. For the
desired properties of ORAM−, we refer to Section 5.1.

B.2 Security Proof for the Complete Protocol

Theorem

Assuming the hardness of Discrete-logarithm problem, computational security and correctness of ORAM−,
and at least one honest server, our protocol Π = (ΠInitialize,ΠSend,ΠRetrieve) UC-realizes the ideal functionality
Fanon in the {FPET,FShuffle,FSC−ORAM−}-hybrid world.

Proof. To prove that our protocol UC-realizes the Fanon functionality, we show that there exists a simulator
Sfull interacting with Fanon functionality that generates a transcript that is indistinguishable from the
transcript generated by the real-world adversary A in the protocol Π. We present the description of the
simulator in Figs. 15 and 16.

We show that the transcript of the adversary in the real-world and in the simulated world are indistin-
guishable by presenting hybrids that are indistinguishable for the adversary:

• Hybrid0: The real-world protocol.

• Hybrid1: This hybrid is same as the previous hybrid, except that the random tapes of the corrupted
server and the corrupted clients are chosen by the simulator. Since, the adversary is semi-honest, this
is indistinguishable from the previous hybrid.

• Hybrid2: This hybrid is identical to the previous one, except that the keypairs for the honest server and
the AddrRcv values for the honest recipients are generated by the simulator. Any communication from
these parties will be intercepted by the simulator, and simulator will generate random communication
to replace the original communications. These hybrids are indistinguishable since one of the servers is
honest, and based on the hardness of DL-problem.

• Hybrid3: This hybrid is identical to the previous hybrid, except that the simulator invokes FSC−ORAM−

to execute ORAM−.Write and ORAM−.READ operations using the manufactured inputs as in
Figs. 15 and 16. Based on the computational security of our ORAM− scheme (see Theorem 2), the
accesses with manufactured input are indistinguishable from the access pattern of the original protocol;
moreover, FSC−ORAM− guarantees that the original input is never revealed, and our simulator S ensures
that the volume information is preserved. Therefore, the hybrids are indistinguishable.
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Simulating ΠInitialize:
1. w.l.o.g. assuming Server2 is corrupted.
2. On behalf of honest Server1 generate (pk1, sk1), and broadcast (PK, pk1). (Note that our simulator Ss

knows the key pairs of the honest server.)
3. The simulator also chooses the random tape for Server2.
4. On behalf of each honest recipient Rcvi, sample kRi ← Zp and compute AddrRi = gkRi and broadcast

(ADDR,AddrRi).
5. Wait for the adversary A to send (PK, pk2) on behalf of Server2 and (ADDR,AddrRi) on behalf of each

corrupted recipient.

Simulating ΠSend:

1. Upon receiving (Send, ui, , ) from Fanon functionality (for an honest sender ui): The simulator
generates the shares for the servers by running the code of the client, however, without knowing the
actual message or the recipient. And that requires the following modifications.

(a) Generate [m]1 + [m]2 = 0, r
$←− Zp, R = gr, and A = (AddrRcv)

r, for a randomly chosen recipient
Rcv; further, randomly split A into A1 and A2 such that A1 ·A2 = A.

(b) Now run the remaining client code of ΠSend to send the shares (([bid]j , [lid]j , [m]j), (Aj , R)) to the
respective servers. (Note that, the communications to Server1 are only for the purpose of
generating transcript for the real-world adversary A, any output generated by Server1 is ignored by
S.)

(c) Additionally, store the tuple ([m]1, [bid]1, [lid]1, A1, R, r, 0) in a local table T1, and
([m]2, [bid]2, [lid]2, A2) in another local table T2.

2. Upon receiving ((([bid]j , [lid]j , [m]j), (Aj , R))j∈1,2,msg,AddrRcv) from A (for a corrupted sender ui):

(a) Store the tuple ([m]1, [bid]1, [lid]1A1, R, r,msg) in the local table T1, and ([m]2, [bid]2, [lid]2, A2) in
another local table T2.

(b) Send (SEND, ui,AddrRcv,msg) to the ideal functionality Fanon.

3. Preparing for retrievals:

(a) Run the server part of ΠSend protocol on behalf of Server1 (see Fig. 10).
(b) In the last step, invoke FSC−ORAM− to execute ORAM−.WRITE with input ([bid]1, [lid]1, [m]1)

together with Server2.

Simulator Sfull

Figure 15: Simulating Send when the servers use ORAM−

B.3 Security Lemmas Related to Active Attacks

Lemma

Assuming Computational Diffie–Hellman (CDH) assumption holds for group G, only with negligible prob-
ability a malicious sender (possibly colluding with one of the servers) can overwrite messages sent by an
honest sender. Similarly, a malicious receiver colluding with one server cannot retrieve the messages (sent
by an honest sender) intended for an honest recipient.

Proof Sketch. The sender randomly choose r
$←− Zp to generate A = AddrrRcvi and R = gr.

Part 1. The malicious sender cannot guess r from observing R, otherwise the hardness assumption of the
Discrete-logarithm problem is broken.

Since Zp is a large address space, the probability of choosing the same address without knowing the
address is negligible.

Part 2. Without loss of generality, let us assume that Server2 is compromised. Note that AddrRcvi = gkRcvi

(generated by an honest recipient. And the sender generates A = AddrrRcvi and R = gr. Assuming FPET

and FShuffle do not leak anything, if a malicious recipient can send correct values that can reconstruct

28



Simulating ΠRetrieve:

1. Upon receiving (Retrieve, kRcvj ,1, kRcvj ,2,Rcvj) from A where Rcvj is corrupted:

(a) Send (Retrieve,Rcvj) to Fanon. Let M be the response from Fanon.
(b) Run the code of the two servers locally using T1 and T2 to generate the output vectors B1 and B2

corresponding to the servers. Suppose, B1 and B2 collectively yields the set of messages M′ for
AddrRcvj .

(c) For each element m in M\M′: find a tuple T = ([m]1, [bid]1, [lid]1, A1, R, r,msg) in T1 such that
msg = 0 and A1 ·A2 ̸= (AddrRcvj )

r. Update A1 = (AddrRcvj )
r/A2, update [m]1 = msg − [m]2, and

set msg = m.
(d) For each element m in M′ \M: find the tuple T = ([m]1, [bid]1, [lid]1, A1, R, r,msg) in T1 such that

msg = 0 and A1 ·A2 = (AddrRcvj )
r. Update A1 = (AddrRcvw )

r/A2, for a randomly chosen recipient
Rcvw ̸= Rcvj .

(e) Run the code for Server1 (see Fig. 11) again with updated T1 as part of the protocol with Server2,
in order to generate new output vector g⃗′1, and wait for A to generate g⃗′2 on behalf of Server2.

(f) For each g = b′k,2||[bid]′k,2||[lid]′k,2 ∈ g⃗′1: if (b′k,2 ⊕ b′k,1) = 1, invoke FSC−ORAM− to execute
ORAM−.READ with input ([bid]′k,1||[lid]′k,1, [bid]′k,2||[lid]′k,2) acting as Server1.

2. Upon receiving (Retrieve,Rcvj , k) from Fanon:

(a) Generate A1 and A2 such that A1 ·A2 = (AddrRcvj )
r for r

$←− Zp.
(b) Run the code of the two servers locally using T1 and T2 to generate the output vectors B1 and B2

corresponding to the servers. Suppose, B1 and B2 collectively yields k′ messages AddrRcvj .
(c) If k′ > k, find k′ − k tuples in T1 such that, for each of them, msg = 0 and A1 ·A2 = (AddrRcvj )

r.
Update A1 = (AddrRcvw )

r/A2, for a randomly chosen recipient Rcvw ̸= Rcvj .
(d) If k′ < k, find k′ − k tuples in T1 such that, for each of them, msg = 0 and A1 ·A2 ̸= (AddrRcvj )

r.
Update A1 = (AddrRcvj )

r/A2, and set msg = 1.
(e) Run the code for Server1 (see Fig. 11) again with updated T1 as part of the protocol with Server2,

in order to generate transcript for the adversary. (Note that the honest recipient has already
received the actual output from Fanon and can ignore any output produced by the simulator.)

Simulator Sfull

Figure 16: Simulating Retrieve when the servers use ORAM− for performance improvement

A = AddrrRcvi , they will be able to construct an adversary ADL that can break the CDH assumption (by

constructing A = AddrrRcvi = gkRcvi
×r from R = gr and AddrRcvi = gkRcvi ).
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