
Fully-Homomorphic Encryption from Lattice Isomorphism

Pedro Branco
Bocconi University

Giulio Malavolta
Bocconi University

Zayd Maradni
MPI-SWS

Abstract

The lattice isomorphism problem (LIP) asks, given two lattices Λ0 and Λ1, to decide whether
there exists an orthogonal linear map from Λ0 to Λ1. In this work, we show that the hardness
of (a circular variant of) LIP implies the existence of a fully-homomorphic encryption scheme
for all classical and quantum circuits. Prior to our work, LIP was only known to imply the
existence of basic cryptographic primitives, such as public-key encryption or digital signatures.

Contents

1 Introduction 2
1.1 Our Results . 2
1.2 On the Hardness of Distinguish-LIP . 4
1.3 Technical Outline . 4

2 Cryptographic Preliminaries 11
2.1 Fully-Homomorphic Encryption . 11

3 Lattices and Gaussians 12

4 Fully Homomorphic Encryption 14
4.1 The Lattice Family . 15
4.2 The Base Encryption Scheme . 15
4.3 Linear Homomorphic Operations . 19
4.4 Fully-Homomorphic Operations . 23
4.5 Bootstrapping . 29
4.6 A Simple Collision-Resistant Hash Function . 30

5 Quantum Fully-Homomorphic Encryption 30
5.1 Quantum Preliminaries . 30
5.2 Oblivious State Preparation . 31
5.3 Oblivious State Preparation from Lattice Isomorphism 31

1

1 Introduction

A rank-n lattice Λ is defined as the the set of all integer combinations of n linearly indepen-
dent vectors (b1, . . . ,bn), which form a basis of the lattice. The study of lattices in computer
science started with the celebrated LLL algorithm [LJL82] and was further motivated by Ajtai’s
connection with cryptography [Ajt96]. At present, lattice-based cryptography is a paradigm of
central importance for the design of cryptographic primitives with advanced functionalities, e.g.
[GVW13, GKP+13, BGG+14, GKW17, WZ17], cryptanalytic tools [Cop96], and for the founda-
tions of post-quantum [NIS] and quantum [Mah22, Mah23] cryptography.

In particular, lattices enabled the first construction of fully-homomorphic encryption (FHE)
[Gen09], which allows arbitrary computation on encrypted data. Subsequent works proposed con-
structions from different computational assumptions [vGHV10, GH11, BV11a, BV11b, BGV12,
Bra12, BV14], with new appealing properties [LTV12, GSW13], and with improved asymptotic
efficiency [GHS12, BDGM19, GH19]. With the exception of a single construction based on ob-
fuscation [CLTV15], essentially all known FHE schemes base their security on (variants of) the
hardness of solving noisy linear equations, i.e., the learning with errors (LWE) problem. It is
known that the LWE problem reduces to the hardness of finding short vectors in (worst-case)
lattices [Reg05, Pei09, BLP+13], and therefore the intractability of this problem consistitutes the
foundation of security of known FHE schemes.

In this work, we are interested in whether we can use different sources of computational in-
tractability to construct FHE schemes. Specifically, we consider the lattice isomorphism problem
(LIP) [PS97, HR14]: Given two lattices Λ0 and Λ1, the goal of LIP is to determine whether the
two lattices are isomorphic, i.e., whether there exists an orthogonal linear transformation mapping
Λ0 to Λ1. LIP has been recently proposed as a new source of computational intractability for basic
cryptographic primitives, such as zero-knowledge protocols [HR14, Dv22], public-key encryption
[Dv22, BGPS23], and digital signatures [DPPv22]. However, the technical toolkit available for
designing LIP-based cryptosystems is still at its infancy, and nowhere close to the one available for
LWE-based cryptography.

While the actual hardness of LIP, and in particular its relation with LWE, is still not well-
understood, we believe that constructing FHE from LIP is an important goal: On the one hand, (i)
it requires us to expand the technical toolkit available for LIP-based cryptosystems, which may find
applications in other contexts. On the other hand, (ii) it may serve as a candidate FHE construction
even in the (perhaps unlikely) event of a cryptanalytic breakthrough against LWE, broadening the
foundations for sources of computational hardness required to build FHE. And finally, from a more
applied perspective, (iii) it may lead to the design of more efficient FHE schemes and kickstart new
techniques in computation on encrypted data.

1.1 Our Results

We construct a fully-homomorphic encryption scheme, with a reduction to (a circular variant
of) LIP [PS97, HR14]. Specifically, we consider the following variant of the problem, formally
introduced in [Dv22] and referred to as distinguish-LIP :

• Let Λ0 and Λ1 be two lattices in the same genus.

• Sample a bit b←$ {0, 1} and sample a lattice Λ̃ from the equivalence class of lattices isomor-
phic to Λb.

2

• Given (Λ0,Λ1, Λ̃), no polynomial-time distinguisher can guess b with probability negligibly
better than 1/2.

For technical reasons, we also require one of the two lattices, say Λ0, to have a basis with a large
singular value. For instance, this trivially holds if Λ0 ≡ g ·Zn, which is a viable choice in the context
of LIP [BGPS23]. Under this premise, let us state our main result in the following.

Theorem 1 (Informal). If the distinguish-LIP problem is hard, then:

• There exists a linearly homomorphic encryption scheme, that supports an arbitrary number
of linear operations.

• Under the additional assumption that the above scheme is secure when encrypting its own
secret key (circular security), there exists a homomorphic encryption scheme for all functions.

The additional circularity assumption is standard in the context of FHE, since it is a critical
component to enable bootstrapping [Gen09]. To the best of our knowledge, with the exception of
obfuscation-based constructions [CLTV15, BDJ+24], all known FHE schemes rely on this assump-
tion one way or another.

We explicitly mention here that the parameters of distinguish-LIP that we use in this work imply
the hardness of LWE (we discuss this more in Section 1.2). Therefore, our theorem statement as-is
does not imply the existence of FHE from a new hardness assumption. Nevertheless, we view
our result as a promising avenue that may potentially lead to schemes from new assumptions.
This optimism is justified by the following reasons: (i) The techniques that we develop diverge
significantly from previous LWE-based schemes, and (ii) it is entirely plausible that the parameters
that we require are an artifact of the security proof and, to the best of our knowledge, an attack
against LWE does not obviously imply an attack against our scheme. Overall, we view our work
as a promising first step towards FHE from different sources of hardness.

Going beyond classical circuits, we show that the hardness of distinguish-LIP also implies the
existence of FHE capable of homomorphic evaluation of quantum circuits (QFHE) [BJ15, DSS16,
Mah23, Bra18, CDM21, GV24]. Recent work [GV24, BK25] shows that a QFHE scheme can be
constructed from any classical FHE (with decryption circuit in NC1, which holds for our scheme),
plus an object called oblivious state preparation (OSP). Loosely speaking, an OSP allows a classical
client to delegate the preparation of a computational basis state or a Hadamard basis state to a
quantum server, without leaking which state. Thus, the following theorem suffices to establish the
existence of a QFHE scheme from distinguish LIP.

Theorem 2 (Informal). If the distinguish-LIP problem is hard, then there exists a two-message
oblivious state preparation protocol.

As a direct corollary, we obtain a QFHE scheme from distinguish-LIP. Here we highlight that
for our OSP alone we can use much tighter parameters, which in particular do not, to the best of
our current understanding, imply the hardness of LWE. Given the wide applicability of OSP as a
cryptographic object [BK25], we believe that our OSP protocol is of independent interest. Once
again, our approach is quite different from claw-free functions based on LWE [BCM+18].

3

1.2 On the Hardness of Distinguish-LIP

As alluded to earlier, the lattices Λ0 and Λ1 that we consider in our instance of distinguish-LIP are
such that their first minima differ by a (large) polynomial factor g(n) ∈ nO(1) in the lattice dimen-
sion n, i.e., λ1(Λ1)/λ1(Λ0) = g(n) ≥ nO(1). This gap is roughly proportional to the amount of the
homomorphic operations that ciphertexts would support (before bootstrapping). Since orthogonal
maps do not change the size of the shortest vector, our variant of distinguish-LIP of is not harder
than solving GapSVPγ for γ < g over Λ := {Λ0,Λ1}, i.e., on input a lattice Λ and real d > 0,
determine whether λ1(Λ) ≤ d or λ1(Λ) > γ · d.

It is known that if LWE with secret dimension n (and other appropriate parameters) is easy, then
there exists efficient quantum [Reg05] and classical [Pei09, BLP+13] algorithms for GapSVPγ with

γ(n) ∈ Õ(n), where the classical algorithms have some dimension-modulus tradeoffs. Therefore,
assuming the hardness of distinguish-LIP for lattices considered in our setting necessitates assuming
the hardness of LWE. In light of this, a few considerations are in order:

• The above attack against distinguish-LIP based on a GapSVP oracle seems to only invalidate
the assumption, but not the FHE construction itself. Indeed, our security proof follows the
lossiness argument from [Dv22]: In the first step of the proof, we make a hybrid switch from
our lattice Λ0, to another lattice Λ1, with bad decoding capabilities. Then we argue that our
message is information-theoretically hidden, when encrypted under Λ1. Note that the lattice
Λ1 is never actually used in the scheme, but only in the security proof.

For instance, one could make the tautological assumption that our scheme is secure and, to
the best of our knowledge, this assumption might hold even in the presence of a GapSVP
oracle (i.e., it could hold even if LWE is false). We leave proving the security of our scheme
from a well-established assumption that is not implied by LWE as a fascinating open problem.

• As discussed in [Dv22], there exists parameter choices of LIP, in particular over remarkably
decodable lattices, such that LIP is potentially even harder than SIS and LWE. Although
we do not know at present how to construct FHE based on LIP in this parameter regime,
this possibility is not ruled out either and we view our work as a promising first step in this
direction.

• Finally, we mention that our OSP construction relies on a variant of distinguish-LIP with a
much smaller gap g(n) ∈ O(

√
n). Therefore, to the best of our knowledge, it does not imply

the hardness of LWE, given known reductions.

1.3 Technical Outline

Before discussing our scheme, it is useful to present the distinguish-LIP problem in a more algo-
rithmic form, to avoid having to deal with infinite objects. Following [Dv22], it is going to be
convenient to work with the quadratic form Q := BTB of a lattice ΛB, where B is its basis. In
this language, the distinguish-LIP problem states that, given two quadratic forms Q0 and Q1, the
following distributions are computationally indistinguishable:

UTQ0U ≈c U
TQ1U

4

where U ←$ GLn(Z) is a randomly sampled unimodular matrix.1 Quadratic forms have many
efficiently computable properties, such as the determinant, the greatest common divisor, and the
parity, that are invariant under unimodular transformations. Quadratic forms that share the same
invariants are said to be in the same genus [Dv22]. In this overview we shall largely ignore this
aspect, but it is good to keep in mind that distinguish-LIP is only plausibly hard for pairs of
quadratic forms in the same genus (else trivial attacks apply).

The Base Encryption Scheme. Our starting point is the recently introduced encryption scheme
from [Dv22], with a new twist that will enable some basic homomorphic properties. Let Q :=
BTB be a quadratic form, where B is a matrix with the smallest singular value greater than g.
Additionally, let p, q be two powers of 2 with p≪ q. We present the algorithms of the base scheme
in the following.

• (Key Generation) To compute the public key, compute P := UTQU where U ←$ GLn(Z) is
a randomly sampled unimodular matrix. Additionally, sample a vector r ← Zn

p . The public
and secret key of the scheme are

pk := (r,P) and sk := U.

• (Encryption) To encrypt a message m ∈ {0, 1}, sample a lattice point x ←$ DP,σ (in its
coefficient representation) from a discrete Gaussian over P, with parameter σ. Then compute:

y := 1/q · x (mod Zn)

where y lives in the discretized torus Tq := {0, 1/q, . . . , (q− 1)/q}. Let z := 1/q · ·x−y ∈ Zn,
the ciphertext ct is composed by:

c0 := y ∈ Tn
q and c1 := rT z+m (mod p) ∈ Zp.

This is precisely the same algorithm as in [Dv22], with the crucial difference that we use z as
the mask for the message (instead of x) and we use a linear randomness extractor (modulo
p, which is a power of 2).

• (Decryption) To recover the message, proceed as follows:

– Rotate Uy and observe that:

Uy = 1/q ·Ux−Uz

where the second summand is integral and therefore BUz is a lattice point.

– Bound the norm of the first summand as:

∥1/q ·Ux∥ ≲ 1

q · g
∥BUx∥ ≲ small

for an appropriate choice of the parameters of the discrete Gaussian.

1The actual way U is sampled is slightly more complex since, of course, GLn(Z) is an infinite set. For the sake of
simplicity we will stick with this terminology in this overview.

5

– Since Uy is in the decoding radius of the lattice, one can recover Uz, and consequently
z, running the decoding algorithm of Q.

– Compute c0 − rT z modulo p to recover the message.

It will actually be more convenient for us to give a slightly different formulation of the decryption
algorithm. As part of the secret key, compute a vector s such that:

sTU︸︷︷︸
=:sk

= rT (mod p)

which always exists, since det(U) = ±1, and thus it is invertible modulo p. Then decryption
proceeds by computing:

c1 − Round(sTUy) (mod p) ≈ c1 − Round(rT z) (mod p)

= rT z+m− rT z (mod p)

= m

where Round rounds to the nearest integer and, crucially, the product sTUy is computed over the
reals (in particular, sTU ̸= rT over the reals). Correctness follows from the same argument as
above, plus an application of the Cauchy-Schwarz inequality to establish that:∣∣1/q · sTUx

∣∣ ≤ ∥s∥ · ∥1/q ·Ux∥ ≲ p ·
√
n · small

where p≪ q and therefore the norm of the noise vector is only marginally increased.
Our security proof follows the same outline as the one in [Dv22]: In an indistingiushable hybrid,

we sample P from a lossy quadratic form that entails a dense sublattice, so that some information
about z is lost, when computing y. An important difference though is that establishing that z has
some residual min-entropy will not suffice for us, since p is a power of 2. Instead, we will directly
analyze the distribution of the discrete Gaussian and then appeal to suitable generalizations of the
leftover hash lemma [ILL89]. We omit details here and we refer the reader to the technical sections.

Why Known Techniques Fail. At this point, it is helpful to pause and see what we have
achieved by introducing a linear randomness extractor. It can be indeed verified that our scheme
is now additively homomorphic modulo p. Given two ciphertexts ct = (c0, c1) and ct′ = (c′0, c

′
1) for

messages m,m′ we have that:

(c0 + c′0, c1 + c′1) = (y + y′, rT (z+ z′) + (m+m′)) (1)

where addition is over the reals on the first component and modulo p in the second. As for
decryption correctness, we have that:

sTU(y + y′) ≈ sTU(z+ z′) = rTU(z+ z′) (mod p)

where the norm of the “noise” grows linearly with the amount of additions performed. Given this
property, there is a well-known template in lattice-based cryptography to build FHE, formalized
by Micciancio [Mic19], and underlying the mathematics of most known FHE schemes. In essence,
this framework can be broken down into the following main steps:

6

• Begin from a linearly-homomorphic encryption EncL with (noisy) linear decryption, where
the ciphertexts, plaintexts and secret keys live on the same space.

• To encrypt a message m, the encryptor encrypts m · sk where sk is the secret key. That is,
an encryption of m is EncL(m · sk).

• To multiply two ciphertexts, express multiplication as a linear function. Concretely, compute:

EncL(m · sk) · EncL(m′ · sk) = EncL(m · sk · EncL(m′ · sk))
≈ EncL(m · Dec(sk,EncL(m′ · sk)))
≈ EncL(m ·m′ · sk+ small)

where the second equality follows from the (noisy) linear decryption of the underlying LHE.

However, there are a couple of major limitations that prevent us from applying this recipe in
our context. First, (i) multiplying by a large constant will blow up the noise, and we will lose
correctness. Second, and more crucially, (ii) ciphertexts, plaintexts and secret keys live in different
spaces. Concretely, ciphertext live in Tn

q × Zp, plaintexts live in Zp and secret keys live in Zn.
Since the scheme is homomorphic over Zp, it is not clear how this can be used to evaluate the
(approximate) decryption algorithm as a linear function.

Linear Homomorphism. To overcome the above limitation, we will introduce a virtual plaintext
space that will have enough capacity to evaluate the noisy linear decryption function. To encrypt
an element m ∈ Zpq, we first compute its binary decomposition:

(m1, . . . ,mµ) ∈ {0, 1}µ such that

µ∑
i=1

2i−1 ·mi = m (mod pq)

and µ = log(pq), which is always integral since p and q are powers of two. We then encrypt each bit
separately using our base encryption scheme, and the new ciphertext consists of the concatenation
of all base ciphertexts:

ct := (cti ←$ Enc(pk,mi))
µ
i=1 .

Second, we scale up all ciphertexts by q. Concretely, we redefine:

cti := q · Enc(pk,mi) =

{
q · ci,0 = q · yi ∈ Zq

q · ci,1 = q · (rT zi +mi) mod pq ∈ Zpq

.

Observe that the above encoding means that we are now encoding each bit as q ·mi ∈ {0, q}. In
order to have correctness, we have to slightly modify the decryption algorithm, which now computes
sTU(q ·yi) mod pq, rounds to the nearest multiple of q (instead of rounding to the nearest integer)
and, finally, reconstructs m ∈ Zpq from its binary decomposition. We denote the algorithms of the
modified scheme with plaintext space Zpq as (KeyGenL,EncL,DecL).

We can see that the scheme is additively homomorphic over Zpq. By Eq. (1), adding the
ciphertexts component-wise, results in the addition of each component (modulo p). Therefore, we
have that:

µ∑
i=1

2i−1 · (mi +m′
i (mod p)) (mod pq) =

µ∑
i=1

2i−1 · (mi +m′
i) (mod pq) = m+m′ (mod pq)

7

where the first equality holds if mi + m′
i < p, so that the sum modulo p does not wrap around.

This introduces a new invariant, the plaintext norm, that will grow as homomorphic operations
progress, and we will have to control to make sure that decryption works correctly.

On the other hand, homomorphic multiplication by a (large) power 2k comes for free: To
multiply a ciphertext ct = (ct1, . . . , ctµ) by 2k we simply move up all the components by k-positions.
I.e., we define:

ct′ :=

ct0, . . . , ct0︸ ︷︷ ︸
k-many

, ct1, . . . , ctµ−k

 .

where ct0 are fresh encryptions of 0. This works because:

2k ·m = 2k
µ∑

i=1

2i−1mi =

µ∑
i=1

2i−1+kmi =

µ−k∑
i=1

2i−1+kmi (mod pq)

where the last equality follows from the fact that all components multiplied by 2µ+i−1 will get
annihilated modulo pq. Given addition and multiplication by a power of 2, multiplication by an
arbitrary (large) constant follows by binary decomposition plus additive reconstruction.

Homomorphic Multiplication. We are now ready to describe the homomorphic multiplication
algorithm for the scheme (KeyGenL,EncL,DecL) as defined above. Before that, however, we will
introduce two additional modifications:

• The public key has an extra component which corresponds to an encryption of the secret key
Enc(pk, sTU) where sTU ∈ Zn

pq. Note that this introduces a circularity assumption, i.e., we
require that the scheme remains secure even when encrypting its own secret key.

• To encrypt a message m ∈ Zp, we compute:

ctmsg := EncL(pk, q ·m) and ctsk := EncL(pk,m · sTU)

i.e., even the message in the virtual plaintext space is scaled up by q.

Addition and multiplication by a large constant work as before. In fact, the component ctsk can be
discarded as soon as a single homomorphic operation is performed.

Next, we claim that it suffices to multiply two ciphertexts where we are guaranteed that one of
the two ciphertexts is a fresh encryption of m ∈ {0, 1}, i.e., no prior homomorphic evaluation has
been performed on such ciphertext. It is well-known, see e.g., [BV14], that this corresponds to the
class of computation of branching programs, that contains the complexity class NC1. Let ct be the
fresh ciphertext and c̃t the evaluated ciphertext with:

ct := (ctmsg, ctsk) and c̃t :=
(
c̃t1, . . . , c̃tµ

)
, where c̃ti = (c̃i,0, c̃i,1) ∈ q · Enc(pk, m̃i)

such that
∑µ

i=1 2
i−1m̃i = q · m̃. The homomorphic multiplication algorithm proceeds as follows:

• First compute the ciphertext cti,p by homomorphically multiplying ctmsg times the constant
c̃i,1/q. After this step, cti,p is an encryption (under EncL) of:

q ·m · (rT z̃i + m̃i))

by the correctness of multiplication by large constants.

8

• Next, compute cti,rand by multiplying ctsk by the constant c̃i,0. The resulting ciphertext cti,rand
is an encryption (under EncL) of:

q ·m · sTUỹi

again by the correctness of multiplication by large constants.

• Sum the resulting ciphertexts cti,p and cti,rand to obtain cti,sum. By the correctness of homo-
morphic addition, this is a ciphertext (under EncL) encrypting:

q ·m · (rT z̃i + m̃i) + q ·m · sTUỹi (mod pq) = q ·mm̃i + ei (mod pq)

since the product is computed over the subgroup Zp, and by defining ei := qm · sTU(ỹi+ z̃i),
for which the norm can be bounded. Note that the term ei is a noise that appears for the
first time here, and it belongs to the virtual plaintext space (Zpq). We therefore have to keep
the bound on its norm |ei| < q as a new invariant of our scheme.

• Note that the resulting plaintext is not yet in the prescribed form. What we would like is to
obtain an encryption of q ·mm̃ (under EncL) but instead we have encryptions of q ·mm̃i + ei.
Simply multiplying by a constant 2i and reconstructing qm̃ homomorphically does not work
since it will increase the error term ei too much, and it will introduce an extra q2 term. To
solve this problem, we devise a method that allows us to reconstruct q · mm̃ + ê without
blowing up the noise. We split this in two cases:

– When 2i ≥ q, we can safely homomorphically multiply the i-th ciphertext by the constant
2i/q and this will yield an encryption of 2i ·mm̃i + e′i where e

′
i := 2i/qei is still small.

– The more subtle case is when 2i < q. We show that a combinatorial trick (similar to the
one we use for multiplication by constants) gives us an encryption of the desired value
2i ·mm̃i + e′i (for some error term e′i).

Finally, summing all these ciphertexts gives us the desired encryption of q ·mm̃+ ê.

In our analysis we show that, setting the parameters carefully, we can keep the noise, plaintext,
and virtual noise norm under control, and evaluate branching programs of any desired length. We
refer to the technical sections for more details.

Bootstrapping. To bootstrap our scheme into an FHE, for all polynomial-size circuits, we just
need to argue that it can homomorphically evaluate its decryption circuit. Indeed, all operations
performed during decryption (linear functions over Zpq and rounding to a power of 2) can be
performed in NC1. Hence, we can generically apply the bootstrapping technique of Gentry [Gen09]
and obtain an FHE.

Evaluating Quantum Circuits. We briefly explain how to upgrade our scheme to evaluation
of quantum circuits. As mentioned before, we can focus on constructing an OSP protocol, which is
parametrized by a mode µ ∈ {0, 1} and consists of a single message from the client to the server.
We have that:

• If µ = 0, then the server prepares the state |b⟩, for some bit b ∈ {0, 1}.

• If µ = 1, then the server prepares the state |0⟩+ (−1)b |1⟩, for some bit b ∈ {0, 1}.

9

Furthermore, we require that (i) the bit b is efficiently computable by the client, given some clas-
sical information returned by the server, and furthermore (ii) the two modes are computationally
indistinguishable. It is known [GV24, BK25] that the existence of an OSP plus an FHE with a
decryption algorithm in NC1 implies the existence of a QFHE scheme, so in this overview we focus
on the former.

Similarly to our FHE scheme, we will work with two quadratic forms: A quadratic form Q0

with good decoding, and a quadratic form Q1 with a lossy sublattice. In injective mode (µ = 0),
the client samples P to be isomorphic to Q0, and sends it to the server. The server prepares the
superposition: ∑

x∈Zn

DP,σ(x) |x⟩

using an algorithm from [Bra18]. Then it applies the isometric mapping:∑
x∈Zn

DP,σ(x) |x⟩ →
∑
x∈Zn

DP,σ(x) |x, 1/q · x (mod Zn)⟩

and measures the second register in the computational basis to obtain some y ∈ Tn
q . The residual

state corresponds to: ∑
x:y=1/q·x (mod Zn)

DP,σ(x) |x⟩ . (2)

However, since the lattice has good decoding properties, it actually holds that y uniquely determines
x and thus the above state is actually a basis state |x⟩, for some x. The next step is to CNOT a
hash of the vector onto a fresh register to obtain:

|x⟩ |H(x)⟩t .

Tracing out the first register, we obtain a basis state with b = H(x), which is efficiently computable
given the unimodular matrix U, since one can simply decode y and recompute the hash H.

In lossy mode (µ = 1), the quadratic form P is sampled to be isomorphic to Q1. The state
preparation proceeds as above, except that the state in Eq. (2) is a superposition of multiple
vectors (with possibly different amplitudes), since y no longer uniquely determines x. To get a
clean Hadamard state however, we need a state that is a superposition of exactly two vectors,
and furthermore they must have the same amplitude. To achieve this, we develop a new filtering
procedure, where we project the state on a random subspace, defined by a universal hash function.
In more detail, we apply the isometric mapping:∑

x:y=1/q·x (mod Zn)

DP,σ(x) |x⟩ →
∑

x:y=1/q·x (mod Zn)

DP,σ(x) |x,G(x)⟩

where G : Zn → {1, . . . ,m} is a universal hash function. Then we measure the second register in
the computational basis to obtain some m ∈ {1, . . . ,m}. The residual state is:∑

x:
y=1/q·x (mod Zn)

G(x)=m

DP,σ(x) |x⟩ .

With some (noticeable) probability, the subspace that survives the filtering consists of (i) precisely
two vectors, and moreover (ii) with the same amplitude. Thus, CNOTing it onto the target register
will produce the desired output. Repeating this procedure sufficiently many times (and appealing
to a Chernoff bound) ensures that at least one of the runs is successful.

10

2 Cryptographic Preliminaries

We denote by κ the security parameter. We say a function f is negligible in the security parameter
κ if f(κ) = κ−ω(1). Let X,Y be two distribution ensembles. By X ≈c Y we mean that X and Y
are computationally indistinguishable, whereas X ≈ε Y means that their statistical distance (i.e.,
their ℓ1 norm) is bounded by ε. We also write X ≈s Y , meaning that the statistical distance is
bounded by some (unspecified) negligible function.

Vectors x and matrices B are denoted in bold and by default vectors are column vectors. We
denote the matrix norm ∥B∥ : maxi ∥bi∥, where ∥ · ∥ is the Euclidean norm. We denote by Tq the
discretized torus Tq : (1/qZ)/Z and identify it with the set of representatives {0, 1/q, . . . , (q−1)/q}.
Similarly, we always identify Zp with the set of representatives {0, 1, . . . , p − 1}. We denote by
GLn(Z) the general-linear group over Z.

We recall a version of the leftover hash lemma (LHL), due to Regev [Reg05], over domains Zp

where p is not necessarily prime, that applies if the input domain is binary.

Lemma 1 (Generalized Leftover Hash Lemma [Reg05]). Fix a positive integer p and n = poly(κ)
and let A←$ Zn×m

p be chosen uniformly at random such that m > 2κ+ n log(p). Then

(A,Ax) ≈s (A,u)

where x←$ {0, 1}m and u←$ Zn
p .

2.1 Fully-Homomorphic Encryption

We recall the standard definition of fully-homomorphic encryption (FHE).

Definition 1 (FHE). A fully-homomorphic encryption (FHE) scheme is defined by the following
algorithms:

• KeyGen(1κ) takes as input a security parameter κ and outputs a pair of public and secret keys
(pk, sk).

• Enc(pk,m ∈ {0, 1}) takes as input a public key pk and a message m ∈ {0, 1}. It outputs a
ciphertext ct.

• Dec(sk, ct) takes as input a secret key sk and a ciphertext ct. It outputs a message m.

• Eval(pk, C, (ct(1), . . . , ct(ℓ))) takes as input a public key pk, a circuit C and a ciphertexts
(ct(1), . . . , ct(ℓ)). It outputs a new ciphertext ct.

An FHE scheme should fulfill the following properties:

• (Correctness) For all κ ∈ N, all circuits C : {0, 1}ℓ → {0, 1} and all messages (m1, . . . ,mℓ)
we have that:

C(m1, . . . ,mℓ) = Dec(sk,Eval(pk, C, (ct(1), . . . , ct(ℓ))))

where (pk, sk)←∈ KeyGen(1κ) and cti ∈ Enc(pk,mi).

• (Semantic Security) For all m0 and m1 the following distributions are computationally indis-
tinguishable:

{Enc(pk,m0) : (pk, sk)←$ KeyGen(1κ)} ≈c {Enc(pk,m1) : (pk, sk)←$ KeyGen(1κ)} .

11

It is also standard to require that the scheme is compact, meaning that the size of the evaluated
ciphertext should be independent of the size of the circuit. Finally, if the encryption algorithm
remains secure even in the presence of a ciphertext encrypting its own secret key, we say that the
scheme is circular secure.

3 Lattices and Gaussians

We denote a lattice ΛB generated by a basis B as the set:

ΛB := {Bx : x ∈ Zn} .

The dual lattice Λ∗ of a lattice Λ is defined by Λ∗ :=
{
x ∈ Rn : xTy ∈ Z,∀ y ∈ Λ

}
, and note that

(Λ∗)∗ = Λ. The orthogonal lattice Λ⊥ is defined by Λ⊥ := {y ∈ Zn : By = 0}. We define the
rank of a lattice as the rank of (any of) its basis. We denote by λi(ΛQ) the i-th successive minima,
i.e., the smallest value of r such that there exists a set of vectors {x ∈ ΛQ : ∥x∥ ≤ r} that spans
a space of dimension at least i. Note that λ1(ΛQ) is the norm of the shortest vector, according to
this definition.

For a basis B we denote by B∗ its Gram-Schmidt orthogonalization. The quadratic form Q of
a lattice ΛB is defined as Q = BTB ∈ Rn×n. In a slight abuse of notation, we also denote by ΛQ

the lattice corresponding to the quadratic form Q. Given a quadratic form Q, one can efficiently
compute a basis for it by, e.g., the Cholesky decomposition. Let Q = BTB ∈ Rn×n be a quadratic
form, we define the Gaussian function over Q with parameter s and centered around 0 as:

ρQ,s(x) := e
−π∥Bx∥2

s2 .

Note that setting B to the identity matrix, we recover the usual probability density function
of a Gaussian. The discrete Gaussian distribution DQ,s over Q, with parameter s is given by
the probability distribution ρQ,s(x)/ρQ,s(Zn), where ρQ,s(Zn) :=

∑
x∈Zn ρQ,s(x). The following

establishes that there exists an efficient sampling algorithm for a discrete Gaussian.

Lemma 2 (Sampling [BLP+13]). There exists a polynomial time algorithm that, given a quadratic
form Q with rank(ΛQ) = n and any s ≥ ∥B∗

Q∥ ·
√
ln(2n+ 4)/π and returns a sample from DQ,s.

The following is a bound on the tails of a discrete Gaussian.

Lemma 3 (Tail Bound [Dv22]). For any quadratic form Q, any ε > 0, any s ≥ ηε(ΛQ) we have
that

Pr
[
∥B∗

Qx∥ > s
√
n : x←$ DQ,s

]
≤ 1 + ε

1− ε
· 2−n.

The Smoothing Parameter. We recall the definition of the smoothing parameter [MR07].

Definition 2 (Smoothing Parameter [MR07]). For ε > 0 and a quadratic form Q ∈ Zn×n, the
smoothing parameter ηε(ΛQ) of the lattice ΛQ is the least real s > 0 such that ρQ−1,1/s(Zn\{0}) ≤ ε.

The following lemma gives a bound on the smoothing parameter of a lattice.

12

Lemma 4 (Smoothing Bound [MR07]). For any quadratic form Q with rank(ΛQ) = n we have
that

ηε(ΛQ) ≤ ∥B∗
Q∥ ·

√
ln
(
2n

(
1 + 1

ε

))
π

for any ε > 0.

The following lemma bounds the smoothing parameter of the orthogonal lattice.

Lemma 5 (Orthogonal Smoothing Bound [BD24]). Let A ←$ Zn×m
p be uniformly sampled with

m > 2κ+ n log(p). Then

ηε(Λ
⊥
A) ≤ (mn+ 1)

√
5 ln

(
2m

(
1 + 1

ε

))
π

with overwhelming probability.

Proof. Let A := (A1,A2), by the leftover hash lemma (Lemma 1) it holds that for a uniformly
sampled A, its distribution is statistically close to

(A1,−A1R+G)

with R ←$ {0, 1}n×m/2 and where G is the gadget matrix [MP12]. It is well-known that matrices
with a trapdoor admit a short basis SA for Λ⊥

A, and it is shown in [MP12] that

∥S∗
A∥ ≤ (s1(R) + 1)

√
5

where s1 denotes the largest singular value of a matrix. The desired statement follows by observing
that the largest singular value of R is bounded by m · n, and appealing to Lemma 4.

We also recall a useful lemma from [GPV08].

Lemma 6 (Statistical Distance). Let Λ,Λ′ be n-dimensional lattices, with Λ′ ⊆ Λ. Then for any
ε ∈ (0, 1/2), any σ ≥ ηε(Λ′), and any c ∈ Rn, the distribution of (DΛ,σ,c mod Λ′) is within statistical
distance at most 2ε of uniform over (Λ mod Λ′).

Finally, we state a slightly generalized version of another lemma from [GPV08] and we present
a proof for the sake of completeness.

Lemma 7 (Indistinguishability [GPV08]). Let A ∈ Zn×m
p such that the columns of A generate Zn

p ,

let 0 < ε < 1/2, let σ ≥ ηε(Λ⊥
A), and let c ∈ Rm be arbitrary. Then the following distributions

Ae (mod p) ≈2ε u (mod p)

are within statistical distance 2ε, where e←$ DZm,σ,c and u←$ Zn
p .

Proof. By hypothesis, the set of all syndromes {Ae (mod p) : e ∈ Zm} = Zn
p . Now by Lemma 6,

for e←$ DZm,σ,c, the distribution of e mod Λ⊥ is within statistical distance 2ε of uniform over the
quotient group (Zm/Λ⊥). Here Λ⊥ is orthogonal lattice in the sense of p-ary lattice. Because this
quotient group is isomorphic to the set of syndromes Zn

p via the mapping

(e+ Λ⊥) 7→ Ae (mod p)

the claim follows.

13

The Lattice Isomorphism Problem. Two lattices are isomorphic if the are related by an
orthonormal transformation. In this work we interchangeably talk about lattices and their quadratic
form, which is justified since the geometry induced by the quadratic form is precisely equivalent
to the one of the corresponding lattice. In terms of quadratic forms P and Q, isomorphism can
be equivalently defined as the existence of a unimodular transformation U ∈ GLn(Z) such that
P = UTQU. We denote by [Q] is the equivalence class of quadratic forms isomorphic to Q. In
[Dv22], isomorphic equivalence is also defined algorithmically, via a Gaussian distribution of [Q],
denoted by Ds([Q]). The exact definition will not be important for us, while it suffices to recall the
following fact.

Lemma 8 (Gaussian Sampler [Dv22]). Let Q be a quadratic form with rank(ΛQ) = n and let

s ≥ max
{
λn(ΛQ), ∥B∗

Q∥
√

ln(2n+ 4)/π
}
.

Then there exists an expected polynomial-time algorithm, that samples (R,U) where R←$ Ds([Q])
and U ∈ GLn(Z) such that R = UTQU.

The following gives a bound on the matrix norm of a basis sampled through the above procedure.

Lemma 9 (Matrix Norm Bound [Dv22]). For any quadratic form Q with rank(ΛQ) = n and any
ε > 0 we have that

Pr
[
∥B∗

Q′∥ > s
√
n : Q′ ←$ Ds([Q])

]
≤ 1 + ε

1− ε
· 100n · 2−n

with s ≥ max{ηε(ΛQ), λn(ΛQ)}.

We are now ready the define the distinguish lattice isomorphism problem (LIP).

Definition 3 (Distinguish-LIP [HR14, Dv22]). Given two quadratic forms Q0 and Q1 and an
s > 0, the distinguish-LIP problem postulates that the following distributions are computationally
indistinguishable: {

Q′ : Q′ ←$ Ds([Q0])
}
≈c

{
Q′ : Q′ ←$ Ds([Q1])

}
.

We refer the reader to [Dv22] for a discussion on the hardness of this problem and for worst-case
to average-case reductions. We only mention here that the problem is only plausibly hard if the
quadratic forms Q0 and Q1 have the same efficiently computable invariants, such as the greatest
common divisor, and rational and p-adic equivalence (see [Dv22] for more details). Lattices that
are equivalent under such invariants are referred to as being in the same genus.

4 Fully Homomorphic Encryption

In the following, we construct our fully-homomorphic encryption scheme (FHE) assuming the hard-
ness of the lattice isomorphism problem.

14

4.1 The Lattice Family

We consider two families of lattices ΛQ and ΛL defined as follows:

ΛQ := g · Zn/2 ⊕ g̃ · Zn/2 and ΛL := Zn/2 ⊕ gg̃ · Zn/2

where g and g̃ are such that gcd(g, g̃) = 1 (i.e., they are co-prime) and we assume without loss of
generality that g < g̃. These lattices are generated by the basis:

BQ :=

(
g · In/2 0

0 g̃ · In/2

)
and BL :=

(
In/2 0

0 gg̃ · In/2

)
respectively, where In/2 is the identity matrix of size n/2. Consequently, the respective quadratic
forms are:

Q :=

(
g2 · In/2 0

0 g̃2 · In/2

)
and L :=

(
In/2 0

0 g2g̃2 · In/2

)
.

By construction, we have that det(ΛQ) = det(ΛL) = gn/2g̃n/2. Since g and g̃ are co-prime, we also
have that gcd(ΛQ) = gcd(ΛL) = 1 and the same for the parity. Rational and p-adic equivalence
are proven using the same argument as in [Dv22]. We define the two unimodular transformations:

U1 :=

(
g−1 · In/2 0

0 g · In/2

)
and U2 :=

(
0 g̃ · In/2

g̃−1 · In/2 0

)
.

Since g and g̃ are integers then their inverse belongs to Q and thus U1,U2 ∈ GLn(Q) and we
have that L = UT

1 QU1 and so the two quadratic forms are equivalent over the rationals. In
addition, since g and g̃ are coprime, then for any prime p, we must have that either gcd(p, g) = 1
or gcd(p, g̃) = 1 (or both), so at least one of them is invertible over the p-adic integers (denoted
by Pp to avoid notation overload) so we have at least one of U1 ∈ GLn(Pp) and L = UT

1 QU1 or
U2 ∈ GLn(Pp) and L = UT

2 QU2 over the p-adics. Thus, the two lattices are in the same genus.
We also mention here that the block structure of the quadratic forms, or the fact that they are

integral, does not appear to be strictly necessary for our application, and the only property that
we use in our scheme is essentially that the lattice generated by BQ has large decoding radius. We
nevertheless chose to present this lattice family for the sake of concreteness and we leave exploring
generalizations as ground for future work.

4.2 The Base Encryption Scheme

We present a scheme that serves as the fundamental building block for the FHE scheme.

Parameters. Our scheme induces a series of parameters that, for convenience, we list here.

• The rank of the lattice n := n(κ) and a constant ε ∈ O(1) for the smoothing parameter
ηε(ΛQ) of ΛQ.

• Two standard deviations s := s(κ) and σ := σ(κ) parametrizing the Gaussians used to sample
an isomorphic lattice and a vector from the lattice, respectively.

• Two moduli p := p(κ) and q := q(κ). For convenience we assume that both moduli are powers
of 2.

15

Our analysis will induce the following constraints on the parameters:

• (Efficiency) For sampling the public key (quadratic form) efficiently, we set

s ≥ max
{
λn(ΛQ), ∥B∗

Q∥
√

ln(2n+ 4)/π
}
. (3)

On the other hand, sampling a vector from the lattice requires us to set

σ ≥ s
√
n
√
ln(2n+ 4)/π. (4)

• (Correctness) To invoke the Gaussian tail bound, we set

σ ≥ ηε(ΛQ) (5)

which also implies that the above inequality holds for all lattices isomorphic to ΛQ, since the
smoothing parameter is invariant under the lattice isomorphism. We will also require that

q · g > 2 · σ · p · n. (6)

• (Security) For security, we require that

σ/q ≥ (n/2 + 1)

√
5 ln (n (1 + 2κ))

π
(7)

and, to satisfy the precondition of Lemma 5, that

n > 4κ+ 2 log(p). (8)

The Construction. The algorithms our base encryption scheme (KeyGen,Enc,Dec) are defined
in the following.

• KeyGen(1κ) : Sample P and U ∈ GLn(Z) with P ←$ Ds([Q]), using the algorithm from
Lemma 8. Note that P = UTQU. Sample r ←$ Zn

p , then compute the vector s ∈ Zn
p such

that:
sTU = rT (mod p) (9)

Output pk = (r,P) and sk = (s,U).

• Enc(pk,m): On input a message m ∈ {0, 1}, sample x←$ DP,σ and set

y := 1/q · x (mod Zn). (10)

Define z := 1/q · x− y ∈ Zn. Set ct := (c0 ∈ Tn
q , c1 ∈ Zp) where

c0 := y and c1 := rT z+m (mod p).

• Dec(sk, ct): Parse ct = (c0, c1), then compute

sTUc0 ∈ R

where the computation is done over the reals. Then round to the closest integer, reduce the
results modulo p and sum them with c1.

16

Before analyzing the scheme, let us first establish that all algorithms are well-defined and run in
polynomial time. First, note that a vector s satisfying Eq. (9) always exists since det(U) = ±1,
and consequently U is invertible modulo p.

Next, we claim that one can efficiently sample from the distributions specified in the algorithms.
The efficiency of the key generation procedure follows directly by Lemma 8 along with Eq. (3).
On the other hand, for the encryption algorithm, by Lemma 9, we have that with overwhelming
probability, the matrix norm of the Gram-Schmidt orthogonalization of the basis corresponding to
P is bounded by s

√
n and therefore we have that

∥B∗
P∥

√
ln(2n+ 4)/π ≤ s

√
n
√
ln(2n+ 4)/π ≤ σ

where the last inequality follows by Eq. (4). This implies that we can efficiently sample from DP,σ,
by Lemma 2.

Correctness. We claim that the decryption algorithm returns the correct message with over-
whelming probability. Recall that, rearranging the terms of Eq. (10), we have y = 1/q · x − z for
some z ∈ Zn. Substituting to the computation done in the decryption algorithm, we have

sTUy = sTU(1/q · x− z) = 1/q · sTUx︸ ︷︷ ︸
=:e

−sTUz

over the reals, where the second summand sTUz is integral, since z ∈ Zn. Observing that the
matrix BQ is diagonal with entries whose absolute value is greater than g, we have

∥1/q ·Ux∥ ≤ 1

g
∥1/q ·BQUx∥ = 1

q · g
∥BP · x∥ ≤

√
n · σ
q · g

where the last inequality holds with overwhelming probability by appealing to Lemma 3, which we
can use by Eq. (5). By the Cauchy-Schwarz inequality, we have that

|e| =
∣∣1/q · sTUx

∣∣ ≤ ∥s∥ · ∥1/q ·Ux∥ ≤ σ · p · n
q · g

<
1

2

where the last inequality follows by Eq. (6). Thus, rounding to the nearest integer will erase the
term e, except with negligible probability. Applying Eq. (9), we have that

rT z+m− sTUz (mod p) = rT z+m− rT z (mod p) = m.

Security. We are now ready to prove the security of our encryption scheme. We state our main
theorem in the following.

Theorem 3 (Semantic Security). If the distinguish lattice isomorphism problem is hard for Q and
L, then the scheme as described above is semantically secure.

Proof. We consider the following series of hybrid experiments.

• Hybrid H0: This is the original distribution.

• Hybrid H1: In this hybrid, we sample P from P←$ Ds([L]), instead of P←$ Ds([Q]), using
the algorithm from Lemma 8. By the distinguish-LIP problem (Definition 3) the distributions
induced by the two hybrids are computationally indistinguishable.

17

• Hybrid H2: In this hybrid, we change the way we sample r. We first sample a random s←$ Zn
p

and compute
rT = sTU (mod p).

SinceU is invertible modulo p, the distribution of r is identical to the previous hybrid (uniform
over Zn

p). Thus, this modification is only syntactical and the view of the distinguisher is
identical from the previous hybrid.

Observe that in the last hybrid the distribution of 1/q · x, conditioned on a fixed y ∈ Tn
q , is

characterized by the following expression:

1

q
· x←$ y −DP,σ/q,y (11)

whereDP,σ/q,y is the discrete Gaussian centered around y, defined by the following (non-normalized)
probability density function:

ρP,σ/q,y(x) := e
−π∥BP(x−y)∥2

(σ/q)2

with BP being a basis for P (see also Theorem 5.2 in [Dv22]). Next, note that, by definition of z,
we can rewrite:

z = 1/q · x− y =⇒ z←$ −DP,σ/q,y

appealing to Eq. (11). Then we claim that DP,σ/q,y ≡ U−1 · DL,σ/q,Uy, which can be verified by
observing that:

ρP,σ/q,y(x) = e
−π∥BP(x−y)∥2

(σ/q)2 = e
−π∥BLU(x−y)∥2

(σ/q)2 = e
−π∥BL(Ux−Uy)∥2

(σ/q)2 = ρL,σ/q,Uy(Ux)

where BL is the basis for L and P = UTLU. Thus z̃ := Uz can be equivalently thought of as being
sampled from −U ·DP,σ/q,y ≡ −DL,σ/q,Uy. Parsing z̃ as the vertical concatenation of z̃0, z̃1 ∈ Zn/2,
and recalling that the basis BL of ΛL is diagonal and its the top left corner is precisely the identity
matrix In/2, we can conclude that z̃0 is distributed according to −DZn/2,σ/q,ỹ0

, where ỹ0 is the top
half of Uy. Next, we rewrite:

c1 = rT z+m (mod p)

= sTUz+m (mod p)

= sT0 z̃0 + sT1 z̃1 +m (mod p)

where s is the vertical concatenation of s0, s1 ∈ Zn/2
p . The first summand is therefore distributed

according to:
sT0 z̃0 (mod p) = −sT0DZn/2,σ/q,ỹ0

(mod p).

We can conclude the proof by showing that:

sT0DZn/2,σ/q,ỹ0
≈s r : r ←$ Zp

since this implies that m is information-theoretically hidden. As the first step, we note that

sT0 ∈ Z1×n/2
p generates Zp if any of its coefficients is odd, which happens with probability 1−1/2n/2.

18

Second, we observe that, by Eq. (7) and Lemma 5 (where Eq. (8) determines that we satisfy the
preconditions), the standard deviation σ/q satisfies:

σ/q ≥ (n/2 + 1)

√
5 ln (n (1 + 2κ))

π
≥ η2−κ(Λ⊥

sT0
).

Finally, statistical indistinguishability follows by Lemma 7.

4.3 Linear Homomorphic Operations

In the following we show how to compute homomorphically linear operations over the ring Zpq.
Before that however, we discuss how to modify our base encryption scheme to encrypt elements of
Zpq. To encrypt a message m ∈ Zpq, we first compute its binary decomposition

(m1, . . . ,mµ) ∈ {0, 1}µ such that

µ∑
i=1

2i−1 ·mi = m (mod pq) (12)

and µ = log(pq), which is always integral since p and q are powers of two. Note that the modular
reduction in the sum is redundant at this point, but its purpose will become clear later. We then
encrypt each bit separately under our base encryption scheme from Section 4.2, and our ciphertext
consists of the concatenation of all base ciphertexts

ct := (cti ←$ Enc(pk,mi))
µ
i=1 .

It will also be notationally convenient to scale up all ciphertexts by q. Adopting the notation of
Section 4.2, we redefine:

cti := q · Enc(pk,mi) =

{
q · ci,0 = q · yi ∈ Zn

q

q · ci,1 = q · (rT zi +mi) (mod pq) ∈ Zpq

(13)

and observe that the above encoding means that we are now encoding each bit as q ·mi ∈ {0, q}.
To account for this change, we also need to syntactically modify the decryption algorithm, that
now proceeds as follows:

• Compute
sTU(q · yi) (mod pq) = qsTUyi (mod pq). (14)

• Round to the nearest multiple of q.

• Sum the result with ci,1, modulo pq.

Observing that the rounding commutes with the modular reduction, this is precisely the same
algorithm as the scheme in Section 4.2 except scaled up by q and, consequently, by the same
analysis it returns the correct q ·mi ∈ {0, q} with overwhelming probability. The plaintext is then
recovered by rounding to the nearest multiple of q and applying Eq. (12). We denote the algorithms
of the modified scheme with plaintext space Zpq as (KeyGenL,EncL,DecL). For a given ciphertext
(cti)

µ
i=1 = ct ∈ EncL(pk,m) satisfying Eq. (13), we will keep track of two quantities:

19

• (Noise Magnitude) We define the noise magnitude function of a ciphertext as

NNorm(ct) = max
i
∥q (Uyi +Uzi)∥ .

Using this notation, decryption succeeds on a ciphertext ct if NNorm(ct) < q
2p

√
n
.

• (Plaintext Magnitude) We define the plaintext magnitude function of a ciphertext as

PtNorm(ct) = max
i

|mi|
q
.

Observe that the plaintext magnitude of a freshly encrypted ciphertexts is at most 1.

We are now ready to describe the homomorphic operations for our encryption scheme.

Homomorphic Addition. We now define how the Eval algorithm works for addition over Zpq.
On input ℓ ciphertexts

(
ct(1), . . . , ct(ℓ)

)
, the evaluation algorithm proceeds as follows.

• Eval
(
pk,+,

(
ct(1), . . . , ct(ℓ)

))
: Parse ct(j) as

ct(j) =
(
ct

(j)
1 , . . . , ct(j)µ

)
where ct

(j)
i =

(
c
(j)
i,0 , c

(j)
i,1

)
.

Then sum all ciphertexts component-wise modulo pq. That is, return

ct :=

 ℓ∑
j=1

c
(j)
i,0 (mod pq),

ℓ∑
j=1

c
(j)
i,1 (mod pq)

µ

i=1

.

The following lemma establishes the correctness of the addition operation.

Lemma 10 (Correctness of Addition). Let
(
ct(1), . . . , ct(ℓ)

)
be such that that ct(j) ∈ EncL(pk,m

(j)),

for some m(j) ∈ Zpq. Furthermore, let NNorm
(
ct(j)

)
< q

2p
√
nℓ

and PtNorm
(
ct(j)

)
< p/ℓ. Then with

overwhelming probability, it holds that

DecL(sk, ct) = DecL

(
sk,Eval

(
pk,+,

(
ct(1), . . . , ct(ℓ)

)))
=

ℓ∑
j=1

m(j) (mod pq)

and furthermore NNorm (ct) ≤
∑ℓ

j=1NNorm(ct(j)) and PtNorm (ct) ≤
∑ℓ

j=1 PtNorm
(
ct(j)

)
.

Proof. Evaluating the expression given by Eq. (14), we can rewrite:

sTUci,0 = sTU
ℓ∑

j=1

c
(j)
i,0

= q ·
ℓ∑

j=1

sTUy
(j)
i (mod pq)

= q · sT
 ℓ∑

j=1

Uy
(j)
i +Uz

(j)
i −Uz

(j)
i

 (mod pq).

20

To bound the norm of first two summands, we apply the Cauchy-Schwartz inequality, followed by
a triangle inequality, to obtain:∣∣∣∣∣∣sT q ·

 ℓ∑
j=1

Uy
(j)
i +Uz

(j)
i

∣∣∣∣∣∣ ≤ ∥s∥ ·
∥∥∥∥∥∥q

ℓ∑
j=1

Uy
(j)
i +Uz

(j)
i

∥∥∥∥∥∥
≤ ∥s∥ ·

ℓ∑
j=1

∥∥∥q (Uy
(j)
i +Uz

(j)
i

)∥∥∥
≤ ∥s∥ · ℓ ·max

j

{
NNorm(ct(j))

}
< p
√
n · q

2p
√
n

=
q

2

where the last inequality follows by assumption. This implies that rounding to the nearest multiple
of q erases this term. Thus, completing the decryption subroutine, we obtain

Round
(
sTUci,0

)
+ ci,1 (mod pq) = −q ·

ℓ∑
j=1

sTUz
(j)
i + q ·

ℓ∑
j=1

sTUz
(j)
i +m

(j)
i (mod pq)

= q ·
ℓ∑

j=1

m
(j)
i (mod pq)

= q · m̃i (mod pq).

Hence, the decryption algorithm can successfully extract m̃i from each ciphertext component cti.

By assumption on the plaintext magnitude, we know that
∑ℓ

j=1m
(j)
i < p, and therefore there is no

wrap-around modulo pq in the sum, allowing us to establish that

m̃i =
ℓ∑

j=1

m
(j)
i (15)

over the integers. Appealing to Eq. (12) and Eq. (15), we can conclude that the ciphertext ct is an
encryption of:

µ∑
i=1

2i−1 · m̃i (mod pq) =

µ∑
i=1

2i−1 ·
ℓ∑

j=1

m
(j)
i (mod pq)

=
ℓ∑

j=1

µ∑
i=1

2i−1m
(j)
i (mod pq)

=
ℓ∑

j=1

m(j) (mod pq)

as desired. The bound on the plaintext magnitude and the noise magnitude of the evaluated
ciphertext ct follow by linearity and a triangle inequality.

21

Homomorphic Multiplication by a Constant. To complete the linear operations, we define
the Eval algorithm to multiply a ciphertext ct by a constant δ ∈ Zpq. We formally present our
algorithm below.

• Eval(pk, ·δ, ct): Parse ct as (ct1, . . . , ctµ), and let δ =
∑µ

i=1 2
i−1 · δi. For all i = {1, . . . , µ}

define ct(i) as follows:

– If δi = 0, then set ct(i) := (ct0, . . . , ct0) where ct0 ∈ q ·Enc(pk, 0) is some fixed encryption
of 0 of the base scheme, which can be computed with some fixed public randomness.2

– If δi = 1, then scale up all the components by i− 1-positions. I.e., we define

ct(i) :=

ct0, . . . , ct0︸ ︷︷ ︸
(i−1)-many

, ct1, . . . , ctµ−i+1

 .

Return Eval
(
pk,+,

(
ct(1), . . . , ct(µ)

))
.

The following lemma establishes the correctness of the multiplication by constant as described
above.

Lemma 11 (Correctness of Multiplication by Constant). Let ct ∈ EncL(pk,m), for some m ∈ Zpq,
with NNorm(ct) < q

2p
√
nµ

and PtNorm(ct) < p/µ. Then, with overwhelming probability, it holds that

DecL(sk, c̃t) = DecL(sk,Eval(pk, ·δ, ct)) = m · δ (mod pq)

and furthermore NNorm(c̃t) ≤ NNorm(ct) · µ and PtNorm(c̃t) ≤ PtNorm(ct) · µ.

Proof. As a first step, we claim that ct(i) ∈ EncL(pk,m · 2i−1 · δi). For the case where δi = 0,
it is clear, whereas for the case where δi = 1, one can observe that, by Eq. (12), moving up the
ciphertext components by i−1 positions, has the same effect as multiplying the underlying message
by 2i−1. Furthermore, note that these operations are entirely combinatorial and thus they can only
decrease the plaintext and noise magnitude of the ciphertext. Then, appealing to Lemma 10, we
have that

DecL (sk,Eval (pk, ·δ, ct)) = DecL

(
sk,Eval

(
pk,+,

(
ct(1), . . . , ct(µ)

)))
=

µ∑
i=1

m · 2i−1 · δi (mod pq)

= m · δ (mod pq)

as desired, as well as the claimed bounds on the magnitude of the plaintext and of the noise.

2There is no secrecy required for these ciphertexts, so the randomness can be chosen arbitrarily, so long as it is in
the support of the correct distribution.

22

4.4 Fully-Homomorphic Operations

We now show how to extend the scheme presented above into an FHE scheme that supports all
homomorphic operations. It will be convenient to consider homomorphic operations modulo 2,
and to prove our claim it suffices to show how to implement additions and multiplications between
ciphertexts. In fact, it suffices to show how to implement a homomorphic multiplication in the
setting where we are guaranteed that one of the two ciphertexts is a fresh encryption of m ∈ {0, 1},
i.e., no prior homomorphic evaluation has been performed on such ciphertext. It is well-known, see
e.g., [BV14], that this corresponds to the class of computation of branching programs, that contains
the complexity class NC1.

Our main scheme is based on the construction (KeyGenL,EncL,DecL) described in Section 4.3,
which is linearly homomorphic over Zpq. In a slight abuse of notation, we denote the component-
wise encryption of vectors and matrices by EncL(pk,v) and EncL(pk,M) and we implement linear
operations using the algorithms specified in Section 4.3 in the canonical way. We further adopt the
following modifications:

• We augment the public key with an encryption of the secret key Enc(pk, sTU) where sTU ∈
Zn
pq. Note that this introduces a circularity assumption, i.e., we require that the scheme

remains secure even when encrypting its own secret key

• To encrypt a message m ∈ Zp, we compute:

ctmsg := EncL(pk, q ·m) and ctsk := EncL(pk,m · sTU).

The first ciphertext component can be computed in the obvious manner, whereas the second ci-
phertext component can be computed given the secret key. This results into a private-key FHE,
but it is well-known that any private-key FHE can be transformed into a public-key one [Rot11].
We expect that other methods would work (e.g., re-randomize the ciphertext) but, to keep things
simple, in this work we simple assume that ciphertexts are of this form.

In addition to the plaintext and noise magnitude we will also keep track of a new quantity,
which we refer to as the virtual magnitude of a ciphertext. In short, we allow the ciphertexts to
contain noisy encodings of the message.

• (Virtual Magnitude) We define the virtual magnitude function of a ciphertext as

VNorm(ctmsg) = |e|

where ctmsg ∈ EncL(pk, q · m + e). Note that the virtual magnitude of freshly encrypted
ciphertexts is 0.

We are now ready to describe the homomorphic operations. Homomorphic addition can be per-
formed in a straightforward manner, using the addition algorithm described in Section 4.3. Given
two ciphertexts ct0 ∈ EncL(pk, q ·m0 + e0) and ct1 ∈ EncL(pk, q ·m0 + e1), the algorithm returns:

EncL(pk, q ·m0 + e0 + q ·m1 + e1) = EncL(pk, q · (m0 +m1) + e0 + e1).

The circular component of the ciphertexts ctsk is simply discarded. Observe that the addition is
done over the Zp subgroup, since the messages are encoded as multiples of q. Since p is a power of
2, we have that:

(m0 +m1 (mod p)) (mod 2) = (m0 (mod 2))⊕ (m1 (mod 2))

23

as desired. The bound on the plaintext and noise norm follows immediately from Lemma 10,
whereas the virtual norm of the evaluated ciphertext is at most the sum of the virtual norms of
the individual ciphertexts, by a triangle inequality.

Homomorphic Multiplication. Next we describe an algorithm to homomorphically multiply
two ciphertexts. As discussed above, we can assume that one of the two ciphertexts is fresh, i.e.,
no homomorphic operation has been performed prior to this, and furthermore it encrypts a bit
m ∈ {0, 1}.

• Eval
(
pk, ∗,

(
ct, c̃t

))
: Parse ct (the fresh ciphertext) and c̃t (the evaluated ciphertext) as

ct := (ctmsg, ctsk) and c̃t :=
(
c̃t1, . . . , c̃tµ

)
, where c̃ti = (c̃i,0, c̃i,1) ∈ q · Enc(pk, m̃i)

such that
∑µ

i=1 2
i−1m̃i = q · m̃+ ẽ. For all i = {log(q/p) + 2, . . . , µ} proceed as follows:

– Compute:
cti,p := Eval (pk, ·c̃i,1/q, ctmsg) ,

where the division by q is always well-defined since the ciphertext element c̃i,1 is a
multiple of q.

– Compute:
cti,rand := Eval (pk, ·c̃i,0, ctsk)

then sum the two ciphertexts to obtain cti,sum := Eval(pk,+, (cti,p, cti,rand)).

– If 2i−1 = q, then simply set cti,scale := cti,sum. Else, if 2
i−1 > q compute

cti,scale := Eval(pk, ·2i−1/q, cti,sum)

where the division is once again well-defined since q is a power of 2. On the other hand,
if 2i−1 < q then we define

cti,scale :=
(
cti,sum,log(q)−i+2, . . . , cti,sum,µ, ct0, . . . , ct0

)
where ct0 ∈ q · Enc(pk, 0) is some fixed encryption of 0 of the base scheme.

Return ctfinal := Eval (pk,+, (ct1,scale, . . . , ctµ,scale)).

The following lemma establishes the correctness of the homomorphic multiplication. In a slight
abuse of notation, for a fresh ciphertext ct we denote:

• NNorm(ct) = max{NNorm(ctmsg),NNorm(ctsk)},

• VNorm(ct) = max{VNorm(ctmsg),VNorm(ctsk)}, and

• PNorm(ct) = max{PNorm(ctmsg),PNorm(ctsk)}.

Lemma 12 (Correctness of Multiplication). Let ct ∈ (EncL(pk, q · m),EncL(pk,m · sTU)), for
some m ∈ {0, 1}, with NNorm(ct) < q

2p
√
n(n+1)µ2 , PtNorm(ct) = 1, and VNorm(ct) = 0. Let

c̃t ∈ EncL(pk, q · m̃ + ẽ), for some m̃ ∈ Zp, with PtNorm(c̃t) ≤ 2µ2(n + 1) and NNorm(c̃t) and
VNorm(c̃t) such that:

VNorm(c̃t) + NNorm(c̃t) · µp2
√
n+ 4qµ2(n+ 1)/p < q/2.

24

Let µ2(n+ 1) < p. Then, with overwhelming probability, it holds that:

DecL(sk, ctfinal) = DecL(sk,Eval(pk, ∗,
(
ct, c̃t

)
)) = qm∗ (mod pq)

where m∗ = m · m̃ (mod 2). Furthermore:

• NNorm(ctfinal) ≤ µ2(n+ 1) · NNorm(ctmsg).

• PNorm(ctfinal) ≤ µ2(n+ 1).

• VNorm(ctfinal) ≤ VNorm(c̃t) + NNorm(c̃t) · µp2
√
n+ 4qµ2(n+ 1)/p.

Proof. To establish the desired bounds on the quantities of interest, we will track these quantities
as the computation progresses in the multiplication algorithm. The following analysis holds for all
i ∈ {log(q/p) + 2, . . . , µ}. By Lemma 11, we can rewrite:

cti,p = Eval (pk, ·c̃i,1/q, ctmsg)

= EncL(pk, q ·m · c̃i,1/q)
= EncL

(
pk, q ·m ·

(
rT z̃i + m̃i

))
and furthermore:

• NNorm(cti,p) ≤ NNorm(ctmsg) · µ.

• PNorm(cti,p) ≤ µ.

• VNorm(cti,p) = 0.

Similarly, for the cti,rand term, we obtain:

cti,rand = Eval (pk, ·c̃i,0, ctsk)
= EncL(pk,m · sTU · c̃i,0)
= EncL(pk, q ·m · sTUỹi)

then, once again by appealing to Lemma 11, we can bound:

• NNorm(cti,rand) ≤ NNorm(ctsk) · nµ.

• PNorm(cti,rand) ≤ nµ.

• VNorm(cti,rand) = 0.

On the other hand, the ciphertext cti,sum contains the sum of the above variables, over Zpq, and by
Lemma 10, we can bound:

• NNorm(cti,sum) ≤ NNorm(ctmsg) · (n+ 1)µ.

• PNorm(cti,sum) ≤ (n+ 1)µ.

25

Where we used the fact that NNorm(ctmsg) = NNorm(ctsk). Expanding the plaintext of cti,sum, we
have:

q ·m · (rT z̃i + m̃i) + q ·m · sTUỹi (mod pq)

= q ·m · (rT z̃i + m̃i) + q ·m · sTU(ỹi + z̃i − z̃i) (mod pq)

= q ·m · (rT z̃i + m̃i)− q ·m · sTUz̃i + q ·m · sTU(ỹi + z̃i) (mod pq)

= q ·mm̃i + ei (mod pq)

where the last equality follows by Eq. (9), since the product is computed over the subgroup Zp,
and by defining ei := qm · sTU(ỹi + z̃i). We bound the norm of the second summand by:

|ei| =
∣∣m · sT q (Uỹi +Uz̃i)

∣∣
≤

∣∣sT q (Uỹi +Uz̃i)
∣∣

≤ ∥s∥ · ∥q (Uỹi +Uz̃i)∥
≤ p
√
n · NNorm(c̃t)

where the first inequality follows by the fact that m ∈ {0, 1}, the second inequality follows by
Cauchy-Schwarz, and the third one by the definition of noise norm. Thus, we can conclude that
cti,sum ∈ EncL(pk, q ·mm̃i + ei) with virtual norm VNorm(cti,sum) ≤ p

√
n · NNorm(c̃t).

We now turn to analyze the scaled ciphertext cti,scale. We claim that:

cti,scale ∈ EncL(pk, 2
i−1mm̃i + e′i + δi2q),

for some δi ∈ Zp, with:

• NNorm(cti,scale) ≤ NNorm(cti,sum).

• PNorm(cti,scale) ≤ PNorm(cti,sum).

• VNorm(cti,scale) ≤ p · VNorm(cti,sum).

We consider three cases.

• (2i−1 = q) In this case cti,scale = cti,sum and therefore all the inequalities follow trivially.

• (2i−1 > q) Since 2i−1/q is a power of 2, the multiplication by constant does not change the
noise norm, nor the plaintext norm of the ciphertext. Furthermore, by Lemma 11, we have

cti,scale = EncL(pk, 2
i−1/q · (q ·mm̃i + ei)) = EncL(pk, 2

i−1 ·mm̃i + 2i−1/q · ei︸ ︷︷ ︸
=:e′i

)

and the bound on the virtual norm follows by observing that 2i−1/q ≤ p.

• (2i−1 < q) Recall that, as established above, we can rewrite

cti,sum = EncL(pk, q ·mm̃i + ei)

26

expanding, this ciphertext consists of µ components (cti,sum,1, . . . , cti,sum,µ) such that:

cti,sum,j ∈ q · Enc(pk,m′
j) with

µ∑
j=1

2j−1 ·m′
j = q ·mm̃i + ei (mod pq)

by Eq. (12). Then cti,scale is constructed by moving these components down by log(q)− i+2
positions. Clearly, this operation can only decrease the noise and the plaintext norm of the
ciphertext, thus what is left to be shown is a bound on the virtual norm of the ciphertext.

As a thought experiment, consider the ciphertext ct′i,sum defined as:

ct′i,sum :=
(
ct0, . . . , ct0, cti,sum,log(q)−i+2 . . . , cti,sum,µ

)
that is, the low-order components are substituted by encryptions of 0. By construction, this
ciphertext is an encryption of:

q ·mm̃i + ei −
log(q)−i+1∑

j=1

2j−1 ·m′
j︸ ︷︷ ︸

=:γ

=

µ∑
j=log(q)−i+2

2j−1 ·m′
j (mod pq).

Note that this number is a multiple of 2log(q)−i+1, and therefore scaling down the non-
zero components (as defined in the computation of cti,scale), is equivalent to multiplying by
1/2log(q)−i+1 = 2i−1−log(q) and reducing the modular reduction from pq to

pq · 2i−1−log(q) = 2log(p)+i−1 ≥ 2log(q)+1 = 2q

where the inequality comes from the fact that i ≥ log(q) − log(p) + 2. Since the difference
between cti,sum and ct′i,sum is actually erased by the scaling operation, it must be the case
that:

cti,scale ∈ EncL

(
pk, (q ·mm̃i + ei − γ) · 2i−1−log(q) + 2qδi

)
= EncL

(
pk, 2i−1 ·mm̃i + (ei − γ) · 2i−1−log(q)︸ ︷︷ ︸

=:e′i

+2qδi

)
.

We can then bound the norm of γ by:

|γ| =

∣∣∣∣∣∣
log(q)−i+1∑

j=1

2j−1 ·m′
j

∣∣∣∣∣∣ ≤
log(q)−i+1∑

j=1

2j−1 ·
∣∣m′

j

∣∣ < p · 2log(q)−i+1

by a triangle inequality and using the fact that |m′
j | ≤ PNorm(cti,sum) ≤ (n+1)µ ≤ p. Finally

|e′i| =
∣∣∣(ei − γ) · 2i−1−log(q)

∣∣∣ ≤ ∣∣∣ei · 2i−1−log(q)
∣∣∣+ p ≤ |ei|+ p ≤ |ei| · p

for large enough ei and p, since 2i−1−log(q) < 1. Thus, the claimed bound on VNorm(cti,scale).

27

We can now appeal to Lemma 10, to establish that ctfinal is an encryption of:

µ∑
i=log(q/p)+2

2i−1 ·mm̃i + e′i + δi2q

=

µ∑
i=log(q/p)+2

2i−1 ·mm̃i + e′i + δi2q +

log(q/p)+1∑
i=1

2i−1 ·mm̃i −
log(q/p)+1∑

i=1

2i−1 ·mm̃i

= q ·mm̃+ ẽm+

µ∑
i=log(q/p)+2

δi2q + e′i −
log(q/p)+1∑

i=1

2i−1 ·mm̃i︸ ︷︷ ︸
e′′

with |e′′| ≤ 2q/p · PNorm(c̃t) ≤ 4qµ2(n + 1)/p. Ignoring the “noise” terms, the above plaintext
satisfies:

q ·mm̃+ 2q
(∑µ

i=log(q/p)+2 δi

)
q

= mm̃ (mod 2)

as desired. Furthermore:

• NNorm(ctfinal) ≤ µ · NNorm(cti,scale) ≤ µ2(n+ 1) · NNorm(ctmsg) <
q

2p
√
n
.

• PNorm(ctfinal) ≤ µ · PNorm(cti,scale) ≤ µ2(n+ 1) < p.

• VNorm(ctfinal) ≤ VNorm(c̃t) + µ · VNorm(cti,scale) + |e′′| ≤ VNorm(c̃t) + µp2
√
n · NNorm(c̃t) +

4qµ2(n+ 1)/p < q/2.

The first and third conditions guarantee that the decryption algorithm correctly recovers mm̃
modulo 2 from ctfinal, concluding our proof.

Parameters. We propose a set of parameters that satisfies the constraints specified by our basic
encryption scheme, while at the same time enabling the homomorphic evaluation of branching
programs of and desired depth. We stress that we did not attempt to optimize the choice of
parameters for concrete efficiency, and most likely there exist tradeoffs that we do not explore in
this work. We claim that the following set of parameters allows us to evaluate a branching program
of any depth d:

• n := poly(κ) to be a fixed polynomial in the security parameter.

• p := poly(κ, d, n) for a sufficiently large polynomial.

• q := poly(p) for a sufficiently large polynomial.

• g := O(q) for a sufficiently large constant, to satisfy Eq. (6).

• σ := O(q · n) · poly(κ) to satisfy Eqs. (4), (5) and (7).

• s := O(g) · poly(κ) to satisfy Eq. (3).

28

Note that all parameters are polynomials in the security parameter. To show correctness of ho-
momorphic evaluation, we can assume without loss of generality that the evaluation alternates one
homomorphic addition with one homomorphic multiplication (since we can always add 0 and mul-
tiply by 1). By Lemma 12, we can see that the noise and plaintext norm of the output ciphertext
are bounded by some values that are independent of the input ciphertext c̃t, which means that
it suffices to check that our parameters satisfy the pre-conditions imposed by Lemmas 10 and 12.
Indeed it holds that:

PNorm(ctfinal) ≤ µ2(n+ 1) < p

since µ = log(pq) ∈ O(κ). Furthermore:

NNorm(ctfinal) ≤ µ2(n+ 1) · NNorm(ctmsg) ≤ µ2(n+ 1) ·
√
nσ

g
<

q

2p
√
n(n+ 1)µ2

where the second inequality follows by the correctness analysis of the base scheme (Section 4.2),
scaled up by q. On the other hand, the virtual norm of the output ciphertext grows by an additive
factor:

VNorm(ctfinal) ≤ VNorm(c̃t) + NNorm(c̃t) · µp2
√
n+ 4qµ2(n+ 1)/p

≤ VNorm(c̃t) + 2µ3p2n2σ/g + 4qµ2(n+ 1)/p

≤ VNorm(c̃t) +O(µ3p2n3 + qµ2n/p)

and decryption succeeds as long as the virtual norm is smaller than q/2. Since we add a summand
O(µ3p2n3 + qµ2n/p) at every operation, for sufficiently large p and q we have that

O(µ3p2n3 + qµ2n/p) · d < q/2

and decryption will succeed for the evaluation of any d-deep branching program.

4.5 Bootstrapping

The construction we have described above allows one to evaluate homomorphically any branching
program of unbounded length. By Barrington’s theorem [Bar86], this implies that one can ho-
momorphically compute any NC1 circuit. Gentry’s bootstrapping theorem [Gen09] shows how to
convert such a scheme into a fully homomorphic one, i.e., for any polynomial-size circuit, assuming
it can homomorphically evaluate its own decryption circuit and provided that an encryption of the
secret key is given as part of the public key. Thus, all we need to show is that the decryption
algorithm of our scheme can be evaluated by an NC1 circuit.

The decryption consists of (i) three linear operations (over Zpq) alternated with (ii) rounding
to a power of 2. For Boolean circuits, rounding to a power of 2 just means to isolate a particular
output wire of the circuit and so it is for free in terms of complexity of the size of the circuit. On the
other hand, it is well-known that modular linear operations over κ-bits integers (which is an upper
bound on the length of Zpq elements) are computable by circuits of logarithmic depth, see, e.g.,
[BV11a] for more details. Thus, we can conclude that our scheme can evaluate its own decryption
circuit and therefore it can be bootstrapped into a fully-homomorphic one, following [Gen09].

29

4.6 A Simple Collision-Resistant Hash Function

In this section, we sketch a direct construction of a collision-resistant hash (CRH) function. While it
is well-known that any FHE scheme implies the existence of collision-resistant hashing, we present
here a more direct, and certainly more efficient, construction. The hashing key consists of n
encryptions of 0 of the base scheme (Section 4.2), that is:

hk :=
{
(yi, r

T zi) = cti ←$ Enc(pk, 0)
}
i

along with the vector r. To hash a vector x ∈ {0, 1}n, we compute the homomorphic addition:

H(hk,x) :=
n∑

i=1

xi · (yi, r
T zi)

where the sum is performed component-wise. To prove security, we first move into a hybrid where
we replace cti by an encryption of 1, for a uniformly chosen i ←$ {1, . . . , n}. This change goes
unnoticed from the CPA security of the underlying encryption scheme. Now, when the adversary
provides x0,x1 ∈ {0, 1}n that break collision resistance of the hash function, first observe that these
two vectors are different, so they must differ in at least one position. Let j be such a position.
With probability 1/n we have that i = j. Then we can reach a contradiction as:

Dec(sk,H(hk,x0)) ̸= Dec(sk,H(hk,x1)).

5 Quantum Fully-Homomorphic Encryption

We show how to upgrade our construction to quantum fully-homomorphic encryption (QFHE).

5.1 Quantum Preliminaries

We recall a few basic facts about quantum information and we refer the reader to [NC11] for a
comprehensive overview. A (pure) quantum state |ψ⟩ is a unit vector in a separable Hilbert space
H. Throughout this work, we will only consider finite-dimensional Hilbert spaces and so we will
always assume that H ∼= Cd, for some integer d ≥ 1. Hilber spaces define physical registers,
which we typically denote with a subscript. A Projector-Valued Measure (PVM) consists of a
set of projectors {Πi}i that sum up to identity, and if Πi are not required to be projectors, it is
called a Positive Operator-Valued Measure (POVM). Any physical measurement can be described
by a POVM, and the Born rule establishes that measuring a state |ψ⟩ will yield outcome i with
probability ⟨ψ|Πi |ψ⟩.

The class of efficient quantum algorithm is called BQP, and the notion of computational indis-
tinguishability is extended to BQP algorithms in the natural manner. The notion of trace distance
is the analogue of statistical distance for quantum states. For the purposes of this work, it suffices
to recall that the trace distance can be equivalently defined as the supremum success probability
in distinguishing two quantum states, over all (possibly unbounded) quantum operations. Further-
more, the trace distance is non-increasing under quantum operations.

In [Bra18], it is shown how to sample a uniform Gaussian superposition, for a given lattice. We
recall the exact statement below.

30

Theorem 4 (Lattice Superposition Generation [Bra18]). Let ΛQ be an n-dimensional lattice, and
let σ ≥ ∥B∗

Q∥ ·
√
ln(2n+ 4)/π. There exists an algorithm that, on input a quadratic form Q and

a precision parameter α, runs in time polynomial in 1/α and returns a state within O(α) trace
distance from:

1√
ρσ(ΛQ)

∑
v∈ΛQ

ρ√2σ(v) |v⟩ .

5.2 Oblivious State Preparation

In the following we define the notion of oblivious state preparation (OSP), introduced in a recent
work [BK25]. Loosely speaking, an OSP allows a classical client to remotely instruct a quantum
server to prepare either a computational basis state, or a Hadamard basis state. Furthermore,
the two modes should be computationally indistinguishable, even to the eyes of the server. We
directly define the round-optimal variant of OSP, where the interaction consists of a single round
of messages.

Definition 4 (Oblivious State Preparation [BK25]). An oblivious state preparation (OSP) consists
of polynomial-time (classical) algorithm OSPGen(1λ, µ) that, on input the security parameter 1λ

and a bit µ ∈ {0, 1}, returns a public key pk and a trapdoor td. We require the following properties.

• (Correctness) There exists a BQP algorithm that, on input the public key pk computes a state:

|ψ⟩ := Hµ |b⟩

for some bit b ∈ {0, 1}, along with a classical string d. Furthermore, there exists a polynomial-
time computable function g such that g(td, µ, d) = b.

• (Mode Indistinguishability) The two distributions:{
pk : (pk, td)←$ OSPGen(1λ, 0)

}
≈c

{
pk : (pk, td)←$ OSPGen(1λ, 1)

}
are computationally indistinguishable.

It is shown in [BK25], building on the work of [GV24], that a two-message OSP is sufficient
to upgrade any (classical) FHE into a QFHE. Thus, we can henceforth concentrate on the task of
building a two-message OSP. We recall their theorem below.

Theorem 5 (QFHE from OSP [GV24, BK25]). Given any FHE with decryption in NC1 and any
two-round OSP, there exists a QFHE scheme.

In our work, we will construct an OSP protocol with a slightly weaker correctness guarantee,
namely the server will prepare a state within (an arbitrary small) inverse-polynomial trace dis-
tance from the ideal state. Thus, all of our results come with the understanding that the QFHE
construction has a small (inverse-polynomial) correctness error.

5.3 Oblivious State Preparation from Lattice Isomorphism

We present our protocol for OSP from the lattice isomorphism problem.

31

The Lattice Family. We consider the lattices ΛQ and ΛL generated by the basis:

BQ :=

(
g · In/2 0

0 g̃ · In/2

)
and BL :=

1 0 0 0
0 g · In/2−1 0 0

0 0 g̃ · In/2−1 0

0 0 0 gg̃

where g and g̃ are co-prime, with g < g̃, and g̃ ∈ O(g). The fact that they are in the same genus, i.e.,
they have the same efficiently computable invariants, follows along the same lines as in Section 4.1.

Parameters. Before presenting a formal description of our scheme, we list all the parameters,
along with the constraints induced by the scheme.

• The rank of the lattice n := n(κ) and a constant ε ∈ O(1) for the smoothing parameter
ηε(ΛQ) of ΛQ.

• Two standard deviations s := s(κ) and σ := σ(κ) parametrizing the Gaussians used to sample
an isomorphic lattice and a vector from the lattice, respectively.

• A scaling factor q := q(κ) that we assume to be even.

• A parameter m := m(κ) for the hash function sampled in the scheme.

• A parameter k := k(κ) that controls the number of parallel repetitions.

Similarly to the scheme in Section 4.2, we are going to set:

s ≥ max
{
λn(ΛQ), ∥B∗

Q∥
√

ln(2n+ 4)/π
}

and σ ≥ s
√
n
√

ln(2n+ 4)/π (16)

so that the sampling procedure is efficient. Then we set:

σ ≥ ηε(ΛQ) (17)

and furthermore:
q · g

100 ·
√
n
≤ σ < q · g

2 ·
√
2n

(18)

in order to make sure that a Gaussian sample will be in the decoding radius of the lattice ΛQ (the
constant on the LHS is arbitrary). Finally, we set g =

√
n and m, q and k to be sufficiently large

polynomials in the security parameter.

The Construction. We present our construction of an OSP in the following.

• OSPGen(1λ, µ): Using the algorithm from Lemma 8, sample P and U ∈ GLn(Z) as

P :=

{
P←$ Ds([Q]) if µ = 0

P←$ Ds([L]) if µ = 1.

Additionally, sample a O(
√
n)-wise independent hash function G : Zn → {1, . . . ,m} and a

pairwise independent hash function H : Zn → {0, 1}. Set pk := (P,G,H) and td := U.

The following theorem establishes the mode indistinguishability of the algorithm. The proof is a
direct reduction to the distinguishing variant of the lattice isomorphism problem, and it is omitted.

Theorem 6 (Mode Indistinguishability). If the distinguishing lattice isomorphism problem is hard
for Q and L, then the scheme as described above is mode indistinguishable.

32

BQP Algorithm. We describe a BQP procedure that, on input the public key pk, produces the
desired state with overwhelming probability. The algorithm initializes a target qubit |0⟩t in the
zero state, then for all i ∈ {1, . . . , k} proceeds as follows:

• Run the algorithm from Theorem 4 to initialize the state:

1√
ρσ(ΛP)

∑
v∈ΛP

ρ√2σ(v) |v⟩ .

For notational convenience, we omit the inverse-polynomial error, and we pretend that the
above state was prepared perfectly. By the monotonicity of the trace distance, the error
cannot be increased by the subsequent operations.

• Apply the unitary mapping:

1√
ρσ(ΛP)

∑
v∈ΛP

ρ√2σ(v)
∣∣B−1

P v
〉
∝

∑
x∈Zn

DP,
√
2σ(x) |x⟩

omitting normalization factors. Note that the above operation is indeed unitary since the
lattice is full rank, and furthermore it can be computed efficiently given any basis BP.

• Apply the isometric mapping:∑
x∈Zn

DP,
√
2σ(x) |x⟩ →

∑
x∈Zn

DP,
√
2σ(x) |x, 1/q · x (mod Zn)⟩

and measure the second register in the computational basis to obtain some yi ∈ Tn
q . The

residual sate corresponds to: ∑
x:yi=1/q·x (mod Zn)

DP,
√
2σ(x) |x⟩ (19)

omitting normalization factors.

• Apply the isometric mapping:∑
x:yi=1/q·x (mod Zn)

DP,
√
2σ(x) |x⟩ →

∑
x:yi=1/q·x (mod Zn)

DP,
√
2σ(x) |x,G(x)⟩ (20)

which is efficiently computable since G is. Measure the second register in the computational
basis to obtain some mi ∈ {1, . . . ,m}. The residual state is (again not normalized):∑

x:
yi=1/q·x (mod Zn)

G(x)=mi

DP,
√
2σ(x) |x⟩ . (21)

• Apply coherently the function H onto a separate register, then CNOT the resulting bit onto
the target qubit in register t. Trace out the target qubit from the system, and measure the
residual state in the Hadamard basis. Denote the output by di.

The algorithm returns the residual state in the t-register, along with the classical strings {yi,mi,di}i.

33

Analysis. First of all, using the same argument as in Section 4.2, one can show that Eq. (16)
implies that of the algorithms are well-defined and run in polynomial time (in particular, that the
standard deviation is large enough in order to enable efficient sampling). Next, we analyze the state
of the target qubit after a successful completion of the above algorithm. The analysis is completed
by proving Lemma 13 and Lemma 14.

Lemma 13 (Case µ = 0). Let µ = 0 and let |ψ⟩t be the state in the t-register after the BQP
procedure as described above. Then |ψ⟩t is within inverse-polynomial trace distance from:

|ψ⟩t ≈1/poly(κ) |x⟩t

for some x ∈ {0, 1} and furthermore x is efficiently computable given the trapdoor and {yi,mi,di}i.

Proof. By Lemma 3 and Eq. (17), the probability of sampling a vector from DP,
√
2σ with norm:

∥BP · x∥ ≤
√
2n · σ (22)

is negligible. Thus, the state in Eq. (19) is negligibly close (in trace distance) from a state that is
entirely supported on vectors x for which Eq. (22) holds. Recall that:

Uyi = U(1/q · x− zi) = 1/q ·Ux−Uzi

for some integral zi ∈ Zn. Then, recalling that BQ is diagonal with entries greater than g, we have
that:

∥1/q ·Ux∥ ≤ 1

g
∥1/q ·BQU · x∥ = 1

q · g
∥BP · x∥ ≤

√
2n · σ
q · g

<
1

2

by Eq. (18) and Eq. (22). This implies that the noise introduced by the term 1/q ·Ux is within
the decoding radius of the lattice, which in particular means that yi uniquely determines x. Thus,
measuring yi collapses the state to a basis state |x⟩, which means that the state in Eq. (19) is
negligibly close to a basis state. Consequently, the measurement done in Eq. (20) has no effect on
the state, whereas the application of the final CNOT on the target register has the same effect as
a regular CNOT, classically controlled on H(x). We can conclude that the target qubit, after k
iterations, is a basis state of the form:

|H(x1)⊕ · · · ⊕ H(xk)⟩t .

Furthermore, the value of each H(xi) can be efficiently recomputed by anyone who knows the
trapdoor U and yi, by simply running the decoding operation and applying H.

Lemma 14 (Case µ = 1). Let µ = 1 and let |ψ⟩t be the state in the t-register after the BQP
procedure as described above. Then |ψ⟩t is within inverse-polynomial trace distance from:

|ψ⟩t ≈1/poly(κ)
1√
2
(|0⟩t + (−1)z |1⟩t)

for some z ∈ {0, 1} and furthermore x is efficiently computable given the trapdoor and {yi,mi,di}i.

34

Proof. Recall that the basis BL is diagonal and all but one entries are greater than g, so with a
similar argument as above, we can establish that all but one coordinates of Uyi are within the
decoding radius of the one-dimensional sublattice, and thus, they uniquely determine the corre-
sponding coordinate of Uzi (as defined above). On the other hand, the top-left corner of the basis
BL equals 1, and thus the Gaussian tail bound (Lemma 3) bounds the magnitude of the first co-
ordinate of 1/q · Ux to

√
2nσ/q < g/2. Substituting g =

√
n, we obtain that there are at most

O(
√
n) vectors consistent with the output of the measurement being yi. This means that the state

in Eq. (19) is negligibly close to a state being supported on at most O(
√
n)-many basis states. We

are now interested in the probability that the following events happen simultaneously:

• (Same Amplitude) The first coordinate of Uyi is precisely in-between two lattice points,
denoted by their coefficient representation as xi,0 and xi,1. Since the basis BL is diagonal,
we can equivalently consider sampling each coordinate from a one-dimensional Gaussian, and
the above requirement translates to the probability of the fractional part of the sample begin
exactly 1/2. For instance, this happens when the one-dimensional sample equals q/2 (i.e.,
1/2 when scaled down). The probability that this event happens is:

ρ√2σ(q/2)

ρ√2σ(Z)
≈ e−O(π)

√
2σ/det(Z)

= O

(
1

q

)
since, by Eq. (18), σ = O(q), which is at least inverse polynomial. Note that by symmetry
of Gaussians, when this event happens, xi,0 and xi,1 are equally likely to be the lattice point
corresponding to yi and therefore they have the same amplitude in Eq. (19).

• (Same Filter) It holds that G(xi,0) = G(xi,1) but G(xi,0) ̸= G(x′) for any other x′ in the list
decoding of yi. Over the random choice of G, this happens with probability at least:

1

m2
·
(
1− 1

m

)O(
√
n)

≥ 1

m2
·
(
1− O(

√
n)

m

)
since there are at most O(

√
n) vectors in the list decoding of yi, as argued above. For a large

enough m, the above probability is at least inverse-polynomial.

• (Filtering Measurement) The measurement in Eq. (20) returns the outcome mi = G(xi,0) =
G(xi,1). Since the amplitudes of xi,0 and xi,1 are non-negligible, this event must happen with
at least inverse-polynomial probability.

• (Different Hash) It holds that H(xi,0) ̸= H(xi,1). By the pairwise independence of H, this
happens with probability at least 1/2.

Overall, the probability that all of the above events happen simultaneously is at least inverse-
polynomial. By a Chernoff bound, for a large enough k, the probability that there exists an index
i ∈ {1, . . . , k} where all of the above events happen is negligibly close to 1. As argued above, the
amplitudes corresponding to xi,0 and xi,1 are identical in Eq. (19). Furthermore, the projection
implemented by measuring the last register of the state in Eq. (20) filters out all basis states but
xi,0 and xi,1. We can conclude that the state in Eq. (21) is exactly:

1√
2
(|xi,0⟩+ |xi,1⟩) .

35

We claim that it suffices to consider the action of the above state in the target qubit. To see why,
let us analyze the action of applying a CNOT and measuring the register in the Hadamard basis on
a generic qubit. For simplicity let us assume that H(xi,0) = 0 and H(xi,1) = 1, and the other case
follows symmetrically. Applying the CNOT on the target qubit in state α |0⟩t + β |1⟩t, we obtain:

1√
2
(|xi,0⟩ ⊗ (α |0⟩t + β |1⟩t) + |xi,1⟩ ⊗ (α |1⟩t + β |0⟩t)) .

Then, applying Hadamard to the first register we are left with:

1√
2

∑
d

(−1)d·xi,0 |d⟩ ⊗ (α |0⟩t + β |1⟩t) +
∑
d̃

(−1)d̃·xi,1 |d̃⟩ ⊗ (α |1⟩t + β |0⟩t)

 .

Measuring the first register we obtain some di and the residual state is:

1√
2

(
(−1)di·xi,0(α |0⟩t + β |1⟩t) + (−1)di·xi,1(α |1⟩t + β |0⟩t)

)
=

1√
2

(
((−1)di·xi,0α+ (−1)di·xi,1β) |0⟩t + ((−1)di·xi,1α+ (−1)di·xi,0β) |1⟩t

)
=

1√
2
(|0⟩t + (−1)z |1⟩t)

where z := di · xi,0 ⊕ di · xi,1 = di · (xi,0 ⊕ xi,1). Note that z can be efficiently recomputed given
the trapdoor U and (di,yi,mi), by:

• Finding all of the O(
√
n)-many plausible pre-images of yi. This is efficiently computable,

since all coordinates of the vector are uniquely determined, except for the first one. For that
coordinate, one simply returns the O(

√
n) integral values closer to the sample.

• Verifying if all of the above events indeed happened for yi. Once yi, and mi are fixed, all of
the conditions are deterministic and efficiently checkable.

• Computing z := di(xi,0 ⊕ xi,1).

What is left to be shown is that subsequent applications of the above procedure (CNOT and
Hadamard basis measurements) do not further change the target state. An intuitive way to see
this is that the residual state in the t register is either |+⟩ or |−⟩, which is invariant (up to a global
phase) under CNOT. To verify this formally, one can consider an arbitrary state:∑

xj,0

α(xj,0) |xj,0⟩+
∑
xj,1

β(xj,1) |xj,1⟩

⊗ (|0⟩t + (−1)z |1⟩t)

then applying CNOT leads to:∑
xj,0

α(xj,0) |xj,0⟩ ⊗ (|0⟩t + (−1)z |1⟩t) +
∑
xj,1

β(xj,1) |xj,1⟩ ⊗ (|1⟩t + (−1)z |0⟩t)

=

∑
xj,0

α(xj,0) |xj,0⟩+ (−1)z
∑
xj,1

β(xj,1) |xj,1⟩

⊗ (|0⟩t + (−1)z |1⟩t)

which results in the two states being in tensor product. Therefore, a Hadamard basis measurement
on the first subsystem has no effect on the target qubit.

36

Acknowledgements

The authors thank Nico Döttling for enlightening discussions on lattice smoothing, and for sharing
the proof of Lemma 5. The authors also thank Russell W.F. Lai for discussions at an early stage
of this project.

P.B. and G.M. are supported by the European Research Council through an ERC Starting Grant
(Grant agreement No. 101077455, ObfusQation). G.M. is also funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC
2092 CASA – 390781972.

References

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
28th ACM STOC, pages 99–108. ACM Press, May 1996.

[Bar86] David A Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in nc. In Proceedings of the eighteenth annual ACM symposium
on Theory of computing, pages 1–5, 1986.

[BCM+18] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani, and Thomas
Vidick. A cryptographic test of quantumness and certifiable randomness from a single
quantum device. In Mikkel Thorup, editor, 59th FOCS, pages 320–331. IEEE Computer
Society Press, October 2018.

[BD24] Zvika Brakerski and Nico Döttling. (Personal Communication), 2024.

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear
decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. In Dennis
Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages
407–437. Springer, Cham, December 2019.

[BDJ+24] Pedro Branco, Nico Döttling, Abhishek Jain, Giulio Malavolta, Surya Mathialagan,
Spencer Peters, and Vinod Vaikuntanathan. Pseudorandom obfuscation and applica-
tions. Cryptology ePrint Archive, Paper 2024/1742, 2024.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EURO-
CRYPT 2014, pages 533–556, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[BGPS23] Huck Bennett, Atul Ganju, Pura Peetathawatchai, and Noah Stephens-Davidowitz.
Just how hard are rotations of Zn? algorithms and cryptography with the simplest
lattice. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V,
volume 14008 of LNCS, pages 252–281. Springer, Cham, April 2023.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomor-
phic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012, pages
309–325. ACM, January 2012.

37

[BJ15] Anne Broadbent and Stacey Jeffery. Quantum homomorphic encryption for circuits
of low T-gate complexity. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 609–629. Springer, Berlin, Hei-
delberg, August 2015.

[BK25] James Bartusek and Dakshita Khurana. On the power of oblivious state preparation.
CRYPTO, 2025.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th ACM STOC, pages 575–584. ACM Press, June 2013.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 868–886. Springer, Berlin, Heidelberg, August 2012.

[Bra18] Zvika Brakerski. Quantum FHE (almost) as secure as classical. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages
67–95. Springer, Cham, August 2018.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE
Computer Society Press, October 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 505–524. Springer, Berlin, Heidelberg,
August 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In
Moni Naor, editor, ITCS 2014, pages 1–12. ACM, January 2014.

[CDM21] Orestis Chardouvelis, Nico Döttling, and Giulio Malavolta. Rate-1 quantum fully ho-
momorphic encryption. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part I,
volume 13042 of LNCS, pages 149–176. Springer, Cham, November 2021.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of
probabilistic circuits and applications. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, TCC 2015, Part II, volume 9015 of LNCS, pages 468–497. Springer, Berlin,
Heidelberg, March 2015.

[Cop96] Don Coppersmith. Finding a small root of a univariate modular equation. In Ueli
Maurer, editor, Advances in Cryptology — EUROCRYPT ’96, pages 155–165, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg.

[DPPv22] Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, and Wessel P. J. van Woerden.
Hawk: Module LIP makes lattice signatures fast, compact and simple. In Shweta
Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part IV, volume 13794 of LNCS,
pages 65–94. Springer, Cham, December 2022.

38

[DSS16] Yfke Dulek, Christian Schaffner, and Florian Speelman. Quantum homomorphic en-
cryption for polynomial-sized circuits. In Matthew Robshaw and Jonathan Katz, ed-
itors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 3–32. Springer, Berlin,
Heidelberg, August 2016.

[Dv22] Léo Ducas and Wessel P. J. van Woerden. On the lattice isomorphism problem,
quadratic forms, remarkable lattices, and cryptography. In Orr Dunkelman and Stefan
Dziembowski, editors, EUROCRYPT 2022, Part III, volume 13277 of LNCS, pages
643–673. Springer, Cham, May / June 2022.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

[GH11] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In Rafail Ostrovsky, editor, 52nd FOCS, pages 107–109.
IEEE Computer Society Press, October 2011.

[GH19] Craig Gentry and Shai Halevi. Compressible FHE with applications to PIR. In Dennis
Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages
438–464. Springer, Cham, December 2019.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with
polylog overhead. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 465–482. Springer, Berlin, Heidelberg,
April 2012.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages
555–564. ACM Press, June 2013.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris
Umans, editor, 58th FOCS, pages 612–621. IEEE Computer Society Press, October
2017.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, edi-
tors, 40th ACM STOC, pages 197–206. ACM Press, May 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 75–92. Springer, Berlin, Heidelberg, August 2013.

[GV24] Aparna Gupte and Vinod Vaikuntanathan. How to construct quantum FHE, generi-
cally. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part III, volume
14922 of LNCS, pages 246–279. Springer, Cham, August 2024.

39

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryp-
tion for circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th
ACM STOC, pages 545–554. ACM Press, June 2013.

[HR14] Ishay Haviv and Oded Regev. On the lattice isomorphism problem. In Chandra
Chekuri, editor, 25th SODA, pages 391–404. ACM-SIAM, January 2014.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstracts). In 21st ACM STOC, pages 12–24. ACM
Press, May 1989.

[LJL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra Jr., and László Lovász. Factoring poly-
nomials with rational coefficients. Mathematische Annalen, 261:515–534, 1982.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In Howard J.
Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages 1219–1234. ACM Press,
May 2012.

[Mah22] Urmila Mahadev. Classical verification of quantum computations. SIAM Journal on
Computing, 51(4):1172–1229, 2022.

[Mah23] Urmila Mahadev. Classical homomorphic encryption for quantum circuits. SIAM
Journal on Computing, 52(6):FOCS18–189–FOCS18–215, 2023.

[Mic19] Daniele Micciancio. Fully homomorphic encryption from the ground up. Invited talk
at EUROCRYPT 2019, 2019.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 700–718. Springer, Berlin, Heidelberg, April 2012.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM Journal on Computing, 37(1):267–302, 2007.

[NC11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press, 2011.

[NIS] NIST post-quantum cryptography. https://csrc.nist.gov/projects/

post-quantum-cryptography.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, 41st ACM STOC, pages 333–342.
ACM Press, May / June 2009.

[PS97] W. Plesken and B. Souvignier. Computing isometries of lattices. J. Symb. Comput.,
24(3–4):327–334, October 1997.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM
Press, May 2005.

40

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

[Rot11] Ron Rothblum. Homomorphic encryption: From private-key to public-key. In Yu-
val Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 219–234. Springer, Berlin,
Heidelberg, March 2011.

[vGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homo-
morphic encryption over the integers. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 24–43. Springer, Berlin, Heidelberg, May / June 2010.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under
LWE. In Chris Umans, editor, 58th FOCS, pages 600–611. IEEE Computer Society
Press, October 2017.

41

	Introduction
	Our Results
	On the Hardness of Distinguish-LIP
	Technical Outline

	Cryptographic Preliminaries
	Fully-Homomorphic Encryption

	Lattices and Gaussians
	Fully Homomorphic Encryption
	The Lattice Family
	The Base Encryption Scheme
	Linear Homomorphic Operations
	Fully-Homomorphic Operations
	Bootstrapping
	A Simple Collision-Resistant Hash Function

	Quantum Fully-Homomorphic Encryption
	Quantum Preliminaries
	Oblivious State Preparation
	Oblivious State Preparation from Lattice Isomorphism

