
Dynamic Security: A Realistic Approach to Adaptive Security
With Applications to Strong FaF Security

Bar Alon
Department of Computer Science

Georgetown University,
Washington, DC, USA
alonbar08@gmail.com

Naty Peter∗

University of Ottawa
Ottawa, ON, Canada

naty@post.bgu.ac.il

May 27, 2025

Abstract
Secure multiparty computation allows multiple parties to jointly compute a function while

maintaining security even in the presence of malicious adversaries. There are two types of
adversaries in the literature: static adversaries, which choose the parties to corrupt before the
protocol begins; and adaptive adversaries, which can corrupt parties during the execution of
the protocol based on the messages exchanged by the parties. While adaptive security provides
a more robust security guarantee, it may require too much in certain scenarios. Indeed, the
adversary must allocate some of its resources to corrupt the parties; however, certain parties
might be more susceptible to corruption, for instance, if they have not updated their operating
system to the latest version.

To address this, we introduce a new security notion called dynamic security. Here, adversaries
may corrupt new parties during and after the protocol’s execution, but cannot choose targets
based on the messages. A protocol is said to be (t, h)-dynamically secure if it is possible to
simulate any adversary that can corrupt up to t parties during the execution and h thereafter.
Dynamic security provides meaningful security for many real-world scenarios. Moreover, it
circumvents known lower bounds on the communication complexity of adaptive security, allowing
for more efficient protocols such as committee-based ones, which would be insecure against
adaptive adversaries.

We further explore dynamic security and establish the following results.
1. We show a surprising connection between dynamic security and the seemingly unrelated

notion of security with friends and foes (FaF security), introduced by Alon et al. (CRYPTO
2020), which aims to protect honest parties not only from adversaries but also against other
honest parties. The notion of (t, h)-strong FaF security strengthens this by requiring the
simulatability of the joint view of any t malicious parties alongside any h honest parties
to be indistinguishable from their real-world view. We show that (t, h)-dynamic security
and (t, h)-strong FaF security are equivalent.

2. We consider the feasibility of (t, h)-dynamic security and show that every n-party func-
tionality can be computed with computational (t, h)-dynamic security (with guaranteed
output delivery) if and only if 2t + h < n. By our previous result, this also solves an open
problem left by Alon et al. on the feasibility of strong FaF security.

∗Part of the work conducted while at the University of Toronto. Partially supported by the National Sciences and
Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN-2023-05006.

Contents
1 Introduction 1

1.1 Our Contributions . 2
1.2 Our Techniques . 6
1.3 Related Works . 8
1.4 Organization . 9

2 Preliminaries 9
2.1 Security Model: Security With Friends and Foes . 9
2.2 Security Model: Adaptive Security . 14

3 A New Security Definition: Dynamic Security 16
3.1 Dynamic Security-With-Abort . 19

4 Equivalence of Dynamic Security and Strong FaF Security 20

5 Characterizing Computational Dynamic Security 23
5.1 Strong FaF Security-With-Semi-Identifiable-Abort 24
5.2 Generating Correlated Randomness with Strong FaF Security 25
5.3 Putting it all Together . 28

Bibliography 29

1 Introduction
Secure multiparty computation (MPC) allows a set of mutually distrustful parties to perform a
common task. Such computations should satisfy various security properties, such as correctness,
privacy, fairness, independence of inputs, and even guaranteed output delivery.1 Moreover, security
should hold even when the parties interact with a malicious entity that controls a subset of the
parties. The two common types of adversaries that are considered in the literature are static and
adaptive adversaries. A static adversary chooses the subset of parties to corrupt before the protocol
starts. The seminal works of [24, 19, 5, 11, 23] show how to construct protocols that are secure
against any static adversary. An adaptive adversary can corrupt new parties during the execution
of the protocol. It was first considered by Beaver and Haber [4] and Canetti et al. [7], and it offers a
more realistic security notion than static security. The seminal result of [9] shows the construction
of an adaptively secure protocol in the common reference string model.

Achieving security against adaptive adversaries is naturally harder. Indeed, there are several
examples of protocols that are secure against static adversaries but are insecure against adaptive
ones [7, 8, 20, 16, 3, 13], and an example of a functionality that cannot be computed with adaptive
security [21].2 Additionally, lower bounds on the communication complexity of adaptively secure
protocols show they are less efficient than statically secure ones [17].

While adaptive security may be stronger, we argue that in certain scenarios it may require too
much: The adversary must assign some of its resources to try and corrupt an arbitrary party, which
may be an inefficient task. One way to model this is by bounding the number of corruptions the
adaptive adversary can make. However, a more realistic model is where some parties are easier to
corrupt. This can happen for several reasons. For example, certain parties can be more prone to
participate in such corrupted activity in exchange for a reward, or several parties can be deceived
into being corrupted by the adversary without their will. The latter can be illustrated by several
real-world scenarios, e.g., where some parties did not update their operating system to the latest
version, making them an easier target; or where the adversary tries to corrupt using a phishing
attack and some parties are more likely to click the link. In these scenarios, it is natural to require
security against an adversary that can still corrupt parties during the execution of the protocol;
however, it cannot choose who to corrupt based on the protocol’s execution.

Achieving security against such adversaries may allow us to bypass certain lower bounds and
impossibility results of adaptive security, while still guaranteeing a more realistic security notion
than static security. Indeed, consider a protocol where the parties randomly sample a small com-
mittee, share their inputs with the parties in the committee, and let the committee perform the
computation. As noted by Canetti et al. [7], an adaptive adversary can corrupt the entire commit-
tee, thus making the protocol insecure. In fact, Garay et al. [17] showed that there is no adaptively
secure protocol with sublinear communication. However, note that such a protocol may still be
secure against adversaries who do not get to choose who they corrupt. This is due to the fact that
the choice of corruption is independent of the random choices made by the parties.

1Formally, security is defined via the real vs. ideal world paradigm, where the real-world interaction is required
to emulate an ideal one.

2Ishai et al. [21] showed that there is a randomized functionality that cannot be computed against adversaries
that can corrupt all parties. This is only a concern when considering adaptive adversaries as it is important for
composition.

1

1.1 Our Contributions

Our main contribution is the introduction of a new security notion, which we call dynamic secu-
rity,3 to realistically capture the scenarios discussed above. That is, it captures security against
adversaries that can corrupt parties during the protocol’s execution, however, they cannot choose
who they corrupt and when. We then show a surprising connection between dynamic security and
the seemingly unrelated notion of security with friends and foes [1], which aims to protect honest
parties from other honest parties (in addition to protecting them from the adversary). Finally, we
characterize the security threshold that allows to compute any functionality with dynamic security.

1.1.1 Defining Dynamic Security

Our main contribution is defining dynamic security, which can be viewed as an intermediate security
notion that lies between static and adaptive security. Recall that in static security, the adversary
chooses the set of corrupted parties prior to the beginning of the protocol, whereas in adaptive
security, the adversary can arbitrarily corrupt additional parties during the protocol, possibly uti-
lizing information gained from previous rounds in order to choose the next parties to be corrupted.
Therefore, when acknowledging the limitations of the above two security definitions, our main mo-
tivation for defining dynamic security is to capture security against more realistic adversaries than
static ones (as accomplished by adaptive security), while also obtaining more efficient protocols
and for broader classes of functionalities than the ones obtained by adaptively secure protocols,
hopefully overcome some lower bounds imposed by this type of requirement.

Similarly to previous security notions, we define dynamic security using the real vs. ideal world
paradigm. In this work, we only consider the simpler stand-alone model, where there are no
other procedures that occur concurrently with the execution of the protocol. We first describe
the real world, which aims to describe the interaction with an adversary that can corrupt parties
during the protocol’s execution (as in adaptive security), but cannot choose the parties to corrupt
nor the round in which the parties will be corrupted. We then define the ideal world, where the
parties interact via an incorruptible trusted party that does the computation on the parties’ behalf.
Security is then defined by requiring that any adversary in the real world can be simulated by an
adversary in the ideal world. We consider the ideal world for defining both full security (also known
as guaranteed output delivery) and security-with-abort. Roughly, the former notion requires that
the honest parties always obtain the output, while the latter relaxes this requirement and allows
the adversary to learn the output and prevent the honest parties from receiving it.

Real-world execution. Roughly speaking, we model the adversary A as follows. The informa-
tion about the parties to be corrupted at every round is provided to A by an external entity Z,
called the environment, which interacts with the adversary in a similar way to how it is done in
adaptively secure protocols. However, as opposed to adaptive security, in dynamic security, the
environment determines the parties to be corrupted at every round prior to the running of the
protocol. When Z instructs A to corrupt a party, the adversary corrupts it, obtains its internal

3The term dynamic security was used in previous works to refer to what is now commonly known as adaptive
security [4, 23]. We chose to use the term dynamic as adaptive insinuates that the adversary can change its structure
based on what occurs in the protocol, while dynamic only insinuates that the structure can be changed based on
sources outside of the adversary’s control. The term dynamic was also used by [12, 14] in the context of fluid MPC.

2

state (which includes its input, randomness, and messages it received so far),4 and continues with
the execution of the protocol. Finally, to allow for the composition of secure protocols, we further
let the environment choose which parties the adversary will corrupt after the protocol terminates,
in what is referred to as the post-execution corruption (PEC) phase.

We next provide more details. Fix an n-party r-round protocol. At the beginning of the
protocol, the environment first generates a corruption list L = (ρ1, ρ2, . . . , ρn) corresponding to the
parties P1, P2, . . . , Pn, where each ρi indicates if party Pi is going to be corrupted and at which
round. That is, we have that ρi ∈ [r] ∪ {PEC, honest} for every i ∈ [n]; at each round ρ ∈ [r],
the adversary corrupts all parties Pi such that ρi = ρ, and after the execution of the protocol the
adversary corrupts all parties Pi such that ρi = PEC. If ρi = honest, then Pi is an honest party
not corrupted by the adversary at any stage of the protocol. During the protocol’s execution, the
corrupted parties follow the instructions of the adversary from the time they have been corrupted.
The protocol terminated with the adversary outputting a function of its view, and the honest
parties outputting whatever the protocol instructs them to output.

After the protocol terminates, the PEC phase begins. The environment receives the output
of the adversary and the outputs of the honest parties, and instructs the adversary to corrupt all
parties Pi such that ρi = PEC. The adversary corrupts the parties and computes a message to send
to Z. Finally, the environment outputs some value based on its information and the final message
received by the adversary.

If the environment generates a corruption list such that the number of parties corrupted during
the execution of a protocol is bounded by t and the number of parties corrupted after the termination
of a protocol is bounded by h, then we say that the environment is (t, h)-limited.5

Ideal-world execution for full security. We next describe the ideal world for full security,
where the computation is done by a trusted party. Similarly to the real world, the execution starts
with the environment generating a corruption list L = (ρ1, ρ2, . . . , ρn). There will be three distinct
corruption stages in the ideal world. The first corruption stage occurs before any interaction with
the trusted party is done. In this stage, the adversary and the environment interact in several
iterations. In each iteration, the environment may instruct the adversary to corrupt a party Pi

such that ρi ∈ [r]. In such a case, the adversary corrupts Pi and obtains its input.
After the first corruption stage ends, the parties send their inputs to the trusted party: all honest

parties send the inputs they hold, while the corrupted parties send a value from their input domain
(possibly their actual input), as dictated by the adversary. The trusted party then computes the
output and sends it to the parties (and the adversary). Now, the second corruption stage begins.
The only difference from the first stage is that now, upon corrupting a party, the adversary also
obtains the output it received from the trusted party. After the second stage is over, each honest
party outputs whatever it received from the trusted party, and the adversary outputs a function of
its ideal-world view (aiming to simulate the output of a real-world adversary). Finally, the PEC
phase begins, with the adversary and the environment further interacting similarly to the real-world

4Formally, the adversary should also receive additional auxiliary information, which corresponds to information
the party has from previous executions. This is important to allow for the composition of secure protocols. However,
to simplify this introduction, we ignore such details.

5It is more common to provide a single upper bound on the total number of parties corrupted by the adversary
(as done in all papers on adaptive security we are aware of). However, distinguishing between corruptions done
during the execution of the protocol and corruptions done during the PEC phase will allow us to clearly present the
connection between dynamic security and security with friends and foes [1]. See Theorem 1.2 below.

3

PEC phase.

Ideal-world execution for security-with-abort. The ideal world for security-with-abort pro-
ceeds similarly to the ideal world for full security, with the following changes. (1) When the trusted
party computes the function, it sends the output only to the adversary. (2) During the second
corruption stage, whenever the adversary corrupts a new party, the trusted party sends to the
adversary the corrupted party’s output. This is important since in a real-world execution, some of
the honest parties might learn the output while some do not. (3) After the second corruption stage
is over, the adversary can instruct the trusted party whether it should send the honest parties their
output or instruct them to abort.

Security definition. We are now ready to define dynamic security. We say that a protocol
computes some multiparty function with (t, h)-dynamic security if for every adversary and every
(t, h)-limited dynamic environment, there is a simulator interacting in the above ideal world for full
security, such that the output of the dynamic environment in both the real and ideal executions
are indistinguishable. If there exists a simulator in the ideal world for security-with-abort, then we
say that the protocol is (t, h)-dynamically secure-with-abort. We refer the reader to Section 3 for
a formal description of the security definition.

Remark 1.1. Observe that the definition of dynamic security, while weaker than adaptive security,
still captures some of the concerns that motivate adaptive security. Indeed, the internal memory
of honest parties cannot be considered “safe” in the dynamic security setting. However, unlike
adaptive security, protocols can still be more efficient in the dynamic security setting. Consider the
following example for computing an arbitrary n-party functionality f . The n parties first elect a
random committee of size ω(log n) using Feige’s committee election protocol [15], then share their
inputs with the parties in the committee, and let the committee run an adaptively secure protocol
to compute f . The protocol is clearly insecure against adaptive adversaries since the adversary can
corrupt the entire committee. However, in dynamic security, the set of parties to be corrupted by the
adversary is chosen before the committee is sampled. Therefore, the probability that the adversary
corrupts the entire committee is negligible, hence the protocol is secure.

1.1.2 Equivalence to Strong Friends and Foes Security

Friends and foes (FaF) security was defined by Alon et al. [1] to capture the privacy of honest
parties against other honest parties. This is formalized by considering two adversaries that do
not collude. One adversary is malicious and may deviate from the protocol in any way, while the
other is semi-honest and follows the protocol. In contrast to adaptive and dynamic security, FaF
security considers static adversaries, which means that both (disjoint) sets of corrupted parties and
semi-honest parties are determined before the execution of the protocol.

Alon et al. [1] presented two flavors of FaF security. The weaker notion requires that any ma-
licious adversary can be simulated, and that any semi-honest simulator can be simulated while
interacting with the malicious adversary. In strong FaF security, it is required that the joint dis-
tribution of the views of the two adversaries is indistinguishable from the joint distribution of the
simulated views in the ideal world. In more detail, (t, h)-strong FaF security requires that for any
real-world malicious adversary Amal corrupting at most t parties there is an ideal-world malicious
simulator Smal, and for any semi-honest adversary Ash corrupting at most h of the remaining parties

4

there exists an ideal-world semi-honest simulator Ssh, such that (VIEWreal
Amal

, VIEWreal
Ash

, OUTreal) is in-
distinguishable from (VIEWideal

Smal
, VIEWideal

Ssh
, OUTideal), where OUTreal and OUTideal denote the output in

the real-world and ideal-world, respectively, of the parties not corrupted by the malicious adversary
and simulator (in particular, this protects the semi-honest parties from the malicious adversary).

For our first result, we show an equivalence between strong FaF secure protocols and dynamically
secure protocols. This result holds for computational, statistical, and perfect security, and also for
security-with-abort.

Theorem 1.2 (Informal). Let π be a protocol computing some functionality f . Then π computes
f with (t, h)-dynamic security (respectively, security-with-abort) if and only if π computes f with
(t, h)-strong FaF security (respectively, security-with-abort).

By using the positive and negative results of Alon et al. [1] for statistical and perfect strong
FaF security, Theorem 1.2 readily implies the following corollary for dynamic security.

Corollary 1.3 (Informal). If t+h < n/2, then any n-party functionality can be computed with sta-
tistical (t, h)-dynamic security. Otherwise, there is an n-party functionality that cannot be computed
with statistical (t, h)-dynamic security.

If 3t + 2h < n, then any n-party functionality can be computed with perfect (t, h)-dynamic
security. Otherwise, there is an n-party functionality that cannot be computed with perfect (t, h)-
dynamic security.

The equivalence we show between dynamic security and strong FaF security can be useful in
both directions, as we next discuss. On one hand, when considering strong FaF secure protocols,
this equivalence gives additional motivation for this security notion and emphasizes its significance.
It shows that strong FaF security captures more settings than what was suggested by the original
definition, which can be translated to the notion of dynamic security. This makes strong FaF
security a more versatile and useful security notion.

On the other hand, when considering dynamically secure protocols, the above equivalence pro-
vides us with a simpler way of proving dynamic security by proving strong FaF security instead.
Indeed, in strong FaF security, the sets of semi-honest parties and corrupted parties are fixed prior
to the beginning of the protocol. This is in contrast to dynamic security, where the adversary
corrupts new parties during the protocol.

1.1.3 Characterization of Dynamic Security

Given a (t, h)-limited dynamic environment and a set of n parties, we show that any n-party
functionality can be computed with computational dynamic security if and only if 2t + h < n.

Theorem 1.4 (Informal). If 2t+h < n, then under several cryptographic assumptions, any n-party
functionality can be computed with computational (t, h)-dynamic security. Otherwise, there is an
n-party functionality that cannot be computed with computational (t, h)-dynamic security.

See Theorem 5.1 for the formal statement and the list of cryptographic assumptions. Following
the equivalence between dynamically secure and strong FaF secure protocols, Theorem 1.4 solves
an open problem left by Alon et al. [1] about the feasibility of computational strong FaF secure
protocols.

5

1.2 Our Techniques

We next provide an overview of our techniques. We start by proving Theorem 1.2, i.e., by showing
that dynamically secure protocols are also strong FaF secure and vice versa. We then use this
equivalence to prove Theorem 1.4.

Proof of Theorem 1.2. Recall that we want to prove an equivalence between (t, h)-dynamic
and (t, h)-strong FaF security for any n-party protocol computing some functionality f .

First, we take a protocol that is (t, h)-dynamically secure and show that it is also (t, h)-strong
FaF secure. Fix a malicious adversary Amal corrupting a set of parties I of at most t parties, and
a semi-honest adversary Ash corrupting a set of parties H (disjoint from I) of at most h parties.
Intuitively, Amal andAsh can be perfectly emulated by a single adversaryAdyn corrupting the parties
in I in the beginning of the protocol, and corrupting the parties in H after it terminates. Since
these corruptions are made independently of the protocol’s execution, they can be generated by a
(t, h)-limited dynamic environment Z. In more detail, we let Adyn run Amal during the protocol’s
execution, and during the PEC phase, we let it run Ash and send its output to Z.

What left to show are two simulators Smal and Ssh for Amal and Ash, respectively. First, as we
assume (t, h)-dynamic security, there is an ideal-world simulator Sdyn for Adyn such that the output
of Z is indistinguishable from its output in the real world. The idea for the malicious simulator
Smal is to let it run Sdyn while taking the role of the environment Z. That is, whenever Z instructs
Sdyn to corrupt a party, Smal sends the party’s input (and output in the second corruption stage)
to Sdyn. Note that this can be done since Z only instructs to corrupt the parties that are already
in control of Smal. For the semi-honest simulator Ssh, we let it output the message sent by Sdyn
to Z during the post-execution corruption phase. Now, recall that in the definition of strong FaF
security, the semi-honest simulator receives the ideal-world view of the malicious simulator (which
includes its inputs, output received from the trusted party, and randomness). Therefore, the output
of Ssh is consistent with the output of Smal, as required by strong FaF security.

We now prove the second direction. That is, we show that if a protocol π is (t, h)-strong FaF
secure, then it is also (t, h)-dynamically secure. Let r denote the number of rounds in π. Fix a real-
world dynamic adversary Adyn. We would like to first emulate Adyn using a pair of non-colluding
adversaries and use their simulators to construct a simulator for Adyn. However, no single pair of
such adversaries can emulate Adyn, since the corruptions are chosen by an environment. Instead, our
idea is to define such a pair for every possible corruption list L = (ρ1, ρ2, . . . , ρn), let the simulator
reconstruct the corruption list by interacting with the environment in the first corruption stage,
and then run the simulators assumed to exist by the strong FaF security guarantee. However,
note that since the environment can only instruct the simulator to corrupt parties Pi such that
ρi ∈ [r], it does not have enough information to run the malicious simulator corresponding to L. To
overcome this, we define the malicious adversary for every partial corruption list, which is defined as
L∗ = (ρ∗

1, ρ∗
2, . . . , ρ∗

n), where ρ∗
i ∈ ([r]∪ {∗}) for every i ∈ [n]. Note that the dynamic simulator can

reconstruct the partial corruption list by interacting with the environment in the first corruption
stage. We next give more details.

The malicious adversary Amal,L∗ emulates Adyn in every round ρ ∈ [r] of the protocol as follows:
First, Amal,L∗ takes the role of the environment and instructs Adyn to corrupt all parties Pi such
that ρ∗

i = ρ. Then, for every corrupted party Pi with ρ∗
i > ρ (that is, the parties yet to be corrupted

by Adyn at round ρ), it computes its honest messages as specified by the protocol and sends them to
the honest parties. In return, it receives messages from the honest parties, and sends them to Adyn,

6

together with the messages computed for the corrupted parties Pi with ρ∗
i > ρ. Finally, Amal,L∗

receives from Adyn the messages for the newly corrupted parties of the previous step and sends them
to the honest parties, and the next round begins. After the protocol terminates, Amal,L∗ broadcasts
its view. Next, for a corruption list L = (ρ1, ρ2, . . . , ρn), define the semi-honest adversary Ash,L that
corrupts the parties in H := {Pi : ρi = PEC} and emulates the post-execution corruption phase of
Adyn: After receiving the broadcast message of the malicious adversary, it sends it to Adyn, which
responds with the message its sends to the dynamic environment in the PEC phase.

By our security assumption, there are ideal-world simulators Smal,L∗ and Ssh,L for Amal,L∗ and
Ash,L, respectively (this holds for every possible L whose associated partial corruption list is L∗). We
next use them to construct the simulator Sdyn for Adyn. In the first corruption stage, Sdyn interacts
with the dynamic environment Z for r rounds. The environment instructs Sdyn to corrupt the parties
in I := {Pi : ρi ∈ [r]}. The simulator then runs Smal,L∗ for the corruption list L∗ = (ρ∗

1, ρ∗
2, . . . , ρ∗

n)
defined as follows: ρ∗

i = ρ if the environment instructed to adversary to corrupt Pi at round
ρ, and ρ∗

i = ∗ otherwise. Note that since the first corruption stage had r rounds, there is no
second corruption stage. Finally, in the post-execution phase, the dynamic environment instructs
the simulator to corrupt the parties in H := {Pi : ρi = PEC}. We let Sdyn run Ssh,L, compute its
output, and send it to the environment.

By construction, for every ppt environment Z, the outputs of Sdyn and the honest parties are
indistinguishable from the outputs of Amal,L∗ and the honest parties, where L is generated by Z. By
the assumption of strong FaF security, the same holds for the output of the semi-honest adversary
conditioned on these values. This implies that the output of Z is indistinguishable.

Proof of Theorem 1.4. By Theorem 1.2 it suffices to prove the theorem for (t, h)-strong FaF
security. That is, we construct a (t, h)-strong FaF secure protocol for any n-party functionality,
when 2t + h < n; and show that if 2t + h ≥ n then there is an n-party functionality that cannot be
computed with (t, h)-strong FaF security. Since the latter was proved by Alon et al. [1],6 we only
need to consider the case when 2t + h < n.

Our starting point is the result by Melissaris et al. [22], who constructed a (t, h)-strong FaF
secure protocol in the correlated randomness setting. Therefore, it suffices to construct a strong FaF
secure protocol for sampling correlated randomness. The idea is as follows. Consider the protocol
of Garg and Sahai [18]. They showed how to compute any n-party functionality with adaptive
security-with-abort against adversaries that can corrupt up to n − 1 parties. We note that their
protocol in fact achieves a stronger security requirement: in case of an abort, the honest parties all
agree on a pair of parties such that at least one of them is corrupted. We call this security notion
security-with-semi-identifiable-abort. Since adaptive security implies strong FaF security [1], their
protocol is (t, h)-strong FaF secure-with-semi-identifiable-abort.

Using the above observation, we propose the following protocol for sampling correlated ran-
domness. We first present a protocol that is secure against fail-stop adversaries (i.e., the corrupted
parties follow the protocol faithfully but may abort prematurely) rather than malicious ones. A
protocol tolerating malicious adversaries is given below. The parties start by executing the Garg
and Sahai protocol to compute (t + h + 1)-out-of-n Shamir’s secret sharing of the output. If the
computation followed through, then the assumption that 2t + h < n implies that the uncorrupted

6They in fact showed that this holds for the weaker security notion of (t, h)-FaF security.

7

parties, consisting of at least

n− t ≥ 2t + h + 1− t = t + h + 1

parties, can reconstruct the output. Otherwise, the parties have the identity of a pair of parties
such that at least one of them is corrupted. The parties remove them from the computation and
restart, with the shares of the removed parties to be held shared among the remaining parties. If
the computation follows through then the parties send to the removed parties their shares. If the
protocol aborted, the parties remove two more parties and continue as before. Since 2t + h < n,
this process will end with either an honest majority or with one of the intermediate computations
successfully generating the output. To obtain a protocol against malicious adversaries, the parties
also compute signatures of the shares.

As an example, consider the case where t = 2, h = 1, and n = 6. If the adversary aborts in
the first iteration, the remaining 4 parties compute a 3-out-4 Shamir’s secret sharing of the output.
Since at most one of them is malicious, if the computation is followed through, then the malicious
party cannot prevent the removed honest party from reconstructing its output. If the adversary
aborts in the second iteration as well, then only two uncorrupted parties remain (i.e., both follow
the protocol). They will compute a 2-out-of-2 secret sharing of the output of all other parties and
send them the shares.

1.3 Related Works

Adaptive security was studied substantially, with many proposed constructions admitting adaptive
security [23, 4, 7, 9, 18, 10]. Since adaptive security implies dynamic security, all of these results
apply to our setting as well.

Canetti et al. [8] were the first to study the connection between adaptive and static security,
showing equivalences and separations under different settings. For example, against malicious
adversaries, they showed that even in the three-party setting with perfect security, there is a
protocol that is secure against two static corruptions, but is insecure against 2 adaptive corruptions.
Since two static corruptions is equivalent to (2, 0)-strong FaF security, which in turn is equivalent
to (2, 0)-dynamic security, this separates adaptive security from dynamic security in the perfect
security setting.

Canetti et al. [8] further showed that any statically secure protocol satisfying additional basic
security requirements is also secure against adaptive adversaries, albeit with inefficient simulation.
Asharov, Cohen, and Shochat [3] showed that the inefficient simulator is inherent, assuming the
existence of one-way permutations. They also proved that the BGW protocol [5] is secure against
adaptive (semi-honest) adversaries with efficient simulation.

The notion of FaF security was introduced by Alon, Omri, and Paskin-Cherniavsky [1], and later
studied in [22, 2]. Alon et al. [1] further provided feasibility and impossibilities for FaF security.
Most relevant to our work are their impossibility results, which also apply to dynamic security. In
particular, we have the following two results. (1) For all t,h, and n such that 2t + h ≥ n there is
a functionality that cannot be computed with (t, h)-dynamic security. (2) For every n there is an
n-party functionality that cannot be computed with (1, 1)-dynamic security in two rounds. FaF
security was further studied by Alon, Beimel, and Omri [2]. They provided a family of 3-party
functionalities that cannot be computed with (1, 1)-dynamic security in a logarithmic number of
rounds.

8

1.4 Organization

In Section 2, we provide the required preliminaries and the definitions of FaF and adaptive security.
Then, in Section 3, we formally define our new notion of dynamic security. Later on, in Section 4, we
show the equivalence between dynamic security and strong FaF security. Finally, in Section 5, we
characterize the parameters that allow for computational dynamic security of every functionality.

2 Preliminaries
We use calligraphic letters to denote sets, uppercase for random variables, lowercase for values, and
bold characters to denote vectors. For n ∈ N, let [n] = {1, 2 . . . n}. For a set S we write s← S to
indicate that s is selected uniformly at random from S. Given a random variable (or a distribution)
X, we write x ← X to indicate that x is selected according to X. ppt stands for probabilistic
polynomial time.

A function µ(·) is called negligible if for every positive polynomial p(·) and all sufficiently large
n, it holds that µ(n) < 1/p(n). For a vector v of dimension n, we write vi for its ith component,
and for S ⊆ [n] we write vS = (vi)i∈S . For a randomized function (or an algorithm) f we write
f(x) to denote the random variable induced by the function on input x, and write f(x; r) to denote
the value when the randomness of f is fixed to r.

A distribution ensemble X = {Xa,n}a∈Dn,n∈N is an infinite sequence of random variables indexed
by a ∈ Dn and n ∈ N, where Dn is a domain that might depend on n. The statistical distance
between two finite distributions is defined as follows.

Definition 2.1. The statistical distance between two finite random variables X and Y is

SD (X, Y) = 1
2

∑
a

|Pr [X = a]− Pr [Y = a]| .

Two ensembles X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N are said to be statistically close, if
there exists a negligible function µ(·), such that for all n and a ∈ Dn,

SD (Xa,n, Ya,n) ≤ µ(n).

If µ(n) = 0 for all n ∈ N then we say that X and Y are identically distributed.

Computational indistinguishability is defined as follows.

Definition 2.2. Let X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N be two ensembles. We say that
X and Y are computationally indistinguishable, denoted X

C≡ Y , if for every ppt distinguisher D,
there exists a negligible function µ(·), such that for all n ∈ N and a ∈ Dn,

|Pr [D(Xa,n) = 1]− Pr [D(Ya,n) = 1]| ≤ µ(n).

2.1 Security Model: Security With Friends and Foes

In this section, we define security with friends and foes (FaF security) [1]. This notion strengthens
the classical definition of security by imposing privacy restrictions on (subsets of) honest parties,
even in the presence of malicious behavior by other parties. The definition also prevents the

9

adversary from leaking private information of one subset of parties to another subset of parties,
even though neither subset is under its control. This is modeled by having two adversaries that do
not collude, where one adversary is malicious and the other is semi-honest.

The definition follows the standard real vs. ideal paradigm for defining security. Intuitively,
the security notion is defined by describing an ideal functionality, in which both the corrupted and
non-corrupted parties interact with a trusted entity. A real-world protocol is deemed secure if an
adversary in the real world cannot cause more harm than an adversary in the ideal world. The
classical security definition (which is only concerned with the malicious adversary) captures this
by showing that an ideal-world adversary (simulator) can simulate the full view of the real-world
malicious adversary. For FaF security, we further require that the view of a subset of the uncor-
rupted parties can be simulated in the ideal world (including the interaction with the adversary).
We define FaF security against static adversaries, namely, where the set of corrupted parties and
semi-honest parties are fixed before the execution of the protocol begins.

The FaF Real Model

An n-party protocol π is defined by a set of n interactive probabilistic polynomial-time Turing
machines P = {P1, . . . , Pn}. Each Turing machine (party) holds at the beginning of the execution
the common security parameter 1κ, a private input, and random coins.

We consider the interaction to be over a synchronous network. That is, the execution proceeds
in rounds: each round consists of a send phase (where parties send their messages for this round)
followed by a receive phase (where they receive messages from other parties). We consider a fully
connected point-to-point network, where every pair of parties is connected by a communication
line. We also consider the secure-channels model, where the communication lines are assumed to
be ideally private (and thus the adversary cannot read or modify messages sent between two honest
parties). Additionally, we assume the parties have access to a broadcast channel, allowing each
party to faithfully send the same message to all other parties.

An adversary is another interactive Turing machine. It starts the execution with an input
that contains the identity of the corrupted parties, their inputs, and an additional auxiliary input
z ∈ {0, 1}∗. For the FaF setting, we will only consider static adversaries that can choose the
subset of parties to corrupt prior to the execution of the protocol. At the end of the protocol’s
execution, the adversary outputs some function of its view (which consists of its random coins, its
auxiliary input, the input of the corrupted parties, and the messages it sees during the execution
of the protocol, and specifically, including possibly non-prescribed messages sent by a malicious
adversary).

We consider two adversaries. The first adversary we consider is a malicious adversary Amal that
controls a subset I ⊆ P of the parties. The adversary has access to the full view of the corrupted
parties. The adversary may instruct the corrupted parties to deviate from the protocol in any
way it chooses. The adversary can send messages (even if not prescribed by the protocol) to any
uncorrupted party in every round of the protocol and can do so after all messages for this round
are sent. The adversary can also send messages to the uncorrupted parties after the protocol is
terminated. The adversary is also given an auxiliary input zmal.

The second adversary is a semi-honest adversary Ash that controls a subset H ⊆ P \ I of the
remaining parties (for the sake of clarity, we will only refer to the parties in I as corrupted, the
parties in P \ I as uncorrupted, the parties in H as semi-honest, and the remaining parties as
honest). Similarly to Amal, this adversary also has access to the full view of the parties it controls.

10

However, Ash cannot instruct the parties to deviate from the prescribed protocol in any way, but
may try to infer information about the remaining honest parties (i.e., those in P \ (I ∪ H)), given
its view in the protocol. This adversary is given an auxiliary input zsh.

We next define the global view of the real world. For inputs x = (x1, . . . , xn), security param-
eter κ ∈ N, and adversaries Amal and Ash controlling the parties in I ⊆ P and H ⊆ P \ I,
and holding auxiliary inputs zmal and zsh, respectively, we define the following. Let AFaF =
(Amal,Ash), let zFaF = (zmal, zsh), let MAL-VIEWreal,FaF

π,Amal
(κ, x, zmal) denote the output of Amal, let

SH-VIEWreal,FaF
π,AFaF

(κ, x, zFaF) denote the output of Ash, and let OUTreal,FaF
π,Amal

(κ, x, zmal) denote the out-
puts of the uncorrupted parties (i.e., those in P \ I), during an execution of π when running
alongside Amal.

We denote the global view in the real model by

REALFaF
π,AFaF (κ, x, zFaF) =

(
MAL-VIEWreal,FaF

π,Amal
(κ, x, zmal) , SH-VIEWreal,FaF

π,AFaF
(κ, x, zFaF) , OUTreal,FaF

π,Amal
(κ, x, zmal)

)
.

It will be convenient to denote

MAL-REALFaF
π,Amal (κ, x, zmal) =

(
MAL-VIEWreal,FaF

π,Amal
(κ, x, zmal) , OUTreal,FaF

π,Amal
(κ, x, zmal)

)
,

i.e., the projection of REALFaF
π,AFaF

(κ, x, zFaF) to the output of Amal and the uncorrupted parties’
output (those in P \ I), and denote

SH-REALFaF
π,AFaF (κ, x, zFaF) =

(
SH-VIEWFaF

π,AFaF (κ, x, zFaF) , OUTreal,FaF
π,Amal

(κ, x, zmal)
)

,

i.e., the projection of REALFaF
π,AFaF

(κ, x, zFaF) to the output of Ash and the uncorrupted parties. When
π is clear from the context, we will remove it for brevity.

The FaF Ideal Model

We next describe the interaction in the FaF security ideal model, which specifies the requirements
for FaF security. We consider an ideal computation with guaranteed output delivery (also referred to
as full security), where a trusted party T performs the computation on behalf of the parties, and the
ideal-world malicious adversary cannot abort the computation. This computation is parameterized
by a (potentially randomized) n-party functionality f : ({0, 1}∗)n → ({0, 1}∗)n to compute. An
ideal computation of f on input x = (x1, . . . , xn) with security parameter κ in the presence of a
malicious adversary (a simulator) Smal corrupting I, and a semi-honest adversary Ssh corrupting
H, proceeds as follows.

Inputs: Each party Pi holds 1κ and a private input xi ∈ {0, 1}∗. The adversaries Smal and Ssh are
given auxiliary inputs zmal ∈ {0, 1}∗ and zsh ∈ {0, 1}∗, respectively, and the private input of
every party controlled by them. The trusted party T holds 1κ.

Parties send inputs: Each uncorrupted party Pi ∈ P \ I sends xi as its input to T. For each
corrupted party, the malicious adversary Smal sends to T a value from its domain. In case the
adversary does not send any input, the trusted party replaces its input with a default value.
Write (x′

1, . . . , x′
n) for the tuple of inputs received by the trusted party.

The trusted party performs computation: The trusted party T samples a random string rnd,
computes y = (y1, . . . , yn) = f (x′

1 . . . , x′
n; rnd), and sends yi to party Pi for every i ∈ [n]. If

Pi ∈ I then Smal receives yi, and if Pi ∈ H then Ssh receives yi.

11

The malicious adversary sends its (ideal-world) view: Smal sends to Ssh its randomness, in-
puts, auxiliary input, and the outputs received from T.

Outputs: Each uncorrupted party (i.e., not in I) outputs whatever it received from T, the parties
in I output nothing, and both Smal and Ssh output some function of their respective view.

We next define the global view of the ideal world. For inputs x = (x1, . . . , xn), security parame-
ter κ ∈ N, and adversaries Smal and Ssh controlling the parties in I ⊆ P and H ⊆ P\I, and holding
auxiliary inputs zmal and zsh, respectively, we define the following. Let SFaF = (Smal,Ssh), let zFaF =
(zmal, zsh), let MAL-VIEWideal,FaF

f,Smal
(κ, x, zmal) denote the output of Smal, let SH-VIEWideal,FaF

f,SFaF
(κ, x, zFaF)

denote the output of Ssh, and let OUTideal,FaF
f,Smal

(κ, x, zmal) denote the outputs of the uncorrupted
parties (i.e., those in P \ I), in a random execution of the above ideal-world process when running
alongside Smal.

We denote the global view in the real model by

IDEALFaF
f,SFaF (κ, x, zFaF) =

(
MAL-VIEWideal,FaF

f,Smal
(κ, x, zmal) , SH-VIEWideal,FaF

f,SFaF
(κ, x, zFaF) , OUTideal,FaF

f,Smal
(κ, x, zmal)

)
.

It will be convenient to denote

MAL-IDEALmal,FaF
f,Smal

(κ, x, zmal) =
(

MAL-VIEWideal,FaF
f,Smal

(κ, x, zmal) , OUTideal,FaF
f,Smal

(κ, x, zmal)
)

,

i.e., the projection of IDEALFaF
f,SFaF

(κ, x, zFaF) to the output of Smal and the uncorrupted parties’
output (those in P \ I), and denote

SH-IDEALsh,FaF
f,SFaF

(κ, x, zFaF) =
(

SH-VIEWideal,FaF
f,SFaF

(κ, x, zFaF) , OUTideal,FaF
f,Smal

(κ, x, zmal)
)

,

i.e., the projection of IDEALFaF
f,SFaF

(κ, x, zFaF) to the output of Ssh and the uncorrupted parties. When
f is clear from the context, we will remove it for brevity.

Defining Strong FaF Security

Having defined the real and ideal models, we can now define the FaF security of protocols according
to the real vs. ideal paradigm. We define only strong FaF security, which requires the simulatability
of the joint view of both adversaries.

Definition 2.3 (Strong FaF security). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality,
and let π be a protocol computing f . We say that π computes f with computational (t, h)-strong FaF
security, if the following holds. For every malicious ppt adversary Amal controlling a set I ⊆ P
of size at most t in the real world, there exists a ppt adversary (called simulator) Smal controlling
I in the ideal world; and for every subset of the remaining parties H ⊆ P \ I of size at most h
controlled by a semi-honest ppt adversary Ash, there exists a ppt adversary Ssh controlling H in
the ideal world, such that{

IDEALFaF
f,SFaF (κ, x, zFaF)

}
κ∈N,x∈({0,1}∗)n,zFaF∈({0,1}∗)2

C≡
{

REALFaF
π,AFaF (κ, x, zFaF)

}
κ∈N,x∈({0,1}∗)n,zFaF∈({0,1}∗)2

.

Statistical/perfect (t, h)-strong FaF security is defined similarly, with computational indistin-
guishability replaced with statistically close/identically distributed, and allowing the adversaries
and simulators to be computationally unbounded.

12

2.1.1 Strong FaF Security-With-Abort

We next define strong FaF security-with-abort. In terms of definition, the only difference is how
the ideal-world adversaries interact with the trusted party. We next describe this interaction.

The FaF Ideal World – Security-With-Abort

Unlike full security, here the malicious adversary can instruct the trusted party T to abort after
receiving the output of the corrupted parties. Additionally, it is important to let the semi-honest
simulator also receive the output of the semi-honest parties. This is because, in the real world,
there is no guarantee that some of the honest parties will not learn the output. The ideal-world
computation is parameterized by a (possibly randomized) n-party functionality f : ({0, 1}∗)n →
({0, 1}∗)n to compute. An ideal computation of f on input x = (x1, . . . , xn) with security parameter
κ in the presence of a malicious adversary (a simulator) Smal corrupting I, and a semi-honest
adversary Ssh corrupting H, proceeds as follows.

Inputs: Each party Pi holds 1κ and a private input xi ∈ {0, 1}∗. The adversaries Smal and Ssh are
given auxiliary inputs zmal ∈ {0, 1}∗ and zsh ∈ {0, 1}∗, respectively, and the private input of
every party controlled by them. The trusted party T holds 1κ.

Parties send inputs: Each uncorrupted party Pi ∈ P \ I sends xi as its input to T. For each
corrupted party, the malicious adversary Smal sends to T a value from its domain. In case the
adversary does not send any input, the trusted party replaces its input with a default value.
Write (x′

1, . . . , x′
n) for the tuple of inputs received by the trusted party.

The trusted party performs computation: The trusted party T samples a random string rnd,
computes y = (y1, . . . , yn) = f (x′

1 . . . , x′
n; rnd), and sends yi to party Pi for every i ∈ [n]. If

Pi ∈ I then Smal receives yi, and if Pi ∈ H then Ssh receives yi.

The malicious adversary sends its (ideal-world) view: Smal sends to Ssh its randomness, in-
puts, auxiliary input, and the outputs received from T.

The malicious adversary instructs the trusted party to continue or halt: The adversary
Smal sends to T either continue or abort. If it sends continue, then the trusted party sends yj

to Pj for every j ∈ [n]. Otherwise, if Smal sends abort, then T sends abort to all parties.

Outputs: Each uncorrupted party (i.e., not in I) outputs whatever it received from T, the parties
in I output nothing, and both Smal and Ssh output some function of their respective view.

We next define the global view of the ideal world. For inputs x = (x1, . . . , xn), security param-
eter κ ∈ N, and adversaries Smal and Ssh controlling the parties in I ⊆ P and H ⊆ P \ I, and
holding auxiliary inputs zmal and zsh, respectively, we define the following. Let SFaF = (Smal,Ssh),
let zFaF = (zmal, zsh), and let IDEALswa,FaF

f,SFaF
(κ, x, zFaF) denote the joint outputs of Smal, Ssh, and the

uncorrupted parties (i.e., those in P \ I), in a random execution of the above ideal-world process
when running alongside Smal.

Having described the computation of the ideal world for security-with-abort, we are now ready
to define dynamic security-with-abort.

13

Definition 2.4 (Strong FaF security-with-abort). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party
functionality, and let π be a protocol computing f . We say that π computes f with computational
(t, h)-strong FaF security-with-abort, if the following holds. For every malicious ppt adversary
Amal controlling a set I ⊆ P of size at most t in the real world, there exists a ppt adversary (called
simulator) Smal controlling I in the ideal world; and for every subset of the remaining parties
H ⊆ P \ I of size at most h controlled by a semi-honest ppt adversary Ash, there exists a ppt
adversary Ssh controlling H in the ideal world, such that{

IDEALswa,FaF
f,SFaF

(κ, x, zFaF)
}

κ∈N,x∈({0,1}∗)n,zFaF∈({0,1}∗)2

C≡
{

REALFaF
π,AFaF (κ, x, zFaF)

}
κ∈N,x∈({0,1}∗)n,zFaF∈({0,1}∗)2

.

Statistical/perfect (t, h)-strong FaF security-with-abort is defined similarly, with computational
indistinguishability replaced with statistically close/identically distributed, and allowing the adver-
saries and simulators to be computationally unbounded.

2.2 Security Model: Adaptive Security

In this section, we define adaptive security, where the adversary is allowed to corrupt new parties
during the protocol’s execution. Whenever the adversary corrupts a new party, it learns the party’s
internal state, which includes the party’s input, output, randomness, incoming messages, and also
the state from previous runs. To capture this, the model includes an additional Turing machine
Z called the environment, whose role is to provide the adversary with auxiliary information about
the newly corrupted parties.

The Real World

An n-party protocol π is defined by a set of n ppt interactive Turing machines P = {P1, . . . , Pn}.
Each Turing machine (party) Pi holds at the beginning of the execution the common security
parameter 1κ, a private input xi, and random coins. The adversary A is another interactive
Turing machine describing the behavior of the corrupted parties. It starts the execution with some
randomness. The environment Z is an interactive Turing machine that starts with an auxiliary
input z and some randomness.

The execution starts with the environment sending a message zA to A (this corresponds to
auxiliary input static corruptions). The execution then proceeds in synchronous rounds, where
each round ρ consists of mini-rounds described as follows. The adversary A first chooses which
parties to corrupt. Upon corrupting a party Pi, A receives the party’s input, randomness, and all
messages it received in previous rounds. Additionally, A sends “corrupt Pi” to Z, who responds
with some additional auxiliary information zi. It then chooses an uncorrupted party Pi that has
not been activated this round and activates it. Upon activation, Pi receives the messages sent to it
in the previous round, generates its messages for this round, and the next mini-round begins. The
adversary learns the messages sent by Pi to all (currently) corrupted parties. Once all the uncor-
rupted parties were activated, the adversary generates the messages to be sent by the corrupted
parties that were not yet activated in this round, and the next round begins (note that this allows
the adversary to be rushing).

Throughout the execution of the protocol, all uncorrupted parties follow the instructions of the
prescribed protocol, whereas the corrupted parties receive their instructions from the adversary. A

14

semi-honest adversary instructs the corrupted parties to follow the protocol. A malicious adversary
can instruct the corrupted parties to deviate from the protocol in any arbitrary way. At the
conclusion of the protocol, the honest parties output a value as specified by the protocol, the
corrupted parties output nothing, and the adversary outputs some function of its view (which
includes its randomness, the auxiliary information received from Z, and each corrupted party’s
input, randomness, and all messages it received).

Finally, the “post-execution corruption” phase begins. First, the environment receives the
output of the parties and the adversary. Then, Z and A interact in several rounds. Each round
Z sends “corrupt Pi” to A for some i ∈ [n]. Upon receiving this message, A responds with some
message (intuitively, this message is interpreted as Pi’s internal data). This interaction continues
until Z halts with some output.

We say that the adversary is (t, h)-limited if it corrupts at most t parties during the execution
of the protocol (excluding the post-execution phase), and corrupts at most h parties during the
post-execution phase.7 We stress that if A is (t, h)-limited and already corrupted h parties during
the post-execution phase, then upon receiving “corrupt Pi” from Z it ignores this message.

For inputs x = (x1, . . . , xn), security parameter κ, adversary A, and environment Z holding
auxiliary input z, we let VIEWreal,adp

π,A,Z (κ, x, z) denote the output of A, let OUTreal,adp
π,A,Z (κ, x, z) denote

the output of the honest parties, and we let REALadp
π,A,Z(κ, x, z) denote the output of Z in a random

execution of the real-world protocol π.

The Ideal World

We consider an ideal computation with guaranteed output delivery (also referred to as full security),
where a trusted party T performs the computation on behalf of the parties, and the ideal-model
adversary cannot abort the computation. The ideal-world computation is parameterized by a
(possibly randomized) n-party functionality f : ({0, 1}∗)n → ({0, 1}∗)n to compute. An ideal
computation of f on input x = (x1, . . . , xn) with security parameter κ in the presence of an
adversary (a simulator) S, and environment Z, proceeds as follows.

First corruption stage: The process starts with Z computing and sending some auxiliary infor-
mation zS to S. Next, S and Z interact in several rounds, where in each round the adversary S
may corrupt a party Pi. In such a scenario, the adversary receives the party’s input and sends
“corrupt Pi” to Z. The environment computes and sends additional auxiliary information zi

to S.

The parties send inputs to the trusted party: Each honest party sends its input to the trusted
party T. For each corrupted party, the adversary S sends to T a value from its domain as
its input. In case the adversary does not send any input, the trusted party replaces its input
with a default value. Let x′ denote the vector of inputs received by T.

The trusted party performs the computation: The trusted party samples randomness rnd,
computes (y1, . . . , yn) = f(x; rnd), and sends yi to Pi for every i ∈ [n]. If Pi is corrupted then
S receives yi as well.

7The standard definition considers a t-limited adversary that can corrupt at most t parties during both the
execution of the protocol and the post-execution corruption phase. For the comparison with our new definition (see
Section 3), it will be instructive to separate corruption during the protocol, and after it terminated.

15

Second corruption stage: After learning the output, S and Z interact in another sequence of
iterations, similar to the first corruption stage. The only difference is that for any new
corrupted party, S also receives the output of the party it corrupts.

Output: The honest parties output whatever they received from the trusted party, the corrupted
parties output nothing, and the adversary outputs some function of its view.

Post-execution corruption: The environment receives the output of S and the output of the
honest parties. Then, Z and S interact in several rounds. In each round Z sends “corrupt
Pi” to S for some i ∈ [n]. Upon receiving this message, S responds with some message
(intuitively, this message is interpreted as Pi’s internal data). This interaction continues until
Z halts with some output.

Similarly to the real world, we say that the adversary is (t, h)-limited if it corrupts at most t
parties before the post-execution phase, and corrupts at most h parties during the post-execution
phase. If S is (t, h)-limited and already corrupted h parties during the post-execution phase, then
upon receiving “corrupt Pi” from Z it ignores this message.

For inputs x = (x1, . . . , xn), security parameter κ, adversary S, and an environment Z holding
auxiliary input z, we let VIEWideal,adp

f,S,Z (κ, x, z) denote the output of S, we let OUTideal,adp
f,S,Z (κ, x, z)

denote the output of the honest parties, and let IDEALadp
f,S,Z(κ, x, z) denote the output of Z, in a

random execution of the above ideal world.

Defining Adaptive Security

Having described the computation in both the real and ideal worlds, we are now ready to define
adaptive security.

Definition 2.5 (Adaptive security). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality,
and let π be a protocol computing f . We say that π computes f with computational (t, h)-adaptive
security if for every (t, h)-limited ppt adversary A and every ppt environment Z, there exists a
(t, h)-limited ppt ideal-world adversary (called simulator) S such that{

REALadp
π,A,Z (κ, x, z)

}
κ∈N,x∈({0,1}∗)n,z∈{0,1}∗

C≡
{

IDEALadp
f,S,Z (κ, x, z)

}
κ∈N,x∈({0,1}∗)n,z∈{0,1}∗

.

Statistical/perfect (t, h)-adaptive security are defined similarly, with computational indistin-
guishability replaced with statistically close/identically distributed, and allowing the adversary, the
simulator, and the environment to be computationally unbounded.

3 A New Security Definition: Dynamic Security
We next introduce our new security definition for dynamic adversaries. The definition captures
security against adversaries that corrupt parties during the execution of the protocol, however,
unlike adaptive security, the adversary cannot choose who to corrupt and when. This is modeled
similarly to adaptive security, where there is an environment interacting with the adversary. The
main difference is that before the start of the protocol, the environment chooses which parties the
adversary corrupts and at what round it will corrupt them. In particular, this means that the choice
of corruption is independent of the execution of the protocol. To differentiate from the adaptive

16

security definition, we will refer to the environment as a dynamic environment. We next provide
a formal treatment and provide details on the interaction in the real and ideal worlds, followed by
the security definition.

The Real World – Interaction With a Dynamic Adversary

An n-party protocol π is defined by a set of n ppt interactive Turing machines P = {P1, . . . , Pn}.
Each Turing machine (party) Pi holds at the beginning of the execution the common security
parameter 1κ, a private input xi, and random coins. The adversary A is another interactive
Turing machine describing the behavior of the corrupted parties. It starts the execution with some
randomness. The dynamic environment Z is an interactive Turing machine that starts with an
auxiliary input z and some randomness.

The execution starts with the dynamic environment generating (L, zA, (zi)i∈[n]) ← Z(z) and
sending zA to A (this corresponds to the auxiliary information of A in the static case). Here,
L is a corruption list L = (ρi)i∈[n] ∈ ([r] ∪ {PEC, honest})n, where r is the number of rounds
in π. The corruption list indicates which parties A is going to corrupt and when. Roughly, if
ρi ∈ [r] then A corrupts Pi at round ρi, if ρi = PEC then A corrupts Pi after the execution of the
protocol terminated (see the post-execution corruption phase below), and if ρi = honest then A
never corrupts Pi. We call the environment (t, h)-limited if

|{i ∈ [n] : ρi ∈ [r]}| ≤ t and |{i ∈ [n] : ρi = PEC}| ≤ h.

The execution then proceeds in synchronous rounds, where each round ρ consists of mini-rounds
described as follows. In the first mini-round, for every i ∈ [n] such that ρi = ρ, the environment
sends “corrupt Pi” to the adversary. The adversary then corrupts party Pi and receives the party’s
input, randomness, and all messages sent and received by the party. Additionally, the environment
sends zi to A as additional auxiliary information. Next, the adversary A chooses an uncorrupted
party Pi that has not been activated this round and activates it. The activated party receives
all messages sent to it in the previous round, generate its new messages for this round, and the
next mini-round begins. The adversary receives all messages sent by Pi to the currently corrupted
parties. Once all uncorrupted parties were activated, the adversary generates messages to be sent
by the corrupted parties that were not activated this round, and the next round begins (note that
this allows the adversary to be rushing).

Throughout the execution of the protocol, all uncorrupted parties follow the instructions of the
prescribed protocol, whereas the corrupted parties receive their instructions from the adversary. A
semi-honest adversary instructs the corrupted party to follow the protocol. A malicious adversary
can instruct the corrupted parties to deviate from the protocol in any arbitrary way. At the
conclusion of the protocol, the honest parties output a value as specified by the protocol, the
corrupted parties output nothing, and the adversary outputs some function of its view (which
includes its randomness, the auxiliary information received from Z, and each corrupted party’s
input, randomness, and all messages it received).

Finally, the “post-execution corruption” phase begins. The environment first receives the output
of A and the output of the honest parties. It then sends to A “corrupt Pi” for every i ∈ [n] such that
ρi = PEC. For every such party, the adversary receives its input, randomness, and all messages
it sent and received during the execution of the protocol. Additionally, it receives from Z the
additional auxiliary information zi. The adversary then sends to Z some message. Finally, the
environment generates some output and halts.

17

For inputs x = (x1, . . . , xn), security parameter κ, adversary A, and environment Z holding
auxiliary input z, we let VIEWreal,dyn

π,A,Z (κ, x, z) denote the output of A, let OUTreal,dyn
π,A,Z (κ, x, z) denote

the output of the honest parties, and we let REALdyn
π,A,Z(κ, x, z) denote the output of Z in a random

execution of the real-world protocol π.

The Ideal World – Interaction With a Dynamic Adversary

We consider an ideal computation with guaranteed output delivery (also referred to as full security),
where a trusted party T performs the computation on behalf of the parties, and the ideal-model
adversary cannot abort the computation. The ideal-world computation is parameterized by a
(possibly randomized) n-party functionality f : ({0, 1}∗)n → ({0, 1}∗)n to compute. An ideal
computation of f on input x = (x1, . . . , xn) with security parameter κ in the presence of an
adversary (a simulator) S, and a dynamic environment Z, proceeds as follows.

First corruption stage: The process starts with Z generating (L, zS , (zi)i∈[n]), where L is a
corruption list L = (ρi)i∈[n] ∈ ([r] ∪ {PEC, honest})n. It then sends zS to S. Next, S and
Z interact in iteration, where in each iteration the environment may instruct S to corrupt a
party Pi such that ρi ∈ [r]. In such a scenario, the adversary receives the party’s input, and
Z sends zi to S.

The parties send their inputs to the trusted party: Each honest party sends its input to
the trusted party T. For each corrupted party, the adversary S sends to T a value from its
domain as its input. In case the adversary does not send any input, the trusted party replaces
its input with a default value. Let x′ = (x′

1, . . . , x′
n) denote the vector of inputs received by

T.

The trusted party performs the computation: The trusted party samples randomness rnd,
computes (y1, . . . , yn) = f(x; rnd), and sends yi to Pi for every i ∈ [n]. If Pi is corrupted then
S receives yi as well.

Second corruption stage: After learning the output, S and Z interact in another sequence of
iterations, similar to the first corruption stage. The only difference is that for any new
corrupted party, S also receives the output of the party it corrupts.

Output: The honest parties output whatever they received from the trusted party, the corrupted
parties output nothing, and the adversary outputs some function of its view.

Post-execution corruption: The environment receives the output of S and the output of the
honest parties. It then sends “corrupt Pi” for every i ∈ [n] such that ρi = PEC. For every such
party, the adversary receives its input and output, and some additional auxiliary information
zi from Z. The adversary then sends to Z some message. Finally, the environment generates
some output and halts.

For inputs x = (x1, . . . , xn), security parameter κ, adversary S, and an environment Z holding
auxiliary input z, we let VIEWideal,dyn

f,S,Z (κ, x, z) denote the output of S, we let OUTideal,dyn
f,S,Z (κ, x, z)

denote the output of the honest parties, and let IDEALdyn
f,S,Z(κ, x, z) denote the output of Z, in a

random execution of the above ideal world.

18

Defining Dynamic Security

Having described the computation in both the real and ideal worlds, we are now ready to define
dynamic security.

Definition 3.1 (Dynamic security). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality,
and let π be a protocol computing f . We say that π computes f with computational (t, h)-dynamic
security if the following holds. For every ppt adversary A and every ppt (t, h)-limited dynamic
environment Z, there exists a ppt ideal-world adversary (called simulator) S such that{

REALdyn
π,A,Z (κ, x, z)

}
κ∈N,x∈({0,1}∗)n,z∈{0,1}∗

C≡
{

IDEALdyn
f,S,Z (κ, x, z)

}
κ∈N,x∈({0,1}∗)n,z∈{0,1}∗

.

Statistical/perfect (t, h)-dynamic security are defined similarly, with computational indistin-
guishability replaced with statistically close/identically distributed, and allowing the adversary, the
simulator, and the environment to be computationally unbounded.

3.1 Dynamic Security-With-Abort

In this section, we define the secure-with-abort variant of dynamic security. In terms of definition,
the only difference is how the ideal-world adversary interacts with the trusted party. We next
describe this interaction.

The Ideal World – Dynamic Security-With-Abort

Unlike full security, here the adversary can instruct the trusted party T to abort after the second
corruption stage, and in particular, after receiving the output of the (currently) corrupted parties.
This is because in the real world, there is no guarantee that some of the honest parties do not learn
the output. The ideal-world computation is parameterized by a (possibly randomized) n-party
functionality f : ({0, 1}∗)n → ({0, 1}∗)n to compute. On input x = (x1, . . . , xn) with security
parameter κ in the presence of an adversary (a simulator) S, and a dynamic environment Z, the
ideal-world computation proceeds as follows.

First corruption stage: The process starts with Z generating (L, zS , (zi)i∈[n]), where L is a
corruption list L = (ρi)i∈[n] ∈ ([r] ∪ {PEC, honest})n. It then sends zS to S. Next, S and
Z interact in iteration, where in each iteration the environment may instruct S to corrupt a
party Pi such that ρi ∈ [r]. In such a scenario, the adversary receives the party’s input, and
Z sends zi to S. Additionally, the trusted party learns the identity of the newly corrupted
party. Let I ⊆ [n] denote the set of parties corrupted during this stage.

The parties send their inputs to the trusted party: Each honest party sends its input to
the trusted party T. For each corrupted party, the adversary S sends to T a value from its
domain as its input. In case the adversary does not send any input, the trusted party replaces
its input with a default value. Let x′ = (x′

1, . . . , x′
n) denote the vector of inputs received by

T.

The trusted party performs the computation: The trusted party samples randomness rnd,
computes (y1, . . . , yn) = f(x; rnd), and sends (yi)i∈I to S.

19

Second corruption stage: After learning the output, S and Z interact in another sequence of
iterations, similar to the first corruption stage. The only difference is that for any new
corrupted party, S also receives the output of the party it corrupts (sent to it by the trusted
party).

The adversary instructs the trusted party to continue or halt: The adversary S sends to
T either continue or abort. If it sends continue, then the trusted party sends yi to Pi for every
i ∈ [n]. Otherwise, if S sends abort, then T sends abort to all parties.

Output: The honest parties output whatever they received from the trusted party, the corrupted
parties output nothing, and the adversary outputs some function of its view.

Post-execution corruption: The environment receives the output of S and the output of the
honest parties. It then sends “corrupt Pi” for every i ∈ [n] such that ρi = PEC. For every such
party, the adversary receives its input and output, and some additional auxiliary information
zi from Z. The adversary then sends to Z some message. Finally, the environment generates
some output and halts.

Defining Dynamic Security-With-Abort

Having described the computation of the ideal world for security-with-abort, we are now ready to
define dynamic security-with-abort.

Definition 3.2 (Dynamic security). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality,
and let π be a protocol computing f . We say that π computes f with computational (t, h)-dynamic
security-with-abort if the following holds. For every ppt adversary A and every ppt (t, h)-limited
dynamic environment Z, there exists a ppt ideal-world adversary (called simulator) S such that{

REALdyn
π,A,Z (κ, x, z)

}
κ∈N,x∈({0,1}∗)n,z∈{0,1}∗

C≡
{

IDEALswa,dyn
f,S,Z (κ, x, z)

}
κ∈N,x∈({0,1}∗)n,z∈{0,1}∗

.

Statistical/perfect (t, h)-dynamic security-with-abort are defined similarly, with computational
indistinguishability replaced with statistically close/identically distributed, and allowing the adver-
sary, the simulator, and the environment to be computationally unbounded.

4 Equivalence of Dynamic Security and Strong FaF Security
We show that strong FaF security is equivalent to dynamic security. This holds for both full security
and security-with-abort.

Theorem 4.1. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality, let π be a protocol com-
puting f , and type ∈ {computational, statistical, perfect}, and let security ∈ {security, security-with-abort}.
Then π computes f with type (t, h)-dynamic security if and only if π computes f with type (t, h)-
strong FaF security.

Proof. We prove the result for type = computational and security = security. The other cases are
handled similarly.

For the first direction, assume that π computes f with computational (t, h)-dynamic security.
Fix a malicious adversary Amal that holds auxiliary input zmal and corrupts the parties in I ⊆ P,

20

and fix a semi-honest adversary Ash that holds auxiliary input zsh and corrupts the parties in
H ⊆ P \ I. Let L = (ρi)i∈[n] be the corruption list defined as follows. For every i ∈ [n] such
that Pi ∈ I let ρi = 1, for every i ∈ [n] such that Pi ∈ H let ρi = PEC, and for any remaining
i ∈ [n] let ρi = honest. Additionally, for every i ∈ [n] let zi = zsh if Pi ∈ H, and let zi = λ
otherwise. Consider a (t, h)-limited dynamic environment Z that is given the auxiliary input
z = (zmal, zsh), and outputs (L, zmal, (zi)i∈[n]). Additionally, in the post-execution phase, it outputs
all the information it received (i.e., the output of A during the protocol’s execution, the message
A sent to it in the post-execution phase, and the output of the parties in P \ I).

Consider a dynamic adversary Adyn that during the protocol behaves the same as Amal does, and
after the protocol terminates it runs Ash and sends the output to Z. Then by security assumption,
there exists a simulator Sdyn for Adyn. Define the simulator Smal for Amal, controlling the parties
in I, as follows. Run Sdyn while taking the role of the environment (i.e., by sending “corrupt Pi”
and the needed information when necessary). When Sdyn sends inputs to the trusted party for the
set of currently corrupted parties I ′ ⊆ I, send to T the same inputs as Sdyn used, and for every
Pi ∈ I \I ′ send its input xi to T. Continue running Sdyn as before and output whatever it outputs.
Clearly for all inputs x ∈ ({0, 1}∗)n and every auxiliary input z ∈ {0, 1}∗,

MAL-IDEALFaF
f,Smal(κ, x, zmal) ≡

(
MAL-VIEWideal,FaF

f,Sdyn,Z (κ, x, z), OUTideal,FaF
f,Sdyn,Z (κ, x, z)

)
.

Next, we define the semi-honest simulator Ssh for Ash to output whatever Sdyn sent to Z during
the post-execution phase. Note that since Ssh receives the ideal-world view of Smal, the output
of Ssh conditioned on the output of Smal and the uncorrupted parties is identically distributed to
the message Sdyn sent to Z in the post-execution phase conditioned on its output and the honest
parties’ output. Thus,

IDEALFaF
f,Smal,Ssh(κ, x, zmal, zsh) ≡ IDEALdyn

f,Sdyn,Z(κ, x, z).

As the same holds in the real world, we conclude they are computationally indistinguishable.
We now prove the second direction. We first introduce the notion of a partial corruption list.

Given a corruption list L = (ρi)i∈[n] we define its partial corruption list, denoted L∗ = (ρ∗
i)i∈[n] ∈

([r] ∪ {∗})n, as follows. For every i ∈ [n] such that ρi ∈ [r] let ρ∗
i = ρi, and ρ∗

i = ∗ for every other
i ∈ [n].

Assume that π computes f with computational (t, h)-strong FaF security, and let r denote
its number of rounds. Fix an adversary Adyn and a (t, h)-limited dynamic environment Z with
auxiliary input z. For every partial corruption list L∗ = (ρ∗

i)i∈[n] ∈ ([r]∪{∗})n in the support of Z,
define the malicious adversary AL∗ as follows. It starts with auxiliary input z := (zA, (zi)i:ρ∗

i ∈[r])
(i.e., it consists of all the auxiliary information that Z sends to A during the protocol), corrupts
the parties in I := {Pi : ρ∗

i ∈ [r]}, and does the following in every round ρ ∈ [r].

1. Send to Adyn “corrupt Pi” for every i ∈ [n] such that ρ∗
i = ρ. Let Iρ denote the set of all

parties that Adyn controls at round ρ.

2. For every i ∈ [n] such that Pi ∈ I \Iρ (i.e., every party that has yet to be corrupted by Adyn),
compute the messages that an honest Pi computes as specified by the protocol and send them
to the honest parties.

3. Send to Adyn the messages received from the honest parties, as well the messages computed
for the parties in I \ Iρ.

21

4. Adyn then responds with messages for the parties in Iρ. Send those messages to the honest
parties.

After the protocol terminated, we let AL∗ broadcast its view. Next, for every corruption list
L = (ρi)i∈[n] define the following semi-honest adversary Ash,L. It is given the auxiliary input
zsh = (zi)i:ρi=PEC, it controls the parties in H := {Pi : ρi = PEC}, and after receiving the broadcast
message of the malicious adversary, send it to Adyn and output whatever it sends to Z at the
post-execution phase.

By the security assumption, for every corruption list L there exist simulators SL∗ and Ssh,L for
AL∗ and Ash,L, respectively, where L∗ is the partial list that corresponds to L. We are now ready
to define the simulator Sdyn for Adyn.

1. In the first corruption stage, interact with Z for r rounds. At every round ρ ∈ [r], Z may
instruct the simulator to corrupt a party Pi.

2. Define the partial corruption list L∗ = (ρi)i∈[n] as follows. For every i ∈ [n] let ρi = ρ if Z
sent “corrupt Pi” at round ρ, and let ρi = ∗ otherwise.

3. Run SL∗ and output whatever it outputs (sending the same input to the trusted party).

4. To simulate the post-execution phase, first receive “corrupt Pi” for every i ∈ [n] such that
ρi = PEC from Z. This completes L∗ to a corruption list L. Run the semi-honest simulator
Ssh,L and send to Z whatever Ssh,L outputs.

Now, observe that in the real world, for all inputs x ∈ ({0, 1}∗)n and every auxiliary input
z ∈ {0, 1}∗,(

VIEWreal,dyn
π,Adyn,Z(κ, x, z), OUTreal,dyn

π,Adyn,Z(κ, x, z)
)

≡
(

MAL-VIEWreal,FaF
π,AL∗ (κ, x, (zmal, (zi)i:ρi∈[r])), OUTreal,FaF

π,AL∗ (κ, x, (zmal, (zi)i:ρi∈[r]))
)

,

where (L, zmal, (zi)i∈[n])← Z(z) and L∗ is the partial corruption list of L. Thus,

REALdyn
π,Adyn,Z(κ, x, z) ≡ REALFaF

π,AL∗ ,AH,L(κ, x, (zA, (zi)i:ρi∈[r]), (zA, (zi)i:ρi=PEC)).

Similarly, in the ideal world,

IDEALdyn
f,Sdyn,Z(κ, x, z) ≡ IDEALFaF

f,SL∗ ,Ssh,L
(κ, x, (zmal, (zi)i:ρi∈[r]), (zmal, (zi)i:ρi=PEC)).

By the assumed strong FaF security of π, the right-hand side of both equations are computationally
indistinguishable. We conclude that the output of Z in both the real and ideal worlds is indistin-
guishable as well. □

Alon et al. [1] showed that if t + h < n/2, then any n-party functionality can be computed
with statistical (t, h)-strong FaF security; and if 3t + 2h < 2, then any n-party functionality can
be computed with perfect (t, h)-strong FaF security. Conversely, they showed if the inequalities do
not hold, then there exists an n-party functionality that cannot be computed with (t, h)-strong FaF
security. Thus, as a corollary of Theorem 4.1, we obtain that the same holds for dynamic security.

22

Corollary 4.2. Let t, h, n ∈ N be such that t + h < n/2 and let f : ({0, 1}∗)n → ({0, 1}∗)n be an
n-party functionality. Then f can be computed with statistical (t, h)-dynamic security. Conversely,
if t + h ≥ n/2, then there exists an n-party functionality that cannot be computed with statistical
(t, h)-dynamic security.

Corollary 4.3. Let t, h, n ∈ N be such that 3t + 2h < n and let f : ({0, 1}∗)n → ({0, 1}∗)n be an
n-party functionality. Then f can be computed with perfect (t, h)-dynamic security. Conversely,
if 3t + 2h ≥ n, then there exists an n-party functionality that cannot be computed with perfect
(t, h)-dynamic security.

In Section 5, we present and prove the corresponding statement for the computational setting.

5 Characterizing Computational Dynamic Security
In this section, we show that if 2t + h < n then any n-party functionality can be computed with
computational (t, h)-dynamic security, and if 2t + h ≥ n then there exists a n-party functionality
that cannot be computed with (t, h)-dynamic security.

Theorem 5.1. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality and let t, h ∈ [n] be
such that 2t + h < n. Assume the existence of simulatable public-key encryption, collision-resistant
hash functions, trapdoor permutations, augmented non-committing encryption, and dense cryp-
tosystems. Then there exists an n-party protocol computing f with computational (t, h)-dynamic
security. Conversely, if 2t + h ≥ n, then there exists an n-party functionality that cannot be
computed with computational (t, h)-dynamic security.

The proof is given below in Section 5.3. We first present the idea of the proof. By Theorem 4.1
it suffices to prove the result for the simpler strong FaF security notion. In particular, this solved an
open problem left by [1] about the feasibility of computational strong FaF security. When 2t+h ≥ n,
Alon et al. [1] showed the existence of an n-party functionality that cannot be computed with
(t, h)-strong FaF security (in fact, they showed the impossibility for the weaker notion of (t, h)-FaF
security).

We now consider the case where 2t + h < n. We construct a secure protocol in 3 steps. First,
we start with the protocol of Garg and Sahai [18]. Their protocol computes any functionality
while guaranteeing security-with-abort against any adaptive adversary corrupting at most n − 1
parties in total. We note that their protocol actually satisfies a stronger requirement: in case of
abort, all honest parties agree on a pair {Pi, Pj} such that at least one of them is corrupted by the
adversary. Since adaptive security implies strong FaF security, their protocol has this property for
strong FaF security. We call this notion security-with-semi-identifiable-abort. See Section 5.1 for
a formal definition. For the second step, we show how for inputless functionalities, security-with-
semi-identifiable-abort can be augmented to full security (assuming 2t + h < n). Finally, for the
third step, we use the protocol of Melissaris, Ravi, and Yakoubov [22], which admits strong FaF
(full) security assuming the parties are given correlated randomness.

In Section 5.1, we formally define the security that the Garg and Sahai protocol achieves. Then,
in Section 5.2, we show how to generate correlated randomness with strong FaF security. Finally,
in Section 5.3, we put together all the results to prove Theorem 5.1.

23

5.1 Strong FaF Security-With-Semi-Identifiable-Abort

We next define strong FaF security-with-semi-identifiable-abort, which roughly states that either
all honest parties obtain the output, or they agree on a pair of parties such that at least one of
them is malicious. Formally, we define security by describing an appropriate ideal world. Unlike
the ideal world for full security, here the adversary is allowed to abort the computation after it
learns the output; however, this comes at the cost of revealing the identity of two parties, one of
which is malicious. In addition, since there is no guarantee that in the real-world the semi-honest
parties won’t learn the output, we always let the semi-honest parties to receive their output in the
ideal execution.

We next formalize the ideal world. The computation is parameterized by a (potentially ran-
domized) n-party functionality f : ({0, 1}∗)n → ({0, 1}∗)n to compute. An ideal computation of f
on input x = (x1, . . . , xn) with security parameter κ in the presence of a malicious adversary (a
simulator) Smal corrupting I, and a semi-honest adversary Ssh corrupting H, proceeds as follows.

Inputs: Each party Pi holds 1κ and a private input xi ∈ {0, 1}∗. The adversaries Smal and Ssh are
given auxiliary inputs zmal ∈ {0, 1}∗ and zsh ∈ {0, 1}∗, respectively, and the private input of
every party controlled by them. The trusted party T holds 1κ.

Parties send inputs: Each uncorrupted party Pi ∈ P \ I sends xi as its input to T. For each
corrupted party, the malicious adversary Smal sends to T a value from its domain. In case the
adversary does not send any input, the trusted party replaces its input with a default value.
Write (x′

1, . . . , x′
n) for the tuple of inputs received by the trusted party.

The trusted party performs the computation: The trusted party T samples a random string
rnd and computes y = (y1, . . . , yn) = f (x′

1 . . . , x′
n; rnd). It then sends yI to Smal and yH to

Ssh.

The malicious adversary sends its (ideal-world) view: Smal sends to Ssh its randomness, in-
puts, auxiliary input, and the outputs received from T.

The malicious adversary instructs the trusted party to continue or halt: The adversary
Smal sends to T either continue or (abort, Pi, Pj) for some Pi and Pj such that at least one of
them is in I. If it sends continue, then the trusted party sends yk to Pk for every k ∈ [n].
Otherwise, if Smal sends (abort, Pi, Pj), then T sends (abort, Pi, Pj) to all parties.

Outputs: Each uncorrupted party (i.e., not in I) outputs whatever it received from T (in partic-
ular, the parties in H output (abort, Pi, Pj) if they received it in the last step), the parties in
I output nothing, and both Smal and Ssh output some function of their respective view.

We next define the global view for the above ideal world. For inputs x = (x1, . . . , xn), security
parameter κ ∈ N, and adversaries Smal and Ssh controlling the parties in I ⊆ P and H ⊆ P \I, and
holding auxiliary inputs zmal and zsh, respectively, we define the following. Let SFaF = (Smal,Ssh),
let zFaF = (zmal, zsh), and let IDEALswsia,FaF

f,SFaF
(κ, x, zFaF) denote the joint outputs of Smal, Ssh, and the

uncorrupted parties (i.e., those in P \ I), in a random execution of the above ideal-world process
when running alongside Smal.

Having defined the real and ideal models, we can now define strong FaF security-with-semi-
identifiable-abort according to the real vs. ideal paradigm.

24

Definition 5.2 (Strong FaF security-with-semi-identifiable-abort). Let f : ({0, 1}∗)n → ({0, 1}∗)n

be an n-party functionality, and let π be a protocol computing f . We say that π computes f with
computational (t, h)-strong FaF security-with-semi-identifiable-abort, if the following holds. For
every malicious ppt adversary Amal controlling a set I ⊆ P of size at most t in the real world,
there exists a ppt adversary (called simulator) Smal controlling I in the ideal world; and for every
subset of the remaining parties H ⊆ P \ I of size at most h controlled by a semi-honest ppt
adversary Ash, there exists a ppt adversary Ssh controlling H in the ideal world, such that{

IDEALswsia,FaF
f,SFaF

(κ, x, zFaF)
}

κ∈N,x∈({0,1}∗)n,zFaF∈({0,1}∗)2

C≡
{

REALFaF
π,AFaF (κ, x, zFaF)

}
κ∈N,x∈({0,1}∗)n,zFaF∈({0,1}∗)2

.

The Security-With-Semi-Identifiable-Abort Hybrid Model

The hybrid model is a model that extends the real model with a trusted party that provides
ideal computation for specific functionalities. We will only be interested in the security-with-semi-
identifiable-abort hybrid model, where the parties communicate with this trusted party in exactly
the same way as in the ideal model described above.

Let f be a functionality. Then, an execution of a protocol π computing a functionality g in
the (swsia, f)-hybrid model involves the parties sending normal messages to each other (as in the
real model) and in addition, having access to a trusted party computing f in the secure-with-semi-
identifiable-abort FaF ideal model. It is essential that the invocations of f are done sequentially,
meaning that before an invocation of f begins, the preceding invocation of f must finish. In
particular, there is at most a single call to f per round, and no other messages are sent during any
round in which f is called.

The sequential composition theorem of Canetti [6], Alon et al. [1] for strong FaF security states
the following. Let πf be a protocol that securely computes f in the secure-with-semi-identifiable-
abort ideal model. Then, if a protocol πg computes g in the (f, swsia)-hybrid model, then the
protocol π

πf
g , that is obtained from πg by replacing all ideal calls to the trusted party computing f

with the protocol πf , securely computes g in the real model.

Theorem 5.3 ([6, 1]). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality, let πf be a
protocol that computes f with computational (t, h)-strong FaF security-with-semi-identifiable-abort,
and let πg be a protocol that computes g with (t, h)-strong FaF security in the (f, swsia)-hybrid
model. Then, protocol π

πf
g computes g with (t, h)-strong FaF security in the real model.

5.2 Generating Correlated Randomness with Strong FaF Security

In this section, we show how to generate correlated randomness with (t, h)-strong FaF (full) security
assuming 2t + h < n.

Theorem 5.4. Let f : {λ}n → ({0, 1}∗)n be an inputless n-party functionality, and let t, h ∈ N
be such that 2t + h < n. Then, assuming collision-resistant hash functions, trapdoor permutations,
augmented non-committing encryption, and dense cryptosystems, there exists an n-party protocol
computing f with (t, h)-strong FaF security.

The proof is given below. We first sketch the idea of the construction. We let the parties
jointly compute a secret sharing of the output f , where each output is signed with respect to

25

a signature scheme’s secret key. The parties additionally receive the public key of the signature
scheme. This is done using the protocol of Garg and Sahai [18], which admits adaptive security-
with-semi-identifiable-abort (and hence strong FaF security-with-semi-identifiable-abort [1]). If
the computation follows through, the parties reconstruct the output (after verifying each share
using the signature’s scheme’s public key). Otherwise, they have the identity of two parties, where
one of them is malicious. The parties remove them from the computation (even if one of them is
honest) and restart the computation, this time with the shares of the removed parties shared among
the remaining parties. If the computation follows through, then the parties send to the removed
parties the signature scheme’s public key and the shares of the removed parties’ shares (as well as
reconstructing the output for themselves). We show that since 2t+h < n, the removed honest party
(if such exists) can reconstruct its share. If the computation fails again, the parties will restart
with two more parties removed. Since there is an honest majority, this process will either end with
only honest parties remaining or with one of the intermediate computations successfully generating
the correct correlated randomness. We next formalize this intuition. We use the following results
due to Garg and Sahai [18] and Alon et al. [1].

Theorem 5.5 ([18, Theorem 3], implicit). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functional-
ity and let t, h ∈ [n] be such that t+h < n. Then, assuming collision-resistant hash functions, trap-
door permutations, augmented non-committing encryption, and dense cryptosystems, there exists
an n-party protocol computing f with computational (t, h)-adaptive security-with-semi-identifiable-
abort.

Theorem 5.6 ([1, Theorem 5.3], implicit). For any n, t, h ∈ N and any n-party functionality
f : ({0, 1}∗)n → ({0, 1}∗)n, if a protocol π computes f with (t, h)-adaptive security-with-semi-
identifiable-abort, then it computes f with (t, h)-strong FaF security-with-semi-identifiable-abort.

We state a lemma that asserts that f can be computed with strong FaF security in a hybrid
model that provides the parties with the computation of the signed shares. The proof of Theorem 5.4
then follows from Theorems 5.5 and 5.6 and the composition theorem (Theorem 5.3). Before stating
the lemma, let us define the functionalities that provide these. Let Sig = (Gen, Sign, Verify) be a
signature scheme and denote N = {n− 2t, n− 2t + 2, . . . , n}. For a set T ⊆ [n] of size |T | ∈ N
define the inputless |T |-party functionality fT as follows.
. .
Functionality 5.7 (fT).

1. Sample y← f(λ, . . . , λ) and (pk, sk)← Gen(1κ).

2. For every i ∈ [n], compute shares of yi in an t′-out-of-|T | Shamir’s secret-sharing scheme
among the parties in T , where t′ = t + h + 1− (n− |T |)/2 upper bounds the total number of
remaining parties controlled by one of the two adversaries (observe that t′ ≤ |T | if and only
if 2t + h < n). For every j ∈ T , let yi[j] denote the share of yi of party Pj.

3. For every i ∈ [n], sign each share of yi: for every j ∈ T , let σi,j ← Signsk(yi[j]).

4. For every j ∈ T , party Pj receives the public key pk, the shares (yi[j])i∈[n], and their signatures
(σi,j)i∈[n].

. .

26

To prove Theorem 5.4, it suffices to prove the following (note that the assumptions in Theo-
rem 5.4 imply the existence of signature schemes assumed in the lemma).

Lemma 5.8. Let f : {λ}n → ({0, 1}∗)n be an inputless n-party functionality and let t, h ∈ [n] be
such that 2t + h < n. Then, assuming the existence of signature schemes, there exists an n-party
protocol computing f with (t, h)-strong FaF security in the {(fT , swsia)}T ⊆[n],|T |∈N -hybrid model.

Proof. The protocol for computing f proceeds as follows.
. .
Protocol 5.9 (π).

1. Let T = [n].

2. The parties call (fT , swsia).

3. If the parties received (abort, Pi, Pj), then the parties update T to T \ {Pi, Pj} and go back to
Step 2. Note that this can occur at most t + 1 times.

4. Otherwise, every party Pj, where j ∈ T , receives the public key pk, the shares (yi[j])i∈[n], and
their signatures (σi,j)i∈[n].

5. Each party Pj, where j ∈ T , broadcasts pk, and for every i ∈ [n], sends (yi[j], σi,j) to Pi.

6. Every party Pi sets pk′ to be the majority of public keys it received. It then uses all shares
yi[j] such that Verifypk′(yi[j], σi,j) = 1 to reconstruct yi and output it.

. .

We now show the (t, h)-strong FaF security of the protocol. Let Amal be a malicious adversary
controlling a set of parties I ⊆ P of size |I| ≤ t. We define its simulator Smal as follows.

1. Receive yI from the trusted party (recall that the functionality has no inputs).

2. Let T = [n].

3. Emulate the call to (fT , swsia):

(a) Sample (pk, (yi[j], σi,j)i∈[n],j∈T)← fT (λ, . . . , λ).
(b) Send (pk, (yi[j], σi,j)i∈[n],j∈(T ∩I)) to Amal.
(c) If Amal responds with (abort, Pi, Pj), then update T to T \ {Pi, Pj} and go back to

Step 3a.

4. For every i ∈ I, complete the shares (yi[j])j∈(T ∩I) from the last emulation of (fT , swsia) to
shares of yi (this is possible due to the properties of the Shamir’s secret sharing scheme), and
sign them using pk.

5. Send pk and the signed shares of each yi for all i ∈ I, to Amal, output whatever Amal outputs,
and halt.

Next, fix a semi-honest adversary Ash controlling a set of parties H ⊆ P \ I of size |H| ≤ h. We
define its simulator Smal as follows.

27

1. Receive yH from T and receive the randomness and auxiliary input of Smal.

2. Run Smal using its randomness and auxiliary input to compute all samples (pk, (yi[j], σi,j)i∈[n],j∈T)
of fT .

3. Query Amal on each (pk, (yi[j], σi,j)i∈[n],j∈(T ∩I)) to receive the non-prescribed messages that
Amal sent to the parties in H after each call to (fT , swsia).

4. For every i ∈ H, complete the shares (yi[j])j∈(T ∩H) from the last emulation of (fT , swsia) to
shares of yi and sign them.

5. Send to Ash all the samples (pk, (yi[j], σi,j)i∈[n],j∈(T ∩H)) of fT , the completed shares with
their signatures, and the non-prescribed messages of Amal, and all signed shares of each yi for
all i ∈ H. Output whatever Ash outputs and halt.

We next prove that{
IDEALFaF

f,SFaF (κ, x, zFaF)
}

κ∈N,x∈({0,1}∗)n,zFaF∈({0,1}∗)2
(1)

C≡
{

REALFaF
π,AFaF (κ, x, zFaF)

}
κ∈N,x∈({0,1}∗)n,zFaF∈({0,1}∗)2

.

First, note that in every iteration of Step 2, the total number of shares held by Amal and Ash is
smaller than the secret-sharing threshold. Indeed, for every k ∈ {1, . . . , t + 1}, in the kth iteration
there are at most t− k + 1 corrupted parties (i.e., in I), at most h semi-honest parties, and a total
of |T | = n− 2(k − 1) parties. Since the threshold is

t + h + 1− n− |T |
2 = t + h + 2− k > (t− k + 1) + h,

by the privacy property of the secret-sharing scheme, at every iteration, the joint view of the two
adversaries consists of only random independent shares. In particular, except for the last iteration
where the output is reconstructed, all signed shares are independent of the output. Now, since the
same holds in the ideal world, it follows that Amal aborts in the real world if and only if it aborts
in the ideal world. Moreover, it responds with the same pair of parties to abort. As for the last
iteration, the properties of Shamir’s secret-sharing scheme allow the simulators to complete the
shares of Amal and Ash to shares of the output given by the trusted party, implying Equation (1)
as required.

□

5.3 Putting it all Together

We now combine Theorem 5.4 with known results to prove Theorem 5.1. We will use the following
results due to Alon et al. [1] and Melissaris et al. [22].

Theorem 5.10 ([1, Theorem 4.2]). For all n, t, h ∈ N such that 2t + h ≥ n, there exists an n-party
functionality that cannot be computed with computational (t, h)-strong FaF security.

Theorem 5.11 ([22, Theorem 9]). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality and
let t, h ∈ [n] be such that 2t + h < n. Then, assuming the existence of simulatable public-key
encryption and dense cryptosystems, there exists an n-party protocol in the correlated randomness
model computing f with computational (t, h)-strong FaF security.

28

We next prove our main result of the section.

Proof of Theorem 5.1. For the first direction, assume that 2t + h < n and fix an n-party function-
ality f . By Theorem 5.4, any inputless n-party functionality can be computed with computational
(t, h)-strong FaF security. Therefore, by Theorems 5.3 and 5.11, there exists an n-party protocol
computing f with computational (t, h)-strong FaF security. Finally, by Theorem 4.1 this protocol
is also computationally (t, h)-dynamic secure.

For the second direction, assume that 2t + h ≥ n. By Theorem 5.10, there exists an n-party
functionality that cannot be computed with computational (t, h)-strong FaF security. Thus, by
Theorem 4.1 it cannot be computed with computational (t, h)-dynamic security. □

Acknowledgements

We are grateful to Eran Omri, Amos Beimel, and Muthuramakrishnan Venkitasubramaniam for
many helpful discussions.

Bibliography
[1] B. Alon, E. Omri, and A. Paskin-Cherniavsky. MPC with friends and foes. In D. Micciancio

and T. Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual Interna-
tional Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020,
Proceedings, Part II, volume 12171 of Lecture Notes in Computer Science, pages 677–706.
Springer, 2020.

[2] B. Alon, A. Beimel, and E. Omri. Three party secure computation with friends and foes. In
G. N. Rothblum and H. Wee, editors, Theory of Cryptography - 21st International Conference,
TCC 2023, Taipei, Taiwan, November 29 - December 2, 2023, Proceedings, Part II, volume
14370 of Lecture Notes in Computer Science, pages 156–185. Springer, 2023.

[3] G. Asharov, R. Cohen, and O. Shochat. Static vs. adaptive security in perfect MPC: A
separation and the adaptive security of BGW. In D. Dachman-Soled, editor, 3rd Conference
on Information-Theoretic Cryptography, ITC 2022, July 5-7, 2022, Cambridge, MA, USA,
volume 230 of LIPIcs, pages 15:1–15:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

[4] D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic adversaries.
In R. A. Rueppel, editor, Advances in Cryptology - EUROCRYPT ’92, Workshop on the Theory
and Application of of Cryptographic Techniques, Balatonfüred, Hungary, May 24-28, 1992,
Proceedings, volume 658 of Lecture Notes in Computer Science, pages 307–323. Springer, 1992.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for noncryptographic
fault-tolerant distributed computations. In Proceedings of the 20th Annual ACM Symposium
on Theory of Computing (STOC), pages 1–10, 1988.

[6] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology, 13(1):143–202, 2000.

29

[7] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation.
In G. L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 639–648.
ACM, 1996.

[8] R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, and T. Malkin. On adaptive vs. non-
adaptive security of multiparty protocols. In B. Pfitzmann, editor, Advances in Cryptology -
EUROCRYPT 2001, International Conference on the Theory and Application of Cryptographic
Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes in
Computer Science, pages 262–279. Springer, 2001.

[9] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and
multi-party secure computation. In J. H. Reif, editor, Proceedings on 34th Annual ACM
Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages
494–503. ACM, 2002.

[10] R. Canetti, O. Poburinnaya, and M. Venkitasubramaniam. Equivocating yao: constant-round
adaptively secure multiparty computation in the plain model. In H. Hatami, P. McKenzie,
and V. King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 497–509. ACM,
2017.

[11] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure protocols. In
Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 11–19,
1988. doi: 10.1145/62212.62214.

[12] A. R. Choudhuri, A. Goel, M. Green, A. Jain, and G. Kaptchuk. Fluid MPC: secure multiparty
computation with dynamic participants. In T. Malkin and C. Peikert, editors, Advances in
Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO
2021, Virtual Event, August 16-20, 2021, Proceedings, Part II, volume 12826 of Lecture Notes
in Computer Science, pages 94–123. Springer, 2021.

[13] R. Cohen, J. A. Garay, and V. Zikas. Completeness theorems for adaptively secure broadcast.
In H. Handschuh and A. Lysyanskaya, editors, Advances in Cryptology - CRYPTO 2023 -
43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA,
August 20-24, 2023, Proceedings, Part I, volume 14081 of Lecture Notes in Computer Science,
pages 3–38. Springer, 2023.

[14] G. Deligios, A. Goel, and C. Liu-Zhang. Maximally-fluid MPC with guaranteed output delivery.
IACR Cryptol. ePrint Arch., page 415, 2023. URL https://eprint.iacr.org/2023/415.

[15] U. Feige. Noncryptographic selection protocols. In 40th Annual Symposium on Foundations
of Computer Science (Cat. No. 99CB37039), pages 142–152. IEEE, 1999.

[16] J. A. Garay, J. Katz, R. Kumaresan, and H. Zhou. Adaptively secure broadcast, revisited. In
C. Gavoille and P. Fraigniaud, editors, Proceedings of the 30th Annual ACM Symposium on
Principles of Distributed Computing, PODC 2011, San Jose, CA, USA, June 6-8, 2011, pages
179–186. ACM, 2011.

30

https://eprint.iacr.org/2023/415

[17] J. A. Garay, Y. Ishai, R. Ostrovsky, and V. Zikas. The price of low communication in secure
multi-party computation. In J. Katz and H. Shacham, editors, Advances in Cryptology -
CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part I, volume 10401 of Lecture Notes in Computer Science,
pages 420–446. Springer, 2017.

[18] S. Garg and A. Sahai. Adaptively secure multi-party computation with dishonest majority.
In R. Safavi-Naini and R. Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
volume 7417 of Lecture Notes in Computer Science, pages 105–123. Springer, 2012.

[19] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In Proceedings of the 51st Annual ACM STOC,
pages 218–229, 1987.

[20] M. Hirt and V. Zikas. Adaptively secure broadcast. In H. Gilbert, editor, Advances in Cryp-
tology - EUROCRYPT 2010, 29th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Monaco / French Riviera, May 30 - June 3, 2010.
Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 466–485. Springer,
2010.

[21] Y. Ishai, A. Kumarasubramanian, C. Orlandi, and A. Sahai. On invertible sampling and
adaptive security. In M. Abe, editor, Advances in Cryptology - ASIACRYPT 2010 - 16th
International Conference on the Theory and Application of Cryptology and Information Secu-
rity, Singapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer
Science, pages 466–482. Springer, 2010.

[22] N. Melissaris, D. Ravi, and S. Yakoubov. Threshold-optimal MPC with friends and foes.
In A. Chattopadhyay, S. Bhasin, S. Picek, and C. Rebeiro, editors, Progress in Cryptology
- INDOCRYPT 2023 - 24th International Conference on Cryptology in India, Goa, India,
December 10-13, 2023, Proceedings, Part II, volume 14460 of Lecture Notes in Computer
Science, pages 3–24. Springer, 2023.

[23] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In Proceedings of the 30th Annual Symposium on Foundations
of Computer Science (FOCS), pages 73–85, 1989.

[24] A. C. Yao. Protocols for secure computations (extended abstract). In Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science (FOCS), pages 160–164, 1982.

31

	Introduction
	Our Contributions
	Our Techniques
	Related Works
	Organization

	Preliminaries
	Security Model: Security With Friends and Foes
	Security Model: Adaptive Security

	A New Security Definition: Dynamic Security
	Dynamic Security-With-Abort

	Equivalence of Dynamic Security and Strong FaF Security
	Characterizing Computational Dynamic Security
	Strong FaF Security-With-Semi-Identifiable-Abort
	Generating Correlated Randomness with Strong FaF Security
	Putting it all Together

	Bibliography

