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Abstract. We revisit the quantum security (in the QROM) of digital signature schemes that follow
the Fiat-Shamir-with-aborts (FSwA) or the probabilistic hash-and-sign with retry/abort (HSwA) design
paradigm. Important examples of such signature schemes are Dilithium, SeaSign, Falcon+ and UOV.
In particular, we are interested in the UF-CMA-to-UF-NMA reduction for such schemes. We observe
that previous such reductions have a reduction loss that is larger than what one would hope for, or
require a more stringent notion of zero-knowledge than one would hope for.
We resolve this matter here by means of a novel UF-CMA-to-UF-NMA reduction that applies to FSwA
and HSwA signature schemes simultaneously, and that offers an improved reduction loss (without
making the zero-knowledge assumption more stringent).

1 Introduction

Background. Fiat-Shamir-with-aborts (FSwA) and probabilistic hash-and-sign with retry/abort (HSwA)
are important design principles for digital signature schemes (in the random oracle model), in particular
for constructing quantum-secure signature schemes. Both have in common that the signature generation
may require several trials until a “good” signature is obtained. Informally speaking, the retrying is typically
necessary in order to not leak unwanted information about the secret key via a “bad” choice of the signature.

Examples of signature schemes that follow one or the other design principle are: Lyubashevsky’s signa-
ture [Lyu09,Lyu12], GLP [GLP12], TESLA [ABB+17], Dilithium [DKL+18], SeaSign [DFG19], and HAETAE
[CCD+24], which follow the FSwA paradigm, and Hidden Field Equation (HFE) signatures [Pat96], Un-
balanced Oil and Vinegar (UOV) [KPG99], the Courtois-Finiasz-Sendrier (CFS) signature [CFS01,Dal08],
GeMSS [CFMR+17], Wave [DST19], MAYO [Beu21], QR-UOV [FIKT21], and Falcon+ [GJK24] (an updated
version of Falcon), which follow the HSwA paradigm.

The two design principles, FSwA and HSwA, also have in common that security is typically proven
in two steps: first, the specific instantiation is exploited in order to show UF-NMA-security, and then an
argument that is generic for the design principle (and only requires some mild additional properties from
the instantiation) is used to conclude full-fledged (strong or ordinary) UF-CMA-security, i.e., security against
chosen-message attacks.

It turned out that the generic UF-CMA-to-UF-NMA reductions for FSwA and HSwA are quite insidious,
with several works getting it wrong by overlooking subtle dependencies that are introduced by the retrying,
which is inherent to the design. Indeed, Barbosa et al. [BBD+23] and Devevey et al. [DFPS23] showed
(independently) that prior UF-CMA-to-UF-NMA reductions for FSwA, ranging back all the way to [Lyu12]
and including [KLS18] (which considered the QROM case), are faulty and without simple patches. On
the positive side, by reconsidering the problem from scratch, both works showed correct such UF-CMA-to-
UF-NMA reductions for FSwA signatures, in both the classical and the quantum (i.e. QROM) cases, with
different reduction losses for the two.

Suppressing less relevant terms, the reduction loss obtained in [BBD+23] scales as qHqSϵ for the classical
ROM case, and as qH

√
qSϵ+ qS

√
qHϵ for the QROM case, where qH is the number of (quantum) queries to

the random oracle, qS is the number of signing queries, and 0 < ϵ < 1 is a (small) number determined by



the scheme. Concretely, this means that any UF-CMA attacker can be turned into a UF-NMA attacker with
similar runtime and a success probability that differs (additively) by no more than the said loss. Since in
natural settings qH ≫ qS , the dominating term in the loss in the QROM case is qH

√
qSϵ; this is somewhat

unfortunate as it requires the number of random oracle queries to be bounded in the order of the square root
of 1/ϵ, for the reduction to be meaningful.

The approach taken in [DFPS23] avoids the suboptimal qH
√
qSϵ term in the additive reduction loss, but

only works if the underlying Σ-protocol is full-fledged honest-verifier zero-knowledge (HVZK), which is a non-
standard requirement for FSwA (e.g., [BBD+23] merely requires accepting transcripts to be simulateable).
In that sense, this reduction is less generic and it typically requires substantial additional work to show
the stronger zero-knowledge property, and/or it may only hold computationally, or not at all.4 If it (only)
holds computationally then the security loss depends on the runtime of the attacker (and the hardness of a
computational problem) and so cannot be given as an explicit number, compared to the statistical case where
the zero-knowledge error is then solely determined by the parameters of the scheme. Another downside of the
reduction in [DFPS23] is that the computational overhead in the reduction is larger compared to [BBD+23]
(see Table 1 below).

Moving on to HSwA signatures, Kosuge and Xagawa [KX24] followed up on the observation from [CDP23]
that the original analysis of the UF-CMA-to-UF-NMA reduction for HSwA signatures in [SSH11] is incorrect,
and they provide the first correct such reduction, both in the ROM and in the QROM. However, their QROM
reduction suffers from the same suboptimal qH

√
qSϵ term.

Our Contribution. In this work, we consider a certain abstract design for digital signature schemes
(in the random oracle model) that covers both, FSwA and HSwA signatures, in one go, when considering
corresponding instantiations. Our main result then is a UF-CMA-to-UF-NMA reduction in the QROM for the
abstract signature scheme we consider, with a reduction loss that is dominated by qS

√
qHϵ, while relying on

the standard assumption that accepting transcript can be simulated (see Table 1).

Our approach is inspired by [BBD+23], but then deviates significantly in the crucial part. As corollaries
of our generic result, we obtain such UF-CMA-to-UF-NMA reductions in particular for FSwA signatures and
for HSwA signatures.

Reduction loss Reduction runtime overhead

with QRAM without QRAM

[BBD+23, Th. 2]
qH
√
qSϵ+ qS

√
(qS + qH)ϵ

+qSζacHVZK
qSTacHVZK + qH

qSTacHVZK + qSqH
+q2S

[DFPS23, Th. 10 & 12]
λqS

√
(λqS + qH)ϵ

+λqSζHVZK
λqSTHVZK + qH λ2q2STHVZK + λqSqH

Corollary 1 qS
√
qHϵ+ qSζacHVZK qSTacHVZK + qH

qSTacHVZK + qSqH
+q2S

Table 1. Comparison of previous and our new QROM UF-NMA-to-UF-CMA security reduction for FSwA signatures,
where λ denotes the security parameter, T the runtime of the zero-knowledge simulator, for full-fledged HVZK
for [DFPS23] and for accepting HVZK in the other cases, and ζ the corresponding statistical simulation error (or
the computational simulation error, but then it is dependent on the adversary’s runtime). Logarithmic factors and
constant terms are omitted for the sake of simplicity. Numbering of referred theorems are in terms of the full version.

4 It is shown in [DFPS23] that full-fledged HVZK is satisfied by (the Σ-protocols underlying) Lyubashevsky’s sig-
natures, statistically or computationally dependent on some parameter; however, the techniques for showing this
do not carry over to Dilithium for instance.
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For FSwA signatures, our result improves on [BBD+23] by offering a loss of order qS
√
qHϵ, thus avoiding

the expensive qH
√
qSϵ term. Assuming that, in practice, the concrete values of qH and qS are considered to be

up to 2128 and 264, respectively, and ζacHVZK ≈ 0, our analysis proportionally reduces the loss in [BBD+23]
by an order of magnitude ≈ 232. Compared to [DFPS23], we can rely on the weaker notion of accepting
HVZK, which only requires to simulate accepting transcripts; this is (more) standard for FSwA and typically
satisfied, statistically, for relevant instantiations. Thus, our work unifies the positive features of [BBD+23]
and [DFPS23] in one reduction, avoiding the individual drawbacks of the two prior solutions.

For HSwA signatures, comparing with [KX24], we get the same improvement as above over [BBD+23]
by offering a loss of order qS

√
qHϵ, i.e., also here avoiding the qH

√
qSϵ term.

Beyond the above quantitative and qualitative improvements, we also would like to emphasize the con-
ceptual contribution of providing the means to treat FSwA and HSwA signatures simultaneously.

The Challenge. At the core of our result is the following technical challenge (somewhat simplified here
for the easy of exposition). Let D be a distribution over a set R with the promise that Pr[ r=r◦] ≤ ϵ for any
r◦ ∈ R and r ← D, and let f be an arbitrary (randomized or deterministic) function with domain R × Y
and with a special symbol ⊥ in its range. Consider an arbitrary quantum algorithm AH that gets a sample
produced by one or the other of the following two procedures:

1: r ← D
2: H(r) := y ← Y
3: z ← f(r, y)
4:
5: if z = ⊥ then return ⊥

else return (r, z)

or

1: r ← D
2: y ← Y
3: z ← f(r, y)
4: if z ̸= ⊥ then H(r) := y
5: if z = ⊥ then return ⊥

else return (r, z)

and that can make superposition queries to the random oracle H before and after it gets the sample, say qH
in total. The goal now is to show that it is hard for AH to decide from which of the two it got the sample.

We note that the only difference between the two is that the first procedure reprograms H(r) to y no
matter what, while the latter does so only in case of a non-⊥ output. Thus, intuitively it is clear that it
is hard for AH to distinguish the two: it can notice the difference only when the procedure outputs ⊥ and
AH queries H(r) after having received the sample (thus ⊥); but the latter is unlikely to happen then due
to the high entropy in r. However, making this a rigorous argument in the case of quantum queries results
in a hybrid argument over all the queries to H (after having received the sample), where (for the sake of
the argument) one would then measure for each query if the query is to r or not. This then leads to a
distinguishing advantage of qH

√
ϵ, where the square-root comes from the Gentle-Measurement Lemma, used

to argue that the measurements cause little disturbance, and the factor qH by quantifying over all queries.
Thus, the real challenge is to prove a bound on the distinguishing advantage that scales as

√
qHϵ instead;

this is what we aim for and achieve in this work.5

Impact on Dilithium. We show the impact of our improved reduction loss for the Dilithium signature
scheme, compared to the numbers obtained in [BBD+23]. Working out the loss for Dilithium requires control
on ϵ (for the different choices of Dilithium parameters considered). This is done in [BBD+23] by means of
a computer-aided computation, which we reuse here. Additionally, as a small additional contribution, we
provide a rigorous, analytic bound on ϵ in terms of the different Dilithium parameters. As a matter of fact,
since ϵ is key-dependent and there may be some bad choices of key-pairs (sk, pk) for which ϵ is large, the
goal is to find a as-small-as-possible upper bound on Pr[Γ ]E[ϵ|Γ ] for a suitable subset/event Γ of key-pairs.

5 One might also be tempted to argue that the two can only be distinguished by AH if AH has queried H(r) before
it receives the sample (and then use compressed-oracle techniques to get the qH inside the square-root)—but then
one falls for the same trap as earlier, faulty FSwA proofs: due to the conditional reprogramming of H in the second
procedure, H may become non-uniformly random there. One expects this non-uniformity to be negligible and hard
to notice for AH , but giving a concrete (and sufficiently good) bound appears difficult.
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2 Preliminaries

In Sect. 2.1, we recall the (quantum) random oracle model, and we fix a formalism for referring to algorithms
that may query the random oracle and possibly yet another oracle, and for related concepts.6 In Sect. 2.2,
we specify the family of signature schemes, to which our result applies, and in Sect. 2.3 we state a variant of
the adaptive reprogramming lemma from [GHHM21], which we use later.

2.1 Oracle algorithms and the (quantum) random oracle model

Basic notation. Throughout this work, we consider the random oracle model, where parties/algorithms
have oracle access to a uniformly random function H : X → Y, with suitably chosen finite domain X and
range Y. We also consider quantum algorithms, which can then query H “in superposition”, i.e., in the form
of the unitary |x, y⟩ 7→ |x, y +H(x)⟩. We write AH to denote a (classical or quantum) algorithm with query
access toH. Similarly, we writeAH,• in caseAmay additionally make queries to another, possibly unspecified
oracle, hinted at with a placeholder “•” (or ˛, ‚, Ĳ etc.). Furthermore, in case of such an oracle algorithm
AH,•, we write AH,O to express that the unspecified oracle is instantiated with the particular algorithm O.
We note that such an instantiation may also have access to H, i.e., the oracle may be instantiated with an

algorithm OH , in which case we then naturally write AH,OH

.

We stress that we use the same notation for classical and quantum algorithms with respective classical
or quantum access to the random oracle H, while the query access to any other oracle is always assumed to
be classical in this work, and thus so is any oracle instantiation O we consider. Furthermore, by default we
assume any oracle instantiation O to be at most statically stateful, meaning that the state (if any) is chosen
at the beginning and then remains fixed.7

Regarding language and notation, since in the random oracle model by default all algorithms have access
to H, we reserve the terminology oracle algorithm for those that have access to one (or more) additional
oracle(s). Also, once we have specified that an oracle algorithm is of the form, say, AH,•, i.e., with access to
H and to another, unspecified oracle, we may then simply write A in later occurrences, taking the considered
form as understood.

We note that even though an oracle algorithm AH,• typically expects a particular instantiation O of the
oracle, we may consider a run of AH,O′ for any instantiation O′. We may also consider a run of A where
different calls to the oracle are answered by different instantiations. We then write

AH,[Oi1
1 ,Oi2

2 ,...]

to capture that the first i1 oracle queries are answered by O1, the following i2 queries by O2, etc. We note
that in-between these oracle queries, there may be multiple queries to H.

For proof-technical reasons, we will also consider the case where an (oracle) algorithm may make write
(a.k.a. reprogramming) queries to the random oracle H. On input (x, y), such a write query will redefine the
function value of H(x) to y; we will capture this by the command H(x) := y. We only consider classical

write queries, and we will write AH̄ ,AH̄,•,AH̄,OH̄

etc. to indicate that A (and O) may also make classical
write queries to H, next to the ordinary (classical or quantum) read queries.

For an oracle algorithm AH̄,• and a specific instantiation of the oracle, say, as OH̄ , we write

BH̄ := AH̄,OH̄

6 For the purpose of this work only, Section 2.1 may feel a bit overkill; however, we believe that such a rigorous
formalism may be useful beyond the scope of this work.

7 For comparison, the random oracle H with read queries only is statically stateful when instantiated/implemented
(inefficiently) by choosing a random function at the beginning, while it is adaptively stateful when done using
lazy sampling. The random oracle H̄ with write queries (see below) is adaptively stateful no matter how it is
implemented.
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to specify that the algorithm B runs A and answers all oracle queries by means of running OH̄ internally,
while forwarding all random oracle queries of A and O to H. This indeed makes B an algorithm of the form
BH̄ .

Pushing this a bit further, BH̄,• := AH̄,[Oi−1,•,P∞] then denotes the oracle algorithm that runs A, answers
the first i − 1 oracle queries with O, forwards the i-th query to B’s oracle, and answers all the remaining
ones with P. In case A makes at most q oracle queries, we could just as well write Pq−i instead of P∞.

Equivalences. Different (oracle) algorithms may “behave the same way”. We want to formally capture
the possible meanings of the latter that will be important for us.

We say that two algorithms BH̄ and CH̄ are semantically equal, written as equality BH̄ = CH̄ , if the joint
distribution of: (1) the output of the considered algorithm, and (2) the (possibly reprogrammed) random
oracle H at the end of the execution of the algorithm, are the same, for any initial choice of H and any joint
input. This is for instance satisfied when C is a purely syntactic rewriting of the defining code of B.

Another natural, but weaker, equivalence relation, which we call output equivalent, is BH̄ ≃ CH̄ , which
(by our definition) expresses that the two distributions of the respective outputs only are equal, on average
over the random choice of H and for any joint input.

We stress that the assignment BH̄ := AH̄,OH̄

implies semantical equivalence BH̄ = AH̄,OH̄

. Furthermore,

OH̄ = PH̄ =⇒ AH̄,OH̄

= AH̄,PH̄

for any AH̄,•, while OH̄ ≃ PH̄ is in general not sufficient to conclude AH̄,OH̄ ≃ AH̄,PH̄

.8

Output equivalence sometimes only holds approximately, informally denoted as BH̄ ≈ CH̄ then. This is
commonly quantified via the distinguishing advantage∣∣Pr[1← BH̄ ]− Pr

[
1← CH̄

]∣∣ ,
where B and C are then typically assumed to have a binary output, and where the probability is over the
randomness of the algorithms (B and C) and the random choice of the random oracle H. We note that
for simplicity, we consider here algorithms with no input, but the same quantities can also be considered
for any choice of input, of course. In case of binary outputs, the above distinguishing advantage coincides
with the statistical distance SD

(
BH̄ , CH̄

)
between the two output distributions, and so we then use the

two expressions interchangeably.9 In case of non-binary outputs, the statistical distance upper bounds the
distinguishing advantage.

Conditioning. The run of an algorithm AH̄ defines the (distribution of the) output of the algorithm,
but also various internal variables, like the local randomness of A in case of a classical algorithm or the
measurement outcomes of measurements performed by A in case of a quantum algorithm, the (classical)
write queries to H, etc. For any event Λ defined by these random variables, we can then consider a run of AH̄

conditioned on Λ, which we will denote byAH̄ [Λ]. We may use the variationA[Λ]H̄ on the notation to indicate
that Λ does not depend on H. We mainly use the latter in case of a classical algorithm A, where it then means
that Λ is determined by A’s local randomness (and its input). In this case, the assignment BH̄ := A[Λ]H̄ is
well-defined as the oracle algorithm that runs A but samples the local randomness conditioned on Λ.

This notation extends naturally to AH̄,OH̄

[Λ] for any oracle algorithm AH̄,• and instantiation OH̄ , as
well as to the variations A[Λ]H̄,• and AH̄ [Λ] •, when Λ does not depend on (H and) the oracle.

The above notation will mainly be useful in the following context. Consider two algorithms BH̄ and CH̄ , as
well as an event Λ that is well-defined for either of the two executions. Then the equivalences BH̄ [Λ] = CH̄ [Λ]
and BH̄ [Λ] ≃ CH̄ [Λ] are naturally defined by means of the equality of the respective conditional distributions.
Furthermore, if Λ has the same probability Pr[Λ] in a run of BH̄ and in a run of CH̄ , then

SD
(
BH̄ , CH̄

)
≤ Pr[Λ] · SD

(
BH̄ [Λ], CH̄ [Λ]

)
+ Pr[¬Λ] · SD

(
BH̄ [¬Λ], CH̄ [¬Λ]

)
.

8 Even if O and P are restricted to read access only, still OH ≃ PH ̸⇒ AH̄,OH

≃ AH̄,PH

.
9 The former is more common in the cryptography literature, while the advantage of the latter is its succinctness.
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In particular, if BH̄ [Λ] ≃ CH̄ [Λ] then SD
(
BH̄ , CH̄

)
≤ Pr[¬Λ].

We conclude by noting that in case of an oracle algorithm AH̄,•, an instantiation OH̄ of the oracle, and an
event Λ defined by the local randomness of O (for any fixed input to O), if AH̄,• is promised to make precisely

one query to the oracle then the event Λ is also well-defined by a run of AH̄,OH̄

, and AH̄,O[Λ]H̄ = AH̄,OH̄

[Λ].

Simulating the write access. It is not too hard to see that write queries to H can always be simulated
internally, in the sense that there exists an (adaptively stateful) algorithm SH , which makes one H-query

whenever it is invoked with a read request (and no query upon any write request), and such that AH̄ ≃ ASH

for every AH̄ . S simply simulates any write query to H by bookkeeping the reprogramming requests and
properly adjusting the future read queries to H, which it relays. It is obvious how this works in case A
makes classical read queries to H, but it can also be done in case of quantum read queries, where S then is
a suitable quantum algorithm; the details of the latter are in Appendix A.

By default, we then write ĀH := ASH

for the algorithm that simulates A’s write queries internally, and

thus is such that ĀH ≃ AH̄ .10 We note that in case of an oracle algorithm AH̄,• and setting ĀH,• := ASH ,•,

the equality ĀH,OH̄ ≃ AH̄,OH̄

of the output distributions holds (only) conditioned on the event that O
makes no (read or write) query to H on a point that has previously been reprogrammed by A. Thus,

ĀH,OH̄

[Ω] ≃ AH̄,OH̄

[Ω] with Ω being the said event.

2.2 Generalized Fiat-Shamir with Aborts signatures

Let M,R,Y and Z be arbitrary non-empty finite sets, and fix the domain and the range of the random
oracle as R×M and Y, respectively, i.e. H : R×M→ Y. Furthermore, let ⊥ be some special symbol not
contained in Z. These sets may depend on a security parameter, but we leave this dependency—and the
security parameter itself— implicit throughout most of the document.

We consider signature schemes
(
KeyGen,SignH ,VerifyH

)
in the random oracle model of the following

form. On input the security parameter, the key-generation algorithm KeyGen produces a key pair (sk, pk),
which in turn specifies a distribution D over a set R and an ensemble {f(r, y)}r∈R,y∈Y of distributions over
Z ∪{⊥}. Signing of a message m ∈M works as specified in Fig. 1 below, and a claimed signature σ = (r, z)
for a message m ∈M is accepted by Verify if and only if z is in the support of the distribution f(r,H(r,m)).

SignH(sk,m):

1: repeat
2: r ← D
3: y := H(r,m)
4: z ← f(r, y)
5: until z ̸= ⊥
6: return (r, z)

Fig. 1. The signing procedure, where the hash function H in step 3 is modeled as a random oracle. The dependency
of D and f on sk is left implicit.

Obviously, for signing to be efficient, it is necessary that D is efficiently samplable when given the secret
key sk, and f(r, y) is efficiently samplable (for any r and y) when given sk and the randomness used to
sample r ← D. For verification to be efficient, it needs to be efficiently testable given the public key (only) if
z is in the support of f(r, y), for any r, y, z. Similarly, for the scheme to be secure (against key-only attacks)
it is necessary that signing should be computationally hard when only given the public key pk. However,

10 Here the respective output distributions of the two algorithms are actually equal for any choice of H; thus, we
have an equivalence that lies in-between = and ≃, but this is not important to us.
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these (in)efficiency aspects are not our concern; our security reductions also apply for non-efficient or insecure
schemes (though they become somewhat pointless then). Therefore, we keep the public key pk and the secret
key sk implicit—unless specified otherwise, we consider them arbitrary but fixed—and so we also keep the
dependency of D and f on (pk, sk), implicit; the same for the parameters p and ϵ below.

Two important parameters for such a signature scheme are

p := Pr
r←D,y←Y
z←f(r,y)

[ z = ⊥ ] , (1)

referred to as the abort probability, and

ϵ := max
r◦

D(r◦) = max
r◦

Pr
r←D

[ r = r◦ ] , (2)

which is the guessing probability of the distribution D.
The above abstract signature scheme design is well motivated by the fact that it covers both Fiat-Shamir-

with-aborts (FSwA) signatures, as well as probabilistic hash-and-sign with retry/abort (HSwA) signatures. In
the case of FSwA signatures, f is usually a deterministic function, which can be efficiently computed given
the secret key and the randomness used to sample r (the “first message” in the Σ-protocol); in the case
of HSwA signatures, D is typically the uniform distribution over strings of a certain length, and f is the
preimage-sampling algorithm of a so-called weak preimage-samplable function.

As a matter of fact, a HSwA signature can be understood as the FSwA signature obtained from the Σ-
protocol that chooses a random bit string r as the “first message”, and samples the response z as a preimage
of the (random) challenge under the weak preimage-samplable function. We therefore call the general class
of signature schemes specified above (covering FSwA and HSwA signatures) generalized FSwA signature
schemes.

Motivated by the case of (ordinary) Fiat-Shamir with aborts and the definition of acHVZK in [BBD+23],
we define the following.

Definition 1 (Accepting (Statistical) Honest-Verifier Zero-Knowledge). Let ζ and T be functions
of the security parameter. A generalized FSwA signature scheme is called (ζ, T )-acHVZK if there exists an
algorithm acSim with runtime T , such that on input a public key pk it outputs a triple (r̂, ŷ, ẑ) that (on
average over the choice of pk generated by KeyGen) is ζ-close in statistical distance to (r, y, z) conditioned
on z ̸= ⊥, where r ← D, y ← Y and z ← f(r, y).

The above definition of acHVZK matches up with the definition in [BBD+23] for the FSwA instantiation
of the generic signature scheme; for the HSwA instantiation, it matches up with the requirement on the
advantage of the “Preimage Sampling Game”, as defined in [KX24, Def. 2.5], being at most ζ (for an algorithm
SampDom with runtime T ). Thus, our work covers both the FSwA schemes considered in [BBD+23] as well
as the HSwA schemes from [KX24].

For simplicity, we consider the statistical version of the above zero-knowledge properly only, but our
results naturally extend to a computational variant (where we then need to require polynomially many
accepted transcripts (r, y, z) to be computationally indistinguishable from the simulated ones).

2.3 A variant of the Adaptive Reprogramming Lemma

We consider the following, slightly extended variant of the Adaptive Reprogramming Lemma from [GHHM21].
It differs from the original variant in that, next to the quantum read queries, we allow the distinguisher to
make (classical) write queries to H (with a bound on the expected number of write queries).

Lemma 1. Let H : X → Y be the random oracle. Let ϵ > 0, and let {Di}i∈I be a family of distributions
over X indexed by a finite set I, such that

max
x◦∈X

Di(x
◦) = max

x◦∈X
Pr

x←Di

[x = x◦] ≤ ϵ
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OH
0 (i):

1: x← Di

2: y := H(x)
3: return (x, y)

OH̄
1 (i):

1: x← Di

2: H(x) := y ← Y
3: return (x, y)

Fig. 2. Reprogramming or not reprogramming, that is the question.

for all i ∈ I. Let AH̄,‚ be an oracle algorithm that makes one query to an oracle ( ‚), which is to be
instantiated by OH

0 or OH̄
1 as specified in Fig. 2; furthermore, prior to that query, A makes at most qr

quantum read queries to H, and in expectation at most qw classical write queries to H, for given positive
numbers qr, qw ∈ Z.11 Then∣∣∣ Pr [1← AH̄,OH

0

]
− Pr

[
1← AH̄,OH̄

1

] ∣∣∣ ≤ (2qw +
qr
2

)
ϵ+
√
qrϵ .

The proof for this extended variant is a reduction to the original version [GHHM21], exploiting that we
can simulate the write queries.

Proof. Consider ĀH,OH
0 = ASH ,OH

0 and ĀH,OH̄
1 = ASH ,OH̄

1 , which run A and simulate the write queries
locally, and let Ω be the event that A has not made a write query (prior to the oracle call) for the value x
sampled by the oracle then. This event is well-defined and has the same probability in any of the executions
of AH̄,O0 , ĀH,O0 , ĀH,O1 ,AH̄,O1 . Furthermore,

ĀH,OH
0 [Ω] ≃ AH̄,OH

0 [Ω] and ĀH,OH̄
1 [Ω] ≃ AH̄,OH̄

1 [Ω] .

It thus follows that

SD(AH̄,OH
0 ,AH̄,OH̄

1 ) ≤ SD(AH̄,OH
0 , ĀH,OH

0 ) + SD(ĀH,OH
0 , ĀH,OH̄

1 ) + SD(ĀH,OH̄
1 ,AH̄,OH̄

1 )

≤ 2Pr[¬Ω] + SD(ĀH,OH
0 , ĀH,OH̄

1 ) ≤ 2qwϵ+
qr
2
ϵ+
√
qrϵ .

where the bound on SD(ĀH,OH
0 , ĀH,OH̄

1 ) follows from the standard adaptive reprogramming lemma (see
Proposition 2 in [GHHM21]).

3 A Tighter UF-CMA-to-UF-NMA Reduction

Throughout the entirety of this section, let S = (KeyGen,SignH ,VerH) be a generalized FSwA signature
scheme as introduced in Sect. 2.2, with parameters ϵ and p defined as in (1) and (2). We assume S to be
(ζ, T )-acHVZK for given ζ and T .

Following standard notation, we write AdvCMA
S (A) for the advantage of an attacker A of winning the

standard UF-CMA-security game (in the QROM) for the scheme S, and similarly AdvNMA
S (B) for the advantage

of an attacker B of winning the standard UF-NMA-security game.

3.1 Main result

Our main result is an improved UF-CMA-to-UF-NMA reduction. The reductions loss is in terms of (bounds
on) the parameters p and ϵ. Since these parameters are in general key-dependent, we first state the improved
reduction loss for a fixed choice of key pair (sk, pk), and we write psk and ϵsk when we want to make
the dependency on the choice of the key explicit (where we assume without loss of generality that pk is
determined by sk).

11 We allow arbitrary many read/write H-queries after the query to O0 or O1.
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Similarly, we write ζsk for the statistical distance of the simulated transcript to the actual accepted
transcript for the specific choice sk of the key pair; it then obviously holds that E[ζsk] = ζ, with the
expectation taken over (sk, pk) ← KeyGen. Finally, we write AdvCMA

S (A, sk) and AdvNMA
S (B, sk) for the

respective advantages when the key is chosen to be sk.
The proof of the following main theorem is presented in the subsequent subsections.

Theorem 1. Let S = (KeyGen,SignH ,VerH) be (ζ, T )-acHVZK. Then for every UF-CMA attacker AH,•

making at most qH quantum queries to H and qS classical queries to the signing oracle, there exists an NMA
attacker BH making at most qH quantum queries to H such that for every fixed choice of key sk with psk < 1,
we have

AdvCMA
S (A, sk) ≤ AdvNMA

S (B, sk) +
8qS
√

(qH + 1)ϵsk
1− psk

+ qS · ζsk .

Moreover, if we count runtime in terms of the number of gates, except that each arithmetic operation on
X and Y and every comparison among them (with respect to a strict total ordering) are counted as unit
runtime, then TIME(B) ≤ TIME(A) +O

(
qST + qHqS + q2S

)
.

Remark 1. Suppose B is allowed to use a QRAM, where each cell may contain an element of X × Y, up
to O(1) many memory pointers and up to O(1) many auxiliary bits. If we count each arithmetic operation
and each comparison of the memory pointers as being unit runtime, then B can further achieve the runtime
TIME(B) ≤ TIME(A) +O

(
qST + (qS + qH) log qS

)
using only O(qS) many cells.

When taking the expectation over sk on both sides, in order to get the average reduction loss for a
random key-pair, one can apply Jensen’s inequality to E[√ϵsk] get a bound in terms of the expectation of ϵsk
(over the choice of sk). Unfortunately, this does not work for the parameter psk, where Jensen’s inequality
goes the wrong way round. Hence, we need to have a bound p̄ on psk that holds for all sk, or holds except
with small probability (over the choice of sk).

Towards optimizing the bound, it may also make sense to avoid some bad, yet unlikely, choices of (sk, pk)
that make ϵsk large, i.e. to consider a bound ϵ̄ on the sub-normalized conditional expectation Pr[sk ∈
Γϵ]E[ϵsk|sk∈Γϵ], where Γϵ is a subset of the keys for which Pr[sk ̸∈Γϵ] is small.

Altogether, this then gives the following statement.

Corollary 1. Let S = (KeyGen,SignH ,VerH) be (ζ, T )-acHVZK. Furthermore, let Γϵ and Γp be subset of
keys sk such that psk ≤ p̄ for all sk ∈ Γp and Pr[sk∈Γϵ]E[ϵsk|sk∈Γϵ] ≤ ϵ̄, for parameters for 0 < ϵ̄, p̄ < 1.
Then for every UF-CMA attacker A making at most qH quantum queries to H and qS classical queries to
the signing oracle, the UF-NMA attacker B (dependent on A) as defined in Theorem 1 is such that

AdvCMA
S (A) ≤ AdvNMA

S (B) +
8qS
√
(qH + 1)ϵ̄

1− p̄
+ qSζ + Pr[sk ̸∈Γp] + Pr[sk ̸∈Γϵ] .

3.2 Our proof strategy

Towards proving the above claim, we consider an arbitrary UF-CMA attacker AH,•, where by default the
queries to the oracle • are answered by the signing algorithm/oracle Sign in the obvious way.12 It will be
convenient to assume that A makes one more query to H in order to check himself if the forged signature is
valid under a new message that has not been queried, and then aborts (i.e. outputs ⊥) if the check fails.

Our goal is to show that

AH,SignH(sk,·)(pk) ≈ AH,SimH̄(pk,·)(pk) (3)

with an upper bound on the distance that is in line with the security loss in the theorem statement. Here,
Sim simulates the signing oracle by exploiting the non-abort ZK property and the ability to reprogram H,
as specified in Fig. 3 below.

12 I.e., using the secret key that corresponds to the public key that is given to A as input.
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SimH̄(pk,m):

1: (r̂, ŷ, ẑ)← acSim(pk)
2: H(r̂,m) := ŷ
3: return (r̂, ẑ)

Fig. 3. Simulating the signing oracle by means of the acHVZK simulator and reprogramming H.

This then implies that the UF-NMA attacker B̄H(pk) = BSH

(pk) obtained by running BH̄(pk) :=

AH,SimH̄(pk,·)(pk) but simulating the write queries to H internally as in Lemma 4, is similarly successful
in forging a signature as the original UF-CMA attacker A. The crucial property of Sim is of course that it
does not need the secret key, and so can indeed be simulated by B itself.

By assumption on A (to verify the forged signature before outputting it), we know that BH̄(pk) outputs
a forgery σ∗ for a message m∗ that correctly verifies under the reprogrammed oracle H (or else outputs ⊥).
However, since H gets reprogrammed only at places (r̂,m) for m∗ ̸= m, σ∗ also verifies under the original
(unreprogrammed) choice of H. Consequently, whenever B̄ outputs non-⊥, it outputs a valid forgery. Thus,
we have

AdvNMA(B̄) = Pr
[
B̄H(pk) ̸= ⊥

]
= Pr

[
BH̄(pk) ̸= ⊥

]
= Pr

[
AH,SimH̄(pk,·)(pk) ̸= ⊥

]
≥ AdvCMA(A)− SD

(
AH,SignH(sk,·)(pk),AH,SimH̄(sk,·)(pk)

)
,

where the second and third equality follows B̄H(pk) ≃ BH̄(pk) = AH,SimH̄(sk,·)(pk).

Remark 2. If we aim for strong unforgeability, similar argument applies, but we additionally require what
is known as the computational unique-responses property, which prevents an efficient attacker to come up
with two valid triples (r, y, z1), (r, y, z2) with the same first message r and the same challenge y but distinct
responses z1 ̸= z2

Loop˛(sk,m)

1: repeat
2: out← ˛(sk,m)
3: until out ̸= ⊥
4: return out

BH
S (sk,m)

1: r ← D
2: y := H(r,m)
3: z ← f(r, y)
4:

5: if z = ⊥ then
return ⊥

6: return (r, z)

BH̄
P (sk,m)

1: r ← D
2: H(r,m) := y ← Y
3: z ← f(r, y)
4: if z ̸= ⊥ then

H(r,m) := y
5: if z = ⊥ then

return ⊥
6: else return (r, z)

BH̄
T (sk,m)

1: r ← D
2: y ← Y
3: z ← f(r, y)
4: if z ̸= ⊥ then

H(r,m) := y
5: if z = ⊥ then

return ⊥
6: else return (r, z)

Fig. 4. The repetition loop Loop˛ (top), and different instantiations of the body of the loop (bottom). The greyed
out line 4 in BP is irrelevant and can be ignored.

Towards showing the closeness (3), we first observe that SignH = LoopB
H
S , where Loop˛ is as in in Fig. 4

(top) and BS as in Fig. 4 (bottom left). The closeness (3) is to be shown by means of the following sequence
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of closeness results:

AH,SignH(sk,·)(pk)
(a)
≈ AH,ProgH̄(sk,·)(pk)

(b)
≈ AH,TransH̄(sk,·)(pk)

(c)
≈ AH,SimH̄

pk(pk)

where ProgH̄ := LoopB
H̄
P and TransH̄ := LoopB

H̄
T , with BP and BT given in Fig. 4.

The closeness claim (c) follows directly from the defining properties of the non-abort ZK simulator; with
distance ζk for a fixed choice k of the key, and with distance ζ on average. The closeness claim (a) is proven
in [BBD+23].13 The formal statement is recalled in Lemma 2 below. The challenging part is to show the
closeness claim (b) with the right upper bound on the distance. Indeed, (b) was also shown in [BBD+23], but
with a distance of the order qH

√
qS ϵ, while the objective here is to get a bound on the distance in the order

of qS
√
qH ϵ. As discussed, this is a significant quantitative improvement, since in realistic scenarios qH ≫ qS .

The closeness claim (b) with the claimed distance bound is proven in the upcoming Section 3.3.
Since (a) and (b) hold for any fixed choices of sk and pk, we now consider them arbitrary but fixed in

the remainder of this work, and we do not write them explicitly anymore as input to A,Sign etc., and we
leave the dependency of p and ϵ on the key implicit again.

Lemma 2 ( [BBD+23, Corollary 1] with a slightly improved bound). Let A be given qH quantum
queries to H and qS queries to Sign. Then

SD
(
AH,SignH ,AH,ProgH̄

)
≤ 2q2Sϵ

(1− p)2
+

3qS
√
qHϵ

2(1− p)
≤

3qS
√
qHϵ

1− p
,

where the last inequality holds as long as qH > 0 and the right-hand side is at most 1.

Proof. Let GH̄,•
i := AH,[(ProgH̄)i−1,•,(SignH)qS−i] be a run of A such that the first i − 1 signing queries are

answered by Prog, the ith signing query is answered by an unspecified oracle (which will later be instantiated
either by Sign or by Prog), and all remaining signing queries are answered by Sign. Our goal here, is to prove

the closeness of GH̄,Sign
i ≈ GH̄,Prog

i . For that purpose, we consider the following sequence of intermediate

oracles O˛
j := Loop[(BP)

j−1,˛,(BS)
∞] for every j ∈ Z>0, where OBS

1 = LoopBS = Sign and O˛
∞ = LoopBP = Prog

regardless of the instantiation of ˛, and so we might just denote the latter as O∞. Moreover, for every
j ∈ Z>0, let Ej be the (local) classical event for the loop in O˛

j (or in O∞) to reach the jth iteration, then
we have

SD
(
GH̄,O˛

j

i ,GH̄,O∞
i

)
≤ Pr[Ej ] ≤ pj−1 ,

where the inequalities hold regardless of the instantiation of ˛. It remains to control the closeness between

GH̄,OBS
j

i ≈ GH̄,OBP
j

i = GH̄,OBS
j+1

i ,

where the last equality follows from the fact that OBP
j = OBS

j+1. We do so via

SD

(
GH̄,OBS

j

i ,GH̄,OBP
j

i

)
≤ Pr[Ej ] · SD

(
GH̄,OBS

j [Ej ]

i ,GH̄,OBP
j [Ej ]

i

)
≤ pj−1 ·

((
2(i− 1)

1− p
+ 2(j − 1) +

qH
2

)
ϵ+
√
qHϵ

)
,

where the second inequality is by a direct application of our variant of the adaptive reprogramming lemma
(Lemma 1). We stress that the event Ej is determined by the local randomness (concretely, the choices of y
is the first j − 1 executions of BP) and thus independent of H (before reprogramming); therefore, Lemma 1
is indeed applicable when conditioning of Ej .

13 The proof in [BBD+23] is tailored to FSwA signature schemes, but it carries over one-to-one to the slightly more
abstract/general signature scheme considered here.
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Collecting the numbers, we obtain

SD
(
GH̄,Sign
i ,GH̄,Prog

i+1

)
≤ SD

(
GH̄,OBS

k+1

i ,GH̄,O∞
i

)
+
∑
j∈[k]

SD

(
GH̄,OBS

j

i ,GH̄,OBS
j+1

i

)

≤ pk +
∑
j∈[k]

pj−1
((

2(i− 1)

1− p
+ 2(j − 1) +

qH
2

)
ϵ+
√
qHϵ

)

≤ pk +
2qSϵ

(1− p)2
+

qHϵ

2(1− p)
+

√
qHϵ

1− p
,

where the last inequality is via p < 1 and i ≤ qS and the pk term vanishes as k → ∞. Summing the above
over i ∈ [qH ], the proof is concluded.

3.3 Closeness of AH,ProgH̄ and AH,TransH̄

Our strategy for proving closeness of AH,ProgH̄ and AH,TransH̄ is to replace, query by query and iteration

by iteration, the body BH̄
P of the repeat loop of ProgH̄ = LoopB

H̄
P by the body BH̄

T of the repeat loop of

TransH̄ = LoopB
H̄
T .

In order to capture the corresponding hybrid game and hybrid step, we introduce the following game,
played by an oracle algorithm CH̄,˛ with the following features (see Fig. 5). During its run, C is allowed to
make multiple quantum read and classical write queries to H, and moreover one single query to an unspecified
oracle that is to be instantiated by BP or BT.

HBPC HBTC

Fig. 5. The oracle algorithm C, which makes an fixed number of (at most) qr quantum read queries to H, an expected
number of (at most) qw classical write queries to H, and one query to either BP or BT.

For parameters qr, qw, we then define adv(qr, qw) to be the maximal advantage of distinguishing the two
games from Fig. 5, i.e.,

adv(qr, qw) := max
C

∣∣∣Pr [1← CH̄,BP

]
− Pr

[
1← CH̄,BT

]∣∣∣ , (4)

maximized over all CH̄,˛ as above that make at most qr quantum read queries to H in the worst case and at
most qw classical write queries on average, regardless of how the unspecified oracle (˛) is instantiated.

The following allows us to control the closeness of AH,ProgH̄ and AH,TransH̄ in terms of adv(qr, qw).

Lemma 3. Let AH,• be given qH (read) queries to H and qS signing queries. Then for p as in (1), it holds
that

SD
(
AH,ProgH̄ ,AH,TransH̄

)
≤ qS

1− p
· adv

(
qH ,

qS
1− p

)
.
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At first glance, this is a straightforward hybrid argument, where we switch, one by one, the body of the
jth iteration of the repeat loop in the ith signing query from BP to BT; however, one needs to be careful since
there is no fixed upper bound on the number of times the loop in Prog and Trans is repeated. However, via
similar reasoning as in [BBD+23], we can exploit that it becomes less and less likely that the loop where we
switch from BP to BT is reached, and so we can bound the distinguishing advantage by an infinite geometric
series, which can be controlled. For this to work it is crucial that A cannot influence the number of loop
repetitions (by the way of choosing m); whether the loop is repeated or not depends solely on the random
choice of r.

Proof of Lemma 3. Let

GH̄,•
i := AH,[(TransH̄)i−1,•,(ProgH̄)qS−i]

be a run of A such that the first i−1 signing queries are answered by Trans, the ith signing query is answered
by an unspecified oracle (which will later be instantiate either by Trans or by Prog), and all remaining signing
queries are answered by Prog. By construction, GH̄,•

i makes qH quantum read queries to H, an expected
number of at most qS/(1 − p) classical write queries to H (the ones made by the runs of Trans and Prog),
and one query to the unspecified oracle. Furthermore,

AH,ProgH̄ = GH̄,ProgH̄

1 , GH̄,TransH̄

i = GH̄,ProgH̄

i+1 and GH̄,TransH̄

qS = AH,TransH̄ .

Our goal is to show the closeness of GH̄,TransH̄

i and GH̄,ProgH̄

i for every i ∈ {1, . . . , qS}, with error at most
adv

(
qH , qS

1−p
)
/(1− p), which then implies the claim via

AH,ProgH̄ = GH̄,ProgH̄

1 ≈ GH̄,TransH̄

1 = GH̄,ProgH̄

2 ≈ · · · ≈ GH̄,TransH̄

qS = AH,TransH̄ .

To show the claimed closeness, we do a similar hybrid argument as above, but now over the different
iterations of the repeat loop in Trans and Prog. Concretely, we consider

LoopH̄,˛
j := Loop[(B

H̄
T )j−1,˛,(BH̄

P )∞]

and observe that

LoopH̄,BP

1 = ProgH̄ , LoopH̄,BT

j = LoopH̄,BP

j+1 ,

and LoopH̄,BP
∞ = LoopH̄,BT

∞ = TransH̄ .

Therefore, it suffices to show the following closeness claims:

GH̄,ProgH̄

i = GH̄,Loop
H̄,BP
1

i ≈ GH̄,Loop
H̄,BT
1

i = GH̄,Loop
H̄,BP
2

i

≈ · · · ≈ GH̄,Loop
H̄,BP
k

i ≈ GH̄,Loop
H̄,BP
∞

i = GH̄,TransH̄

i (5)

as k tends to infinity.

The last closeness claim is rather straightforward. Indeed, LoopH̄,BP
∞ and LoopH̄,BP

k behave (potentially)
differently only if the repeat loop, which is at the core of the two algorithms, is repeated at least k times,
which happens only if all the k prior calls to BT produce ⊥.14 Formally, we write Ek for this event that the
loop is repeated at least k times, and we observe that it happens with probability Pr[Ek] = pk−1 only. Then
Loopk[¬Ek] = Loop∞[¬Ek], and therefore, exploiting that Gi makes only one call to (whatever version of)
Loop,

SD

(
GH̄,Loop

H̄,BP
k

i ,GH̄,Loop
H̄,BP
∞

i

)
≤ SD

(
GH̄,Loop

H̄,BP
k [Ek]

i ,GH̄,Loop
H̄,BP
∞ [Ek]

i

)
Pr[Ek]

≤ Pr[Ek]

≤ pk−1 .

14 It is actually necessary to loop for k+1 iterations for the two to behave differently, but we do not need to be tight
here.
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It remains to show that GH̄,Loop
H̄,BP
j

i ≈ GH̄,Loop
H̄,BT
j

i for every j. Similar to above, we note and exploit that

LoopH̄,BP

j [¬Ej ] = LoopH̄,BT

j [¬Ej ] ,

i.e., the two behave identically if the jth iteration is not reached. Thus,

SD

(
GH̄,Loop

H̄,BP
j

i ,GH̄,Loop
H̄,BT
j

i

)
≤ SD

(
GH̄,Loop

H̄,BP
j [Ej ]

i ,GH̄,Loop
H̄,BT
j [Ej ]

i

)
Pr[Ej ]

≤ SD
(
CH̄,BP

i,j , CH̄,BT

i,j

)
pj−1

≤ adv
(
qH , qS

1−p

)
pj−1 ,

where the second inequality is obtained by letting CH̄,˛
i,j to be the oracle algorithm GH̄,LoopH̄,˛

j [Ej ]

i , which
performs the run of Loopj [Ej ] (which is promised to reach the jth iteration) internally, but forwards the
oracle query. Noting that CH̄,˛

i,j is as required, with at most qH quantum read queries to H and an average of
at most qS/(1− p) classical write queries, the final upper bound applies. Also here, we emphasize that Ej is
independent of H, and so in this definition of Ci,j the random oracle H remains uniformly random and thus
the upper bound indeed applies.

Adding up all the error terms in (5), we get that

SD
(
GH̄,ProgH̄

i ,GH̄,TransH̄

i

)
≤ adv

(
qH ,

qS
1− p

) k−1∑
j=1

pj−1 + pk−1 .

By letting k →∞, the right hand side converges to

1

1− p
adv

(
qH ,

qS
1− p

)
,

which concludes the proof.

The main technical challenge, and so the main innovation of this work, lies in establishing the following.

Proposition 1. For any positive qr, qw ∈ Z and for adv as specified in (4)

adv(qr, qw) ≤ (5qw + qr)ϵ+ 2
√
qrϵ .

We note that the only difference between BP and BT is whether H gets reprogrammed or not in case
z = ⊥ (in which case r remains unknown). This difference can only be detected when C makes a future
query to H on input r; but due to the assumed high entropy in r, this is unlikely to happen. Turning this
intuition into a proof when C can make quantum queries to H results in a hybrid argument over the qr
queries to H, which in turn results in a bound on the distinguishing advantage of the order qr

√
ϵ. Thus,

the actual challenge lies in finding a hybrid argument that shows that the advantage actually scales as
√
qrϵ

(plus negligible terms).

Proof of Proposition 1. For the sake of the analysis, we introduce the following aborting variants of BP and
BT, defined in Fig. 6. The only different to the non-aborting variants is line 6., where aBP and aBT instruct to
abort instead of returning (r, z) in case z ̸= ⊥. We stress that the abort command is a global abort, causing
the ambient game (CH̄,aBP or CH̄,aBT) to abort if z ̸= ⊥, instead of returning (r, z) to the ambient game then.
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aBH̄
P (m):

1: r ← D
2: H(r,m) := y ← Y
3: z ← f(r, y)
4: if z ̸= ⊥ then H(r,m) := y
5: if z = ⊥ then return ⊥
6: else abort

aBT(m):

1: r ← D
2: y ← Y
3: z ← f(r, y)
4: if z ̸= ⊥ then H(r,m) := y
5: if z = ⊥ then return ⊥
6: else abort

Fig. 6. Aborting variants of BP and BT, which cause the ambient game to abort if z ̸= ⊥, instead of returning (r, z).
Note that Line 4 is irrelevant for aBT.

Since BH̄
P and BH̄

T behave identically anyway if z ̸= ⊥ (both have reprogrammed H(r,m) and return
(r,m)), asking to abort in that a case does not affect the distinguishing advantage, i.e.,

Pr
[
1← CH̄,BH̄

P

]
− Pr

[
1← CH̄,BH̄

T

]
= Pr

[
1← CH̄,aBH̄

P

]
− Pr

[
1← CH̄,aBT

]
.

In order to show that the right hand side is small, we proceed through the following sequence of hybrid
games G0 to G5, given in Fig. 7. We refer to the Gi’s as “games” but after all these are just algorithms GH̄i
with write access to H, and so the concepts from Sect. 2.1 readily apply.

We also note that GH̄0 is semantically equal to CH̄,aBH̄
P , i.e. GH̄0 = CH̄,aBH̄

P ; we merely have split C into two
parts, which respectively captures C’s behavior before and after the call to aBH̄

P , and we have spelled out

aBH̄
P . Correspondingly for GH̄5 and CH̄,aBH̄

T .

G0:

1: (m, st)← CH̄0
2:
3: r ← D
4: H(r,m) := y ← Y
5: z ← f(r, y)
6: if z ̸= ⊥ then abort
7: b← CH̄1 (st,⊥)
8: return b

G3:

1: (m, st)← CH̄0
2: b← CH̄1 (st,⊥)
3: r ← D
4: H(r,m) := y ← Y
5: z ← f(r, y)
6: if z ̸= ⊥ then abort
7:
8: return b

G1:

1: (m, st)← CH̄0
2:
3: r ← D
4: y := H(r,m)
5: z ← f(r, y)
6: if z ̸= ⊥ then abort
7: b← CH̄1 (st,⊥)
8: return b

G4:

1: (m, st)← CH̄0
2: b← CH̄1 (st,⊥)
3: r ← D
4: y ← Y
5: z ← f(r, y)
6: if z ̸= ⊥ then abort
7:
8: return b

G2:

1: (m, st)← CH̄0
2: b← CH̄1 (st,⊥)
3: r ← D
4: y := H(r,m)
5: z ← f(r, y)
6: if z ̸= ⊥ then abort
7:
8: return b

G5:

1: (m, st)← CH̄0
2:
3: r ← D
4: y ← Y
5: z ← f(r, y)
6: if z ̸= ⊥ then abort
7: b← CH̄1 (st,⊥)
8: return b

Fig. 7. The hybrid games.

Game hop G0 to G1. The game G1 is obtained from G0 by replacing the reprogramming stepH(r,m) := y ← Y
to the hash evaluation y := H(r,m) in line 4. Therefore, recalling the bound qr on the number of quantum
read queries to H and the bound qw on the expected number of (classical) write queries of C, from directly
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applying our variant of the adaptive reprogramming lemma (Lemma 1) we obtain∣∣ Pr [1← G0]− Pr [1← G1]
∣∣ ≤ (2qw +

qr
2

)
ϵ+
√
qrϵ .

As a quick remark, considering the bigger context, we note that y is now computed as in the original signing
oracle; thus, at first glance it seems that we are making a step back again, towards AH,Sign instead of AH,Trans.
However, it is a crucial step in this delicate sequence of hybrids.

Game hop G1 to G2. The game G2 is identical to G1 except that the run of aBP (including the decision to
abort) is delayed to the very end of the game. Conditioned on the event that the execution of CH̄1 (st,⊥)
does not reprogram H at the point (r,m), for the r sampled in step 3., the two games G1 and G2 behave
identically. I.e., using our formalism,

G1
[
CH̄1 (st,⊥) does not reprogram H(r,m)

]
= G2[ CH̄1 (st,⊥) does not reprogram H(r,m) ] .

Due to the min-entropy requirement (2) on r, and due to the bound qw on the expected number of write
queries that C performs, the probability that CH̄1 (st,⊥) does reprogram H(r,m) is at most qwϵ (and it is the
same probability in both games). Therefore,∣∣ Pr [1← G1]− Pr [1← G2]

∣∣ ≤ qwϵ .

Game hop G2 to G3. The game G3 is defined from G2 by replacing the hash evaluation y := H(r,m) in line
4 to reprogramming H(r,m) := y ← Y. This is again a direct application of the adaptive reprogramming
lemma, and so ∣∣ Pr [1← G2]− Pr [1← G3]

∣∣ ≤ (2qw +
qr
2

)
ϵ+
√
qrϵ .

Game hop G3 to G4. The game G4 is obtained from G3 by dropping the reprogramming H(r,m) := y in line
4. Since there are no further queries to H after that point, this change has no effect on the output b, and so

Pr [1← G3] = Pr [1← G4] .

Game hop G4 to G5. The game G5 is the same as G4, but the run of CH̄1 (st,⊥) is moved to the end again.
This is just a syntactic change, which only affects when the abort decision is made, but does not affect the
actual outcome of the game. Hence

Pr [1← G4] = Pr [1← G5] .

Collecting the upperbounds, the proof is concluded.

4 Concrete Analysis of Dilithium

We note that Dilithium
(
KeyGenDilithium,Sign

H
Dilithium,Ver

H
Dilithium

)
, as detailed in [BBD+23], is captured as an

instance of our previously defined generalized Fiat-Shamir with aborts signature scheme. Therefore, in this
section, we apply our main result and obtain a better CMA-to-NMA reduction for Dilithium.

In order to apply our main result, we need to control the distributions of psk and ϵsk over the random
choice of (sk, pk) ← KeyGenHDilithium. For psk, we take the existing heuristic as in [BBD+23] that provides
an upperbound p̄ of psk for all keys simultaneously, i.e. Pr[psk ≤ p̄] = 1. For ϵsk we provide a numerical
upperbound in Section 4.1 that is worked out via the similar approach as in Appendix A of the full version
of [BBD+23]. In addition, we also provide an analytic bound for ϵsk in Section 4.2.
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4.1 Controlling ϵsk numerically

Each key pair (sk, pk) of the Dilithium scheme contains an k × ℓ matrix A for k ≥ ℓ. Each component of A
is chosen uniformly and independently from the cyclotomic ring Rq := Fq[X]/(Xn +1), where Xn +1 splits
completely in the finite field Fq of order q. Let A□ ∈ Rℓ×ℓ

q be the top-most square sub-matrix of A. It has

been shown in Section A.1 of the full version of [BBD+23], that the matrix A□ gives an upperbound of the
corresponding ϵsk as follows:

ϵsk ≤
(
2γ2 + 1

2γ1 − 1

)nℓ

· qnℓ−rank(A
□) , (6)

where γ1, γ2 ∈ Z>0 are relevant parameters such that 0 < γ2 < γ1 < q/2, as described in Table 2. For a
suitable a ∈ Z>0 (which is determined via computer optimization), let Γϵ be the event that rank(A

□) ≥ nℓ−a.
Aided by computer again, we numerically compute an upperbound ϵ̄ of Pr[Γϵ] ·E[ϵsk | Γϵ] and an upperbound
of Pr[¬Γϵ] via the similar approach as in Appendix A of the full version of [BBD+23], and then plug the
numbers into Corollary 1 with n, ℓ, q, γ1, γ2 as specified in Fig. 10 of the full version of [BBD+23], which we
duplicate below.

n ℓ q γ1 γ2

NIST2 256 4 8380417 217 (q − 1)/88

NIST3 256 5 8380417 219 (q − 1)/32

NIST5 256 7 8380417 219 (q − 1)/32

Table 2. NIST{2, 3, 5} parameters for Dilithium as in [BBD+23, Fig. 10]

We compare the obtained (quantum) security loss in Corollary 1 with the corresponding one in [BBD+23]
as follows (taking Γp as always satisfied, and a heuristic choice for p̄, as in [BBD+23]):

p̄ qS qH a Pr[¬Γϵ] Pr[Γϵ] · E[ϵsk | Γϵ] our loss [BBD+23]

NIST2 ≤ 49
64

264
2128 5 ≤ 2−99 ≤ 1.53924 · 10−132 2−85 2−62

264 6 ≤ 2−117 ≤ 4.99773 · 10−131 2−114 2−115

1 8 ≤ 2−153 ≤ 5.11022 · 10−128 2−141 2−115

NIST3 ≤ 103
128

264 2192 23 ≤ 2−440 ≤ 9.38300 · 10−354 2−421 2−365

NIST5 ≤ 759
1024

264 2256 33 ≤ 2−641 ≤ 4.82293 · 10−499 2−641 2−543

Table 3. Concrete security loss of Dilithium, worked out via numeric calculation as in [BBD+23].

4.2 Controlling ϵsk analytically

Next, we give an analytic bound controlling rank(A□) and hence ϵsk via (6). Crucially, by Lemma 8 in the
full version of [BBD+23], over the random choice of the key pair (sk, pk), the distribution of rank(A□) is
identical to that of

∑
i∈[n] rank(Di) where D1, . . . ,Dn ← Fℓ×ℓ

q are sampled uniformly and independently,
which we bound below.

Theorem 2. Let ℓ, n ≥ 1 and q be a prime. Then for D1, . . . ,Dn ← Fℓ×ℓ
q and for every a ≥ 0,

Pr

∑
i∈[n]

rank(Di) ≤ nℓ− a

 ≤ e4/3
(
n

q

)a

·
(
1− 1

q

)−nℓ
.
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Proof. Informally speaking, our analysis relies on the observation that the co-rank distribution of the random
square matrices Di ← Fℓ×ℓ

q is almost independent of ℓ for large q, i.e. there is an approximation function

f(q, r) independent of ℓ (which turns out to be q−r
2

), such that for every r ≤ ℓ,

Pr [corank(Di) = r] = f(q, r) · (1 + o(1)) ,

as q → ∞, where corank(Di) := ℓ − rank(Di) and the underlying constants of the asymptotic bound may
depend on r, ℓ. In fact, as has been presented in Equation (0-2), page 38 of [Bel93] (see [FG15, Equation (1)]
for a simpler phrasing), there is a concrete bound on the residue o(1) term as below

Pr [corank(Di) = r] = q−r
2

·
∏

1≤i≤ℓ(1−
1
qi )
∏

r<i≤n(1−
1
qi )∏

1≤i≤ℓ−r(1−
1
qi )
∏

1≤i≤r(1−
1
qi )

≤ q−r
2

·
(
1− 1

q

)−ℓ
. (7)

We notice that, for corank(A□) := nℓ− rank(A□) and for every t > 0

Pr
[
corank(A□) ≥ a

]
≤ e−at · E

[
ecorank(A

□)·t
]
= e−at

∏
i∈[n]

E
[
ecorank(Di)·t

]

≤ e−at ·

∑
r≥0

ert · q−r
2

n

·
(
1− 1

q

)−nℓ

≤ e−at · exp

(∑
r>0

n · ert · q−r
2

)
·
(
1− 1

q

)−nℓ
, (8)

where the first inequality is via Markov’s bound, the first equality is via noticing that corank(A□) being
identically distributed as

∑
i corank(Di), and that D1, . . . ,Dn are mutually independent, the second in-

equality is via (7), and the last inequality is via the fact that 1 + x ≤ exp(x) for every x ∈ R. Plugging in
t = ln(q)− ln(n), we immediately obtain

(8) ≤
(
n

q

)a

· exp

(∑
r>0

n−(r−1) · q−r(r−1)
)
·
(
1− 1

q

)−nℓ

≤
(
n

q

)a

· exp

∑
r≥0

n−r · q−2r
 · (1− 1

q

)−nℓ

≤
(
n

q

)a

· exp
(

1

1− 1/(nq2)

)
·
(
1− 1

q

)−nℓ
≤
(
n

q

)a

· e4/3 ·
(
1− 1

q

)−nℓ
,

where the last inequality is via the fact that q ≥ 2. This concludes the proof.

Combining the above and (6) with Γϵ : corank(A
□) ≤ a, we get

Pr [Γϵ] · E[ϵsk | Γϵ] ≤
∑

0≤r≤a

Pr
[
corank(A□) = r

]
· E
[
ϵsk
∣∣ corank(A□) = r

]
≤
∑

0≤r≤a

e4/3
(
n

q

)r

·
(
1− 1

q

)−nℓ
·
(
2γ2 + 1

2γ1 − 1

)nℓ

· qr

≤ a · e4/3 · na ·
(
2γ2 + 1

2γ1 − 1

)nℓ

·
(
1− 1

q

)−nℓ
.
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Corollary 2. Let Dilithium with relevant parameters n, q, ℓ, γ1, γ2 be as described in [BBD+23], and in
addition q ≥ nℓ. Then for every a ∈ Z>0 there is an event Γϵ of the key sk such that Pr [¬Γϵ] ≤ e7/3(n/q)a+1,
and

Pr [Γϵ] · E[ϵsk | Γϵ] ≤ a · e7/3 · na ·
(
2γ2 + 1

2γ1 − 1

)nℓ

.

Combining the above bound with Corollary 1 yields following concrete reduction, and Table 4 (taking Γp

as always satisfied, and a heuristic choice for p̄, as in [BBD+23]).

Corollary 3. Let Dilithium with relevant parameters n, q, ℓ, γ1, γ2 be as described in [BBD+23] and above,
and in addition q ≥ nℓ. Let 0 < p̄ < 1 and Γp be an event on (sk, pk) ← KeyGen that implies psk ≤ p̄.
Then for every UF-CMA attacker A making at most qH quantum queries to H and qS classical queries to
the signing oracle, the UF-NMA attacker B (dependent on A) as defined in Theorem 1 is such that

AdvCMA
Dilithium(A) ≤ AdvNMA

Dilithium(B) +
37 · qS
1− p̄

√
a · na(qH + 1)

(
2γ2 + 1

2γ1 − 1

)nℓ

+ Pr[¬Γp] ,

whenever

a :=


nℓ · lg

(
2γ1−1
2γ2+1

)
+ lg( qn )− lg

(
q2SqH

)
2 lg q − lg n

 ≥ 1 .

p qS qH a Pr[Γϵ] · E[ϵsk | Γϵ] loss

NIST2 ≤ 49
64

264
2128 7 ≤ 2−409 2−71

264 8 ≤ 2−401 2−99

1 10 ≤ 2−385 2−122

NIST3 ≤ 103
128

264 2192 26 ≤ 2−1065 2−366

NIST5 ≤ 759
1024

264 2256 38 ≤ 2−1481 2−543

Table 4. Concrete security loss of Dilithium from Corollary 3.
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Appendix

A Simulating Write Queries

Lemma 4. There exists a stateful oracle algorithm SH , which makes 1 read query per each read-query

invocation, and such that AH̄ = ASH

for every AH̄ .

Proof. The oracle algorithm SH operates by bookkeeping a list of classical write queries of A. Upon receiving
a write query (x, y), it first removes any occurrences of the form (x, ·) from the list (if there exists any) and
then inserts (x, y) into the list. Answering a read query then can be performed by SH , by invoking one single
query to H, as follows. Given a list {(x1, y1), . . . , (xL, yL)} ⊂ X × Y of classical write queries with pairwise
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distinct xi’s, SH (efficiently) computes the unitary |x, y⟩ 7→ |x, y +H ′(x)⟩ by means of a quantum algorithm
that makes a single quantum query to H, i.e. to the unitary |x, y⟩ 7→ |x, y +H(x)⟩, for H ′ defined as

H ′(x) =

{
yi if ∃ i : x = xi ,

H(x) otherwise .

This is trivial if S is given control access to H, i.e., access to the unitary |b, x, y⟩ 7→ |b, x, y + bH(x)⟩.
Furthermore, control access to H can be simulated using a single ordinary quantum access to H as follows:
S first prepares a uniform superposition of elements in Y in an auxiliary register |z⟩, applies a control swap
to |y, z⟩ with |b⟩ being the control bit, makes the quantum query to H, and finally applies a control swap
again. One can conclude by noting that SH perfectly simulates the view of the attacker A.
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