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Abstract. After more than half a decade since its initiation, NIST de-
clared Ascon as the winner of the LwC competition. In the first public
draft of AsconAEAD128, NIST recognized that Ascon has limitations
when used in multi-user applications. To mitigate this, NIST prescribed
the use of a 256-bit key in multi-user applications and produced an
instantiation on how to process this extra key size in the current As-
conAEAD128 API. While doing so, they identified a limitation of this
new scheme (which we refer to as mu-Ascon in this document): mu-Ascon
is vulnerable to committing attack and hence cannot be used in cases
where committing security is required. On the other hand, the full key-
binding property in Ascon, which separated it from other sponge-type
constructions, has been used to show that Ascon is much stronger in
the sense that it presents a key recovery resistance even in the case
where some intermediate state is recovered. We remark that the cur-
rent mu-Ascon has the limitation that only a partial key is bound during
initialization and finalization. In this work, we propose some alterna-
tive instantiations of AsconAEAD128 API for multi-user applications. In
comparison with the current mu-Ascon proposal, our first construction
Ascon-256.v2 guarantees CMT-4 committing security up to 64 bits, and
our second construction Ascon-256.v3 leads to both CMT-4 committing
security and full 256-bit key binding. Structurally, our instantiations use
only an extra-permutation call to provide these extra security features
compared to mu-Ascon, which has a negligible overhead in terms of per-
formance (given the lightweight nature of the Ascon permutation).

Keywords: Ascon, Multi-user Security, 256-bit Key, AEAD , Tight Security,
Lightweight Cryptography

1 Introduction

Authenticated Encryption with Associated Data (AEAD) schemes are a funda-
mental class of symmetric-key encryption schemes that have been extensively
studied. Over the past two decades, the demand for AEAD schemes suitable for



lightweight devices without compromising security has increased dramatically.
To address this need, in 2018, the National Institute of Standards and Tech-
nology (NIST) issued a call for proposals [18] (known as the NIST Lightweight
Cryptography (LwC) competition) for a lightweight AEAD scheme suitable for
standardization. The first round received approximately 56 submissions, and af-
ter nearly half a decade of rigorous research and evaluation, NIST selected the
Ascon-128a protocol as the winner. In [22], NIST renamed the scheme to As-
conAEAD128 and published an initial public draft of it for comment. Ascon’s
security has been extensively analyzed for over a decade since its participation
in the CAESAR competition, where it also won in the resource-constrained use
case.

1.1 Existing Analysis on Ascon

In the provable security domain, most studies on Ascon have focused on conven-
tional AEAD security, namely privacy and authenticity. Initially, Ascon was pri-
marily considered a Duplex-type construction. Chakraborty et al. [2] and Lefevre
et al. [11] independently were among the first to treat AsconAEAD as a dedicated
mode when proving security. They demonstrated that the double key binding
present in both the initialization and finalization states provides Ascon AEAD
with significantly stronger security compared to the Duplex construction. The
authors in [2] showed that these additional key bindings provide Ascon AEAD
security up to D ≪ 2c, T ≪ 2c in the ideal permutation model, where D and
T represent the data and time complexity of the attacker, respectively, and c is
the rate size. Independently, Lefevre et al. [11] showed that, unlike the general
Duplex construction, Ascon maintains authenticity security even under state-
recovery attacks; that is, recovering some intermediate state does not lead to
forgery or key recovery. They derived a tight security bound against forgery un-
der state-recovery in nonce-misuse settings. Furthermore, they provided bounds
for Ascon in the multi-user setting, which were later improved by Chakraborty et
al. [3]. A dominant term appearing in both [11] and [3] in the multi-user setting
is of the form µT/2κ, where µ is the number of users and κ is the key size. Since
the key size of both Ascon-128 and Ascon-128a is 128 bits, achieving a security
level of T = 2112 does not allow for a large number of users (µ). To address this
limitation, the authors in [3] proposed a 256-bit key variant of Ascon, named
Ascon-256, and demonstrated its security even with a large number of users.

Besides conventional AEAD security, modern AEAD schemes offer additional
security guarantees such as related-key security (RKA), key-dependent message
security (KDM), and context-committing security (CMT). Farshim et al. [9]
introduced the concept of key-committing security, where an adversary aims
to find two keys K ̸= K ′ and a ciphertext-tag pair (C, T ) such that (C, T )
is valid under both keys. It was quickly shown that standard AEAD security
does not imply key-committing security, and popular schemes like GCM [10,7],
GCM-SIV [13], CCM [8,14], and ChaCha20-Poly1305 [10,17] were found to be
vulnerable. These attacks often had significant practical implications, making
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committing security a critical issue. Bellare and Hoang [1] proposed general-
ized security notions where the adversary’s goal is to find two different contexts
(K,N,A,M) = (K ′, N ′, A′,M ′) that produce the same ciphertext-tag pair. They
defined these notions as CMT-1, CMT-3, and CMT-4, where CMT-1 represents
conventional key-committing security, CMT-3 requires (K,N,A) ̸= (K ′, N,A′),
and CMT-4 requires (K,N,A,M) ̸= (K ′, N ′, A′,M ′). They also showed that
CMT-3 is equivalent to CMT-4 and is strictly stronger than CMT-1. Conse-
quently, designing CMT-4 secure AEAD schemes has become a crucial research
area. In fact, NIST’s workshop on updating block-cipher modes [19] explicitly
mentioned that commitment security will be a mandatory feature for updated
block ciphers. Recently, Naito et al. [16] studied the context-committing security
of AsconAEAD128 and proved that it achieves CMT-4 security up to the birth-
day bound in tag size. They also suggested a method to enhance this security
by padding the message with zeros.

1.2 AsconAEAD128 in Multi-User Applications

Recently, in their first public draft [22] for AsconAEAD128, NIST acknowledged
its limitations in multi-user settings due to the µT/2κ term in the security bound.
To mitigate this, NIST proposed using a 256-bit key in multi-user scenarios,
with the key processed according to the initialization procedure described by
Dobraunig et al. [6].

In Section 5.2, we demonstrate that this multi-user instance of AsconAEAD128
(hereafter referred to as mu-Ascon) is susceptible to complete key recovery under
state-recovery attacks in T = 2κ/2 and hence the primary time/data complexity
of this key-recovery attack is determined by the complexity of the intermediate
state-recovery attack. The current key-recovery security guarantees against this
attack for mu-Ascon rely solely on the time/data complexity restrictions speci-
fied in [18,22]. Our current attack does not violate these restrictions. However,
if future advanced attacks reduce state-recovery attack complexities below these
limits, complete key recovery will become a real concern. The “power of key-
binding” (as termed in [11]) of mu-Ascon will then be limited by the strength of
the lower half of the key.

Here we remark that the Ascon-256 construction is resistant to this attack
due to the full 256-bit key binding. Unfortunately, the current Ascon-256 mode
cannot be instantiated with the AsconAEAD128 mode API.

Another disadvantage of mu-Ascon, is that it is only suitable for applications
where committing security is not required. This was acknowledged in the draft
itself [22] showing a trivial committing attack. While committing security was
not an initial requirement in the original NIST call [18], we must argue that it is
a crucial security property for any modern and future-proof standardized AEAD
scheme.
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1.3 Our Contributions

Motivated by the newly introduced mu-Ascon with a 256-bit key, as described
in the recent NIST public draft [22], this paper analyzes this new use case from
a provable security perspective.

More specifically, in this draft, we deal with the two weaknesses exhibited by
the current mu-Ascon instantiation. Namely,

1. It has only partial security against key-recovery under state recovery attacks.

2. It has no commitment security.

In this regard with some additional tweaks in the Ascon-256 construction
by Chakraborty et al.[3], we generate two schemes which we call Ascon-256.v2
and Ascon-256.v3 for the multi-user settings, which are compatible with the
AsconAEAD128 API. Ascon-256.v2 is able to resist CMT-4 attacks, while Ascon-
256.v3 offers protection against both CMT-4 attacks and key-recovery under
state recovery attacks. These improvements only come with a minimal perfor-
mance cost: an additional Ascon permutation.

Table 1: Table comparing our provable security results in the ideal cipher model
mu-Ascon, Ascon-256.v2 and Ascon-256.v3 use-cases in the nonce-respecting-
multi-user settings. Sr-Kr:=Key-recovery under state recovery ; T is measured
in the unit of number of permutation calls.

security-type Variant Adversarial-advantage
Sr-Kr mu-Ascon/ Ascon-256.v2 ≥ T

2128 [section 5.2]
CMT-4 mu-Ascon 1 [22]

CMT-4 Ascon-256.v2 ≤ T 2

2128 [section 5.1].

CMT-4 Ascon-256.v3 ≤ T 2

2128 [section 5.1].

To prove the committing security, we reuse the committing security of As-
conAEAD128 result by Naito et al. [16]. Given the lightweight nature, since our
Ascon-256.v2 and Ascon-256.v3 use cases require only one extra permutation call
per query, hence an efficiency difference between it and the current use-case is
negligible compared to the amount of extra security guarantees it provides.

2 Preliminaries

2.1 Notations

Let {0, 1}n represent the set of bit strings of length n, and {0, 1}+ denote the
set of bit strings of arbitrary length. The empty string is denoted by λ, and we
define {0, 1}∗ = {λ} ∪ {0, 1}+. For any integers a ≤ b ∈ N, [b] and [a, b] denote
the sets {1, 2, . . . , b} and {a, a+ 1, . . . , b}, respectively. For n, k ∈ N with n ≥ k,
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the falling factorial is defined as (n)k := n(n−1) · · · (n−k+1). It’s worth noting
that (n)k ≤ nk.

For any bit string x = x1x2 · · ·xk ∈ {0, 1}k of length k, and for n ≤ k, we
use ⌈x⌉n := x1 · · ·xn (and ⌊x⌋n := xk−n+1 · · ·xk) to denote the most (and least)
significant n bits of x. The bit concatenation operation is denoted by ∥. The
notation (x1, . . . , xr) is also used to represent the bit concatenation operation
x1∥ · · · ∥xr, where xi ∈ {0, 1}∗. For instance, if V := x∥z := (x, z) ∈ {0, 1}r ×
{0, 1}c, then ⌈V ⌉r = x and ⌊V ⌋c = z. The bitwise XOR operation is denoted by
⊕.

For a finite set X , X $← X denotes the uniform and random sampling of X
from X , and X

wor← X denotes sampling without replacement of X from X .
Padding and Parsing a Bit String. Let r > 0 be an integer and X ∈ {0, 1}∗.
Let d = |X| mod r (the remainder while dividing |X| by r).

pad(X) = X∥1∥0r−1−d.

GivenX ∈ {0, 1}∗, let x = ⌈ |X|+1
r ⌉. We define (X1, . . . , Xx)

r←∗ X asX1∥ · · · ∥Xx =
X, |X1| = · · · = |Xx−1| = r and

Xx =

{
λ if |X| = r(x− 1)

⌊X⌋|X|−r(x−1) otherwise
.

For N ≥ 4, n = log2 N , we define

mcoll(q,N) =


3 if 4 ≤ q ≤

√
N

4 log2 q
log2 log2 q if

√
N < q ≤ N

5n
⌈

q
nN

⌉
if N < q.

2.2 Authenticated Encryption with Associated Data: Definition
and Security Model

An authenticated encryption scheme with associated data functionality, abbre-
viated as AEAD, is characterized by a tuple of algorithms AE = (Enc,Dec).
These algorithms, referred to as the encryption and decryption algorithms, op-
erate over the key space K, nonce space N , associated data space A, message
space M, ciphertext space C, and tag space T . The functionalities are defined as
follows:

Enc : K×N ×A×M→ C × T and Dec : K×N ×A× C × T →M∪ {rej}.

Here, rej signifies that the tag-ciphertext pair is invalid and consequently re-
jected. Additionally, the correctness condition is imposed:

Dec(K,N,A,Enc(K,N,A,M)) = M for any (K,N,A,M) ∈ K ×N ×A×M.

For a key K ∈ K, we use EncK(·) and DecK(·) to denote Enc(K, ·) and Dec(K, ·),
respectively. In this paper, we consider K = {0, 1}κ,N = {0, 1}ν , T = {0, 1}τ ,
and A,M = C ⊆ {0, 1}∗.
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AEAD Security in the Random Permutation Model.
Let Perm(b) denote the set of all permutations over {0, 1}b and Func(N × A ×
M,M× T ) denote the set of all functions from (N,A,M) to (C, T ) such that
|C| = |M |. We consider the AEAD security in the multi-user (mu) setting,
parameterized by the number of users µ. Let:

– Π
$← Perm(b) (we use the superscript ± to denote bidirectional access to Π),

– Γ1, . . . , Γµ
$← Func(N ×A×M,M×T ),

– rej denotes the degenerate function from (N ,A,M, T ) to {rej}, and
– K1, . . . ,Kµ

$← K.

We have the following definition:

Definition 1. Let AEΠ be an AEAD scheme based on the random permutation
Π, defined over (K,N ,A,M, T ). The mu-AEAD advantage of an adversary A
against AEΠ is defined as

Advmu−aead
AEΠ

(A ) :=

∣∣∣∣∣∣∣∣ Pr
(Ki)

µ
i=1

$←K
Π±

[
A (EncKi ,DecKi )

µ
i=1,Π

±
= 1

]
− Pr

(Γi)
µ
i=1

Π±

[
A (Γi)

µ
i=1,rej,Π

±
= 1

]∣∣∣∣∣∣∣∣ .
Here A EncKi ,DecKi ,Π

±
denotes A ’s response after its interaction with EncKi , DecKi ,

and Π± (i.e., both forward and backward queries to Π) respectively. Similarly,

A Γi,rej,Π
±
denotes A ’s response after its interaction with Γi, rej, and Π± respec-

tively.
In this paper, we assume that the adversary is adaptive. This means that the

adversary neither issues duplicate queries nor requests information for which the
response is already known due to some previous query. Let qe, qd, and qp represent
the number of queries made across all EncKi , all DecKi , and Π±, respectively.
Furthermore, let σe and σd denote the sum of input lengths (including associated
data and message) across all encryption and decryption queries, respectively.
Additionally, let σ := σe + σd represent the combined resources for construction
queries.

Remark 1. Here σ corresponds to the online or data complexity, and qp corre-
sponds to the offline or time complexity of the adversary. An adversary adhering
to the specified resource constraints is referred to as an (qp, σe, σd)-adversary.

2.3 H-coefficient Technique

Consider an adversary A , which is deterministic and computationally unbounded,
attempting to distinguish between the real oracle, denoted as Ore, and the ideal
oracle, denoted as Oid. The interaction of A with its oracle is captured by the
query-response tuple denoted as ω. In certain scenarios, after the query-response
phase of the game, the oracle may choose to reveal additional information to
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the distinguisher. In such cases, the extended definition of the transcript may
include that additional information. Let Θre (respectively, Θid) represent the
random transcript variable when A interacts with Ore (respectively, Oid). The
probability of realizing a specific transcript ω in the security game with an oracle
O is referred to as the interpolation probability of ω with respect to O. Given
the determinism of A , this probability depends solely on the oracle O and the
transcript ω. A transcript ω is considered realizable if Pr [Θid = ω] > 0. In this
paper, Ore = (EncK,DecK,Π

±), Oid = (Γ, rej,Π±), and the adversary aims to
distinguish Ore from Oid in an AEAD sense.

Proposition 1 (H-coefficient technique [20,21]). Let Ω be the set of all
realizable transcripts. For some ϵbad, ϵratio > 0, suppose there is a set Ωbad ⊆ Ω
satisfying the following:

– Pr [Θid ∈ Ωbad] ≤ ϵbad;
– For any ω /∈ Ωbad,

Pr [Θre = ω]

Pr [Θid = ω]
≥ 1− ϵratio.

Then for any adversary A , we have the following bound on its AEAD distin-
guishing advantage:

Advaead
Ore,Oid

(A ) ≤ ϵbad + ϵratio.

A proof of Proposition 1 can be found in multiple papers including [21,5,15].

2.4 Expected Multicollision in a Uniform Random Sample

Let S := (xi)i∈I be a tuple of elements from a set T . For any x ∈ T , we define
mcx(S) = |{i ∈ I : xi = x}| (the number of times x appears in the tuple). Finally,
we define multicollision of S as the mc(S) := maxx∈T mcx(S). In this section,
we revisit some multicollision results discussed in [2,4].

Lemma 1 ([4]). Let D be a set of size N ≥ 4, n = log2 N . Given random

variables X1, . . . ,Xq
$← D, we have E [mc(X1, . . . ,Xq)] ≤ mcoll(q,N).

Remark 2. Similar bounds as in the above Lemma 1 can be achieved in the case
of non-uniform samplings. Let Y1, . . . ,Yq

wr← {0, 1}b and define Xi := [Yi]r for
some r < b. If we take N = 2r for this truncated random sampling, then we have
the same result as above for multicollisions among X1, . . . ,Xq.

We also have the following general result:

Lemma 2 ([2]). Let A be an adversary which makes queries to a b-bit random
permutation Π± and τ -bit to τ -bit random function Γ. Let (X1, Y1), . . . , (Xq1 , Yq1)
and (Xq1+1, Yq1+1), . . . , (Xq1+q2 , Yq1+q2) be the tuples of input-output correspond-
ing to Π and Γ respectively obtained by the A . Let q := q1 + q2 ≤ 2b and
Zi := truncτ (Xi)⊕ trunc′τ (Yi) for i ∈ [q1] and Zi := (Xi ⊕ Yi) for i ∈ [q1 + 1, q],
where truncτ and trunc′τ represent some τ -bit truncations. For τ ≥ 2,

E [mc(Zq)] ≤ mcoll(q, 2τ ).

7



2.5 Partial XOR-Function Graph

A partial function L : {0, 1}b 99K {0, 1}c is a subset L = {(p1, q1), . . . , (pt, qt)} ⊆
{0, 1}b×{0, 1}c with distinct pi values. An injective partial function has distinct
qi values. Define

domain(L) = {pi : i ∈ [t]}, range(L) = {qi : i ∈ [t]}.

We write L(pi) = qi and for all p ̸∈ domain(L), L(p) = ⊥.
Consider a partial function P : {0, 1}b 99K {0, 1}b, r ∈ [b − 1]. Define P⊕ :

{0, 1}b × {0, 1}r 99K {0, 1}b as

P⊕(u, x) = P((u′ ⊕ x)∥u′′),

where u = u′∥u′′ and u′ ∈ {0, 1}r. Define G⊕ := GP
⊕
with labeled edges denoted

as u
x−→⊕ v. The details on Partial Function Graph are thoroughly discussed in

Section A.

2.6 Revisiting Committing Security of Ascon Modes

In this section we informally revisit the commitment security of Ascon mode as
proved by Naito et al [16].

for any non-negative integer z, with the initialization/finalization permuta-
tion P1 and intermediate permutation P2 define

AsconAEAD128
[P1,P2]
ZP .Enc(K,N,A,M) = AsconAEAD128[P1,P2].Enc(K,N,A,M∥0z).

Theorem 1. [16] Let P1 and P2 be independent random permutations. For any
CMT -4 adversary making a total of T queries to P1,P

−1
1 , P2, or P−12 , we have

Advcmt−4
AsconZP

≤
(
11T 2

2c
+

5T 2

2n−ν
+

0.5T 2

2τ+z
+

0.5T 2

2n+τ−κ−ν

)
·
(
1− 0.5T 2

2n

)
.

where, ν, κ, τ, c, n denote the nonce-size, key-size, tag-size , capacity-size and
permutation state-size respectively.

Assuming T < 2n/2, the term
(
1− 0.5T 2

2n

)
is O(1). Then assuming κ ≥

τ , the above bound shows that AsconZP is CMT -4 secure as long as T ≪
min{2 c

2 , 2
τ+z
2 , 2

n+τ−k−ν
2 }, ensuring min{ c2 ,

τ+z
2 , n+τ−k−ν

2 } bit CMT -4 security.

Corollary 1. In the random permutation model,

Advcmt−4
AsconAEAD128 = O

(
T 2

2128

)
.

Proof. The CMT -4 security of AsconAEAD128 follows from theorem 1 by plug-
ging in the actual parameter sizes and the observation that AsconAEAD128 is
AsconAEAD128ZP with z = 0.
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3 Existing Ascon Proposals in the Multi-User Settings

Consider the AsconAEAD128 design in the multi-user settings. due to the term
µT
2κ appearing in the security bound [11,3], the standard key size of 128-bits
doesn’t leave room for a large µ (number of users). In this section, we revisit
existing Ascon-based constructions, which are tailor-made to deal with large
numbers of users. More specifically, we revisit the modes of operations defined
in [22,3].

3.1 mu-Ascon

In the recently published public draft [22], NIST acknowledged the issue of hav-
ing a small key size for the use case where there are a large number of users. To
tackle this, they used the masked nonce initialization in the Duplex paradigm in-
troduced by Dobraunig et al. [6]. More specifically in the multi-user setting each
user has a 256-bit key and given a encryption tuple (N,A,M), an user uses its
key K := K1∥K2 in the AsconAEAD128 construction to get the ciphertext-tag
pair as follows:

mu-Ascon(K1∥K2, N,A,M) := AsconAEAD128.Enc(K1, N ⊕K2, A,M)

The advantages of this specific use instance are that it can be instantiated
directly with theAsconAEAD128 API and does not compromise the performance.

The disadvantage of this construction is that although it does not violet the
security requirement prescribed in [18], as shown in section 5.2, this use case is
prone to key-recovery under state recovery attack and in no case provide > 192-
bit key-recovery security.

Furthermore, it does not provide any committing security. For any two pair
(K,N) ̸= (K ′, N ′) such that K ⊕ 0128∥N = K ′ ⊕ 0128∥N ′ and any (A,M) this
outputs same (C, T ) pair. Here, we argue that, although the committing security
was not put in as an initial requirement in [18], it is a must-have security for a
future-ready standardized AEAD scheme.

3.2 Ascon-256

Another construction that is tailor-made for multi-user settings with a large
number of users was introduced by Chakraborty et al. [3] called the Ascon-256
construction. On the high level the construction is as follows:
Initialization : V0 = P (K∥IV )⊕ 064∥K.
data processing : given nonce N and associated data A, and message M
define A′ := N∥A, Process A′,M using the AsconAEAD128 associated data and
message processing protocols.
Finalization : in the finalization process xor K∥064 to the input of the per-
mutation and add ⌊K⌋τ o the output of the permutation to generate the tag.

The multi-user settings construction security follows the bounds achieved in
[3].
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The disadvantage of Ascon-256 is that in its present form; it cannot be di-
rectly instantiated using the AsconAEAD128 API due to the addition of full 256
bit K binding to the output (resp. input) of the initialization (resp. finalization)
permutation.

Remark 3. The commitment security of Ascon-256 is still an open problem, but
with a quick read of the proof in [16], we think it should follow in the same line
as AsconAEAD128. Since our objective is to come up with a construction which
is compatible with AsconAEAD128 API, we declare it as out of the scope of this
paper.

4 Ascon-256.v2, Ascon-256.v3: Alternate Proposals for
Multi-User Settings

In this section we modify the Ascon-256 construction so as to make it compatible
with the AsconAEAD128 API. Our main objective is to construct use-cases of
AsconAEAD128 which can resists against the weaknesses of mu-Ascon, i.e., they
should be resistant to

– CMT-4 attack
– Key recovery against state-recovery attack.

In this respect we define two new use-instances which we call Ascon-256.v2
and Ascon-256.v3 constructions depending on how the AsconAEAD128 API is
processed. More specifically,

– We define Ascon-256.v2 for the use-case when the user can only pre-processes
her input before feeding it in the AsconAEAD128.

– We define Ascon-256.v3 for the use-case when the user can also process the
AsconAEAD128 output before releasing it.

We present our constructions using the AsconAEAD128 construction as a
black-box. We start by defining two functions,

Fpre : {0, 1}256 × {0, 1}128 × {0, 1}∗ → {0, 1}128 × {0, 1}128 × {0, 1}∗

(K1∥K2, N,A) 7→ (K2,K1, A1)

where A1 := (N ⊕ ⌈K1⌉128)∥A.

Fpost : {0, 1}128 × ({0, 1}∗∪ ⊥)→ ({0, 1}∗∪ ⊥)

(K,⊥) 7→⊥

(K,M) 7→ (M ⊕ 0|M |−128∥K) if |M | ≥ 128

(K,M) 7→ ((M ⊕ ⌈K⌉|M |)) if |M | ≤ 128
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Definition 2. (Ascon-256.v2)

Ascon-256.v2.Enc(K1∥K2, N,A,M) = AsconAEAD128.Enc(Fpre(K1∥K2, N,A),M)

Ascon-256.v2.Dec(K1∥K2, N,A,C, T ) = AsconAEAD128.Dec(Fpre(K1∥K2, N,A), C, T )

Definition 3. (Ascon-256.v3)

Ascon-256.v3.Enc(K1∥K2, N,A,M) = (Fpost(K1, C), T )

where (C, T ) = AsconAEAD128.Enc(Fpre(K1∥K2, N,A), Fpost(K1,M)).

Ascon-256.v3.Enc(K1∥K2, N,A,M) = (Fpost(K1, C), T )

where (C, T ) = AsconAEAD128.Enc(Fpre(K1∥K2, N,A), Fpost(K1,M)).

Ascon-256.v3.Dec(K1∥K2, N,A,C, T ) = Fpost(K1,M)

where M = AsconAEAD128.Dec(Fpre(K1∥K2, N,A), Fpost(K1, C), T )

In the following section we compare different security notions for AsconAEAD128,
Ascon-256 and our new variants Ascon-256.v2, Ascon-256.v3.

5 Comparative Security Analysis of mu-Ascon,
Ascon-256.v2 and Ascon-256.v3

In this section, we first try to do a comparative security analysis of mu-Ascon,
Ascon-256.v2 and Ascon-256.v3 in the nonce-respecting multi-user settings under
different security notions. More specifically the CMT -4 security, key-recovery
under state recovery security of these constructions. To the best of our knowl-
edge the AEAD security of mu-Ascon has never been formally explored. In their
draft NIST [22] justify the AEAD security of mu-Ascon with reference to the
results in [6,3]. In this respect we will argue that Ascon-256 in [3], has a full key-
binding rather than the partial key binding in mu-Ascon and the analysis in [6]
was explored on the Duplex rather than Ascon mode. Hence, for the sake of com-
pleteness later in section 7 we do a revisit of the proofs in [3] with the necessary
adjustment needed in the analysis of mu-Ascon, Ascon-256.v2 and Ascon-256.v3.

5.1 CMT-4 Security of Ascon-256.v2 and Ascon-256.v3

In this section, we show that unlike mu-Ascon, our variants namely Ascon-256.v2
and Ascon-256.v3 both enjoy commitment security.

Theorem 2. For any CMT -4 adversary A ,

Advcmt−4
Ascon-256.v2(A ) ≤ Advcmt−4

AsconAEAD128(A ).
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Proof. Suppose there exists an adversary A who can break the CMT -4 security
of Ascon-256.v2. Let A outputs (K1∥K2, N,A,M) ̸= (K ′1∥K ′2, N ′, A′,M ′) such
that

Ascon-256.v2.Enc(K1∥K2, N,A,M) = Ascon-256.v2.Enc(K ′1∥K ′2, N ′, A′,M ′).

Note that Fpre is an injective function. Hence

(Fpre(K1∥K2, N,A),M) ̸= (Fpre(K
′
1∥K ′2, N ′, A′),M ′)

but

AsconAEAD128.Enc((Fpre(K1∥K2, N,A),M)) = AsconAEAD128.Enc((Fpre(K
′
1∥K ′2, N ′, A′),M ′)).

Hence the adversary A breaks the CMT -4 security of AsconAEAD128 by
outputting (Fpre(K1∥K2, N,A),M) ̸= (Fpre(K

′
1∥K ′2, N ′, A′),M ′).

Corollary 2. In the random permutation model,

Advcmt−4
Ascon-256.v2 = O

(
T 2

2128

)
.

Proof. The corollary follows from theorems 1 and 2.

Theorem 3. For any CMT -4 adversary A in the random permutation model,

Advcmt−4
Ascon-256.v3 = O

(
T 2

2128

)
.

Proof. The proof of this theorem can be proved with a similar approach as taken
by Naito et al. to prove the CMT -4 security of AsconAEAD128. We provide the
proof details in section 6.

5.2 Key-Recovery from State-Recovery Attack on mu-Ascon and
Ascon-256.v2 in Nonce-Respecting Multi-User Settings

We start by revisiting the security model defined by Lefevre et al. [12] which
they call the authenticity under state recovery. The authors formally define the
security model as follows.

Definition 4. [12] Consider an adversary A with access to two learning ora-
cles LE and LD, which are defined as E and D but that additionally leak all
input/output values of the evaluations of the inner permutations. We say that
A wins if it ever makes a query to one of its learning decryption oracles that is
successful and that is not the result of an earlier encryption query. This leads to
the following model:

Advsr−Auth
Ascon (A ) = Pr

[
A LE,LD forges

]
.
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In this section we extend the security model defined by Lefevre et al. [12] and
call it key-recovery under state recovery. The formal definition of the security
model in the multi-user settings is a simple extension of definition 4 and is as
follows.

Definition 5. Consider an adversary A with access to two learning oracles LEu
and LDu which are defined as Eu and Du for each of the users u such that for
some user u, they additionally leak all input/output values of the evaluations
of their inner permutations. We say that A wins if it can recover the entire
secret-key for one such user u:

Advmu−sr−kr
mu-Ascon,Ascon-256.v2,Ascon-256(A ) = Pr

[
A LE,LDrecovers the key for some user u

]
.

Now we explore the Key-recovery under state-recovery attack on mu-Ascon
and Ascon-256.v2. As the definition suggests the objective of the adversary is to
recover the entire secret-key of one of the users given an intermediate state has
been recovered for some encryption query made to the user. Note that, since
the intermediate states are processed using the duplex construction hence if for
some query with σe blocks of data for an user any of the intermediate state is
recovered then the state after the initialization and state-before the finalization
can be recovered in time complexity σe.

Theorem 4. Given some and thus all intermediate states of some mu-Ascon en-
cryption query by one of the users is know. Then there exists a nonce-respecting
adversary A who can recover the full 256-bit key of that user in q << 2129

queries. i.e.

Advmu−sr−kr
mu-Ascon (A ) ≥ q

2129

Proof. The attack is straight forward. But for the sake of completeness we define
how such an adversary A can work.

– A knows the X1, Yl, and T where X1 is the full intermediate state after the
initialization, Yl is the last intermediate state before the finalization and T
is the tag .

– A makes 2128 many permutation queries of the form P2(Yl⊕0128∥Ki,1∥064)i∈[2128]
and receives responses of the form Zi.

– For each Zi, A checks if ⌊Zi⌋128 ⊕Ki,1 = T .
– For all Zi such the A gets a matching, it makes one inverse permutation

query of the form (P2)−1(Xl ⊕ 0192∥Ki,2)i∈[2128] and receives responses of
the form Wi and checks if ⌊Wi⌋192 = IV ∥Ki,2.

– If the above check is successful the adversary define Ki,1 = N ⊕ ⌈Wi⌉128.
– A then verifies if Ki,1∥Ki,2 is the key for the user by making an empty data

query to the user and matching the tag received with the tag computed by
herself using Ki,1∥Ki,2 as the key.

13



If the number of Ki,2 such that ⌊Zi⌋128 ⊕Ki,1 = T is t. Then the number of
total permutation and inverse permutation queries required is at most 2128+t≪
2129.

Theorem 5. Given some and thus all intermediate states of some Ascon-256.v2
encryption query by one of the users is know. Then for any nonce-respecting
adversary can recover the full 256-bit key of that user in q << 2129 queries. i.e.

Advmu−sr−kr
Ascon-256.v2(A ) ≥ q

2129

Proof. Consider an adversary A which recovers the intermediate states for some
user. For that user,

– A knows the X1 and Yl and τ where X1 is the full intermediate state after
the initialization, Yl is the last intermediate state before the finalization and
T is the tag .

– A makes T many permutation queries of the form P2(Yl⊕0128∥Ki,2∥064)i∈[2128]
and receives responses of the form Zi.

– For each Zi, A checks if ⌊Zi⌋128 ⊕Ki,1 = τ .
– Once a Ki,2 is identified it makes T inverse permutation queries of the form

(P2)−1(Xl ⊕ (N ⊕Ki,2)∥064∥Ki,2)i∈[2128] and receives responses of the form
Wi and checks if Wi = Ki,1∥IV ∥Ki,2.

– If the above check is successful, then A verifies if Ki,1∥Ki,2 is the key for
the user by making an empty data query to the user and matching the tag
received with the tag computed by herself using Ki,1∥Ki,2 as the key.

If we assume P2 to be ideal random permutation then the expected number
of Ki,2 such that ⌊Zi⌋128⊕Ki,1 = T is 1. Then the number of total permutation
and inverse permutation queries required is at most 2129.

6 Proof of Theorem 3

Suppose the adversary makes q permutation queries (forward/backward) to the
ideal world oracles O. The oracle O chooses a random permutations P . Each
query (forward/backward) is responded by the oracle O using this random per-
mutation. Let F := {(Xi, Yi) | P (Xi) = Yi; i ∈ [q]} denotes the list generated
by the adversarial queries. We define the ordering ≺ on F such that given any
pair {(Xi, Yi) ̸= (Xj , Yj)} ∈ F , (Xi, Yi) ≺ (Xj , Yj) if and only if the query cor-
responding to Xi, Yi occurred before the query corresponding to (Xj , Yj). We
start by defining a Bad event generated due to F .

We say the adversary forms a ”full sequence” S = {(Xi, Yi) |i ∈ [0, tS ]} ⊆ F
if it represents the input/output states of the underlying permutation calls of
some valid decryption query

Ascon-256.v3.Dec((K1∥K2, N,A,C, T )) ̸=⊥

14



Given any sequence S define;

KS := ⌈X0⌉128;TS := ⌈Yt⌉128 ⊕KS ;

It is easy to note that for any full sequence S, the following equations holds.

(1) ⌊X0⌋64 = IV.
(2) ∀i ∈ [1, tS − 1], ⌈Yi⌉192 ⊕ ⌈Xi+1⌉192 ∈ {0192, 0191∥1}.
(3) ⌈Y0⌉192 ⊕ ⌈X1⌉192 = 064∥KS .
(4) ⌈YTS−1⌉192 ⊕ ⌈XTS

⌉192 ∈ {KS∥064,KS∥063∥1}.

Proposition 2. Suppose an adversary breaks the CMT -4 security game against
Ascon-256.v3. Then there exists two distinct full sequences S, S′ such that TS =
TS′ = T and they both correspond to the same cipher text.

Given any full sequence S = {(Xi, Yi) | i ∈ [0, tS ]} ∈ F , we call Sin =
{(Xi, Yi) | i ∈ [0, tS − 1]} the internal sequence of S. We define some bad events
while generating some internal sequence Sin using F . For any (Xi, Yi) ∈ F ,
define

∆i := {0192, 064∥⌈Xi⌉128, 0191∥1, }.

Fcon : There exists (Xi, Yi) ≺ (Xj , Yj) ∈ F , such that (Xj , Yj) is a forward query
and ⌈Yj⌉192 ⊕ ⌈Xi⌉192 ∈ ∆j .

Bcon : There exists (Xi, Yi) ≺ (Xj , Yj) ∈ F such that (Xj , Yj) is a backward query
and ⌈Yi⌉192 ⊕ ⌈Xj⌉192 ∈ ∆i.

Bend : There exists (Xi, Yi) ≺ (Xj , Yj) ∈ F , both backward queries ⌊Xj⌋64 = IV
and ⌈Xj⌉128 = ⌈Yj ⊕Xi⌉128.

Next consider the following events due to two distinct internal sequences.

Scoll: There exists two internal sequence Sin ̸= S′in in F and integers i ∈ [0, tS −
2], j ∈ [0, TS′ − 2] such that Sin[i] ̸= S′in[j] but Sin[i+ 1] = S′in[j + 1].

Define SBAD := Fconnect ∪ Bconnect ∪ Bend ∪ Scoll

Lemma 3.

Pr [SBAD] ≤ 7q2

2193
.

Proof. Proof of the lemma follows from the observation that F is generated using
a random permutation Π.

Proposition 3. If SBAD doesn’t occur, then the following holds in F .

– for all internal sequences Sin in F

Sin[0] ≺ · · · ≺ Sin[tS − 1]

15



– For any two internal sequences Sin ̸= S′in in F

Sin[tS − 1] ̸= S′in[tS′ − 1]

Corollary 3. If SBAD doesn’t occur in (F), then there exists at most q distinct
internal sequences in F .

Lemma 4. If SBAD doesn’t in F . Then,

Advcmt-4
Ascon-256.v3 ≤

q2

2129
+

3q2

2193
+

q4

2514
+

q3

2322
.

Proof. Let S, S′ denote the two full sequences in F generated by the CMT -4
adversary. Let Sin, S

′
in denote the internal sequences of S, S′. First suppose Sin =

S′in and C, T denote the corresponding ciphertext. Then if |C| = d mod 128,
from the construction of Ascon-256.v3 we must have,

⌊XtS ⊕XtS′ ⌋128 := ⌊K ′S ⊕K ′S′⌋d∥0128−d

where Sin[0] = IV ∥K ′S∥KS and S′in[0] = IV ∥K ′S′∥KS′ are fixed given any two
Sin, S

′
in.

With these observations we consider the following cases.

CASE1: Sin = S′in. But then we have

XtS = XtS′

and hence S = S′.

CASE2: Sin ̸= S′in, (XtS , YtS ) ≺ (XtS−1, YtS−1). In this case without loss of generality
we consider the following sub-cases.

• (XtS , YtS ) ≺ (X0, Y0). Note that this implies the case that given anyX,Y
in F one constructs a sequence Sin such that ⌈YtS−1⌉192⊕064∥⌈X0⌉128 =
⌈X⌉q. Further since XtS−1, YtS−1 must be a forward query, Hence prob-
ability this happens is bounded by q

2192 . varying over all possible Sin we

have probability of this case is bounded by q2

2193 .

• (X0, Y0) ≺ (XtS , YtS ) ≺ (XtS−1, YtS−1). Note that in this case given
(X0, Y0) there exists a unique forward query of the form XtS−1, YtS−1.
Further since (XtS , YtS ) ≺ (XtS−1, YtS−1) hence ⌈XtS⌉192 is fixed. Hence
in this case probability that ⌈YtS−1⌉192⊕ 064∥⌈X0⌉128 = ⌈XtS⌉q is again
bounded by 1

2192 varying over all (X0, Y0) ≺ (XtS , YtS ) we have proba-

bility of this case is bounded by q2

2193 .

CASE3: Sin ̸= S′in, (XtS−1, YtS−1) ≺ (XtS , YtS ) and (XtS′−1, YtS′−1) ≺ (XtS′ , YtS′ ).
In this case without loss of generality suppose (XtS , YtS ) ≺ (XtS′ , YtS′ ).
Note that in this case KS ,K

′
S ,KS′ ,K ′S′ are fixed. We divide the case into

the following sub-cases.
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• Both are backward queries. in this case the adversary has full control
over T . Hence varying over all S, S′,probability that this case occurs is
bounded by

q2

2
×

∑
(X,Y )̸=(X′,Y ′)

Pr


⌈X⌉192⊕064∥KS=⌈YTS−1⌉192∧
⌈X′⌉192⊕064∥KS′=⌈YT

S′−1⌉192∧
⌊X⊕X′⌋128:=⌊K′

S⊕K
′
S′⌋d∥0128−d

 ≤ q4

2514
.

• (XtS , YtS ) forward query and (XtS′ , YtS′ ) backward query. In this case
T is fixed. Hence the probability of this case is bounded by

q2

2
×

∑
(X,Y ) ̸=(X′,Y ′)

Pr

[
⌈XS′⌉192⊕064∥KS′=⌈YT

S′−1⌉192∧
⌊XtS

⊕Xt
S′ ⌋128:=⌊K

′
S⊕K

′
S′⌋d∥0128−d

]
≤ q3

2322
.

• (XtS , YtS ) backward query and (XtS′ , YtS′ ) forward query. Probability
that this case occurs is bounded by

q2

2
×

∑
(X,Y ) ̸=(X′,Y ′)

Pr

[
⌈XS⌉192⊕064∥KS=⌈YTS−1⌉192∧
⌈YtS

⌉128⊕⌈Yt
S′ ⌉128:=KS⊕KS′

]
≤ q3

2322
.

• Both are forward queries. This case is bounded by

q2

2
× Pr

[
⌈YtS⌉128 ⊕ ⌈YtS′ ⌉128 := KS ⊕KS′

]
≤ q2

2129
.

7 AEAD Security of Ascon-256.v2 and Ascon-256.v3 in
the Nonce-Respecting Multi-User Settings

In this section we analyse the AEAD security of our newly proposed schemes
namely Ascon-256.v2 and Ascon-256.v3. In this regard we would like to remark
that as constructions which use AsconAEAD128 as an internal API, the security
of these constructions can be derived directly from the security proofs shown
in [2][3]. Nonetheless we provide a modular proof sketch which mostly describes
the extra bad events that appear due to the tweaks in our constructions.

7.1 AEAD Security proof for Ascon-256.v2

Theorem 6 (Ascon-256.v2). Consider a nonce-respecting AEAD adversary A
making qp permutation queries, qe encryption queries with a total number of σe

data blocks, qd decryption queries with a total number of σd data blocks. Define
σ := σe + σd. Then, the upper bound of the AEAD advantage of A against
Ascon-256.v2 is the following:
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Advmu−AEAD
Ascon-256.v2(A ) ≤ 2qd

2τ
+

σ2
e

2b
+

σd(qp + σd)

2b
+

mcoll(σe, 2
r)× (σd + qp)

2c

+
mcoll(qe, 2

τ )qd
2c

+
µ2

2κ
+

µ(qp + σ)

2κ

+
q2d + q2e + qeqd + (qe + qd)(σ + qp)

2b

+
mcoll(qe, 2

b−κ2)(σ + qp)

2κ2
+

qe(σ + qp)

2b

+
mcoll(σ + qp, 2

τ )qd
2κ2

Proof. The proof of this theorem directly follows from the works of Chakraborty
et al. [2], [3]. Thus we omit the proof for this construction.

7.2 AEAD Security Proof for Ascon-256.v3

Theorem 7 (Ascon-256.v3). Consider a nonce-respecting AEAD adversary A
making qp permutation queries, qe encryption queries with a total number of σe

data blocks, qd decryption queries with a total number of σd data blocks. Define
σ := σe + σd. Then, the upper bound of the AEAD advantage of A against
Ascon-256.v3 is the following:

Advmu−AEAD
Ascon-256.v3(A ) ≤ 2qd

2τ
+

σ2
e

2b
+

σd(σd + qp)

2b
+

mcoll(σe, 2
r)× (σd + qp)

2c
+

µ2

2κ

+
µ(qp + σ)

2κ
+

3q2d + 3q2e + 3qeqd + (qe + qd)(σ + qp)

2b

+
mcoll(σ + qp, 2

r)× (qe + qd)

2c
+

mcoll(σ + qp, 2
τ )qd

2κ2

+
mcoll(qe, 2

b−κ2)(σ + qp)

2κ2
+

qe(σ + qp)

2b

Description of the Real World for Ascon-256.v3

The real world samples K1, . . . ,Kµ
$← {0, 1}κ and a random permutation Π

$←
Perm(b). All the queries then answered honestly following the Ascon-256.v3 as
defined in Section ?? and the direct primitive queries to Π’s are also answered
honestly. After all queries have been made, all inputs-outputs used in Π for all
encryption and decryption queries are included in the offline transcript. Let P
represent the query responses for primitive queries (represented in terms of the
partial function for Π), and let Pfin denote the extended partial function. Let the
online Transcript for all the queries be:
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Θreal,online :=
(
(ui,Ni,Ai,Mi,Ci,Ti)i∈[qe] , (u

′
i,N
′
i,A
′
i,C
′
i,T
′
i,M

′
i)i∈[qd] ,P

)
Set the extended partial function to be Pfin and set:

Θreal :=
(
(ui,Ni,Ai,Mi,Ci,Ti)i∈[qe] , (u

′
i,N
′
i,A
′
i,C
′
i,T
′
i,M

′
i)i∈[qd] ,Pfin

)
For any real world realizable transcript

θ :=
(
(ui, Ni, Ai,Mi, Ci, Ti)i∈[qe] , (u

′
i, N

′
i , A
′
i, C
′
i, T
′
i ,M

′
i)i∈[qd] , Pfin

)
we obtain that,

Pr(Θ = θ) = Pr(Pfin ⊂ Π) =
1

(2b)|Pfin|

Description of the Ideal World for Ascon-256.v3

The ideal world sampling is divided in two phases, Online Phase and Offline
Phase. We present the Ideal World Sampling along with the bad events by the
help of 6 algorithms. We list the algorithms as follows.

Algorithm 1: It provides the Online Transcript obtained in the Ideal World
and sets a bad event bad1.

Algorithm 2: Sets the internal states of Encryption Queries in the Offline
Phase, and sets a bad event bad2.

Algorithm 3: Sets the internal states of the Decryption Queries in the Offline
Phase and sets bad events bad3 and bad4. Thereby, extends the permutation
table.

Algorithm 4: Samples the key and sets the initial states and sets bad events
bad5 and bad6 and further extends the permutation table.

Algorithm 5: It sets the final two states of the construction in the Offline
Phase and sets bad events badi for i ∈ {7, 8, 9, 10}.

Algorithm 6: At this step the tag consistency is checked and sets the bad
events bad11, bad12, bad13. Finally, outputs the Ideal world Transcript along
with the complete permutation table.
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Algorithm 1: Ideal World: Online Transcript Ascon-256.v3

1 Online Phase
2 Input: qe encryption, qd decryption, qp primitive queries
3 Output: Ideal world responses
4 for encryption query i ∈ [qe] with (ui,Ni,Ai,Mi) do

5 Ci
$←− {0, 1}|Mi|

6 Ti
$←− {0, 1}τ

7 return (Ci,Ti)

8 end
9 for decryption query i ∈ [qd] with (u′i,N

′
i,A
′
i,C
′
i,T
′
i) do

10 return rej

11 end
12 for primitive query i ∈ [qp] with (Qi, diri) do
13 if diri = +1 then
14 Ui ← Qi

15 Vi
$←− {0, 1}b \ range(P)

16 P← P ∪ {(Ui,Vi)}
17 return Vi

18 else
19 Vi ← Qi

20 Ui
$←− {0, 1}b \ domain(P)

21 P← P ∪ {(Ui,Vi)}
22 return Ui

23 end

24 end
25 return

Θideal,online ←
(
(ui,Ni,Ai,Mi,Ci,Ti)i∈[qe], (u

′
i,N
′
i,A
′
i,C
′
i,T
′
i, rej)i∈[qd],P

)
26 if ∃(i, j) ∈ [qe]× [qd] with later i > j and

(ui,Ni,Ai,Ci,Ti) = (u′j ,N
′
j ,A
′
j ,C
′
j ,T
′
j) then

27 bad1 ← 1

28 end
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Algorithm 2: Ideal World (Offline Phase for Ascon-256.v3): Encryption
Query Internal States

1 for i ∈ [qe] do

2 (Ai,1, . . . ,Ai,ai)
r← pad1(Ni,Ai); (Mi,1, . . . ,Mi,mi)

r← Mi;

(Ci,1, . . . ,Ci,mi
)

r← Ci

3 ti = ai +mi, di = |Mi,mi
|

4 Vi,0, . . . ,Vi,ai−1
$← {0, 1}b, Zi,ai+1, . . . ,Zi,ti−1

$← {0, 1}c,
δ∗i

$← {0, 1}r−di

5 if ai > 0 then
6 for j = 1 to ai do
7 Ui,j = Vi,j−1 ⊕ (Ai,j ∥ 0c)
8 end
9

10 Vi,ai
= (Ci,1 ⊕Mi,1) ∥ Zi,ai

11 end
12 if mi ≥ 2 then
13 Ui,ai+1 = Ci,1 ∥ (Zi,ai

⊕ 0c−11)
14 for j = 2 to mi − 2 do
15 Ui,ai+j = Ci,j ∥ Zi,ai+j−1
16 end
17

18 for j = 1 to mi − 3 do
19 Vi,ai+j = (Ci,j+1 ⊕Mi,j+1) ∥ Zi,ai+j−1
20 end
21

22 Vi,ti−1 = (Ci,mi
⊕Mi,mi

) ∥ δ∗i ∥ Zi,ti−1
23 end

24 end

25 return PE = {(Ui,j ,Vi,j) : i ∈ [qe], j ∈ [ti − 1]}
26 if ∃(i, j) ̸= (i′, j′) with Ui,j = Ui′,j′ or Vi,j = Vi′,j′ then

27 bad2 ← 1

28 end
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Algorithm 3: Ideal World (Offline Phase for Ascon-256.v3): Decryption
Query Internal States (Extension of P)

1 for i ∈ [qd] do
2

(
A′i,1, . . . ,A

′
i,ai

)
← pad1(N

′
i,A
′
i);

(
C′i,1, . . . ,C

′
i,ci

)
← C′i

3 if ̸ ∃j ∈ [qe] with uj = u′i then
4 pi ← −1
5 else if ̸ ∃j ∈ [qe] with (uj ,Nj) = (u′i,N

′
i) then

6 pi ← 0
7 else

8 pi ← LCP of
(
A′i,1, . . . , (A

′
i,a′

i
, ∗),C′i,1, . . . ,C′i,ci−2

)
and(

Aj,1, . . . , (Aj,aj
, ∗),Cj,1, . . . ,Cj,mj−2

)
9 end

10 end
11 for i ∈ [qd] with pi = −1 do
12 if (u′i,N

′
i) = (uj ,Nj) for some j ∈ [i− 1] then

13 V′i,0 ← Vj,0

14 else

15 V′i,0
$←− {0, 1}b

16 end
17 if a′i > 0 then

18 Run xorRand ExtnP (V′i,0, (A
′
i,1, . . . ,A

′
i,a′

i
))

19 end
20 if ci > 1 then

21 Run Rand ExtnP (V′i,a′
i
⊕ 0∗1,C′i,1∥ . . . ∥C′i,ci−2)

22 end

23 end
24 for i ∈ [qd] with 0 ≤ pi ≤ a′i do
25 V′i,pi

← Vj,pi where (u′i,N
′
i) = (uj ,Nj)

26 if a′i > pi then

27 Run xorRand ExtnP (V′i,pi
, (A′i,pi+1, . . . ,A

′
i,a′

i
))

28 end
29 if ci > 1 then

30 Run Rand ExtnP (V′i,a′
i
⊕ 0∗1,C′i,1∥ . . . ∥C′i,ci−2)

31 end

32 end
33 for i ∈ [qd] with a′i < pi < ti − 1 do
34 V′i,pi

← Vj,pi
where (u′i,N

′
i) = (uj ,Nj)

35 if pi < ti − 2 then

36 Run Rand ExtnP (V′i,pi
⊕ 0∗1,C′i,pi−a′

i+1∥ . . . ∥C′i,ci−2)
37 end

38 end

39 return P1 = {(U′i,j ,V′i,j)}i∈[qd],j∈[ti−1]
40 if P1 not injective then

41 bad3 ← 1

42 end
43 if domain(P1) ∩ domain(PE) ̸= ∅ ∨ range(P1) ∩ range(PE) ̸= ∅ then
44 bad4 ← 1

45 end

46 Extend: P2 ← PE ⊔ P1
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Algorithm 4: Ideal World (Offline Phase for Ascon-256.v3): Key Sam-
pling and Initialization

1 K1, . . . ,Kµ
$←− {0, 1}κ where Ki = Ki,1 ∥ Ki,2

2 J ← {j ∈ [qd] : u
′
j ̸= ui ∀i}

3 for i ∈ [qe] do
4 Ii ← IV ∥ Ki,2 ∥ Ki,1

5 Oi ← Vi,0 ⊕ (Ki,1 ∥ 0b−κ ∥ Ki,2)

6 end
7 for j ∈ J do
8 I′j ← IV ∥ Kj,2 ∥ Kj,1

9 O′j ← V′j,0 ⊕ (Ki,1 ∥ 0b−κ ∥ Ki,2)

10 end
11 for j ∈ [qd] \ J do
12 I′j ← Ii
13 O′j ← Oi

14 end

15 return Pinit ←
(
(Ii,Oi)i∈[qe], (I

′
j ,O

′
j)j∈J

)
16 if ∃i ̸= j ∈ [µ] with Ki = Kj then

17 bad5 ← 1

18 end
19 if domain(P2) ∩ domain(Pinit) ̸= ∅ ∨ range(P2) ∩ range(Pinit) ̸= ∅ then
20 bad6 ← 1

21 end

22 Extend : P3 ← P2 ⊔ Pinit
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Algorithm 5: Ideal World (Offline Phase for Ascon-256.v3):
Finalization- Last Two Blocks

1 for encryption query i ∈ [qe] do

2 mi ← ⌈ |Mi|+1
r ⌉

3 di ← |Mi| mod r
4 if mi ≥ 2 then
5 Vi,ai+mi−2 ←

(
Ci,mi−1 ⊕Mi,mi−1 ⊕ (0di ∥ ⌈Ki,1⌉r−di)

)
∥

Zai+mi−2
6 Fi,0 ←

(
Ci,mi−1 ⊕ (0di ∥ ⌈Ki,1⌉r−di

)
)
∥ ⌊Vai+mi−2⌋c

7 Vi,ai+mi−1 ← (Ci,mi
⊕Mi,mi

⊕ ⌊Ki,1⌋di
) ∥ δ∗i ∥ Zai+mi−1

8 Fi,1 ← (Ci,mi
⊕ ⌊Ki,1⌋di

) ∥ δ∗i ∥ ⌊Vai+mi−1⌋c
9 end

10 if mi = 1 then
11 Fi,1 ← (Ci,1 ⊕ ⌊Ki,1⌋di

) ∥ δ∗i ∥ (Zi,ai
⊕ 0c−11)

12 Fi,0 ← Ui,ai

13 end

14 end
15 for decryption query i ∈ [qd] do
16 if ci ≥ 2 then
17 F′i,0 ←

(
C′i,ci−1 ⊕ (0di ∥ ⌈Ki,1⌉r−di

)
)
∥ ⌊V′a′

i+ci−2⌋c
18 V′i,a′

i+ci−1 ←
(
C′i,ci ⊕M′i,m′

i
⊕ ⌊Ki,1⌋di

)
∥ δ′∗i ∥ Z′a′

i+ci−1

19 F′i,1 ←
(
C′i,ci ⊕ ⌊Ki,1⌋di

)
∥ 10∗ ∥ ⌊V′a′

i+ci−1⌋c
20 end
21 if ci = 1 then

22 F′i,1 ←
(
C′i,ci ⊕ ⌊Ki,1⌋di

)
∥ 10∗ ∥

(
⌊V′a′

i+ci−1⌋c ⊕ 0c−11
)

23 F′i,0 ← U′i,ai

24 end

25 end

26 return PF ← {(Fi,0,Vi,ti−1)}i∈[qe] ∪ {(F′i,0,V′a′
i+ci−1)}i∈[qd]

27 if PF not injective then

28 bad7 ← 1

29 end
30 if domain(PF ) ∩ domain(P3) ̸= ∅ ∨ range(PF ) ∩ range(P3) ̸= ∅ then
31 bad8 ← 1

32 end
33 if ∃i ̸= j ∈ [qe] with Fi,1 = Fj,1 or ∃i ̸= j ∈ [qd] with F′i,1 = F′j,1 then

34 bad9 ← 1

35 end
36 if ∃(i, j) ∈ [qe]× [qd] with (F′i,1,T

′
i) = (Fj,1,Tj) then

37 bad10 ← 1

38 end

39 Extend : P4 ← P3 ⊔ PF
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Algorithm 6: Ideal World (Offline Phase for Ascon-256.v3):
Finalization- Tag Consistency

1 for encryption query i ∈ [qe] do
2 Xi ← Fi ⊕ 0b−κ2 ∥ Kui,2

3 Yi ← αi ∥ (Ti ⊕ Kui,2) where αi
$←− {0, 1}b−τ

4 end

5 return Ptag ← (Xi,Yi)i∈[qe]

6 if domain(Ptag) ∩ domain(P4) ̸= ∅ ∨ range(Ptag) ∩ range(P4) ̸= ∅ then
7 bad11 ← 1

8 end

9 Extend : P5 ← P4 ⊔ Ptag

10 for decryption query i ∈ [qd] do
11 X′i ← F′i ⊕ 0b−κ2 ∥ Ku′

i,2

12 if X′i ∈ domain(P5) then
13 Y′i ← P4(X

′
i)

14 if ⌊P4(X
′
i)⌋τ ⊕ Ku′

i,2
= T′i then

15 bad12 ← 1

16 end

17 else

18 Y′i
$←− {0, 1}b

19 if ⌊Y′i⌋τ ⊕ Ku′
i,2

= T′i then

20 bad13 ← 1

21 end

22 end

23 end

24 Extend : Pfin ← P5 ⊔ {(X′i,Y′i)i∈[qd]}
25 Ideal World Transcript :

Θideal ←
(
(ui,Ni,Ai,Mi,Ci,Ti)i∈[qe], (u

′
i,N
′
i,A
′
i,C
′
i,T
′
i,M

′
i)i∈[qd],Pfin

)

Bad Analysis

Let us define,

bad∗ =
6⋃

i=1

badi ∨
13⋃

j=10

badj
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Note that, bad∗ is essentially same with the bad events defined in the earlier
works of [2,3]. Thus, the similar bounds should hold true. We summarize the
result in the following Lemma.

Lemma 5.

Pr [bad∗ = 1] ≤ qd
2τ

+
σ2
e

2b
+

σd(σd + qp)

2b
+

mcoll(σe, 2
r)× (σd + qp)

2c
+

µ2

2κ
+

µ(qp + σ)

2κ

+
q2d + q2e + qeqd + (qe + qd)(σ + qp)

2b
+

mcoll(σ + qp, 2
τ )qd

2κ2

+
mcoll(qe, 2

b−κ2)(σ + qp)

2κ2
+

qe(σ + qp)

2b
+

mcoll(σ + qp, 2
τ )qd

2κ2
+

qd
2τ

Proof. Proof of this lemma directly follows from the works of Chakraborty et al.
[2,3].

Hence we establish upper bounds on the probability of newly encountered bad
events, i.e., bad7, bad8 and bad9 (See Algorithm 5) dedicated to Ascon-256.v3.

Lemma 6. Pr [bad7 = 1] ≤ (qe + qd)
2

2b

Proof. From the construction of PF we have that domain(PF ) ≤ (qe + qd)
and range(PF ) ≤ (qe + qd). For any two values x, y ∈ domain(PF ) (or x, y ∈
range(PF )) we have that x = y with probability

1

2b
. Hence, by union bound we

derive the lemma.

Lemma 7. Pr [bad8 = 1] ≤ mcoll(σ + qp, 2
r)× (qe + qd)

2c

Proof. Let ρ1 (and ρ2) denote the multicollision on the values of ⌈x⌉r for all
x ∈ domain(P3) (and for all x ∈ range(P3), respectively). Then, by randomness
of randomised extension process and xor randomised extension process we have
that

Pr(bad8 = 1 | max{ρ1, ρ2} = ρ) ≤ ρ× (qe + qd)

2c

Hence by using the expectation on ρ1 we obtain,

Pr(bad8 = 1) ≤ mcoll(σ + qp, 2
r)× (qe + qd)

2c

Lemma 8. Pr [bad9 = 1] ≤ q2e + q2d
2b

Proof. The proof is straightforward.
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Good Analysis

Let θ be a good transcript (no bad events occur). Note that we sample either
inputs or outputs of Pfin \ P uniformly. Thus,

Pr [Θideal = θ] = Pr [P ⊆ Π]× 2−b(|Pfin|−|P|) ≤ 1

(2b)|Pfin|
= Pr [Θreal = θ]

Thus by H-Coefficient Technique we conclude the proof of this theorem.

8 Conclusion

In this draft, we revisit the mu-Ascon instantiation proposed by NIST for multi-
user applications, which only provides partial security against key-recovery un-
der state recovery attacks and doesn’t provide any commitment security. Deal-
ing with these weaknesses, we generate two schemes which we call Ascon-256.v2
and Ascon-256.v3 for the multi-user settings, which are compatible with the
AsconAEAD128 API. Due to the usage of a single extra Ascon permutation,
Ascon-256.v2 and Ascon-256.v3 have a very negligible performance difference in
comparison to that of mu-Ascon. On the other hand we show that in compen-
sation to these negligible expense in performance, Ascon-256.v2 resists CMT -4
attacks and Ascon-256.v3 resist CMT -4 attacks and at the same time also enjoys
the full key-binding property.
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A Graph Structures for Functions

The details of this section are thoroughly discussed in [2]. We provide a sum-
mary here as we will refer to the randomized extension algorithms in subsequent
discussions.

A.1 Partial Function Graph

A partial function L : {0, 1}b 99K {0, 1}c is a subset L = {(p1, q1), . . . , (pt, qt)} ⊆
{0, 1}b×{0, 1}c with distinct pi values. An injective partial function has distinct
qi values. Define:

domain(L) = {pi : i ∈ [t]}, range(L) = {qi : i ∈ [t]}

We write L(pi) = qi and for all p /∈ domain(L),L(p) = ⊥.
For f : {0, 1}b 99K {0, 1}b, c ∈ [b − 1], define ⌊f⌋c : {0, 1}b 99K {0, 1}c such

that ⌊f⌋c(x) = ⌊f(x)⌋c when f(x) ̸= ⊥.

Definition 6 (Partial Function Graph). Let L : {0, 1}b 99K {0, 1}c for r :=
b − c > 0. Define a labeled directed graph G := GL, called (labeled) partial
function graph, over:

V := ⌊domain(L)⌋c ∪ range(L) ⊆ {0, 1}c

with labels {0, 1}r and edges:

E(G) := {u x−→ v | L(x∥u) = v}

We call it (labeled) function graph if L is known to be a function.

we write a walk,

u0
x1−→ u1

x2−→ · · · xl−1−−−→ ul−1
xl−→ ul

simply as u0
xl

−→ ul. If u
x−→ v1 and u

x−→ v2, then v1 = v2.
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A.2 Sampling Process of a Labeled Walk

Let f : {0, 1}b 99K {0, 1}b, x := (x1, . . . , xk) be a k-tuple label, k ≥ 0, and
z0 ∈ {0, 1}c. Define a process Rand Extnf (z0, x

k) which extends f to complete
the walk:

1. Initialize f ′ = f
2. For j = 1 to k:

(a) vj = f ′((xj , zj−1))
(b) If vj = ⊥:

– vj
$← {0, 1}b

– f ′ ← f ′ ∪ {(xj∥zj−1, vj)}
(c) zj = ⌊vj⌋c

Similarly, define xorRand ExtnP(v0, x
k) for P⊕ where v0 ∈ {0, 1}b and xi ∈

{0, 1}r:

1. Initialize P ′ = P
2. For j = 1 to k:

(a) vj = P ′(vj−1 ⊕ (xj∥0c))
(b) If vj = ⊥:

– vj
$← {0, 1}b

– P ′ ← P ′ ∪ {(vj−1 ⊕ (xj∥0c), vj)}

After this process obtain a modified partial function P ′ : {0, 1}b 99K {0, 1}b
with the walk,

v0
x1−→⊕ v1

x2−→⊕ v2 · · ·
xk−1−−−→⊕ vk−1

xk−→⊕ vk
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