
Generalized BGV, BFV, and CKKS

for Homomorphic Encryption over Matrix Rings

Bence Mali
bencemali835@gmail.com

University of Budapest, Hungary

May, 2025

Abstract

Some of the most valuable applications of homomorphic encryption, such as en-
crypted machine learning inference, require efficient large-scale plaintext-ciphertext
and ciphertext-ciphertext matrix multiplications. Current state-of-the-art techniques
for matrix multiplications all build on the ability to pack many ciphertexts into a
ciphertext and compute on them in a Single Instruction, Multiple Data (SIMD) man-
ner. However, to fit the operation of matrix multiplication into this computational
model, a large number of additional costly operations need to be performed, such as
the rotation of elements between the plaintext slots.

In this work, we propose an orthogonal approach to performing encrypted ma-
trix operations with BGV-like encryption schemes, where the plaintext and ciphertext
spaces are generalized to a matrix ring of arbitrary dimension. To deal with the in-
herent problem of noncommutativity in the case of matrix rings, we present a new
superoperator technique to better represent linear and quadratic expressions in the
secret key, which allows for the relinearization of ciphertexts after multiplication. The
security of the modified encryption schemes is based on Module-LWE with module
rank equal to the dimension of the matrices. With this construction, we demonstrate
that Ring-LWE, Module-LWE, and LWE are potentially equally efficient for homo-
morphic encryption, both in terms of useful information density and noise growth,
only for different sizes of matrices.

1

mailto:bencemali835@gmail.com

Contents

1 Introduction 3
1.1 Background . 3
1.2 Technical Overview . 6

2 Preliminaries 8
2.1 Basic notation. 8
2.2 LWE, Module-LWE, and Ring-LWE. 8
2.3 Standard formulations of BGV, BFV, CKKS. 10

3 Matrix–BGV/BFV/CKKS 11
3.1 Matrix encryption. 11
3.2 Homomorphic properties. 12
3.3 The superoperator technique. 13
3.4 Naive relinearization. 14
3.5 Compact homomorphic encryption scheme. 16
3.6 Ring expansion factor and noise growth. 16

4 Conclusion and Future Work 17

2

1 Introduction

1.1 Background

Ever since the foundational work of Gentry [1], which kick-started the work on today’s
fully homomorphic encryption (FHE) schemes, the defining challenge has been improving
efficiency. Over the years, several so-called “generations” of schemes have been developed
[2]. The first truly practical schemes came with the second such generation, and they are
today represented by the almost identical [3] Brakerski–Gentry–Vaikuntanathan (BGV) [4,
5] and Brakerski/Fan–Vercauteren (BFV) [6, 7] encryption schemes. These schemes have
multiplication and bootstrapping operations that are relatively expensive; however, they
can pack many plaintext elements into one ciphertext in a Single Instruction, Multiple
Data (SIMD) fashion [8][9, section C.2]. For this reason, they can be characterized as
high-latency/high-throughput options.

The third generation of FHE constructions [10, 11, 12] are characterized by very fast
bootstrapping and are today represented by the TFHE (or equivalently CGGI) [12] scheme.
This generation of schemes will not be covered in this work.

The fourth generation refers to the CKKS encryption scheme [13], which diverges from
the previous solutions and implements approximate arithmetic of complex numbers, as op-
posed to the exact discrete operations available previously. Despite the dissimilar plaintext
space, the CKKS construction is actually a descendant of the BGV/BFV schemes, and
they can all be described by an abstract scheme. We will refer to the BGV, BFV, and
CKKS schemes as the BGV-like schemes.

All of the above mentioned schemes base their security on variants of the Learning With
Errors (LWE) problem [14, 15, 16], which is the de facto hard problem and corresponding
hardness assumption in modern lattice-based cryptography. For performance reasons,
most implementations use a structured variant of LWE called Ring-LWE [17].

Previous matrix multiplication techniques. Because of their plaintext packing ca-
pabilities, the BGV-like schemes are more commonly used for encrypted matrix operations.
For a brief introduction to the capabilities of these schemes, see [18, section 2]. Halevi and
Shoup provide a table listing the available operations and their cost in terms of running
time and noise growth [19, section 2, table 1]. In a nutshell, each ciphertext encrypts a
vector of plaintext elements, where ciphertext addition and multiplication correspond to
element-wise addition and multiplication of the underlying plaintext vectors. Addition of
and multiplication by a constant are also supported. For more functionality, one can rotate
the plaintext elements between the slots in a ciphertext, and also perform automorphisms
on the encrypted plaintexts. As for the cost of these operations, plaintext-ciphertext and
ciphertext-ciphertext addition are very cheap, plaintext slot rotations, computing auto-
morphisms on plaintext elements, and plaintext-ciphertext multiplication are moderately
expensive, while ciphertext-ciphertext multiplication is very expensive.

Here we give a short overview of previous matrix multiplication techniques, but we
would like to emphasize that the techniques introduced in this work are in some sense
orthogonal to previous techniques and can even be used in conjunction. Current techniques
view the encryption schemes as black-box schemes with a fixed computational model
(SIMD vector of plaintexts), then they try to fit the application (matrix multiplication) as
efficiently as possible into this model. In essence, they try to solve a problem pertaining to
algebraic structure with parallelism, which is not sufficient. Unfortunately, this requires
using many operations from the moderately expensive category (see previous paragraph)
to align and move around plaintext elements within one ciphertext. We will sometimes
refer to these kinds of techniques as the outside-in approach, as opposed to modifying

3

the encryption scheme to accommodate matrix multiplication, which is the inside-out
approach.

The naive method for performing homomorphic multiplication of d× d matrices is to
encrypt the matrices entry-by-entry. As flexible as this approach is, it becomes vastly
inefficient as the dimension of the matrices grows. To counter this, (outside-in) techniques
have been developed to exploit the batching capabilities of the encryption schemes, and
thus decrease the number of ciphertexts and operations performed.

1. The first notable work was due to Halevi and Shoup [19], who proposed methods
for supporting linear algebra in the HElib homomorphic encryption library [20].
They focus on matrix-vector multiplication, where the vector is always encrypted
and the matrix can either be known to the evaluator a priori or be encrypted. In
domain specific jargon, these would be abbreviated PC-Mv (Plaintext-Ciphertext
Matrix-vector) and CC-Mv (Ciphertext-Ciphertext Matrix-vector) multiplication,
respectively. If the matrix is encrypted, either its columns or rows are encrypted
in individual ciphertexts. If the matrix is known in plaintext, they implement a
so-called systolic multiplication algorithm.

2. In 2018, Jian et al. [21] introduced a method to encode a matrix in one cipher-
text vector, then showed how to perform encrypted matrix multiplication, CC-MM
(Ciphertext-Ciphertext Matrix-Multiplication), along with matrix transposition and
the ability to batch multiple matrices into one ciphertext. They use their construc-
tion to evaluate neural networks on encrypted inputs using the CKKS encryption
scheme.

3. Also in 2018, Cheon et al. [22] presented a variant of CKKS where they can pack
complex numbers into multidimensional tensors as multivariate polynomials. They
base the security of this modified scheme on multivariate PLWE. This construction
differs from the others in that it is a proposed modification of the CKKS scheme (thus
partially an inside-out approach) and not just a packing method on top. However, it
still requires complicated and expensive multiplications and data movements between
plaintext slots.

As mentioned previously, all of the above approaches suffer from the need to perform
many supplementary operations to achieve matrix multiplication in a computation model
that is not inherently built for that algebraic structure. Oftentimes the number of these
operations scales linearly or even quadratically with the dimension of the matrices. Here
we do not discuss the computational complexity of the above algorithms in terms of
multiplications, rotations, and automorphisms required, as these measures will not be
applicable to our proposed technique. We refer the interested reader to [23, section 1].

Encryption schemes with matrix plaintext spaces have been proposed before. Some
built on other frameworks (GSW [10]), while others had only limited homomorphic capa-
bilities, or none at all. We list some of these works and their relevance to this work.

1. The first work to introduce a variant of LWE, where the plaintext space is extended to
matrices over the underlying ring, similar to this work, is one by Peikert and Waters
[24, section 6.2], then later also shown by Micciancio [25, definition 2.8, lemma 2.9] to
be equivalent (in hardness) to the standard variant of LWE. This extension of LWE
is fairly standard and natural. In the standard formulation of decision-LWE, we are
asked to distinguish between a uniformly sampled tuple and a pseudorandom tuple,
both of the form (A,b) ∈ Zm×n

q × Zm
q . In the pseudorandom case, A is uniformly

sampled from Zm×n
q , and b = As+ e, where s is a secret vector uniformly from Zn

q ,
and e is a low-norm noise term from Zm

q . In the above works, they replace both s

4

and e, with matrices to get a matrix equation B = AS + E. Peikert and Waters
already identified that this construction is linearly homomorphic, meaning one can
take linear combinations of ciphertexts to get encryptions of the linear combinations
of the underlying plaintexts. Our work will build on this generalization, but for a
more general variant of LWE, namely Module-LWE.

2. In 2010, Gentry et al. constructed a pre-FHE encryption scheme [26] along the
lines of the previous matrix encryption technique. They use GPV trapdoors [27],
where along with the public matrix A, a trapdoor matrix T is also generated at
key generation time, for which AT = 0. The ciphertext encrypting a matrix M is
C = AS+E+M, where S is a random matrix and E is again a low-norm noise term.
To decrypt, one can multiplyC by T from the left to annihilateA. It is easy to verify
that this scheme is additively homomorphic. To get one multiplication along with
many additions, the authors employ a transposition technique, where they multiply
C1 and C2 as C1 ·CT

2 to get an encryption of the message M1 ·MT
2 . This is needed

because matrix multiplication is noncommutative and if we want to annihilate both
occurrences of A in the ciphertext after multiplication, we need to have the A’s on
the outsides of the term AS1 · (AS2)

T = AS1S
T
2 A

T . This scheme highlights the
core problem with matrices, that is matrix multiplication is not commutative. They
achieve one matrix multiplication with this transposition technique.

3. A recent work by Park [28] borrows the previous transposition technique and imple-
ments it in the context of Ciphertext-Ciphertext Matrix-Multiplication (CC-MM)
with batched CKKS Ring-LWE ciphertexts, which makes it an outside-in technique.
To implement the transposition technique, they construct a Ciphertext Matrix-
Transpose (C-MT) algorithm ([28, section 3.3]), then they use this to multiply
matrices. To make the scheme fully homomorphic, they perform a key switching
operation to transform a term of the form SA1A

T
2 S

T into a term of the form A3S
2

([28, section 4.2]), which can then be relinearized.

4. Another scheme that generalizes the plaintext space along the same lines as this
work is due to Hiromasa et al. [29], where they construct a matrix variant of GSW.
Similar to this work, the native plaintext space of the scheme is no longer the ring of
scalars (as in a binary value for GSW, or polynomial in this work), but a matrix ring
(binary matrices in Hiromasa et al., and a matrix ring with polynomial entries in
this work), and ciphertext addition and multiplication correspond to homomorphic
addition and multiplication in the matrix ring.

Contributions. We propose a generalization of the BGV, BFV, and CKKS homomor-
phic encryption schemes to operate over a (noncommutative) matrix ring, instead of a
polynomial ring. At the heart of this work is a new superoperator technique 3.4 to deal
with the noncommutativity of the matrix ring, as compared to the standard commutative
polynomial ring in the standard Ring-LWE instantiations. This superoperator technique
allows us to represent linear and quadratic expressions in the secret key as linear operators,
which then opens up the possibility for relinearization. The modified schemes base their
security on Module-LWE with module rank equal to the dimension of the square matri-
ces. In a way, this newly introduced matrix dimension parameter is exactly as natural
to the encryption schemes in question as Ring-LWE being a special case of Module-LWE
with module rank equal to 1. This work presents a new direction, which allows trading
the parallelism offered by Ring-LWE-based schemes (the ring dimension) for the algebraic
structure needed in matrix multiplications (module rank).

5

1.2 Technical Overview

For a reference on notation used, see section 2.1, for a high-level description of the standard
instantiations of BGV, BFV, and CKKS, see section 2.3. For the sake of brevity, we omit
details and simplify things that are not essential, such as the different methods of encoding
a message into a plaintext.

Matrix encryption. We are looking to generalize the main equation of Ring-LWE,
and thus the emergent ciphertexts, from elements of the polynomial ring Rq to matrices
Md(Rq). Since dimension d square matrices form a ring, this generalization can be viewed
as a noncommutative Ring-LWE over the matrix ring Md(Rq). The standard Ring-LWE
instantiation can be viewed as a 1× 1 matrix or scalar case of this general construction.

(Ring-LWE encryption) (−a · s+ e+m,a) ∈ Rq ×Rq (1)

(Module-LWE matrix encryption) (−A · S+E+M,A) ∈Md(Rq)×Md(Rq) (2)

In the matrix case, both A and S become d number of Rq-vectors concatenated together
1. The security of this matrix encryption can easily be based on Module-LWE with
module rank d. Note that since we essentially reuse every vector of both A and S d
times in calculating the entries of their product, this dimension increase from Ring-LWE
to Module-LWE comes for free, as it does not just increase the ciphertext size, but also
the plaintext space. Contrast this with standard LWE-based (or more generally Module-
LWE-based) encryptions, where the ciphertext is in Zd+1

q , but the message is just encoded
as one element from Zq. With this view, Ring-LWE, Module-LWE, and standard LWE are
equally efficient, only for different sizes of matrices, and we can freely interpolate between
Ring-LWE and LWE. This becomes even more interesting when we show that the per
multiplication noise growth is identical if we keep the effective lattice dimension (and thus
security level) constant.

Encoding. The encoding procedures specific to the actual BGV-like encryption scheme
can be performed entry-by-entry, in which case the unencoded message matrix would come
from Md(Rt), and would produce an encoded matrix in Md(Rq). This is due to the fact
that the encoding/decoding procedures reduce to scalar multiplication of matrices (which
commutes with matrix multiplication) and entry-by-entry rounding or modular reduction
procedures.

Homomorphic properties. This construction is already linearly homomorphic, as
pointed out by Peikert and Waters [24, section 6.2]. The problem comes with multi-
plication, as matrix multiplication is noncommutative. First we write the ciphertext as a
polynomial in X.

C(X) = C0 +C1X = (−A · S+E+M) +AX (3)

In the Ring-LWE case, we depend on the commutativity of the underlying ring to combine
all linear terms into one, then more crucially, to get a quadratic term in the form c2x

2,
which can then be evaluated with one multiplication by s2 (2). These will not work in the
noncommutative case.

C(X) ·D(X) = (C0 +C1X) · (D0 +D1X)

= C0D0 +C0D1X +C1XD0 +C1XD1X
(4)

1Row vectors in the case of A, column vectors with S.
2Technically a dot product, but it is morally one multiplication.

6

Now the product still gives a valid polynomial that decrypts to the correct result, however,
we cannot collapse the linear terms into one, which would make the ciphertext grow
over time, and the quadratic term needs two substitutions of S, which actually prevents
relinearization.

Superoperator technique. The trick is to realize that the linear terms together can
be described as a linear superoperator acting on X, whereas the quadratic term is a linear
superoperator acting on X ⊗X.

C0D0 +C0D1X +C1XD0 +C1XD1X

= C0D0 +Ψ1(X) +Ψ2(X ⊗X)
(5)

Ψ1(·) : Md(Rq)→Md(Rq)

X 7→ (I ⊗C0D1 +DT
0 ⊗C1︸ ︷︷ ︸

Ψ1∈Md2 (Rq)

)X (6)

Ψ2(·) : Md(Rq)⊗Md(Rq)→Md(Rq)

X ⊗X 7→Mµ(C1 ⊗D1)︸ ︷︷ ︸
Ψ2∈Md2×d4 (Rq)

(X ⊗X) (7)

The second equation involves the multiplication operator Mµ ∈ Md2×d4(Rq), which col-
lapses a tensor product, Mµ·(A⊗B) = AB. The operators can easily be verified to give the
correct result, and both operators can be described with matrices given the ciphertext coef-
ficients. With this modification, a general ciphertext will be a tuple in Md(Rq)×Md2(Rq).
Note that after several rounds of multiplications, the linear term is the sum of many tensor
products and should not be thought of as this sum, but an actual matrix in Md2(Rq), but
initial ciphertexts can always be written as a tuple in Md(Rq) ×Md(Rq). We would like
to emphasize that this is optimal for the encryption of a matrix in Md(Rt), and matches
the useful information density of the Ring-LWE case.

Relinearization. Since we reduced the quadratic term to a matrix-vector multiplica-
tion, Ψ2 · (vec(X) ⊗ vec(X)), we can now provide a masked version of vec(S) ⊗ vec(S),
analogously to the masked version of s2 used in the standard formulations. We give the
blueprint for a trivial but inefficient relinearization key, the size of which scales with d4.
This is a first attempt at relinearization and we expect that the rich algebraic structure
would allow for significant optimizations.

Identical noise growth. Any norm we can define on our polynomial ring R, we can
extend to the matrix ring Md(R), by defining the norm of a matrix to be the maximum
of its entries’ norms. This is the right approach for the infinity norm, as a low infinity
norm for a noise term matrix means that each of its entries has a low-norm, which in turn
means that each entry of the message matrix can be decoded correctly.

We can also extend the ring expansion factor δRq to the matrix ring, δMd(Rq). The
ring expansion factor, introduced in [30], tells us the maximum ratio by which the norm
increases when we reduce a polynomial in a quotient polynomial ring.

δR = max{||a · b||∞/(||a||∞ · ||b||∞) : a,b ∈ R} (8)

For the ambient ring R = Z[x]/(xN + 1) used in Ring-LWE, δR = N with respect to the
infinity norm. Note that this expansion factor is a worst-case value, whereas we can bound
the noise expansion by 2 ·

√
N in practical applications [31, section 6.1].

7

An important conclusion we reach is that for the matrix ring, δMd(R
′
q)

= d·N ′, where d is

the module rank (or equivalently the dimension of the matrices), and N ′ is the dimension
of the underlying polynomial ring R

′
q = Zq[x]/(x

N ′
+ 1). What this means is that if

we transition from a Ring-LWE-based instantiation to our Module-LWE-based matrix
instantiation, and in the process we choose the parameters so that d ·N ′ = N (3), which
just means that we keep the effective lattice dimension constant 4, then we also preserve
the ring expansion factor. We emphasize that in the Ring-LWE case, the expansion factor
applies to a polynomial-polynomial multiplication in Rq, whereas in the Module-LWE
matrix case, it is a matrix-matrix multiplication in Md(R

′
q).

2 Preliminaries

2.1 Basic notation.

We refer to the ring R = Z[x]/(xN + 1) as the ambient ring, where N is a power of two.
With N a power of two, xN + 1 is a cyclotomic polynomial, and its roots over the field
of complex numbers are the primitive 2N -th roots of unity. Zq refers to the zero-centered
set of integers (−q/2, q/2], and Rq = R/qR = Zq[x]/(x

N + 1). Note that reduction to the
set (−q/2, q/2] after operations in Rq is implicit.

Elements of R are denoted with lowercase bold letters; for example a ∈ R. The
infinity norm of an element is denoted by || · ||∞, and is defined to be the maximum
absolute value among the coefficients of a polynomial. The expansion factor of R is
δR = max{||a · b||∞/(||a||∞ · ||b||∞) : a,b ∈ R}.

For a ∈ Z, we use the notation [a]q to indicate the representative of a modulo q in Zq.
For a ∈ R, [a]q means coefficient-wise reduction. The operations ⌊·⌋, ⌈·⌉, and ⌊·⌉ round
down, up, and to the nearest integer, respectively.

The set of n×m matrices with elements from a ring Q is denoted as Mn×m(Q), whereas
Md(Q) is the d× d matrix ring with elements from Q. Uppercase bold letters are used for
matrices; for example A ∈ Md(Rq). All previously defined operations should be defined
for matrices, performed entry-by-entry.

To sample uniformly an element x from a set S, the notation x ← S is used. When
a distribution like χ is explicitly described, the notation x ← χ means random sampling
according to the distribution χ.

For an element a ∈ Zq, Base2Decomp(a) denotes the binary decomposition vector of
a, and similarly for a polynomial p, Base2Decomp(p) denotes the vector of polynomials,
with coefficients from the binary decomposition of p’s coefficients.

We distinguish between an unencoded message element, denoted m or M, and the
encoded plaintext element m̂ or M̂. In addition, we use the notation enc(s)(m) for an
encryption of the message m under the secret key s, whereas mask(s)(v) denotes a mask-
like encryption of an unencoded value v (see equation 15).

The vectorization function vec(·) : Md(R) → Rd2 produces a column vector from a
square matrix by stacking its column on top of each other, starting with the left-most
column on the top. The inverse vectorization function vec−1(·) : Rd2 → Md(R) does the
same thing in reverse.

2.2 LWE, Module-LWE, and Ring-LWE.

In this section we recall the hard problems underlying the standard variants of the en-
cryption schemes in question, BGV [5], BFV [6, 7], and CKKS [13]. We define the most

3Here N ′ is the ring dimension of the Module-LWE instance, and N is the Ring-LWE ring dimension.
4This roughly means that we keep the security level constant.

8

general case, namely Module-LWE [32], then show that both LWE [14] and Ring-LWE
[17] are special cases of Module-LWE.

Definition 2.1 (Decision Module-LWE (MLWEN,d,q,χs,χe)). Fix the following integers:
the ring dimension N , the module rank d, the modulus q. Also fix two distributions χs

and χe, both over R. These are the secret key and noise distributions, respectively.

Let s ← χd
s . The MLWEN,d,q,χs,χe problem asks to distinguish between two distri-

butions:

1. Sample a← Rd
q , e← χe, and return

(a,b := ⟨a, s⟩+ e)

2. Sample a← Rd
q , b← Rq, and return

(a,b)

The Decision Module-LWE assumption (with parameters (N, d, q, χs, χe)) states
that without the knowledge of s, no polynomial-time adversary can distinguish the two
distributions significantly better than random guessing.

As we can see, decision Module-LWE asks us to distinguish between noisy dot products
with a secret value, and uniformly random tuples.

Definition 2.2 (Decision Ring-LWE (RLWEN,q,χs,χe)). Decision Ring-LWE is the in-
stantiation of Decision Module-LWE, with module rank d = 1.

RLWEN,q,χs,χe = MLWEN,1,q,χs,χe

TheDecision Ring-LWE assumption is equivalent to the respective Decision Module-
LWE assumption.

The decision Ring-LWE problem asks us to distinguish between noisy products with a
secret polynomial s, and uniformly random pairs of elements from Rq.

Definition 2.3 (Decision LWE (LWEd,q,χs,χe)). Decision Ring-LWE is the instantiation
of Decision Module-LWE, with ring dimension N = 1.

LWEd,q,χs,χe = MLWE1,d,q,χs,χe

TheDecision LWE assumption is equivalent to the respective Decision Module-LWE
assumption.

The decision LWE problem asks us to distinguish between noisy dot products with a secret
value (this time over Zq), and uniformly random tuples.

Effective lattice dimension. The LWE and Ring-LWE problems are each extremal
cases of the general Module-LWE problem along different dimensions. One is the ring

9

dimension N , which is minimized in the LWE case. The other is the module rank d,
which is minimized in the Ring-LWE case. Once the rest of the parameters are fixed,
the hardness of Module-LWE scales with d ·N [33], which we will refer to as the effective
lattice dimension. Note that a larger rank d and lower dimension N gives rise to a less
algebraically structured underlying lattice in the reductions to hard problems in lattices.
To the best of the author’s knowledge, techniques that exploit this structure are not known
[34, section 2.1, Related problems], except for the most pathological of cases [35, 36], and
the hardness of a Module-LWE problem with parameters N and d is taken to be the
hardness of the LWE problem with N ′ = d ·N .

2.3 Standard formulations of BGV, BFV, CKKS.

Typical instantiations of the BGV [4, 5], BFV [6, 7], and CKKS [13] encryption schemes
base their security on Decision Ring-LWE. The ciphertext structure and homomorphic
operations of the three schemes can be generalized to an abstract scheme. In this section,
we describe this abstract scheme. The three schemes differ in their methods of encoding
a message into a plaintext, and also in their management of the noise term. For our
generalization, these differences will be irrelevant. For simplicity, we also only describe
the secret key formulation of the schemes.

Ciphertext format. Briefly, to encrypt a message m ∈ Rt under the secret key s ∈ Rq,
depending on the specific scheme, one encodes m to get m̂ ∈ Rq, then samples a ← Rq

and e← χe, then constructs the following tuple.

(c0, c1) = (−a · s+ e+ m̂,a) ∈ Rq ×Rq (9)

The modulus q is referred to as the ciphertext modulus, while t is the plaintext modulus.
To decrypt, one computes a linear combination with the secret key s.

c0 + c1 · s = −a · s+ e+ m̂+ a · s = e+ m̂ ≈ m̂ (10)

Message encoding. Each scheme leverages a different encoding procedure to get rid of
the small-norm noise term e, and get the message m.

In the BGV case, m̂ = m and e is divisible by t, the plaintext modulus. This way,
decoding is just reduction modulo t.

[te+ m̂]t = m (11)

In the BFV case, m̂ = ∆m, where ∆ = ⌊q/t⌋. Decoding is multiplication by t/q
followed by a rounding.

[⌊t/q · (∆m+ e)⌉]t = m (12)

As we can see, BGV leaves the message unchanged and scales up the noise term, while
BFV scales up the message. They can be thought of as storing the message in the least
significant or most significant bits of the plaintext, but in both cases the message and
noise need to be separated at all times.

In contrast, CKKS does not separate the message and the noise in the plaintext poly-
nomial m̂. In fact, the message polynomial m is from Rq and it is already an approxi-
mate representation of the underlying vector of complex elements, then the encoding step
m̂ = m+ e just makes this approximation a little worse.

10

Relinearization. To make the addition and especially the multiplication operation more
intuitive, we can also describe a ciphertext as a polynomial c(x) = c0+c1x ∈ Rq[x], where
decryption is the evaluation of this polynomial at the secret key s.

c(s) = c0 + c1 · s ≈m (13)

With this in mind, ciphertext addition and multiplication are just polynomial addition
and multiplication. After both operations, evaluation at s gives the sum or product of the
messages, with the noise term having grown in the process. However, with multiplication,
the degree of our ciphertext went up from one to two, and now we have a quadratic
ciphertext.

c(x) = c0 + c1x+ c2x
2 (14)

This is not a problem in itself, as the new quadratic ciphertext can still be evaluated at
s to decrypt, but it does not match our original ciphertext format, and with additional
multiplications the degree of the ciphertext would grow exponentially. For this reason
a relinearization step is performed after each multiplication, which makes use of a relin-
earization key rlk, which allows us to evaluate the quadratic monomial with a masked
version of s2. The key consists of a list of linear polynomials, each of which mask s2 scaled
by powers of 2 (or optionally any other base) [7, section 4, Relinearisation: Version 1].
Note that these are strictly speaking not encryptions of s2 scaled, since these values have
not been encoded, similarly to the plaintext space of CKKS. Let l = ⌈log2(q)⌉.

rlk = [(−ai · s+ ei + 2i · s2,ai)︸ ︷︷ ︸
mask(s)(2

i·s2)

: 0 ≤ i < l] = [rlki(x) : 0 ≤ i < l] (15)

rlki(s) = ei + 2i · s2 (16)

To transform our quadratic polynomial back into a linear one, we use the masked s2 value
to evaluate the quadratic term.

c′(x) = c0 + c1x+ ⟨Base2Decomp(c2), rlk⟩ (17)

Notice that
∑

Base2Decomp(c2)[i] · 2i = c2, and thus the dot product gives a noisy
evaluation of the quadratic term. The base 2 decomposition is needed to manage the
noise introduced from the product of the random Rq element c2 and the noise terms in
the relinearization key rlk. Also notice that the dot product produces a linear polynomial,
which summed with the linear part of c′(x) again produces a linear polynomial.

3 Matrix–BGV/BFV/CKKS

3.1 Matrix encryption.

Now we present our baseline matrix encryption scheme along the lines of [24, section 6.2].
The encryption scheme is defined as follows.

1. MatEnc.SecKeyGen(1λ): For 0 ≤ i < d sample si ← χd
s , and output sk = (s0| . . . |sd−1).

2. MatEnc.SecKeyEnc(sk, M): To encrypt a message matrix M ∈Md(Rt), first encode
the matrix into the plaintext matrix M̂ ∈ Md(Rq)

5, then sample A ← Md(Rq),
E← χd×d

e . Let S = sk. Output the following tuple.

ct = (−AS+E+ M̂,A) ∈Md(Rq)×Md(Rq) (18)

5The encoding procedure is inherited from either BGV, BFV, or CKKS, performed entry-by-entry.

11

3. MatEnc.Dec(sk, ct): Let S = sk, and (C0,C1) = ct. First, take the following linear
combination of the ciphertext tuple and the secret key.

M̂′ = C0 +C1S (19)

Perform the decoding procedure on the matrix M̂’ to get the message matrix M’.
Output M’.

Note that this secret key encryption scheme can be turned into a public key encryption
scheme along the lines of Regev’s original construction [14], often referred to as primal
Regev. To do that, we can augment our encryption scheme with two additional functions.

4. MatEnc.PubKeyGen(sk): Let S = sk. Sample A←Md(Rq), E← χd×d
e . Output the

following tuple.
pk = (−AS+E,A) ∈Md(Rq)×Md(Rq) (20)

5. MatEnc.PubKeyEnc(pk, M): Let (P0,P1) = pk. To encrypt a message matrix M ∈
Md(Rt), first encode the matrix into the plaintext matrix M̂ ∈Md(Rq), then sample
U← χd×d

s , E1,E2 ← χd×d
e . Output the following tuple.

ct = (UP0 +E1 + M̂,UP1 +E2) (21)

The hardness results of the BGV-like schemes can be adopted to the decision Module-LWE
problem.

Theorem 3.1. The IND-CPA security of the above scheme MatEnc can be based on the
hardness of (decision) MLWEN,d,q,χs,χe.

Proof. The indistinguishability argument is identical to that of [24, lemma 6.2] and is
therefore omitted. See also [25, lemma 2.9].

3.2 Homomorphic properties.

Our matrix encryption scheme already defines a somewhat homomorphic encryption scheme
[37, section 2.1.1] along the lines of the BGV-like schemes, with polynomial-like addition
and multiplication of ciphertext evaluating the sum and product of the underlying plain-
text elements. Having said that, until we define a relinearization procedure, it is only a
non-compact [37, section 2.2.2] somewhat homomorphic encryption scheme.

Theorem 3.2. The encryption scheme MatEnc 3.1, along with polynomial-like addition
and multiplication of ciphertexts, defines a non-compact somewhat homomorphic
encryption scheme.

Proof. To verify the homomorphic properties, we identify initial ciphertexts with linear
polynomials in Md(Rq)[X].

C(X) = C0 +C1X = (−A1S+E1 + M̂1) +A1X (Ciphertext 1)

D(X) = D0 +D1X = (−A2S+E2 + M̂2) +A2X (Ciphertext 2)

The decryption procedure is equivalent to the evaluation map eval(S)(·) : Md(Rq)[X]→

12

Md(Rq).

C(S) = C0 +C1S = −A1S+E1 + M̂1 +A1S = E1 + M̂1

D(S) = D0 +D1S = −A2S+E2 + M̂2 +A2S = E2 + M̂2

Since the evaluation map is an Rq-algebra homomorphism, the decryption function
(evaluation map) and Rq-algebra operations commute. This implies the somewhat-
homomorphic property. The scheme is non-compact, since the degree of the polynomials
in Md(Rq)[X] can grow exponentially with the number of multiplication operations.

However, there is a problem with generalizing the ciphertext-ciphertext multiplication
to the matrix ring. Specifically, the Ring-LWE-based constructions rely on the commu-
tativity of the polynomial ring in the relinearization step. As long as we cannot perform
relinearization, we are stuck with a non-compact homomorphic encryption scheme.

We can verify that the polynomial multiplication of ciphertexts results in two linear
terms and a quadratic term, where the quadratic term is of the general form AXBX.

C(X) ·D(X) = (C0 +C1X) · (D0 +D1X)

= C0D0 +C0D1X +C1XD0 +C1XD1X
(22)

Both the linear terms and quadratic term cause problems. The first problem is that
we cannot collapse all linear terms into one, and with later multiplications their number
would only increase. This is not desirable if we wish to satisfy a compactness property.
The problem with the quadratic term is even worse, as its form inhibits relinearization.
If the quadratic term involves two linear occurences of X, then due to noncommutativity,
we would have to substitute in the secret key S twice. Since relinearization, which is as
evaluation with a quasi-encryption of the secret value, involves a multiplication between
a constant (usually c1) and a linear polynomial, the result in the usual case is a linear
polynomial. With two substitutions however, our relinearization procedure would again
involve a ciphertext-ciphertext multiplication, which defeats the purpose.

3.3 The superoperator technique.

Our main result is showing that we can represent the linear terms and the quadratic term
with operator-valued linear maps (superoperators) Ψ1 and Ψ2 acting on the indeterminate
X.

C0D0 +C0D1X +C1XD0 +C1XD1X

= C0D0 +Ψ1(X) +Ψ2(X ⊗X)
(23)

Ψ1(·) : Md(Rq)→Md(Rq)

X 7→ vec−1((I ⊗C0D1 +DT
0 ⊗C1︸ ︷︷ ︸

Ψ1∈Md2 (Rq)

)vec(X)) (24)

Ψ2(·) : Md(Rq)⊗Md(Rq)→Md(Rq)

X ⊗X 7→ vec−1(Mµ(C1 ⊗D1)︸ ︷︷ ︸
Ψ2∈Md2×d4 (Rq)

(vec(X)⊗ vec(X))) (25)

We use the vectorization notation vec(·) to highlight that the superoperators act on the
space of operators with matrix-vector multiplication. The two resulting operators can be
expressed with tensor products between the ciphertext coefficients.

13

vec−1((I ⊗C0D1 +DT
0 ⊗C1)vec(X))

= vec−1((I ⊗C0D1)vec(X) + (DT
0 ⊗C1)vec(X))

= vec−1(vec(C0D1X) + vec(C1XD0))

= vec−1(vec(C0D1X)) + vec−1(vec(C1XD0))

= C0D1X +C1XD0

(26)

vec−1(Mµ(C1 ⊗D1)(vec(X)⊗ vec(X)))

= vec−1(Mµ(C1vec(X)⊗D1vec(X)))

= vec−1(Mµ(vec(C1X)⊗ vec(D1X))

= vec−1(vec(C1XD1X))

= C1XD1X

(27)

If the vectorization of a matrix (e.g. C0D1X) is given in the appropriate encrypted
form 6, we can perform the inverse vectorization operation vec−1(·). We can also perform
the matrix-vector product between a superoperator and an encrypted vectorized matrix
(e.g., vec(S)⊗ vec(S)), and then the inverse vectorization operation, given the encrypted
vectorized matrix is well formed. In the next section we show initial attempts for perform-
ing this plaintext-ciphertext matrix-vector multiplication between a superoperator and an
encrypted 7 version of vec(S)⊗ vec(S).

Generalized ciphertext format. We can observe that the initial ciphertexts can be
represented as tuples from Md(Rq)×Md(Rq), but after performing multiplications (with
relinearization, see next section), our ciphertexts become a tuple in Md(Rq)×Md2(Rq).

ct = (C0,C1) ∈Md(Rq)×Md2(Rq) (General ciphertext format) (28)

Note that this general ciphertext definition includes the initial ciphertexts with a slight
modification.

ctinitial = (C0,C1) = (−AS+E+ M̂, I⊗A) (Modified initial format) (29)

Of course, this tensoring with the identity can be dropped for efficiency reasons. This
ciphertext space still forms and Rq-module, thus the execution of linear operations is
unchanged. The polynomial-like multiplication can also be adapted with the following
small adjustments.

(C0 +C1X) · (D0 +D1X) =

C0D0 + ((I⊗C0)D1 + (DT
0 ⊗ I)D1)X +Mµ(C1 ⊗D1)(vec(X)⊗ vec(X))

(30)

3.4 Naive relinearization.

In this section, we describe a simple but inefficient relinearization technique for the homo-
morphic matrix encryption scheme.

As we have seen, the previous technique reduces relinearization to a plaintext-ciphertext
matrix-vector multiplication between the unencrypted rectangular matrixC2 ∈Md2×d4(Rq),

6Usually it will involve many ciphertexts encrypting the vector in pieces.
7Technically, it is not an actual encryption of vec(S⊗ S), but a masked version analogously to 2.3.

14

and an encrypted8 version of v = vec(S) ⊗ vec(S) ∈ Rd4
q . Of course, we have to fit the

vector v into plaintext matrices of size d×d. We give a few equations for notation purposes.

C(X) = C0 +C1X +C2(X ⊗X) (Quadratic ciphertext) (31)

vec−1(C2 · v︸ ︷︷ ︸
q∈Rd2

q

) = C2(S⊗ S)︸ ︷︷ ︸
Q∈Md(Rq)

(Unencrypted evaluation) (32)

vec−1(C2 ·mask(S)(v)) = enc(S)(C2(S⊗ S)) (Relinearization equation) (33)

The best way to think about this matrix-vector multiplication is to go through the steps
in reverse. What we want to get at the end is a single ciphertext encrypting the eval-
uated quadratic monomial. To get this ciphertext, we will need to perform an inverse
vectorization vec−1(q) on the matrix vector product, in the encrypted domain.

Inverse vectorization. The easiest situation we can hope for is that as a result of the
plaintext-ciphertext matrix-vector multiplication, q is encrypted section-by-section into
d number of ciphertexts, where the top section of length d from q is the first column of
the first ciphertext (with the rest of the columns all zero), the second section from the
top is the second column of the second ciphertext, and so on. In this situation, summing
the ciphertexts results in an inverse vectorization. Let Q(i) denote the i-th column of the
matrix Q (equivalently the i-th section of q), with indexing starting from 0. Let 0 denote
a column vector of length d with all zero entries, and let 0n denote n number of these
columns stacked together horizontally.

(Q(0)|0d−1) + (0|Q(1)|0d−2) + · · ·+ (0d−1|Q(d−1))︸ ︷︷ ︸
inverse vectorization: vec−1(q)

= Q (34)

Our aim will be to perform this summation in the encrypted domain on ciphertexts.

Matrix-vector product block-by-block. To get d ciphertexts of the above form, we
break the matrix C2 into blocks of size d× d.

C2 =

C(0,0) C(0,1) · · · C(0,d3−1)

C(1,0) C(1,1) · · · C(1,d3−1)

· · · · · · · · · · · ·
C(d−1,0) C(d−1,1) · · · C(d−1,d3−1)

 ∈Md×d3(Md(Rq))

The relinearization key rlk will consist of length d sections of v (denoted v(0) to v(d3−1),
from top to bottom), each encrypted separately as columns of plaintext matrices. We will
have d3 number of ciphertexts encrypting (v(i)|0d−1) for all 0 ≤ i < d3, then d ciphertexts
encrypting (0|v(i)|0d−2) for all i, and so on. In total, we have d4 ciphertexts, where each
length d section of v is encrypted in all d possible column positions.

rlk[i, j] := mask(S)(0
j |v(i)|0d−1−j) (0 ≤ i < d3 − 1, 0 ≤ j < d− 1)

Now we can perform the matrix-vector product block-by-block, where for each row of C2,
we use the ciphertexts in rlk where the index of the row equals the index of the columns
occupied in the plaintext matrix.

enc(S)(0
i|Q(i)|0d−1−i) = ⟨(C(i,0), . . . ,C(i,d3−1)), (rlk[0, i], . . . , rlk[d

3 − 1, i])⟩ (35)

8For simplicity, we will refer to the masked version of the secret key as an encryption and a ciphertext.

15

Given the encrypted columns of Q, we can sum them up to get the relinearized quadratic
monomial.

enc(S)(Q) =
∑

0≤i<d−1

enc(S)(0
i|Q(i)|0d−1−i) (36)

3.5 Compact homomorphic encryption scheme.

Result 3.1. The encryption scheme MatEnc 3.1 can be turned into a compact some-
what homomorphic encryption scheme with the above relinearization technique.

Note that similarly to the Ring-LWE case 2.3, one needs to provide scaled versions
of the relinearization key, then perform a decomposition on the quadratic coefficient C2.
We would also like to emphasize that this is a first attempt at defining a relinearization
technique and there is a lot of room for improvement. For instance, we expect that a
ciphertext format that only encrypts column vectors is possible and would drastically
reduce the size of the relinearization key.

A big problem with this relinearization key is that each length d segment of vec(S)⊗
vec(S) is encrypted as one column of an entire d×d matrix. Hence, one realistic approach
to reducing the key size would be to encrypt only columns, not matrices. This can be
achieved if one only uses one column from the secret key S, then views that encryption
under the one column as an encryption under S′, where all other columns are replaced
with zeros. If key switching keys are then provided from each column encryption to the
original key S, one can perform the matrix-vector product only on encrypted columns,
then switch those to matrices and sum them up.

3.6 Ring expansion factor and noise growth.

In this section, we give the ring expansion factor for the matrix ring Md(R), with respect
to the infinity norm on matrices.

Theorem 3.3. The ring expansion factor δMd(Q) for the matrix ring Md(Q), over any
ring Q, is given by d · δQ.

Proof. LetC = A·B denote a general multiplication inMd(Q). To reach our conclusion
for the matrix C, we can inspect the product entry by entry. We can easily upper
bound each entry with the upper bound on the Q-multiplications in the row-column
dot product.

||C(i,j)||∞ = ||⟨(A(i,0), . . . ,A(i,d−1)), (B(0,j), . . . ,B(d−1,j))⟩||∞ =

= ||
∑

0≤k<d

A(i,k)B(k,j)||∞ ≤
∑

0≤k<d

||A(i,k)B(k,j)||∞ ≤

≤ δQ ·
∑

0≤k<d

||A(i,k)||∞||B(k,j)||∞ ≤ d · δQ · ||A||∞ · ||B||∞

Since we defined the infinity norm of a matrix entry by entry, this gives the equivalent
upper bound for δMd(Q). Furthermore, since δR is a lowest upper bound, with an
appropriate choice of parameters all inequalities can be saturated, thus the inequality
is sharp.

16

Theorem 3.3 gives rise to a convenient connection between the hardness of the Module-
LWE instance and the ring expansion factor it implies on the matrix encryption scheme
3.1.

Theorem 3.4. For a Module-LWE-based encryption scheme as defined in section 3.1,
the ring expansion factor for the underlying matrix ring Md(R) is equivalent to the
effective lattice dimension of the Module-LWE instance.

Proof. We defined the effective lattice dimension 2.2 as d ·N , which is equivalent to the
expansion factor δMd(R) of the ring Md(R), for R = Z/(xN + 1).

This means that if we start from a Ring-LWE-based instantiation of BGV/BFV or CKKS
(which is just a d = 1 instantiation of our matrix encryption scheme 3.1) and we increase
the matrix dimension to d, then we can decrease the ring dimension N to keep both the
hardness of the Module-LWE instance and the ring expansion factor the same. This result
points to a sense of naturality in this transition from the scalar to the matrix instantiation.

4 Conclusion and Future Work

We presented a generalization of the BGV, BFV, and CKKS homomorphic encryption
schemes to matrix rings. This generalized construction is secure under a suitable decision
Module-LWE hardness assumption, and inherits the linear homomorphic properties of
the standard instantiations. A so called “superoperator technique” is then presented,
which allows for the relinearization of ciphertexts after multiplication, turning the matrix
encryption scheme into a compact somewhat homomorphic encryption scheme.

Open questions. Determining the practicality of the relinearization procedure and the
development of further improvements constitute major open problems. Additionally, fur-
ther work is needed to examine the feature parity of the generalized scheme compared
with the standard instantiations, especially in the case of bootstrapping algorithms.

Acknowledgments. The author would like to thank Péter Kutas for the countless in-
sightful discussions and encouragement.

References

[1] Gentry, Craig. “Fully homomorphic encryption using ideal lattices”, Proceedings of
the forty-first annual ACM symposium on Theory of computing. 2009, pp. 169–178.

[2] Marcolla, Chiara et al., “Survey on fully homomorphic encryption, theory, and ap-
plications”, Proceedings of the IEEE, Vol. 110 No. 10, (2022), pp. 1572–1609. https:
//eprint.iacr.org/2022/1602.

[3] Kim, Andrey, Polyakov, Yuriy, and Zucca, Vincent. “Revisiting homomorphic en-
cryption schemes for finite fields”, Advances in Cryptology–ASIACRYPT 2021: 27th
International Conference on the Theory and Application of Cryptology and Informa-
tion Security, Singapore, December 6–10, 2021, Proceedings, Part III 27. Springer.
2021, pp. 608–639. https://eprint.iacr.org/2021/204.

17

https://eprint.iacr.org/2022/1602
https://eprint.iacr.org/2022/1602
https://eprint.iacr.org/2021/204

[4] Brakerski, Zvika and Vaikuntanathan, Vinod. “Efficient fully homomorphic encryp-
tion from (standard) LWE”, SIAM Journal on computing, Vol. 43 No. 2, (2014),
pp. 831–871. https://eprint.iacr.org/2011/344.

[5] Brakerski, Zvika, Gentry, Craig, and Vaikuntanathan, Vinod. “Fully homomorphic
encryption without bootstrapping”, Proceedings of Innovations in Theoretical Com-
puter Science (ITCS’12). 2012. http://eprint.iacr.org/2011/277.

[6] Brakerski, Zvika. “Fully homomorphic encryption without modulus switching from
classical GapSVP”,Annual cryptology conference. Springer. 2012, pp. 868–886. https:
//eprint.iacr.org/2012/078.

[7] Fan, Junfeng and Vercauteren, Frederik. “Somewhat practical fully homomorphic
encryption”, Cryptology ePrint Archive, (2012). https://eprint.iacr.org/2012/
144.

[8] Smart, Nigel P and Vercauteren, Frederik. “Fully homomorphic SIMD operations”,
Designs, codes and cryptography, Vol. 71, (2014), pp. 57–81. https://eprint.iacr.
org/2011/133.

[9] Gentry, Craig, Halevi, Shai, and Smart, Nigel P. “Fully homomorphic encryption
with polylog overhead”, Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques. Springer. 2012, pp. 465–482. https://eprint.
iacr.org/2011/566.

[10] Gentry, Craig, Sahai, Amit, and Waters, Brent. “Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based”,
Advances in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I. Springer. 2013, pp. 75–
92. https://eprint.iacr.org/2013/340.

[11] Ducas, Léo and Micciancio, Daniele. “FHEW: bootstrapping homomorphic encryp-
tion in less than a second”, Annual international conference on the theory and appli-
cations of cryptographic techniques. Springer. 2015, pp. 617–640. https://eprint.
iacr.org/2014/816.

[12] Chillotti, Ilaria et al., “TFHE: fast fully homomorphic encryption over the torus”,
Journal of Cryptology, Vol. 33 No. 1, (2020), pp. 34–91. https://eprint.iacr.
org/2018/421.

[13] Cheon, Jung Hee et al., “Homomorphic encryption for arithmetic of approximate
numbers”, Advances in cryptology–ASIACRYPT 2017: 23rd international conference
on the theory and applications of cryptology and information security, Hong kong,
China, December 3-7, 2017, proceedings, part i 23. Springer. 2017, pp. 409–437.
https://eprint.iacr.org/2016/421.

[14] Regev, Oded. “On lattices, learning with errors, random linear codes, and cryp-
tography”, Journal of the ACM (JACM), Vol. 56 No. 6, (2009), pp. 1–40. https:
//arxiv.org/abs/2401.03703.

[15] Regev, Oded. “The learning with errors problem”, Invited survey in CCC, Vol. 7
No. 30, (2010), p. 11. https://cims.nyu.edu/~regev/papers/lwesurvey.pdf.

[16] Peikert, Chris and Pepin, Zachary. “Algebraically structured LWE, revisited”, Jour-
nal of Cryptology, Vol. 37 No. 3, (2024), p. 28. https://eprint.iacr.org/2019/
878.

18

https://eprint.iacr.org/2011/344
http://eprint.iacr.org/2011/277
https://eprint.iacr.org/2012/078
https://eprint.iacr.org/2012/078
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2011/133
https://eprint.iacr.org/2011/133
https://eprint.iacr.org/2011/566
https://eprint.iacr.org/2011/566
https://eprint.iacr.org/2013/340
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2016/421
https://arxiv.org/abs/2401.03703
https://arxiv.org/abs/2401.03703
https://cims.nyu.edu/~regev/papers/lwesurvey.pdf
https://eprint.iacr.org/2019/878
https://eprint.iacr.org/2019/878

[17] Lyubashevsky, Vadim, Peikert, Chris, and Regev, Oded. “On ideal lattices and
learning with errors over rings”, Advances in Cryptology–EUROCRYPT 2010: 29th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, French Riviera, May 30–June 3, 2010. Proceedings 29. Springer. 2010,
pp. 1–23. https://eprint.iacr.org/2012/230.

[18] Geelen, Robin and Vercauteren, Frederik. “Bootstrapping for BGV and BFV Revis-
ited”, Journal of Cryptology, Vol. 36 No. 2, (2023), p. 12. https://eprint.iacr.
org/2022/1363.

[19] Halevi, Shai and Shoup, Victor. “Algorithms in helib”, Advances in Cryptology–
CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2014, Proceedings, Part I 34. Springer. 2014, pp. 554–571. https:
//eprint.iacr.org/2014/106.

[20] Halevi, Shai and Shoup, Victor. “Design and implementation of HElib: a homo-
morphic encryption library”, Cryptology ePrint Archive, (2020). https://eprint.
iacr.org/2020/1481.

[21] Jiang, Xiaoqian et al., “Secure outsourced matrix computation and application to
neural networks”, Proceedings of the 2018 ACM SIGSAC conference on computer
and communications security. 2018, pp. 1209–1222. https://eprint.iacr.org/
2018/1041.

[22] Cheon, Jung Hee, Kim, Andrey, and Yhee, Donggeon. “Multi-dimensional packing
for HEAAN for approximate matrix arithmetics”, Cryptology ePrint Archive, (2018).
https://eprint.iacr.org/2018/1245.

[23] Zheng, Xiaopeng, Li, Hongbo, and Wang, Dingkang. “A new framework for fast ho-
momorphic matrix multiplication”, Designs, Codes and Cryptography, (2025), pp. 1–
23. https://eprint.iacr.org/2023/1649.

[24] Peikert, Chris and Waters, Brent. “Lossy trapdoor functions and their applications”,
Proceedings of the fortieth annual ACM symposium on Theory of computing. 2008,
pp. 187–196. https://eprint.iacr.org/2007/279.

[25] Micciancio, Daniele. “On the hardness of learning with errors with binary secrets”,
Theory of Computing, Vol. 14 No. 1, (2018), pp. 1–17. https://theoryofcomputing.
org/articles/v014a013.

[26] Gentry, Craig, Halevi, Shai, and Vaikuntanathan, Vinod. “A simple BGN-type cryp-
tosystem from LWE”, Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. Springer. 2010, pp. 506–522. https://eprint.
iacr.org/2010/182.

[27] Gentry, Craig, Peikert, Chris, and Vaikuntanathan, Vinod. “Trapdoors for hard
lattices and new cryptographic constructions”, Proceedings of the fortieth annual
ACM symposium on Theory of computing. 2008, pp. 197–206.

[28] Park, Jai Hyun. “Ciphertext-Ciphertext Matrix Multiplication: Fast for Large Ma-
trices”, Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer. 2025, pp. 153–180. https://eprint.iacr.org/
2025/448.

[29] Hiromasa, Ryo, Abe, Masayuki, and Okamoto, Tatsuaki. “Packing messages and
optimizing bootstrapping in GSW-FHE”, IEICE TRANSACTIONS on Fundamen-
tals of Electronics, Communications and Computer Sciences, Vol. 99 No. 1, (2016),
pp. 73–82. https://iacr.org/archive/pkc2015/90200146/90200146.pdf.

19

https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2022/1363
https://eprint.iacr.org/2022/1363
https://eprint.iacr.org/2014/106
https://eprint.iacr.org/2014/106
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2018/1041
https://eprint.iacr.org/2018/1041
https://eprint.iacr.org/2018/1245
https://eprint.iacr.org/2023/1649
https://eprint.iacr.org/2007/279
https://theoryofcomputing.org/articles/v014a013
https://theoryofcomputing.org/articles/v014a013
https://eprint.iacr.org/2010/182
https://eprint.iacr.org/2010/182
https://eprint.iacr.org/2025/448
https://eprint.iacr.org/2025/448
https://iacr.org/archive/pkc2015/90200146/90200146.pdf

[30] Lyubashevsky, Vadim and Micciancio, Daniele. “Generalized compact knapsacks are
collision resistant”, International Colloquium on Automata, Languages, and Pro-
gramming. Springer. 2006, pp. 144–155. https://cseweb.ucsd.edu/~daniele/
papers/IdealHash.pdf.

[31] Halevi, Shai and Shoup, Victor. “Faster homomorphic linear transformations in
HElib”, Annual International Cryptology Conference. Springer. 2018, pp. 93–120.
https://eprint.iacr.org/2018/244.

[32] Langlois, Adeline and Stehlé, Damien. “Worst-case to average-case reductions for
module lattices”, Designs, Codes and Cryptography, Vol. 75 No. 3, (2015), pp. 565–
599. https://eprint.iacr.org/2012/090.

[33] Albrecht, Martin R and Deo, Amit. “Large modulus ring-LWE ≥ module-LWE”, In-
ternational Conference on the Theory and Application of Cryptology and Information
Security. Springer. 2017, pp. 267–296. https://eprint.iacr.org/2017/612.

[34] Albrecht, Martin R et al., “Estimate all the {LWE, NTRU} schemes!”, Security
and Cryptography for Networks: 11th International Conference, SCN 2018, Amalfi,
Italy, September 5–7, 2018, Proceedings 11. Springer. 2018, pp. 351–367. https:
//eprint.iacr.org/2018/331.

[35] Albrecht, Martin, Bai, Shi, and Ducas, Léo. “A subfield lattice attack on over-
stretched NTRU assumptions: Cryptanalysis of some FHE and graded encoding
schemes”, Annual international cryptology conference. Springer. 2016, pp. 153–178.
https://eprint.iacr.org/2016/127.

[36] Peikert, Chris. “How (not) to instantiate ring-LWE”, International Conference on
Security and Cryptography for Networks. Springer. 2016, pp. 411–430. https://
eprint.iacr.org/2016/351.

[37] Halevi, Shai. “Homomorphic encryption”, Tutorials on the Foundations of Cryptog-
raphy: Dedicated to Oded Goldreich. Springer, 2017, pp. 219–276. https://shaih.
github.io/pubs/he-chapter.pdf.

20

https://cseweb.ucsd.edu/~daniele/papers/IdealHash.pdf
https://cseweb.ucsd.edu/~daniele/papers/IdealHash.pdf
https://eprint.iacr.org/2018/244
https://eprint.iacr.org/2012/090
https://eprint.iacr.org/2017/612
https://eprint.iacr.org/2018/331
https://eprint.iacr.org/2018/331
https://eprint.iacr.org/2016/127
https://eprint.iacr.org/2016/351
https://eprint.iacr.org/2016/351
https://shaih.github.io/pubs/he-chapter.pdf
https://shaih.github.io/pubs/he-chapter.pdf

	Introduction
	Background
	Technical Overview

	Preliminaries
	Basic notation.
	LWE, Module-LWE, and Ring-LWE.
	Standard formulations of BGV, BFV, CKKS.

	Matrix–BGV/BFV/CKKS
	Matrix encryption.
	Homomorphic properties.
	The superoperator technique.
	Naive relinearization.
	Compact homomorphic encryption scheme.
	Ring expansion factor and noise growth.

	Conclusion and Future Work

