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ABSTRACT
Anonymous communication is vital for enabling individuals to
participate in social discourse without fear of marginalization or
persecution. An important but often overlooked part of anonymous
communication is the bootstrapping of new communication chan-
nels. If Alice wants to communicate with Bob, she must first learn
his in-system identifier. In synchronous designs, message exchange
is only possible once both communication partners have agreed
to communicate. Thus, Alice must notify Bob of her intent, Bob
must learn her in-system identifier, and Bob must acknowledge
her notification. This bootstrapping process is generally assumed
to occur out-of-band, but if it discloses metadata, communication
partners are revealed even if the channel itself is fully anonymized.
We propose Sabot, the first anonymous bootstrapping protocol
that achieves both strong cryptographic privacy guarantees and
bandwidth-efficient communication. In Sabot, clients cooperatively
generate a private relationship matrix, which encodes who wants
to contact whom. Clients communicate with : ≥ 2 servers to
obtain “their” part of the matrix and augment the received infor-
mation using Private Information Retrieval (PIR) to learn about
their prospective communication partners. Compared to previous
solutions, Sabot achieves stronger privacy guarantees and reduces
the bandwidth overhead by an order of magnitude.
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1 INTRODUCTION
Today, online communication is ubiquitous and an integral part
of almost everyone’s life. While end-to-end encryption and confi-
dentiality of content has become the default in most mainstream
platforms, communication metadata (e.g., who talks to whom) still
reveals sensitive information about the clients. Thus, the focus
on private and anonymous communication is ever-increasing, in
practice, e.g., Signal’s sealed sender feature,1 and research, where
various Anonymous Communication Networks (ACNs) have been
proposed [3, 10, 13, 17, 19, 30, 35]. ACNs aim to protect metadata
during ongoing communication so users can communicate freely
and without fear of marginalization or persecution. In this paper,

∗Please cite the conference version of this paper published at ACM CCS 2025 [9].
1https://signal.org/blog/sealed-sender/ — Accessed May 27, 2025

we focus on bootstrapping of new anonymous communication chan-
nels, which existing systems generally assumed to be out-of-band.

The setting for bootstrapping is as follows: We assume a client,
Alice, who wants to establish an anonymous communication chan-
nel with another client, Bob, in an ACN. Alice knows an external
identifier for Bob (e.g., his email address) but needs to obtain his
contact information within the ACN. In many ACN designs, com-
munication is synchronous [1–3, 18, 25, 26, 33, 35], which requires
that both Alice and Bob agree to communicate before anonymous
message exchange is possible. Therefore, as part of the bootstrap-
ping process, Alicemust notify Bob, and Bobmust learn her contact
information and acknowledge her notification. Bootstrapping can-
not occur through an existing non-anonymous channel without
disclosing the relationship between Alice and Bob. A face-to-face
meeting might facilitate bootstrapping if neither Alice nor Bob are
under physical surveillance, but it is inconvenient. Alpenhorn [27]
and Pudding [22] proposed the first standalone protocols to provide
bootstrapping as described above anonymously via online channels.

In this work, we study the requirements of bootstrapping of
anonymous communication and propose Sabot, a new bootstrap-
ping protocol that satisfies the identified requirements. Like related
work, Sabot utilizes multiple non-colluding servers. A bootstrap-
ping protocol used in conjunction with an ACN must protect the
metadata that the ACN itself aims to hide. Otherwise, leaked boot-
strapping metadata might break the privacy goals of the ACN and
reveal communication relations. We thus require communication
unobservability [23], i.e., all communication-related metadata is
hidden, including how many – if any – relations a client has. Sabot
satisfies this requirement, making the protocol suitable for all ACNs.

In anonymous communication, only online clients contribute to
the anonymity set, i.e., clients are only hidden among those who
are participating at the same time. To maximize the size of the
anonymity set, Sabot aims to make bootstrapping as bandwidth-
efficient as possible, so that even clients with limited bandwidth
available can participate for extended periods of time. Anony-
mous communication has yet to reach mainstream adoption; hence,
Sabot focuses on efficient bootstrapping in small to medium-sized
deployments of up to a few hundred thousand clients.

We further identify two distinct tasks that need to occur during
bootstrapping: 1) potential communication partners must agree to
communicate, and 2) the contact information to set up communi-
cation in the ACN must be exchanged. The makeup of the contact
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information depends on the specific ACN to be bootstrapped but
could, e.g., include public keys or pseudonyms. In Sabot, clients
notify each other of their intent to communicate. To hide the real no-
tifications, communication between all participants is required [24].
While this communication cost – quadratic in the number of clients
– is inherent, Sabot requires only a single bit per possible rela-
tion. Relationship privacy of these bits is preserved by using secret
sharing between multiple non-colluding servers. In Sabot, the
exchange of contact information is realized using a protocol for Pri-
vate Information Retrieval (PIR). Using PIR ensures that clients can
obtain their communication partner’s contact information from
a central database while the servers jointly holding the database
remain oblivious to the partner’s identity. To hide the number of
contacts per client, Sabot uses fixed PIR retrieval rates.

We introduce two variants of Sabot that differ in the trust as-
sumptions they make about the servers: Firstly, Sabot< , assumes
anytrust among the servers, as assumed in related work [22, 27].
In the anytrust model, all but one server can be malicious. Sabot<
requires the use of an authenticated PIR scheme [11] to ensure that
the malicious servers cannot send false contact information to a
client without detection. Secondly, for settings where all servers are
semi-honest, we introduce Sabotℎ . Sabotℎ is agnostic to the under-
lying PIR scheme (as it only requires honest-but-curious security)
and can thus be more efficient than Sabot< .

Alpenhorn, Pudding, and Sabot all provide unlinkability be-
tween communicating clients and are resistant to traffic analysis.
However, Alpenhorn and Pudding only provide sketch-level proofs
of their privacy guarantees. In contrast, we adapt Kuhn et al.’s pri-
vacy notion of communication unobservability [23] to the bootstrap-
ping setting and provide a full formal proof that Sabotℎ achieves
this notion against a passive adversary. For Sabot< , we provide
an informal analysis that it protects the same metadata as Sabotℎ .

To evaluate Sabot, we implemented a prototype in Go. Our eval-
uation shows that Sabot is highly bandwidth-efficient for small to
medium-sized deployments: For 214 participating clients, Sabot<
requires a client to exchange 7.04 KiB of data per bootstrapped com-
munication, which is an order of magnitude less than related work.
With Sabotℎ , this overhead decreases further by a factor of nearly
2×. For 214 clients, both Sabot< and Sabotℎ are computationally
efficient with end-to-end latency of under 10 seconds.

Our main contributions in this paper are:

• Sabot, the first ACN bootstrapping protocol that is both
strongly anonymous and bandwidth-efficient.

• The adaption of the formal privacy notion of communica-
tion unobservability [23] to the bootstrapping setting.

• A full formal proof that Sabotℎ achieves communication
unobservability with strong cryptographic privacy guaran-
tees against a passive adversary.

• A prototype implementation and empirical evaluation of
Sabot, highlighting its feasibility for bootstrapping of small
to medium-sized ACN deployments.

This paper is organized as follows: § 2 discusses related work
and §3 introduces the necessary background. In §4, Sabot’s func-
tionality, threat model, and privacy goals are stated, and in § 5,
the general design of Sabot is outlined. In §6 the protocol is de-
scribed in detail and §7 gives a formal security analysis of Sabot.

§8 presents the results of Sabot’s empirical evaluation. Finally, §9
discusses extensions to Sabot and §10 concludes this work.

2 RELATEDWORK
Most ACNs rely on out-of-band bootstrapping to set up new com-
munication channels. Our goal in this paper is to design a system
that enables bootstrapping without metadata disclosure and with-
out out-of-band communication. In this section, we discuss related
work with the same goal.

Alpenhorn. Alpenhorn [27] was the first protocol to provide an
anonymous bootstrapping functionality. In Alpenhorn, clients use
Identity-Based Encryption (IBE) to encrypt their contact informa-
tion without knowing the recipient’s public key. The resulting ci-
phertexts are sent to the recipients’ mailboxes through a mix net-
work. Alpenhorn uses cover traffic generated by the mix servers
to hide the number of clients trying to contact a given recipient.
Alpenhorn has two significant drawbacks: First, it provides only
differential privacy guarantees rather than the stronger crypto-
graphic guarantees Sabot aims to achieve. Relying on differential
privacy requires a careful selection of protocol parameters that
balance long-term privacy and overhead. A client’s popularity is
only hidden within the bounds set by those parameters. Second,
Alpenhorn’s use of server-generated cover traffic leads to very high
bandwidth overhead for clients: During each protocol round, a
client can only initiate bootstrapping with one other client, but has
to download about 7MiB of data.

Pudding. Pudding [22] is a recent design that aims to improve on
Alpenhorn’s high bandwidth overhead. Pudding replaces Alpen-
horn’s IBE with server-issued and pre-computed packet headers.
Clients can append their contact information to the header to send
it through a mix network to the recipients. No prior knowledge,
except for the recipient’s identifier, is required for this. In Pudding,
the actual message exchange for bootstrapping is very efficient, but
its underlying mix network, Nym,2 generates cover traffic at a high
rate. For a client, the bootstrapping of a single communication chan-
nel incurs 7MiB of transmitted data. Pudding achieves membership
unobservability against clients, i.e., during the bootstrapping, Alice
does not learn if Bob is registered unless he decides to answer her
bootstrapping request. This property cannot be achieved against
servers, as they guarantee the authentication of clients.

We note that Pudding’s design comes with an important privacy
limitation: Since clients request the headers in plain, servers learn
how many requests arrive for each receiver and can infer their
popularity. We consider this leakage to be significant, as popular
receivers are high-value targets for further attacks. Sabot aims to
hide this leakage.

3 BACKGROUND
This section provides relevant background on secret sharing (§3.1),
and Private Information Retrieval (PIR) (§3.2).Throughout the paper,
the following notation is used: A set {1, . . . , =} is denoted by [=],
vectors are denoted by v = (G1, . . . , G<) ∈ {0, 1}< and matrices
byM with elementM8, 9 for row and column indices 8, 9 ∈ [=].

2https://nymtech.net — Accessed May 27, 2025
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Furthermore, _ is the security parameter and functions polynomial
or negligible in _ are stated as poly(_) and negl(_), respectively.

3.1 Secret Sharing
Schemes for secret sharing allow clients to split some data 3 into =
shares, such that the original data can only be reconstructed with
at least C shares. Any subset of less than C shares does not reveal
any information about the data.

One can construct a simple yet computationally efficient =-out-
of-= secret sharing scheme, i.e., C = =, by randomly generating
shares B1, . . . , B=−1 and setting B= = B1 ⊕ · · · ⊕ B=−1 ⊕ 3 . The data
can be recovered by computing 3 = B1 ⊕ · · · ⊕ B= . This construction
is referred to as XOR Secret Sharing (XSS) and is used in this work.

Definition 1 (XOR Secret Sharing). An XSS scheme with : servers,
over plaintext space X, consists of two algorithms with the follow-
ing syntax:

• Share(B) → ((B8 )8∈: ): takes as input data B ∈ X, and re-
turns randomly generated shares {B8 }8∈: .

• Combine((B8 )8∈: ) → B : takes as input : shares (B8 )8∈: , and
returns data B ∈ X.

3.2 Private Information Retrieval
Protocols for Private Information Retrieval (PIR) allow clients to
query a public database DB without revealing their requested items.
One or multiple servers holding the database answer queries but
remain oblivious to the requested information. Literature distin-
guishes between Index-PIR (I-PIR) and Keyword-PIR (KW-PIR).
In settings where the servers are assumed to be malicious, Authen-
ticated PIR (APIR) is required.

Index-based PIR. With Index-PIR (I-PIR), each database element
is addressed via a unique index. Clients are assumed to know the
database index of the element they wish to retrieve.

Definition 2 (Private Information Retrieval). A multi-server PIR
scheme with index-based queries (I-PIR) with : servers for a database
{G8 }8∈# sampled over some element space X with # ∈ N, consists
of four algorithms with the following syntax:

• Setup(1_, (G8 )8∈# ) → (pp,DB): takes as input a security
parameter _ and a set of elements in X, and returns the PIR
database and its public parameters pp.

• Query(pp, idx) → (st, q): takes as input public parameters
and an index idx ∈ [# ], and returns client state st and
queries q← (@8 )8∈: .

• Answer(pp,DB, @8 ) → 08 : takes as input a database DB
and client query @8 , and returns answer 08 .

• Reconstruct(st, a) → G : takes as input client state st and
answers a← (08 )8∈: , and returns an element G ∈ X.

A PIR protocol must satisfy correctness and privacy. We pro-
vide formal definitions in §A.1. Informally, correctness ensures
that an honest client obtains the requested database record, i.e.,
G = DB[83G] for I-PIR, from honest-but-curious servers. Privacy
guarantees that the servers do not learn any information about the
requested record from answering the query.

In this work, I-PIR is instantiatedwithDPF-PIR, a communication-
efficient two-server PIR protocol based on Distributed Point Func-
tions (DPFs) [5, 6, 20]. In DPF-PIR, a client generates a point function
for the index they want to query in the database. This function is
secret-shared to both servers such that no individual share leaks
any information about the queried index. Each server evaluates
a function share on the database, and the client can combine all
evaluated shares to recover the database record.

Keyword-based PIR. Compared to I-PIR, Keyword-PIR (KW-PIR)
allows clients to privately retrieve records from a key-value store us-
ing keyword-based queries. Each database record G8 ∈ X is assigned
a keyword :8 ∈ K for 8 ∈ # . We adapt the following algorithms
in Def. 2 to allow keyword-based queries:

• Setup(1_, {(:8 , G8 )}8∈# ) → (pp,DB): takes as input a se-
curity parameter _ and a set of key-value pairs with keys
in K and values in X, and returns the PIR database and its
public parameters pp.

• Query(pp, k) → (st, q): takes as input public parameters
pp and a keyword k ∈ K , and returns client state st and
queries q← (@8 )8∈: .

Keyword-based PIR can be constructed by adding a “keyword-to-
index” mapping function to an index-based PIR scheme. Key-value
pairs are stored in a data structure where each keyword can be
mapped to multiple positions using hash functions. Hence, for each
KW-PIR request, multiple I-PIR queries are needed to obtain the
KW-PIR record from the I-PIR answers.

In this work, we employ the hashing strategy of Binary Fuse
Filter (BFF) [21] for the mapping function [8]. To allow retrieval, full
key-value pairs are stored at one of the positions derived through
hashing. For #hash = 3 hash functions, a BFF needs to be 2 ≥ 1.125
times larger than the number of items it contains to reduce the risk
of hash collisions [21]. As the communication and computational
costs of PIR depend on the database size, Sabot only uses this data
store as the KW-PIR and not the I-PIR database.

Authenticated PIR. Multi-server PIR protocols generally assume
honest-but-curious servers. In this setting, data integrity is guaran-
teed by assumption, as servers can neither deviate from the protocol
nor exchange information. If, however, this assumption does not
hold, even a single actively malicious server can force a chosen
output on the client. Compared to standard PIR, Authenticated PIR
(APIR) [4, 11, 15, 16, 36] introduces an additional mechanism that
allows clients to detect if a server deviated from the protocol and
sent wrong information. We extend the definitions of I-PIR and
KW-PIR for the malicious setting to allow the adversary to learn
the verification result:

• Setup(1_, seed, in) → (pp,DB): takes as input a security
parameter _, a random seed to coordinate and authenticate
the database setup between servers, and an input set D,
and returns the PIR database and its public parameters pp.
For I-PIR, in← X# . For KW-PIR, in← (K × X)# .

• Reconstruct(st, a) → {G,⊥}: takes as input client state st,
and answers a← (08 )8∈: , and returns an element G ∈ X if
the verification is successful, else returns ⊥.
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AnAPIR scheme needs to satisfy the properties of correctness (as
stated above) aswell as integrity of the retrieved database record and
privacy against a malicious server. For formal definitions see §A.1.

Colombo et al. propose an APIR scheme [11] that guarantees
data integrity by combining a traditional multi-server PIR protocol
with proof-of-inclusions for all database items [29]. We utilize their
construction to achieve database authenticity for bootstrapping in
the fully malicious case for both I-PIR and KW-PIR.

4 MODEL & GOALS
This section presents Sabot’s functionality, threat model, and its
specific privacy and security goals and non-goals.

4.1 Functionality
Many prominent ACN designs [1–3, 13, 14, 18, 19, 25, 26, 30, 33–35]
focus on providing client-to-client communication channels which
require the exchange of contact information prior to communica-
tion. In these designs, contact information consists of public key
material, unique in-system identifiers, or (random) mailbox ad-
dresses. Designs that exchange messages synchronously [1–3, 18,
25, 26, 33, 35] additionally require clients to notify intended commu-
nication partners of the upcoming message exchange. Table 1 gives
an overview of these designs and their bootstrapping requirements.

Assuming Alice wants to bootstrap a communication channel
with Bob, we identify two distinct tasks they need to complete:

(1) Exchange of Contact Information. Alice and Bob must
learn each other’s contact information Δ to set up subse-
quent communication in the bootstrapped ACN.

(2) Notification. Alice needs to notify Bob of her intention to
communicate with him. If Bob also wishes to communicate
with Alice, he must confirm her notification.

Sabot allows the anonymous bootstrapping of bi-directional
one-to-one communication channels between clients from the set
of registered clients* . Since it does not disclose metadata, Sabot
is suitable for bootstrapping ACNs, which aim to hide metadata
during communication. To participate in the bootstrapping, a client
must register in Sabot using a well-known external identifier, such
as an email address or phone number. The client further has to
provide their contact information Δ for the ACN. We assume Δ to
be public information independent of the contact-initiating client.
The structure and content of Δ depend on the targeted ACN.

If Alice wants to bootstrap communication with Bob, we refer
to her as the sender and to him as the receiver of the bootstrap-
ping relation. Alice only needs to know Bob’s public identifier IDB.
Bob does not need to know anything about Alice, including the fact
that she wants to communicate with him.

4.2 Threat Model
In Sabot, # clients interact with : servers over a public network.
We propose two constructions of Sabot that differ in the assumed
adversary model:

• Sabotℎ assumes an adversary A with Global Passive Ad-
versary (GPA) abilities that additionally has access to a
single honest-but-curious server.
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Notify
Required (Check)∗Check Check Check Check (Check) (Check) Check Times Times Times Times Times

Contact
Information Key Key Key Key Key ID-CARD ID-CARD Key Key Key Envelope‡ Envelope

Key
ID-CARD

Table 1: Survey of prominent ACNs and their compatibility
with Sabot. Protocols marked with Check require a notification
phase, while Times states the opposite. ACNs denoted with (Check)
propose their own subprotocol for notification. The contact
information used in these systems is categorized by public
keys (Key), unique identifiers (ID-CARD), and (random) mailbox ad-
dresses (Envelope).
∗ Later replaced by Alpenhorn, † proposes an improvement for MCMix’s
anonymization technique, ‡ pseudo-randomly chosen by servers upon joining
the system.

• Sabot< assumes an adversary A′ which can actively cor-
rupt an arbitrary fraction of clients, controls :−1malicious
servers, and can actively interfere (i.e., replay, drop, delay,
and modify packets) on every network link.

4.3 Privacy & Security Goals
Sabot aims to achieve the following goals:

Privacy. Sabot shall disclose no metadata about the activity of
honest clients. This includes which and how many, if any, boot-
strapping relationships a client is involved in. We formalize our
privacy goal as part of the security proof in §7.1.

Authenticity. Sabot shall ensure the authenticity of honest clients.
If Alice bootstraps a communication channel based on the identi-
fier IDB, Sabot must connect her with the owner of IDB (i.e., Bob)
rather than some impersonator. Further, if Bob receives a bootstrap-
ping request from IDA, he must be certain that it stems from the
owner of IDA (i.e., Alice). Like related work [22, 27], we assume that
identifiers of honest clients are external (e.g., email addresses) and
not controlled by the adversary.

Non-Goals. Related work [22] aims to hide whether a client is
registered with the system. This membership privacy cannot be
achieved against servers since they must verify the identifier of
clients and act as trust anchors for authenticity. Since we assume
that malicious clients can collude with servers, we do not aim to
achieve membership privacy. Compared to attacks on privacy, a
denial-of-service attack by a server is easily recognizable by any
client, so servers have a strong external incentive to ensure availabil-
ity. Hence, we do not aim to guarantee availability against malicious
servers.

5 DESIGN
Recall that the bootstrapping functionality consists of two parts:
Notification and exchange of contact information. Neither part is
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allowed to reveal any metadata to ensure anonymity. In the follow-
ing section, we give a high-level overview of how Sabot imple-
ments this functionality, ensuring both anonymity and authenticity.
Like many anonymous communication protocols, e.g., [13, 19, 35],
Sabot operates in synchronized rounds. The entire bootstrapping
protocol is executed in each round; thus, it only takes one round to
set up an anonymous communication channel between two parties.

Efficient and Popularity-Hiding Notification. Suppose Alicewants
to bootstrap a communication channel with Bob and thus needs to
inform Bob of her intention. If Bob accepts her request, he must
let Alice know this. Sabot is the first bootstrapping protocol that en-
ables this notification while perfectly hiding how popular a client is.
This is a challenge, as, in the worst case, a client could notify all
other clients or could be notified by all other clients. To make these
edge cases indistinguishable from all other cases, incoming and
outgoing bandwidth for every client has to be in O(# ) [24].

Within this asymptotic constraint, Sabot proposes notification
with optimal efficiency: Each client sends a vector of # bits, where
each index of the vector corresponds to a specific client. Alice
sets the vector elements to ‘1’ for each client she wants to notify.
The vectors of all clients are centrally collected and interpreted as
the columns of a # × # matrix. Clients receive back a row of the
matrix, corresponding to their own index, and can thus learn the
indices of the clients who want to notify them.

This matrix cannot be constructed and transmitted in plaintext as
it reveals client relationships. To hide this information, the vectors
are secret-shared (see §3.1) among : servers. Due to the properties of
the secret-sharing scheme, any : − 1 colluding servers cannot learn
any information about the matrix values as long as the remaining
server is non-colluding and withholds its share.

Exchange of Contact Information. In addition to notifying each
other about their intent to communicate, Alice and Bob must ex-
change their contact information to set up communication in the
ACN to be bootstrapped. Note that Alice and Bob also need to know
each other’s index within the Sabot instance to effectively use the
notification matrix described above.

Sabot stores the contact information together with each client’s
identifier and index in a logically central database. When Alice
wants to contact Bob, she knows his identifier (e.g., his email ad-
dress) and uses it to query the database for his index and contact
information.WhenBob learnsAlice’s index through the notification
vector, he uses it to query for her identifier and contact information.

Sabot ensures that the queries do not disclose relationships
through the use of Private Information Retrieval (PIR) (see §3.2) in
two variants: Keyword-PIR (KW-PIR) is used for retrieval based on
client identifiers, and Index-PIR (I-PIR) is used for retrieval based
on indices. The : servers holding a copy of the PIR databases stay
oblivious to the queried records.

Hiding Communication Patterns. To achieve communication un-
observability, Sabot must ensure that observable client behavior
does not depend on their communication patterns. Sabot operates
in synchronized rounds. In each round, each participating client
must send shares of their notification vector to the servers and
make a fixed number of KW-PIR queries. If Alice wants to contact
fewer clients than this fixed number, she has to add dummy queries

(e.g., to her own identifier). Each client must also retrieve the shares
of their row vector and make a fixed number of I-PIR queries. If Bob
has been contacted by fewer clients than the fixed number, he must
add dummy queries (e.g., to his own index). If more clients than the
fixed number have contacted Bob, he must randomly select a subset
of indices to query. Note that Bob can only accept invites from
clients he selects to query. The number of I-PIR queries to make is
a system parameter to be set based on expected use. Alternatively,
the parameter could be set adaptively based on the actual demand,
which we discuss as an extension to Sabot in §9.

Ensuring Authenticity. In addition to privacy, Sabotmust also en-
sure authenticity: If Alice initiates contact based on Bob’s identifier,
Sabot must guarantee that she is actually talking to the real Bob.
Likewise, if someone claiming to be Alice contacts Bob, Sabot must
guarantee that it is indeed the real Alice. Otherwise, a malicious
party could impersonate clients.

Like related work [22, 27], Sabot has a mandatory registration
phase before clients can participate in the system.We assume public
identifiers, e.g., an email address or phone number, to which clients
have access. During registration, clients provide their identifier and
contact information, which the servers verify.

During protocol execution, clients can retrieve other clients’
contact information via PIR from the servers. If all servers are at
least honest-but-curious (see §4.2), we can assume that the servers
compute their PIR responses based on the “correct” data. As the
client can be sure to receive the contact information they requested,
authenticity is guaranteed. Sabot can be usedwith any PIR protocol
in this honest-but-curious setting.

In a setting where the server(s) can be malicious, Sabot has to be
used with a PIR scheme that ensures data integrity [11, 15, 16, 36].
These schemes include an integrity check for the retrieved data
to verify that all servers have honestly computed their responses
and that malicious behavior is detected. Sabot< operates in the
anytrust model where at least one server is assumed to be honest-
but-curious. This ensures that the integrity check succeeds.

Our implementation of Sabot< uses multi-server APIR [11]
based on a Merkle-Tree [29] and DPF-PIR [5, 6] construction, but
can generally be used with any APIR scheme.

6 PROTOCOL DESCRIPTION
This section describes the Sabot protocol in detail. It introduces two
constructions: Sabotℎ , which assumes honest-but-curious servers,
and Sabot< , which assumes malicious servers in the anytrust
model. The differences of Sabotℎ to Sabot< are highlighted.

Let* = {D1, . . . , D# } be the set of clients participating in Sabot
and let (1, . . . , (: be a set of : servers. Before bootstrapping can
start, every client in* has to register at the servers. Once all clients
have registered, the servers run a one-time setup phase. After the
setup, Sabot operates in synchronized rounds, each divided into
four phases: Sender retrieval, sender notification, receiver retrieval,
and receiver notification. Sabot leverages an XSS scheme XSS, I-PIR
and KW-PIR schemes PIRI and PIRK respectively.

6.1 Registration
The goal of the registration phase is for a newly joining client to
provide their information to the servers. The servers verify the
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received information and, if successful, provide the client with
the necessary information to participate. Let Alice with identifier
IDA ∈ K , e.g., alice@alice.com and contact information ΔA ∈ D
be a client who wants to register with Sabot. First, Alice establishes
an encrypted and bi-directionally authenticated channel with each
server. Encryption and authentication of the server can be realized,
e.g., using Transport Layer Security (TLS) [31]. To authenticate
Alice, the server can, for example, issue her a lightweight X.509
certificate. All future communication between Alice and the servers
occurs through this channel. For Sabotℎ , the remainder of the
registration is executed between Alice and server (0 and proceeds
as follows:

(1) Alice sends (IDA,ΔA) ∈ K × D to (0.
(2) (0 generates a random token and sends it to Alice via iden-

tifier IDA, e.g., alice@alice.com.
(3) Alice receives the tokens via her identifier and sends them

back to (0. If Alice can reproduce the correct token, (0
assumes that Alice indeed owns IDA. The server keeps a list
of all registered users and their contact information, i.e.,
reg = {(ID8 ,Δ8 )}8∈[# ] .

(4) Server (0 shares reg with all other servers.

For Sabot< , Alice has to register at each server individually as
described above for (0. The servers coordinate to add Alice at the
same position in their list reg. Each server sends Alice her position,
and she aborts in case of discrepancies.

Remark. While we introduce a basic registration, we note that
Sabot is fully compatible with more advanced registration features,
such as post-compromise security, re-registration mechanisms (see
Alpenhorn [27]), and authentication via DKIM (see Pudding [22]).

6.2 Setup
The goal of the setup phase is for the servers to construct Sabot’s
contact database(s) based on the list of registered clients reg and
to distribute the protocol’s public parameters to the clients. Before
setup, the servers coordinate to ensure that all have the same list reg
of registered clients. For Sabotℎ , (0 executes the setup as follows:

(1) The server runs pp� ,DB� ← PIRI .Setup(1_,X) where X :=
{ID8 ‖ Δ8 } (ID8 ,Δ8 ) ∈reg to generate the I-PIR database. Each
DB� record is addressable by a unique index, i.e., DB� =

{(idx8 , ID8 ‖ Δ8 )}8∈[# ] .
(2) The server parses each client record in DB� to obtain a key-

value mapping from identifier to all client data, i.e., Y ←
{(ID8 , ID8 ‖ Δ8 ‖ idx8 )}8∈[# ] .The server runs ppK,DBK ←
PIRK .Setup(1_, Y) to generate the KW-PIR database.

(3) The server distributes (pp� , ppK) to all clients.

In Sabot< , the setup described above is executed by all servers
in parallel. If the setup is non-deterministic, the servers first derive
a shared random seed. Clients abort if they do not receive the same
(pp� , ppK) from all servers.

6.3 Sender Retrieval
The goal of the sender retrieval phase is for each client to re-
trieve the contact information of the clients they want to con-
tact. Assume Alice wants to contact Bob with identifier IDB =

bob@bob.com. Server (0 announces the start of the sender retrieval
phase, which then proceeds as follows:

(1) Alice runs PIRK .Query(ppK, IDB) → (st, q), where q =

(@1, . . . , @: ).
(2) Alice stores the state st for later use and sends the queries

to the servers where the 8th server receives @8 ∈ q.
(3) Each server (8 runs PIRK .Answer(ppK,DBK, @8 ) → 08 and

returns the answer 08 to Alice, who collects the answers
into a vector a.

(4) Once Alice has received an answer from every server, she
runsPIRK .Reconstruct(st, a) → res. If res = ⊥, the APIR in-
tegrity check has failed and Alice discards the answer.

(5) Alice stores res = idxB ‖ IDB ‖ ΔB as Bob’s information for
later use.

To hide how many clients a sender wants to contact, every sender
must make 'send queries. Clients who want to contact fewer than
'send clients add cover queries with their own identifier as the
keyword. The client learns if a keyword is not in the database, i.e.,
an identifier has not been registered.

6.4 Sender Notification
The goal of the sender notification phase is for clients to notify the
receivers of their intent using the indices obtained in the sender
retrieval phase. The phase proceeds as follows:

(1) If Alice only wants to contact Bob with index idxB, she
generates a vector vA ∈ {0, 1}# , where

vA [8] :=
{
1 if 8 = idxB
0 else.

If she also wants to contact other clients, she sets the vector
to ‘1’ at every index that corresponds to one of the receivers.

(2) Alice runs XSS.Share(vA) → (v1A, . . . , v
:
A) to generate the

secret shares of her vector. Share v8A is sent to (8 for 8 ∈ [:].
(3) Each server 8 ∈ [:] assembles the incoming shares of clients

into a # × # matrix "8 , where v8A makes up the column
with index idxA. The servers wait a fixed amount of time
for all clients to send their shares. Columns that did not
receive a share before the timeout are filled with 0 values.
Upon completion of the matrix, each server notifies all
clients.

(4) Bob retrieves from each server the row with index idxB, i.e.,
(v0B, · · · , v

:
B). He runs XSS.Reconstruct((v8B)8∈[: ] ) → vB

to combine the shares. Vector vB contains the indices of
the senders who want to contact Bob. He stores the list of
senders for use in the next phase.

6.5 Receiver Retrieval
The goal of the receiver retrieval phase is for receivers to learn the
identifier and contact information of the senders who contacted
them. If Alice contacted Bob, then vB [idxA] = 1. Bob does not yet
know which sender corresponds to idxA.

(1) Bob runs PIRI .Query(pp� , idxA) → (st, q = (@1, . . . , @: )).
(2) Bob stores the state st for later use and sends the queries

to the servers where the 8th server receives @8 ∈ q.
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(3) Each server (8 runs PIRI .Answer(pp� ,DB� , @8 ) → 08 and
returns the answer 08 to Bob, who collects the answers into
a vector a.

(4) OnceBob has received an answer from every server, he runs
PIRI .Reconstruct(st, a) → res. If res = ⊥, the APIR in-
tegrity check has failed and Bob discards the answer.

(5) Bob stores res = IDA ‖ ΔA together with idxA as Alice’s
information for later use. Based on IDA, he decides if he
wants to communicate with Alice. If so, he uses ΔA to set
up his side of the communication channel with Alice in the
ACN. Otherwise, he does nothing.

Like in the sender retrieval phase, all receivers must make 'recv
queries to hide their popularity, i.e., how many clients want to
communicate with them. If a receiver receives less than 'recv notifi-
cations, they make cover queries to their own index. If they receive
more than 'recv notifications, they randomly select a subset of size
'recv to query and discard the rest. Receivers have no additional
information about the senders except their index, based on which
they could prioritize their selection, thus they choose randomly.

6.6 Receiver Notification
The goal of the receiver notification phase is for receivers to inform
senders that they accept the contact request. The phase is executed
analogously to the sender notification phase. If a sender receives an
affirmative notification, they use that receiver’s previously stored
contact information to set up their side of the communication chan-
nel in the ACN. If a sender receives a notification from an unknown
index, they discard it.

7 SECURITY ANALYSIS
This section proves that Sabot meets its security goals. First, §7.1
formalizes communication unobservability �$̄ before § 7.2 pro-
vides a formal proof that Sabotℎ achieves �$̄ . This section further
provides proof sketches (as done in previous work) that Sabot<
provides the same metadata protection as Sabotℎ but in a malicious
setting, and that Sabotℎ and Sabot< ensure authenticity (§7.3).

7.1 Formalizing Communication
Unobservability

We adapt Kuhn et al.’s notion of communication unobservabil-
ity�$̄ [23] for the bootstrapping setting. The notion�$̄ is modeled
as an indistinguishability game G�$̄ played between a challenger C
and an adversary A. At a high level, the adversary chooses two
sets of protocol inputs, from which the challenger randomly selects
one as input to the protocol for which privacy should be proven.
Based on protocol observation, the adversary has to decide which
set was selected.

In the context of the �$̄ game, the considered bootstrapping
protocol is simplified into a protocol model Π. The model takes as
input client-identifier tuples, where each client should (attempt to)
bootstrap a communication channel with the owner of the identifier
during the observation period. The model outputs all information
that an implementation of the protocol would disclose on the same
inputs to the considered adversary.

Formally, we define G�$̄ as follows:

Definition 3 (Privacy Game G�$̄ ). Let A be the adversary, C
be the challenger, and Π the protocol model to be analyzed. Let
*ℎ ⊆ * be the set of honest participating clients, and I the space
of all possible client identifiers not controlled by the adversary. We
denote Rel = *ℎ × I as the set of all possible bootstrapping inputs.
G�$̄ proceeds as follows:

(1) C samples a challenge bit 1 ←$ {0, 1} uniformly at random.
(2) A submits a challenge (20 ⊆ Rel, 21 ⊆ Rel) to C.
(3) C executes Π with input 21 . Any protocol output Π(21 ) is

forwarded to A.
(4) Based on the received protocol output,A generates a guess

1′ ∈ {0, 1}.
A wins G�$̄ if 1 = 1′ and loses otherwise. Steps 2 – 3 can be
repeated poly(_) times to allow A to adapt its behavior based on
the protocol output.

Definition 4 (Communication Unobservability (�$̄)). A protocol
Π achieves communication unobservability (�$̄) if there exists no
efficient polynomial-time adversaryA who can win the game G�$̄
with a non-negligible advantage in the security parameter _ over
random guessing:

%A


1 = 1′ :

1 ←$ {0, 1}
pp← Π.Setup(1_)

20, 21 ⊆ Rel← A(pp)
1′ ← A(Π(21 ))


≤ 1

2
+ negl(_)

7.2 Proof of Privacy
We prove that Sabotℎ achieves communication unobservability
with a series of hybrid games. In the first hybrid, G�$̄ is played
with Sabotℎ as the protocol model ΠSabot as described in §6. In
subsequent games, the protocol mechanisms are replaced with
random behavior until, in the last game, the protocol execution no
longer depends on the intended communications. We show that
no distinguisher D can distinguish any subsequent hybrids based
on the adversary’s output in G�$̄ with a non-negligible advantage,
which implies that no adversary can break�$̄ with a non-negligible
advantage. With this approach, Sabotℎ is the first anonymous
bootstrapping protocol with a full formal proof of privacy.

Further, combining all adversarial capabilities (GPA and honest-
but-curious servers) ensures that communication unobservability is
achieved even against the strongest possible adversary within our
assumptions. Furthermore, we prove the privacy of Sabot< infor-
mally (note that previous work [22, 27] also provide only informal
security analyses in the fully malicious setting).

Theorem 1 (Honest-But-Curious Privacy). Sabotℎ achieves com-
munication unobservability against an adversary A who can pas-
sively observe traffic on every network link (GPA) and controls a
single honest-but-curious server assuming that XSS achieves se-
crecy, a TLS-like channel (for all client-server communication) that
is length regular IND$-CPA [32] secure, and PIR achieves query
privacy as defined in Def. 6 in §A.1.

Proof. We construct the following series of hybrid games:
• �0. G�$̄ is played with Sabot as described in §6.
• �1. Like �0, but senders retrieve random identifiers from

the identifier space I.
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• �2. Like �1, but senders set their notification vector v = 0.
• �3. Like �2, but receivers retrieve random indices from
[# ].

• �4. Like�3, but receivers set their notification vector v = 0.
We show that no efficient distinguisher D exists, which can, based
onA’s view, distinguish between hybrid games �8 and �8+1 for 8 ∈
{0, . . . , 3} with a non-negligible advantage over random guessing.

�0 ≈ �1. �0 and �1 only differ in the identifiers that honest
clients input into PIRK .Query during the sender retrieval phase:
In �0, honest clients input 'send identifiers specified by A in the
G�$̄ challenge input 21 . If |21 | < 'send, honest clients additionally
input their own identifier to ensure exactly 'send identifiers are
used. In �1, honest clients input 'send random identifiers. During
sender retrieval A can observer the following information:

• Through the honest-but-curious server, A can observe a
single query @8 from each output of PIRK .Query.

• Through its GPA capability, A can observe ciphertexts on
the network. This includes a) ciphertexts of the output of
PIRK .Query that honest clients send to all servers and b)
ciphertexts of the output of PIRK .Answer that each server
sends to the corresponding honest client.

Next, we argue that none of this observable information differs
between �0 and �1 in a way that D can detect.

First, the ciphertexts, both from client to server and from server
to client, do not differ in number or size between �0 and �1: Ev-
ery honest client executes PIRK .Query 'send times and thus sends
'send ciphertexts to each of the : servers. As PIRK queries have a
fixed size, these ciphertexts are also of identical size in �0 and �1.
For each query each server receives, they send back a PIRK answer
of fixed size.

Second, all ciphertexts are encrypted using a length-regular
IND$-CPA-secure encryption scheme. A only knows the key ma-
terial of a single honest-but-curious server, not that of the other
servers or honest clients. Thus, following from length regular IND$-
CPA-security, A cannot distinguish ciphertexts between honest
clients and servers not controlled by A from random data with a
non-negligible advantage over random guessing. Since A cannot
distinguish ciphertexts from random data in �0 and �1, it follows
that ciphertext observation provides the same information to D in
both �0 and �1.

Third, it follows from PIRK’s query privacy (Def. 6 in §A.1) that
D cannot distinguish between �0 and �1 with a non-negligible ad-
vantage over random guessing based on the single queryA receives
of each query vector: Query privacy ensures that, for any keyword,
a simulator can output an a subset of queries (independent of the
keyword) that is computationally indistinguishable from the output
of PIRK .Query for that keyword. As query privacy holds for each
query in both�0 and�1, it follows that the distribution that queries
follow in �0 and �1 are both computationally indistinguishable
from the same simulator’s output and thus also computationally
indistinguishable from each other. Thus, D has only a negligible
advantage over random guessing in distinguishing between �0 and
�1 based on the observation of these queries.

�1 ≈ �2. The only difference between �1 and �2 is in the noti-
fication vector that honest clients input into XSS.Share during the

sender notification phase: In �1, honest clients set the vector to “1”
in the indices derived in the sender retrieval phase, whereas they
set the vector to “0” at every index in �2. Consider the information
that A is able to observe during the sender retrieval phase:

• Through its GPA capability, A can observe the ciphertexts
containing the output ofXSS.Share that honest clients send
to all servers.

• Through the honest-but-curious server, A can observe a
single secret share v8 from each output of XSS.Share.

• Through its GPA capability,A can observe ciphertexts con-
taining the notification vector shares that are sent to the
honest clients.

Next, we argue that none of this observable information differs
between �1 and �2 in a way that D can detect. For the ciphertexts
exchanged between honest clients and servers not controlled byA,
we can argue analogously to “�0 ≈ �1”: All notification vectors in
both�1 and�2 are # bits in size; thus, the resulting ciphertexts are
all identical in size. Both in �1 and �2, every honest client sends
and receives exactly one notification vector share per server per
sender notification phase. As A does not know the key material
of honest clients or other servers, and ciphertexts are encrypted
using an encryption scheme that is assumed to be IND$-CPA-secure,
D cannot distinguish these ciphertexts from random data with a
non-negligible advantage over random guessing in both �1 and �2.

Concerning the single secret share that A can observe from
each notification vector, we have to distinguish two cases: In the
first case, A controls any one of the servers (1, . . . , (:−1. In this
case, the share v8 is drawn uniformly at random by definition of
XSS.Share in both �1 and �2 andA can gain no information from
it in either hybrid. In the second case, A controls the “last” server
(: . In this case, the share v8 is the XOR of all other corresponding
shares. As all other corresponding shares are drawn uniformly at
random and not known toA, the XOR of them is indistinguishable
from randomness by A in both �1 and �2.

We have shown that all information that can be observed by A
that could potentially differ between �1 and �2 cannot be distin-
guished from randomness by D with a non-negligible advantage
over random guessing.

�2 ≈ �3. In�2, honest clients input 'recv of the indices obtained
from the notification vector of the previous sender notification
phase. If a client obtains less than 'recv indices, they additionally
input their own index to ensure exactly 'recv inputs are used. In�3,
honest clients input 'recv random indices. It follows analogously to
“�0 ≈ �1” that�2 ≈ �3, with the reduction to PIRI’s query privacy
rather than PIRK’s.

�3 ≈ �4. �3 and �4 only differ in the notification vector that
honest clients input into XSS.Share during the receiver notification
phase: In �3, honest clients set the vector to “1” at the indices de-
rived in the receiver retrieval phase, whereas they set the vector to
“0” at every index in �4. As sender notification and receiver notifi-
cation consist of identical protocol steps, we can argue analogously
to “�1 ≈ �2” that �3 ≈ �4.

Y4 ≤ negl(_). We now show that A’s advantage in hybrid �4
over random guessing is at most negligible, i.e., Y4 ≤ negl(_). First
note that the set*ℎ fromwhich the adversarymay choose challenge
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clients is, by definition of G�$̄ , identical in both challenge inputs.
In �4, the behavior of all clients in *ℎ during protocol execution is
fully independent of A’s input:

• During Registration, all clients in *ℎ register at the servers.
• Setup is based on the data provided during registration and

occurs internally to the servers.
• During Sender Retrieval, all clients in*ℎ retrieve the contact

information of 'send random identifiers in I.
• During Sender Notification, all clients in *ℎ send a fixed 0

notification vector.
• During Receiver Retrieval, all clients in*ℎ retrieve the con-

tact information of 'recv random indices.
• During Receiver Notification, all clients in *ℎ send a fixed 0

notification vector.
The behavior of servers that are not controlled by A is also inde-
pendent of adversary input, as it fully depends on the client input:
Servers compute the answers to the clients’ PIRK and PIRI queries
and distribute the notification vector shares. Thus,A cannot have a
non-negligible advantage in winning G�$̄ in �4, i.e., Y4 ≤ negl(_).

Deduction. We have shown that �0 ≈ �1 ≈ �2 ≈ �3 ≈ �4
and that in �4, A has at most a negligible advantage over random
guessing. Thus, Sabotℎ achieves communication unobservability
against an adversary A who can passively observe traffic on every
network link and controls a single honest-but-curious server, as-
suming that XSS achieves secrecy, encryption is IND$-CPA-secure,
and KW-PIR and I-PIR both achieve privacy. �

Claim 1 (Malicious Privacy). An adversary A′ who can actively
interfere with traffic on every network link, actively controls : − 1
servers, and an arbitrary number of malicious clients gains no
more information about honest client behavior from Sabot< than
A from Sabotℎ assuming that XSS achieves secrecy, and both
authenticated I-PIR and KW-PIR achieve privacy. Further, assume
that the channel between clients and servers is TLS-like in that
the channel is authenticated, provides message integrity, and an
adversary cannot add, drop, replay, or modify messages without
the receiver being able to detect this behavior in some way.

Proof (Sketch). Consider the additional abilities that the active
adversaryA′ has over the passive adversaryA:A′ can 1) actively
interfere with traffic on every network link rather than just pas-
sively observe it, 2) control an arbitrary number of malicious clients,
and 3) actively control :−1 servers rather than passively observe at
a single server. We argue that changes from Sabotℎ to Sabot< en-
sure thatA′ cannot gain any more information about the behavior
of honest clients in Sabot< than A in Sabotℎ .

Active Traffic Interference. While Sabotℎ assumes channels be-
tween parties to be “just” IND$-CPA-secure, Sabot< assumes chan-
nels to be secure against active interference.The channel guarantees
that A′ cannot insert packets in the name of any honest client or
server. The channel further guarantees that any modification of a
packet is detected by its receiver. Sabot< requires that such pack-
ets are dropped by the receiving honest client or server. Thus, any
active attack by A′ on the channel between honest clients and
servers either has no effect (insertion or replay) or leads to missing
packets (modification or drop). Next, we argue that missing packets

do not enable A′ to gain any information about the behavior of
honest clients.

If A′ drops any packet during registration, the affected client
will not be registered and cannot participate in further protocol
execution. If any packet containing the public parameters in the
setup phase is dropped, the affected client also will not participate in
further protocol execution. Dropping any PIR query or answer leads
to the affected client not learning the requested contact information.
It does not enable A′ to gain information about the content of the
query, as the client detects the drop and refuses further participation
independent of the query’s content. The same argument holds for
the dropping of notification vector shares.

Malicious Clients. In Sabot< , the remaining honest-but-curious
server ensures that malicious clients do not gain information about
the relations between honest clients: Communication with this
server occurs over an authenticated channel, so malicious clients
cannot pose as other clients. Thus, the honest-but-curious server
will not provide a malicious client with other clients’ PIR answers
or notification vector shares. Without this information from the
honest-but-curious server, any information the malicious client
might gain from the malicious servers is indistinguishable from
random.

Malicious Servers. As in Sabotℎ , during the notification phases
in Sabot< , :-of-: secret sharing ensures that even : − 1 colluding
servers cannot gain information about the honest clients’ notifica-
tion vectors. Compared to Sabotℎ , Sabot< introduces two changes
that allow the detection of malicious server behavior: First, reg-
istration and setup are executed by all servers in parallel based
on a common random seed. If malicious servers deviate from the
protocol, the derived public parameters will not match the honest-
but-curious server’s public parameters, and honest clients will abort.
Second, Sabot< uses APIR in the retrieval phases, which lets clients
verify the integrity of the retrieved information. The verification
fails and the client aborts if a server does not answer the PIR query
correctly.

Finally, malicious servers can modify the notification matrix and
thus provide incorrect notification vectors to clients. Clients cannot
detect such malicious behavior and might, therefore, miss notifica-
tions or receive false notifications. Due to the use of secret sharing
and our anytrust assumption, no targeted attack on privacy can be
run by malicious servers. The servers further have no way to infer
information about the correct and incorrect notifications.

7.3 Proof of Authenticity
Next, we show that Sabot achieves authenticity in both the honest-
but-curious setting (Claim 2) and the malicious setting (Claim 3).

Clients provide their contact information to the servers during
registration; the servers use it to set up the contact database DB.
In the honest-but-curious setting, we can assume that the servers
honestly set up the contact database and answer PIR queries on the
correct information. In the malicious setting, this assumption does
not hold, and servers could provide incorrect contact information to
the clients. Thus, we require parallel setup and registration phases
at all servers as well as the use of APIR instead of regular PIR.
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Claim 2 (Honest-But-Curious Authenticity). Sabotℎ achieves au-
thenticity in the honest-but-curious setting assuming PIR correct-
ness.

Proof (Sketch). Authenticity is broken if the contact information
a client receives does not match the one it requested. The only way
for a client to receive contact information is from the servers during
the sender or receiver retrieval phases. In the honest-but-curious
setting, authenticity follows directly from correctness.

Claim 3 (Malicious Authenticity). Sabot achieves authenticity in
the malicious setting assuming APIR integrity.

Proof (Sketch). Authenticity in the malicious setting can be
shown analogously to the honest-but-curious setting, except that
we need to consider malicious servers actively deviating from the
protocol. Servers can deviate from the protocol in all phases, but
they can only break authenticity during setup and retrieval. During
notification, malicious servers can only attack availability, which
we consider out of scope for this work.

If malicious servers deviate from the protocol during setup, they
will send different public parameters than the remaining honest-
but-curious server. The client is able to detect this and will abort
the protocol. If malicious servers deviate from the protocol during
contact information retrieval, the client receives incorrect infor-
mation. Using APIR to retrieve the records, the client is able to
verify the integrity of the records. If the verification fails, the client
aborts. For authenticated KW-PIR, we require an injective mapping
function that allows the client to ensure a correct mapping from
keyword to index. Using APIR for the following retrievals ensures
that the client can verify integrity. Malicious server behavior that
breaks authenticity will thus always be detected by the client.

8 EVALUATION
In this section, we evaluate the performance of Sabot empirically
and compare it to related work, namely Alpenhorn [27] and Pud-
ding [22]. We aim to answer the following two main questions:

(1) How much communication overhead does bootstrapping
impose on clients? (§8.2)

(2) How much computation is needed from clients and servers
to enable bootstrapping? (§8.3)

We implemented our prototype in Go, utilizing and adapting
implementations of the PIR3, 4, 5 and data store6 building blocks
for our protocol. The benchmarking environment is containerized
to allow a simplified execution of our prototype and reproducibility
of our results. Our prototype is available at https://github.com/
laurahetz/sabot.

8.1 Experimental Setup
We evaluate our protocol with : = 2 servers and one client, all
executed on a single physical server with 512GB of DDR4 memory
and an AMD EPYC 7742 CPU @2.25GHz with 64 cores. Sabot
can be scaled to a larger number of servers to weaken the trust
requirements, i.e., : − 1 servers can be malicious. We note that
3https://github.com/dedis/apir-code
4https://github.com/dkales/dpf-go
5https://github.com/dimakogan/checklist
6https://github.com/FastFilter/xorfilter

the overhead per server remains constant, thus the client’s com-
putational overhead increases linearly with the number of servers.
Furthermore, the selection of efficient (A)PIR schemes with : > 2
servers is limited.

To simulate the computational server overhead of # clients, the
servers execute all phases# times in parallel on 50 threads. All mea-
surements are averaged over 16 runs, except where stated otherwise.
In all experiments, we assume 32 B long identifiers and 32 B of con-
tact information per client. For Sabot and related work, we set the
number of registered clients to # ∈ {210, 212, 214, 216, 218}. Finally,
we state Sabot’s communication and computational overhead for
retrieval rates of 'send = 'recv ∈ {1, 5, 10}. We consider 1–10 re-
trievals to be a reasonable range for evaluation, as we expect real
clients to require bootstrapping relatively infrequently; in a litera-
ture survey on the structure of personal social networks, Lubbers
et al. [28] found a maximum of three new acquaintances per day.

8.2 Communication Overhead
In this section, we evaluate Sabot’s communication overhead and
compare it to related work.We assess the impact of the total number
of clients # on the communication cost of one client bootstrapping
one communication channel. For Sabot, we expect communica-
tion cost to scale linearly with the number of clients # , as the
exchanged notification vectors are in {0, 1}# . In general, Sabot<
will require more bandwidth than Sabotℎ , as its authentication
requires the client to retrieve additional information using APIR.
Both of Sabot’s variants are expected to require significantly less
bandwidth than related work, as they do not require cover traffic
from a mix network. In both Sabot< and Sabotℎ , we measure
the amount of data a single client sends and receives during one
sequence of sender retrieval, sender notification, receiver retrieval,
and receiver notification. We state the cost per bootstrapped com-
munication for retrieval rates 'recv = 'send ∈ {1, 5, 10}.

For Pudding, we take measurements of its benchmarking imple-
mentation7. We note that the cover traffic generated by Pudding’s
underlying mix network Nym is not exclusive to Pudding, but can
also protect the client’s possible other communications through
Nym.Thus, we evaluate Pudding in two configurations: once includ-
ing the Nym cover traffic (as a worst-case measurement without
any parallel use of Nym) and once without the cover traffic (as a
best-case measurement). In both configurations, we use seven dis-
covery servers and clients bootstrap a new communication channel
every 30 seconds, as suggested by the authors.

For Alpenhorn, we calculate the network overhead based on
the protocol parameters given in [27, Sec. 8.1]. Alpenhorn assigns
each client a shared mailbox, which contains invites of 308 B each.
To achieve the protocol’s differential privacy guarantees, each mail-
box contains an average of 12 000 cover invites per round in addition
to up to 12 000 real invites. Alpenhorn’s evaluation [27, Sec. 8.1]
assumes that 5 % of clients send real messages each round; Alpen-
horn increases the number of mailboxes once a mailbox fills up.
We note that bidirectional bootstrapping in Alpenhorn requires
mailbox downloads in two subsequent rounds. Thus, we compute
Alpenhorn’s communication overhead as

2 · (12 000 +min (12 000, # · 0.05)) · 308 B.
7https://github.com/ckocaogullar/pudding-protocol
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Number of clients
210 212 214 216 218

Sabotℎ (1) 2.67 KiB 6.71 KiB 22.00 KiB 82.28 KiB 322.57 KiB
Sabotℎ (5) 1.51 KiB 2.52 KiB 5.78 KiB 18.03 KiB 66.29 KiB
Sabotℎ (10) 1.35 KiB 1.98 KiB 3.73 KiB 9.97 KiB 34.22 KiB

Sabot< (1) 5.44 KiB 9.98 KiB 25.76 KiB 86.54 KiB 327.34 KiB
Sabot< (5) 4.01 KiB 5.48 KiB 9.18 KiB 21.89 KiB 70.59 KiB
Sabot< (10) 3.79 KiB 4.86 KiB 7.04 KiB 13.73 KiB 38.41 KiB

Alpenhorn 7.08MiB 7.17MiB 7.53MiB 8.97MiB 14.10MiB

Pudding w/o Nym 125.57 KiB 125.57 KiB 125.57 KiB 125.57 KiB 125.57 KiB
Pudding w/ Nym 6.99MiB 6.99MiB 6.99MiB 6.99MiB 6.99MiB

Table 2: Bandwidth overhead per client per bootstrapped communication in Sabot and related work. Numbers in brackets
behind Sabot denote the number of retrievals per round over which the cost is amortized.

Table 2 presents our measurements for Sabot, Alpenhorn, and
Pudding. As expected, communication overhead for Sabot increases
linearly with the number of clients, and Sabot< is 1.47 − 2.91×
times more expensive than Sabotℎ . Overall, our schemes achieve a
reduction in bandwidth by 151 − 6 042× compared to Pudding and
Alpenhorn. For almost all parameter combinations, Sabot is even
cheaper than Pudding without Nym cover traffic (and thus without
privacy). However, Sabot is more expensive than Pudding without
privacy for retrieval rates of 1 as well as 218 clients. Sabot’s com-
munication overhead per bootstrapping decreases as the number
of retrievals per round increases. This behavior can be explained
by investigating the contribution of different protocol steps to the
network overhead. Concretely, for 218 clients and 1 retrieval, PIR ac-
counts for 2.68 KiB of bandwidth, whereas the notification-related
steps require 288.06 KiB. The PIR costs are linear in the retrieval
rate, while the cost of notification is independent of this rate.

One aspect to note in Tab. 2 is that Alpenhorn’s communication
overhead scales linearly with the number of clients. This is due to
the fact that for # < 218 clients, all clients share a single mailbox.
For more clients, Alpenhorn increases the number of mailboxes in
the system and communication overhead becomes independent of
the number of clients.

Our evaluation shows that Sabot meets the requirement of low
client communication cost for small to medium-sized deployments,
especially compared to related work: For # = 214 clients, Sabot<
requires an order of magnitude less communication than related
work. Sabotℎ decreases the overhead by 2×. The overhead of both
Alpenhorn and Pudding is independent of the number of clients,
which is an advantage of their designs. However, they fail to hide
client popularity, which is a feature of our design. We estimate
that Pudding becomes more communication-efficient than Sabot
at # = 221 and Alpenhorn at # = 222, making them better suited
for larger deployments.

8.3 Computational Overhead
In this section, we investigate the computational cost of Sabot for
clients and servers. We measure the duration of one bootstrapping
round for differing numbers of clients # .

Each protocol phase described in §6, is measured independently
to determine its computational cost. Note that the notification phase

is split into two stages: In Notify, the client generates the notification
vectors and sends them to the servers, and the servers write them
to the matrix. In GetNotify, the server reads a client’s row from the
matrix and sends it to the client. In our prototype, the client initiates
each phase. We measure the time between the client initiating the
step and them completing the processing of the server’s response.
For the sender and receiver notification phases, the client does not
have to process a response but waits for the servers to indicate the
completion of the notification matrix. We evaluate both Sabotℎ
and Sabot< with retrieval rates 'send = 'recv ∈ {1, 5, 10}.

In general, we expect Sabot’s computation time to increase with
the number of clients. Based on PIR’s asymptotic complexity, we
expect the sender and receiver retrieval phases to scale linearly with
the number of clients. We further expect KW-PIR to be more time-
intensive than I-PIR, due to the additional keyword-mapping and
the need for multiple index queries per keyword. The notification
phases are expected to scale quadratically in the number of clients,
as the notification matrix contains an entry for every possible pair
of clients. We expect the retrieval phases to scale linearly with
the retrieval rates, as each retrieval is independently computed
and has the same computational overhead for clients and servers.
Furthermore, we expect the retrieval phases of Sabot< to be slower
than those of Sabotℎ , as Sabot< has additional integrity checks.

Table 3 presents our measurements and generally confirms our
expectations: We observe that the notification phases indeed scale
quadratically. We can see that the S-Notify and S-GetNotify phases
show an asymmetry in execution time, despite handling the same
amount of data. The same holds for the R-Notify and R-GetNotify
phases. This asymmetry is caused by the more expensive write
operation compared to the cheaper read operation. Computation
during notification does not depend on the retrieval rates, nor does
it differ between Sabotℎ and Sabot< . Hence, it is given as an
average for both protocol executions and all retrieval rates.

Regarding the retrieval phases, the results confirm our expecta-
tions in three aspects: First, starting with 214 clients for S-Retrieval
and 216 clients for R-Retrieval, we can clearly see that the computa-
tion time for the retrieval phases scales linearly with the retrieval
rate. For both S-Retrieval and R-Retrieval, and for both Sabotℎ and
Sabot< , a retrieval rate of 5 increases computation time by a factor
of 5 compared to a single retrieval, and similarly for a rate of 10.
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Rate S-Retrieval S-Notify R-GetNotify R-Retrieval R-Notify S-GetNotify Total

210

Sabotℎ 1 0.07 s

0.05 s 0.07 s

0.07 s

0.08 s 0.07 s

0.27 s
Sabot< 1 0.08 s 0.07 s 0.28 s
Sabotℎ 5 0.09 s 0.08 s 0.30 s
Sabot< 5 0.12 s 0.08 s 0.33 s
Sabotℎ 10 0.12 s 0.08 s 0.33 s
Sabot< 10 0.23 s 0.08 s 0.44 s

212

Sabotℎ 1 0.31 s

0.24 s 0.30 s

0.29 s

0.31 s 0.29 s

1.15 s
Sabot< 1 0.32 s 0.30 s 1.17 s
Sabotℎ 5 0.50 s 0.32 s 1.36 s
Sabot< 5 1.22 s 0.33 s 2.09 s
Sabotℎ 10 0.95 s 0.33 s 1.82 s
Sabot< 10 2.40 s 0.33 s 3.27 s

214

Sabotℎ 1 1.37 s

1.20 s 1.18 s

1.17 s

1.21 s 1.19 s

4.95 s
Sabot< 1 3.39 s 1.22 s 7.02 s
Sabotℎ 5 6.32 s 1.38 s 10.11 s
Sabot< 5 17.27 s 1.54 s 21.22 s
Sabotℎ 10 12.59 s 1.71 s 16.71 s
Sabot< 10 34.25 s 2.27 s 38.93 s

216

Sabotℎ 1 18.41 s

6.71 s 4.73 s

5.33 s

6.57 s 4.73 s

37.02 s
Sabot< 1 70.10 s 13.08 s 96.45 s
Sabotℎ 5 95.68 s 15.48 s 124.44 s
Sabot< 5 336.71 s 37.50 s 387.48 s
Sabotℎ 10 191.16 s 25.71 s 230.15 s
Sabot< 10 653.19 s 63.02 s 729.49 s

218

Sabotℎ 1 332.01 s

116.78 s 19.40 s

91.13 s

116.41 s 19.19 s

656.32 s
Sabot< 1 3 076.44 s 693.28 s 4 002.90 s
Sabotℎ 5 1 701.27 s 273.77 s 2 208.22 s
Sabot< 5 14 212.53 s 1 759.75 s 16 205.46 s
Sabotℎ 10 3 382.56 s 449.19 s 4 064.93 s
Sabot< 10 26 788.09 s 3 127.93 s 30 149.20 s

Table 3: Latency measurements by protocol phase in Sabotℎ and Sabot< for differing numbers of clients. The computation in
the notification steps neither depends on the retrieval rate nor does it differ between Sabotℎ and Sabot< . It is thus given as an
average for both protocol executions and all retrieval rates.

Below 214 or 216 clients respectively, this correlation is obscured
by run-to-run variance. Second, starting at 214 clients, retrieval
times are consistently higher for Sabot< than for Sabotℎ . This is
due to the additional computational overhead of APIR compared to
standard PIR. As (A)PIR computation generally scales with respect
to the database size, the difference in runtime between Sabotℎ
and Sabot< increases with the number of clients; For 214 clients,
S-Retrieval in Sabot< is slower than in Sabotℎ by a factor of 3.8,
whereas the factor increases to 9.2 for 216 clients. Third, starting
with 214 clients, S-Retrieval is consistently slower than R-Retrieval
for both Sabotℎ and Sabot< . This is due to the additional overhead
introduced by the keyword-to-index mapping to the S-Retrieval
phase compared to the R-Retrieval phase.

Within the range of our evaluation, the retrieval phases are
the most expensive steps, especially for more than one retrieval.
However, due to the quadratic complexity of notification, we expect
the notification phases to dominate computational overhead for
larger deployments.

We concede that the quadratic growth in computation time for
Sabot hinders scaling to large deployments. However, even for
218 clients, latency is at worst around 66min for a single retrieval
per round. For higher retrieval rates, latency increases sublinear in
the retrieval rate, as the notification phases scale independently of

the retrieval rate. Alpenhorn evaluates their bandwidth cost based
on round duration of up to 24 h [27, Fig. 6]. Thus, we can conclude
that Sabot’s latency is reasonable and well-suited for deployments
of the expected size.

9 DISCUSSION
Scalability. As we have evaluated in §8, Sabot’s computational

overhead for servers scales quadratically in the number of protocol
participants. While this clearly is an obstacle to large-scale adop-
tion, we do not see it as a fatal flaw. First, quadratic overhead in
the notification phase is inherent if client popularity should be
fully hidden from the servers; Only if every client receives enough
information to be potentially notified by all other clients does the
server not learn how many clients actually notify any given client.
Second, the quadratic overhead only concerns servers. For clients,
the overhead is linear in the number of protocol participants.

Membership Disclosure. In Sabot and Alpenhorn8, malicious
clients can learn if a given identity is registered in the system. This
is a drawback compared to Pudding, where they need to collude
with a server to gain the same knowledge. However, Pudding’s
8Alpenhorn does not explicitly target membership privacy, and its current implemen-
tation does not achieve it, as it returns a descriptive error message to the client when
they try to register an identifier that already exists.
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ability to hide this information from clients comes at the cost of dis-
closing client popularity to the servers: In Pudding, clients request
the target’s contact information from the servers, but should not
learn if these target clients are registered in the system. To achieve
this efficiently, servers must know the targets in order to provide
fake contact information for non-registered clients. This allows the
servers to learn the popularity of all clients.

Active Maliciousness. Sabot is the first anonymous bootstrap-
ping protocol for which a formal proof of privacy exists. However,
the proof only covers privacy against passive adversaries in Sabotℎ .
For privacy against active adversaries in Sabot< , we provide a
sketch-level proof, which is in line with related work. Providing a
formal proof of privacy against actively malicious adversaries is an
interesting direction of future work; this requires the extension of
the communication unobservability game to cover such adversaries.
This extension would be of value in its own right.

Fixed Rates. Sabot requires all clients to make a fixed number
of PIR queries for both sending and receiving invitations to hide
popularity. Setting these parameters is not trivial: If the required
number of queries is too high, unnecessary overhead is introduced.
If the required number of queries is too low, some clients cannot
send/receive all their invitations in a single round.

Instead of setting these parameters during protocol setup, an
adaptive round-based approach, based on actual utilization, could
be employed. In each round and prior to making the queries in
the sender and receiver retrieval phase, clients can disclose the
number of invitations they want to send/have received via a private
write [12, 19]. After all clients have privately disclosed their value,
the maximum is set as the respective rate. This extension allows
for the setting of optimal rates for each round. However, it comes
with a slight privacy drawback: While the private write operation
hides the writers, it does not hide which values are written. An
adversary is, therefore, able to learn the popularity histogram. Since
the distribution of popularity is likely to follow Zipf’s law [7], the
amount of information an adversary can obtain from it is limited.

10 CONCLUSION
In this paper, we introduced Sabot, a protocol for anonymous boot-
strapping. Sabot has quadratic communication complexity, but
this is tamed for moderate numbers of clients by having very small
concrete constants. Sabot comes in two flavors, which present a
trade-off between performance and trust in the servers. We com-
pared Sabot to state-of-the-art alternatives (Alpenhorn, Pudding),
showing that it reduces bandwidth overhead by an order of magni-
tude. We also provide a full formal proof of privacy for Sabotℎ in
the honest-but-curious setting, which makes it the first anonymous
bootstrapping protocol with proven privacy guarantees. Providing
a formal proof of privacy in the actively malicious setting remains
future work. Overall, Sabot is intuitive, simple to analyze, and
offers excellent performance at the scale of today’s ACNs.
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A BUILDING BLOCKS
This section presents the definitions of the primitives Sabot builds
upon, namely PIR and APIR (§A.1).

A.1 Private Information Retrieval
We present a definition for multi-server PIR in Def. 2 with informal
descriptions of the desired properties. In this section, we provide
full definitions for I-PIR and KW-PIR (considering the highlighted
lines) in both a honest-but-curious and malicious setting. These
definitions are adapted from [8, 11]. We refer to PIR with at most
: − 1 malicious servers as APIR.

Definition 5 (PIR Correctness). A PIR scheme PIR = (Setup,
Query, Answer, Reconstruct), parameterized by the number of
servers : ∈ N and database size # ∈ N satisfies correctness if for
every x ∈ X# x = {(:F8 , G8 )}8∈# ∈ (K × X)# , the following
holds:

Pr


G ′8 = G8 :

(pp,DB) ← Setup(1_, x)
(st, q) ← PIR.Query(pp, 8)

(st, q) ← PIR.Query(pp, :F8 )
0 9 ← PIR.Answer(pp,DB, @ 9 )∀9 ∈ [:]

G ′8 ← PIR.Reconstruct(st, a)


where the probability is 1 for I-PIR and larger than 1 − negl(_) for
KW-PIR. The probability is computed over all the random coins
used by the schemes’ algorithms.

Definition 6 (PIR Privacy (based on [8, 11])). Let PIR = (Setup,
Query, Answer, Reconstruct) be an unauthenticated PIR scheme
for index-based keyword-based queries parameterized by a num-
ber of servers : ∈ N, a set of database records x ∈ X#

x = {(:F8 , G8 )}8∈# ∈ (K × X)# of size # ∈ N. Let ( be any

subset of : − 1 elements from [:]. For I ∈ [# ]) I ∈ K) and
) ∈ poly(_) let the distribution

REALI,) =


⋃

8∈(,C∈[) ]
@C8 :

(pp,DB) ← Setup(1_, x)
For all C ∈ [) ] :
(st, (@C1, . . . , @

C
:
))

← PIR.Query(pp,I[C])


.

Similarly, for a simulator S, let the distribution

IDEALS,) =

{
(@C8 )8∈(,C∈[) ] ← S

}
.

An unauthenticated-PIR scheme PIR parametrized by a database
size # ∈ N and a number of servers : ∈ N is secure if for every

I ∈ [# ]) I ∈ K) , the following holds:

REALI ≈2 IDEALS .

Definition 7 (APIR Privacy (based on [8, 11])). Let PIR = (Setup,
Query, Answer, Reconstruct) be an authenticated PIR scheme for
index-based keyword-based queries parameterized by a num-
ber of servers : ∈ N, a set of database records x ∈ X#

x = {(:F8 , G8 )}8∈# ∈ (K × X)# of size # ∈ N. Let good ∈ [:],

andA = (A0,A1), define the distribution ForI ∈ [# ]) I ∈ K)

and ) ∈ poly(_) let the distribution

REALA,good,I,) ,_,x =

V̂ :

(pp,DB) ← Setup(1_, seed, x)
For all C ∈ [) ] :
(st, (@C1, . . . , @

C
:
)) ← PIR.Query(pp,I[C])

0Cgood ← Answer(pp,DB, @Cgood)

(stA , (0C8 )8≠good ← A0 (x, (@C8 )8≠good)
~ ← Reconstruct(st, (01, . . . , 0: ))
1 ← 1{~ = ⊥}
if 1 = ⊥, break

V̂ ← A1 (stA , 1)



.

Similarly, for a simulator S = (S0,S1), let the distribution

https://www.usenix.org/conference/nsdi20/presentation/kwon
https://doi.org/10.17487/RFC8446
https://doi.org/10.1145/3132747.3132783
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IDEALA,S,) ,_,x

IDEALA,S,K,) ,_,x
=



V :

(stS) ← S0 (1_, seed, x)
(stA ) ← A0 (seed, x)
For all C ∈ [) ] :

(stS, &C ) ← S0 (stS ,K )

(stA , �C ) ← A0 (stA , &C ,K )

1 ← S1 (stS, �C )
if 1 = ⊥, break

V ← A1 (stA , 1)



.

An authenticated PIR is private if for every efficient adversary

A and for every x ∈ X# x = {(:F8 , G8 )}8∈# ∈ (K × X)# , there
exists a simulator S such that for all _ ∈ N, # ∈ N, good ∈ [:],
and ) ∈ poly(_) the following holds:

REALA,good,I,) ,_,x ≈2 IDEALA,S,) ,_,x

REALA,good,I,) ,_,x ≈2 IDEALA,S,K,) ,_,x

Definition 8 (APIR Integrity (based on [8, 11])). Let PIR =

(Setup, Query, Answer, Reconstruct) be an unauthenticated PIR

scheme for index-based keyword-based queries parameterized
by a number of servers : ∈ N, a set of database records x ∈ X#

x = {(:F8 , G8 )}8∈# ∈ (K × X)# of size # ∈ N. Let ( be any sub-

set of : − 1 elements from [:]. For idx ∈ [# ] kw ∈ K let the
distribution

REALidx

REAL:
=


⋃
8∈(

@8 :

(pp,DB) ← Setup(1_, x),
(st, (@1, . . . , @: )) ← PIR.Query(pp, idx)

(st, (@1, . . . , @: )) ← PIR.Query(pp, kw)

 .

Similarly, for a simulator S, let the distribution

IDEALS =

{
(@8 )8∈( ← S

}
.

An unauthenticated-PIR scheme PIR parametrized by a database
size # ∈ N and a number of servers : ∈ N is secure if for every
idx ∈ [# ] kw ∈ K , the following holds:

REAL8 ≈2 IDEALS .
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