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Abstract. We present the Transfer of Ownership Protocol (TOOP).
TOOP solves a limitation of all existing BitVM-like protocols (and UTxO
blockchains at large) that restricts the unlocking transfers to addresses
known and preregistered during lock and setup. Accordingly, our proto-
col avoids the financially costly, regulatory problematic, and congestion-
prone front-and-reimburse paradigm.
Furthermore, we note that one of the main applications of TOOP is as
an enabler of secure transfer of assets between UTxO blockchains, and
back. We showcase this via sketching a committee-based validation pro-
tocol that requires only 1-out-of-n honest security. This protocol operates
in distinct phases: the lock phase, where the initial setup and individual
assets are locked on Bitcoin, and the unlocking with the ownership trans-
fer phase, where the asset is transferred to a possibly different legitimate
owner.
This cross-chain bridge protocol, where TOOP plays a key role, is being
formalized in concurrent work, and has been implemented for the first
time in Cardinal, a protocol for wrapping Bitcoin Unspent Transaction
Outputs (UTxOs) onto the Cardano blockchain, with Bitcoin Ordinals
represented as Cardano Non-Fungible Tokens (NFTs).

Keywords: Bitcoin · BitVMX · Interoperability.

1 Introduction

Blockchain interoperability is a concept that has become increasingly important
for the widespread adoption and practical utility of blockchain technology. Inter-
operability means that several blockchains can interact securely and consistently
while avoiding new strong trust assumptions.

1.1 Fundamental approaches to cross-chain technology

Several methods to achieve cross-chain interoperability can be found in the litera-
ture. The interested reader can find in [30] a rigorous treatment of the technology
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and in SoK by Augusto et al. [2] a treatment of the security and privacy impli-
cation of those methods. Here we briefly present these results for completeness.

We model a cross-chain exchange between blockchains (or ledgers) BC1 and
BC2. Assume entities P and Q operate on blockchains BC1 and BC2 respectively.
P and Q may be single parties, federations, or even the same party. Our model
presents a cross-chain transfer as a four-steps protocol:

1. Setup. The parties exchange information about the involved blockchains BC1
and BC2. This includes verification and agreement schemes, asset details and
time constraints.

2. Locking transaction on BC1. The party P broadcasts a locking transaction to
blockchain BC15. The transaction is finalized through its consensus protocol.
This transaction acts as a commitment on chain BC1

3. Verify. Party Q verifies the commitment on X using the agreed-upon verifi-
cation scheme. Based on the result, the protocol either proceeds to commit
on BC2 or aborts.

4a. Unlocking transaction on BC2. Upon successful verification, the party Q
sends an unlocking transaction to blockchain BC2.

4b. Abort. If verification fails or Q cannot complete the process on Y , the protocol
aborts by reverting the effects on BC1, typically through a compensating
transaction.

In practice, the entity Q may serve either as a direct beneficiary of the ex-
change or as a facilitator. In the latter role, Q can be a single entity or a collection
of entities. We use the term group in a broad sense, encompassing configurations
with heterogeneous governance structures.6 This distinction gives rise to a va-
riety of implementation strategies, each with its own trade-offs. For clarity, we
categorize these strategies based on the number of independent entities involved,
distinguishing between cases where Q is a Single party and those where it is a
Group.

Single Q This is the easiest and older approach. In general, P is a user aiming
to exchange funds, while Q can either be another user with the opposite goal or
a facilitator. We now see both cases.

Atomic Swaps In the first case, we say that the exchange is “decentralized” since
no centralizing process is involved. This kind of exchange is generally called
Atomic Swap. Atomic here refers to the atomicity of changes in databases: either
both P and Q receive their new asset, or P and Q retain the older one. In

5 Such a transaction is said to lock the funds of P on chain BC1, preventing P from
spending them. Similarly, to unlock funds from party Q means that Q can now use
them as it pleases.

6 Specifically, we consider a company (or user) operating multiple nodes as a single
entity, since control is centralized. In contrast, a committee (or federation), where
each node is governed by a distinct company or user, is treated as a group.
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particular, a secure atomic swap avoids the case where, e.g. P receives the new
asset and retains its older one.

The first atomic swap method is based on the Hash-Time Lock contract
(HTLC), introduced by Tier Nolan [24]. In an HTLC, after P has found a po-
tential buyer Q, P performs a locking transaction on chain BC1 by sending a
transaction that can be redeemed either by showing the preimage of a hash h
and the usual signature (hash-lock) or after some time elapsed and the showing
of the signature (time-lock). Notably, Q sends a similar transaction on chain Y
using the same hash h.

If P is honest, P shows its preimage on chain Y redeeming Q’s transaction
before the time has elapsed. If Q is honest, Q uses P ’s preimage to redeem P ’s
transaction on chain BC1, completing the exchange.

Conversely, if P is dishonest and does not redeem the transaction on chain
BC2, Q needs to wait for the time to elapse on chain BC2. Considering the time-
value of money7, this is a serious obstacle.

Company based exchanges When Q represent a company, we say that the method
is “centralized”. In that case, Q’s guarantees derive from a legal (or trust based)
approach, instead of cryptographic methods. An example of this approach is the
company operating the bitcoin wrapped token WBTC [17] on Ethereum.

The advantage for P is in its simplicity. In fact, when Q is a company, P
does not have to find the buyer nor perform complex non-standard transaction.
In a centralized method, P only sends a transaction on BC1 redeemable by Q.
Furthermore, since guarantees are trust based, Q performs a normal transaction
on chain Y too. Here, commitments are trivial.

The tradeoff is that P has to trust both Q and the legal apparatus behind it.
For example, if Q does not broadcast a correct transaction on chain BC2, then
P needs to rely on lawyers or Q’s customer service to retrieve its funds, since no
time-lock mechanism has been set.

Group Q This is the case of committees (sometimes called federations). In
those cases, Q generally acts as facilitator.

In a committee, Q is a set of n nodes requiring a subset of size t to act
together to sign transactions for locking and unlocking funds. An example of a
committee is the Liquid Federation [22].

Similarly to companies based exchange, P sends the transaction to the des-
ignated address of the committee Q. Then at least t parties need to sign a
transaction releasing funds for P on chain BC2.

Since only a subset of the committee is required to act, the probability of
successful malicious action is greatly diminished since it requires a collusion of
t parties. Clearly, larger t mean a lower probability of success since different
companies have different aims at different times.

7 The time-value of money is the idea that a sum of money is worth more now than
the same sum in the future due to its potential earning capacity.
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Surprisingly, this reduction of risk does not come with a reduction of usability
on the part of P . In fact, P only sends a transaction to an address and the
complexity is hidden inside the federation.

1.2 Current research

Cross-chain asset transfer protocols must satisfy fundamental security and cor-
rectness requirements to ensure reliable interoperability between blockchain net-
works. We model an asset A as a set whose elements represent the atomic units
that can be transferred independently, enabling precise analysis of partial asset
transfers and fractional ownership scenarios common in decentralized finance
applications.

The research by Sober et al. [27] establishes five essential requirements that
any secure cross-chain asset transfer protocol must satisfy. These requirements
provide a formal framework for evaluating protocol correctness and security
properties.

1. Asset ownership verification requires that asset destruction operations re-
spect legitimate ownership boundaries. When a sender attempts to burn
an asset subset X on the source blockchain BC1, the operation should suc-
ceed only if X ⊆ ABC1

Sender, where ABC1

Sender represents the assets legitimately
controlled by the sender. The burning operation permanently removes as-
sets from circulation on the source blockchain, making them unavailable
for future transactions, while enabling their recreation on the destination
blockchain.

2. Transfer authenticity ensures that asset recreation occurs only after verified
destruction on the source blockchain. When transferring asset subset X from
source blockchain BC1 to destination blockchain BC2, the assets should be
recreated on BC2 only after cryptographic proof demonstrates that X has
been legitimately burned on BC1. This requirement prevents counterfeit asset
creation and maintains the fundamental invariant that cross-chain transfers
neither create nor destroy value.

3. Double-spending prevention mandates that burned assets can be recreated
exactly once across all destination blockchains. If an asset subset X is burned
on one blockchain, it can be recreated on at most one other blockchain, pre-
venting scenarios where the same assets appear simultaneously on multiple
chains and violate conservation of value.

4. Guaranteed recreation establishes that burned assets will eventually be recre-
ated on the intended destination blockchain within a bounded timeframe.
This liveness property ensures that legitimate transfers do not result in per-
manent asset loss due to protocol failures or network partitions.

5. Confirmation feedback provides optional verification that asset recreation
has completed successfully on the destination blockchain. In this case, the
source blockchain should eventually receive confirmation that the asset sub-
set X has been successfully recreated, enabling applications that require
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end-to-end transfer verification. This requirement supports decentralized fi-
nality, allowing any network participant to submit confirmation proofs rather
than relying on trusted intermediaries.

XClaim [29] implements cross-blockchain transfers through designated vault
operators, which lock assets on the source blockchain and issue corresponding
wrapped tokens on the destination blockchain. In this system, vault operators
provide over-collateralization in the destination blockchain’s native currency to
guarantee the value of issued tokens. When users request cross-chain transfers,
they deposit assets with a vault operator on the source blockchain, and the vault
operator mints equivalent wrapped tokens on the destination blockchain after
the deposit is confirmed.

The protocol employs blockchain relays to verify locking transactions on
the source blockchain, enabling automatic verification of asset deposits with-
out requiring trusted oracles. This relay-based verification mechanism satisfies
the asset ownership verification requirement by ensuring that only legitimately
deposited assets trigger wrapped token issuance on the destination blockchain.

XClaim’s reliance on individual vault operators for transfer execution creates
significant centralization risks that violate fundamental decentralization require-
ments. Each transfer depends on a single vault operator who controls both the
locked assets and the minting process for wrapped tokens. This centralized con-
trol structure fails to prevent double-spending scenarios where malicious vault
operators could potentially issue wrapped tokens without proper asset backing or
refuse to process legitimate redemption requests. The protocol also lacks guar-
anteed recreation mechanisms because vault operators can unilaterally decide
whether to complete transfer operations, potentially causing permanent asset
loss if operators become unavailable or act maliciously.

This centralized vault model contrasts sharply with distributed approaches
where multiple independent parties participate in transfer finalization, reducing
single points of failure and improving protocol resilience. The concentration of
control in individual vault operators fundamentally limits XClaim’s ability to
provide the trustless guarantees expected from decentralized cross-chain proto-
cols.

Metronome’s approach centres on their proprietary MET token, enabling
cross-blockchain transfers through a receipt-based validation system. While val-
idators assess receipt validity to prevent unauthorized transfers (addressing the
requirement 2), the protocol fails to meet the requirements 4 and 5 due to its
centralized validators structure and lack of transfer confirmation mechanisms.

Karantias et al. [14] provide a cryptographic treatment of proof-of-burn mech-
anisms, establishing rigorous foundations for protocols that enable verifiable
cryptocurrency destruction. While proof-of-burn has been utilized in various
blockchain applications, previous implementations lacked formal security anal-
ysis and standardized definitions, limiting their theoretical understanding and
practical deployment.

The research introduces a comprehensive cryptographic framework consisting
of two fundamental functions that together constitute a complete burn protocol.
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The GenBurnAddr function generates cryptocurrency addresses with the critical
property that any funds sent to these addresses become permanently and irre-
vocably destroyed. The BurnVerify function provides cryptographic verification
that a given address represents a legitimate burn address, enabling indepen-
dent parties to confirm the validity of burn operations without requiring trusted
intermediaries.

The formal analysis establishes three security properties that define robust
burn protocols. Unspendability ensures that addresses verified as burn addresses
cannot be used for spending operations, providing mathematical guarantees that
burned funds remain permanently inaccessible. Binding enables the association
of arbitrary metadata with specific burn operations, allowing burn addresses to
encode information such as destination blockchain identifiers or transfer param-
eters. Uncensorability mandates that burn addresses remain computationally
indistinguishable from regular cryptocurrency addresses, preventing censorship
attempts that might block burn transactions based on address analysis.

The protocol design achieves broad compatibility with existing cryptocur-
rency systems through its construction simplicity and flexibility. The scheme
operates effectively across all popular cryptocurrencies without requiring proto-
col modifications or specialized wallet software, enabling users to perform burn
operations through standard transaction mechanisms. Security analysis demon-
strates protocol correctness under the Random Oracle model, providing formal
guarantees for the cryptographic constructions.

Although satisfying the requirement 1, the protocol does not address the
requirements 3 and 5, lacking decentralized finality and transfer confirmation
mechanisms. Pillai et al. [25] introduce a burn-to-claim protocol which requires
specialized gateway nodes for cross-network mining and burn transaction verifi-
cation. While meeting requirement 1, the protocol fails to address requirements
3, 4, and 5, lacking decentralized finality, true decentralization, and transfer
confirmations.

AucSwap [20] models cross-chain transfers as Vickery auctions, using HTLCs
for asset exchange. Although this approach satisfies requirements 1 and 2, it
functions more as an asset exchange system than a transfer protocol and does
not fully address requirements 3, 4, and 5.

Zendoo [9] uses zero-knowledge proofs for transaction verification (require-
ment 1) but does not address requirements 3, 4, and 5. Its specific sidechain
architecture requirements limit implementation potential.

Van Glabbeek [11] suggests a protocol that adapts multi-hop payment chan-
nel concepts, emphasizing finality (requirement 3). While satisfying the require-
ment 2 (double-spend prevention), implementation details remain underspecified
for requirements 4 and 5.

DeXTT [5] synchronizes the existence of assets across blockchains. Its claim-
first transaction model violates requirement 2, and the protocol lacks transfer
confirmations (requirement 5), although it partially addresses requirements 1
and 4 through its decentralized synchronization process.
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Polkadot [28] implements cross-chain Message Passing (XCMP) using Merkle
tree-based queuing. Cosmos employs the TCP/IP-inspired Interblockchain Com-
munication (IBC) protocol. While both platforms address requirements 1 and 2,
their specialized blockchain requirements impact requirement 4, and they lack
specific implementations for requirements 3 and 5.

The Ownership Transfer and Execution (OTEx) system [6] facilitates asset
ownership transfer without asset movement, comprising:

1. Inter Blockchain Communication (IBC) protocol for message formatting.
2. IBC Gateways for smart contract execution and ownership state transfers.
3. Auxiliary blockchain logging for transaction traceability.

While addressing requirements 1 and 2 through its comprehensive logging
and gateway system, the reliance of the protocol on specialized gateways affects
the requirement 4.

1.3 Contributions of this research

Our work advances cross-chain asset transfer protocols through several key in-
novations that address critical limitations in existing systems. Building upon
the requirements established by Sober et al., our research introduces a proposal
for a bidirectional ownership transfer protocol with dynamic address support.
Most importantly, the proposed Transfer of Ownership Protocol (TOOP) is, to
our knowledge, the first protocol to enable locking an UTxO towards an address
that is undetermined at the time of locking. The usefulness of this functionality
is mainly showcased in our work as a core part of cross-chain transfers in the
Cardinal project, bridging Bitcoin Ordinals to the Cardano blockchain.

This feature distinguishes our protocol from existing cross-chain systems such
as DeXTT and OTEx, which require recipients to be specified and registered
during the initial asset locking phase. Our approach enables ownership updates
to arbitrary legitimate addresses after the lock phase has completed, providing
operational flexibility that addresses a limitation in BitVM-based cross-chain
protocols.

2 Preliminaries

2.1 Notation

We establish the notation which will be used along this paper. Let BC1 and
BC2 be two blockchain systems. In our setting BC1 will be Bitcoin. Let O =
{O1, . . . , On} be the set of operators, each modelled as probabilistic polynomial-
time (PPT) machines. Let A denote an adversary, also modelled as a PPT
machine. We denote by ID the power set of operator subsets, and by U denote
the universe of all possible assets. Let κ be the security parameter.
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2.2 Security definitions and protocol properties

Definition 1 (Owner). Let us consider BC be a blockchain and U be the uni-
verse of all digital assets on BC. An entity Owner is the owner of asset subset
X ⊆ U if and only if Owner possesses the private key material ski corresponding
to the public keys pki that control the spending conditions for all assets in X.

Definition 2 (Asset validity). A protocol Π satisfies asset validity if, for any
asset subset X ⊆ U and any Owner0, the probability that a lock transaction
Lock(X,Owner0) is accepted on BC1 when X ⊈ Assets(Owner0,BC1) is negli-
gible in κ:

Pr


params← Setup(1κ);
(X,Owner0)← A(params);
X ̸⊆ Assets(Owner0,BC1);
Lock(X,Owner0) accepted on BC1

 ≤ negl(κ)

Here, Assets(Owner,BC) denotes the set of all assets that are legitimately
owned and controllable by Owner on BC at the time of evaluation, and the
function Lock(X,Owner) represents a transaction where Owner transfers asset
subset X to the operators’ aggregate multi-signature address.

Definition 3 (Transfer authenticity). A protocol Π satisfies transfer au-
thenticity if, for any asset subset X ⊆ U , the probability that a recreation trans-
action Create(X,BC2) is accepted without a corresponding valid burn transaction
Burn(X,BC1) having occurred is negligible in κ:

Pr


params← Setup(1κ);
X ← A(params);
Create(X,BC2) accepted;
∄ valid Burn(X,BC1)

 ≤ negl(κ)

Here, Create(X,BC2) represents the minting of a wrapped asset X on the
secondary blockchain BC2. Furthermore, Burn(X,Owner1) represents a trans-
action on BC2 where the wrapped asset X is burnt.

Definition 4 (Double-spend prevention). A protocol Π satisfies double-
spend prevention if, for any asset subset X ⊆ U that has been burnt in BC1,
the probability that X is successfully recreated more than once is negligible in κ:

Pr


params← Setup(1κ);
X ← A(params);
Burn(X,BC1) accepted;
Create(X,BC2) accepted;
Create′(X,BC′2) accepted

 ≤ negl(κ)

where Create′ represents a second creation operation, possibly on a different
blockchain BC′2.
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Definition 5 (Ownership transfer security). A protocol Π satisfies owner-
ship transfer security if for any asset subset X ⊆ U initially owned by Owner0
on BC1 and any adversary A oblivious on the secret key of the recipient Owner1,
the probability that A can transfer X to an address not controlled by Owner1
on BC1 after the unlocking phase is negligible in κ. If we write E(Owner1, X) to
denote the event that assets X are transferred to an address under the control of
Owner1, then:

Pr


params← Setup(1κ);
(X,Owner0, Owner1)← A(params);
Lock(X,Owner0) accepted on BC1;
Burn(X,Owner1.pubKey) accepted on BC2;
¬G(Owner1, X)

 ≤ negl(κ)

Definition 6 (Liveness). A protocol Π satisfies liveness if, for any subset X ⊆
U locked by Owner0 and burned Owner1 with a valid public key, and assuming
at least one honest operator follow the protocol, the assets X will eventually be
transferred to Owner1 on BC1. If we denote ∆ a time bound specified by the
system then, given at least one honest operator:

Pr


params← Setup(1κ);
Lock(X,Owner0) accepted at time t0;
Burn(X,Owner1.pubKey) accepted at time t1;
∃t2 ≤ t1 +∆ : G(Owner1, X) at time t2

 ≥ 1− negl(κ)

Definition 7 (1-out-of-n security). A protocol Π satisfies 1-out-of-n security
if for any adversary A that can corrupt up to n−1 operators, the protocol main-
tains asset validity, transfer authenticity, double-spend prevention, and owner-
ship transfer security, with overwhelming probability. That is, for any security
property P defined above and any adversary A controlling a subset C ⊂ O such
that |C| ≤ n− 1:

Pr

params← Setup(1κ);
C ← A(params) where |C| ≤ n− 1;
A violates property P

 ≤ negl(κ)

Definition 8 (Key share confidentiality). A protocol Π satisfies key share
confidentiality if, for any adversary A that does not know Owner1 private key,
the probability that A can extract any operator’s key share from the encrypted
communications is negligible in κ. Formally, for any operator Oi and its key
share ki:

Pr


params← Setup(1κ);
(Owner1.pubKey)← A(params);
encSharei ← ECIES.Encrypt(Owner1.pubKey, ki);
k′i ← A(encSharei);
k′i = ki

 ≤ negl(κ)
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2.3 Dependencies with respect to the 1-out-of-n assumption

The 1-out-of-n honesty assumption is basic in this proposal. This assumption
fundamentally shapes how the protocol achieves its security guarantees and de-
termines which properties can be maintained even under adversarial conditions.
The following analysis examines each security property and clarifies its relation-
ship to this assumption. We consider 3 categories:

– Critical dependency:
1. Asset validity relies entirely on the 1-out-of-n assumption. The protocol

requires operators to verify that lock transactions correspond to assets
legitimately owned by the sender before proceeding with the setup pro-
cess. Without at least one honest operator performing this verification,
corrupted operators could approve lock transactions for non-existent or
already-spent assets. The honest operator serves as the essential gate-
keeper that prevents the protocol from accepting invalid asset locks.

2. Transfer authenticity depends fundamentally on honest operator par-
ticipation during the unlocking phase. When assets are burned on the
secondary blockchain, operators must verify this burn transaction before
providing their encrypted key shares. The honest operator ensures that
assets can only be unlocked on Bitcoin when a corresponding legitimate
burn has occurred on the secondary chain. Without this verification by at
least one honest participant, the protocol could not maintain the crucial
invariant that prevents unauthorized asset recreation.

3. Double-spend prevention requires honest operators to maintain consis-
tent protocol state and refuse participation in multiple unlocking op-
erations for the same asset. The honest operator acts as a safeguard
against attempts by corrupted operators to facilitate multiple unlocks of
the same locked asset. This property cannot be maintained without the
honest operator’s disciplined adherence to the protocol’s state manage-
ment requirements.

4. Liveness depends on the 1-out-of-n assumption to ensure that legitimate
transfer requests eventually complete. The honest operator guarantees
that valid lock and burn transactions will be processed, preventing cor-
rupted operators from indefinitely blocking legitimate transfers. Without
at least one honest operator willing to participate in the protocol, the
system could deadlock, preventing any asset transfers from completing.

5. Secure group selection relies on honest operators to provide valid en-
crypted key shares to legitimate recipients. The protocol’s security de-
pends on Owner1 being able to select a group that includes at least one
honest operator. The honest operator ensures that valid key shares are
always available to legitimate recipients, preventing scenarios where only
corrupted operators respond to transfer requests.

– Partial dependency: Ownership transfer security has a nuanced relationship
with the 1-out-of-n assumption. While the ECIES encryption used for key
share distribution provides confidentiality regardless of operator honesty, the
overall ownership transfer security depends on honest operators to properly
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verify recipients and refuse to provide key shares to unauthorized parties.
The honest operator ensures that the protocol’s ownership verification mech-
anisms function correctly.

– Independent of the 1-out-of-n honesty assumption: Key share confidentiality
represents the only security property that does not directly depend on the
1-out-of-n assumption. This property is guaranteed by the cryptographic
security of ECIES encryption, which prevents adversaries from extracting key
shares without possession of the recipient’s private key. The confidentiality
holds regardless of how many operators are corrupted, as it relies solely on
the underlying cryptographic assumptions rather than honest behaviour.

The 1-out-of-n honesty assumption is not just a convenience but an essential
requirement for nearly all security properties of the protocol. The assumption
enables a trust-minimized approach that avoids the need for honest majori-
ties while still providing strong security guarantees. The protocol’s architecture
leverages this assumption efficiently by ensuring that a single honest operator
can prevent all major classes of attacks while enabling legitimate operations.

2.4 Threat model

We present a threat model for the formal characterization of potential adver-
saries, their capabilities, and the attack vectors they might exploit. The model
below considers adversaries who can corrupt a subset of protocol participants,
manipulate network communications, and exploit timing differences between
blockchain confirmations. One focuses on the 1-out-of-n honest operator assump-
tion, which distinguishes our approach from traditional multi-signature schemes.
The model of this protocol is given by the following entities and participants:

One assumes the source blockchain BC1 to be Bitcoin. Let us assume that
BC2 is the destination blockchain: A smart contract-enabled blockchain that can
execute arbitrary logic

The protocol involves four key participants. Operators O = {O1, O2, . . . , On}
are entities responsible for facilitating cross-chain transfers. Owner0 is the initial
asset owner on BC1, while Owner1 is the recipient of the asset after cross-chain
transfer. The adversary A represents any entity attempting to compromise the
protocol.

The protocol consists of four main technical components. The BitVMX Pro-
gram executes the verification logic for unlocking assets on Bitcoin. The Smart
Contract manages wrapped asset creation and burning on BC2. MuSig2 Aggrega-
tion enables multi-signature creation among operators, while ECIES Encryption
secures communication between operators and owners.

The protocol relies on five trust assumptions, namely: the 1-out-of-n hon-
est operator assumption requires that at least one operator among n follows
the protocol correctly, serving as the fundamental trust assumption. Both BC1
and BC2 operate correctly, maintain consensus, and execute transactions as pro-
grammed. BitVMX security assumes the verification system operates according
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to its specifications and correctly enables challenge-response protocols. Non-
collusion requires that owners and operators maintain independence, with no
universal collusion between all participants. Finally, key management assumes
that participants securely generate and store their cryptographic keys.

The adversary model defines five core capabilities that establish the security
boundaries of the protocol. The adversary can achieve operator corruption by
compromising up to n − 1 operators, gaining complete access to their private
keys and the ability to make them deviate arbitrarily from the established pro-
tocol. Through network observation capabilities, the adversary can monitor all
public network communications, including comprehensive visibility into all trans-
actions occurring on both blockchain networks. The adversary possesses network
delay capabilities, allowing it to delay network messages and blockchain trans-
actions up to a specified bound ∆, though it cannot indefinitely block these
communications. Additionally, the adversary can execute transaction creation
by generating arbitrary valid transactions on both blockchain networks. The
model constrains the adversary through computational bounds, defining it as a
probabilistic polynomial-time (PPT) machine that operates within established
computational limitations.

On the other hand, The adversary is explicitly unable to corrupt all n oper-
ators simultaneously, break the underlying cryptographic primitives, violate the
consensus rules of either blockchain, indefinitely prevent transactions from be-
ing confirmed, and access encrypted communications without the corresponding
private key.

The protocol operates within the following structured communication frame-
work. Public blockchain communication ensures that all blockchain transactions
remain publicly visible and immutable once confirmed, providing transparency
and verifiability for all network participants. Private operator-owner communica-
tion utilizes encrypted channels through ECIES encryption, protecting sensitive
information exchanges between these critical parties. The system operates under
asynchronous communication assumptions, where the network experiences vari-
able delays with a maximum message delay bound of ∆. Despite these delays,
reliable delivery guarantees ensure that messages and transactions are eventu-
ally delivered within the established time bound ∆. The framework explicitly
operates without trusted broadcast capabilities, requiring that all multi-party
communication be secured through cryptographic means rather than relying on
trusted intermediaries.

The security model relies on the following cryptographic assumptions. The
discrete logarithm problem (DLP) establishes that given Y = x · G where
G ∈ E(Zq) is a generator, determining the scalar x remains computationally in-
feasible for adversaries. Building upon this foundation, the computational Diffie-
Hellman problem (CDHP) assumes that when provided with a ·G and b ·G for
unknown scalars a, b ∈ Zq, computing a·b·G presents an insurmountable compu-
tational challenge. The elliptic curve discrete logarithm problem (ECDLP) rep-
resents the specific instantiation of the DLP within elliptic curve groups E(Zq),
providing the cryptographic hardness for elliptic curve-based operations. The
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analysis employs the random oracle model, treating hash functions as perfect
random oracles for security evaluation purposes. The encryption components
rely on IND-CPA security, ensuring that the symmetric encryption component
of ECIES maintains indistinguishability under chosen-plaintext attacks. Finally,
the framework requires existential unforgeability, guaranteeing that the digi-
tal signature schemes employed remain existentially unforgeable under chosen-
message attacks.

This threat model addresses the following categories of attacks:

1. Protocol flow attacks: The protocol must defend against several categories of
attacks that target the execution flow and timing aspects of cross-chain op-
erations. Replay attacks represent a fundamental threat, where adversaries
attempt to reuse signatures or protocol messages from previous legitimate
transactions to achieve unauthorized asset transfers. Race conditions pose
timing-based vulnerabilities that adversaries can exploit by manipulating
the sequence or timing of cross-chain events to create inconsistent states or
bypass security checks. Griefing attacks involve malicious operators who de-
liberately attempt to block or delay protocol execution, potentially causing
asset freezing or denial of service without necessarily stealing assets. Eclipse
attacks present network-level threats where adversaries isolate honest op-
erators from the broader network, preventing them from receiving critical
updates or participating in consensus mechanisms.

2. Cryptographic attacks: The cryptographic foundation of the protocol faces
multiple attack vectors that target the underlying mathematical primitives
and their implementations. Key compromise attacks occur when adversaries
obtain private keys through side-channel analysis, implementation vulner-
abilities, or other technical exploitation methods that bypass the intended
cryptographic protections. Signature forgery represents attempts by adver-
saries to create valid signatures for unauthorized actions without possess-
ing the corresponding private keys, potentially enabling unauthorized asset
transfers or protocol manipulations. Rogue key attacks specifically target
multi-signature schemes by allowing adversaries to manipulate their public
key contributions during the aggregation process, potentially gaining dispro-
portionate influence over collective signature operations.

3. Asset-specific attacks: The protocol must address attacks that directly tar-
get asset integrity and ownership throughout the cross-chain transfer pro-
cess. Double-spending attacks represent attempts by adversaries to unlock or
transfer the same asset multiple times, potentially creating artificial inflation
or theft scenarios across the participating blockchain networks. Unauthorized
transfer attacks involve adversaries attempting to redirect legitimate asset
transfers to unauthorized recipients, effectively stealing assets during the
cross-chain migration process. Asset freezing attacks occur when malicious
operators deliberately prevent asset unlocking or completion of transfers,
potentially resulting in permanent loss of access to legitimate user assets.

4. Cross-chain consistency attacks: The inherent complexity of managing state
across multiple blockchain networks creates opportunities for attacks that ex-
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ploit inconsistencies between chains. Invalid state transition attacks involve
adversaries creating or exploiting inconsistent states between the source and
destination blockchains, potentially allowing unauthorized asset creation or
destruction. Finality differences present attack vectors where adversaries ex-
ploit the varying finality guarantees and confirmation times between differ-
ent blockchain networks to create temporary or permanent inconsistencies.
Chain reorganization attacks leverage the possibility of blockchain reorga-
nizations or forks to undo completed asset transfers, potentially enabling
sophisticated double-spending scenarios that span multiple blockchain net-
works.

In particular, this model considers the following specific threat scenarios:

1. Operator collusion: The most significant threat to protocol security appears
when up to n−1 operators coordinate to compromise the system through co-
ordinated malicious behaviour. These collusive operators can pursue multiple
attack vectors designed to subvert the protocol’s intended functionality and
security guarantees. They may attempt to unlock assets without correspond-
ing legitimate burn transactions on the secondary blockchain, effectively
creating unauthorized asset transfers that bypass the protocol’s cross-chain
verification mechanisms. Additionally, colluding operators can refuse to pro-
cess legitimate unlock requests from honest users, creating denial-of-service
conditions that prevent rightful asset access. The provision of incorrect key
shares to legitimate recipients represents another attack vector, where oper-
ators deliberately distribute invalid cryptographic material to prevent suc-
cessful asset recovery. Furthermore, malicious operators may manipulate the
BitVMX execution environment to favour their coordinated interests, poten-
tially compromising the verification logic that ensures protocol correctness.
To address these threats, the protocol must maintain security even when
facing n − 1 colluding operators, ensuring that at least one honest oper-
ator retains the capability to prevent unauthorized actions. The BitVMX
challenge-response mechanism serves as a critical security requirement, en-
abling the detection of invalid executions and maintaining protocol integrity
despite widespread operator collusion.

2. Owner impersonation: Impersonation attacks employ various technical ap-
proaches to compromise the recipient identification and verification mecha-
nisms within the protocol. Adversaries may attempt to intercept encrypted
key shares that operators transmit to the intended Owner1, positioning
themselves to capture sensitive cryptographic material during the communi-
cation process. Once intercepted, attackers seek to decrypt these key shares
without possessing Owner1 legitimate private key, requiring them to break
the ECIES encryption or exploit implementation vulnerabilities. Another
attack vector involves creating forged proofs of ownership on the secondary
blockchain, where adversaries attempt to present false evidence of their au-
thority to receive cross-chain transferred assets. To counter these threats, the
protocol must implement robust cryptographic verification of Owner1 iden-
tity, ensuring that only legitimate recipients can access transferred assets.
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Key shares must maintain strict confidentiality, remaining accessible exclu-
sively to the intended Owner1 throughout the entire transfer process. Addi-
tionally, the protocol must verify that burn transactions originate from legit-
imate asset owners, preventing unauthorized parties from initiating transfers
using assets they do not rightfully control.

3. Cross-chain exploitation: Coordinating operations across multiple blockchain
networks creates opportunities for adversaries to exploit inherent differences
and inconsistencies between the participating chains. These exploitation
attacks target the complex synchronization requirements and varying op-
erational characteristics of different blockchain systems. Adversaries may
attempt to create inconsistent states between the source and destination
chains, leveraging timing differences or operational discrepancies to estab-
lish contradictory asset states that benefit their malicious objectives. Fi-
nality differences between blockchain networks present particularly sophis-
ticated attack opportunities, where adversaries exploit varying confirmation
requirements and finality guarantees to revert transactions on one chain af-
ter achieving completion on another. This temporal manipulation can enable
complex double-spending scenarios that span multiple networks. Addition-
ally, adversaries may manipulate timestamps or block confirmations to create
artificial timing conditions that bypass the protocol’s synchronization safe-
guards. To address these cross-chain vulnerabilities, the protocol must im-
plement consistent state verification mechanisms that ensure coherent asset
states across all participating blockchain networks. Sufficient confirmation
waiting periods serve as essential security requirements, providing adequate
time for transaction finality to prevent exploitation of timing differences.
The protocol must also enforce atomic execution of cross-chain operations,
ensuring that asset transfers either complete successfully across all involved
chains or fail entirely, preventing partial states that adversaries could exploit.

2.5 Blockchain interoperability

One of the most important challenges in the blockchain ecosystem has been
the complexities and insecurity of communication and asset transfer between
different networks.

Blockchain bridges solve this problem by connecting two or more blockchain
networks, enabling message passing and cross-chain transactions, enabling flaw-
less interoperability

The basic process involves locking an asset on one blockchain and repre-
senting it on another through a wrapped token. Smart contracts handle the
transaction, ensuring accuracy and security throughout the process:

1. A user locks an asset on the source blockchain.
2. A wrapped token, representing the locked asset, is minted on the destination

blockchain.
3. Smart contracts manage this process, ensuring that transactions are valid

and secure.
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2.6 Types of blockchain bridge

There are different approaches to bridging blockchains, each with its own meth-
ods and trust requirements. These can be categorized into trusted, trust-minimized
and trustless models.

1. Trusted bridges: trusted bridges rely on a central entity or a group of val-
idators to oversee operations and ensure security.
(a) Custodial bridges: A centralized entity holds the original assets and mints

their equivalents on the destination chain.
(b) Federated bridges: These are operated by a group of validators who man-

age assets and verify transactions. One finds two models:
i. m - of - n: requires a majority (m > n) of validators to approve

operations.
ii. 1 - of - n: requires just one honest validator to process a transaction.

2. Trustless bridges: trustless bridges eliminate the need for centralized enti-
ties and replace them with cryptographic schemes and smart contracts for
transaction validation. The essential functioning follows:
(a) A user deposits an asset into a smart contract on the source chain, which

locks it, making it unusable until the process completes.
(b) The contract generates a proof of both the deposit and the lock.
(c) A relayer (or oracle) forwards the proof to a smart contract on the des-

tination chain.
(d) The destination contract verifies the proof and mints the equivalent asset.
(e) Upon successful minting confirmation, the locked asset in the source

chain is burned, ensuring that no duplicate assets exist across chains.
3. Trust-Minimized Bridges: Trustless bridges cannot be built for the Bitcoin

blockchain given today’s technology. Trusted bridges, either custodial or fed-
erated, require a level of centralization that is not acceptable for many Bit-
coin use cases.
Trust-minimizing bridges achieve a balanced solution in which a group of
operators oversees the management of the bridge, while a single honest one
can prevent invalid operations from being accepted.

Key components Blockchain bridges are powered by several components that
play distinct roles in ensuring secure and efficient operations.

1. Custodians: manage locked assets in centralized bridges and handle deposits
and withdrawals.

2. Oracles: feed external data into blockchains and monitor activity, such as
prices or contract events.

3. Validators: verify transactions, enforce rules, and confirm deposits before
minting wrapped assets.

Each component contributes to the functionality and reliability of the bridge,
whether centralized or decentralized.
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Challenges in using bridges While blockchain bridges offer powerful inter-
operability solutions, they face notable challenges that must be addressed for
widespread adoption:

1. Security: bridges are high-value targets for attackers. Trustless bridges, while
decentralized, can be exploited due to their complexity. Regular audits and
layered security are essential.

2. Technical complexity: building bridges for multiple networks requires navi-
gating diverse protocols and architectures.

3. Regulation: operating across jurisdictions with varying laws makes compli-
ance challenging.

4. Scalability: managing large transaction volumes and optimizing costs while
maintaining efficiency can strain bridge operations.

Bitcoin bridges The development of Bitcoin bridges offers particular chal-
lenges, indeed:

Bitcoin’s scripting limitations create fundamental constraints for cross-chain
interoperability protocols. The UTxO model’s inherent restrictions on state man-
agement, combined with Bitcoin Script’s limited expressiveness, shape the design
space for bridging solutions. The absence of covenant support in Bitcoin presents
a challenge, since funds cannot be programmatically constrained to specific des-
tination addresses based on external validation conditions. This limitation forces
bridges to implement multi-party coordination protocols rather than direct pro-
grammatic constraints.

State management represents another significant challenge. Without the abil-
ity to maintain mutable state within transactions, bridges must implement com-
plex UTxO management schemes to track cross-chain assets and their state.
This creates additional complexity in ensuring atomicity and preventing replay
attacks across bridge operations.

The computational constraints of Bitcoin Script further restrict the types of
validation logic that can be performed on-chain. Complex operations like Merkle
proof verification or dynamic validator set management cannot be implemented
directly within Bitcoin’s scripting system.

These constraints have led to several architectural patterns in the ecosystem.

1. Federation-based approaches leverage multi-signature schemes to implement
bridge security through distributed trust. While this provides a practical
solution, it introduces additional trust assumptions compared to fully pro-
grammatic approaches possible on more expressive platforms.

2. Hash time-locked contracts (HTLCs) represent another pattern that works
within Bitcoin’s constraints. However, their application is primarily limited
to atomic swap scenarios rather than general-purpose bridging protocols. The
inability to implement complex validation logic on-chain means that HTLC-
based approaches struggle to scale beyond simple two-party exchanges.

3. Layer-2 protocols represent an alternative approach, introducing additional
programmability through separate security domains. Solutions like Liquid
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and Rootstock implement more expressive scripting capabilities, enabling
complex bridge logic at the cost of additional trust assumptions in their
security models.

These architectural patterns demonstrate how Bitcoin’s security-focused de-
sign decisions continue to influence the development of cross-chain interoper-
ability solutions. The trade-off between trustlessness and functionality remains
a central consideration in bridge design, with different approaches optimizing for
different points along this spectrum.

2.7 BitVMX

BitVMX [18] is a virtual CPU design that allows arbitrary programs to run on
Bitcoin through an optimistic verification system. It builds on the challenge-
response framework introduced by BitVM [3], implementing a general-purpose
CPU that can be verified using Bitcoin’s scripting capabilities. The system is
compatible with common processor architectures like RISC-V and MIPS.

The key innovation of BitVMX lies in its streamlined approach. It employs
hash chains to track program execution, uses memory-mapped registers, and
introduces an enhanced challenge-response protocol. The system includes a mes-
sage linking protocol that enables authenticated communication between partic-
ipants, effectively creating stateful smart contracts by maintaining shared state
across transactions.

The verification process uses presigned transactions to manage challenge-
response interactions. When disputes arise, the system leverages the hash chain
of program execution to pinpoint and investigate computational errors through
n-ary search. This represents a significant improvement over BitVM, as BitVMX
eliminates the need for Merkle trees in CPU instructions and memory operations,
while also removing dependence on signature equivocations. These improvements
reduce complexity and make BitVMX a strong alternative to BitVM2 [19].

In practice, BitVMX operates as a two-party system between a prover (opera-
tor) and a verifier, though it can be expanded to accommodate multiple verifiers.
When funds are locked in a Bitcoin UTxO, they can only be spent based on the
outcome of a predefined program with specific inputs. The operator must demon-
strate correct program execution to access the funds. If the verifier agrees with
the execution results, the process proceeds smoothly. If not, both parties enter
a dispute resolution protocol on the Bitcoin blockchain.

The execution tracking system in BitVMX represents a notable advancement.
Both parties execute the program locally, generating both an execution trace and
a hash chain for each step. The hash chain is built by combining each step’s trace
with the previous hash and applying a secure hashing function. This creates an
unforgeable record of execution, where any computational differences between
parties result in divergent hash chains.

BitVMX’s n-ary search capability allows for faster identification of computa-
tional conflicts compared to BitVM’s binary search approach. Once an error is
located, specialized challenges can determine its precise nature, such as tracking



TOOP: A transfer of ownership protocol over Bitcoin 19

memory access patterns to identify incorrect memory operations. The system’s
response verification ensures that all responses directly correspond to specific
challenges, allowing the challenger to prove dishonest behaviour using the oper-
ator’s own signed messages.

This design offers flexibility in balancing various trade-offs, including trans-
action costs versus rounds of interaction, prover versus verifier computational
costs, and precomputation requirements versus protocol rounds. While BitVMX
can still utilize signature equivocations like BitVM, they are not fundamental to
its operation, resulting in a more streamlined protocol.

2.8 Cryptographic components

Let us denote with M and C the sets of messages and ciphertexts, respectively.
One assumes that the following data is public: an elliptic curve E with a prime
q such that the discrete logarithm problem is hard over E(Zq), a hash function
H : E(Zq)

⋆ → {0, 1}l1+l2 , for parameters l1, l2 > 0, and a MAC function MAC :
C → Zq. Let Sym = (ε, δ) be a symmetric encryption mechanism.

This protocol involves a phase where operators set 1−1 communications with
owners using the ECIES protocol [8], which one introduces informally below.

Algorithm 1 ECIES.KeyGen
1: Choose A ∈ E(Zq) of order q, secret s ∈ Zq, compute B = s ·A
2: Output: public key (A,B), private key s

Algorithm 2 ECIES.Encrypt(m, pk)

1: Choose random k ∈ [1, q − 1]
2: Compute R = k ·A, Z = k ·B, κE ∥κM = H(R,Z)
3: Compute C = εκE (m), t = MACκM (C)
4: return (R,C, t)

Algorithm 3 ECIES.Decrypt(C, sk)
1: Compute Z = s ·R, κE ∥κM = H(R,Z), t′ = MACκM (C)
2: if t ̸= t′ then reject C
3: elsereturn m = δκE (C)
4: end if

This protocol also makes use of MuSig2 [23] for multi-signatures involving the
committee. In this setting one considers a point G ∈ E(Zq) of prime order q, and
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two hash functions Hagg : E(Zq)
⋆×M→ Zq, and Hsig : E(Zq)×E(Zq)×M→

Zq.

Algorithm 4 MuSig.KeyGen
1: Each participant Oi selects secret key ki ∈ Zq and computes Ki = ki ·G ∈ E(Zq)
2: Each Oi computes ai = Hagg(Ki, {K1, . . . ,Kn}) ∈ Zq

3: Aggregate public key: K =
∑n

i=1 ai ·Ki ∈ E(Zq)
4: Implied aggregate secret key: k =

∑n
i=1 ai · ki mod q

Algorithm 5 MuSig.Sign(m)

1: Round 1: Each Oi generates ri1, ri2 ∈ Zq, computes Ri1 = ri1 ·G, Ri2 = ri2 ·G
2: Each Oi broadcasts (Ri1, Ri2)
3: Round 2: All compute b = Hagg(R11 ∥R12 ∥ . . . ∥Rn1 ∥Rn2,m) ∈ E(Zq)
4: Each Oi computes Ri = Ri1 + b ·Ri2 and all compute R =

∑n
i=1 Ri

5: All compute challenge c = Hsig(K,R,m) ∈ Zq

6: Each Oi computes and broadcasts si = ri1 + b · ri2 + c · ai · ki mod q
7: Final signature: σ = (R, s) =

(
R,

∑n
i=1 si mod q

)

Algorithm 6 MuSig.Verification(m,σ)

1: Compute c = Hsig(K,R,m)
2: Check if s ·G = R+ c ·K
3: if equality holds then return valid
4: elsereturn invalid
5: end if

3 Protocol overview

Let us assume that a user Owner0 has an asset (UTxO) on Bitcoin and wants
to wrap it to use it on a secondary blockchain with smart contracts support.

A group of n ≥ 1 operators is in charge of managing the protocol and have
published an aggregate address to receive assets and help with the wrapping,
following MuSig2.

3.1 Locking keys and power set

For each locked asset in Bitcoin, the operators generate a corresponding list of
private and public keys. To this end, each operator Oi computes a random secret
key ki and public key Ki = ki ·G, for G ∈ E(Zq).
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Let ID be the power set of all the subsets of operators which will collaborate
with Owner1 in forthcoming steps of the protocol.

In forthcoming steps, users will have the ability to consider elements of ID,
and define both their aggregate public key and the associated signing key. This
can be done restricting the aggregation process to the involved operators, where
the coefficients are computed following MuSig2 and using the public keys of the
willing operators.

3.2 Fundamental phases

One can divide the protocol in three phases, locking, asset usage, and unlocking,
which are described below.

1. Locking: ensures the secure transition of assets from Bitcoin into its wrapped
form on the second blockchain.
(a) A committee of operators generates, and shares, an aggregate address

on Bitcoin following MuSig2.
(b) Owner0 transfers the asset to the operator’s aggregate address on Bitcoin

using a lock request transaction, which includes:
i. The assets to be locked.
ii. Protocol fees to support Bitcoin and the second blockchain opera-

tions.
iii. The second blockchain address selected to receive the wrapped assets.
The lock request transaction offers two potential outcomes:
i. It can be redeemed by all operators to complete the lock process.
ii. If not accepted within a specified time-frame, the owner can reclaim

the asset after a time-lock expires.
(c) The user communicates with the operators off-chain, sharing details of

the lock request transaction.
(d) The operators identify the request and initiate the setup process, which

involves:
i. Preparing BitVMX presigned transactions and secrets.
ii. Creating aggregate keys for the transfer of ownership. This is done

using MuSig2.
(e) The operators create a BitVMX program that will validate an unlocking

request in the future, and will transfer the asset into one of the predefined
2n addresses.

(f) A wrapped asset linking to Owner0 original asset is created on the second
blockchain.

2. Asset usage: in this phase, Owner0 uses the asset on the secondary chain,
possibly transferring it to other users or smart contracts.

3. Unlocking:
(a) Owner1 initiates the transfer by sending the wrapped asset to the smart

contract for burning. This is done by signing a burn transaction for
the token, including an additional public key to encrypt the transfer of
ownership information.



22 A. Futoransky et al.

(b) Operators monitoring the smart contract will detect the burn request
and verify the asset origin. The operators will use the provided public
key to encrypt their shares of the aggregated key for that UTxO.

(c) Owner1 will initiate off-chain communication with the operators to re-
trieve their encrypted shares and associated public keys. These shares
are encrypted using the public key provided by Owner1. Here, the cryp-
tographic scheme in use is ECIES.

(d) Owner1 verifies that the decrypted keys match the public keys linked
to the locked UTxO. This allows the identification of the subset of valid
keys and assign an element in ID to this subset.

(e) Owner1 sends a message to the smart-contract selecting a group-id which
corresponds to the aggregate public key of the subset of operators who
sent valid keys. (Address (S)).

(f) An operator starts the execution of the BitVMX unlocking program on
Bitcoin, giving as input the selected group-id as well as a zero-knowledge
proof that the owner burned and selected that group-id on a smart-
contract transaction.

(g) If step (f) is successful, the locked asset is sent to address(S).
(h) Owner1 calculates an aggregated private key for address(S) and transfers

the asset to one address of his choice.

3.3 Interaction between owners and operators

Once detected the burning transaction in the smart contract, a subset of oper-
ators set communication with Owner1 using the ECIES scheme. This commu-
nication is possible because Owner1 will generate a key pair, specific to 1 − 1
communications, given by a random secret key skc ∈ Zq, and a public key
(G, skc ·G).

After checking the validity of the received secrets, Owner1 can derive a set
S in ID and compute the associated aggregated key following MuSig2.

4 Security assumptions and analysis

4.1 Security assumptions

The security of this proposed protocol relies on several cryptographic assump-
tions and the robustness of the underlying primitives, in particular MuSig2 and
ECIES. Below, there is an outline of the key assumptions and their implications
for the protocol’s security.

The protocol operates under the 1-out-of-n honesty assumption, which as-
sumes that among n operators, at least one is honest and follows the protocol
specification correctly. This assumption is critical for ensuring the integrity and
correctness of the protocol, as the honest participant serves as a safeguard against
malicious behaviour by the remaining n−1 operators. The honest participant en-
sures that the protocol’s outputs are verified correctly, that BitVMX challenges
are set when required, and that no adversarial manipulation goes undetected.
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The protocol employs MuSig2 for the multisignatures involving the commit-
tee of operators, and ECIES for setting secure communications between owners
and operators. It therefore inherits the following security assumptions:

1. Discrete logarithm problem over elliptic curves: the hardness of computing
discrete logarithms in the underlying elliptic curve group ensures that an
adversary cannot forge signatures without knowledge of the private keys.

2. Random oracle model: one assumes that cryptographic hash functions be-
have as random oracles. This model is essential for proving the security of
the scheme against chosen-message attacks.

3. Elliptic curve Diffie-Hellman problem: the hardness of solving the Diffie-
Hellman problem ensures that an adversary cannot obtain the shared secret
used for symmetric key derivation.

4. Indistinguishability under chosen-plaintext attack (IND-CPA): the symmet-
ric encryption component of ECIES is assumed to be IND-CPA secure, en-
suring that ciphertexts do not leak information about the plaintext.

5. Existential unforgeability under chosen-message attacks: The MAC compo-
nent in ECIES ensures that ciphertexts cannot be forged or tampered with
without detection.

One observes that MuSig2 incorporates a key aggregation technique that mit-
igates rogue-key attacks, ensuring that malicious participants cannot manipulate
their public keys to gain an unfair advantage during signature generation.

4.2 Security analysis

In this section, we provide the main ideas which set the security properties
of protocol. Each proof demonstrates how the design of the protocol ensures
specific security guarantees under the cryptographic assumptions which have
been established.

Theorem 1. Under the discrete logarithm assumption in elliptic curve groups
and assuming at least one honest operator, the protocol satisfies asset validity
with overwhelming probability.

Proof. Let us assume that there exists a PPT adversary A that violates asset
validity with non-negligible probability ϵ. We construct an algorithm B that uses
A to solve the discrete logarithm problem.

Given a discrete logarithm challenge (G, Y = x·G) where x ∈ Zq is unknown,
B runs the protocol setup, embedding the challenge public key Y as the public
key for some UTxO not controlled by Owner0. When A attempts to violate
asset validity by locking assets X ̸⊆ Assets(Owner0,BC1), A must produce a
valid signature for the UTxO corresponding to public key Y .

If A succeeds, then A has produced a valid ECDSA signature (r, s) for some
message m under public key Y . Using the forking lemma, B can extract two
signatures (r, s1) and (r, s2) for the same r but different hash values h1 and
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h2. This gives B the discrete logarithm x, contradicting the discrete logarithm
assumption.

However, even if A could forge signatures, the honest operator Oj will verify
the lock transaction before participating. The honest operator checks that all
input UTxOs in the lock transaction belong to Assets(Owner0,BC1). Since X ̸⊆
Assets(Owner0,BC1), the honest operator will reject the lock request, preventing
protocol progression.

Theorem 2. Under the discrete logarithm assumption and BitVMX security
assumptions, with at least one honest operator, the protocol satisfies transfer
authenticity.

Proof. One considers two different cases in this situation:

– Lock to wrap: in this situation, one assumes that the adversary A creates
wrapped assets on BC2 without corresponding lock on BC1. The wrapped
asset creation requires operator signatures on BC2. At least one honest oper-
ator Oj will only sign after verifying the lock transaction exists on BC1 with
sufficient confirmations. If no valid lock exists, Oj refuses to sign, preventing
wrapped asset creation.

– Burn to unlock: Let us suppose that A unlocks assets on BC1 without cor-
responding burn on BC2. The unlock requires BitVMX program execution
with proof π that demonstrates:
1. Existence of burn transaction txburn on BC2.
2. Correct group selection S ∈ ID.

If no valid burn exists, the honest operator will challenge the BitVMX execu-
tion. Under BitVMX security assumptions, invalid executions can be proven
incorrect through the challenge-response protocol. The challenger provides
evidence that π does not correspond to a valid burn transaction, causing the
execution to fail.
Formally, let Verify(π, stmt) be the BitVMX verification predicate and state-
ment. If stmt asserts existence of burn transaction txburn but no such trans-
action exists, then an honest challenger can prove ¬Verify(π, stmt) with
overwhelming probability.

Therefore, both directions of transfer authenticity hold with probability 1−
negl(κ).

Theorem 3. The protocol prevents double-spending with overwhelming proba-
bility under the discrete logarithm assumption and honest operator assumption.

Proof. Let us consider the following situations:

– Multiple Bitcoin unlocks: Each locked asset corresponds to a unique UTxO
on BC1 with specific transaction identifier and output index. The BitVMX
program execution creates a spending transaction that consumes this UTxO
by transferring it to the aggregate address corresponding to the selected
operator subset S ∈ ID. Bitcoin’s consensus mechanism enforces that each
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UTxO can be spent exactly once across all valid transactions. Any subsequent
unlock attempt must reference the same UTxO, but after successful BitVMX
execution, this UTxO no longer exists in the blockchain state. The adversary
cannot construct valid Bitcoin transactions that spend non-existent UTxOs,
providing absolute protection against multiple Bitcoin unlocks of the same
asset.

– Multiple secondary chain burns: The smart contract on BC2 maintains ex-
plicit state tracking for each wrapped asset through mappings that record
burn status. When an asset X undergoes burning, the contract atomically
updates its internal state to mark X as burned and rejects subsequent burn
operations for the same asset identifier. The atomic execution guarantees
provided by BC2 ensure that state updates and asset destruction occur as in-
divisible operations. Even under concurrent burn attempts, the blockchain’s
transaction ordering ensures that only the first operation succeeds while
subsequent attempts fail due to the updated contract state.

– Cross-chain coordination attacks: Adversary A might attempt to exploit
timing differences or coordination failures between blockchains to create in-
consistent states, where assets appear burned multiple times or unlocked
without corresponding burns. The honest operator Oj maintains consistent
state across both blockchains and tracks which assets have been processed.
When a legitimate burn occurs on BC2, the operator Oj records this event
and provides encrypted key shares exactly once for each unique asset. The
operator refuses participation in subsequent unlock attempts for previously
processed assets.

The discrete logarithm assumption ensures that A cannot forge operator
signatures or manipulate cryptographic proofs required for unauthorized opera-
tions. Under BitVMX security assumptions, invalid program executions can be
detected and challenged by the honest operator, preventing unauthorized unlocks
that might enable double-spending scenarios.

The combination of UTxO consumption mechanics, smart contract state
management, and honest operator coordination creates multiple independent
security barriers. The failure of any single mechanism does not compromise
overall double-spending prevention, ensuring the property holds with probability
1− negl(κ) where κ represents the security parameter.

Theorem 4. Under the ECDHP and IND-CPA security assumptions, the pro-
tocol ensures ownership transfer security with overwhelming probability.

Proof. Let us consider an adversary A attempts to redirect the transfer without
knowing Owner1’s private key sk1. The adversary must:

1. Decrypt ECIES ciphertexts Ci = ECIES.Encrypt(pk1, sharei) for operator
key shares.
Under ECDHP assumption, A cannot decrypt Ci without sk1. Formally,
consider the ECIES encryption:
– (R,C, t) = ECIES.Encrypt(pk1, sharei) where R = r ·G, pk1 = sk1 ·G
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– Shared secret Z = r · pk1 = sk1 ·R
– Decryption requires computing Z from (R, pk1), which is the ECDHP

If A can decrypt with non-negligible probability ϵ, we construct ECDHP
solver B: Given (G, aG, bG), B sets pk1 = aG, R = bG, runs A on the result-
ing ciphertext. If A succeeds, B extracts abG from the decryption process.

2. Compute a valid aggregate key for some subset S ∈ ID.
Even if A obtains some key shares through other means, the honest op-
erator Oj only provides sharej encrypted under pk1. Without sharej , A
cannot form a valid subset S that includes Oj . Any subset excluding Oj

cannot unlock the asset because the protocol requires the honest operator’s
participation.

Therefore, ownership transfer security holds with probability 1− negl(κ).

Theorem 5. Under the cryptographic assumptions established, all security prop-
erties hold when at least one operator is honest, regardless of the corruption of
up to n− 1 operators.

Proof. Let C ⊂ O be the set of corrupted operators with |C| ≤ n − 1, and let
Oj ∈ O \ C be the honest operator.

For each security property P, namely: asset validity, transfer authenticity,
double-spend prevention, and ownership transfer security, one shows that the
honest operator Oj can maintain P despite corruption of C:

1. Asset validity: Oj independently verifies lock transactions. Even if all oper-
ators in C approve invalid locks, Oj ’s refusal prevents protocol progression.

2. Transfer authenticity: Oj verifies burn transactions before providing key
shares and challenges invalid BitVMX executions.

3. Double-spend prevention: Oj maintains consistent state and refuses multiple
unlock participation. The security follows from Theorem 3 arguments.

4. Ownership transfer security: Oj correctly encrypts key shares for legitimate
recipients.

Each property’s security reduces to the honest behaviour of Oj combined
with the underlying cryptographic assumptions. Since we assume at least one
honest operator exists, all properties hold simultaneously. Therefore, 1-out-of-n
security holds with overwhelming probability.

Theorem 6. Under the assumption of having at least one honest operator, the
protocol satisfies liveness.

Proof. Let us consider a legitimate asset transfer where Owner0 locks asset X
and Owner1 burns the corresponding wrapped asset. We must show the transfer
eventually completes despite potential interference from up to n-1 corrupted
operators.

The protocol achieves liveness through a combination of honest operator ca-
pabilities and protocol design features that prevent permanent blocking attacks.
The honest operator Oj maintains the following capabilities that ensure forward
progress:
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1. Lock-to-wrap progression: After detecting a valid lock transaction on Bit-
coin, the honest operator can unilaterally trigger wrapped asset creation on
the secondary blockchain. Since wrapped asset creation requires only hon-
est operator participation rather than full consensus, corrupted operators
cannot prevent this step. The operator’s verification of lock transaction va-
lidity within time ∆1 and subsequent participation in wrapped asset creation
within time ∆2 ensures this phase completes.

2. Burn detection and response: When Owner1 burns wrapped assets, the hon-
est operator detects this event within blockchain confirmation bounds ∆3.
The operator provides encrypted key shares to Owner1 within network mes-
sage bounds ∆4, and corrupted operators cannot prevent this communication
since it occurs through independent channels between the honest operator
and Owner1.

3. BitVMX execution completion: The critical liveness mechanism operates
through BitVMX’s challenge-response framework. When corrupted opera-
tors attempt to block progress by refusing to participate or by initiating
invalid challenges, the honest operator can force resolution, indeed: if cor-
rupted operators refuse to execute the BitVMX program for valid burn trans-
actions, the honest operator can initiate execution unilaterally. If corrupted
operators attempt invalid executions to block progress, the honest operator
challenges these executions through BitVMX’s dispute resolution protocol.
The security properties of BitVMX ensure that honest challenges succeed
against invalid executions, forcing the protocol to progress to the correct
state.

4. Prevention of permanent blocking: Corrupted operators cannot permanently
block legitimate transfers because the protocol requires only one honest
participant to maintain progress. The honest operator’s economic incen-
tives align with completing legitimate transfers, while the BitVMX challenge
mechanism provides technical enforcement against blocking attempts.

The protocol’s time-lock mechanisms create bounded windows for each phase,
but these bounds serve to prevent indefinite delays rather than enable block-
ing attacks. Within each bounded period, the honest operator can complete
the necessary protocol steps despite non-cooperation from corrupted opera-
tors.

5. Completion guarantee: The total completion time T ≤
∑5

i=1 ∆i represents
the worst-case progression time when corrupted operators provide no coop-
eration. The honest operator’s ability to complete each phase independently,
combined with BitVMX’s enforcement of correct execution, ensures that le-
gitimate transfers progress to completion within these bounds.

Since the honest operator cannot be prevented from executing the proto-
col correctly and has both the technical capability and economic incentive to
complete legitimate transfers, liveness holds with overwhelming probability.
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4.3 Analysis of the combination of MuSig2, ECIES and BitVMX

The security of our cross-chain transfer protocol relies on the cryptographic com-
position of MuSig2, ECIES, and BitVMX, where each primitive operates within
its established security model while maintaining independence from the others.
This section outlines the rationale supporting the claim that their composition
preserves the underlying security assumptions.

MuSig2 operates under the discrete logarithm assumption in elliptic curve
groups, providing signature aggregation without compromising individual pri-
vate keys. The protocol maintains MuSig2’s security by ensuring that the key
aggregation process K =

∑n
i=1 aiKi and subsequent signature generation remain

isolated from other cryptographic operations.
The composition preserves the random oracle model assumptions underlying

MuSig2’s security proof by ensuring that hash function calls Hagg and Hsig op-
erate only on public values derived from the multi-signature protocol itself. The
nonce generation process for each operator remains independent of ECIES en-
cryption keys and BitVMX program execution, preventing potential correlation
attacks that might compromise the Wagner’s algorithm resistance properties of
MuSig2.

The protocol ensures that MuSig2 private keys ki never appear as inputs to
ECIES encryption or BitVMX computation, maintaining the key independence
required for the security reduction to the discrete logarithm problem. The ag-
gregation coefficients ai = Hagg(Ki, {K1, . . . ,Kn}) depend only on public keys,
preventing leakage of secret information through cross-component interactions.

On another hand, ECIES security depends on the computational Diffie-
Hellman assumption and the semantic security of the underlying symmetric
encryption scheme. The protocol composition maintains these guarantees by
ensuring that ECIES encryption operates with independent key material that
remains isolated from MuSig2 operations and BitVMX execution.

The key derivation process κE∥κM = H(R,Z) where Z = sk1 · R uses hash
functions that operate independently of the hash functions employed in MuSig2
signature generation. This separation prevents potential hash collision attacks
that might compromise the random oracle assumptions underlying both schemes
simultaneously.

The protocol ensures that Owner1’s ECIES private key sk1 remains distinct
from any MuSig2 private keys and never appears as input to BitVMX programs.
This isolation maintains the CDH assumption by preventing adversaries from
leveraging knowledge of MuSig2 signatures or BitVMX execution traces to gain
advantage in solving ECIES decryption challenges.

Concerning BitVMX, its security relies on the challenge-response framework
and the underlying hash function security for execution trace verification. The
protocol composition maintains BitVMX’s security model by ensuring that ver-
ification programs operate exclusively on public blockchain state rather than
private cryptographic material from MuSig2 or ECIES operations.

The BitVMX program inputs consist of publicly verifiable blockchain trans-
actions and state commitments, avoiding any dependence on private key material
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or intermediate cryptographic values from other protocol components. The hash
chain construction for execution trace verification H(tracei∥hashi−1) operates
independently of the hash functions used in MuSig2 aggregation and ECIES key
derivation.

The challenge-response mechanism maintains its security properties because
honest operators can generate valid challenges without requiring access to secret
information from other protocol components. The verification process depends
solely on the computational soundness of the hash functions and the economic
incentives for honest challenging behaviour.

The security composition succeeds because each primitive operates within its
established threat model without requiring trust in the security of other compo-
nents. The protocol design ensures that private key spaces remain disjoint across
all three systems, preventing key reuse attacks that might compromise multiple
components simultaneously. Hash function domains are separated to prevent
collision attacks across different cryptographic contexts, while random number
generation processes for each component operate independently, maintaining the
randomness assumptions underlying each primitive’s security analysis.

The 1-out-of-n security model provides robustness against partial system
compromise by ensuring that honest operators can maintain security properties
even when individual cryptographic components face attack. An honest operator
will detect invalid MuSig2 signature requests, refuse to provide ECIES-encrypted
shares to unauthorized recipients, and challenge invalid BitVMX executions,
creating multiple independent security barriers.

5 Future research

This protocol involves several trade-offs related to scalability, communication
overhead, and resilience against specific attack scenarios. These trade-offs, dis-
cussed below, also help define key directions for our future research.

5.1 Scalability

This protocol is designed with fixed on-chain costs, regardless of the number
of operators involved. However, it faces challenges in managing computational
complexity and communication overhead as the number of operators n increases.
Indeed, concerning signature generation complexity, the protocol requires signa-
ture generation for each subset of operators, resulting in a total of 2n signatures
for n operators. This exponential growth limits practical application to scenarios
where n < 30. While n remains small in most practical scenarios, the exponential
growth could become a bottleneck in larger systems.

There exist several options to tackle the problem with the exponential growth
in signature calculations, being one of them key aggregation; key can be aggre-
gated into groups of up to a fixed size N < n. One observes that this approach
reduces the computational complexity to 2N n

N signature calculations for n op-
erators, nevertheless, this optimization requires publishing n

N on-chain group
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signatures instead of 1, increasing the on-chain data requirements but substan-
tially reducing computational costs. Another options would be considering all
possible groups of size N , and for each group compute a multi-signature using the
data published by operators Oi. At the unlocking phase, Owner1 would receive
communication of N operators with their secret keys. Once checked the validity
of these keys, Owner1 would be able to create the secret key associated to one
of the possible subgroups. This approach reduces the computational complexity
to

(
N
n

)
signature calculations for n operators, significantly improving scalability

while maintaining the integrity of the protocol.
When it comes to the communications overhead, communications between

operators are on the order of O(n2), which may become a limiting factor for very
large committees. As the number of operators grows, the increase in communica-
tion requirements could strain resources and delay operations. In any case, this
is the same scalability requirements present in other parts of the system.

5.2 Attacks

This is a protocol designed to ensure security even in the presence of dishonest
operators. However, certain attacks can still be attempted by malicious partic-
ipants. Below, one outlines the possible attack vectors and the corresponding
mitigation strategies to be explored in the future.

1. Misleading information to Owner1: dishonest operators may send invalid or
incorrect secret key information to Owner1 during the unlocking phase. This
could lead to delays or errors in the unlocking process.
Mitigation: Owner1 verifies all secret keys received against the public keys
generated during the lock phase. Any invalid keys are discarded, ensuring
that only valid keys are used for the unlocking process.

2. Refusal to collaborate: dishonest operators may refuse to participate in the
unlocking process by withholding their secret keys from Owner1.
Mitigation: The protocol only requires one honest operator to participate
for the unlocking to succeed. As long as at least one operator follows the
protocol, the unlocking process remains functional.

3. Key sharing with unauthorized users: dishonest operators may share their
secret keys with unauthorized users, enabling them to impersonate Owner1
or gain access to the locked assets.
Mitigation: Owner1 independently verifies the validity of received keys. Ad-
ditionally, since each operator’s secret key is encrypted specifically for Owner1
using ElGamal encryption, unauthorized users cannot use the keys without
compromising the encryption.

4. Collusion between operators: operators may collude to manipulate the un-
locking process by selecting a different group ID or bypassing Owner1’s
input. This could potentially allow them to access the locked assets improp-
erly.
Mitigation: An honest operator can challenge any unlocking attempt that
deviates from the protocol by leveraging the BitVMX dispute mechanism.
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This ensures that any unauthorized unlocking attempts are detected and
prevented.
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Algorithm 7 Generate Operator Powerset
Require: Set of operators O = {O1, O2, . . . , On} where n > 1
Ensure: Powerset P (O) containing all possible subsets of O
1: function GenCombinations(elems, size)
2: if size = 0 or size = |elems| then return size = 0?[∅] : [elems]
3: end if
4: combs← ∅, first← elems[0], rest← elems[1 :]
5: for all smallComb ∈ GenCombinations(rest, size− 1) do combs← combs∪
{[first] + smallComb}

6: end for
7: combs← combs ∪GenCombinations(rest, size) return combs
8: end function
9: function GenOperatorPowerset(ops)

10: if |ops| < 2 then return “Error: Need at least 2 operators”
11: end if
12: pset← ∅, opList← list(ops)
13: for subSize← 0 to |opList| do
14: pset← pset ∪GenCombinations(opList, subSize)
15: end forreturn pset
16: end function

Algorithm 8 Key Generation for Locked Assets
Require: Set of locked Bitcoin assets A and operators O = {O1, O2, . . . , On}
Ensure: Dictionary mapping each operator to their key pairs for each asset
1: function GenKeys(assets, ops,G, q)
2: aKeys← ∅
3: for each a ∈ assets do
4: opKeys← ∅
5: for each op ∈ ops do
6: ki ← RandSecNum(1, q − 1), Ki ← ScalMult(ki, G)
7: opKeys[op]← {”priv” : ki, ”pub” : Ki}
8: end for
9: aKeys[a]← opKeys

10: end forreturn aKeys
11: end function
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Algorithm 9 Aggregate Address Generation
Require: Committee of operators O = {O1, O2, . . . , ON}, Owner0, Owner1
Ensure: Aggregate Bitcoin address and shared operator keys
1: function GenAggAddr(ops, own0, own1)
2: opKeys← ∅ ▷ Phase 1: Initial Key Generation
3: for each op ∈ ops do
4: secKey ← GenSecRand, pubKey ← GenPubKey(secKey)
5: opKeys[op]← {”sec” : secKey, ”pub” : pubKey}
6: end for
7: allPubKeys← [keys[”pub”] for keys in opKeys.values()]
8: aggPubKey ← CompAggKey(allPubKeys)
9: aggAddr ← PubKeyToAddr(aggPubKey)

10: ownInfo← ∅
11: ownInfo[own0]← {”addr” : aggAddr, ”ops” : ops, ”aggKey” : aggPubKey}
12: ownInfo[own1]← {”addr” : aggAddr, ”ops” : ops, ”aggKey” : aggPubKey}
13: opInfo← ∅
14: opInfo[”addr”]← aggAddr
15: opInfo[”keys”]← opKeys
16: opInfo[”aggKey”]← aggPubKey
17: opInfo[”owners”]← [own0, own1]
18: return {”addr” : aggAddr, ”ownInfo” : ownInfo, ”opInfo” : opInfo}
19: end function
20: function CompAggKey(pubKeys) ▷ Compute aggregate public key using

MuSig2
21: end function
22: function PubKeyToAddr(pubKey) ▷ Convert public key to Bitcoin address
23: end function
24: function GenSecRand ▷ Generate cryptographically secure random number
25: end function
26: function GenPubKey(secKey) ▷ Generate public key from secret key
27: end function



TOOP: A transfer of ownership protocol over Bitcoin 35

Algorithm 10 Create Lock Request Transaction
Require: Owner address own0, assets A, operator aggregate address opAddr, protocol

fees fees, second chain address sc_addr
Ensure: Lock request transaction structure
1: function CreateLockReq(own0, A, opAddr, fees, sc_addr)
2: lockReq ← {}
3: lockReq[”from”] ← own0, lockReq[”to”] ← opAddr,

lockReq[”locked_assets”]← A
4: lockReq[”fees”]← {”btc_fee” : fees[”btc_fee”], ”sc_fee” : fees[”sc_fee”]}
5: lockReq[”sc_dest”]← sc_addr
6: lockReq[”cond”] ← { ”op_redeem” : {”req” : "all_op_sigs", ”timelock” :

NULL}, ”own_redeem” : {”req” : "own_sig", ”timelock” :
"rel_blocks_timeout"}}

7: return lockReq
8: end function

Algorithm 11 Operator Setup Protocol
Require: Set of operators ops, powerset P , lock request req
Ensure: Setup components for BitVMX
1: function PrepOpSetup(ops, P, req)
2: setup← {”tx” : {}, ”secrets” : {}, ”keys” : {”ind” : {}, ”agg” : NULL}}
3: for each subset ∈ P do
4: subId← _join(sort([op.id for op ∈ subset]))
5: setup[”tx”][subId][”ops”]← subset
6: for each op ∈ ops do
7: setup[”tx”][subId][”txs”][op.id]← "presigned_tx_for_" + subId
8: end for
9: end for

10: setup[”secrets”]← {op.id : "secret_for_" + op.id for op ∈ ops}
11: return setup
12: end function
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Algorithm 12 Transfer Protocol
Require: Owners own0, own1, operators ops, powerset P
Ensure: Transfer protocol execution
1: function CreateBurnTx(own1, wrap_asset, contract)
2: burn← ∅
3: burn[”asset”]← wrap_asset
4: burn[”action”]← "burn"
5: burn[”redeem_key”]← own1.ecies_pub
6: burn[”time”]← CurrTime
7: return burn
8: end function
9: function PrepEncShares(ops, own1_pub, utxo)

10: enc_data← ∅
11: for each op ∈ ops do
12: enc_share← ECIESEnc(own1_pub, op.key_share, op.ecies_priv)
13: enc_data[op.id]← {”enc_share” : enc_share, ”pub_key” : op.ecies_pub}
14: end for
15: return enc_data
16: end function
17: function VerifySelectGroup(own1, enc_shares, P )
18: valid_ops← ∅
19: for each (op_id, share_data) ∈ enc_shares do
20: dec_share← ECIESDec(own1.ecies_priv, share_data[”enc_share”])
21: if VerifyShare(dec_share, share_data["pub_key"]) then
22: valid_ops← valid_ops ∪ {op_id}
23: end if
24: end for
25: for each group ∈ P do
26: if group = valid_ops then return GroupToId(group)
27: end if
28: end for
29: return NULL
30: end function
31: function CreateSelMsg(group_id)
32: return {”group_id” : group_id, ”proof” : GenProof(group_id)}
33: end function
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Algorithm 13 Interactive Burn Protocol
Require: Constants: MAX_CERTS, MIN_SGRS, MAX_SGRS
1: function ValidCertChain(snap, burn_block)
2: chain_val ← {”snap” : {”height” : snap.height, ”agg_sig” :

ops.agg_sig, ”init_state” : snap.state}, ”cert_chain” : {”max_len” :
MAX_CERTS, ”certs” : []}, ”target” : {”height” : burn_block.height, ”cert” :
burn_block.cert}}

3: return chain_val
4: end function
5: function CreateProverInput(cert_chain)
6: prover ← {”cert_hashes” : [sha256(cert) for cert ∈ cert_chain],

”unk_cert” : {”sgrs” : {”count” : |cert_chain.sgrs|, ”pub_keys” :
cert_chain.sgr_keys, ”agg_sig” : cert_chain.bls_sig}, ”merkle” : {”root” :
cert_chain.merkle_root, ”path” : cert_chain.incl_proof}}}

7: return prover
8: end function
9: function CreateVerifierChallenge(cert_chain)

10: verifier ← {”chal_opts” : { ”sgr_incl” : {”type” :
"SGR_VERIFY", ”sgr_idx” : NULL}, ”sig_valid” : {”type” :
"BLS_SIG", ”chal_data” : NULL}, ”blk_incl” : {”type” :
"BLK_CERT", ”blk_data” : NULL}}, ”unk_cert” : {”seq_num” :
NULL, ”snap_ref” : NULL}}

11: return verifier
12: end function
13: function ExecProofVerification(prover_in, verifier_chal)
14: proof ← {”comps” : {”cert_chain” : prover_in.cert_hashes,

”chal_resp” : {”type” : verifier_chal.type, ”proof_data” : NULL}}, ”constr” :
{”chain_len” : MAX_CERTS, ”sgr_count” : {”min” : MIN_SGRS, ”max” :
MAX_SGRS}}}

15: return proof
16: end function
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