
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 0, No. 0, pp. 0–0. DOI:10.46586/tosc.v0.i0.0-0

Addendum to How Small Can S-boxes Be?
Yu Sun1,5, Lixuan Wu1, Chenhao Jia2, Tingting Cui2,3, Kai Hu1,5,3,4(B) and

Meiqin Wang1,3,4

1 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong, China.
{yu.sun,lixuanwu}@mail.sdu.edu.cn, {kai.hu,mqwang}@sdu.edu.cn
2 School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China.

{222270059,cuitingting}@hdu.edu.cn
3 State Key Laboratory of Cryptography and Digital Economy Security, Shandong University,

Qingdao, 266237, China.
4 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,

Shandong University, Jinan, China.
5 Quan Cheng Laboratory, Jinan, China

Abstract. In ToSC 2025(1), Jia et al. proposed an SAT-aided automatic search
tool for the S-box design. A part of the functionality of this tool is to search for
implementations of an S-box with good area and gate-depth complexity. However, it
is well-known that the gate depth complexity cannot precisely reflect the latency of
an implementation. To overcome this problem, Rasoolzadeh introduced the concept
of latency complexity, a more precise metric for the latency cost of implementing an
S-box than the gate depth complexity in the real world.
In this addendum, we adapt Jia et al.’s tool to prioritize latency as the primary
metric and area as the secondary metric to search for good implementations for
existing S-boxes. The results show that the combination of Jia et al.’s tool and
Rasoolzadeh’s latency complexity can lead to lower-latency S-box implementations.
For S-boxes used in LBlock, Piccolo, SKINNY-64, RECTANGLE, PRESENT and TWINE,
which are popular targets in this research line, we find new implementations with
lower latency. We conducted synthesis comparisons of the area and latency under
multiple standard libraries, where our results consistently outperformed in terms
of latency. For example, for LBlock-S0, our solution reduces latency by around
50.0% ∼ 73.8% compared to previous implementations in TSMC 90nm library with
the latency-optimized synthesis option.
Keywords: S-box · low-latency · automatic search · SAT

1 Introduction
In recent years, the design and implementation of low-latency cryptographic primitives
have garnered significant research interest. Among these efforts, minimizing the latency of
S-box implementations has emerged as a pivotal challenge for achieving efficient real-time
cryptographic primitives. While a multitude of automated tools have been developed to
explore optimal S-box implementations, existing solutions predominantly prioritize area
optimization over latency performance.

In [JPST17], Jean et al. introduced the tool LIGHTER, which is an open-source tool
that can search for small-area implementations for S-boxes. At FSE 2016, Stoffelen [Sto16]
used the SAT tool to find S-box implementations with small areas, but only two-input
gates and the INV gates were considered. Lu et al. [LWH+21] extended Stoffelen’s tool
by additionally considering more complex gates such as the 4-input gate MAOI1 and they
managed to find S-box implementations with even smaller areas than Stoffelen’s tool. Most

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/10.46586/tosc.v0.i0.0-0
{yu.sun, lixuanwu}@mail.sdu.edu.cn
{kai.hu, mqwang}@sdu.edu.cn
{222270059, cuitingting}@hdu.edu.cn
http://creativecommons.org/licenses/by/4.0/


Yu Sun, Lixuan Wu, Chenhao Jia, Tingting Cui, Kai Hu(B) and Meiqin Wang 1

recently, Jia et al. [JCL+25] improved the SAT search algorithm and better results are
found. It is worth mentioning that Jia et al.’s tool does not only consider the area metric,
but also the gate-depth complexity as the secondary metric.

Typically, the gate-depth complexity is defined as the minimum length of the longest
path from an input bit to an output bit across all possible implementations of an S-box.
This metric is used to mathematically model the lowest latency for implementing the
S-box. However, since different types of gates have different latency costs, this definition
is generally considered a coarse estimation of the minimum latency cost for hardware
implementation. In [Ras22], Rasoolzadeh introduced the concept of latency complexity, a
more precise metric for the latency cost of implementing a function compared to gate-depth
complexity.

The latency complexity is defined as the minimum value for the longest path con-
cerning the number of only NAND and NOR gates from any input to any output for
implementing the function while the set of allowed gates to use is {INV, NAND, NOR}.
According to [Ras22], except for the INV gate, whose fan-in number is one, the 2-bit NAND
gate and the 2-bit NOR gate have the minimum latency, in almost all ASIC libraries.
Since {INV, NAND, NOR} has the completeness property, we can construct any (vecto-
rial) Boolean function using these three gates. At the same time, the latency of circuits
implemented using this basis will be very small.

Rasoolzadeh present an algorithm to find the smallest latency complexity for many
simple Boolean functions and S-boxes. Thus, for a low-latency S-box implementation, we
can in theory implement each coordinate function of the S-box with the smallest-latency-
complexity circuit from Rasoolzadeh’s tool. However, simply running Rasoolzadeh’s
algorithm multiple times to generate circuits for all S-box output bits would likely result
in independent circuits for each output bit, with no shared logic between them. This
approach would lead to a significant increase in area metric.

Our contributions. We combine Jia et al.’s tool and the latency complexity ideas in this
paper, and provide new hardware implementations for some popular S-boxes with the
state-of-the-art latency numbers synthesized in different libraries. Unsurprisingly, our
implementations for S-boxes used in LBlock, Piccolo, SKINNY-64, RECTANGLE, PRESENT
and TWINE, which are popular targets in this research line, consistently outperform imple-
mentations from other tools such as LIGHTER, Stoffelen’s, Lu et al.’s and Jia et al.’s SAT
tools. For example, for LBlock-S0, our solution reduces latency by around 50.0% ∼ 73.8%
compared to previous implementations in TSMC 90nm library with the latency-optimized
synthesis option. Additionally, compared to Rasoolzadeh’s algorithm, our implementations
are significantly better in the area metric1.

2 Low-Latency Implementation Search for S-boxes
We utilize Jia et al.’s automated search method [JCL+25], but the scope of gates to
be encoded is now limited to {INV, NAND, NOR} gates. Notably, an INV gate can be
equivalently represented as a NAND gate or a NOR gate with two identical inputs. Therefore,
in practice, we only need to encode two types of gates, namely {NAND, NOR} 2. Since INV
gate has significantly lower latency compared to the NAND and NOR gates, we exclude it
from the latency complexity calculation.

Before starting the search process, we define G as the number of gates and D as the
maximum latency complexity for the S-box implementation. The search algorithm adopts

1In fact, Rasoolzadeh’s algorithm only finds circuits with the minimum latency complexity for a given
Boolean function and does not consider the area metric.

2If the automated tool assigns two equal values to the two inputs of NAND or NOR, we count this gate
as INV.



2 Addendum to How Small Can S-boxes Be?

Algorithm 1: Automatic search model for searching S-box circuits with a given
number of gates G and latency complexity D.

Input: n: the length of the S-box. Sbox[·]: an n-bit to n-bit S-box. G: the
number of gates. D: the latency complexity.

Output: A search model for implementing S-box circuits.
1 for x← 0 to 2n − 1 do
2 x = x0∥x1∥ . . . ∥xn−1;
3 Sbox(x) = y0∥y1∥ . . . ∥yn−1;
4 for i← 0 to G− 1 do
5 q2i = (

∑n−1
j=0 aj

0,i · xj) + (
∑i−1

j=0 an+j
0,i · tj) // inputs of current gate

6 q2i+1 = (
∑n−1

j=0 aj
1,i · xj) + (

∑i−1
j=0 an+j

1,i · tj) // inputs of current gate
7 if bi = 0 then // current gate is NAND(INV)
8 ti = ¬(q2i · q2i+1) // output of current gate
9 else // current gate is NOR(INV)

10 ti = ¬(q2i ∨ q2i+1) // output of current gate
11 tempd0 ← latency complexity of q2i;
12 tempd1 ← latency complexity of q2i+1;
13 if a0

0,i∥ . . . ∥an+i−1
0,i = a0

1,i∥ . . . ∥an+i−1
1,i then // current gate is INV

14 di = tempd0 // q2i = q2i+1, tempd0 = tempd1

15 else // current gate is NAND(NOR)
16 di = max(tempd0, tempd1) + 1

17 for i← 0 to n− 1 do
18 yi = (

∑n−1
j=0 cj

i · xj) + (
∑G−1

j=0 cn+j
i · tj);

19 ei ← latency complexity of yi;

20 for i← 0 to G− 1 do
21

∑n+i−1
j=0 aj

0,i = 1;
∑n+i−1

j=0 aj
1,i = 1; a0

0,i∥ . . . ∥an+i−1
0,i ≥ a0

1,i∥ . . . ∥an+i−1
1,i ;

22 for i← 0 to n− 1 do
23

∑n+G−1
j=0 cj

i = 1;
24 ei ≤ D;

a gate-by-gate iterative approach: for each gate of the G gates, denoted by g0, g1, . . . , gN−1,
its inputs may originate from either the original S-box inputs or the outputs of preceding
gates. Specifically, during the processing of gate gi, there are n + i candidate input values,
where n is the number of orginal input bits of the S-box and i is the number of previous
gate outputs. The whole algorithm is provided in Algorithm 1.

The depth D of Algorithm 1 is set according to [Ras22]. We set an initial value for G,
and reduce G one by one, until the tool returns infeasible. In practice, the search time
might be long, so we set a time limit of days. If the algorithm fails to finish for G gates in
4 days, the implementation of G + 1 gates is taken.

3 Results
We apply our algorithm to the S-boxes used in LBlock, Piccolo, SKINNY-64, RECTANGLE,
PRESENT and TWINE and obtain their implementations, the number of gates G and the
latency complexity D as shown in column “Model” in Table 1 and Table 2.

For the synthesis experiments, we used Synopsys Design Compiler T-2022.03-SP2 with
the synthesis option set to “compile_ultra -no_autoungroup -no_boundary_optimization”.
We synthesized the S-boxes used in LBlock, Piccolo, SKINNY-64, RECTANGLE, PRESENT



Yu Sun, Lixuan Wu, Chenhao Jia, Tingting Cui, Kai Hu(B) and Meiqin Wang 3

Table 1: Comparison of area-optimized in the TSMC 90nm. The rows with ✓means that
there is no other implementations with less gates.

S-box Methods Model
[JPST17] [Sto16] [LWH+21] [JCL+25] Ours G D opt.

LBlock S0

A(GE) 16.25 16.75 16.25 16.25 27.25
28 4 ✓L(ns) 0.51 0.36 0.67 0.32 0.20

P(µW) 4.4998 4.8249 4.3757 4.8136 5.1478
E(fJ) 2.2949 1.7370 2.9317 1.5404 1.0296

Piccolo
A(GE) 12.75 12.50 12.75 12.75 25.50

26 4 ✓L(ns) 0.31 0.22 0.31 0.26 0.16
P(µW) 3.1298 3.2214 3.1206 3.3455 4.6631
E(fJ) 0.9702 0.7087 0.9674 0.8698 0.7461

SKINNY-64
A(GE) 13.00 12.25 13.00 13.00 27.00

28 4 ✓L(ns) 0.32 0.22 0.32 0.32 0.19
P(µW) 3.3349 3.1606 3.3382 3.3349 4.9072
E(fJ) 1.0672 0.6953 1.0682 1.0672 0.9324

RECTANGLE
A(GE) 18.25 18.50 18.00 18.00 48.25

53 4 ✓L(ns) 0.46 0.33 0.61 0.46 0.24
P(µW) 6.0852 6.7434 6.4543 6.6218 9.7273
E(fJ) 2.7992 2.2253 3.9371 3.0460 2.3346

PRESENT
A(GE) 21.25 - - - 46.25

49 4L(ns) 0.77 - - - 0.21
P(µW) 8.8287 - - - 8.7407
E(fJ) 6.7981 - - - 1.8355

TWINE
A(GE) 21.50 - - - 39.25

41 4L(ns) 0.69 - - - 0.17
P(µW) 6.9411 - - - 7.0277
E(fJ) 4.7894 - - - 1.1947

and TWINE using the TSMC 90nm library and compared the circuits generated by five
distinct methods, i.e., ours and the methods in [JPST17, Sto16, LWH+21, JCL+25].

The first method is based on [JPST17], which uses a graph-based search algorithm for
small-area circuits but cannot guarantee optimality. The second method follows [Sto16],
formulating S-box implementation as a SAT problem to minimize gate count. The third
method, from [LWH+21], improves on Stoffelen’s work to optimize area under a standard
cell library. The fourth method, from [JCL+25], considers both area and depth complexity.
The fifth method is our algorithm, which uses automated search to find minimal gate count
and lowest latency implementations under the {INV, NAND, NOR} basis.

The synthesis results in TSMC 90nm library are summarized in Table 1 and Table 2, for
area-optimized synthesis and latency-optimized synthesis respectively. For more comparison
results in other libraries, please refer to the Appendix A.

From Table 1 where the area-optimized option is used in synthesis, the results show our
solution’s significant latency superiority. For LBlock-S0, our solution reduces latency by
60.8% compared to [JPST17], 44.4% compared to [Sto16], 70.1% compared to [LWH+21],
and 37.5% compared to [JCL+25]. Similar substantial improvements are observed for
Piccolo, SKINNY-64, RECTANGLE, PRESENT and TWINE S-boxes.

As shown in Table 2 with latency-optimized synthesis, our solution also demonstrates
superior performance compared to previous works. For LBlock-S0, it reduces the previous
best latency (achieved by [Sto16]) by 50.0% while simultaneously lowering energy consump-
tion by 66.6%. This dual optimization is consistently observed across all tested S-boxes,
while maintaining competitive area efficiency. Our solution provides a more balanced and
efficient approach to cryptographic S-box design.

We analyzed the reasons why our circuits perform better in terms of latency. According



4 Addendum to How Small Can S-boxes Be?

Table 2: Comparison of latency-optimized in the TSMC 90nm. The rows with ✓means
that there is no other implementations with less gates.

S-box Methods Model
[JPST17] [Sto16] [LWH+21] [JCL+25] Ours G D opt.

LBlock-S0

A(GE) 32.50 32.00 34.25 28.50 33.25
28 4 ✓L(ns) 0.33 0.22 0.42 0.23 0.11

P(µW) 16.0231 13.8856 21.3766 13.3583 9.2687
E(fJ) 5.2876 3.0548 8.9782 3.0724 1.0196

Piccolo
A(GE) 35.50 35.50 35.50 40.25 33.75

26 4 ✓L(ns) 0.15 0.13 0.15 0.13 0.10
P(µW) 14.9259 14.2635 14.9878 17.4565 9.2445
E(fJ) 2.2389 1.8543 2.2482 2.2693 0.9245

SKINNY-64
A(GE) 38.50 26.00 38.50 38.50 30.75

28 4 ✓L(ns) 0.15 0.14 0.15 0.15 0.11
P(µW) 16.1620 10.7082 16.1472 16.1620 8.2156
E(fJ) 2.4243 1.4991 2.4221 2.4243 0.9037

RECTANGLE
A(GE) 26.50 39.75 27.00 35.25 61.75

53 4 ✓L(ns) 0.29 0.21 0.39 0.27 0.12
P(µW) 15.3718 20.8294 18.6513 22.1446 20.4166
E(fJ) 4.4578 4.3742 7.2740 5.9790 2.4500

PRESENT
A(GE) 45.50 - - - 54.25

49 4L(ns) 0.47 - - - 0.12
P(µW) 30.2626 - - - 15.2059
E(fJ) 14.2234 - - - 1.8247

TWINE
A(GE) 36.75 - - - 52.25

41 4L(ns) 0.44 - - - 0.10
P(µW) 22.7494 - - - 15.3318
E(fJ) 10.0097 - - - 1.5332

to [Ras22], all circuits can be implemented using the basis {INV, NAND, NOR} to achieve
a small latency. Moreover, our automated search has significantly reduced the area of the
circuits generated in this process.

4 Conclusion and Discussion
In this work, we enhance Jia et al.’s SAT-based S-box search tool by integrating Ra-
soolzadeh’s latency complexity metric, yielding optimized low-latency implementations
for S-boxes in several lightweight ciphers (e.g., LBlock, Piccolo). The synthesis results
demonstrate significant improvements in both latency and energy consumption for most
cases.

However, for certain low-latency S-boxes (see Appendix B), our method shows no
advantage over LUT-based implementations. This limitation may be due to two key factors:
(1) the already highly optimized nature of these S-boxes leaves minimal room for further
improvement in latency, and (2) the current gate-type constraints {INV, NAND, NOR} in
our SAT model may be insufficient to capture the full optimization potential of diverse
gate combinations. While adding more gate-types for SAT tool is feasible, accurately
modeling their latency interactions remains challenging.

Furthermore, prior work implies that limiting INV gates reduces energy consumption
in cryptographic circuits. Therefore, integrating INV gate constraints into our SAT-based
framework presents a promising direction for future work.

Acknowledgments. The authors would like to thank the anonymous reviewers for their
valuable comments and suggestions to improve the quality of the paper. This research



Yu Sun, Lixuan Wu, Chenhao Jia, Tingting Cui, Kai Hu(B) and Meiqin Wang 5

is supported by the National Key R&D Program of China(Grant No. 2024YFA1013000,
2023YFA1009500), the National Natural Science Foundation of China (Grant No. 62032014,
U2336207), Department of Science & Technology of Shandong Province (No.SYS202201),
Quan Cheng Laboratory (Grant No. QCLZD202301, QCLZD202306). Kai Hu is supported
by the National Cryptologic Science Fund of China (2025NCSF02007), the National
Natural Science Foundation of China (62402283), the Natural Science Foundation of
Shandong Province (2025HWYQ-025), the Natural Science Foundation of Jiangsu Province
(BK20240420) and Program of Qilu Young Scholars of Shandong University. Tingting Cui
is specially supported by the Open Project Program from Key Laboratory of Cryptologic
Technology and Information Security (Ministry of Education), Shandong University.

References
[JCL+25] Chenhao Jia, Tingting Cui, Qing Ling, Yan He, Kai Hu, Yu Sun, and

Meiqin Wang. How small can s-boxes be? IACR Trans. Symmetric Cryptol.,
2025(1):592–622, 2025.

[JPST17] Jérémy Jean, Thomas Peyrin, Siang Meng Sim, and Jade Tourteaux. Optimizing
implementations of lightweight building blocks. IACR Trans. Symmetric
Cryptol., 2017(4):130–168, 2017.

[LWH+21] Zhenyu Lu, Weijia Wang, Kai Hu, Yanhong Fan, Lixuan Wu, and Meiqin Wang.
Pushing the limits: Searching for implementations with the smallest area for
lightweight s-boxes. IACR Cryptol. ePrint Arch., page 1644, 2021.

[Ras22] Shahram Rasoolzadeh. Low-latency boolean functions and bijective s-boxes.
IACR Trans. Symmetric Cryptol., 2022(3):403–447, 2022.

[Sto16] Ko Stoffelen. Optimizing s-box implementations for several criteria using
SAT solvers. In Thomas Peyrin, editor, Fast Software Encryption - 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, volume 9783 of Lecture Notes in Computer Science,
pages 140–160. Springer, 2016.



6 Addendum to How Small Can S-boxes Be?

A More Comparison Results

Table 3: Comparison of area-optimized in the NanGate 45nm. The rows with ✓means
that there is no other implementations with less gates.

S-box Methods Model
[JPST17] [Sto16] [LWH+21] [JCL+25] Ours G D opt.

LBlock S0

A(GE) 18.00 17.00 18.33 16.33 27.00
28 4 ✓L(ns) 0.33 0.25 0.42 0.22 0.13

P(µW) 6.4549 6.0492 6.4368 6.0752 6.7219
E(fJ) 2.1301 1.5123 2.7035 1.3365 0.8738

Piccolo
A(GE) 14.33 12.67 14.33 13.00 25.33

26 4 ✓L(ns) 0.17 0.15 0.17 0.15 0.11
P(µW) 4.5506 4.0721 4.5367 4.2301 6.0227
E(fJ) 0.7736 0.6108 0.7712 0.6345 0.6625

SKINNY-64
A(GE) 14.67 12.33 14.67 14.67 26.67

28 4 ✓L(ns) 0.17 0.17 0.17 0.17 0.12
P(µW) 4.8327 4.1525 4.8379 4.8327 6.2515
E(fJ) 0.8216 0.7059 0.8224 0.8216 0.7502

RECTANGLE
A(GE) 20.67 18.67 20.33 18.00 47.33

53 4 ✓L(ns) 0.34 0.25 0.42 0.32 0.18
P(µW) 8.8282 8.5194 10.0826 8.4577 12.2843
E(fJ) 3.0016 2.1298 4.2347 2.7065 2.2112

PRESENT
A(GE) 23.67 - - - 45.33

49 4L(ns) 0.54 - - - 0.15
P(µW) 12.4276 - - - 11.0258
E(fJ) 6.7109 - - - 1.6539

TWINE
A(GE) 24.33 - - - 38.67

41 4L(ns) 0.44 - - - 0.13
P(µW) 10.4576 - - - 8.8497
E(fJ) 4.6013 - - - 1.1505



Yu Sun, Lixuan Wu, Chenhao Jia, Tingting Cui, Kai Hu(B) and Meiqin Wang 7

Table 4: Comparison of latency-optimized in the NanGate 45nm. The rows with ✓means
that there is no other implementations with less gates.

S-box Methods Model
[JPST17] [Sto16] [LWH+21] [JCL+25] Ours G D opt.

LBlock S0

A(GE) 31.67 33.67 35.00 39.67 28.33
28 4 ✓L(ns) 0.20 0.16 0.25 0.15 0.08

P(µW) 18.9471 19.0453 23.3128 22.6263 7.7239
E(fJ) 3.7894 3.0472 5.8282 3.3939 0.6179

Piccolo
A(GE) 26.00 27.67 26.00 16.67 28.00

26 4 ✓L(ns) 0.10 0.10 0.10 0.12 0.07
P(µW) 12.8767 12.0513 12.8603 6.6460 7.9148
E(fJ) 1.2877 1.2051 1.2860 0.7975 0.5540

SKINNY-64
A(GE) 26.67 18.33 26.67 26.67 29.67

28 4 ✓L(ns) 0.10 0.11 0.10 0.10 0.07
P(µW) 13.2346 7.4483 13.2239 13.2346 8.7282
E(fJ) 1.3235 0.8193 1.3224 1.3235 0.6110

RECTANGLE
A(GE) 31.00 25.00 33.33 37.00 52.67

53 4 ✓L(ns) 0.18 0.18 0.24 0.20 0.08
P(µW) 23.6798 15.0182 29.1481 29.0527 17.5255
E(fJ) 4.2624 2.7033 6.9955 5.8105 1.4020

PRESENT
A(GE) 42.67 - - - 51.33

49 4L(ns) 0.28 - - - 0.08
P(µW) 32.1321 - - - 15.6089
E(fJ) 8.9970 - - - 1.2487

TWINE
A(GE) 39.67 - - - 45.33

41 4L(ns) 0.28 - - - 0.07
P(µW) 28.8655 - - - 12.3019
E(fJ) 8.0823 - - - 0.8611



8 Addendum to How Small Can S-boxes Be?

Table 5: Comparison of area-optimized in the UMC 55nm. The rows with ✓means that
there is no other implementations with less gates.

S-box Methods Model
[JPST17] [Sto16] [LWH+21] [JCL+25] Ours G D opt.

LBlock S0

A(GE) 17.00 20.50 16.25 20.75 27.25
28 4 ✓L(ns) 0.55 0.40 0.67 0.36 0.19

P(µW) 6.2255 7.1976 5.9208 7.5492 7.0804
E(fJ) 3.4240 2.8790 3.9669 2.7177 1.3453

Piccolo
A(GE) 12.75 14.75 12.75 15.75 25.50

26 4 ✓L(ns) 0.30 0.26 0.30 0.27 0.15
P(µW) 4.1034 4.8655 4.0907 5.1651 6.4207
E(fJ) 1.2310 1.2650 1.2272 1.3946 0.9631

SKINNY-64
A(GE) 13.00 13.00 13.00 13.00 27.00

28 4 ✓L(ns) 0.29 0.24 0.29 0.29 0.19
P(µW) 4.3130 4.3493 4.3182 4.3130 6.7344
E(fJ) 1.2508 1.0438 1.2523 1.2508 1.2795

RECTANGLE
A(GE) 18.25 20.00 18.00 23.25 48.25

53 4 ✓L(ns) 0.49 0.40 0.65 0.48 0.26
P(µW) 7.6396 9.0433 8.6734 10.2401 13.1188
E(fJ) 3.7434 3.6173 5.6377 4.9152 3.4109

PRESENT
A(GE) 23.75 - - - 46.25

49 4L(ns) 0.79 - - - 0.22
P(µW) 12.4037 - - - 11.9440
E(fJ) 9.7989 - - - 2.6277

TWINE
A(GE) 21.50 - - - 39.25

41 4L(ns) 0.68 - - - 0.19
P(µW) 9.2117 - - - 9.5478
E(fJ) 6.2640 - - - 1.8141



Yu Sun, Lixuan Wu, Chenhao Jia, Tingting Cui, Kai Hu(B) and Meiqin Wang 9

Table 6: Comparison of latency-optimized in the UMC 55nm. The rows with ✓means
that there is no other implementations with less gates.

S-box Methods Model
[JPST17] [Sto16] [LWH+21] [JCL+25] Ours G D opt.

LBlock S0

A(GE) 64.50 60.50 73.25 29.25 50.75
28 4 ✓L(ns) 0.31 0.25 0.40 0.30 0.10

P(µW) 26.1807 21.4405 32.1908 10.0536 11.8675
E(fJ) 8.1160 5.3601 12.8763 3.0161 1.1867

Piccolo
A(GE) 38.25 56.25 38.25 34.00 54.25

26 4 ✓L(ns) 0.16 0.15 0.16 0.19 0.09
P(µW) 10.5730 16.2056 10.6541 11.4665 12.7408
E(fJ) 1.6917 2.4308 1.7047 2.1786 1.1467

SKINNY-64
A(GE) 45.75 33.50 45.75 45.75 45.50

28 4 ✓L(ns) 0.15 0.17 0.15 0.15 0.10
P(µW) 13.5258 12.0729 13.5156 13.5258 10.8074
E(fJ) 2.0289 2.0524 2.0273 2.0289 1.0807

RECTANGLE
A(GE) 46.25 40.25 62.00 70.00 96.75

53 4 ✓L(ns) 0.27 0.29 0.37 0.31 0.11
P(µW) 19.3770 19.4352 34.4339 36.1315 25.5495
E(fJ) 5.2318 5.6362 12.7405 11.2008 2.8104

PRESENT
A(GE) 66.50 - - - 81.50

49 4L(ns) 0.45 - - - 0.11
P(µW) 35.0182 - - - 20.0234
E(fJ) 15.7582 - - - 2.2026

TWINE
A(GE) 66.50 - - - 90.25

41 4L(ns) 0.44 - - - 0.09
P(µW) 31.4058 - - - 21.5401
E(fJ) 13.8186 - - - 1.9386



10 Addendum to How Small Can S-boxes Be?

B Application in Low-lantency S-boxes

Table 7: Comparison of area-optimized in the NanGate 45nm.

S-box Methods
LUT-based Ours

QARMA σ0
A(GE) 14.00 19.33
L(ns) 0.12 0.12

QARMA σ1
A(GE) 15.67 28.67
L(ns) 0.16 0.11

QARMA σ2
A(GE) 19.33 28.67
L(ns) 0.11 0.14

MIDORI S0
A(GE) 13.33 21.00
L(ns) 0.08 0.09

MIDORI S1
A(GE) 15.33 19.33
L(ns) 0.09 0.10

PRINCE A(GE) 14.67 22.33
L(ns) 0.13 0.12

Table 8: Comparison of latency-optimized in the NanGate 45nm.

S-box Methods
LUT-based Ours

QARMA σ0
A(GE) 17.33 21.67
L(ns) 0.04 0.07

QARMA σ1
A(GE) 19.33 31.33
L(ns) 0.07 0.07

QARMA σ2
A(GE) 25.33 34.00
L(ns) 0.05 0.08

MIDORI S0
A(GE) 19.67 26.33
L(ns) 0.04 0.05

MIDORI S1
A(GE) 18.00 20.67
L(ns) 0.06 0.07

PRINCE A(GE) 31.67 25.67
L(ns) 0.04 0.06



Yu Sun, Lixuan Wu, Chenhao Jia, Tingting Cui, Kai Hu(B) and Meiqin Wang 11

C Implementation of Some S-boxes

Figure 1: Implementation of LBlock S0.

Figure 2: Implementation of Piccolo S-box.



12 Addendum to How Small Can S-boxes Be?

Figure 3: Implementation of SKINNY-64 S-box.

Figure 4: Implementation of RECTANGLE S-box.



Yu Sun, Lixuan Wu, Chenhao Jia, Tingting Cui, Kai Hu(B) and Meiqin Wang 13

Figure 5: Implementation of PRESENT S-box.

Figure 6: Implementation of TWINE S-box.


	Introduction
	Low-Latency Implementation Search for S-boxes
	Results
	Conclusion and Discussion
	More Comparison Results
	Application in Low-lantency S-boxes
	Implementation of Some S-boxes

