
Laurent Polynomial-Based Linear
Transformations for Improved Functional

Bootstrapping

San Ling1 , Benjamin Hong Meng Tan2 , Huaxiong Wang1 and Allen
Siwei Yang1,2

1 School of Physical & Mathematical Sciences, Nanyang Technological University,
Singapore

lingsan@ntu.edu.sg, hxwang@ntu.edu.sg, yang0788@e.ntu.edu.sg
2 Institute for Infocomm Research, Agency for Science, Technology and Research

(A*STAR), Singapore
benjamin_tan@i2r.a-star.edu.sg

Abstract. Following Gentry’s seminal work (STOC 2009), Fully Homo-
morphic Encryption (FHE) has made significant advancements and can
even evaluate functions in the bootstrapping process, called functional
bootstrapping. Recently, Liu and Wang (ASIACRYPT 2023) proposed a
new approach to functional bootstrapping, which bootstrapped cipher-
texts in 7ms amortized time. Their methods packed the secret key of
the TFHE cryptosystem into a ciphertext of the BFV cryptosystem,
followed by performing functional bootstrapping of TFHE within BFV.
However, while this yields high amortized efficiency, it faces high latency
and computational complexity of O(

√
t) ciphertext-ciphertext multipli-

cations due to use of large BFV plaintext primes that serve as the TFHE
ciphertext modulus, t = 65537, to maximize SIMD slots.
In this work, we adapt their techniques to achieve lower latency func-
tional bootstrapping by relaxing the requirement for prime BFV plain-
text modulus to prime powers, t = pr. We first introduce an improved
linear transformation stage, multiplying Laurent Polynomial packed se-
cret key and ciphertexts, aij and skj , evaluating a Zpr linear map. With
this, we reduce the number of operations needed to evaluate the lin-
ear phase of bootstrapping. Finally, we generalize their functional boot-
strapping procedure from plaintext space Zt to Zpr via leveraging the
digit extraction algorithm, achieving a theoretical complexity ofO(r2√p)
ciphertext-ciphertext multiplications. Additionally, we enable a multi-
valued bootstrapping scheme that permits the evaluation of multiple
functions over a shared input. To the best of our knowledge, this is the
first demonstration of such a method for TFHE ciphertexts that relies
predominantly on BFV-based techniques.
In our experiments, we achieve overall runtimes as low as 49.873s, repre-
senting latency reductions of at least 26×, while noting a 19× slowdown
in amortized performance.

Keywords: Fully Homomorphic Encryption, Linear Transformation, Func-
tional Bootstrapping.

https://orcid.org/0000-0002-1978-3557
https://orcid.org/0000-0002-8629-9052
https://orcid.org/0000-0002-7669-8922
https://orcid.org/0009-0002-5452-3440
mailto:lingsan@ntu.edu.sg
mailto:hxwang@ntu.edu.sg
mailto:yang0788@e.ntu.edu.sg
mailto:benjamin_tan@i2r.a-star.edu.sg

2 S. Ling et al.

1 Introduction

Fully Homomorphic Encryption (FHE) is a type of encryption scheme which
allows for the computation of arbitrary functions over encrypted data, without
undermining security. It has a wide range of applications, including privacy-
preserving machine learning [34,38], private set intersection (PSI) [25] and mul-
tiparty computation (MPC) [11].

FHE was first attained in the seminal work by Gentry [19]. One would first
begin with a somewhat homomorphic encryption scheme. Here, homomorphic
operations would be performed, accruing noise in the ciphertexts with each op-
eration. Eventually, the noise would exceed the threshold for correct decryption
in the ciphertexts and be rendered undecryptable. To overcome this, the some-
what homomorphic scheme would be converted into a fully homomorphic scheme
via a process known as bootstrapping. Bootstrapping performs a homomorphic
evaluation of the decryption circuit, refreshing the noise and thereby allowing
for more operations to be performed. Due to the high cost of bootstrapping,
numerous works seek to improve upon the efficiency of bootstrapping.

The current state of FHE comprises primarily of three different types of
schemes, each with their own characteristics. Brakerski-Gentry-Vaikuntanathan
(BGV) [4] and Brakerski-Fan-Vercauteren (BFV) [3, 14] schemes make up the
first type. These schemes support a Single Instruction Multiple Data (SIMD)
plaintext structure. This is achieved by packing messages into a ring element
using the Chinese Remainder Theorem (CRT) and then encrypting it as a Ring
Learning with Errors (RLWE) ciphertext. This allows for evaluation of circuits
with multiple inputs but shallower depth, allowing for many messages to be
packed and operated on in parallel. As a result, this grants the advantage of lower
amortized time at the expense of higher latency of homomorphic operations.

The FHEW [13] and TFHE [9] schemes comprise the second type. As opposed
to the batching of multiple messages into a ciphertext, these schemes focus on low
latency bootstrapping on single messages. Specifically, a single bit is encrypted
in a learning with errors (LWE) ciphertext and bootstrapping is performed in
conjunction with a NAND gate evaluation between two such bits. Extensions of
the basic FHEW and TFHE schemes for larger plaintext spaces introduced func-
tional bootstrapping, where arbitrary functions on the FHEW/TFHE plaintext
space can be evaluated alongside bootstrapping. This supports circuits of larger
multiplicative depth, offering the advantage of lower latency but at the expense
of increased amortized time. The third variant would be that of CKKS [7], which
supports approximate complex arithmetic as well as the SIMD structure.

1.1 Related work

Several works have attempted to perform bootstrapping of one scheme using
another. This was first introduced in [2] and expanded upon in [33], where scheme
switching can let one take advantage of the strengths of the different schemes.
Recently, [31] proposed a novel bootstrapping framework which bootstrapped
TFHE ciphertexts using BFV. Here, the TFHE LWE secret key and multiple

Laurent Polynomial-Based Linear Transformations 3

TFHE LWE ciphertexts decryptable under the same secret key are packed into
one BGV RLWE ciphertext and plaintexts respectively. A homomorphic linear
transformation is then evaluated to perform the homomorphic inner product
of bootstrapping. This is followed by a homomorphic lookup table evaluation,
enabled by translating the look-up table into a polynomial via interpolation
and evaluating said polynomial. Finally, modulus switching, key switching and
ciphertext extraction were performed. This achieved functional bootstrapping in
less than 7ms amortized time, with Õ(1) polynomial multiplications.

Another recent work [27] bootstrapped BFV ciphertexts using the CKKS
scheme. Here, the CKKS scheme was leveraged to homomorphically extract the
noise from BFV ciphertexts, then subtracted from the initial ciphertext to obtain
the desired bootstrapped result. This too achieved improved performance, with
an amortized bootstrapping time of 1.08ms, approximately 30× faster over the
current state of the art [17] for BFV bootstrapping.

However, while the amortized timings of [31] are low, their methods suf-
fer from high latency due to the use of large plaintext primes. Furthermore,
while [27] provides improved timings, the techniques used make it challenging to
incorporate functional evaluation as part of the bootstrapping pipeline. There-
fore, motivated by these, we attempt to develop a low latency variant of [31],
which performs functional bootstrapping via utilization of different schemes.

In addition to efforts to bootstrap one scheme using another, several con-
current studies have concentrated on improving the performance of functional
bootstrapping by considering its non-linear, function evaluation aspects. Their
methods represent further directions and optimizations that could be used in
conjunction with the techniques we introduce.

A new notion of relaxed functional bootstrapping was introduced in [32]. The
correctness requirement of regular bootstrapping is relaxed to a subset of the
plaintext space, allowing circuit-specific functional bootstrapping constructions.
Various constructions of lookup tables exploiting this notion were described,
yielding 1-2× speed up of regular BGV/BFV bootstrapping and a 3× and 6×
improvement of latency and throughput respectively over the prior work of [31].

In [29], a novel functional bootstrapping framework for BFV and CKKS was
introduced, with the focus being on the functional component. Here, a modulus
switch to pack the ciphertexts into a larger ciphertext modulus is performed.
Following this, the arbitrary lookup table component is then evaluated. The pri-
mary idea behind the arbitrary lookup table evaluation was to first decompose
the function to be evaluated into multiple Heaviside functions. Each of these
Heaviside functions could then be further recursively decomposed into products
of polynomials and sub-lookup tables. These were then evaluated, providing
enhanced functionality for an arbitrary lookup table between plaintext spaces
F : Zpr → Zps where p is prime and r > s. In their experiments, functional boot-
strapping latencies of 47.3s and 172.1s were achieved, with amortized timings of
2956.25ms and 10756.25ms. However, compared to our results for similar secu-
rity, their amortized timings are worse, being 1.40× to 5.11× slower, although
they do achieve 1.57× to 5.70× lower latency. Furthermore, their experiments

4 S. Ling et al.

were only performed for the evaluation of delta and sign functions, which require
only 1 Heaviside function evaluation. Larger arbitrary lookup tables would be
more computationally intensive to evaluate, requiring multiple Heaviside func-
tion evaluations. We leave it to future work to explore if their novel techniques
could be integrated in our bootstrapping method.

Lastly, multi-valued functional bootstrapping is a bootstrapping technique
that enables the simultaneous evaluation of multiple arbitrary functions on a
given input. This concept was initially introduced for TFHE in [5], where mul-
tiple lookup tables (LUTs) were evaluated within a single bootstrapping opera-
tion. Subsequent improvements were made in [20] through tree-based methods
and in [10] via multi-output programmable bootstrapping. More recently, fur-
ther advancements in multi-valued functional bootstrapping have been achieved
in [28], [35], and [30]. Despite this progress, to the best of our knowledge, no prior
work has explored the use of primarily BFV-based bootstrapping techniques to
realize multi-valued functionality within TFHE. Our work therefore also rep-
resents the first approach to achieve multi-valued functional bootstrapping for
TFHE ciphertexts via BFV techniques.

1.2 Contributions

In this paper, we propose a new framework for bootstrapping, extending the work
of [31] to support TFHE ciphertext modulus and BGV/BFV plaintext spaces
that are prime powers. Similar to [31], multiple LWE ciphertexts (−→ai , bi) sharing
the same secret key are bootstrapped. However, in this work, an improved linear
transformation algorithm is utilized. This is due to the use of smaller plaintext
primes for the RLWE plaintext space, which decreases the number of plaintext
slots for packing the secret key entries. If the homomorphic linear transforma-
tion proposed in [31] were utilized, multiple calls to the linear transformation
followed by a summation over the outputs of the linear transformations would
be performed. This contrasts with the single call of the transformation in their
original work. Our work improves upon this by utilizing a Laurent polynomial
encoding followed by a projection map, which takes advantage of the fact that
any Zpr linear map can be expressed as a sum of Frobenius powers. In addition
to this, we provide a generalized version of their linear transformation algorithm
for the case where the dimension of the LWE ciphertext is not exact multiple of
the number of slots.

Besides that, we generalize the arbitrary homomorphic function evaluation
proposed in [31] to the case of prime power plaintext spaces. To do so, the digit
extraction algorithm of [22] is applied. As described in [31], their method for arbi-
trary homomorphic function evaluation requires that the RLWE plaintext space
used is prime. In utilizing small primes however, the RLWE plaintext space used
in our work takes the form of a prime power. To overcome this, we propose using
the digit extraction algorithm to perform homomorphic prime division, followed
by the corresponding arbitrary homomorphic function evaluation. This reduces
the plaintext space to a prime, allowing for arbitrary homomorphic function
evaluation.

Laurent Polynomial-Based Linear Transformations 5

Additionally, we introduce what is, to our knowledge, the first instance of
multi-valued functional bootstrapping for TFHE ciphertexts that utilizes pri-
marily BFV-based techniques. In the framework of [31], utilizing multi-valued
functional bootstrapping would involve repeated calls to the steps after the lin-
ear transformation, for each distinct function. Due to the already high latency
of the procedure, this would be impractical. By enabling the use of prime power
BGV/BFV plaintext spaces, this can be performed with lower latency. In par-
ticular, for a single function evaluated using the framework of [31], our proposed
framework allows for the evaluation of at least 84 distinct functions in the time
it takes to bootstrap a single set of ciphertexts in [31].

We implement our work for prime powers pr = 1273 and 2573 with cyclotomic
degree Nrlwe = 32768, achieving overall runtimes of 49.873s and 243.967s respec-
tively at about 80-bit security. This represents a latency improvement of at least
26.95× and 5.51× compared to [31]. We note however, that there is a trade-off
in amortized time that arises from our methods, evidenced by a slowdown of at
most 19× or 46.46× depending on the parameters. Thus, we present the first
realization of the RLWE prime-power plaintext variant of [31], with significantly
improved latency and support for multi-valued TFHE bootstrapping.

1.3 Technical Overview

To begin, LWE secret key entries are packed into an RLWE ciphertext. However,
rather than packing the secret key directly into the plaintext slots as per [31],
the entries are encoded as the coefficients of a Laurent polynomial with negative
powers. This polynomial is then packed repeatedly into the slots of a ciphertext.
From here, the different LWE −→ai s are each encoded into separate Laurent poly-
nomials with positive powers and each Laurent polynomial packed into plaintext
slots. The packed Laurent polynomials containing −→ai are each multiplied with
the Laurent polynomial containing the secret key via plaintext-ciphertext multi-
plication and summed accordingly. This results in the desired ⟨−→ai ,

−→
sk⟩ in the first

coefficient of the polynomial in each ith slot, due to the exponents cancelling
out in the convolution. By evaluating a projection map to the first coefficient,
⟨−→ai ,
−→
sk⟩ can be obtained in each slot, without the other exponents of the convo-

lution. bi − ⟨−→ai ,
−→
sk⟩ is then computed slot-wise. This completes the initial linear

transformation of homomorphic decryption.
Following this, digit extraction is performed. This maps pr

p ·mi + ei 7→ mi

for each slot, with pr being the RLWE plaintext modulus and LWE ciphertext
modulus. This completes the base bootstrapping procedure. Polynomial evalu-
ation corresponding to the arbitrary homomorphic function evaluation is then
performed, evaluating the desired lookup table slot-wise on messages mi. The
RLWE ciphertext containing the evaluated mis is then modulus switched to the
original LWE ciphertext modulus pr. It is also key switched to contain the de-
sired LWE secret key. Finally, RLWE to LWE extraction is performed, obtaining
the functionally bootstrapped LWE ciphertexts.

6 S. Ling et al.

In the case of multi-valued functional bootstrapping, the same bootstrapping
procedure is applied, with the steps from the polynomial evaluation onwards
being repeated for each distinct function. The linear transformation and digit
extraction is only computed once. Furthermore, for the polynomial evaluation
component, computation of the powers Xi as part of the Paterson-Stockmeyer
algorithm [36] need also only to be performed once. That is, only the second half
of the polynomial evaluation procedure is applied for each distinct function to
be evaluated.

2 Preliminaries

2.1 Notation

For any vector −→a , let −→a [j] or aj denote the jth entry of the vector. For any
polynomial a, let a[j] or aj denote the jth coefficient of the polynomial. For any
matrix A, let A[i][j] denote the entry in the ith row and jth entry. All indexing
begins at index 0. Let ⟨·, ·⟩ denote the inner product between two vectors. Let
U(·) denote the uniform distribution. All secret keys used are assumed to follow
a ternary distribution. That is, for secret key

−→
sk ∈ Zn

q ,
−→
sk[j] ∈ {−1, 0, 1}, 0 ≤

j ≤ n− 1 and for secret key sk ∈ RQ, sk[j] ∈ {−1, 0, 1}, 0 ≤ j ≤ N − 1, where
N is the ring dimension.

2.2 Fully Homomorphic Encryption

To date, practical fully homomorphic encryption schemes are constructed with
lattices and have their security based on the decisional learning with errors
(LWE) and ring learning with errors (RLWE) problems.
Decisional LWE. Let nlwe, qlwe be positive integers, D be a secret key distribu-
tion and χ be an error distribution over Z. The decisional LWE problem asks to
distinguish between the distributions of (−→a , b = ⟨−→a ,

−→
sk⟩ + e) ∈ (Znlwe

qlwe
× Zqlwe),

where −→a ← U(Znlwe
qlwe

), e← χ,
−→
sk ← D, and (−→a , b)← U(Znlwe

qlwe
× Zqlwe).

Decisional RLWE. Let Nrlwe, Qrlwe be positive integers, RQrlwe a ring of di-
mension Nrlwe, D be a secret key distribution and χ be an error distribution over
RQrlwe . The decisional RLWE problem asks to distinguish between the distribu-
tions of (a, b = a · sk + e) ∈ R2

Qrlwe
, where a ← U(RQrlwe), e ← χ, sk ← D, and

(a, b)← U(R2
Qrlwe

).

2.2.1 FHEW/TFHE
For FHEW [12]/TFHE [9], LWE-based ciphertexts are the focus of the boot-
strapping techniques introduced in [31] and the techniques briefly discussed here.
Let tlwe be the plaintext modulus, qlwe be the ciphertext modulus, D, χ be the
secret key and error distributions.

Laurent Polynomial-Based Linear Transformations 7

Let m ∈ Ztlwe be the message, α = ⌊ qlwe
tlwe
⌋ be the scaling factor,

−→
sk ← D

be the secret key and e ← χ be the error. Sample −→a ← U(Znlwe
qlwe

). The LWE
ciphertext is of form (−→a , b) ∈ Znlwe+1

qlwe
, satisfying

b = α ·m + ⟨−→a ,
−→
sk⟩+ e (mod qlwe)

with |e| < ⌊ qlwe
2tlwe
⌋. Decryption is computed via

⌊
b−⟨−→a ,

−→
sk⟩ (mod qlwe)

α

⌉
.

The main difference between FHEW/TFHE from other FHE schemes such as
BGV and BFV is the use of a separate homomorphic accumulator for bootstrap-
ping LWE ciphertexts instead of relying on the original scheme’s homomorphic
properties to evaluate its own decryption circuit.

2.2.2 BFV/BGV
Some of the first practical FHE schemes, the BFV [3,14] and BGV [4] schemes,
primarily differ on how plaintexts are encoded in the RLWE ciphertexts. In [31],
LWE ciphertexts were packed and their LWE secret key was encrypted into a
BFV RLWE ciphertext, before using the BFV scheme’s homomorphic property
to evaluate the LWE decryption circuit on the encrypted LWE secret key. For
our work, BGV is used, but both are presented here for context.

Let m ∈ Z. Let RQrlwe = ZQrlwe [X]/Φm(X) be the RLWE ciphertext space,
Rtrlwe = Ztrlwe [X]/Φm(X) be the RLWE plaintext space where Qrlwe, trlwe ∈ Z.
Additionally, we assume trlwe ∤ Nrlwe = ϕ(m) is prime or a prime power.
Encryption. Let D, χ be the secret key and error distributions. Let m ∈ Rtrlwe

be the plaintext, sk ← D be the secret key and e ← χ be the error. Sample
a← U(RQrlwe). An RLWE ciphertext has form (a, b) ∈ R2

Qrlwe
satisfying:

– For BFV, the message is encoded in the higher bits, with α = ⌊Qrlwe
trlwe
⌋,

b = α ·m + a · sk + e.

Decryption is performed via
⌊

b−a·sk (mod Qrlwe)
α

⌉
.

– For BGV, the message is encoded in the lower bits.

b = m + a · sk + trlwe · e

Decryption is performed via b− a · sk mod trlwe.

It is possible to switch between BGV and BFV encodings for a given cipher-
text via multiplication by a constant, see Appendix A of [1] for the details.
Operations. For secret key sk, let the encryption of a plaintext m be Encsk(m)
and decryption of a ciphertext ct be Decsk(ct).

– Addition: Decsk(Add(ct1, ct2)) = m1 + m2 for Decsk(cti) = mi.
– Multiplication: Decsk(Mult(ct1, ct2)) = m1 ·m2 for Decsk(cti) = mi.
– Polynomial Evaluation: Decsk(Eval(ct, f)) = f(m) for polynomial f .

8 S. Ling et al.

– Modulus Switching: Modswitch(ct, Q′
rlwe) = Q′

rlwe
Qrlwe

· ct.

– Key Switching: Decsk′(KS(ct, sk′, sk)) = m where ct = Encsk(m).
– Rotation: Decsk(Rot(ct, rtk, i)[j]) = m[j − i (mod l)], where rtk contains

the corresponding rotation keys.

Plaintext Structure. Per [39], let p be the characteristic of trlwe, we have
Φm(X) ≡ F0(X) · . . . ·Fℓ−1(X) mod p, for some ℓ | Nrlwe = ϕ(m). This gives the
isomorphism below from the Chinese Remainder Theorem and Hensel’s lifting
lemma

Rtrlwe
∼=

ℓ−1⊕
i=0

Ztrlwe [X]/F ′
i (X)

.
Here, each F ′

i (X) mod trlwe has degree d and is lifted from Fi(X) if trlwe
is a prime power and is Fi(X) if trlwe is prime. These Ztrlwe [X]/F ′

i (X) are
all isomorphic to one another, i.e. for E = Ztrlwe [X]/F0(X), we have E ∼=
Ztrlwe [X]/Fi(X) for all 0 ≤ i ≤ ℓ − 1. This is known as the Single Instruction
Multiple Data (SIMD) slot structure, where a vector of length ℓ with degree d
polynomials in each entry, can be packed into the BGV/BFV plaintext space.
Data within the slots can also be rotated among the SIMD slots through au-
tomorphisms of the form X 7→ Xκ for κ ∈ Z∗

m/⟨p⟩. Furthermore, when m is a
power of two, Lemma 1 characterises the form of the factors F ′

i (X).

Lemma 1 [16] Let m ≥ 4 be a power of two, then each factor F ′
i (X) is of the

shape F ′
i (X) = Xd + ai ·Xd/2 + bi where ai = 0 if p ≡ 1 (mod 4) and ai is some

constant if p ≡ 3 (mod 4).

Laurent Polynomial Encoding. To exploit the available space within each
SIMD slot, polynomials in Ztrlwe [X] with degree at most d − 1, [6] further pro-
posed the Laurent Polynomial encoding. Here, integer values are decomposed
with respect to a base and the digits are then encoded as the coefficients of
the Laurent Polynomial. In this work, we only consider integers in Ztrlwe

and
directly encode them into the coefficients without further decomposition.

Definition 1 [6] A Laurent Polynomial a(X) ∈ Z[X±1] is an integral polyno-
mial of form a(X) = al̃X

l̃ + . . . + am̃−1Xm̃−1 + am̃Xm̃, where ai ∈ Z, al̃, am̃ ̸= 0
and l̃ ≤ m̃.

Crucially, for correctness when using this encoding, it is required for m̃−l̃+1 ≤ d.

Ztrlwe Linear Functions. Fundamental to the structure of BGV is the use of
Ztrlwe linear maps. This allows such maps to be expressed as a linear combination
of Frobenius powers and is formally stated below in Definition 2 and Lemma 2.

Definition 2 [15] A function L : Rtrlwe → Rtrlwe is Ztrlwe- linear if L(α+α′) =
L(α) + L(α′) and L(c ·α) = c · L(α) for α, α′ ∈ Rtrlwe and c ∈ Ztrlwe .

Laurent Polynomial-Based Linear Transformations 9

Lemma 2 [15, 22, 37] Any Ztrlwe linear function L : E → E can be expressed
as a linear combination of Frobenius powers. i.e. L(η) =

∑d−1
f=0 θf σf

E(η), where
θf ∈ E are constants and σE : ζ 7→ ζp is the Frobenius map on E. When L has
image Ztrlwe ⊂ E, θf = σf

E(θ0).

2.3 Functional Bootstrapping with the BGV/BFV Scheme

We present the main ideas of [31]. This takes as input ℓ-many LWE ciphertexts
{(−→ai , bi)}ℓ−1

i=0 under the same secret key
−→
sk = (sk0, sk1, . . . , sknlwe−1), which is

the number of slots available from the BGV/BFV parameters used. For their
RLWE parameters, plaintext modulus trlwe is set to be a large prime p such that
Nrlwe = ℓ and d = 1. The LWE ciphertext modulus is set such that qlwe = trlwe.

The LWE decryption process can be thought of as consisting of three phases.
The first is linear, computing b − ⟨−→a ,

−→
sk⟩. Next, a non-linear operation which

was dubbed “Division, Round and Map” or DRaM in [31] is performed . Finally,
the resulting functionally bootstrapped plaintexts is recovered through key and
modulus switching and RLWE-to-LWE extractions.

For high efficiency, they proposed to use the BFV scheme with Nrlwe =
32768 and a mid-sized prime trlwe = 65537, that can bootstrap 32768 ciphertexts
simultaneously. This is illustrated in Figure 1.

Homomorphic Linear Transformation. Intuitively, we treat the ℓ −→ai ’s of
the LWE ciphertexts as a matrix A ∈ ZNrlwe×nlwe

trlwe
with rows −→ai and

−→
b = [bi]ℓ−1

i=0

and secret key
−→
sk = [skj]nlwe

j=0 as a column vector. Since nlwe | ℓ, we pack ⌊ ℓ
nlwe
⌋

copies of
−→
sk, in the form

−→
sk, (sk0, . . . , sknlwe−1, . . . , sk0, . . . , sknlwe−1) ∈ Zℓ

trlwe
as bfvct for optimal performance. Rotation keys to enable arbitrary rotations
between slots, labelled as rtk, are precomputed.

Lines 3 to 45 of Algorithm 1 result in a ciphertext (res0) that holds the
desired ⟨−→ai ,

−→
sk⟩ in its i-th slot. It is a baby-step giant-step variant, utilizing nlwe

plaintext-ciphertext multiplications and 2√nlwe rotations. From here, res0 is
subtracted from b, with b being an encoding of (b0, b1, . . . , bNrlwe−1) in the slots.
This computes bi − ⟨−→ai ,

−→
sk⟩ homomorphically, yielding α ·mi + ei in each slot.

Homomorphic Divide, Round and Map (DRaM). Let f : Ztlwe → Ztlwe

be any function to be evaluated on LWE messages mi. The lookup table in the
RLWE plaintext space can then be set as L(X) = f(⌊X

α ⌋) ·α, where α = ⌊ qlwe
tlwe
⌋.

Lemma 3 [31] For any prime tlwe, let f : Ztlwe → Ztlwe be a function over
Ztlwe and define f̃(X) = f(0) −

∑p−1
i=1 Xi

∑p−1
a=0 f(a)ap−1−i. Then, it holds that

for any x ∈ Ztlwe , f(x) = f̃(x).

Using Lemma 3, this can be applied by evaluating

10 S. Ling et al.

𝑠𝑘0

𝑠𝑘1

 .
 .
 .
𝑠𝑘𝑛𝑙𝑤𝑒−1

.

.

.

.

.

(𝑎0,0, 𝑎0,1, ... , 𝑎0,𝑛𝑙𝑤𝑒−1)

(𝑎1,0, 𝑎1,1, ... , 𝑎1,𝑛𝑙𝑤𝑒−1)

.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

(𝑎𝓁−1,0, 𝑎𝓁−1,1, , 𝑎𝓁−1,𝑛𝑙𝑤𝑒−1)

𝓁

𝑛𝑙𝑤𝑒
Repeated LWE secret key
packed into RLWE ciphertext

Homomorphic
Linear
Transformation

- Computes LWE
inner product

𝑎𝑖 , 𝑠𝑘 .

- Variant of baby-
step giant-step.

Compute 𝑏𝑖 − 𝑎𝑖 , 𝑠𝑘

Evaluate polynomial for division, rounding and arbitrary function map

RLWE to LWE extraction, modulus-switch and key-switch.

𝑠𝑘0

𝑠𝑘1

 .
 .
 .
𝑠𝑘𝑛𝑙𝑤𝑒−1

𝓁

Fig. 1: Overview of the bootstrapping framework of [31].

f̃(X) = L(0)−
trlwe−1∑

i=1
Xi

trlwe−1∑
a=0

L(a)atrlwe−1−i

on the result of the homomorphic linear transformation.
Polynomial evaluation itself is performed utilizing the Paterson-Stockmeyer

algorithm [36]. In brief, for a polynomial of form f̃(X) =
∑trlwe−1

i=0 liX
i to be

evaluated, set t̃ =
⌈√

trlwe − 1
⌉
. Powers xi are then computed for 1 ≤ i ≤

t̃, requiring t̃ − 1 ciphertext-ciphertext multiplications. Denote and compute
f̃i(x) =

∑t̃−1
j=0 lit̃+jxj , utilizing t̃ plaintext-ciphertext multiplications for each i.

Laurent Polynomial-Based Linear Transformations 11

Algorithm 1 Homomorphic Linear Transformation of [31]
1: procedure LT(rtk, A, bfvct, b),
2: ▷ Rotation keys, LWE −→ai ’s, RLWE ctxt, LWE bi’s
3: rt← √nlwe
4: for 0 ≤ i ≤ rt− 1 do
5: bfvctroti ← Rot(bfvct, rtk,−(i + 1) · rt) ▷ Storing rotations of bfvct
6: resi ← Encsk(0)
7: for 1 ≤ k ≤ rt do
8: for 1 ≤ i ≤ rt do
9: for 0 ≤ j ≤ Nrlwe − 1 do

10: indct ← j − k + 1 (mod Nrlwe)
11: inda ← j + i · rt (mod nlwe)
12: tmp[j]← A[indct][inda]
13: c←Mult(tmp, bfvctroti−1)
14: resk−1 ← Add(resk−1, c)
15: for 1 ≤ i ≤ rt− 1 do
16: c← Rot(resrt−i, rtk,−1)
17: resrt−i−1 ← Add(resrt−i, c)
18: return b− res0

The polynomial can then be expressed as

f̃(x) = f̃0(x) + xt̃

(
f̃1(x) + xt̃

(
. . .

(
f̃⌊

trlwe−1
t̃

⌋
−1(x) + xt̃f̃⌊

trlwe−1
t̃

⌋(x)
)

. . .

))
which therefore requires approximately trlwe plaintext-ciphertext multiplications
and O(

√
trlwe) ciphertext-ciphertext multiplications to compute overall.

Slots to Coefficients. The decoding map is homomorphically evaluated on the
ciphertext, mapping slot entries L(mi) to RLWE plaintext m =

∑Nrlwe−1
i=0 L(mi)Xi.

This map is performed via m 7→ m(ζh)h∈S where S ∈ Z is a set of representatives
for Z∗

m/⟨p⟩.

Modulus Switching and Key Switching. Prior to extracting the LWE ci-
phertexts from the RLWE ciphertext, key switching and modulus switching
are first performed. The RLWE secret key sk ∈ RQrlwe is key-switched to
sk′ =

∑Nrlwe−1
i=0 s′

iX
i ∈ RQrlwe where s′

i =
−→
sk[i] for i ≤ nlwe − 1 and s′

i = 0
otherwise. Modulus switching is then performed, changing RLWE ciphertext
modulus from Qrlwe to qlwe.

RLWE to LWE Extraction. Finally, ℓ LWE ciphertexts are extracted from
the RLWE ciphertext.

Let the RLWE ciphertext be (a =
∑Nrlwe−1

i=0 aiX
i, b =

∑Nrlwe−1
i=0 biX

i) ∈
R2

Qrlwe
. LWE ciphertexts (−→ai

′, b′
i) ∈ Znlwe+1

qlwe
are obtained, for 0 ≤ i ≤ Nrlwe − 1,

12 S. Ling et al.

(𝑎0,0, 𝑎0,1, ... ,𝑎0,𝑛𝑙𝑤𝑒−1)

.
 .

(𝑎1,0, 𝑎1,1, ... ,𝑎1,𝑛𝑙𝑤𝑒−1)

𝑠𝑘0

𝑠𝑘1

 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
𝑠𝑘𝑛𝑙𝑤𝑒−1

…

1 RLWE
 ciphertext

1 RLWE
 ciphertext

1 RLWE
 ciphertext

1 RLWE
 ciphertext

𝑠𝑘0

𝑠𝑘1

 .
 .
 .

.
 .
 .
 .

Packed 1 LWE secret key into
many RLWE ciphertexts

Repeated calls of their homomorphic
linear transformation algorithm

Fig. 2: Linear transformation of [31] in the small plaintext primes case.

where a′
i,j = ai−j for j ≤ i, a′

i,j = −aNrlwe−j+i for j > i, and b′
i = bi, 0 ≤ j ≤

nlwe − 1.
Let the RLWE secret key be sk =

∑Nrlwe−1
i=0 skiX

i after key switching. LWE
secret key

−→
sk′ ∈ Znlwe

qlwe
is then obtained by setting sk′[j] = sk[j] for 0 ≤ j ≤

nlwe − 1.

3 Improved Linear Transformation

3.1 Limitations of Current Linear Transformation

In the case of small plaintext primes p, as d is the order of p (mod m), the degree
d of Fi(X) generally increases. As ϕ(m) = ℓ · d, the number of slots ℓ becomes
small. The decreased slot count prevents the packing of all skjs of

−→
sk into one

BGV plaintext polynomial. As a result, to utilize the linear transformation of
[31], the LWE secret key is split over multiple encryptions. This requires that the

Laurent Polynomial-Based Linear Transformations 13

LWE aijs are also split and results in repeated calls of the linear transformation.
At the end, these are summed.

In more detail, with ℓ < nlwe and nlwe denoting the LWE dimension, ⌈nlwe
ℓ ⌉

RLWE ciphertexts ct0, ct1, . . . , ct⌈ nlwe
ℓ ⌉−1 are obtained, where ctk contains

(skk·ℓ, skk·ℓ+1, . . . , sk(k+1)·ℓ−1)

for k < ⌈nlwe
ℓ ⌉ − 1 and

(skk·ℓ, skk·ℓ+1, . . . , sknlwe−1, 0, . . . , 0)

for k = ⌈nlwe
ℓ ⌉ − 1, in slots.

Similarly, the ai,js are split into ⌈nlwe
ℓ ⌉ blocks, where 0 ≤ i ≤ ℓ− 1. Block k,

where 0 ≤ k ≤ ⌈nlwe
ℓ ⌉ − 1, consists of ℓ plaintexts, with ptxti containing

(ai,k·ℓ, ai,k·ℓ+1, . . . , ai,k·ℓ+ℓ−1)

for k < ⌈nlwe
ℓ ⌉ − 1 and

(ai,k·ℓ, ai,k·ℓ+1, . . . , ai,nlwe−1, 0, . . . , 0)

for k = ⌈nlwe
ℓ ⌉ − 1 in the plaintext slots.

From here, the linear transformation is applied ⌈nlwe
ℓ ⌉ times between Block k

and ctk for 0 ≤ k ≤ ⌈nlwe
ℓ ⌉ − 1 and results are summed. This results in ⌈nlwe

ℓ ⌉ · ℓ
plaintext-ciphertext multiplications and ⌈nlwe

ℓ ⌉ · 2
√

ℓ rotations being used. This
is illustrated in Figure 2.

Packed Matrix-Vector Multiplication for Vectors with Length co-prime
to SIMD Slot Count. Besides the multiple calls to Algorithm 1 above, their
linear transformation algorithm itself, Algorithm 1, is restricted to the case where
nlwe | ℓ. In general, the dimension (nlwe) of the LWE ciphertext need not be an
exact multiple of the number of slots available through the SIMD technique. Pre-
vious work [21, 26, 31, 33] considered the case where all dimensions involved are
divisors of the SIMD slot count and so did not require zero-padding and handling
when “tall” matrices did not fit exactly. The requirement that nlwe | ℓ imposes
additional constraints on the parameters available for use. We therefore extend
Algorithm 1 of [31] to handle homomorphic linear transformation that use “tall”
matrices whose row comprise the entire SIMD slot count but have number of
columns co-prime to the SIMD slot count. This is described in Algorithm 2.

Intuitively, zero-padding at the end of the ciphertext causes the very last
packed copy of the input vector to not “see” a complete copy of the input vector
with the usual set of rotations; e.g. if there were 3 zero-padded slots at the
end with the input vector having length 5, then the first 3 slots in the last
copy of the input vector will not see any of the entries that are before it, e.g.
(A, B, C, D, E, 0, 0, 0) will generate (B, C, D, E, 0, 0, 0, A), (C, D, E, 0, 0, 0, A, B),
(D, E, 0, 0, 0, A, B, C), (E, 0, 0, 0, A, B, C, D) and (0, 0, 0, A, B, C, D, E) without
rotating beyond the vector length.

14 S. Ling et al.

Algorithm 2 Homomorphic Linear Transformation for "Irregular" "Tall" Ma-
trices
1: procedure IrregularLT(rtk, A ∈ Zr×c

t , in, b),
2: ▷ Rotation keys, LWE −→ai ’s, RLWE ctxt, LWE bi’s
3: nrot ← c + (ℓ mod c) ▷ Largest rotation required
4: bs← 1≪ ⌈log2

√
nrot⌉

5: gs← ⌈nrot
bs
⌉

6: for 0 ≤ j < gs do
7: inrotj ← Rot(in, rtk,−j · bs) ▷ Storing giant-step rotations of in

8: for 0 ≤ i < bs do
9: resi ← Encsk(0) ▷ Storing intermediate results for baby-step rotation

10: for 0 ≤ k < ℓ do
11: tmp[k]← 0 ▷ Start with a zero vector
12: for 0 ≤ i < bs do
13: for 0 ≤ j < gs do
14: rot← j · bs + i
15: iextra_rotation ← (rot ≥ c)
16: for 0 ≤ k < ℓ do
17: iin_pad ← (k ≥ ℓ− ℓ mod c− j · bs) && (k < (ℓ− j · bs))
18: ioverflow ← (k < i) || (k ≥ ℓ− j · bs)
19: indct ← (ℓ + k − i) mod ℓ
20: inda ← ((k + j · bs) mod ℓ) mod c
21: if ioverflow is True then
22: indrev ← ℓ− indct

23: else
24: indrev ← c

25: iout_of_range ← (indct ≥ r)
26: irev_ind_done ← (indrev ≤ (rot− c))
27: izero_unused ← (iextra_rotation && !ioverflow)
28: izero_wrapped ← (iextra_rotation && ioverflow && irev_ind_done)
29: if iout_of_range || iin_pad || izero_unused || izero_wrapped then
30: tmp[k]← 0
31: else
32: tmp[k]← A[indct][inda]
33: c←Mult(tmp, inrotj)
34: resi ← Add(resi, c)
35: for 1 ≤ i < bs do
36: c← Rot(resi, rtk,−i)
37: res0 ← Add(res0, c)
38: return b− res0

Laurent Polynomial-Based Linear Transformations 15

This causes two issues. First, to ensure that each slot of the output ciphertext
will be covered by every entry of the input, we need to rotate by more than the
length of the encrypted vector. Secondly, rotating by more than the length of
the vector causes some segments of the SIMD slots to see more than one copy
of certain entries, requiring us to apply masks appropriately. With each rotation
we do, for the weight vector (tmp in Algorithm 2), we set slots that are not
supposed to contribute for that rotation to zero. For rotations that are less than
the vector length, we set to zero any slots that do not end up within the output
vector. For rotations that are greater than the vector length, we set to zero any
slot that do not belong in the wrap-around region. Besides that, we also set
to zero any slot in the wrap-around region that had already seen the complete
input vector, by looking at their “reversed slot index”, which is their slot index
in the SIMD vector starting from 1 from the back. Roughly speaking, the last
k slots of the SIMD vector will be complete once we rotate by c + k − 1, where
c is the input vector length. Algorithm 2 therefore roughly performs baby-step
giant-step on twice the input vector length, resulting in complexity O(

√
|in|)

where |in| denotes the length of the input vector.

3.2 Laurent Polynomial Encoding

The difference between the linear transformation applied to the parameters of
[31] and the one applied in this context would be that here, multiple calls to the
linear transformation have to be applied due to there being fewer slots.

To improve upon this, in the cases where Nrlwe is a power of 2, we aim
to better utilize the plaintext slots. To do so, we pack ai,js and skjs into the
coefficients of a slot polynomial via the Laurent Polynomial Encoding as stated
in Definition 1. Note that here, LWE ciphertext modulus qlwe is selected to be
of form tr

lwe. That is, qlwe = tr
lwe = trlwe where tlwe is prime. Since a common

prime is used, we denote pr = tr
lwe = trlwe for brevity.

To further define the encoding, we differentiate between the cases where
p ≡ 1 (mod 4) and p ≡ 3 (mod 4). This is due to the slot polynomial modulus
F ′

i (X) affecting the correctness of multiplication with this encoding, which will
be further elaborated on in Section 3.4. This results in Laurent Polynomials of
degree d being utilized for p ≡ 1 (mod 4) and Laurent Polynomials of degree d

2
being utilized for p ≡ 3 (mod 4). It is also assumed that d | nlwe here.

3.2.1 Case p ≡ 1 (mod 4): The LWE secret key
−→
sk is encoded over nlwe

d
RLWE plaintexts. For a given plaintext, each slot will contain the same polyno-
mial. For plaintext k′ in slot i, secret key entries are packed in the slot as the
coefficients of the polynomial

d−1∑
j=0

skj+k′·dX−j (mod F ′
i (X))

where 0 ≤ k′ ≤ nlwe
d − 1, 0 ≤ i ≤ ℓ − 1. This is illustrated in Figure 3. Each

plaintext k′ is then encrypted as ciphertext k.

16 S. Ling et al.

𝑠𝑘0, 𝑠𝑘1,, 𝑠𝑘𝑛𝑙𝑤𝑒−1

LWE 𝑠𝑘𝑗s

Packing

𝑠𝑘𝑑
 .
 .
 .

𝑠𝑘2𝑑−1

𝑠𝑘𝑛𝑙𝑤𝑒−𝑑

 .
 .
 .

𝑠𝑘𝑛𝑙𝑤𝑒−1

𝑠𝑘𝑛𝑙𝑤𝑒−𝑑

 .
 .
 .

𝑠𝑘𝑛𝑙𝑤𝑒−1

𝑠𝑘𝑛𝑙𝑤𝑒−𝑑

 .
 .
 .

𝑠𝑘𝑛𝑙𝑤𝑒−1

𝑠𝑘0
 .
 .
 .

𝑠𝑘𝑑−1

𝑠𝑘0
 .
 .
 .

𝑠𝑘𝑑−1

𝑠𝑘𝑑
 .
 .
 .

𝑠𝑘2𝑑−1

𝑠𝑘0
 .
 .
 .

𝑠𝑘𝑑−1

𝑠𝑘𝑑
 .
 .
 .

𝑠𝑘2𝑑−1

Plaintext 0

Plaintext 1

Plaintext
𝑛𝑙𝑤𝑒/𝑑 − 1

Slot 1Slot 0 Slot 𝓁 − 1

Fig. 3: Packing of LWE skj entries for Laurent polynomial-based linear trans-
formation.

The LWE ai,js are encoded over nlwe
d RLWE plaintexts. For plaintext k in

slot i, ai,js are packed in the slot as the coefficients of the polynomial

d−1∑
j=0

ai,j+k·dXj (mod F ′
i (X))

where 0 ≤ k ≤ nlwe
d − 1, 0 ≤ i ≤ ℓ− 1. This is illustrated in Figure 4.

𝑎0,0, 𝑎0,1,, 𝑎0,𝑛𝑙𝑤𝑒−1

𝑎1,0, 𝑎1,1,, 𝑎1,𝑛𝑙𝑤𝑒−1

𝑎𝓁−1,0, 𝑎𝓁−1,1,, 𝑎𝓁−1,𝑛𝑙𝑤𝑒−1

LWE 𝑎𝑖,𝑗s

Packing

𝑎0,𝑑

 .
 .
 .

𝑎0,2𝑑−1

𝑎0,𝑛𝑙𝑤𝑒−𝑑

 .
 .
 .

𝑎0,𝑛𝑙𝑤𝑒−1

𝑎1,𝑛𝑙𝑤𝑒−𝑑

 .
 .
 .

𝑎1,𝑛𝑙𝑤𝑒−1

𝑎𝓁−1,𝑛𝑙𝑤𝑒−𝑑

 .
 .
 .

𝑎𝓁−1,𝑛𝑙𝑤𝑒−1

𝑎0,0

 .
 .
 .

𝑎0,𝑑−1

𝑎1,0

 .
 .
 .

𝑎1,𝑑−1

𝑎1,𝑑

 .
 .
 .

𝑎1,2𝑑−1

𝑎𝓁−1,0

 .
 .
 .

𝑎𝓁−1,𝑑−1

𝑎𝓁−1,𝑑

 .
 .
 .

𝑎𝓁−1,2𝑑−1

Plaintext 0

Plaintext 1

Plaintext
𝑛𝑙𝑤𝑒/𝑑 − 1

Slot 1Slot 0 Slot 𝓁 − 1

Fig. 4: Packing of LWE ai,j entries for Laurent polynomial-based linear trans-
formation.

Laurent Polynomial-Based Linear Transformations 17

3.2.2 Case p ≡ 3 (mod 4): The LWE secret key is encoded over nlwe
d/2

RLWE plaintexts. For a given plaintext, each slot will contain the same polyno-
mial. For plaintext k′, in slot i, secret key entries are packed in the slot as the
coefficients of the polynomial

d/2−1∑
j=0

skj+k′·(d/2)X
−j (mod F ′

i (X))

where 0 ≤ k′ ≤ nlwe
d/2 − 1, 0 ≤ i ≤ ℓ − 1. Each plaintext k′ is encrypted as

ciphertext k.
The LWE ai,js are encoded over nlwe

d/2 RLWE plaintexts. For plaintext k, in
slot i, ai,js are packed in the slot as the coefficients of the polynomial

d/2−1∑
j=0

ai,j+k·(d/2)X
j (mod F ′

i (X))

where 0 ≤ k ≤ n
d/2 − 1, 0 ≤ i ≤ ℓ− 1.

From here, let F ′
i (X) = g(X)X + F ′

i (0). Under assumption F ′
i (0) ≡ 1

(mod pr), we obtain X−1 ≡ −g(X)F ′
i (0)−1 (mod F ′

i (X)). Following [6], we uti-
lize the maps X 7→ X and X−1 7→ −g(X)F ′

i (0)−1 to obtain the corresponding
degree d−1 or degree d/2−1 slot polynomials, packing the Laurent Polynomials
into the slots.

3.3 Multiplication and Zpr Linear Map

Following the encoding, for each k, plaintext k and ciphertext k are multiplied.
These results are then summed. The multiplications and summation provide
the desired inner product of LWE decryption ⟨−→ai ,

−→
sk⟩, in the first coefficient of

the polynomial in slot i. This results in nlwe
d plaintext-ciphertext multiplications

being used if p ≡ 1 (mod 4) and nlwe
d/2 plaintext-ciphertext multiplications being

used if p ≡ 3 (mod 4).
The map π0 : E → E defined as

∑d−1
j=0 ajxj 7→ a0 is a Zpr -linear function as

per Definition 2. This map is then performed across all slots via an evaluation
of a linear combination of Frobenius powers by Lemma 2.

To apply the map, the product with the first constant θ0 ·η is first computed
homomorphically via one plaintext-ciphertext multiplication. The slot-wise trace
map τ is then applied, mapping θ0 · η 7→

∑d−1
j=0 σj

E(θ0 · η) =
∑d−1

f=0 θf σf
E(η) as

described in [23]. The trace map is computed using a special case variant of the
trace algorithm provided in [21], where d is a power-of-two. The variant is for-
mally provided as Algorithm 3. This utilizes log d many rotations and ciphertext-
ciphertext additions. Applying this map, we finally obtain the desired LWE inner
product in the slots.

Finally we subtract this from a plaintext containing bi in each slot i. That
is, we compute bi − ⟨−→ai ,

−→
sk⟩ homomorphically in the slots. This completes the

linear portion of the homomorphic decryption.

18 S. Ling et al.

Algorithm 3 Log2Trace

1: procedure Log2Trace(ctxt, d)
2: result← ctxt
3: for 0 ≤ i ≤ log2 d− 1 do
4: temp← result
5: index← 2i

6: Apply Frobenius Automorphism to power of index to temp.
7: result← result + temp

8: return result

3.4 Choice of Packing Degree/Correctness

It was previously discussed in Section 3.2 that only Laurent Polynomials up to
degree ±d/2 are utilized for p ≡ 3 (mod 4) and degree ±d for p ≡ 1 (mod 4).
This is due to the difference in the structure of F ′

i (X).
From Lemma 1 and Section 3.2,

X−1 ≡ −(Xd−1 + aiX
d/2−1)b−1

i (mod F ′
i (X))

.
Hence for powers of form Xj and X−(d/2+j),

d/2−1∑
j=0

ai,jXj · skd/2+jX−(d/2+j)

≡
d/2−1∑

j=0
−ai,jskd/2+j(b−1

i ai + b−1
i Xd/2) (mod F ′

i (X))

.
There is therefore an additional coefficient

∑d/2−1
j=0 −ai,jskd/2+j(b−1

i ai) added
to the constant term from the convolution, when performing the multiplication.

In the case of p ≡ 1 (mod 4), by Lemma 1, this additional coefficient is 0 and
hence powers up to ±d can be utilized. In the case of p ≡ 3 (mod 4), by Lemma
1, this additional coefficient is not necessarily zero, and therefore prevents having
only the LWE inner product

∑d−1
j=0 ai,jskj in the first coefficient. It is trivial to

see that Xj and X−(d/2+j), for 0 ≤ j ≤ d/2 − 1, are the only pairs of powers
from the convolution whose product has a non-zero term in the first coefficient.
Powers of X, ≥ d/2 and ≤ −d/2 are hence not utilized in the packing for this
case.

The details and correctness of the multiplication and Zpr linear maps for
both cases in slot i are thus as follows.

3.4.1 Case p ≡ 1 (mod 4):

Laurent Polynomial-Based Linear Transformations 19

1. Multiplication between each of the nlwe
d plaintext-ciphertext pairs.d−1∑

j=0
skj+k·dX−j

 ·
d−1∑

j=0
ai,j+k·dXj

=

d−1∑
j=0

ai,j+k·dskj+k·d

 + X(. . .) (mod F ′
i (X))

2. Summation over all the nlwe
d products.

nlwe
d −1∑
k=0

d−1∑
j=0

ai,j+k·dskj+k·d

 + X(. . .)

=

nlwe−1∑
j=0

ai,jskj

 + X(. . .) (mod F ′
i (X))

3. Applying Zpr -linear map π0 to obtain the LWE inner product in the slots.nlwe−1∑
j=0

ai,jskj

 + X(. . .) 7→
nlwe−1∑

j=0
ai,jskj (mod F ′

i (X))

3.4.2 Case p ≡ 3 (mod 4):
1. Multiplication between each of the nlwe

d/2 plaintext-ciphertext pairs.d/2−1∑
j=0

skj+k·(d/2)X
−j

 ·
d/2−1∑

j=0
ai,j+k·(d/2)X

j

=

d/2−1∑
j=0

ai,j+k·(d/2)skj+k·(d/2)

 + X(. . .) (mod F ′
i (X))

2. Summation over all the nlwe
d/2 products.

nlwe
d/2 −1∑
k=0

d/2−1∑
j=0

ai,j+k·(d/2)skj+k·(d/2)

 + X(. . .)

=

nlwe−1∑
j=0

ai,jskj

 + X(. . .) (mod F ′
i (X))

3. Applying Zpr -linear map π0 to obtain the LWE inner product in the slots.nlwe−1∑
j=0

ai,jskj

 + X(. . .) 7→
nlwe−1∑

j=0
ai,jskj (mod F ′

i (X))

20 S. Ling et al.

3.5 Analysis

As discussed in Section 3.3, multiplication and summation of the Laurent Poly-
nomial encoded plaintexts and ciphertexts utilize nlwe

d plaintext-ciphertext mul-
tiplications if p ≡ 1 (mod 4) and nlwe

d/2 plaintext-ciphertext multiplications if
p ≡ 3 (mod 4). In the case of the projection map, one plaintext-ciphertext mul-
tiplication is applied, followed by log d rotations which dominate the cost of the
trace map.

The total cost of the Laurent polynomial-based linear transformation is
therefore nlwe

cd + 1 plaintext-ciphertext multiplications and log d rotations, where
c ∈ { 1

2 , 1}.

Comparison. We conduct a comparison of our Laurent polynomial-based linear
transformation to the linear transformation of [31] in the case of small p such
that ℓ < nlwe.

As discussed in Section 3.1, their linear transformation utilizes ⌈nlwe
ℓ ⌉ · ℓ ≈

nlwe plaintext-ciphertext multiplications. Our Laurent polynomial-based linear
transformation therefore outperforms theirs in terms of plaintext-ciphertext mul-
tiplication by either a factor of d if p ≡ 1 (mod 4) or d/2 if p ≡ 3 (mod 4).

As discussed in Section 3.1, their linear transformation utilizes ⌈nlwe
ℓ ⌉ · 2

√
ℓ

rotations. Under the assumption that nlwe >
√

ℓ
2 log d, it follows that log d <

⌈nlwe
ℓ ⌉ ·2

√
ℓ. This assumption easily holds in the case of small p as ℓ is the domi-

nating factor on the right hand side of the inequality and a smaller p corresponds
to a fewer number of slots ℓ. Our Laurent polynomial-based linear transforma-
tion therefore outperforms theirs in terms of number of rotations utilized. As
our linear transformation outperforms the linear transformation of [31] both in
terms of plaintext-ciphertext multiplications and rotations, it achieves better
performance overall in the case of small p.

For comparison with the original parameters used in the linear transformation
of [31], from Section 2.3, note that their linear transformation requires nlwe
plaintext-ciphertext multiplications and 2√nlwe rotations.

Similar to the analysis above, our Laurent polynomial-based linear trans-
formation outperforms theirs in terms of plaintext-ciphertext multiplication by
either a factor of d if p ≡ 1 (mod 4) or d/2 if p ≡ 3 (mod 4). In the case of
rotations, we have that log d < 2√nlwe easily holds with our choice of param-
eters. This is further verified in Section 7. As our linear transformation in the
small p case outperforms the linear transformation of [31] under their original
parameters both in terms of plaintext-ciphertext multiplications and rotations,
it outperforms theirs overall.

4 Non-Linear Components

In the bootstrapping framework of [31], upon completing the homomorphic linear
transformation, Lemma 3 is directly applied to perform the LUT evaluation.

Laurent Polynomial-Based Linear Transformations 21

However, Lemma 3 requires the RLWE plaintext space to be a prime as opposed
to a prime power, which is the RLWE plaintext space utilized in our framework.
To overcome this, digit extraction is performed before applying Lemma 3 to first
set the plaintext space from pr to p. This section discusses utilizing the digit
extraction algorithm alongside Lemma 3 to obtain the desired LUT evaluation
in the RLWE prime power plaintext space.

4.1 Components

Digit Extraction. After completing the inner product and subtraction of ho-
momorphic decryption, digit extraction is then utilized to apply homomorphic
decryption and rounding by pv, where v = e− r′. The digit extraction algorithm
is formally stated in Section 6 of [18]. This is applied to enable the use of Lemma
3 for the functional component later, which requires that the plaintext space is
prime rather than a prime power.

Let
∑e−1

i=0 wip
i be the base-p digit decomposition of any given w ∈ Zpe , where

|wi| ≤ p/2. For odd p, the digit extraction procedure homomorphically computes⌊
w

pv

⌉
=

e−1∑
i=v

wip
i−v

.
In the context of our bootstrapping procedure, v is set to r − 1, with e = r,

r′ = 1. This completes the base bootstrapping procedure, performing the slot-
wise map

pr

p
·mi + ei 7→ mi

. Note that the RLWE plaintext space has now been set down from pr to p as
part of this procedure.

The cost of digit extraction is dominated by r(r−1)
2 evaluations of the degree

p lifting polynomial, with the degree of the procedure being pr−1.

Polynomial Evaluation. From here, Lemma 3 is utilized to form

f̃(X) = f(0)−
p−1∑
i=1

Xi

p−1∑
a=0

f(a)ap−1−i

as per Section 2.3. As the RLWE plaintext space is set to p = tlwe, we can
directly use f(X), where f : Zp → Zp is the function which we want to evaluate
on messages mi.

RLWE to LWE Extraction. Modulus switching, key switching and RLWE to
LWE extraction are then applied. Note that prior to this, the slots to coefficients
map is applied, followed by a conversion from BGV to BFV encoding. Modulus

22 S. Ling et al.

switching and key switching are then applied and directly follow from Section
2.3.

For RLWE to LWE extraction, let (a =
∑Nrlwe−1

i=0 aiX
i, b =

∑Nrlwe−1
i=0 biX

i) ∈
R2

Qrlwe
be the RLWE ciphertext obtained after modulus switching and key

switching. ℓ LWE ciphertexts (−→ai
′, b′

i) ∈ Znlwe+1
qlwe

are then obtained, for 0 ≤
i ≤ ℓ − 1, where a′

i,j = ai·d−j for j ≤ i · d, a′
i,j = −a(ℓ+i)·d−j for j > i · d, and

b′
i = bi·d, where 0 ≤ j ≤ nlwe − 1 and 0 ≤ i ≤ ℓ− 1.

Let RLWE sk =
∑Nrlwe−1

j=0 skjXj . Note that skj = 0 for j ≥ nlwe after key
switching. The LWE secret key

−→
sk′ ∈ Znlwe

qlwe
is obtained by setting sk′

j = sk[j] for
0 ≤ j ≤ nlwe − 1.

Correctness follows directly from [31], where their procedure is described in
Section 2.3. The procedure is applied here to extract ℓ many b′

i, as opposed to
their original Nrlwe many, each spaced out at intervals of d in the coefficients.

4.2 Analysis.

As discussed in Section 4.1, the digit extraction procedure is dominated by r(r−1)
2

evaluations of the degree p lifting polynomial. As covered in Section 4.1, one
degree p− 1 polynomial is evaluated to perform the homomorphic lookup table
evaluation. Given that any degree n polynomial can be evaluated in O(

√
n)

ciphertext-ciphertext multiplications using the Paterson-Stockmeyer algorithm
[36], the cost of Digit Extraction and LUT evaluation is dominated by (r(r−1)

2 +
1)·O(√p) ciphertext-ciphertext multiplications. Each evaluation of the Paterson-
Stockmeyer algorithm also consumes p many plaintext-ciphertext multiplications
for evaluation of a degree p polynomial. There is therefore a consumption of
(r(r−1)

2 + 1) · p plaintext-ciphertext multiplications.

Comparison. We compare this to the work of [31], which instead only performs
the lookup table evaluation. In their case however, due to the use of large primes,
this was performed by evaluating a degree 65536 polynomial, requiring O(

√
t′
rlwe)

ciphertext-ciphertext multiplications and t′
rlwe plaintext-ciphertext multiplica-

tions where t′
rlwe = 65537. By selecting values of p to be small enough and

appropriate values of r, the procedures of Section 4.1 outperform theirs overall.
This is experimentally verified in Section 7.

5 Improved Functional Bootstrapping

By putting together the techniques from Sections 3 and 4, we achieve lower
latency functional bootstrapping.

Set LWE parameters to have plaintext space p, ciphertext space qlwe = pr and
dimension nlwe. Set RLWE parameters to have plaintext space trlwe = pr, cipher-
text space Qrlwe, number of slots ℓ and slot degree d. Note that the procedure is
performed using BGV, therefore requiring an encoding switch via multiplication
by a constant, prior to RLWE to LWE extraction.

Laurent Polynomial-Based Linear Transformations 23

Functional Bootstrapping Procedure

1. Linear Transformation
– Given ℓ many LWE ciphertexts (−→ai , bi) ∈ Znlwe+1

q , 0 ≤ i ≤ ℓ− 1 sharing
the same secret key

−→
sk ∈ Znlwe .

– Perform the Laurent Polynomial Encoding for each LWE (−→ai , bi) (Sect.
3.2). This yields either nlwe

d or nlwe
d/2 many RLWE plaintexts and cipher-

texts, depending on the value of p (Sect. 3.4).
– Each plaintext-ciphertext pair is then multiplied and a sum is computed

over all products. A Zpr -linear map π0 is applied to obtain the inner
product ⟨−→ai ,

−→
sk⟩ in the slots (Sect. 3.3).

– This result is then subtracted from a plaintext containing bi in each slot
i, obtaining bi − ⟨−→ai ,

−→
sk⟩ = pr

p ·mi + ei slot-wise.
2. Digit Extraction

– Perform digit extraction (Sect. 4.1) to apply pr

p ·mi + ei 7→ mi slot-wise.
3. Polynomial Evaluation

– Evaluate the polynomial corresponding to the LUT (Sect. 4.1) to obtain
the desired f(mi) slot-wise.

4. Slots to Coefficients
– Move slot entries to the coefficients of the encoded polynomial to obtain

an encryption of RLWE plaintext m =
∑Nrlwe−1

i=0 f(mi)Xi (Sect. 2.3).
5. RLWE to LWE Extraction

– Multiply by a constant to move from BGV to BFV encoding (Sect. 2.2.2).
– Perform the RLWE to LWE extraction (Sect. 4.1), including modulus

switching and key switching, to obtain the desired LWE ciphertexts.

5.1 Analysis

5.1.1 Noise From the correctness of BGV, the BGV ciphertext after modulus
switching and key switching has error ∥e∥∞ ≤ qlwe

2p . The error follows a Gaussian
distribution centered at 0. As discussed in [8], the extraction procedure does not
increase noise. The resulting ℓ LWE ciphertexts (−→ai

′, b′
i) ∈ Znlwe+1

qlwe
, 0 ≤ i ≤ ℓ−1,

therefore each have error ≤ qlwe
2p .

5.1.2 Security Security follows by first selecting security parameter λ. From
here, appropriate LWE parameters nlwe, qlwe,Dlwe, χσlwe are selected, satisfying
Pr[e < ⌊ qlwe

2p ⌋] ≥ 1 − negl(λ), e ← χσlwe . This, together with the hardness
assumption of the decisional LWE problem described in Section 2.1, guarantees
the semantic security of the input LWE ciphertexts. Semantic security of the
ciphertexts from Sections 3 to 4 follows from the security of the BGV keys,
the appropriate RLWE parameters Nrlwe, Qrlwe,Drlwe, χσrlwe

selected and the
hardness assumption of the decisional RLWE problem, described in Section 2.1
and discussed in [4].

Additionally, circular security is also assumed. This is required for the fol-
lowing portions of our scheme. In the Linear Transformation portion described

24 S. Ling et al.

in Section 3, LWE secret keys are encrypted under RLWE secret keys. Further-
more, when BGV rotations are performed, the rotated RLWE secret keys are
encrypted under the RLWE secret key as rotation keys. When BGV key switch-
ing is performed, the RLWE secret key is encrypted under itself too. The RLWE
secret key is encrypted under the LWE secret key for the key switching proce-
dure described in Section 4.1. The security of these components is guaranteed
by the circular security assumption. The bootstrapping procedure is therefore
secure.

5.1.3 Efficiency As discussed in Sections 3.5 and 4.2, the new bootstrapping
framework therefore requires nlwe

cd + 1 + (r(r−1)
2 + 1) · p + ℓ plaintext-ciphertext

multiplications, where c ∈ { 1
2 , 1}, log d+O(

√
ℓ) rotations, and (r(r−1)

2 +1)·O(√p)
ciphertext-ciphertext multiplications. It is noted that the additional ℓ terms
come from evaluating slots to coefficients map.

Comparison. We compare our bootstrapping framework to the full bootstrap-
ping procedure of [31]. An overview is provided in Table 1. Denote their slot count
and RLWE plaintext prime as ℓ′ and t′

rlwe respectively. For plaintext-ciphertext
multiplications, as discussed in Section 3.5, we have that nlwe

cd + 1 < nlwe by a
factor of approximately cd. From our choice of parameters, (r(r−1)

2 + 1) · p + ℓ <
t′
rlwe +ℓ′ holds. Similarly, for rotations and ciphertext-ciphertext multiplications,

as discussed in Section 4.2, the usage of small primes p allows both d and ℓ to be
sufficiently small. It then follows from our parameter choice, as well as Sections
3.5 and 4.2, that our framework outperforms theirs for each operation.

Operations Laurent Polynomial-Based
Bootstrapping

Bootstrapping Framework
of [31]

Plaintext-Ciphertext
Multiplications

nlwe
cd

+ 1 + (r(r−1)
2 + 1) · p + ℓ,

c ∈ { 1
2 , 1} nlwe + t′

rlwe + ℓ′

Rotations log d + O(
√

ℓ) O(√nlwe +
√

ℓ′)
Ciphertext-Ciphertext

Multiplications (r(r−1)
2 + 1) ·O(√p) O(

√
t′
rlwe)

Table 1: Comparison of efficiency for our bootstrapping framework and the
bootstrapping framework of [31].

6 Multi-valued Functional Bootstrapping
Multi-valued functional bootstrapping enables the evaluation of multiple func-
tions on a given input. To extend the functional bootstrapping procedure of Sec-
tion 5 to that of a multi-valued variant, we proceed as follows. Parameters follow

Laurent Polynomial-Based Linear Transformations 25

from Section 5. First, Steps 1 and 2 of the functional bootstrapping procedure
in Section 5 are performed once. For the polynomial evaluation portion given by
Step 3 of Section 5, the computation of powers of Xi, for 1 ≤ i ≤ ⌈

√
p− 1⌉ and

where X is the input ciphertext of the polynomial, is performed once, as part of
the Paterson-Stockmeyer algorithm [36]. This was described in Section 2.3. Note
that the computation of powers of Xi can be first performed here as they are
independent of the function to be evaluated. Following this, the remaining por-
tion of Step 3, as well as Steps 4 and 5 of Section 5 are run for every individual
distinct function to be evaluated.

Multi-valued Functional Bootstrapping Procedure

1. Linear Transformation
– Given ℓ many LWE ciphertexts (−→ai , bi) ∈ Znlwe+1

q , 0 ≤ i ≤ ℓ− 1 sharing
the same secret key

−→
sk ∈ Znlwe .

– Perform the Laurent Polynomial Encoding for each LWE (−→ai , bi) (Sect.
3.2). This yields either nlwe

d or nlwe
d/2 many RLWE plaintexts and cipher-

texts, depending on the value of p (Sect. 3.4).
– Each plaintext-ciphertext pair is then multiplied and a sum is computed

over all products. A Zpr -linear map π0 is applied to obtain the inner
product ⟨−→ai ,

−→
sk⟩ in the slots (Sect. 3.3).

– This result is then subtracted from a plaintext containing bi in each slot
i, obtaining bi − ⟨−→ai ,

−→
sk⟩ = pr

p ·mi + ei slot-wise.
2. Digit Extraction

– Perform digit extraction (Sect. 4.1) to apply pr

p ·mi + ei 7→ mi slot-wise.
3. Polynomial Evaluation

– Perform the first portion of the Paterson-Stockmeyer algorithm which
computes powers of Xi, where X is the input ciphertext of the polyno-
mial and 1 ≤ i ≤ ⌈

√
p− 1⌉ (Sect. 4.1).

For each given LUT function f :

4. Polynomial Evaluation
– Evaluate the polynomial corresponding to the LUT (Sect. 4.1) to obtain

the desired f(mi) slot-wise. This is performed using the remainder of
the Paterson-Stockmeyer algorithm.

5. Slots to Coefficients
– Move slot entries to the coefficients of the encoded polynomial to obtain

an encryption of RLWE plaintext m =
∑Nrlwe−1

i=0 f(mi)Xi (Sect. 2.3).
6. RLWE to LWE Extraction

– Multiply by a constant to move from BGV to BFV encoding (Sect. 2.2.2).
– Perform the RLWE to LWE extraction (Sect. 4.1), including modulus

switching and key switching, to obtain the desired LWE ciphertexts.

6.1 Analysis

Analysis of the noise and security both follow directly from Section 5.

26 S. Ling et al.

6.1.1 Efficiency Let us assume there are k distinct LUT functions to be eval-
uated. Steps 1, 2 of the multi-valued functional bootstrapping procedure share
the same complexity as that in Section 5. Step 3 utilizes√p ciphertext-ciphertext
multiplications as described in Section 2.3. For each additional function to be
evaluated, Step 4 takes p plaintext-ciphertext multiplications and √p ciphertext-
ciphertext multiplications. For each additional function to be evaluated, Steps
5 and 6 follow that of Section 5. Each additional function evaluated therefore
adds extra p+ℓ plaintext-ciphertext multiplications, O(

√
ℓ) rotations and O(√p)

ciphertext-ciphertext multiplications.
The multi-valued functional bootstrapping framework therefore requires nlwe

cd +
1 + (r(r−1)

2 + k) · p + k · ℓ plaintext-ciphertext multiplications, where c ∈ { 1
2 , 1},

log d + O(k ·
√

ℓ) rotations, and (r(r−1)
2 + k) ·O(√p) ciphertext-ciphertext mul-

tiplications in total.

Operations
Laurent Polynomial-Based

Multi-valued Functional
Bootstrapping

Multi-valued Variant
of [31]

Plaintext-Ciphertext
Multiplications

nlwe
cd

+1+(r(r−1)
2 +k) ·p+k ·ℓ,

c ∈ { 1
2 , 1} nlwe + k′ · t′

rlwe + k′ · ℓ′

Rotations log d + O(k ·
√

ℓ) O(√nlwe + k′ ·
√

ℓ′)
Ciphertext-Ciphertext

Multiplications (r(r−1)
2 + k) ·O(√p) k′ ·O(

√
t′
rlwe)

Table 2: Comparison of efficiency for our multi-valued functional bootstrapping
framework and the multi-valued variant of [31].

Comparison. We compare our multi-valued functional bootstrapping frame-
work to a multi-valued variant of the bootstrapping procedure in [31]. This vari-
ant is intuitively obtained by simply repeating each step of [31] from the DRaM
polynomial evaluation step onwards for each given function. This excludes the
computation of the powers of Xi in the Paterson-Stockmeyer algorithm, similar
to our framework. An overview is provided in Table 2. Denote their slot count,
RLWE plaintext prime and number of distinct functions to be evaluated as ℓ′,
t′
rlwe and k′ respectively. As discussed in Section 3.5, for plaintext-ciphertext

multiplications we have that nlwe
cd + 1 < nlwe by a factor of approximately cd. By

our choice of parameters, (r(r−1)
2 +k) ·p+ℓ < k′ ·t′

rlwe +k′ ·ℓ′ holds. Similarly, for
rotations and ciphertext-ciphertext multiplications, as discussed in Section 4.2,
the usage of small prime p allows both d and ℓ to be sufficiently small. Parameter
k is also chosen such that the efficiency of our framework outperforms theirs for
those operations. The same analysis applies when k′ = k or k′ = 1, with our
multi-valued functional bootstrapping outperforming the multi-valued variant

Laurent Polynomial-Based Linear Transformations 27

of [31]. It therefore follows from the choice of parameters, as well as Sections 3.5
and 4.2, that our framework outperforms theirs for each operation.

7 Experiments

The bootstrapping frameworks presented in Sections 5 and 6 are implemented
in C++ using HElib [24]. Specifically, for functional bootstrapping, we first im-
plement the bootstrapping framework using the Laurent polynomial-based lin-
ear transformation as per Section 5. This utilized power-of-two cyclotomic m.
Following this, a non-power-of-two cyclotomic m variant of our framework is im-
plemented, utilizing repeated calls to the linear transformation as described in
Section 3.1. Lastly, this is benchmarked against components of the bootstrapping
framework of [31] implemented within HElib. For multi-valued bootstrapping,
the scheme described in Section 6 is implemented and benchmarked against
components of a multi-valued variant of [31]. The implementations were bench-
marked on an Intel(R) Xeon(R) Platinum 8170 with maximum turbo frequency
of 3.7 GHz and 192 GB RAM.

Parameter
Set pr m Nrlwe nlwe d ℓ

Security
(bits)

1 1273
65536 32768 1024

512 64 84.8
2 2573 256 128 78.647
3 131072 65536 512 128

Table 3: Parameters for our bootstrapping framework described in Section 5.

Functional Bootstrapping. Primes p = 127 ≈ 27 and p = 257 ≈ 28 were
used, with r = 3. Similar to [31], cyclotomic m = 65536 and LWE dimension
nlwe = 1024 were utilized. In addition to this, cyclotomic m = 131072 was also
utilized for the p = 257 case. The parameter sets used are listed in Table 3. The
secret keys were sampled uniformly from a ternary distribution. Experiments of
our bootstrapping framework were conducted and the results are presented in
Table 4.

Additionally, for better comparison, we explore the use of non-power-of-two
cyclotomic m with small plaintext prime-powers. These parameters are listed in
Table 5. Crucially, we note that these parameters limit the linear transformation
technique to that of Section 3.1 rather than our optimized Laurent polynomial-
based one. This is due to the slot modulus F ′

i (X) not necessarily having a sparse
shape as per what was described in Lemma 1, resulting in wrap-around when
performing the convolution described in Section 3.4. The main operations, the
Linear Transformation, Digit Extraction and Lookup Table evaluation, were

28 S. Ling et al.

Param.
Set

Timings(s) Total Amortized
LinTrans DigitExt LUTEval SlotstoCoeff RLWEtoLWE Time(s) Time(ms)

1 2.679 29.019 6.468 10.388 1.319 49.873 779.267
2 9.409 86.968 15.194 130.834 1.561 243.967 1905.990
3 7.492 131.590 32.204 94.855 3.236 269.376 2104.503

Table 4: Timings for our bootstrapping framework described in Section 5.

benchmarked in Table 6. The m values were kept to be large for better compar-
ison with our parameters.

Parameter
Set pr m Nrlwe nlwe d ℓ

Security
(bits)

4 1273 47749 44064
1024 18 2448 96.5

5 41401 39204 2178 83.7
6 2573 46741 45612 6 7602 84.9

Table 5: Parameters for non-powers-of-two m.

As observed from Table 6, our framework presented in Table 4 performs
significantly better in terms of latency for similar parameters. Most notably,
our Laurent polynomial linear transformation of parameter set 1 outperforms
that of parameter set 4 by a factor of 158.65×. Comparing the total time for
the three components of those two parameter sets, our Laurent polynomial-
based bootstrapping outperforms that of parameter set 4 by a factor of 12.94×.
However, due to the difference in the number of slots ℓ, the amortized timings
of Table 4 are worse than that of Table 6. The non-power-of-two cyclotomic m
variant therefore offers an alternative framework that prioritizes a more balanced
amortized time at the cost of increased latency compared to our framework in
Section 5.

Param.
Set

Timings(s) Total Amortized
LinTrans DigitExt LUTEval Time(s) Time(ms)

4 425.02 54.426 14.375 493.820 201.724
5 208.367 53.088 13.812 275.268 126.386
6 300.839 100.579 26.707 428.126 56.317

Table 6: Timings for non-powers-of-two m bootstrapping.

Laurent Polynomial-Based Linear Transformations 29

Lastly, for comparison, the Homomorphic Linear Transformation and the
LUT Polynomial Evaluation components of [31] were also implemented in HElib.
The benchmarks are presented in Table 7. As observed, a significant improvement
of at least 26.95× in latency is obtained when comparing with the pr = 1273

case of our framework in Table 4. For the pr = 2573 case, an improvement in
latency of 5.51× and 4.99× is obtained.

Component t′
rlwe pr m Nrlwe nlwe d ℓ′ Security Total

Time(s)(bits)
Homomorphic Linear

Transformation 65537 29 65536 32768 1024 1 32768 80.9551
314.257

LUT Polynomial
Evaluation 1029.974

Table 7: Timings for the bootstrapping framework of [31].

However, we note that compared to [31], the amortized timings of our frame-
work were impacted, experiencing a slowdown of at most 19×, 46.46× and
51.30× respectively for each parameter set. This likely arises due to the difference
in the number of slots, ℓ and ℓ′, which is significantly larger in the bootstrapping
framework of [31]. Furthermore, it is also noted that in the case of pr = 2573

with m = 65536, performance was likely affected by increasing the number of
columns in the key-switching matrix to 30 within the HElib implementation,
in order to achieve sufficient security. Compared to the non-power-of-two cyclo-
tomic m case, it is observed that for latency [31] faces up to 4.88× slowdown in
total time for these components. However, for these components, up to 4.92×
improvement in amortized time is obtained for [31].

Component
Laurent Poly. Timings(s) Timings of

framework of [31](s)pr Nrlwe pr Nrlwe pr Nrlwe
1273 32768 2573 32768 2573 65536

Linear Transformation 2.679 9.409 7.492 314.257
Digit Extraction 35.487 102.162 163.794 -
LUT Evaluation 1029.974

Table 8: Comparison of component timings for our bootstrapping framework
described in Section 5 and the bootstrapping framework of [31].

A component-wise comparison with our framework of Section 5 is further
illustrated in Table 8. A comparison of the Linear Transformation, Digit Ex-
traction and LUT Evaluation components is performed as those form the main

30 S. Ling et al.

differences between the two bootstrapping frameworks. As observed from Ta-
ble 8, our Laurent polynomial-based linear transformation is significantly faster
than theirs in terms of latency, with latency improvements of 117.3×, 33.4×
and 41.9× respectively for that component. Furthermore, while our framework
requires both Digit Extraction and LUT Evaluation as opposed to just LUT
Evaluation in [31], when put together the combined components still outper-
form the single LUT Evaluation of theirs. Specifically a latency improvement of
29.02×, 10.08× and 6.29× is obtained for that component.

The three functional bootstrapping frameworks presented here can thus be
summarized as follows. Our bootstrapping procedure of Section 5, utilizing the
power-of-two cyclotomic m presented in Tables 3 and 4, represents a variant that
provides low latency at the expense of amortized time. The non-power-of-two
m case, presented in Tables 5 and 6, represents a variant that balances latency
with amortized runtime. Finally, the bootstrapping framework of [31], presented
in Table 7, represents a variant that minimizes amortized time at the expense
of latency.

Multi-valued Functional Bootstrapping. For the multi-valued functional
bootstrapping of Section 6, a breakdown of the timings is provided in Table 9.
Experiments were run for parameter sets 1, 3 and the benchmark parameters of
Table 7. Here, the multi-valued precomputation corresponds to Steps 1 to 3 of
the multi-valued bootstrapping procedure in Section 6. The per-function extra
processing time corresponds to Steps 4 to 6 of the multi-valued bootstrapping
procedure in Section 6. For the benchmark parameters of Table 7, the multi-
valued precomputation refers to the homomorphic linear transformation and the
computation of the powers of Xi in [31]. The per-function extra processing time
here refers to the LUT Evaluation step in [31]. This excludes the computation
of the Xi powers, as described in Section 6.

Param.
Set

Multi-valued
Precomputation(s)

Per-Function Extra
Processing Time(s)

1 34.458 15.415
3 147.280 122.097

Table 7 441.807 902.424

Table 9: Comparison of timings for multi-valued functional bootstrapping.

As observed in Table 9, our framework outperforms theirs for both the multi-
valued precomputation and the per-function extra processing time components.
The multi-valued precomputation of parameter sets 1 and 3 obtains a 12.82×
and 3× improvement respectively over the benchmark parameters of Table 7.
For each additional function processed, parameters sets 1 and 3 obtain at least
a 58.54× and 7.39× improvement over the benchmark parameters of Table 7.

Laurent Polynomial-Based Linear Transformations 31

In the case where a single function is evaluated using the framework of [31], our
proposed framework allows for the evaluation of at least 84 distinct functions in
the same amount of time using parameter set 1.

8 Conclusion

In conclusion, we extended the bootstrapping framework proposed by [31] to
that of the small primes case. Furthermore, we proposed the Laurent polynomial-
based linear transformation which improved upon the homomorphic linear trans-
formation in their framework. Put together, all these resulted in an improvement
of at least 26.95× in latency compared to the original. Additionally, this lower
latency enabled a new multi-valued functional bootstrapping framework, which
allowed the evaluation of at least 84 distinct functions in the same amount of
time required for performing one round of functional bootstrapping in [31].

References

1. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 1–20.
Springer, Heidelberg (Aug 2013)

2. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Chimera: Combining ring-lwe-
based fully homomorphic encryption schemes. Journal of Mathematical Cryptology
14(1), 316–338 (2020), https://doi.org/10.1515/jmc-2019-0026

3. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (Aug 2012)

4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012. pp. 309–325.
ACM (Jan 2012)

5. Carpov, S., Izabachène, M., Mollimard, V.: New techniques for multi-value input
homomorphic evaluation and applications. In: Matsui, M. (ed.) CT-RSA 2019.
LNCS, vol. 11405, pp. 106–126. Springer, Heidelberg (Mar 2019)

6. Castryck, W., Iliashenko, I., Vercauteren, F.: Homomorphic SIM2D operations:
Single instruction much more data. In: Nielsen, J.B., Rijmen, V. (eds.) EU-
ROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 338–359. Springer, Heidelberg
(Apr / May 2018)

7. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 409–437. Springer, Heidelberg (Dec 2017)

8. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg
(Dec 2016)

9. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homo-
morphic encryption over the torus. Journal of Cryptology 33(1), 34–91 (Jan 2020)

10. Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved programmable bootstrap-
ping with larger precision and efficient arithmetic circuits for TFHE. pp. 670–699.
LNCS, Springer, Heidelberg (2021)

https://doi.org/10.1515/jmc-2019-0026

32 S. Ling et al.

11. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (Aug 2012)

12. Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in
less than a second. Cryptology ePrint Archive, Report 2014/816 (2014), https:
//eprint.iacr.org/2014/816

13. Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I.
LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (Apr 2015)

14. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), https://eprint.iacr.org/2012/
144

15. Geelen, R.: Bootstrapping Algorithms for BGV and FV. Master’s thesis, KU Leu-
ven (2021)

16. Geelen, R.: Revisiting the slot-to-coefficient transformation for bgv and bfv. Cryp-
tology ePrint Archive (2024)

17. Geelen, R., Iliashenko, I., Kang, J., Vercauteren, F.: On polynomial functions mod-
ulo pe and faster bootstrapping for homomorphic encryption. pp. 257–286. LNCS,
Springer, Heidelberg (2023)

18. Geelen, R., Vercauteren, F.: Bootstrapping for BGV and BFV revisited. Journal
of Cryptology 36(12), 1432–1378 (Mar 2023)

19. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC. pp. 169–178. ACM Press (May / Jun 2009)

20. Guimarães, A., Borin, E., Aranha, D.F.: Revisiting the functional bootstrap in
TFHE. IACR TCHES 2021(2), 229–253 (2021), https://tches.iacr.org/index.
php/TCHES/article/view/8793

21. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (Aug
2014)

22. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg
(Apr 2015)

23. Halevi, S., Shoup, V.: Faster homomorphic linear transformations in HElib. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
93–120. Springer, Heidelberg (Aug 2018)

24. IBM: HElib. https://github.com/homenc/HElib/ (2023)
25. Janneck, J., Tueno, A., Kußmaul, J., Akram, M.: Private computation on set

intersection with sublinear communication. Cryptology ePrint Archive, Report
2022/1137 (2022), https://eprint.iacr.org/2022/1137

26. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A low latency
framework for secure neural network inference. In: Enck, W., Felt, A.P. (eds.)
USENIX Security 2018. pp. 1651–1669. USENIX Association (Aug 2018)

27. Kim, J., Seo, J., Song, Y.: Simpler and faster bfv bootstrapping for arbitrary
plaintext modulus from ckks. Cryptology ePrint Archive (2024)

28. Kluczniak, K., Schild, L.: Fdfb 2: Functional bootstrapping via sparse polynomial
multiplication. Cryptology ePrint Archive (2024)

29. Lee, D., Min, S., Song, Y.: Functional bootstrapping for packed ciphertexts via
homomorphic lut evaluation. Cryptology ePrint Archive (2024)

30. Li, Z., Shen, X., Lu, X., Wang, R., Zhao, Y., Wang, Z., Wei, B.: Leveled functional
bootstrapping via external product tree. Cryptology ePrint Archive (2025)

https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://tches.iacr.org/index.php/TCHES/article/view/8793
https://tches.iacr.org/index.php/TCHES/article/view/8793
https://github.com/homenc/HElib/
https://eprint.iacr.org/2022/1137

Laurent Polynomial-Based Linear Transformations 33

31. Liu, Z., Wang, Y.: Amortized functional bootstrapping in less than 7 ms, with
Õ(1) polynomial multiplications. pp. 101–132. LNCS, Springer, Heidelberg (2023)

32. Liu, Z., Wang, Y.: Relaxed functional bootstrapping: A new perspective on bgv/bfv
bootstrapping. In: International Conference on the Theory and Application of
Cryptology and Information Security. pp. 208–240. Springer (2025)

33. jie Lu, W., Huang, Z., Hong, C., Ma, Y., Qu, H.: PEGASUS: Bridging polynomial
and non-polynomial evaluations in homomorphic encryption. pp. 1057–1073. IEEE
Computer Society Press (2021)

34. Meftah, S., Tan, B.H.M., Mun, C.F., Aung, K.M.M., Veeravalli, B., Chandrasekhar,
V.: Doren: toward efficient deep convolutional neural networks with fully homo-
morphic encryption. IEEE Transactions on Information Forensics and Security 16,
3740–3752 (2021)

35. Mono, J., Kluczniak, K., Güneysu, T.: Improved circuit synthesis with multi-value
bootstrapping for fhew-like schemes. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems 2024(4), 633–656 (2024)

36. Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications nec-
essary to evaluate polynomials. SIAM Journal on Computing 2(1), 60–66 (1973)

37. Roman, S.: Field theory, vol. 158. Springer Science & Business Media (2005)
38. Sim, J.J., Chan, F.M., Chen, S., Meng Tan, B.H., Mi Aung, K.M.: Achieving gwas

with homomorphic encryption. BMC medical genomics 13, 1–12 (2020)
39. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations 71(1), 57–81

(2014)

	Introduction
	Related work
	Contributions
	Technical Overview

	Preliminaries
	Notation
	Fully Homomorphic Encryption
	Functional Bootstrapping with the BGV/BFV Scheme

	Improved Linear Transformation
	Limitations of Current Linear Transformation
	Laurent Polynomial Encoding
	Multiplication and Zpr Linear Map
	Choice of Packing Degree/Correctness
	Analysis

	Non-Linear Components
	Components
	Analysis.

	Improved Functional Bootstrapping
	Analysis

	Multi-valued Functional Bootstrapping
	Analysis

	Experiments
	Conclusion

