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Abstract. SPEEDY is a family of lightweight block ciphers designed by Leander et
al. Several differential attacks have been reported on the SPEEDY variants. However,
nearly all of these attacks are based on differential characteristics with probabilities
that differ from their reported values. These discrepancies arise from incorrect
calculations of the (key-averaged) probability, particularly in consecutive steps within
one round without intermediate key addition. In this paper, we revisit all reported
differential characteristics and accurately calculate their key-averaged probabilities
using quasidifferential trails. We extend this to also estimate the fixed-key probability.
Our analysis reveals several characteristics with zero or significantly altered probability,
invalidating several proposed attacks. We further implement a search algorithm and
find a 5.5-round differential distinguisher that can be used to mount a full-round
key-recovery attack with a data complexity of 2183 and a time complexity of 2185.
The memory complexity varies: in the chosen-plaintext setting, it is 2156, whereas in
the chosen-ciphertext setting, it is 236.
Keywords: Differential cryptanalysis · SPEEDY · Quasidifferential trails · Key
recovery

1 Introduction
Low-latency lightweight cryptography aims to balance security and minimal encryption
delay. This requirement has led researchers to propose new cipher designs, such as SPEEDY,
which is the focus of this paper.

The SPEEDY family of block ciphers, introduced by Leander, Moos, Moradi, and
Rasoolzadeh at CHES 2021 [LMMR21], was designed to enable low-latency encryption
on hardware platforms. The default instance, SPEEDY-r-192, has a 192-bit block size and
192-bit key with r ∈ {5, 6, 7} denoting the number of rounds. The design of SPEEDY has
been the subject of several cryptanalytic studies [BDBN23, YJZZ22, Zha24, WNL+23]
across its different variants. Some of these works have proposed full-round key-recovery
attacks, questioning the ciphers’ security claims. These attacks are based on differential
cryptanalysis.

Differential cryptanalysis was first published by Biham and Shamir [BS91] in 1990,
and has since become a cornerstone in the security evaluation of block ciphers. The
core principle involves studying how differences in plaintext pairs propagate through the
cipher. By identifying and exploiting high-probability sequences of intermediate differences
(differential characteristics), an attacker can recover the secret key.

The key-averaged probability of a characteristic is calculated under the assumption
that the round keys that are xored with the state after each round are uniformly random
and independent. This assumption has often been used together with the hypothesis of
stochastic equivalence [LMM91]. It states that the probability of a differential for a specific
key can be estimated by its average probability over all possible keys. However, in practice
the probability can substantially vary among different keys [DR07]. To overcome these
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Table 1: Overview of differential attacks on the three SPEEDY variants, with their reported
and recalculated complexities (data, time, memory). CP and CC indicate data collection
in the chosen-plaintext and chosen-ciphertext settings, respectively. r is the number of
rounds attacked. Time complexities are measured in the equivalent of encryptions, and
memory costs are expressed in block size units.

r Claimed Revisited Ref.
Data Time Memory Data Time Memory

SPEEDY-7-192 with security claim 2192, 2192

5 2109CC 2109 2109 2107 2107 2109 [YJZZ22]
6 2158CC 2158 2158 2154CC 2154 2158 [YJZZ22]
7 2187CC 2188 242 invalid [BDBN23]
7 2187CC 2187 236 2190CC 2191 236 [WNL+23]
7 2187CP 2187 2156 2190CP 2191 2156 [WNL+23]
7 2183CP 2185 2156 2183CP 2185 2156 Section 5.2
7 2183CC 2185 236 2183CC 2185 236 Section 5.2

SPEEDY-6-192 with security claim 2128, 2128

5.5 2122CC 2128 242 2127 2133 242 [BDBN23]
6 2122CC 2152 242 2127 2157 242 [BDBN23]

SPEEDY-5-192 with security claim 264, 2128

4 261CC 2120 283 259CC 2118 283 [WNL+23]
5 2102CC 2108 242 2107 2113 242 [BDBN23]

assumptions, Beyne and Rijmen [BR22] introduced quasidifferential trails, which allow for
calculating fixed-key differential probabilities. This approach accounts for key-dependent
behavior, leading to more accurate probability estimates.

Contributions. In this paper, we conduct a thorough analysis of the literature on the
differential cryptanalysis of the SPEEDY block cipher family. In the interest of scientific
reproducibility, and because cryptanalytic results can directly impact confidence in a
cipher’s security, it is important that published attacks are correct. Several differential
attacks have been proposed against different round-reduced variants of SPEEDY [YJZZ22,
BDBN23, WNL+23, Zha24]. However, upon closer inspection, we find that nearly all of
them rely on incorrect assumptions resulting in flawed probability estimates. In some
cases, the attack becomes invalid due to the use of a differential characteristic with a
probability of zero. In others, the attack still works, but for reasons that differ from the
original explanation. We also identify some instances where the attack is actually stronger
than reported, due to underestimating the characteristics’ probability.

To explain and resolve these flawed probability estimates, we begin by focusing on
the underlying one-round differential characteristics1 used in the reported multi-round
characteristics. Several of these one-round characteristics have probability zero — even
in the key-averaged setting. This renders the multi-round characteristics used in the
key-recovery attacks invalid. We provide a detailed analysis of this issue, which arises from
the incorrect application of assumptions used to estimate key-averaged probabilities in
steps without key addition. Furthermore, we propose a method to accurately and efficiently
calculate one-round probabilities using quasidifferential trails. Surprisingly, this is the first
application of quasidifferential trails to compute differential probabilities in block ciphers

1There are one-round characteristics, because every SPEEDY round contains two S-box layers.
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that compose nonlinear layers without intermediate key addition.
Using our corrected calculation of one-round differential characteristic probabilities, we

develop a tool based on mixed-integer linear programming to search for optimal one-round
characteristics. Using these optimal one-round characteristics we search for multi-round
characteristics and find improved 5-round differential characteristics. We also identify
some alternatives for the one-round characteristics with probability zero that were used in
the multi-round characteristics of [YJZZ22, BDBN23, WNL+23, Zha24].

Building on this tool, we reevaluate all previously published key-recovery attacks on
SPEEDY, carefully analyzing the corresponding characteristics and reevaluating the security
margin. Table 6 presents an overview of the original and updated attack complexities,
including data, time, and memory. For instance, we show that the 7-round attack
by [BDBN23], originally based on a differential with 409 characteristics, is invalid due
to the majority of those characteristics having a probability of zero. Our reevaluation
reduces the actual differential probability by a factor of more than 210, rendering the
attack invalid. Conversely, the 5-round attack of [YJZZ22] turns out to be more effective
than reported, with the corrected characteristic offering a probability three times higher
than initially claimed. Finally, we propose a new full-round chosen-plaintext key-recovery
attack on SPEEDY-7-192. We adopt the key-recovery strategy from [WNL+23] and use a
new 5.5-round truncated differential, extended with 1.5 key-recovery rounds. This results
in a key-recovery attack with a data complexity of 2183, a time complexity of 2185, and a
memory complexity of 2156. Using the same truncated differential we can also mount a
chosen-chipertext attack with same data and time complexity and a memory complexity
of 236.

Earlier and parallel work. This paper is an extended version of our note [BN24] from
February 2024, where we showed that the characteristic used in [BDBN23] has probability
zero. While this paper was being finalized, a parallel and independent report was uploaded
to ePrint by Boura et al. [BDG+25]. They also identify a valid differential characteristic
for SPEEDY-7-192 and mount a key-recovery attack. Although we have not performed a
detailed comparison, our characteristic has higher probability and leads to a slightly more
efficient attack.

2 Preliminaries
2.1 SPEEDY

SPEEDY [LMMR21] is a family of low-latency block ciphers designed by Leander et al.
SPEEDY-r-6l denotes one instance of the family with block and key size 6l and r rounds.
The designers suggest l = 32 as default with the number of rounds r ∈ {5, 6, 7}. Since all
reported differential characteristics are on these instances, we denote them by SPEEDY-r-192.
The internal state x is represented as a 32 × 6 array of 192 bits. We denote the bit at row
i (0 ≤ i < 32) and column j (0 ≤ j < 6) by xi,j , following the notation of the designers
[LMMR21]. The zero bit is the most significant bit. The designers claim 128-bit security
for SPEEDY-6-192 and 192-bit security for SPEEDY-7-192.

Round Function. The sth round function Rs : F32×6
2 → F32×6

2 consists of five different
operations in the order shown in Figure 1. We denote the input (resp. output) to each of
the described operations as a vector x (resp. y). In the last round some linear operations
are omitted, and there is an additional round key addition.

• AddRoundKey (ARK). The 192-bit round key ks is XORed to the state. The details
of the key schedule to derive these round keys from the 192-bit master key K are
given below.
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Figure 1: The round function of SPEEDY for the first r − 1 rounds and the last round.

• SubBox (SB). Applies a 6-bit b-Box S to each row of the state. The S-box is given
in Table 2.

• ShiftColumns (SC). The j-th column of the state is rotated upwards by j positions:
yi,j = xi+j,j .

• MixColumns (MC). A circulant binary matrix is multiplied with each column of
the state: yi,j = xi,j ⊕ xi+α1,j ⊕ xi+α2,j ⊕ xi+α3,j ⊕ xi+α4,j ⊕ xi+α5,j ⊕ xi+α6,j with
α = (1, 5, 9, 15, 21, 26).

• AddRoundConstant (ARC). A 192-bit constant cs is XORed to the whole state. We
refer to [LMMR21] for more details about cs.

Table 2: The 6-bit S-box used in SPEEDY.

x0x1 x2x3x4x5

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f
0. 08 00 09 03 38 10 29 13 0c 0d 04 07 30 01 20 23
1. 1a 12 18 32 3e 16 2c 36 1c 1d 14 37 34 05 24 27
2. 02 06 0b 0f 33 17 21 15 0a 1b 0e 1f 31 11 25 35
3. 22 26 2a 2e 3a 1e 28 3c 2b 3b 2f 3f 39 19 2d 3d

Key Schedule. The key schedule takes a 192-bit master key, used as the zero-th round
key k0. The following round keys are derived in a linear way from this master key using a
bit permutation. We refer to [LMMR21] for the details of this bit permutation.

Round Structure. We emphasize an unconventional aspect of the SPEEDY round function:
two nonlinear SubBox layers are separated solely by a linear ShiftColumns operation,
without any key addition in between. This design choice is the reason why even key-
averaged differential probability calculations fail, and it will be the focus of our detailed
analysis.

2.2 Differential Cryptanalysis
The main principle of differential cryptanalysis is to investigate the propagation of a given
plaintext difference through a cipher. A differential (a, b) consist of an input difference a
and an output difference b. To set up a differential attack, one first finds good differentials,
i.e. with probability much higher than for a random function. These differentials can then
be used as a distinguisher and for key-recovery.



Tim Beyne and Addie Neyt 5

2.2.1 Differential characteristics

A differential characteristic (a1, a2, . . . , ar+1) with a1 = a and ar+1 = b specifies, besides
the input and output difference, every intermediate difference for a composition of r
functions. The probability of a differential (a, b) is calculated by summing the probability
of all possible characteristics with the same input and output difference.

The key-averaged probability of a characteristic is determined by multiplying the
probabilities over each round, assuming that the round keys are uniformly random and
independent [LMM91]. However, this assumption is not valid due to the use of a key
schedule. More importantly, the key-average probability does not determine the data-
complexity of a differential attack. For this reason, the hypothesis of stochastic equivalence
[LMM91] is often used. This hypothesis states that the probability of a differential
for a specific key can be estimated through the average probability over all possible
keys. However, in practice the probability can vary substantially across different keys
[DR07, BR22].

2.2.2 Quasidifferential trails

To overcome the hypothesis of stochastic equivalence and being able to calculate the
probability of a differential characteristic in a fixed-key model, quasidifferential trails
were introduced by Beyne and Rijmen in 2022 [BR22]. For a function F : Fn

2 → Fn
2 the

quasidifferential transition matrix is defined by

DF
(v,b),(u,a) =

(
2 Pr

x
[vT F (x) = uT x | F (x + a) = F (x) + b] − 1

)
Pr
x

[F (x + a) = F (x) + b].

A quasidifferential trail is a sequence of mask-difference pairs ((u1, a1), (u2, a2), . . . ,
(ur+1, ar+1)) with (u1, a1) = (u, a) and (ur+1, ar+1) = (v, b). The correlation of a qua-
sidifferential trail is defined as

∏r
i=1 DFi

(ui+1,ai+1),(ui,ai). By summing over all possible
intermediate masks we can find the probability of a characteristic:

Pr
x0

[
∧r

i=1Fi(xi + ai) = Fi(xi) + ai+1] =
∑

u2,...,ur

r∏
i=1

DFi

(ui+1,ai+1),(ui,ai),

with xi = Fi(xi−1) for all i ≥ 1. Lastly, the probability of the differential is found by
summing over all possible quasidifferential trails:

DF
(0,b),(0,a) =

∑
u2,...,ur
a2,...,ar

r∏
i=1

DFi

(ui+1,ai+1),(ui,ai).

In the remainder of this paper we will often make use of [BR22, Theorem 4.2 (2)] which
states that if we have a quasidifferential trail with differences a1, . . . , ar+1 and maximum
correlation p, that if we find a quasidifferential trail with the same differences but with
correlation −p, then the probability of the characteristic is zero.

Theorem 1. [BR22, Theorem 4.2] For a function F = Fr ◦ · · · ◦ F1 and a sequence of
differences a1, . . . , ar+1 with correlation p (as quasidifferential trail), it holds that:

(1) If (u1, a1), . . . , (ur+1, ar+1) is a quasidifferential trail with correlation (−1)bp where
b ∈ {0, 1}, then for any quasidifferential trail ((v1, a1), . . . , (vr+1, ar+1)) with cor-
relation c, the correlation of the quasidifferential trail ((u1 + v1, a1), . . . , (ur+1 +
vr+1, ar+1)) is (−1)bc.

(2) If the correlations of any number of quasidifferential trails with differences a1, . . . , ar+1
and correlation ±p sum to zero, then the probability of the characteristic (a1, . . . , ar+1)
is zero.
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We end this section with a general property of quasidifferential transition matrices that
will be used in Section 3. This is a new result.

Lemma 1. Let ((u, a), (v, b)) be a quasidifferential for a function F : Fn
2 → Fn

2 which
consists of differences (a, b) and masks (u, v). If uT a 6= vT b, then

DF
(v,b),(u,a) = 0

Proof. Recall the definition of the quasidifferential transition matrix:

DF
(v,b),(u,a) =

(
2 Pr

x
[uT x = vT F (x) | F (x + a) = F (x) + b] − 1

)
Pr
x

[F (x + a) = F (x) + b].

Rewriting the first factor yields

2 Pr
x

[
uT x = vT F (x) | F (x + a) = F (x) + b

]
− 1

= Pr
x

[
uT x + vT F (x) = 0 | · · ·

]
− Pr

x

[
uT x + vT F (x) = 1 | · · ·

]
= Pr

x

[
uT (x + a) + vT F (x + a) = 0 | · · ·

]
− Pr

x

[
uT x + vT F (x) = 1 | · · ·

]
(1)

= Pr
x

[
uT x + vT F (x) = uT a + vT b | · · ·

]
− Pr

x

[
uT x + vT F (x) = 1 | · · ·

]
In step (1), we leverage the symmetry of the relation F (x + a) = F (x) + b, which ensures
that if x satisfies the condition, so does x + a. If uT a + vT b = 1, then the result is zero.

3 Revisiting reported differential characteristics
The literature on the differential cryptanalysis of SPEEDY contains several differential
characteristics used in various key-recovery attacks, see Table 6. Section 5 provides a more
detailed discussion of the key-recovery attacks. In this section, we re-examine the reported
probability of the characteristics in Table 6 by analyzing the one-round characteristics
they comprise.

We start this section by illustrating, for a one-round characteristic, the discrepancy
between the actual probability and the probability reported in the literature — even in
the key-averaged case. As discussed in the introduction, this discrepancy arises from
an incorrect application of assumptions used to estimate the key-averaged probability
in steps without a key addition. Specifically, the assumption that the probability over
two consecutive nonlinear SubBox applications can be computed as the product of their
individual probabilities is flawed. We show how quasidifferential trails can be used to
calculate the probability of such one-round characteristics.

To demonstrate the scope of this issue, Table 3 lists all one-round characteristics
extracted from multi-round differential characteristics in the literature where such dis-
crepancies occur between the actual and reported probabilities. We begin by examining
the characteristics with probability zero, and then proceed to those with a nonzero but
different probability. Finally, for the characteristics with probability zero, we propose
alternative characteristics for the same differential when possible.

3.1 Differential properties of one round
The core challenge in analyzing SPEEDY’s differential characteristics arises from the opera-
tion SB ◦ SC ◦ SB, where two nonlinear SubBox applications are separated only by the
ShiftColumns operation and no key addition. Previous works [BDBN23, WNL+23, Zha24,
YJZZ22] calculated the probability by multiplying the probabilities over the two SubBox
applications. However, we will show that this approach is not valid when differences occur
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Table 3: Overview of discussed one-round characteristics which are part of multi-round
characteristics in the literature. We give for each characteristic the reported probability,
which corresponds to the correlation of the trail with zero masks, the probability calculated
using quasidifferential trails, the number of rounds of the multi-round characteristic it is
part of and the reference.

Name Correlation with
zero masks

Probability # rounds Reference

A0 2−70.42 0 4.5 [YJZZ22, Figure 1]

A1 2−42 0 4 and 5 [Zha24, Table 6, 7]
4.5 and 5.5 [BDBN23, Figure 8, 4]

A2 2−44.2 0 6 [Zha24, Figure 4]
A3 2−64.83 0 5.5 [WNL+23, Figure 3]
A4 2−29.41 0 3.5 [BDBN23, Figure 7]
A5 2−42.23 0 5.5 [BDBN23, Figure 4]
A6 2−44.87 0 5.5 [BDBN23, Figure 4]

B0 2−45.08 2−44.97 4.5 [YJZZ22, Figure 1]
5.5 [WNL+23, Figure 3]

B1 2−42 2−40.42 3.5 [YJZZ22, Figure 4]
3.5 [WNL+23, Figure 7]

B2 2−32.05 2−32.66 5.5 [BDBN23, Figure 4]
B3 2−44.87 2−44.49 3.5 [BDBN23, Figure 7]
S0 2−67.8 2−66.42 alternative for A0 and A3, see §3.4
S1 2−49 2−49 alternative for A1, see §3.4
S2 2−47.8 2−47.83 alternative for A2, see §3.4

within six rows of each other. The first SubBox application constrains possible outputs,
which are only linearly shifted by the ShiftColumns, affecting the input distribution of the
second SubBox application and potentially affecting the probability.

Quasidifferential trails allow us to accurately calculate the probability by accounting
for this relation between the output after the first SubBox application and the input before
the second SubBox application. We note that the theory of plateau characteristics [DR07]
cannot fully describe this issue: the S-box has differentials with probability 6/26, for which
the input and outputs satisfying the differential do not form an affine space (which is
necessary for plateau characteristics).

SB SC SB SC MC

kr cr

a1

0
a2
u2

a3
u3

a4

0
a5

0
a6

0

Figure 2: Quasidifferential trail over one round of SPEEDY.

Given a one-round differential characteristic (a1, . . . , a6) as shown in Figure 2, we
determine its probability by identifying all quasidifferential trails and summing their
correlations. We begin by eliminating mask values that lead to correlation zero without
considering the specifics of the S-box. The input and output masks are set to zero. Since
ShiftColumns and MixColumns are invertible linear operations, the intermediate masks
before the MixColumns and before the ShiftColumns operations must also be zero. To
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determine possible values for the masks u2 and u3, we apply the general principle that
for inactive S-boxes, the input mask (respectively output mask) must be zero when the
output mask (respectively input mask) is zero if the correlation is nonzero. Hence, the
nonzero bits in u2 should appear in nonzero rows of a2 and the nonzero bits of u3 have
to align with the nonzero rows of a3. However, we also have u3 = SC(u2), which further
restricts the possible values of u2 and u3. The preceding argument does not restrict the
mask bits corresponding to nonzero difference bits. Lemma 1 from Section 2.2.2 provides
some conditions on the masks that hold for all S-boxes. Taking into account all of these
constraints, it is feasible to enumerate all quasidifferential trails with nonzero correlation
for sparse differential characteristics. Note that the resulting probability is independent of
the key because the input and output masks for the round function are set to zero.
Example 1. As a first example, we analyze the differences in the first and last row of
characteristic A1 (see Figure 3), in which the same differential appears twice. For the
first SubBox application, we have the differential (0x01, 0x10) with probability 2−3, and
after ShiftColumns, for the second SubBox we have the differential (0x10, 0x04) with the
same probability. The product of these probabilities corresponds to the correlation of
the quasidifferential trail with all-zero masks, i.e. 2−6 (only taking these two active rows
into account). However, looking at quasidifferential trails with nonzero masks, we find
quasidifferentials (0x0, 0x01) → (0x10, 0x10) with correlation 2−3 and (0x10, 0x10) →
(0x0, 0x04) with correlation −2−3. The corresponding quasidifferential trail has correlation
−2−6, not taking into account other rows. Hence, by Theorem 1, the probability is zero.
This corresponds to the fact that all valid differential pairs in the first SubBox produce
outputs with the highest bit set to one (preserved by ShiftColumns), whereas the second
SubBox transition requires the highest input bit to be zero, leading to a contradiction.
This contradiction is what the nonzero mask captures, leading to a probability of zero. .

−2−21

SB
1

SC
2−21

SB

Figure 3: Quasidifferential trail for characteristic A1 with an opposite correlation of the
quasidifferential trail with all zero masks. The correlations are computed using (indices in
hexadecimal): DS

(20,10),(00,01) = −2−3 and DS
(00,04),(20,10) = 2−3.

The phenomenon discussed in Example 1 is more general. Figure 4 illustrates the
propagation of differences and masks through the composition SB ◦ SC ◦ SB. Nonzero
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difference bits are represented by orange cells, and potentially nonzero mask bits are
represented by the light blue cells. The potentially nonzero mask bits are spread across six
different rows by the ShiftColumns operation.

For trails with nonzero correlation and nonzero masks, the mask after the second S-box
layer can only be zero if at least two of the six S-boxes corresponding to the gray-colored
rows in the rightmost state are active. If only one S-box is active, then the correlation is
zero (for non-zero masks) due to Lemma 1. To identify the input differences for which
quasidifferential trails with nonzero masks can have nonzero correlation, we trace back
the gray cells in the input of the second SubBox (SB) application through the inverse
ShiftColumns (SC) and the inverse SubBox (SB). This shows that the second nonzero row
of the input difference should be within a range of six rows from the first active row.

SB
1 1

SC SB
1

1

Figure 4: Propagation of a difference through SB ◦ SC ◦ SB.

SB SC SB

Figure 5: A one-round characteristic with probability 2−53, based on eight quasidifferential
trails with correlation 2−56. These trails have nonzero masks after the first S-box layer,
with (u20,0, u24,4, u31,0) arbitrary in F3

2 and all other mask bits fixed to zero.

Example 2. The phenomenon described above can also lead to characteristics with higher
probability than what might be expected based on multiplying one-round probabilities.
Figure 5 depicts such a characteristic. Orange cells indicate a difference bit equal to one.
The correlation of the quasidifferential trail with zero masks is 2−56. Using the process
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described above, we identify five potentially nonzero bits in the mask after the first SubBox
application, indicated by blue cells in Figure 5. By examining all 32 possible values for
this intermediate mask, we find eight quasidifferential trails with a nonzero correlation
of 2−56. The masks of these eight trails are illustrated in Figure 5 using different colors.
Specifically, the eight masks are obtained by setting three mask bits to all possible values
(u20,0, u24,4, u31,0) in F3

2, and all other bits to zero. The probability is obtained by summing
all correlations, i.e. 2−53 for this characteristic. .

3.2 Characteristics with probability zero
The characteristics A0, A1, . . . , A6 in Table 3 all have probability zero. Characteristic
A1 was already analyzed in Example 1. Characteristic A0 is shown in Figure 6. It was
estimated to have a probability of 3 · 2−72 in [YJZZ22], corresponding to the correlation
of the quasidifferential trail with all masks equal to zero. Similar to the analysis of
characteristic A1 in Example 1, we identify one more trail with a correlation of −3 · 2−72.
The nonzero mask bits in this trail are represented by blue cells in Figure 6. Therefore, by
Theorem 1, the probability of the entire characteristic is zero.

For the other characteristics A2, A3, A4, A5 and A6, we can also identify a quasidif-
ferential trail with correlation the opposite of to the correlation of the trail with all-zero
masks. Hence, the probability of all these characteristics is zero. For details on these
characteristics, see Figures 3, 12, 13, 14, 15, and 16 in the annex.

However, even if a specific characteristic has probability zero, this does not necessarily
imply that the corresponding differential has probability zero. In Section 3.4, we explore
alternative characteristics corresponding to the same differential.

−2−30

SB

1

SC

2−40.415

SB

Figure 6: Quasidifferential trail for characteristic A0 with the correlations computed using
(indices in hexadecimal) DS

(01,2a),(00,02) = −2−5 and DS
(00,04),(01,20) = 2−4.

3.3 Characteristics with a different but nonzero probability
For the characteristics B0, B1, B2 and B3 we find multiple quasidifferential trails, resulting
in a nonzero probability different from the reported probability. For characteristic B0 we



Tim Beyne and Addie Neyt 11

find four quasidifferential trails, see Figure 7. The sum of the correlations of these found
trails is 2−44.91 + 2−46.49 + 2−46.49 + 2−48.08 = 2−45.08, the probability of the characteristic.
For the details of characteristics B1, B2 and B3, we refer to Figures 17, 18 and 19 in the
appendix.

SB SC SB

Figure 7: Characteristic B0 with probability p = 2−45.08 with 4 quasidifferential trails
with correlations 2−44.91, 2−46.49, −2−46.49, −2−48.08 for nonzero bits (u24,2, u25,4) ∈ F2

2 in
the intermediate mask after the first SubBox application.

3.4 Alternatives for characteristics with probability zero
In Section 4, we search for multi-round differential characteristics by first constructing nu-
merous one-round differential characteristics. Based on these results, we identify alternative
characteristics with nonzero probability for the same differentials as the probability-zero
characteristics from Table 3. Specifically, we found alternatives for characteristics A0, A1,
A2 and A3. These are illustrated in Figure 8 below and Figures 22 and 23 in the appendix.

The impact of these results on key-recovery attacks is discussed in Section 5, in
particular for attacks that rely on multi-round characteristics containing at least one
one-round characteristic with probability zero. Since a single zero-probability one-round
characteristic renders the entire multi-round characteristic invalid, this directly impacts
the effectiveness of such attacks. Where possible, we substitute the probability-zero
characteristics with the alternatives we found and re-evaluate the key-recovery attacks.

4 Searching for improved differential characteristics
In this section, we develop methods to find improved multi-round characteristics for SPEEDY.
Our approach is based on finding a shortest path in a graph with edges corresponding to
one-round characteristics.

To construct one-round characteristics, we first analyze the differential behavior of the
MixColumns operation and demonstrate that the necessary condition for the existence
of nontrivial quasidifferential trails discussed in Section 3.1, is always satisfied for two
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SB SC SB

Figure 8: Characteristic S0 with probability 2−66.42 based on eight quasidifferential trails
with correlations 2−67.83 (twice), 2−69.42 (four times), −2−69.42 (twice) with nonzero mask
bits (u28,1, u28,3, u29,1) in F3

2 in the mask after the first S-box layer.

rounds of SPEEDY. Furthermore, we show that in most cases, this condition leads to an
actual discrepancy in the probability. We then construct an MILP model that searches for
optimal one-round characteristics using quasidifferential trails to estimate probabilities.

For the multi-round differential characteristics we find, we extend our analysis to
estimate the probability in the fixed-key model. We identify a 5-round characteristic with
a correlation of 2−160.64 for the quasidifferential trail with all-zero masks. The actual
differential probability of this characteristic is between 2−157.542 and 2−157.518, depending
on the key.

4.1 Differential properties of the MixColumns operation
In Section 3.1, we examined differential characteristics over a single round and explained
the necessity of using quasidifferential trails to accurately compute probabilities. Although
we identified when quasidifferential trails with nonzero masks exist, we did not analyze
how often this would happen in the context of a multi-round characteristic. This section
provides a more detailed discussion of that aspect. To do so, we focus on the MixColumns
operation. According to [LMMR21], the MixColumns operation has a branch number of
eight, which is realized for inputs of Hamming weight one. In the following lemma, we
take a closer look at MixColumns and the Hamming weights of its inputs and outputs.

Lemma 2 (MixColumns). For all x1 and x2 such that x2 = MC(x1), at least one of
HW (x1) or HW (x2) is greater than or equal to six, where HW (x) denotes the Hamming
weight of the state x.

Proof. Using an MILP model, we can calculate for all possible x1 and x2 with HW (x1) ≤ 6
or HW (x2) ≤ 6, what the corresponding lowest Hamming weight of x2, respectively x1 is.
The results are given in Table 4.

Lemma 2 demonstrates that within two rounds of SPEEDY, either the first or the
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Table 4: Lowest Hamming weight of the input (or output) of the MixColumns operation
when the output (or input) Hamming weight is less than or equal to six.

HW input 1 2 3 4 5 6 7 8 9 12 19
HW output 7 8 7 8 7 6 5 4 3 2 1

second round inevitably activates at least six S-boxes. Given that there are 32 rows,
this ensures that two nonzero rows will be positioned within six rows of each other,
satisfying the necessary but not sufficient condition required for the existence of nontrivial
quasidifferential trails as explained in Section 3.1.

To investigate this further, we examine how often this results in discrepancies of the
probabilities. We limit ourselves to the scenario where the input and the output differences
are one-bit differences located in the same column. This simplifies the analysis and matches
the approach in the next subsection, where the multi-round characteristics are designed to
start and end each round with only one active column. Examining all these relevant cases,
we identify 26050 possible one-round differential characteristics. Among these, 27.88%
have a probability of zero, 27.94% exhibit a higher probability, and 9.04% have a lower
but nonzero probability compared to calculations based only on the quasidifferential trail
with all-zero masks.

4.2 Finding multi-round differential characteristics
In this section, we search for differential characteristics by extending the methods from
[BDBN23, WNL+23] and incorporating calculations based on quasidifferential trails.

Following [BDBN23], we focus on optimal one-round characteristics in which only a
single column is active during the MixColumns operation. This restriction is motivated by
the observation that multiple active columns, when propagated through the ShiftColumns
operation, quickly result in numerous active rows, significantly reducing the overall proba-
bility of the characteristic. Our search starts from all possible pairs (x, MC(x)) satisfying
HW (x) + HW (MC(x)) ≤ 12. Since any of the 32 possible rotations within a column
yields the same result, we select a representative from each equivalence class, ultimately
identifying 64 distinct pairs. Note that, [BDBN23] constrained both input and output
Hamming weights to at most seven, and [WNL+23] considered only cases with an input
Hamming weight of at most eight.

For each identified pair, we generate six possible tuples (x, MC(x), c) , where c ∈
{0, . . . , 5} indicates the column in which the difference occurs. We then search for the
optimal one-round differential characteristic for all pairs of such tuples defining the input
and output differences. This is based on an MILP model to search for the quasidifferential
trail with the highest correlation. Once a candidate is found, we compute its probability
by calculating by enumerating all quasidifferential trails. If the resulting probability is
zero, we continue with the next-best characteristic for the same differential and repeat
the process. This continues until we find a characteristic with nonzero probability or
exhaust all options. For every characteristic with nonzero probability, we also examine
the next-best characteristics for the same differential. This analysis is limited to those
characteristics for which the corresponding zero-mask quasidifferential trail has correlation
at most eight times lower than the highest-correlation trail.

Using our MILP model, we identified 13799 differential characteristics, of which 6894
have probability zero. By analyzing the next-best characteristics, we found that 1569 of
these zero-probability characteristics could be replaced with other characteristics having
nonzero — but lower — probability.

All identified one-round differentials are used to construct a directed graph, where
each node represents a difference. An edge from one node to another exists if there is a
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one-round differential connecting the corresponding tuples, and the edge weight reflects
the probability of that differential. We then use a branch-and-bound algorithm to search
for a minimum-weight (i.e. maximum probability) path in this graph, corresponding
to an optimal multi-round characteristic. In particular, our goal is to identify the best
4-round differential characteristic. With the key-recovery already in mind, we require that
the characteristic starts with a difference that allows for a MixColumns transition from
Hamming weight one to seven. This facilitates the addition of a high-probability round at
the beginning of the characteristic. Additionally, we minimize the number of active rows
after the final MixColumns operation, as the characteristic will also be extended with half
a round at the end.

The optimal 4-round characteristic we identified is shown in Figure 9. To be able
to use the same key-recovery strategy as in [WNL+23] we prepend the same first-round
characteristic (shown in Figure 10). In Section 5, we also extend this characteristic with
half a round at the end to obtain a truncated differential that can be used in a full-round
key-recovery attack.

SB SC SB SC MC SB SC SB SC

SB SC SB SC MC SB SC SB SC

Figure 9: Four-round differential characteristic.

4.3 Probability calculation
To calculate the fixed-key probability of multi-round differential characteristics, we develop
an MILP model designed to identify quasidifferential trails corresponding to a specific
differential characteristic. To reduce the search space, we impose certain constraints and
adopt an iterative approach to enumerate as many quasidifferential trails as feasible.

Quasidifferential trails with key-independent correlations. We first find quasidifferential
trails with zero masks before and after the MixColumns operation, i.e. trails with key-
independent correlations. These can also be found by using the earlier results for the
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SB SC SB SC MC
4 round char.

MC

Figure 10: First-round extension for the four-round characteristic from Figure 9

one-round characteristics B1, B4 and B5 (see Figures 17, 20 and 21 in the appendix) that
are present in our 5-round characteristic.

For the 5-round characteristic in Figure 10, we identify 256 quasidifferential trails. The
probability is obtained by summing the correlations of all identified trails (see Table 5),
yielding a total value of 2−157.53. For comparison, the correlation of the quasidifferential
trail with all-zero masks is 2−160.64.

Table 5: Number of found quasidifferential trails of each correlation.

Correlation # Trails Correlation # Trails Correlation # Trails
2−160.64 8 2−161.64 8 −2−162.23 8
2−163.23 8 −2−163.23 16 2−163.81 8

−2−164.23 8 2−164.23 8 2−164.81 16
−2−164.81 8 −2−165.40 8 −2−165.81 16

2−165.81 8 2−166.40 8 −2−166.40 16
2−166.81 8 2−167.40 16 −2−167.40 8
2−167.98 8 −2−167.98 8 2−168.40 8

−2−168.98 16 2−168.98 8 −2−169.98 8
2−170.57 8 2−171.57 8

Quasidifferential trails with key-dependent correlations. Once all key-independent
quasidifferential trails have been determined, we relax the constraints on the masks.
Rather than enforcing conditions on the masks, we now consider all quasidifferential trails
with a correlation of at least 2−172. This yields 104 key-dependent quasidifferential trails,
which we use to identify potential dependencies on the subkeys.

Based on the masks of the additional trails, we refine our correlation calculation by
enumerating all trails with the same masks at the corresponding SubKey additions. This
refined approach allows us to account for a total of 11648 quasidifferential trails and
compute a more accurate estimate of the probability of the characteristic. Our final
estimate of the probability of the characteristic is

2−157.53 − (−1)K1
2−164.79 − (−1)K2

2−178.15 − (−1)K3
2−168.70,
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where the linear combinations K1, K2 and K3 of key bits are given by

K1 = k4,5 + k5,5 + k10,5 + k11,5 + k15,5 + k19,5 + k31,5,

K2 = k2,1 + k8,1 + k11,1 + k20,1 + k21,1 + k28,1 + k31,1,

K3 = k8,2 + k13,2 + k14,2 + k19,2 + k20,2 + k24,2 + k28,2.

The first term in this formula arises from the key-independent quasidifferential trails
discussed in the previous paragraph. The subsequent terms originate from key-dependent
trails. Due to the linear key schedule, we can determine the master key bits corresponding
to linear combinations of subkey bits. Depending on the key, the probability varies slightly,
between 2−157.542 and 2−157.518.

Multiple characteristics. Starting from our best five-round characteristic found using the
method described in Section 4.2, we identify, for two of its five rounds, other one-round
characteristics that correspond to the same differential over one round. By combining
these, we construct three distinct 5-round characteristics for the same overall differential.
Taking this into account refines the estimated probability to 2−157.27. We note that this
refinement is based on a limited search and is not the result of exhaustive enumeration of
all possible characteristics.

5 Key Recovery attack
In this section, we examine the impact of our analysis in the previous sections on key-
recovery attacks. We begin by reevaluating attacks in the literature, and then present an
improved full-round key-recovery attack on SPEEDY-7-192 using our 5-round differential
characteristic from Section 4.

5.1 Revisiting reported key-recovery attacks
We revisit the key-recovery attacks summarized in Table 6. For each attack, we analyze the
characteristic that was used and assess its probability. Where possible, we considered the
alternative characteristics introduced in Section 3.4 to recalculate the cost as accurately as
possible. We also examine the probability of the entire differential in other cases, since
key-recovery attacks depend on differentials rather than on individual characteristics. The
reported characteristics are typically dominant, but in some cases the effect of multiple
characteristics is not negligible.

Attacks on SPEEDY-7-192 The 7-round key-recovery attack by Boura et al. [BDBN23]
is depends on the one-round characteristics A1, A5, and A6. Alternatives for these
characteristics have significantly lower probability. Since the original paper took into
account multiple differential characteristics, we also examined the possibility of other
characteristics with a good probability. The authors of [BDBN23] identified 409 differential
characteristics for the same differential. In our attempt to reproduce the results, using
the same criteria as the paper, we identified 584 characteristics. Due to the absence of a
detailed listing of the characteristics of the paper, a direct comparison was not possible.

Using the method from Section 3.1, we find that 545 of the identified characteristics
have probability zero. Summing the nonzero probabilities shows that the overall differential
probability of the 5-round characteristic is 2−180.60. This is 210.65 times lower than the
reported probability, rendering the attack invalid.

We did not identify an alternative for characteristic A3, which is used in the key-recovery
attacks from [WNL+23] on 7 rounds of SPEEDY-7-192. However, to construct an alternative
characteristic replacing the full 5.5-round characteristic used in [WNL+23], we could
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Table 6: Overview of differential key-recovery attacks on the three SPEEDY variants from
the literature, with their reported costs (data, time, memory). CP and CC indicate data
collection in the chosen-plaintext and chosen-ciphertext settings, respectively. r is the
number of rounds attacked. Time complexities are measured in the number of encryptions,
and memory costs are expressed in block size units.

r Data Time Memory Ref. Contains
SPEEDY-7-192 with security claim (2192, 2192)

5 2108.91CC 2108.95 2108.91 [YJZZ22] B1

6 2158.04CC 2158.06 2158.04 [YJZZ22] A0, B0

7 2187.28CC 2187.84 242 [BDBN23] A1, A5, A6, B2

7 2186.53CC 2187.39 236 [WNL+23] A3, B0

7 2186.53CP 2187.39 2156 [WNL+23] A3, B0

SPEEDY-6-192 with security claim (2128, 2128)
5.5 2121.65CC 2127.8 242 [BDBN23] A1, A5, B2

6 2121.65CC 2151.67 242 [BDBN23] A1, A5, B2

SPEEDY-5-192 with security claim (264, 2128)
4 261CC 2119.69 283 [WNL+23] B1

5 2101.65CC 2107.8 242 [BDBN23] A4, B3

use S0, with the additional requirement that the round preceding A3 be modified using
characteristic E0 (see Figure 24 in the appendix). These adjustments reduce the probability
of the characteristic by 23.21. Although the attack remains valid, the complexities are
worse than claimed. In this case no multiple characteristics where used, and we did not
search for other 5.5-round characteristics that could improve the probability.

The first characteristic, S0 (Figure 8), serves as a valid alternative to characteristic
A0. In fact, its probability is higher. Notably, when only considering the quasidifferential
trail with zero masks for the characteristic S0, we find a higher correlation than for the
characteristic A0. The attack on the 6-round SPEEDY-7-192 in [YJZZ22] stays valid and the
complexities would improve slightly because the probability of the differential characteristic
improves by a factor of 24.026.

The attack on 5-round SPEEDY-7-192 presented in [YJZZ22] uses the characteristic B1.
Since the probability of the characteristics is three times higher than its reported value,
the cost of the attack is also lower.

Attacks on SPEEDY-6-192 The 5.5-round and 6-round attacks on SPEEDY-6-192 presented
in [BDBN23] use characteristic A5, for which we were unable to find a good alternative.
However, since the paper also utilizes multiple characteristics we again searched all
characteristics and found 5 characteristics of which only one has a nonzero probability.
The differential has a probability of approximately 2−88.12, which is 25.10 times lower than
the reported probability.

Attacks on SPEEDY-5-192 The 5-round attack on SPEEDY-5-192 presented in [BDBN23]
employs the characteristic A4, for which we were unable to find a good alternative. For
the same differential, we found 54 candidate characteristics of which 14 have nonzero
probability. The differential has a probability of 2−132.37, which is 27 times worse than the
reported probability.

The 4-round attack on SPEEDY-5-192 presented in [WNL+23] relies on the characteristic
B1, which improves the attack because its probability is three times higher than reported
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in [WNL+23] .

Table 7: Overview of the reported differential attacks on the three SPEEDY variants, with
their claimed and recalculated complexities (data, time, memory). CP and CC indicate
data collection in the chosen-plaintext and chosen-ciphertext settings, respectively. r is the
number of rounds attacked. Time complexities are measured in the number of encryptions,
and memory costs are expressed in block size units. See also Table 1.

r
Claimed Revisited Ref.

Data Time Memory Data Time Memory
SPEEDY-7-192 with security claim 2192, 2192

5 2108.91CC 2108.95 2108.91 2107.33CC 2107.37 2108.91 [YJZZ22]
6 2158.04CC 2158.06 2158.04 2154.01CC 2154.03 2158.04 [YJZZ22]
7 2187.28CC 2187.84 242 invalid [BDBN23]
7 2186.53CC 2187.39 236 2189.74CC 2190.60 236 [WNL+23]
7 2186.53CP 2187.39 2156 2189.74CP 2190.60 2156 [WNL+23]

SPEEDY-6-192 with security claim 2128, 2128

5.5 2121.65CC 2127.8 242 2126.75CC 2132.9 242 [BDBN23]
6 2121.65CC 2151.67 242 2126.75CC 2156.77 242 [BDBN23]

SPEEDY-5-192 with security claim 264, 2128

4 261CC 2119.69 283 259.42CC 2118.11 283 [WNL+23]
5 2101.65CC 2107.8 242 2106.75CC 2112.90 242 [BDBN23]

5.2 New key-recovery attack

We adopt the key-recovery strategy from [WNL+23] to construct a chosen-plaintext
attack on the full 7 rounds of SPEEDY-7-192. This attack leverages a 5.5-round truncated
differential, preceded by one key-recovery round and extended with half a key-recovery
round.

In Section 4, we identified the best 4-round characteristic, which we already extended
forward by one round. Figure 11 illustrates how this is extended with half a round to get
a full 5.5-round truncated differential (light blue cells represent undetermined difference
bits, constrained so that not all bits in the same row are zero). The figure also shows
the key-recovery rounds, with red cells indicating difference bits that are fixed to zero,
which occurs with probability approximately 2−3.04. Taking all components into account,
the overall probability of the truncated differential used in our attack is approximately
2−181.56.

In the first phase of the attack, we collect chosen plaintexts and use ciphertext differences
to reduce the number of possible values of subkey k7. The remaining key bits are recovered
using the sieving functions from [WNL+23].

Data collection. Based on the input difference, we construct structures of 2156 plaintexts
with rows 0,1,2,3,19,31 constant and all possible values for the remaining rows (indicated
by dark red cells in Figure 11). These plaintexts are encrypted, and the ciphertexts are
stored in a hash table indexed by the 156 zero bits of the ciphertext difference. Given that
there are approximately 22×156−1 possible plaintext-ciphertext pairs, we obtain an average
of 2155 collisions. These serve as the pairs in the sieving step.
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Figure 11: Key recovery attack on SPEEDY-7-192, with X the 5-round characteristic from
Figure 10

Number of possible candidates for the targeted part of k7. From the ciphertext
difference of the collected pairs, we deduce the possible candidates for part of k7. For a
fixed input and output difference of the S-box, on average only one value is possible for
the corresponding 6-bit part of the subkey k7. In cases with undetermined difference bits,
we analyze the second-to-last SubBox application. The following truncated differentials
over the S-box have to be considered:

1. (on row 31) 000001 → ∗ ∗ 0000 has two instantiations with nonzero probability:
output difference 100000 or 010000.

2. (on row 0 and 5) 000001 → 0 ∗ ∗000 has two instantiations with nonzero probability:
output difference 010000 or 001000.

3. (on row 8) 000001 → ∗000 ∗ ∗ has four instantiations with nonzero probability:
output difference 000001, 100000, 000011, or 100011.

Thus, on average we obtain a total of 2 × 2 × 2 × 4 = 32 different possible candidates for
the 36-bit targeted part of k7. Due to the linear key schedule, the guessed key bits of k7
can be linearly mapped to the key bits of k0, as indicated by the purple cells in Figure 11.
For each candidate for the 36-bit part of k7, we still need to guess 145 bits of k0.

Sieving candidate keys. Using the FirstSboxSieve and SecondSBoxSieve functions
from [WNL+23], we reduce the possible values of k0. The number of remaining key bits
of k0 to be guessed are shown in green in Figure 11. First, sieving of pairs and keys is
based on the output difference of the first S-box layer. A second step then considered the
second S-box to further refine the remaining key candidates. After sieving, we are left with
2138.46 pairs and 26.50 180-bit partial keys per pair on average, yielding 2144.96 candidate
keys for the 180-bit partial master key per structure. Finally we still have to exhaustively
search for the remaining 12 bits, for each candidate key. Additional details are given in
Appendix A.

Cost estimate. The time required for data processing is 2156 per structure. Accessing
the hash table storing the 2155 pairs is counted as one encryption. The 7-round SPEEDY
utilizes 7 × 2 × 32 = 448 S-boxes. Hence, the time required per structure is 2163.81 S-box
operations. The exhaustive search step has a time complexity of 2156.96. The total time
complexity is estimated as follows:

2156 + 2155 + 2163.81

448 + 2156.96 ≈ 2157.965.
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Since our differential has probability 2−181.56, the number of required structures is 226.56

(the exponent is 181.56 − 156 + 1).
For the full attack, we obtain a time complexity of 2184.53, a data complexity of 2182.56

and a memory complexity of 2156. To mount a chosen-ciphertext attack, we can reuse
the same distinguisher and follow a similar strategy, achieving identical time and data
complexities while reducing the memory complexity to 236.
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A Details on the key-recovery attack from Section 5.2
Table 8 lists the steps of the sieving process. In this appendix, we explain in more detail
what happens in every step.

The first phase calculates the set K7, containing on average 32 possible candidates for
the 36-bit targeted part of k7. To allow for meaningful comparison, the estimation of the
time complexity follows the strategy of [WNL+23]. For each of the 32 cases, two S-box
applications are counted; for the other active S-boxes with a fixed input difference, only
one S-box application is counted. We find a time complexity of 32 × 2 + 1 = 65 S-box
evaluations per pair.

In the next phase, we apply the FirstSboxSieve function to each relevant row i over
the first S-box layer. For each row, this yields 6-bit key candidates along with corresponding
S-box outputs. Since not all output bits are relevant for the next stage, we reduce the
outputs to their difference pattern since these are used in the sieving for the second S-box
layer. As an example, consider the application of FirstSboxSieve to rows 20 through 25.
Each of these yields a set of key candidates and corresponding S-box outputs. After the
ShiftColumns operation, the input to the second S-box on row 20, consists of the first bit
from the possible outputs of row 20, the second bit from the possible outputs of row 21,
and so on. This transformed input is then used in the SecondSboxSieve function, which
performs a further filtering step based on the propagation through the second S-box layer.

In Table 8, the column Ik contains the number of newly guessed key bits of k0 for the
corresponding row (shown in green in Figure 11). The filtering probability is estimated
based on the number of inactive bits in the S-box output. The columns labeled by Np

and Nk contain the remaining number of plaintext pairs and remaining number of key
candidates, respectively.

The time complexity of each sieving step is determined by Np and Nk. The total time
complexity of the sieving phase is obtained by summing the complexities across all lines,
yielding a total time complexity for the sieving of approximately 2163.81.

Table 8: Details of the sieving step from Section 5.2.

FirstSboxSieve SecondSboxSieve
Ik

Time Filtering
Np Nkon row on row complexity probability

Constructing K7 65 × 2155 1 2155 25

18 3 2159.0 2−4.0 2155.0 24.0

20 4 2160.0 2−4.0 2155.0 24.0

21 3 2159.0 2−3.0 2155.0 24.0

22 3 2159.0 2−3.0 2155.0 24.0

23 4 2160.0 2−4.0 2155.0 24.0

24 3 2159.0 2−3.0 2155.0 24.0

25 4 2160.0 2−2.0 2155.0 26.0

20 0 2162.0 2−6 2155.0 1
26 5 2161.0 2−3.0 2155.0 22.0

21 0 2158.0 2−6 2151.0 1
17 4 2156.0 2−4.0 2151.0 1
19 4 2156.0 1 2151.0 24.0

17 0 2156.0 2−5.54 2149.46 1
27 5 2155.46 2−3.0 2149.46 22.0

Continued on next page
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Table 8 — continued from previous page

FirstSboxSieve SecondSboxSieve
Ik

Time Filtering
Np Nkon row on row complexity probability

28 5 2155.46 2−3.0 2149.46 24.0

29 6 2156.46 2−3.0 2149.46 27.0

24 0 2157.46 2−6 2149.46 21.0

30 6 2156.46 2−4.0 2149.46 23.0

25 0 2153.46 2−6 2146.46 1
16 4 2151.46 2−4.0 2146.46 1
15 3 2150.46 2−3.0 2146.46 1
14 4 2151.46 2−2.0 2146.46 22.0

13 5 2152.46 2−1.0 2146.46 26.0

13 0 2153.46 2−6 2146.46 1
11 6 2153.46 2−1.0 2146.46 25.0

12 4 2151.46 2−1.0 2146.46 28.0

11 0 2155.46 2−6 2146.46 22.0

10 5 2152.46 2−2.0 2146.46 25.0

10 0 2152.46 2−6 2145.46 1
9 6 2152.46 2−2.0 2145.46 24.0

9 0 2150.46 2−6 2143.46 1
8 6 2150.46 2−2.0 2143.46 24.0

8 0 2148.46 2−6 2141.46 1
7 6 2148.46 2−3.0 2141.46 23.0

7 0 2145.46 2−6 2138.46 1
31 6 2145.46 1 2138.46 26.0

0 6 2145.46 1 2138.46 212.0

27 0 2151.46 2−5.67 2138.46 26.33

4 6 2145.46 2−4.0 2138.46 28.33

5 6 2145.46 2−4.0 2138.46 210.33

6 6 2145.46 2−4.0 2138.46 212.33

4 0 2151.79 2−6 2138.46 26.33

3 6 2145.46 1 2138.46 212.33

3 0 2151.79 2−5.83 2138.46 26.5
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B Characteristics with probability zero

−2−19

SB

1

SC

2−25.2

SB

Figure 12: Quasidifferential trail for characteristic A2 with an opposite correlation of the
quasidifferential trail with all zero masks. The correlations are computed using (indices in
hexadecimal) DS

(02,04),(00,02) = −2−3 and DS
(00,02),(02,08) = 2−5.
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−2−25.83

SB

1

SC

2−39

SB

Figure 13: Quasidifferential trail for characteristic A3 with an opposite correlation of the
quasidifferential trail with all zero masks. The correlations are computed using (indices in
hexadecimal) DS

(20,14),(00,01) = −2−5 and DS
(00,04),(20,10) = 2−3.

−2−15.41

SB

1

SC

2−14

SB

Figure 14: Quasidifferential trail for characteristic A4 with an opposite correlation of the
quasidifferential trail with all zero masks. The correlations are computed using (indices in
hexadecimal) DS

(02,20),(00,10) = −2−3 and DS
(00,02),(02,08) = 2−5.
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2−20.23

SB

1

SC

−2−22

SB

Figure 15: Quasidifferential trail for characteristic A5 with an opposite correlation of the
quasidifferential trail with all zero masks. The correlations are computed using (indices in
hexadecimal) DS

(08,11),(00,04) = 2−5 and DS
(00,04),(08,02) = −2−3.

2−23.87

SB

1

SC

−2−21

SB

Figure 16: Quasidifferential trail for characteristic A6 with an opposite correlation of the
quasidifferential trail with all zero masks. The correlations are computed using (indices in
hexadecimal) DS

(08,10),(00,04) = 2−3.415 and DS
(00,04),(08,10) = −2−3.
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C Characteristics with a different but nonzero probability

SB SC SB

Figure 17: Characteristic B1 with probability 2−40.42 based on four quasidifferential trails
with correlations 2−42, 2−43, 2−42 and 2−43 for nonzero bits (u21,0, u22,2) in F2

2 of the
intermediate mask after the first SubBox application.
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SB SC SB

Figure 18: Characteristic B2 with probability 2−32.66 based on two quasidifferential trails
with correlations 2−32.08 and 2−33.66 for nonzero bit u31,3 in F2 of the intermediate mask
after the first SubBox application.

SB SC SB

Figure 19: Characteristic B3 with probability 2−44.49 based on two quasidifferential trails
with correlations 2−44.91 and 2−46.49 for nonzero bit u28,4 in F2 of the intermediate mask
after the first SubBox application.
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SB SC SB

Figure 20: Characteristic B4 with probability 2−33.25 based on two quasidifferential trails
with correlations 2−34.25 and 2−34.25 for nonzero bit u7,4 in F2 in the intermediate mask
after the first SubBox application.

SB SC SB

Figure 21: Characteristic B5 with probability 2−54.79 based on 32 quasidifferential trails
with correlations 2−55.3, −2−56.9, 2−57.9, −2−57.9, 2−58.5, 2−59.5, −2−59.5, −2−60.1, −2−60.5,
2−61.1, −2−61.1, 2−62.1, 2−62.7, −2−62.7, −2−63.7, 2−65.2 (each twice) for nonzero bit
(u7,3, u14,1, u17,3, u20,3, u29,5) in F5

2 of the intermediate mask after the first SubBox appli-
cation.
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D Alternatives for characteristics with probability zero

SB SC SB

Figure 22: Characteristic S1 with probability 2−49, with only the quasidifferential trail
with all-zero masks.
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SB SC SB

Figure 23: Characteristic S2 with probability 2−47.83 based on four quasidifferential trails
with correlations 2−47.83,2−47.83,2−48.83 and −2−48.83 for nonzero bits (u29,3, u31,4) in F2

2
of the intermediate mask after the first SubBox application.

SB SC SB

Figure 24: Characteristic E0 with probability 2−11.415
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