On the Fiat—Shamir Security of
Succinct Arguments from Functional Commitments

Alessandro Chiesa Ziyi Guan
alessandro.chiesa@epfl.ch ziyi.guan@epfl.ch
EPFL EPFL
Christian Knabenhans Zihan Yu
christian.knabenhans@epfl.ch zihan.yu@epfl.ch
EPFL EPFL

May 27, 2025

Abstract

We study the security of a popular paradigm for constructing SNARGS, closing a key security gap left
open by prior work. The paradigm consists of two steps: first, construct a public-coin succinct interactive
argument by combining a functional interactive oracle proof (FIOP) and a functional commitment scheme
(FC scheme); second, apply the Fiat—Shamir transformation in the random oracle model. Prior work did
not consider this generalized setting nor prove the security of this second step (even in special cases).

We prove that the succinct argument obtained in the first step satisfies state-restoration security, thereby
ensuring that the second step does in fact yield a succinct non-interactive argument. This is provided the
FIOP satisfies state-restoration security and the FC scheme satisfies a natural state-restoration variant of
function binding (a generalization of position binding for vector commitment schemes).

Moreover, we prove that notable FC schemes satisfy state-restoration function binding, allowing us to
establish, via our main result, the security of several SNARGS of interest (in the random oracle model).
This includes a security proof of Plonk, in the ROM, based on ARSDH (a falsifiable assumption).

Keywords: Fiat—Shamir security; succinct arguments; functional commitment schemes

Contents

1 Introduction
L1 Ourresults. o o e e e
2 Techniques
2.1 Limitations of prior analyses L o
2.2 Warm-up: arguments based on functional PCPs
2.3 Succinct arguments based on public-coin functional IOPs
2.4 Function binding in action: On the security of Plonk
3 Preliminaries
3.1 Interactive argUMENtS v vt e e e e e e e e e e e e e e e e e
3.2 Functional interactive oracle proofs Lo L.
3.3 Functional commitment schemes 0.
4 The Funky protocol
5 Solving time and tail errors
5.1 Inefficient baseline for the generalcase
5.2 Linear qUETIES v v v e e e e e e e e e e e e e e e e e
5.3 Pointqueries L e e
5.4 Univariate polynomial evaluation queries
5.5 Multivariate polynomial evaluation queries
5.6 Structured polynomial evaluation queries L
5.7 Bounded-degree functions e e
6 State-restoration security reduction
6.1 Construction of the security reductorso
6.2 Proofof Lemma6.l
7 State-restoration security of the Funky protocol
7.1 Construction of the FIOP state-restoration adversary
7.2 State-restoration soundnesso Lol o e e e e
7.3 State-restoration knowledge soundness oL
8 Batching and linearization for homomorphic functional commitment schemes
8.1 Proof of Lemma 8.2 (batched-messages FC)
8.2 Proof of Lemma 8.3 (linearization trick)
9 Application: variants of the KZG polynomial commitment scheme
9.1 Proofof Lemma 9.1 (KZG) e
9.2 Proof of Corollary 9.2 (batch KZG)
9.3 Proof of Corollary 9.3 (linearized KZG)
A Special function binding
Comparing function binding to other properties for KZG
B.1 Function binding implies strong correctness
B.2 Interpolation binding implies function binding,
C Function binding for polynomial commitment schemes based on DLog
C.1 Square-root-sized polynomial commitment scheme
C.2 Bulletproofs-style polynomial commitment scheme
Acknowledgments
References

1 Introduction

A succinct non-interactive argument (SNARG) for a relation R is a computationally-sound non-interactive
proof system where, for a given instance x, an argument prover aims to convince the argument verifier that
there exists a witness w such that (x, w) € R, while sending an argument string much shorter than |w|
bits. SNARGs have numerous theoretical and practical applications, and are studied in a large body of work.
Due to barriers [GW11], SNARGs are typically achieved in oracle models or from non-falsifiable (e.g.,
knowledge) assumptions (or both). In this paper we focus on the random oracle model (ROM).

SNARGsS in the “pure” ROM. SNARGS exist unconditionally in the ROM [Mic00; Val08; BCS16; CY21b;
CY21a; CY24]. They are obtained by combining a PCP/IOP and a ROM-based vector commitment scheme
(specifically, a ROM-based Merkle commitment scheme). Security is proved via straightline (non-rewinding)
extraction. Alas, a weak point of known SNARG constructions in this “pure” ROM setting is argument size,
with state-of-the-art constructions achieving argument sizes around several tens of kilobytes. This state of
affairs has motivated the study of SNARGS in the ROM that additionally rely on cryptographic assumptions,
in order to achieve smaller argument size (than what is currently possible unconditionally in the ROM).

Smaller: SNARGs in the ROM plus cryptography. Smaller argument sizes are achieved by applying the
Fiat—Shamir transformation in the ROM [FS86] to succinct interactive arguments in the standard model (no
oracles) that, in turn, rely on cryptographic ingredients for small communication complexity. Various works
achieve argument sizes of several kilobytes this way [LM19; CHMMVW20; BFS20; CFFQR21; LPS24a].

Funky protocol. The succinct interactive arguments mentioned above all follow a familiar paradigm: they
combine a type of probabilistic proof and a corresponding notion of commitment scheme. In this paper we
describe and study this paradigm in full generality. We describe and study the Funky protocol (reminiscent
of “function”), which constructs a succinct interactive argument by combining an F'C scheme (functional
commitment scheme) and an FIOP (functional interactive oracle proof); we elaborate on both notions later.

Special cases are studied in prior work: with vector commitment schemes [Kil92; BG08; CDGS23;
CDGSY?24]; with linear commitment schemes [LM19]; and with polynomial commitment schemes [CHM-
MVW20; BFS20; CFFQR21; LPS24a]. These works do not show security of the SNARG in the ROM
obtained via the Fiat—Shamir transformation, leaving a security gap." Indeed, the Fiat—-Shamir transformation
requires the interactive argument (in particular, the Funky protocol) to satisfy a soundness property stronger
than standard soundness (and similarly for knowledge soundness).> Specifically, the Funky protocol must
satisfy state-restoration soundness [BCS16; CY24] (essentially equivalent to Fiat—-Shamir security). We ask:

When does the Funky protocol satisfy state-restoration soundness?

What security for the FC scheme? Prior work studies the special case where the FC scheme is a PC
scheme (polynomial commitment scheme) [CHMMVW20; BFS20; CFFQR21; LPS24a], assuming that the
PC scheme is extractable, a strong property stating that there exists a (non-black-box or rewinding) extractor
that outputs a polynomial for the commitment output by the adversary. On the one hand, this does not suffice
to ensure Fiat—Shamir security (as explained above); on the other hand, extractability is unnecessary to prove
standard soundness (or knowledge soundness) of the interactive argument. Consider, by analogy, Kilian’s
protocol [Kil92], a succinct interactive argument that combines a PCP and a VC scheme. The security of

'[LPS24b], an exception, shows the special soundness of an interactive argument obtained from a specific polynomial IOP and a
specific polynomial commitment scheme, which implies the Fiat-Shamir security of that construction.

2For every kriop, there are keop-round interactive arguments with standard (not state-restoration) soundness exre for which the
soundness error after the Fiat—Shamir transformation in the ROM is m®®) . ¢,e¢ against m-query adversaries. This does not suffice
for asymptotic security when kgop is superconstant and, even when keiop is constant, yields poor concrete security.

Kilian’s protocol relies on the position binding property of the VC scheme [CDGSY?24], which ensures that
different openings are consistent with one another; roughly, one rewinds the argument adversary sufficiently
many times to recover enough consistent fragments of the PCP, without any need to actually recover a PCP
that matches the commitment. A similar consideration applies to the IBCS protocol [CDGS23], which
extends Kilian’s protocol to interactive arguments obtained from an IOP (and a position-binding VC scheme).
Hence we ask: what is the “right” security property for the FC scheme underlying the Funky protocol? We
seek the natural analogue of position binding for FC schemes, as well as its state-restoration variant that
suffices for Fiat—Shamir security of the Funky protocol. As a result, constructions of FC schemes could be
proved secure via the “right” amount of effort (without overshooting by, say, proving extractability).

1.1 Our results

We describe the Funky protocol, which achieves a succinct interactive arguments in the standard model by
combining FC schemes (functional commitment schemes) and FIOPs (functional IOPs). We establish the
Fiat—Shamir security of the Funky protocol, closing a key security gap left open by prior work. Along the
way, we identify (the state-restoration variant of) function binding as the “right” security property for this
setting. We show that several FC schemes of interest satisfy this property and, in particular, establish that
Plonk (with optimizations) [GWC19] is secure in the ROM based on the ARSDH assumption.

1.1.1 Fiat-Shamir security of Funky

State-restoration (knowledge) soundness [BCS16; CY24] is an idealized game for a public-coin interactive
argument that implies the (knowledge) soundness of the non-interactive argument in the ROM that results
from applying the Fiat—Shamir transformation in the ROM. The game considers an adversary against the
interactive argument that aims to find an accepting transcript by making a bounded number of moves, with
each move receiving corresponding randomness in response.

We denote by Funky[FIOP, FC] the Funky protocol based on: (i) FIOP, a functional IOP with round
complexity keop, proof length ¢, and query complexity q; (ii) FC, an interactive FC scheme. We upper bound
the state-restoration soundness error €3 of Funky[FIOP, FC] in terms of the state-restoration soundness
error €%, of FIOP and the state-restoration function binding error €2R of FC.> A similar statement (omitted
below) holds for state-restoration knowledge soundness. We elaborate on function binding in Section 1.1.2.

Theorem 1 (informal). The state-restoration soundness error e s of Funky[FIOP, FC| against m-move

tarc-Size adversaries satisfies the following for every error tolerance € > 0:

Mec = O(W - m)

Earc (M, tare) < E§|Rop(m + keior) + Kriop * €xe(Mec, tec) + Keiop - € where {t - O(Z)
re = O(7 - tare

This implies negligible bounds in the negligible case.

The error tolerance € in the theorem reflects the fact that, in the security analysis, rewinding the adversary
more times yields a smaller additive error. This is analogous to the error tolerance e that arises in rewinding
security analyses of succinct interactive arguments based on VC schemes [CDGSY?24; CDGS23]. Despite
the similarity, new technical challenges arise in the more general setting that we consider (see Section 2).

Theorem 1 implies, for special cases, bounds for standard (not state-restoration) security that are at least
as good as, and sometimes better than, in prior work.

3Both ingredients must be individually secure against state-restoration attacks, or else one can attack the Funky protocol.

* VC setting. Theorem 1 implies the same bound on standard (not state-restoration) security as in [CDGS23;
CDGSY24] for non-interactive VC schemes.

* LC setting. Theorem 1 implies a better bound compared to [LM19], which studies standard (not state-
restoration) security assuming the underlying linear PCP has negligible error.

* PC setting. [CHMMVW20; BFS20] proves standard (not state-restoration) security based on extractability
in the negligible regime. [LPS24a] proves standard (not state-restoration) security for a less efficient variant
of the protocol (it includes random openings that double the round complexity); moreover, [LPS24a]
relies on special soundness of the PC scheme, which cannot be achieved for notable PC schemes (see
Section 1.1.2) and, also, incurs unnecessary multiplicative overheads in the upper bound.

Applicability of Theorem 1. Many known FIOPs are (believed or) proven to have round-by-round
(knowledge) soundness, which implies state-restoration (knowledge) soundness [CY?24]; also, many FC
schemes satisfy special soundness, which implies state-restoration function binding (Lemma 3.31). Hence
Theorem 1 applies to many known FIOPs and FC schemes. Moreover, [LPS24b] shows that a widely used PC
scheme is not special sound and, nevertheless, we show that it satisfies state-restoration function binding (see
Section 1.1.2), deducing the security of Plonk [GWC19] in the ROM based on ARSDH (see Section 1.1.3).

Are probabilistic proofs inherent to succinct arguments? Prior work studies “reverse compilers” for
succinct arguments: transformations that map any succinct argument in a certain class into a corresponding
(unconditionally secure) probabilistic proof, proving the latter’s necessity. This paper puts on a formal footing
intuitions about such compilers, as we now explain.

[RV09] studies succinct interactive arguments that are proved secure via a black-box reduction to a
falsifiable assumption, and shows that any such construction implies a corresponding PCP. The parameters of
PCPs achieved in [RV09] are rather poor. Intuitively, this is because succinct interactive arguments can be
built not only from PCPs (plus a VC scheme) but also from: (i) IOPs (plus a VC scheme), or (ii) PIOPs (plus
a PC scheme), or (iii) LIOPs (plus a LC scheme), or (iv) many other options enabled by the Funky protocol.

Our proof of Theorem I is a black-box reduction to a falsifiable assumption, hence all these options
are valid inputs to the compiler in [RV09]. We deduce that the poor PCP parameters in [RV09] are likely
inherent: the succinct interactive argument input to the transformation in [RV09] may have been obtained
from a PIOP or LIOP, both of which are much “weaker” notions compared to a PCP.

This stands in contrast to [CY20], which studies succinct (interactive and non-interactive) arguments with
unconditional security in the ROM, and shows that any such construction implies a corresponding IOP with
good parameters. This is consistent with our understanding of the “pure ROM” where we only know of the
approach that combines an IOP and the Merkle commitment scheme (a VC scheme). So in this setting the
probabilistic proofs input to a “forward compiler” and output by a “reverse compiler” essentially match.

Instantiating random oracles. Random oracles are replaced by efficient hash functions in practice. These
heuristic instantiations do not always work in the sense that there are interactive protocols for which the Fiat—
Shamir transformation is not secure for any efficient hash function [GK03; CGHO04; BBHMR19; KRS25],
including some examples of succinct interactive arguments. Understanding precisely for which interactive
protocols the Fiat—Shamir transformation works in the standard model remains an open problem; moreover,
the Fiat—Shamir transformation can be modified to circumvent some of the attacks [AY25].

1.1.2 Function binding

The security analysis of Kilian’s protocol [CDGSY24] and the IBCS protocol [CDGS23] relies on the position
binding property of the underlying VC scheme; this property states that no efficient adversary can produce
two inconsistent valid openings for the same commitment. We consider function binding, which is the

analogous property for FC schemes that (we show) suffices for the standard security of the Funky protocol.
This definition is inspired by the function binding property for linear commitment schemes in [LM19].

Definition 1 (informal). FC has function binding error e:c = exc(tec) if for every tec-size adversary that
outputs a commitment cm and a list of openings ((ai, Gi, sz‘))i valid for cm, with probability at most egc,
there does not exists 11 such that o;(I1) = B; for every i.

When the FC scheme has an interactive opening phase (this is common), we consider state-restoration
function binding, which is the idealized state-restoration game for function binding. We defer the definition
of state-restoration function binding to Section 3.3.

Targeting function binding (rather than special soundness or extractability) for FC schemes facilitates
basing the security of FC schemes on falsifiable assumptions. (E.g., it avoids knowledge assumptions that are
often used to prove extractability instead [CHMMVW20; BMMTV21].) We provide a notable example.

We study a widely used FC scheme that is obtained from batching the PC scheme in [KZG10] and
applying the linearization trick in [GWCI19], which we call linKZG. This FC scheme supports a rich
query class Qsuuee[Q, m, (hi)xe|n)] that captures certain sums of products of low-degree polynomials (see
Definition 5.9), and underlies concretely efficient SNARKS (it is used in Plonk [GWC19].

We prove that linKZG satisfies state-restoration function binding based on ARSDH (a falsifiable assump-
tion introduced by [LPS24al]).

Lemma 1 (informal). Assume that the adaptive rational strong Diffie—Hellman (ARSDH) assumption holds
with error €xgson = €arson(A, tarson). The FC scheme linKZG (Construction 8.8) has state-restoration
function binding error €} against every tec-size where

(ch + 1)

oA + €arspH (/\7 tARSDH) s

Giﬁ(mFo th) =

Where tARSDH - O((mFC + 1) . tF(:).

Lemma 1 provides new insights over prior work. [LPS24b] proves that linKZG does not satisfy special
soundness (assuming the hardness of the DL problem); in fact, one can extend their analysis to show that
linKZG does not even satisfy extractability (special soundness implies extractability, and extractability and
state-restoration function binding are incomparable). No prior work establishes any security property of
linKZG (based on falsifiable assumptions) that is useful towards succinct non-interactive arguments.

1.1.3 Application: Plonk is secure based on ARSDH
Our results (Theorem 1 and Lemma 1) imply that Plonk [GWC19] is secure, in the ROM, based on ARSDH.
Corollary 1. Assuming ARSDH, Plonk is a succinct non-interactive argument of knowledge in the ROM.

Prior work establishes the security of Plonk in the ROM based on ARSDH and an additional falsifiable
assumption [LLPS24b] (via a direct proof that does not distill a security property for linKZG).

2 Techniques

We overview our techniques. In Section 2.1 we describe challenges that arise when adapting ideas from
prior work to the general setting of FC schemes and FIOPs. In Section 2.2, as a warmup, we sketch how we
address these challenges for the special case of FPCPs. In Section 2.3 we discuss the general case of FIOPs,
including showing state-restoration security. In Section 2.4 we discuss Lemma 1 and Corollary 1.

Below is notation that we use throughout this section.

Query class. A query class Q is a set of functions of the form a: ¢ — ID for a given proof alphabet X,
proof length ¢, and answer domain ID. We define notable query classes that we use as examples in this section:
point queries in Equation 1, linear queries in Equation 2, univariate polynomial queries in Equation 3, and
multivariate polynomial queries in Equation 4. We also discuss evaluation queries on structured polynomials
in Section 2.4, which arise in Plonk [GWC19].

Qoo = {a: F - F ‘ 3i € [f] st oTT) = nm} : (1)
¢
Q.. = {a: F —+F |3y € Fst o) = Y il -H[z‘]} ,)
=1
=
Quaipoly = {a: F' > F |3~ € Fsit. a(Il) = Z’yl . H[z]}) (3)
i=0
dv e F™s.t.
mD) .}, _ (mTDY e a(Il) =3 ueqo..opm 7 - T[]
QD) = 0= < 5 >,a. F' > F Zi{[m] o . (4)
where 1 == [1]¢l . .. y[m]@lm]

These query classes implicitly depend on parameters such as the alphabets (32, D, IF), proof length (¢), degree
bounds, and so on.

Public-coin FIOPs. We fix a public-coin functional interactive oracle proof FIOP = (P, V) with query
class Q. The prover P receives as input an instance-witness tuple (x, w) and the verifier V receives as
input the instance x. For each round ¢ € [keop), P outputs a proof string IT € ¥4 and V sends uniformly
sampled randomness p € {0, 1}"0P.i; afterwards, V can make queries « € Q to any II; to obtain answers
a(I1;) € D; finally, V accepts or rejects. A functional probabilistically checkable proof FPCP is a special
case of an FIOP with round complexity krop = 1. (See Section 3.2 for the formal definition of an FIOP.)

FC schemes. We fix a functional commitment scheme FC = (FC.Commit, FC.Open, FC.Check) with query

class Q with the following syntax.

 FC.Commit: On input a message m € %¢, FC.Commit outputs a commitment cm and auxiliary state aux.

* FC.Open: On input the auxiliary state aux and a query o € Q, FC.Open outputs an opening proof pf.

* FC.Check: On input a commitment cm, query o € Q, answer § € D, and opening proof pf, FC.Check
determines if pf is valid for 5 being the evaluation of the query « on the message committed in cm.

We focus on non-interactive FC schemes in (most of) this section for simplicity. Theorem 1 works for

interactive FC schemes as well. (See Section 3.3 for the formal definition of an FC scheme.)

2.1 Limitations of prior analyses

Attempting to straightforwardly adapt prior work to prove Theorem 1 runs into challenges.

Challenge 1: from point queries to function queries. An FIOP (resp., FPCP) for Qpy. is simply an IOP
(resp., PCP) and an FC scheme for Qp,;.; is @ VC scheme. The Funky protocol in the case Q = Qpin: yields
familiar protocols as special cases: Kilian’s protocol (when the FIOP is an FPCP) and the IBCS protocol. Prior
work analyzes the security of these special cases in detail [CDGS23; CDGSY?24]. For example, [CDGSY?24]
shows that the soundness error e re of Kilian’s protocol, when based on a PCP with proof length ¢ and
soundness error epcp and a VC scheme with position binding error €, satisfies the following bound against
tarc-Size adversaries:

I
Ve>0, €arc(X tars) < €pep(x) + evc(tve) + € where tye =0 <€ .tARG> . 5)

Reducing the general case of an FPCP and FC scheme for a function class Q = {a: » - D} to the
aforementioned special case is tempting though problematic. One could map an FPCP string IT € 3¢ to a
corresponding PCP string TI' := (a(11)),eq € D with proof length ¢/ := |Q|, viewing each query in Q as a
point query into a string of all query evaluations. However, this approach is insecure because a malicious PCP
string II" € D* need not be consistent with the all-query evaluation of any FPCP string IT € ©*. Moreover,
even if we were to ignore this problem, we would (at best) obtain a bound where

0
tve = O < 'tARG> =0 <’Q 'tARG>
€ €

We cannot afford such a bound: while for point queries |Qpqi:| = ¢, in general |Q| may be much larger,
even exponentially larger, than ¢. For example, for univariate polynomial queries |Quupoy| = |F| > ¢ and F
typically has exponential size for PIOPs and PC schemes of interest. This would result in the size %, of the
FC scheme adversary being unacceptably large (the FC scheme adversary would have exponential size).

In sum, we seek a “direct” reduction approach for a given query class Q) that is both secure and efficient.
In particular, security should depend on the FPCP/FIOP proof length ¢, rather than on the size of Q.

Challenge 2: Fiat-Shamir security. Analyses of SNARGS in the pure ROM constructed directly from
PCPs/IOPs and Merkle commitment schemes prove Fiat-Shamir security, but rely on the straightline
extraction property of the ROM-based Merkle commitment scheme [BCS16; CY24], which is not achievable
by standard-model FC schemes. (Separately, as noted in Section 1, security analyses of succinct interactive
arguments in the standard model obtained from VC schemes or PC schemes neglect Fiat—Shamir security.)

2.2 Warm-up: arguments based on functional PCPs

We sketch how we address the challenges in Section 2.1 for a special case of the Funky protocol: we
temporarily focus on the case of a FPCP and a non-interactive FC scheme for a generic query class Q.

2.2.1 The Funky protocol (special case for FPCPs)
Funky[FPCP, FC] = (P, V) works as follows:

1. P computes the FPCP proof II + P(x, w), the commitment (cm, aux) < FC.Commit(II), and sends
cmto V.

2. 'V samples FPCP verifier randomness p <— {0, 1}" and sends it to P.

3. P deduces the query set Q C Q that V(x; p) makes to II. For each o € Q, P sets the query answer
Ba = a(II) and computes an opening proof pf,, := FC.Open(aux, @). P sends ((, Ba, pf,)) to V.

4. V performs the following checks:

acQ

(a) forevery a € Q, FC.Check(cm, &, B4, pf,) =
(b) V[(O‘nga)]ﬂeg(x7 p) =1.

The notation V{(@fe)lace (x; p) is the decision of the FPCP verifier V, given instance x and FPCP random-
ness p, where each query o € Q is answered with 3,. (If V queries outside Q then VI(@fe)laco (x;p) =0.)

2.2.2 Soundness analysis

We informally argue that the Funky protocol for FPCPs is sound. (Showing knowledge soundness is similar.)
We review the proof of Kilian’s protocol in [CDGSY?24] and explain how we build on it for our setting.

Review (special case): Kilian’s protocol. [CDGSY?24] analyzes the security of Kilian’s protocol, i.e.,
Funky[PCP, VC] where PCP is a PCP and VC is a VC scheme. They describe a reductor R that, given oracle
access to an argument adversary P, rewinds 73 for sufficiently many times to recover an underlying PCP string
IL. Then they show that the probability of P convincing the argument verifier) is close to the probability
of I convincing the PCP verifier V. In particular, when P succeeds, one of the following happens: (i) vii
accepts; (ii) P gives different answers to the same query during rewinding; or (iii) the verifier V queries
a location that is “missing” from the extracted PCP string II. The first event can be bounded by the PCP
soundness error. The second event can be bounded by the position binding error of VC. The third event is
related to determining the “right” number of rewinds N, per the following question.

Question 1. Fix an error ¢ € (0,1). Run P 10 obtain its first message cm (the commitment to an alleged
PCP string). Independently run the rest of the interaction with the argument verifier V for N + 1 times (each
time with fresh randomness). If P gives valid opening in the i-th run, record the query set Q; and P’s answer
ans;. For what N does the following hold:

(Vi,j €[N+1]Vge QN Q;, ans;[q] = ansj[q}) <e?
ANONt1 € Uien Qi -

(The first condition implies that P does not violate the position binding of VC.)

Pr

[CDGSY24] shows that for sufficiently large N, the probability above is small. In particular, they consider the
distribution of a specific query location. For every j € [¢], let §; be the probability that location j is queried
by a uniformly sampled verifier randomness and the adversary P gives a valid opening. The probability that
j does not appear in Q; for any ¢ € [N] but is included in Q41 is

(1—=)N-6; ,

which is bounded by % for large enough N. By a union bound, the probability that R fails to obtain a valid
opening for a query is upper-bounded by %, where £ is the proof length of the PCP. Setting N = g yields
(along with the rest of the security reduction) the upper bound stated in Equation 5.

Our reductor. We seek a reductor R so that the soundness error of Funky[FPCP, FC] reduces to the
soundness error of FPCP and the function binding error of FC. In the VC setting, each time it rewinds the
adversary P, the reductor %R records in a PCP string II € 3¢ the answers given by P (if valid). However, for
a general query class Q, recorded query-answer pairs (a1, 81), - .., (an, On) € Q x D are constraints on
the set of possible proof strings Il € 2

ar () = By
S={Tlex’: : : (6)

an(IT) = By

9

When Q = Qg finding an element in this set is trivial: each query-answer directly specifies the location
and value of an entry of 11, so the reductor sets the entries of II accordingly and sets arbitrarily the rest. For
other query classes Q, finding an element in this set may involve non-obvious computations. For example,
when Q = Quuiroy, finding an element of this set is tantamount to interpolation, i.e., finding a bounded-degree
polynomial that agrees with a list of evaluations (if one exists). In other cases still, there may not even be an
efficient algorithm to find an element of this set. For example, suppose that the query set Q contains a single
function a: ¢ — D that is one-way; if the prover uses a random II € 3¢ then no efficient algorithm can,
given o and a(II), recover any IT' such that o(IT) = a(II).

In light of this, we require the query class Q to come with a solver Solverq: an algorithm that receives as
input a list of query-answer pairs (a1, 31), ..., (an, An) € Q x D and outputs an FPCP string II in the set S
defined Equation 6, i.e., an FPCP string I1 that is consistent with all the given constraints (if one exists). We
denote by tq the running time of Solverq.

Informally, our reductor R rewinds P for sufficiently many times, records all the valid query-answer
pairs, and runs the solver to find a suitable FPCP string 11 for the recorded constraints, as follows.

RP(EWS) (cm): # aux is P’s internal state after outputting the first message
1. Initialize an empty list K.
2. Repeat the following N times:
(a) Sample FPCP verifier randomness p < {0,1}".
(b) Run P(aux, p) to get the openings ((a, Ba, pfy))aco-
(c) If FC.Check(cm, «, 4, pf,) = 1 for every a € Q, then append ((, Bo, pf,))aco to K.
3. Output II := Solverg (K) € %*.

Next, we want to show that, if the number of rewinds N is sufficiently large, the probability that Il
convinces the FPCP verifier V is close to the probability that P convinces the argument verifier).

How to set the number of rewinds N? In the special case Q = Qp,., the number of rewinds N comes from
upper bounding the probability in Question 1. Moreover, each new filled-in location represents an additional
constraint on the space of possible FPCP strings consistent with all the query-answer pairs recorded so far.

We consider an analogue of the above probability for a general query class Q. Specifically, we introduce
and analyze a probability eq(N) that we call the tail error of the query class Q. Informally, eq(N) upper
bounds the probability that after N 4 1 rewinds: (i) the solution space is non-empty (i.e., function binding is
not violated); and (ii) the solution space shrinks from the N-th rewinding to the (N + 1)-th rewinding.

Definition 2 (informal). A query class Q has tail error eq = eq(N) if, for every distribution D over
query-answer tuples (Q C Q,3: Q — D),

SO::EZ
Snt1 # 0 Forie [N+1]:
P < eq(N) .
"l ASupi#£Sw | (QiB) D < eq(N)

S;=8_1N {H eXf:Vace Qi,a(ﬂ) = ,BZ(OJ)}

The above event is a direct generalization of the event in Question 1 for Q = Qp... The condition
Vi, je[N+1]Vqge QinQ;, ans;[g] = ans;[q] (position binding is not violated) corresponds to Sn1 7)
(function binding is not violated). The condition Qny1 € Uie[N] Q; corresponds to Sy11 # SN-

This definition enables us to obtain an upper bound. We let D be the output distribution of P:D gives
the query set and answers (Q, 3) if P provides an accepting opening, otherwise D outputs (). Hence, fresh

10

samples from D corresponds to (fresh) rewinds of P; and S; is the set of all FPCP strings that are consistent
with P’s output after the ¢-th rewinding. This lets us prove that, for every N, the following holds:

eARG(Xa tARG) < fFPCP(X) + €Fc(tvc) + fq(N) where tyc = O (N “tare + tQ) . (7N

This leaves us with the task of setting N so that eq(N) is small, which leads to the next question.

How to compute tail errors? The analysis in [CDGSY?24] (as explained in Section 2.2.2) shows that
€Qpyne (N) < %. However their analysis does not generalize (see Section 2.1). We take a different approach.

Consider the following alternative argument for eq,,, , (N) < %. There are at most ¢ different i € [N + 1]
such that Q; Z Uj¢|;—1)Q; since Q; C [¢] for every j € [N + 1]; therefore

N
ZPY [Qiy1 € Uje Q5] <4)

=1

Moreover, each query set Q; is a fresh sample, so Q; 11 € Uj¢[;Q; is more likely to happen than Q1 €
Uje[i’] Qj for i’ > i

Vi,i' € [N]s.t. i’ >0, Pr[Qip1 € Ujey Q)] > Pr [Qigr € Ujen Q] - ©)
Therefore:

b [(Vi,j € [N+ 1] Vg€ Q;nQ;, ans;[g] = ans;q))
NONt1 € Uie[N] Qi

<Pr|Ony1 € U Q;

1€[N]
1N
SN > PrlQii € Uje Q)] (Equation 9)
i=1
< % ’ (Equation 8)

The proof outline above can be adapted to other query classes. Specifically, we show that, for every

Q € {QPoinU QLin7 QUniPo|y7 QEA”E‘ZiE())Iy}’
eq(N) <

2|~

In fact, in the technical sections, we consider a relaxed setting that suffices for us. We borrow the random-
termination idea in [CDDGS25], leading to a minor modification of our reductor; then we suitably adapt the
definition of a tail error, and establish the above bound with particularly simple analyses. See Section 5.

2.2.3 Fiat-Shamir security

In this warmup example Fiat-Shamir security is “for free”. Let ARG := Funky[FPCP, FC] and let NARG :=
FS[ARG] be the non-interactive argument in the ROM after applying the Fiat-Shamir transformation to ARG.
Since the verifier sends only one message in ARG, the soundness error eyare for NARG is closely related to
the soundness error €,r¢ for ARG. Specifically, for an instance x not in the language, the soundness of NARG
against tyare-size adversaries satisfies the following (see, e.g., [CY24, Lemma 12.2.1 and Lemma 12.3.1]):

6NARG(XatNARG) < O(tNARG) : 6ARG(XatNARG) .

11

However, in general, it is not the case that the soundness error eyare for NARG := FS[ARG]|, where ARG is a
(public-coin) kyare-round interactive argument, is closely related to the soundness €xre for ARG. Specifically,
it holds that eyare (X, tyare) < O(t,lf,'XQEG) - €ara(X, tnarc)» and this upper bound is essentially tight. This is
why, when we leave the warmup and study the general case, the Fiat—Shamir security of the Funky protocol
is not “for free” — we directly establish it based on suitable properties of the underlying ingredients.

2.3 Succinct arguments based on public-coin functional IOPs

We discuss the general case: the Fiat-Shamir security of ARG := Funky[FIOP, FC], i.e., the Funky protocol
based on a functional interactive oracle proof FIOP and a functional commitment scheme FC for a generic
query class Q. As already explained, merely establishing the (standard) soundness of ARG is insufficient,
since superconstant-round protocols may be insecure after the Fiat—Shamir transformation; rather, we directly
establish the state-restoration soundness of ARG based on security properties of FIOP and of FC.

2.3.1 The Funky protocol (general case for every FIOP)
Funky[FIOP, FC] is the interactive argument ARG = (P, V) defined as follows:

1. For every FIOP round i € [Kriop):
(a) P computes the i-th FIOP string IT; < P(x, w, p;—_1), the commitment (cm;, aux;) < FC.Commit(II;),
and sends cm; to V.
(b) V samples the i-th FIOP randomness p; < {0, 1}"FoP.i and sends it to P.
2. P simulates Vicikeop] (x5, (Pi)iclknop)) to deduce the query sets (Q;)ickqop) (Qi is Vs queries to I1;).
For every i € [kpop] and a € Q;:
(a) P sets Biq = o(IL;);
(b) P computes the opening proof pf; ., := FC.Open(aux;, a);
(c) P sets B; == (Bi,a)aco; and pf; :== (pf; ,)aco;-
3. P sends (((a, Bi.as pfi7a)>a€Qi)’L'€[kF|oP] to V.
4. V performs the following checks:
(a) forevery i € [kpop] and a € Q;, FC.Check(cm;, @, B o, Pf; o) = 1
(b) v0@Bialiekpopl.ace; (x, (pi)iclknop]) = 1-

kriop

See Section 4 for a detailed description of the Funky protocol. (In that description we no longer assume that
FC has a non-interactive opening phase, and for convenience we use a batch interface bFC for FC.)

2.3.2 State-restoration security of the Funky protocol

We review the notion of state-restoration soundness, and then we describe how we extend the basic ideas
from the warmup special case in Section 2.2 to prove Theorem 1.

State-restoration. The state-restoration game for a public-coin k-round interactive protocol is as follows.
The game samples random functions (rnd;);c[i to be used as the verifier randomness. The adversary has a
move budget m, and each move is a list of prover messages (1) jc(;) for some i € [k]. The game answers
amove (my) ;e[With rd(x, (m;) j[;)). Eventually the adversary makes no more moves (by choice or by
exhausting the move budget), and outputs (m;);c (- The game sets p; = rnd; (x, (m}) je);) for every i € [k].
The adversary wins the state-restoration game if and only if the verifier accepts when given the instance x,
the randomness (p});c[» and prover messages (1m});e[k-

12

The state-restoration soundness error exx.(m, tarc) for an interactive argument is an upper-bound on the

probability of any #,rc-size m-move adversary winning the state-restoration game. This notion captures
Fiat—Shamir security: the soundness error of the non-interactive argument obtained from the Fiat—Shamir
transformation (in the ROM) is upper-bounded by the state-restoration soundness error of the given interactive
argument [CY24]. One can similarly define the state-restoration security for FIOPs; since FIOPs are
information-theoretically secure, the state-restoration soundness error €%, (mgop) depends only on the move
budget mgop of the FIOP state-restoration adversary (rather than also its size).
Proof sketch of Theorem 1 for non-interactive FC schemes. Analogously to standard (not state-restoration)
security, we want to reduce the state-restoration security of the Funky protocol to the state-restoration security
of the underlying FIOP. Ideally, given an argument state-restoration adversary PSR, we want to construct a
FIOP state-restoration adversary PS® := PSX(PSR) for FIOP where:

« whenever P** makes a move (x, (cm i)jelil) PS® rewinds P (some number of times) to reconstruct
corresponding FIOP strings (I1;) jc[;), makes the move (x, (II;)c[;)) in the FIOP state-restoration game
FIOPSBGa me, and forwards the game’s response (i.e., verifier randomness) to 7355; B

» when P*% halts and outputs (x*, (cm})iekrop]> (@ 55 PFA)) w0,)icfop)) - P TeWinds P°F (some
number of times) to reconstruct corresponding FIOP strings (Hf)ie[kﬂop] and then halts and outputs
(>, II¥) i kp0p) 1N the FIOP state-restoration game FIOPSRGame.

There are challenges in turning the above rewinding template into a strategy that works.

* Challenge 1: How to extract for moves? Consider a move (x, (cmj);e[;)) made by PSR In order to

reconstruct corresponding FIOP strings, PS® should rewind P multiple times in search of (valid) openings
for the commitments in the move. Each fresh run of P°F yields more moves (which do not contain

any openings) and a final output (x*, (cm);ekpopl (((0*, 8%, pfz‘))a’GQi)iE[kHop])' If (x, (cmy)jep)) #
(x*, (em%)jep) thsn this final output does not contribute any \?hd openings for the move. Worse, it can
be that no run of P yields any progress for (x, (cmj);cp;)) (P*® never opens the commitments for this
particular move).

Solution: 1f PS® cannot reconstruct FIOP strings for (x, (cm j)jeri)) then it suffices for PS® to use empty

FIOP strings for this move because 755R does not use this move to win SRGame. Hence, it suffices for Ps®
to provide to P°F random and consistent answers. (To ensure that the mapping of moves from one game to
the other is injective, the commitments (cm;) ;¢[;) are included in the salt string.)

* Challenge 2: How to extract for the (final) output? The final output (x ((€M7 iekeion] (((*, Bk, pfh)>a€Q)ie[kF|0P])

of PSR contains valid openings for the commitments, so the above issue does not arise here. Instead there is
a different issue: P* halts with the final output, so how can PS® rewind PSR from this point onward to
collect additional valid openings?

Solution: We augment PSR to output all partial moves induced by the final output. We consider an extended
argument state-restoration adversary PR that works the same as P°F except that, before halting, additionally
makes these moves (ordered by increasing 7):

{(x, (ij)je[i])}ie[kHOP]

This increases the number of moves from m (for P5R) to m + ke (for P5R). These additional partial
moves give PSR the chance to rewind (and extract) as they are all consistent with PSR’ final output.

13

Taking the above into account, we construct P as follows.

Pk
1. Simulate SRGame using P*.
2. For every move mv = (x, (ij)je[i]z made by P°R:
(a) Let aux be the internal state of PR after outputting the move.
(b) Repeat N times: B
i. Continue the simulation of P°f(aux) using fresh randomness to answer P°*’s moves.
ii. If PR provides answers and valid openings consistent with mv, record the answers.
(c) Forevery j € [i], construct (I1;) ;) using Solverq from the recorded answers.

(d) Forward (x (ﬁ i)jeli)) to FIOPSRGame to get the next verifier randomness and answer the move

mv output by PR,
3. Let (H)ze[kmpl be the FIOP strings corresponds to the final output (cmy)e/k,op] OF PR,

4. Output (x (H)zE[kFIOP])

We are left to argue that P is “as good as” PSR For this, we extend to state-restoration games the ideas
that we introduced in Section 2.2.2. If PSR succeeds then one of the following happens: (i) PSR succeeds; (ii)
PR violates function binding of FC; or (iii) PS® fails to extract enough information about the FIOP strings
underlying the final output of PSR The first event can be bounded by the FIOP state-restoration soundness
error. The second event can be bounded by the function binding error of FC. The last event can be bounded
via tail errors as defined in Section 2.2.2. Overall, we bound the state-restoration soundness error €3~ of
ARG as follows:

Meop = M + Keop

e (m, tare) < e (m + keiop + €rc(tec) + keop - €o(N) where

ARG(ARG) = |:|op(FIOP) FIOP FC(FC) FIOP Q() tFC _ O (N . tARG + tQ)
The round complexity keiop of the FIOP multiplicatively affects two terms: (a) the term keiop * €rc(trc), as the
argument state-restoration adversary P°F could violate function binding at any round, and for each round we
construct a corresponding FC adversary Agc that rewinds N times and runs Solverq; (b) the term keop - €q(N),
as each extracted FIOP string in the final output incurs the tail error eq(N).

Interactive FC schemes. FC schemes with an interactive opening phase are widely used (e.g., [BBBPWMI18;
Lee21; AGLMS22]). An interactive FC scheme FC is a tuple (FC.Commit, Pec, Vic) Where Pec and Vic
interact with each other for ke rounds. Establishing the state-restoration security of the Funky protocol in this
case demands that the FC scheme satisfies a state-restoration strengthening of the function binding property,
which we introduce via a suitable game FCSRGame (Definition 3.19) and binding property (Definition 3.20).

The challenge in extending the security reduction to this case is that the moves output by the state-
restoration argument prover PSR may attack the FIOP or the FC scheme. Hence we construct fwo state-
restoration adversaries: (i) PSR := PSR(PSR) for FIOP’s state-restoration game FIOPSRGame, analogously
to the non-interactive FC scheme case; and (ii) PFSCR = PSR(PSR) for FC’s state-restoration game FCSRGame.

In fact, PFSE consists of keop adversaries (PgF,)ic(keop] Where PFC , seeks to break the function binding

property in FCSRGame for the i-th commitment, by rewinding PSR’s moves corresponding to the FC
opening phase for the i-th commitment (as opposed to the FIOP interaction phase). When P} outputs
a move of the form (x, (cmy),¢[) for some ¢ € [kpop] (i.e., corresponding to an FIOP interaction),

75,551 answers this move via fresh (and consistent) randomness. Otherwise, PS®’s move is of the form
(X’ (Cmu)uE[kHop]? ((QU? ﬂu))ue[kﬂop]’ (pmu,j)UE[kHop},jE[C]) for some ¢ € [kFC] where:

14

* ((Qu, Bu))uelkeop] are the queries and answers for the corresponding commitments (CMy,) e (kg op]>

* for every u € [keop], (pPm,, j) jeld are ¢ prover messages sent in the interactive opening phase for cm,,.

In this case, Pi¢; makes the move (clnu, (Qu, By), (Pmy, ;) je|q) in the FC state-restoration game FCSRGame
for every u € [krop]. After this, P8, runs Solverq on the (valid) queries and answers collected during
rewinding, to determine if there is an FIOP string IT; € X% consistent with them. The adversary 75FS§ , wins if
Solverg does not find any such II;, since this means that 755& broke function binding of FC. We prove that if
Case ii happens when PR successfully wins the argument state-restoration game SRGame then there exists
i € [kriop] such that P28 ; wins in the FC state-restoration game FCSRGame.

Note that since ﬁég , rewinds PSR for N times, and in the worst case each move by PSR results in Keiop
moves by '?5551, the total number of moves by 75551 is O(N - keiop - (M + kec)). (Similarly to how we address
Challenge 2 in Section 2.3.2 in PSR, we augment P to output all partial moves corresponding to the FC
opening phase in its final output, which increases the number of moves by P*F from m to m + kec.)

Overall, for the Funky protocol, we upper bound the state-restoration soundness error €% . as

Meop = M + Keop
EZRRG(matARG) < Eirop(mF|0P)+kF|0P'€§?(ch7th)+kF|0P'€Q(N) where Mec = O(N “ keiop - (m + kFC))
tFC — O (N . tARG + tQ)

where €3 is the state-restoration function binding error of the FC scheme.

In the technical sections. We prove a security reduction lemma that enables us to “couple” the state-
restoration security of the Funky protocol and the state-restoration security of the underlying FIOP in
Section 6. From there, we derive the state-restoration soundness and state-restoration knowledge soundness
of the Funky protocol in Section 7.

2.4 Function binding in action: On the security of Plonk

We outline how we prove Lemma 1 and Corollary 1.

Lemma 1: linKZG is state-restoration function binding. We prove the lemma via a sequence of simple
black-box reductions that apply to any (suitably) homomorphic PC scheme PC, of which the PC scheme KZG
in [KZG10] is an example. These reductions may be useful towards designing other optimized FC schemes.

* Every homomorphic polynomial commitment scheme PC for Q. gives rise to an optimized batched
polynomial commitment scheme bPC = BatchMsg[PC, s] for the query class Qgaicnmsg[Quniroys S]. We
show that if PC is state-restoration function binding, then so is bPC (Section 8.1).

* Every homomorphic batch polynomial commitment scheme bPC for the query class Qgacchmsg [Qunipoly > 712+1]
gives rise to an optimized linearized polynomial commitment scheme linPC = Lin[bPC,m, (hy)se[n]
for the query class Qsuce[Qunipolys 7, (k) kejn)] Of structured polynomial evaluation queries, via the lin-
earization trick (also known as Maller’s trick) [GWC19; LPS24b; FFR24]. We show that if bPC is
state-restoration function binding, then so is linPC (Section 8.2).

In Lemma 9.1 we prove that the PC scheme KZG is state-restoration function binding under the (expected-
time) ARSDH assumption. Since KZG is homomorphic we can apply the black-box reductions outlined
above, establishing that

inKZG = Lin [BatchMsg[KZG, m + 1],m, (hy) ke

15

is state-restoration function binding (see Corollaries 9.2 and 9.3 for details). In contrast, [LPS24b] showed
that under the discrete logarithm assumption, linKZG cannot be special sound in the standard model (in fact,
their attack can be extended to show that linKZG cannot be knowledge sound). Finally, we compare function
binding to other properties proposed for KZG in Appendix B.

Corollary 1: Plonk is secure assuming ARSDH. Recall how Plonk is constructed.

* Let PlonklOP be the FIOP for the query class Qsuuee[Quaipoty> M (i) e[n)] described in [GWC19].
* Let linKZG be the FC scheme for the query class Qsruee[Qunipolys 172, (hkz)ke[n]] discussed above.
* Let iPlonk := Funky[PlonkIOP, linKZG]| be the interactive argument obtained via the Funky protocol.

Plonk (in the ROM) is the result of applying the Fiat—Shamir transformation in the ROM to iPlonk. Therefore,
to establish the soundness of Plonk, it suffices to show state-restoration soundness of iPlonk (and similarly
for knowledge soundness).

Our Theorem 1 reduces the above goal to upper bounding: (i) the state-restoration soundness error
exn» of PlonklOP, (ii) the state-restoration function binding error % of linKZG, and (iii) the tail error of
Qstruce[Qunipalys M, (hi) kejn)]- We discuss each in turn.

* PlonkIOP is a constant-round FIOP, so its state-restoration soundness is polynomially related to its standard
soundness.
* We bound the state-restoration function binding error % for linKZG (our Lemma 1).

* We prove that €QStruct[Q7m7(hk)ke[n]](N) < % (see Lemma 5.10).

[LPS24b] shows that iPlonk is special-sound (which implies Fiat—Shamir security in the ROM) assuming the
hardness of ARSDH and SplitRSDH (a new falsifiable assumption they propose), using an ad-hoc security
analysis. In contrast, our analysis is generic, and establishes the Fiat—Shamir security of iPlonk from the
ARSDH assumption alone.

Remark 2.1. To showcase how to prove function binding for other functional commitment schemes of
interest, we prove function binding for two schemes in Appendix C: a non-interactive polynomial commitment
scheme with square-root-sized proofs in Appendix C.1, and a log-round interactive polynomial commitment
scheme inspired by Bulletproofs in Appendix C.2.

16

3 Preliminaries

Definition 3.1. A relation R is a set of pairs (x, w) where x is an instance and w a witness. The corre-
sponding language L(R) is the set of instances x for which there exists a witness w such that (x, w) € R.

Definition 3.2. A query class Q is a set of functions of the form a:: ©¢ — D, where X is the input alphabet,
¢ € N is the input length, and D is the answer domain.
3.1 Interactive arguments

An interactive argument for a relation R (in the common reference string model) is a tuple of algorithms
ARG = (G, P, V) satisfying the following properties.

Definition 3.3. ARG = (G, P, V) has perfect completeness if for every security parameter A € N, instance
size bound n € N, public parameter pp € G(1*,n), and instance-witness pair (x, w) € R with |x| < n,

Pr [(P(pp,x,w),V(pp,x)) =1] =1 .

Definition 3.4. ARG = (G,P,V) has (adaptive) soundness error cxx if for every security parameter
A€EN, instance size bound n € N, auxiliary input distribution D, circuit size bound tarc € N, and tpre-size
circuit P,

x| <n pp < G(1*,n)

= i+ D

Pr| Ax ¢ L(R) 2 ~ , < éarc(As 1, tare) -
Ab— 1 (x,aux) < P(pp, ai)

b+ <ﬁ(aux), V(pp,x))

Definition 3.5. ARG = (G, P, V) has (adaptive) knowledge soundness error r,zc With extraction time ¢,
if there exists a probabilistic algorithm & such that for every security parameter X € N, instance size bound
n € N, auxiliary input distribution D, circuit size bound tarc € N, and targ-size circuit P,

[pp + G(1*,n) |
x| <n ai<— D _
Pr| A(x,w) ¢ R (x,aux) < P(pp, ai) < Kare(A, Ny tare)
Ab=1 b <ﬁ(aux), V(pp, x))
i W Eﬁ(aux)(pmx,tr)

moreover, € runs in time tg(\, 1, tarc)

Above, b <~ (P(aux), V(pp,x)) denotes the fact that tr is the transcript of the interaction (i.e., the
messages exchanged between P and V). Moreover, £7 means that € has black-box access to (each next-
message function of) P; in particular £ can send verifier messages to P in order to obtain the next message
of P (for a partial interaction where) sent those messages).

Definition 3.6. For n € N, U(n) is the uniform distribution over all functions f: {0,1}* — {0,1}™
Moreover, form € Nand (ny,...,npy) € N, U((n1,...,nm)) =U(N1) X -+ XU(np).

Definition 3.7. The argument state-restoration game for ARG = (G, P, V) with salt size s € N, functions
rnd = (rnd;);c() where rd; < U(r;) for every i € [k|, argument state-restoration prover P*X, public
parameter pp, and auxiliary input ai is defined below.

17

SRGame(s, rnd, PR, pp, ai):
1. Repeat the following until P (pp, ai) decides to exit the loop:
(a) P outputs (x, (mj)jefi)s (05)jeli))» where x is an instance, (my) jc|; are prover messages, and
(07) je[q) are salt strings in {0, 1}°.
(b) Set p; = mdi(x, (m;) jefi], (95) jeli))-
(c) Send p; to PSR,
2. PR outputs (x, (Mi)iek)» (i)ielk))-
3. Foreveryi € [K], set p; = rnd;(x, (m;) e, (05)efi))-
4. Output (x5, (Mi)ic)> (9i)iei)s (Pi)ielk])-
We denote by tr*® the list of move-response pairs of the form ((x, (m;) e, (07)jefi))s pi) performed in the

loop. We show tr*R in an execution of the argument state-restoration game SRGame using the following
notation:

t SR ~
(x, (mi)ie» ()i (Pi)ici)) <— SRGame(s, rd, P*F) .
We say that PR is m-move if PR exits the loop after at most m iterations.

Definition 3.8. ARG = (G, P, V) has state-restoration soundness error e~ if for every security parameter
A € N, instance size bound n € N, auxiliary input distribution D, salt size s € N, move budget m € N,
circuit size bound tage € N, and m-move targ-size circuit PR,

pp < G(1*,n)

ai<— D

rnd = (rnd;)i < U((ri)ick) N

(3¢, (Mi)ieis (04)iel> (Pi)ief) < SRGame(s, rd, P*%, pp, ai)

x| <n
Pr| Ax ¢ L(R)
AV, (mi)ies (Pi)ie) = 1

SR
S EARG()\v ’I’l, Sa ma tARG) .

Definition 3.9. ARG = (G, P, V) has state-restoration knowledge soundness error x3%. with extraction
time ¢ if there exists a probabilistic algorithm Esg such that for every security parameter \ € N, instance
size bound n € N, auxiliary input distribution D, salt size s € N, move budget m € N, circuit size bound
tare € N, and m-move targ-size deterministic state-restoration prover 7SSR,

pp < G(1*,n)
x| <n ai+— D
Pr| A(x,w) ¢ R rnd := (rnd;);efg < U((ri)iew) .
AV(x, (mi)ies (Pi)ieg) =1 | (3, (Ma)ieis (03)iefs (Pi)iel) ¢ SRGame(s, rnd, P, pp, ai)
i w4 557;SR(pp’ai) (¢, (Mi) e (04)iefy (Pi)ief, tr°°)

SR .
< Foare (A 15 8, M, tare)
moreover, Esg runs in time teg, (A, 1, 8, M, tag).
We consider several efficiency measures for an argument:

* the round complexity k is the number of rounds (back-and-forth interactions) between the argument prover
and argument verifier;

* the randomness complexity r is the total number of random bits the argument verifier VV sends, r; is the
number of random bits the argument verifier sends in round 4, and r,.,, = max;c{r:}.

18

* the prover-to-verifier communication complexity pc is the total number of bits sent by the argument prover,
pc, is the number of bits sent by the argument prover in round ¢, and pc,, ‘= max;¢[y) {pc, };

* the argument generator running time is g;

* the argument prover running time is ¢»;

* the argument verifier running time is t,,;

* the public parameter complexity page is the number of bits of the public parameter pp.

3.2 Functional interactive oracle proofs

The definition of (public-coin) functional interactive oracle proofs (FIOPs) is adapted from the definition of
10Ps with special queries in [BCG20].

Definition 3.10. A public-coin FIOP with query classes Qq, ..., Qugop is a tuple FIOP = (P, V) where
P is the prover and V the verifier. The prover receives as input an instance-witness tuple (x, w) and the
verifier receives as input the instance x. The protocol has keop rounds, and in each round i € [kgop| the
prover sends a message 11; € Zfi where %; is the alphabet and {; is the proof length, and the verifier replies
with a random string p; € {0, 1}"FoP.i_ The verifier has access to (I11,11a, ..., Ik o) through queries in
Q1, ..., Qupop- In more detail, the answer of a query o € Q; to I1; for some i € [kriop| is o(I1;) € D (the
answer may be an error value | if I1; is not according to the expected format). After the interaction and
queries, the verifier V accepts or rejects.

A FIOP system for a relation R satisfies the following.
Definition 3.11. FIOP = (P, V) has perfect completeness if, for every instance-witness pair (x,w) € R,
Pr{(P(x,w), V(x)) = 1] = 1 .

Definition 3.12. FIOP = (P, V) has soundness error ¢ op if, for every (unbounded) circuit P and auxiliary
input distribution D,

‘x| <n ai+< D
Pr| Ax € L(R) | (x,aux) « P(ai) < €nop(n) -
ANb=1 b+ <f’(aux),V(X)>

Definition 3.13. FIOP = (P, V) has knowledge soundness error keop if there exists a probabilistic
algorithm E such that, for every (unbounded) circuit P and auxiliary input distribution D,

ai<~ D
o ’AX| <n | (o aw) « Pai) 3
! AZSX:’WI) 7 b <f’~(aux),V(x)> < firop(n) ;

w < EP@w)(x tr)
moreover, E runs in time tg(n).

Definition 3.14. The FIOP state-restoration game for FIOP = (P, V) with salt size spop € N, func-
tions rdgop = (mdFIOP,i)z‘e[kHop] where mdgep;: {0,1}* — {0, 1} FOP.i for every i € [keop|, FIOP state-

restoration prover PS®, and auxiliary input ai is defined below.

FIOPSRGame(spiop, Mdgiop, PSR, ai):

19

1. Repeat the following until f’SR(ai) decides to exit the loop:
(a) PSR outputs (x, (mj)jels (Vi) jeli)), where x is an instance, (mj) je[;) are prover messages, and
(74)jepq) are salt strings in {0, 1}°FoP.
(b) Set p; = rdeiop.:(x, (M) jefi)> (Vi) jei])-
(c) Send p; to PSR,
2. P outputs (x, (M) ickpop] (Vi)ickeop])-
3. Forevery i € [keop|, set p; = rndgop ;(x, (mj)je[i], (’Yj)je[z‘])-
4. Output (x, (Mi)ic[kpop] (Vi)icknop]> (Pi)ickpop])-
We denote by trig, the list of move-response pairs of the form ((x, (m;)jefi), (Vi) je[i))s pi) performed in the
loop. We show tri, in an execution of the FIOP state-restoration game FIOPSRGame using the following
notation:

trSR -
(X7 (mi>’ie[kp|op}7 (Vi)ie[kﬂop]? (pi)ie[kmop]) ﬂ FIOPSRGame(sFIOP7 rndFIOP; PSR) .

We say that PR is mgop-move if PR exits the loop after at most mgop iterations.

Definition 3.15. FIOP = (P, V) has state-restoration soundness error €% if for every instance size
bound n e N, auxiliary input distribution D, salt size spop € N, move budget mgop € N, and mgop-move
circuit PSR,

x| < ai+ D

x| <n

» rndeop = (mdFlop,i)ie[kHop} <~ u((rﬂop,i)z‘e[kﬂop])
Pr| Ax ¢ L(R)
A V(X (m) K (p) K) =1 (X’ (mi)ie[kﬂop]? (’yi)iG[kHop]? (pi)iE/\LkHop})
P\ igkeop]» i€ keioe] + FIOPSRGame(seiop, Mdgop, P, ai)

SR
< €106 (1 Sri0ps Mrtop) -

Definition 3.16. FIOP = (P, V) has state-restoration knowledge soundness error x:, with extraction

time i, if there exists a probabilistic algorithm Esg such that for every instance size bound n € N, auxiliary
input distribution D, salt size spop € N, move budget meop € N, circuit size bound teop € N, and mgop-move
trop-Size deterministic state-restoration prover PR,

I ai+ D
’X| <n rndeop == (rndFIOP,i)ie[kHOp] — M((rﬂop,i)ie[kﬂop])
Pr A (X, W) ¢ R (X7 (Z;Li)ie[kﬂop]? (’Yi)ie[kﬂop}? (pi)iG[kHop])
tr ~
/\ V(X7 (mi)ie[kp|op]7 (pi)ie[kﬂop}) - 1 ﬂ FI()PSRGarne($|:|op7 rndF|op, :PSR7 ai)
PSR(ai
L W <— ESR ()(X’ (mi)ie[kmop]’ (’Y’i)iG[kHop]? (pi)ie[kﬂop}’tr?ZFOP) i

SR
< Kiop (1, Sriop, Metop) -
Moreover, Esg runs in time tg. (1, Sriop; Mriop, triop)-
We consider several efficiency measures for an FIOP:

* the round complexity kg op is the number of rounds (back-and-forth interactions) between the FIOP prover
and FIOP verifier;

* the alphabet X is the set over which symbols of prover messages are defined (we assume the alphabet
across all rounds);

20

* the proof length £ is the total number of alphabet symbols sent by the FIOP prover, ¢; is the length of the
proof sent by the FIOP prover in round i, and £,,,, = maXc|k,op] {t:};

* the query complexity q is the total number of queries that the FIOP verifier makes (each query is a element
in Q; and is answered by the corresponding evaluation in D), g; is the number of queries that the FIOP
verifier makes to the i-th FIOP string, and qn.. = MaX;e[igop] {a:};

* the randomness complexity rgop is the total number of random bits used by the FIOP verifier, rgop ; is the
number of random bits that the FIOP verifier uses in round ¢, and reiop max = MaXe [keiop] {rriop.i}-

Any efficiency measure may be a function of the instance x (e.g., of the instance size |x|).

3.3 Functional commitment schemes
3.3.1 Non-interactive functional commitment schemes

A non-interactive functional commitment (FC) scheme for a query class Q = {a: X¢ — D} is a tuple of
algorithms
FC = (FC.Gen, FC.Commit, FC.Open, FC.Check)

that satisfies the following syntax.

 FC.Gen(1*,¢) — ppy: On input a security parameter A € N and message length £ € N, FC.Gen samples
public parameter pp.

* FC.Commit(ppec,II) — (cm,aux): On input a public parameter pp,. and a message vector IT € X,
FC.Commit produces a commitment cm and the corresponding auxiliary state aux.

* FC.Open(ppec, aux, a,) — pf: On input a public parameter pp;, an auxiliary state aux, a query a € Q
and a purported evaluation 8 € D, FC.Open outputs an opening proof pf for the claim “3 = «(II)”.

* FC.Check(ppgc,cm, e, B, pf) — {0,1}: On input a public parameter pp.., a commitment cm, a query
«a € Q, an answer 5 € D, and an opening proof pf, FC.Check determines if pf is a valid proof for 5 being
the answer of the query a on the vector committed in cm.

Definition 3.17 (Function binding). FC = (FC.Gen, FC.Commit, FC.Open, FC.Check) with query class Q
has function binding error e if for every security parameter A\ € N, message length { € N, sample set size
L € N, auxiliary input distribution Dec, adversary size bound tec, and tec-size circuit Agc,

ppec < FC.Gen(1%,0)
airc < Dec
(Cm7 ((ala /Bia pfz))lE[L}) — AFC(pcha aiFC)

Vi € [L] : FC.Check(ppgc, cm, ay, B, pf;) = 1

Pr AP s.t. Vi € [L], oy (IT) = B;

g EFC()Hga L7 tFC) .

Remark 3.18 (Monotonicity of ec). We assume hereafter that the function binding error egc is monotone in
each coordinate in the natural direction:

* erc(-, 4, L, tec) is non-increasing (larger security parameters decrease an adversary’s success);

* erc(, -, L, tec) is non-decreasing (longer message vector decrease an adversary’s success);

* erc(N 4, -, tec) is non-decreasing (The solution space with a set of constraints is smaller than that of its
subset); and

* ec(A, 4, L,) is non-decreasing (the success of an adversary increases with its computational power).

21

The last condition is trivially satisfied, while the first should also hold in any reasonable commitment scheme.
The remaining two are natural; in any case, otherwise one may replace, in our computations, expressions of
the type €rc(A, Lmax, Lmax, trc), When fmay = max; { 4; } and Lmax = max; { L; }, with

H}%X {erc(N, 44, Lj, tec)}

3.3.2 Interactive functional commitment schemes

An interactive functional commitment scheme FC = (FC.Gen, FC.Commit, Pec, Vic) is defined similarly.
In particular, FC.Gen and FC.Commit are defined as in the non-interactive case, while the opening and
verification phases follow the interactive protocol below: given an public parameter ppq., an instance
(cm, o, B) and an auxiliary state aux, the FC prover Pgc and the FC verifier Vi engage in a public-coin
kec-round interactive protocol:

((Pmy,vm3))ic kec]

b .

<PFC(ppFC? aux, «, 6)7 VFC(pcha Cm7 «, /8)>

Above, ((pm;, vm;));e[ke] is the transcript of the interaction (that is, the kec-round of prover messages and
the verifier randomness exchanged between Prc and Vic). For every j € [kec]:

* Pec’s j-th message.

1. Compute the j-th FC prover message pm; and auxiliary state:

P ,aux, ifj=1
(pm, aux;) - § - \PPre)
Pec(auxj—1,vmj_q) ifj>1

2. Send pm; to Vee.

* Vec’s j-th message.

1. Sample the j-th FC verifier randomness vm; < {0, 1}"F¢..
2. Send vm; to Pec.

Definition 3.19 (FC state-restoration game). The FC state-restoration game for FC with salt size sic € N,
functions mdec = (Mdeci)iclkec] Where mdec; < Ul(rec) for every i € [kec], public parameter ppe,
auxiliary input aigc, sample size L € N, and FC state-restoration prover Pt is defined below.

FCSRGame(sc, rndec, PER, ppec, airc):

1. Repeat the following until PSR (ppyc, aiec) decides to exit the loop:
(a) ﬁ;‘g outputs (cm, o, B, (pm;) jefi)» (1) jefi))» where cm is a commitment, o is a query in Q, 3 is a

corresponding answer, (pm;) jc[;) are prover messages, and (1;) je[;) are salt strings in {0, 1}°FC.

(b) Setvm; := rndec;(cm, o, B, (PM;)ciils (15)ei])-
(c) Send vm; to PeR.

2. P outputs (cm, ((ai, Bi, (PMy) jelkec]> (i) jelkec])ielL])-

3. Foreveryi € [L],j € [kec], set vm; j := rdec ;(cm, i, Bi, (PM; 1) kels)> (k) kelj])-

4. Output (cm, ((cs, Bi, ((PM; 55 Mijs VM 5)) jelkec))ielL))-

22

We denote by tr{ the list of move-response pairs of the form (cm, a, 8, (pm;) jeri)> (15)jef)) performed in
the loop. We show tri} in an execution of the FC state-restoration game FCSRGame using the following
notation:

tred SR :
(em, ((ev, Bi, ((Pmi,jvTh‘,jaVmi,j))je[kpc]))ie[u) +— FCSRGame(sec, rdec, Pec, PPecs alrc) -
We say that PgY is mec-move if Peg exits the loop after at most mec iterations.

Definition 3.20 (State-restoration function binding). An kec-round interactive FC with query class Q has
state-restoration function binding error € if for every security parameter A € N, message length ¢ € N,
sample set size L € N, auxiliary input distribm;ion Drc, salt size sec € N, move budget mec € N, circuit size
bound tec € N, and mec-move tec-size circuit P,

ppec < FC.Gen(1*,¢)
airc < Drc

P Vi € [L] © Vec(PPecs M, o, Biy ((pmi,jvvmiJ))jE[de) =1 Mdec = (mdFC*i)ie[kFC] < u((ch,i)ie[kFC])
" AR s Vi e L), ou(TT) = B; o << o, Bi >>
7 ((Pmi,pUi,j7vmi,j))je[kpc] ielL]

+ FCSRGame(sgc, rndec, PEE, PPec, airc)

< 6?:5()\3 4L, Sec, Mec, th) .

3.3.3 Batched functional commitment schemes

Definition 3.21 (Batched query class). Let Q = {« : ¢ — D} be a query class, and let s € N. The batched
query class Batch[Q), s] is defined as follows:

Batch[Q, s] := {o/: YD [T, ..., € Qst o/ (1) = (ai(H))iE[s}}

Non-interactive batched functional commitment schemes. A non-interactive batched FC scheme bFC =
(bFC.Gen, bFC.Commit, bFC.Open, bFC.Check) for a query class Q = {a: X¢ — D} is a non-interactive
FC scheme for Batch[Q, s] (for some s € N) that satisfies the following syntax.

» bFC.Gen(1*,£) — pp,ec: On input a security parameter A € N and message length £ € N, bFC.Gen
samples public parameter pp,..

* bFC.Commit(pp,sc, II) — (cm,aux): On input a public parameter pp,.. and a message vector IT € ¢,
bFC.Commit produces a commitment cm and the corresponding auxiliary state aux.

* bFC.Open(pp,sc, aux, Q,3) — pf: On input a public parameter pp,.., an auxiliary state aux, a query set
Q C Q and a corresponding answer set 8 € DI9l, bFC.Open outputs an opening proof pf for the claim
“Ya € Q, 8% = a(II)".

* bFC.Check(pp,ec;cm, Q, 3, pf) — {0,1}: On input a public parameter pp, .., a commitment cm, a query
set Q C Q, an answer set 3 € DI, and an opening proof pf, bFC.Check determines if pf is a valid proof
for 3 being the answer of the query set Q on the vector committed in cm.

23

Definition 3.22 ((Batched) function binding). bFC = (bFC.Gen, bFC.Commit, bFC.Open, bFC.Check) with
query class Q has function binding error €qc if for every security parameter \ € N, message length { € N,
query set size s € N, sample set size L € N, auxiliary input distribution Dy, adversary size bound t.ec, and
torc-size circuit Ayec,

PPy < bFC.Gen(1*,7)

Vi€ [L]:|Q;i| = s A bFC.Check(ppyec,cm, Q;, B;,pf;) = 1 !
aipre < Dyrc

P
' AP st Vi€ L], a € Q;, a(ll) = /@z(‘a)

< Ech()\7f, s, L, 75ch) .

Remark 3.23 (Monotonicity of e,:c). We assume hereafter that the (batched) function binding error €, is
monotone in each coordinate in the natural direction:

* eorc(', 4, 8, L, tyec) is non-increasing (larger security parameters decrease an adversary’s success);

* erc(A, 1, 8, L, turc) is non-decreasing (longer message vector decrease an adversary’s success);

* eorc(A, 4, -, L, tyec) is non-decreasing (The solution space with a set of constraints is smaller than that of its
subset);

* eorc(A, 4, 8, -, tuec) 1s non-decreasing (The solution space with a set of constraints is smaller than that of its
subset); and

* erc(A, 4, s, L, +) is non-decreasing (the success of an adversary increases with its computational power).

The last condition is trivially satisfied, while the first should also hold in any reasonable commitment
scheme. The remaining three are natural; in any case, otherwise one may replace, in our computations,
expressions of the type €uec (A, Lmax; Smaxs Lmax, torc), When lmay = max; { £; }, Smax = max; { s; } and
Lmax = maxy { Lx }, with

max {Ech()\; £, S, Ly, tch)}

3,9,k
Interactive batched functional commitment schemes. An interactive batched FC scheme bFC =
(bFC.Gen, bFC.Commit, Pyec, Viec) for a query class Q = {a: PILN D} is an interactive FC scheme
for Batch[Q), s]. In particular, bFC.Gen and bFC.Commit are defined to be the same as the ones for non-
interactive batched FC scheme, while the opening and verification phases follow the interactive protocol
below: given an public parameter pp,.., an instance (cm, Q, 3) and an auxiliary state aux, the prover and
verifier engage in a public-coin krc-round interactive protocol:

((pm;,vm;));e lkpFc]

(Porc(PPyrc, aux, @, B), Vorc (PPyrc, €M, Q, B)) b .

Above, ((pm;,vm;))ick,z] 18 the transcript of the interaction (that is, the kyrc-round of prover messages and
the verifier randomness exchanged between Pyec and Viec). For every j € [Kuec):

* Purc’s j-th message.

1. Compute the j-th FC prover message pm; and auxiliary state:

prC(ppro aux, Q,,B) lf] =1
Porc(auxj—1,vmj_1) ifj>1

(pm;, aux;) < {
2. Send pm; t0 Viec.

24

(em, ((Qi, B;, pfi))ie[L]) < Abrc(PPyrc, albrc)

* Viec’s j-th message.

1. Sample the j-th FC verifier randomness vm; < {0, 1}™Fc..
2. Send vm; to Pyec.

Definition 3.24 ((Batched) FC state-restoration game). The FC state-restoration game for bFC with salt

size sprc € N, functions mdyec = (Mdyec)iclkyee] Where mduec; < Ulruec;) for every i € [keec), public

parameter pp, ., auxiliary input aiyec, sample size L € N, and FC state-restoration prover Py is defined
below.

bFCSRGame(syec, Mdyrc, Pofc; PPyrcs Aibrc)-

1. Repeat the following until PR (pp,ec, aivec) decides to exit the loop:
(a) 755,56 outputs (cm, Q, 3, (pmj)je[,-], (nj)je[i]), where cm is a commitment, Q is a query set from Q,

B is the claimed answer, (pm;) ;c|; are prover messages, and (1;) je[;) are salt strings in {0, 1}°oFc.

(b) Setvm; := rndyeci(cm, Q, B, (PM;);ciils (15)jei])-
(c) Send vm; to PSR

2. Pk outputs (cm, ((Qi, By, (PM; ;) jelkorc]s (i) jelkorc])ielL])-

3. Foreveryi € [L],j € [kuec), set vm; j = rndyec ;(cm, Q;, By, (PM; k) kels)> (k) kelj])-

4. Output (cm, ((Qs, By, ((PM; 5,715, VMij)) jelkerc)))ielL])-

We denote by tryi. the list of move-response pairs of the form (cm, Q, B, (pm;)ic(i), (1) jefi)) performed in

the loop. We show triX_ in an execution of the FC state-restoration game FCSRGame using the following

notation:

troR =~ .
(cm, ((Qs, B, ((pmz‘,ja Ni,j> Vmi,j))je[kbpc]))ie[L]) —= bFCSRGame(syec, rdyec, Pbslfcv PPyrcs Albre) -

We say that Py is myec-move if Por. exits the loop after at most myec iterations.

Definition 3.25 ((Batched) state-restoration function binding). An kyec-round interactive batched FCS bFC

with query class Q has state-restoration function binding error 7. if for every security parameter \ € N,

message length { € N, query set size s € N, sample set size L € N, auxiliary input distribution Dy, salt size

Serc € N, move budget myec € N, circuit size bound tyec € N, and myec-move tyec-size circuit PR,

i PPy < bFC.Gen(1%, /) i
Viell]: aiprc ¢ Dirc
Pr |Qi| = s rndyec = (mdeC’i)iE[kad A u((erCﬂ)iG[kac])
/\VbFC(pprcvcm7 inﬁzﬁ ((pmi,jvvmi,j))je[kbpc]) =1 cm ((Q’ia/@ia >>
AP st Vi€ [U,a € O, a(TT) = BIY AN Pmi g mig vmig))jetiore) /) e
L +— bFCSRGame(stC,rndbpc,ﬁfﬁc,pprc,aich)]

SR
< eprc (N, 4,8, L, Sprc, Myec, torc)

3.3.4 From FC to batched FC

Given a FC scheme for a query class Q, one can construct a batched FC scheme for Q by naively applying
bFC to each query in the query set.

Construction 3.26 (Non-interactive batched FC). Let FC be a non-interactive functional commitment for the
query class Q. We construct a functional commitment bFC for Q as follows:

25

bFC.Gen(1*, £): Output pp,.. < FC.Gen(1*, 7).
* bFC.Commit(pp,ec, II): Output (cm, aux) <— FC.Commit(pp,ec, IT).

bFC.Open(ppyc, aux, Q, B):

1. Parse Q as (a;);c[g) and B as (5i)ie[|g|]
2. Fori € [|Q|]: compute pf; <— FC.Open(pp,qc, aux, o, ;).

3. Output (pf;)ic(of)-
bFC.Check(pp,c,cm, Q, 3, pf):

1. Parse Q as (ai)iEHQH’ 3 as (5i)z‘e[\g|] and pf as (pfi)iGHQH'
2. Fori € [|Q|], compute b; + FC.Check(pp,sc, cm, v, 5i, pf;).
3. IfVi € [|Q|], b; = 1, output 1; otherwise, output 0.

Lemma 3.27. Let FC be a non-interactive FC scheme for query class Q with function binding error
erc = €rc(A, 4, L, tec). Let bFC be defined as in Construction 3.26. Then, bFC has batched function binding
error €pec = €prc(N\, U, 8, L, topc) such that

Ech(/\, g, S, L, tbFC) S Epc(>\, E, S L, tF(:) s
Whel”e tFC S tbFC + S - L

Proof. Let A, be an adversary for bFC. We construct an adversary Agc for FC as follows:

Arc(PPrc, airc):

L. Run (em, ((Qi, B;, pf;))ic)) = Avrc(PPec, Alrc)-

2. Forevery i € [L], parse Q; as (i j)je[s]> B; as (Bij) jels) and pf; as (pf; ;) je(s)-
3. Output (cm, ((aij, Bij, P))ielL] jels))-

Note that A has size tec < tpec + 5 L.
Moreover,

A
Vi€ [L]:|Qi| = s A bFC.Check(ppye, cm, Qi B, pf;) — 1 | PPorc = FC.Gen(1%,£)

Pr . a) aiprc < Diec
NS Vie U ace O allh = 6 (em, (9 By pF))ielt) ¢ Asse (PP,)
(Viell],j € [s]: > ppec < FC.Gen(1%,0)
<Pr FC.Check(ppec, cm, a j, Bi j, pf; ;) = 1 airc — Dec
ANBIst. Vi€ [L],j € [s], aq(IT) = Bi (em, ((aij, Bigs PFi j))iel jels) ¢ Arc(PPec, airc)

(N ls-Litec) -
]

Construction 3.28 (Interactive batched FC). Let FC be an interactive functional commitment for the query
class Q. We construct a functional commitment bFC for Q as follows:

* bFC.Gen(1%,¢): Output pp,.. <+ FC.Gen(1%,¢).
* bFC.Commit(pp,ec, II): Output (cm, aux) < FC.Commit(pp,ec, IT).
* (Porc(PPorc;> aux, @, B), Vorc (PPuec, €M, Q, B)):

26

1. Both Puec and Ve parse Q as (ai)ie[lgﬂ and 3 as (/Bi)z‘e[\gn-
2. For j € [kuec:
(a) Puec’s j-th message.
i. Fori € [|Q|], compute

PFC(pprcaaUX7 aivﬁi) lf] =1

pm; ;,aux; ;) < o
(7 zy) {Ppc(auxi,j_l,vmm_l) lfj >1

ii. Send (pmi,j)iEHQH to Vire.
(b) Viec’s j-th message.
i. Fori € [|Q]], sample vm; j <— {0, 1}™FC.i,
ii. Send (Vmi,j)ie[\Ql] to Purc.
3. For i € [|Q]], compute b; = Vec(PPyec, €M, 4, B, ((pmm,vmm))je[kad).
4. If Vi € [|Q|], bi = 1, output 1; otherwise, output 0.

Lemma 3.29. Let FC be an interactive FC scheme for query class Q with state-restoration function binding

error €28 = X(\, 4, L, Sec, Mec, tec). Let bFC be defined as in Construction 3.28. Then, bFC has batched
FC FC

state-restoration function binding error e;8. = €8 (M, £, 8, L, Spec, Muec, torc) Such that

S
SR SR bFC
€orc (A £y 8, L, Shec, Miee, tore) < €2c(A, 4,5 - L, 5 S+ Mg, tee)

where tec < tpec + 5 - L

Proof. Let 755& be a state-restoration adversary for bFC. We construct a state-restoration adversary 752('? for
FC as follows:

P& (PPec; airc): N
1. Simulate the batched FC state-restoration game bFCSRGame with PR (ppg, airc) as follows:
(@) Get (cm, Q, B, (Pm;)jcpis (1)) jefq) from P
(b) Parse Q as (o) ue[s) and B as (Bu)ue(s-
(c) For j € [i], parse pm; as (pm,, ;)ue[s] and 175 @ (Nu,j)ue(s]-
(d) For u € [s], output (cm, ay, Bu, (PMy, ;) jelils (Mu,5)jeli) and receive vy, ;.

(e) Send (VM ;)yels] to Pire.
2. Get (cm, ((Qi, Bis (PM; ;) jeikurcls (Mi7) jelkorc])ielL)) from Pof..
3. Parse Q; as (vu,i)uc[s)» Bi a8 (Bu,i)ucls)» PM;; a8 (PMy, ; i)ucls)» and 7;j as (Nu,i j)uc(s)-
4. Output (cm, ((Qvu,is Bu,is (PMy ;) jelkopc]s (Tusing)jelkore))ielL]uels))-

Note that ﬁFSCR has size tec < toec + 5 - L, salt size sec < <, and move budget mec < s - Myec.

Moreover,
Viell]: PPyrc < bFC.Gen(1%,7)]
|Qi| =s aiprc < Dyec

PPyrc, €M, dyec == (mdec,z‘)ie[kac] A U(("ch,z‘)ie[kac])

Prot avee [218, —1 << Q.,8;,))
cm,
((sz‘,j, Vmi,j))je[kbpc] ((pmi,j’ Migs Vmi»j))jE[kad ic[L]

i AP st Vi€ [L],a € Q;, oo(I) = ,@ia <+ bFCSRGame(suec, Mduec, Por-, PPyrcs Aibrc)

27

[. ppec < FC.Gen(1%,70)
Vie [L],u€[s]: airc — Dy
PPrc, €M, rndec = (deci)ielkee] < U((Fec.i)iclkec))
S Pr VFC au,inu,% =1 h « F4C BE[“ " el
((pmu,i,j’Vmu,i,j))jé[kbpc] (Cm7 << o 1{471" .). >>)
AP st Vi € [L],u € [s], aus(XT) = B, (P Mg Vi) jelhec] /) / it uets
| ’ < FCSRGame(sec, rndec, PER, ppec; airc)

S
SR bFC
< ch()UE? S L? T? S meC7tFC) .

O]

3.3.5 State-restoration function binding from state-restoration knowledge soundness and binding

We show that if a functional commitment scheme FC is state-restoration knowledge sound and binding, then
it is also state-restoration function binding.

Definition 3.30 (Binding). An kec-round interactive FC with query class Q has binding error e if for every
security parameter A € N, message length ¢ € N, auxiliary input distribution Dec, circuit size bound tec € N,
and tec-size circuit Pgg,

pPrc + FC.Gen(1%,¢)
ai+ D < e\l tg) .
(H> H/) <~ AB(pchv a')

A1 A

Pr FC.Commit(ppgc, IT) = FC.Commit(ppg, IT')

Lemma 3.31. Let FC be a functional commitment scheme with state-restoration knowledge soundness error
K = Kpa(A\, £, Sec, Mec, tos) for the ternary relation

{(PPec; (em, a, B),11) | em = FC.Commit(ppe, IT) A (1) = B},

with extractor running time te, . Further, let FC have binding error ez = eg(\, £, tg) (Definition 3.30). Then
FC has state-restoration function binding error €28 such that for every security parameter X € N, message
length { € N, sample set size L € N, and adversary size bound L € N,

EIS:E()VE) L7 Skcy Mec, t?g) S L ' ’%iFé()V ea Skcy, Mec, tiz) =+ EB()\a Ea tB) ’
where £5 < 128 + Ll and tg < 38 4 Lteg, + L(€ 4 secmec).

Lemma 3.31 generically gives a concrete bound on the state-restoration function binding error for
constructions which have already been shown to satisfy state-restoration knowledge soundness and binding.

Proof sketch. Let Asgeg be a state-restoration function binding adversary against FC. Further, let £ be a
state-restoration knowledge soundness extractor for FC, running in time ¢¢,. For each i € [L], we define

the following state-restoration knowledge soundness adversary (7555)@), which runs Agzrs and simulates
FCSRGame using its own state-restoration knowledge soundness game. When Aggeg outputs

(em, ((cu, Bi), ((Pmi,j, 77i,j7Vmi,j))je[kpc])iE[L]))

(ﬁFSE)(Z) outputs (Cm7 Qs ﬁia (pmi,j)je[kpc]7 (ni,j)jé[kpc])‘

28

Consider the following adversary Ag against the binding property of FC. For each i € [L], Ag simulates
FCSRGame towards (PS%)(%), and then runs the knowledge extractor £z with rewinding access to (PSF)(®),
taking as input the instance (cm, a;, 3;), prover messages (pm; ;)ie(kec] @nd salts (7; ;) jec[ke]- The i-th

extraction will yield a valid witness II;, except with probability k38 (A, £, Sec, mec, t38). If all extractions

succeeds, Ag searches for indices i, j € [L] such that II; # II; and outputs (II;, II;), and aborts if no such

indices exist.
If Asges is successful, then there is no II such that o; (IT) = ; for all ¢ € [L]. If all L extractions succeed,

this implies that there exist ¢, j € [L] such that II; # II;, and Ag is successful. U

29

4 The Funky protocol

Consider the following two ingredients:

FIOP = (P, V), a public-coin functional IOP system for a relation R with alphabet 3, domain D, query
complexity g, round complexity keop, query classes Q1. .., Qg op> and proof lengths ¢4, ..., f.,.; and
bFC = (bFC.Gen, bFC.Commit, Pyec, Virc), an kyec-round interactive batched functional commitment
scheme over the alphabet ¥, and domain . We assume for simplicity that bFC supports a query class that
includes Qq, ..., Qg op- Inits full generality, the Funky protocol is built from ke batched functional
commitment schemes bFCy, ..., bFCy ., where bFC; supports Q;.

The construction of ARG := Funky[FIOP, bFC] is specified below.

Construction 4.1. The argument generator G receives as input a security parameter A € N and an instance
size bound n € N, and works as follows.

G(A,n):

1. Sample FC scheme public parameter: pp,.. < bFC.Gen(1, £,...(n)).
2. Set public parameter for the interactive argument: pp := pp,c-

3. Output pp.

The argument prover P receives as input the public parameter pp, an instance x, and a witness w, and the
argument verifier V receives as input the public parameter pp and the instance x. Then P and V interact as
follows.

1. P’s commitments and V’s query challenges.

For i € [Keiop):

(a) P’s i-th commitment.
i. Compute the i-th FIOP string II; € ¥ and auxiliary state:

—
P(aux;_1,pi—1) ifi>1
ii. Compute a functional commitment to the FIOP string: (cm;, aux;) < bFC.Commit(pp, II;).
iii. Send cm; to V.
(b) V’s i-th query challenge.
i. Sample the i-th FIOP verifier randomness p; <— {0, 1}"FoP.i,
ii. Send p; to P.

2. P’s response.

(a) Run the FIOP verifier V'Tkeior (35 p1, . . .| preyop) to deduce Q.. ., Ok iops Where Q; C Q; is
the query set of V to II;.

(b) Forevery i € [keop], @ € Q;, compute the evaluation Bi(a) = a(11;).
(© Set B; = (B)aco,
(d) Send ((Q’M ﬁi))ie[kﬂop} to V.

3. Interaction for the opening proofs.

For every j € [Kuec):

30

(a) P’s j-th message.
i. Forevery i € [kpop), compute the j-th FC prover message pm; ; and auxiliary state:

Pch(Pp7 aux;, Quﬁz) ifj=1

pm; ;,aux; ;) < o
(w7 ii) {PbFC(aUXi7j_1,Vmi’j_1) ifj>1

ii. Send (pm; ;)ic| to V.

(b) V’s j-th message.
i. For every i € [krop|, sample the j-th FC verifier randomness vm; ; <— {0, 1}™FC.J,
ii. Send (Vmivj)iE[kFloP] to P.

Set pfz- = ((pmi,j7vmi7j))j€[kad'

kFiop]

4. V’s decision.

Check that the following holds:

(@) VUI9PDickaoe! (x; (p;)icpon)) = 15

(b) For every i € [keiop, Verc(pp, cm;, Qi, 3;, pf;) = 1.

The protocol has 2kgep + 1+ 2kyec messages: the first 2kgop + 1 simulate the FIOP, and the rest simulates
the bFC. For notational simplicity, we view the (2kgop + 1)-st message (Item 2d) of the prover and the
(2kpiop + 2)-nd message (Item 3a for j = 1) as one single message. Hence, the protocol has 2kgop + 2kyec in
total and the prover P and the verifier V interact for krop + kuec rounds.

Moreover, the protocol is public-coin because the verifier’s messages are uniformly sampled random
strings. We comment on the protocol’s efficiency measures:

* the generator outputs a public parameter of size parg = |PP,ec| bits;
¢ the round complexity k := kgop + Kurcs
* the prover-to-verifier communication complexity, in bits, is

pci= > femi+q- (log|Qi +logD)+ > > |pmy,

i€[kriop] i€ [kriop] J € [kbrc]

)

moreover,
pc, = |cm;| fori € [keop]
kaF|OP+1 =q- (log ‘QZ| + 10g ‘DD + Z ‘pmi,l‘ ’
i€ [kriop]

PCop s = Z lpm; ;| for 2 < j < kyrc ;
i€[kriop]

the randomness complexity, in bits, is

r= g Friop,; + Kriop - g Mbrc,;
i€kriop] J€kbrc]
moreover,

ri = rrop,; for i € [keiop)

Mkeiop+7 = Kriop * Torc,; TOT j € (Korc]

the argument generator running time is tg ‘= tprc.gen-
the argument prover running time is ¢ = tp + Kriop * torc.commit T Kriop * tpypc + tvs
* the argument verifier running time is ¢, := ty + Kgop - tvpec-

31

5 Solving time and tail errors

We introduce notions for a query class Q that we use in later sections: solver and tail error. Then we study
these notions for several query classes of interest.

Definition 5.1 (Solver). Fixn € N. A solver for a query class Q is an algorithm Solverq that receives as
input a list of query-answer pairs ((cv, Bi))ic[n) and outputs an arbitrary element in the set

N {IT e X4 Vi € [n], au(T1) = B;} .
We denote by tq(¢,n) the running time of Solverq on n query-answer pairs.
Definition 5.2. Fix k € N. A distribution D is k-admissible for the query class Q if
supp(D) € {(Q,8): QC Q,BCD, Q=B <k}tUD .

Definition 5.3 (Tail error). A query class Q has tail error eq if for every N, k,¢ € N and k-admissible
distribution D,

Sn+1 7& 0
br |: A Sn+1 7é Sn

n < [N]
(S1,...,Sn+1) < Sampler(n, D)

S GQ(gakaN))

where Sampler works as follows:

Sampler(n, D):
1. Set Sy = X°.
2. Fori € [n+1]:
(a) Sample (Q;, B;) < D.
(b) SetS; .= S;_1N {H el Vae Qi,a(H) = Bga)}
3. Output (S1,...,Sn+1)

5.1 [Inefficient baseline for the general case

We prove (inefficient) baselines that hold for every query class Q. In subsequent sections we provide
(efficient) improvements for specific query classes of interest.

Lemma 5.4. Every query class Q has the following:
. (In N+1

e tail error eq(,k,N) < %

* solving time tq(¢,n) < n - =

Proof. Fix a query class Q.

Tail error. We adapt the proof from [CDDGS25]. Let D be a k-admissible distribution for some & € N. Fix
¢, N € N. For every m € [N], define the indicator variable x,, to be 1 if and only if the following holds:

[Smt1 # DN Spa1 # Sm | (S1=(Q1,81),---,n+1 = (@N+1,Bn41)) < Sampler(N,D)] .

Note that x,, = 1 implies that Q,, 1 \ U"; Q; # (. Hence,

E [Xm]

32

< Pr{Qmir \ Ui 1 Qi # 0]
PridacQ:a€ Qni1 AN ag U, Q]

< ZPY[CM € Qmi1 N a g UL Q]

acQ
a
m
We conclude that
Smy1 # 0 m < [N] 1 Q|- (InN +1)
== <=
br ANSmi1 # Sm | (S1,-..,Sm+1) <= Sampler(m, D) N mZ_1E [m] = N :

Solving time. Fix n € N. We construct Solverg for Q below:

Solverq(((ai, Bi))ien)):

1. ForII € ¥
(a) Check if Vi € [n], a;(II) = 3;. Continue the loop if the check fails.
(b) Output II.

2. Output L.

The running time of Solverqg can be upper-bounded by 7 -]Z|£. Hence,

tq(l,n) <n- =

5.2 Linear queries
We prove bounds for the query class Q,;, of linear queries.

Lemma 5.5. The query class Q. (Eq. 2) has the following:
s tail error eq, (£, k,N) < %;
o solving time tq, (¢,n) < n- (%

Proof. We compute the tail error and solving time for Q,;, separately.

Tail error. Let D be a k-admissible distribution for some k& € N. Fix ¢, N € N. For every m € [N/, define
the indicator variable ,, to be 1 if and only if the following holds:

[Smi1 ZONA Syt # Sm | (S1=(Q1,81),---,S8+1 = (@Qn+1,8n411)) < Sampler(N,D)] .

For each i € [N + 1], (Q;, 3;) defines a linear equation system. Note that x,,, = 1 implies that Q,,,1; lies

outside the linear span of U ; Q,,,. Since the linear span of Ui]i Jil Q; has dimension at most /¢,

S e -1

m=1

Hence,

N
> Elxml <C .

m=1

33

‘We conclude that

N
Sm+1 # 0 m <+ [N] B i /
br [A Smi1 # Sm ‘ (St Smer) ¢ Sampler(m.D) | = & 2= Eboml <

Solving time. Fix n € N. We construct a solver for Q,;, below:

Solverqy,, (@i, Bi))iefn)):
1. Construct the linear equation system:

a1 (X) = B
X cF: :

2. Use Gaussian elimination to solve the linear equation system.
3. Output an arbitrary solution II. If there is no solution, output L.

The running time of Solverg,, can be upper-bounded by n - /2. Hence,

tq,, (L,n) <n- 2.

5.3 Point queries
We prove bounds for the query class Qp,;,. Of point queries.

Lemma 5.6. The query class Qpoin: (Eq. 1) has the following:
s tail error eq,, ({,k,N) < %;
* solving time tq, (¢,n) <n+{;

Proof. We compute the tail error and solving time for Qp.;,. separately.

Tail error. Let D be a k-admissible distribution for some k& € N. Fix ¢, N € N. For every m € [N/, define
the indicator variable y,, to be 1 if and only if the following holds:

[Smt1 # DA Spg1 # S | (S1=(Q1,81),- -+ Sn+1 = (@N+1,Bn41)) < Sampler(N, D)] .

Note that x,, = 1 implies that Q,,; contains a new position that is not in U}, Q,,,. Since there are ¢

positions in total,
N
Pr[ZXmgﬁl =1.

m=1

Hence,

> Elml <.

m=1

‘We conclude that

N
Smy1 # 0 m <+ [N] 1 /
o [ANSms1 # Sm | (S15.-.,8m41) < Sampler(m, D) N Z Exm] < N
Solving time. Fix n € N. We construct a solver for Qp,;,. below:

34

SOIVerQPoint (((ai7 /Bi))ie[n}):

1. SetII = (L)%

2. Forevery i € [n]:
(a) If a;(IT) (the location in IT corresponding to ;) is L, set it to be 3;.
(b) Otherwise, if §; # «;(1I), output L.

3. For every position in II that is L, set it to be an arbitrary value in 2.

4. Output II.

The running time of Solverq,, ;. can be upper-bounded by n + ¢. Hence,

tQpyy (L) S+ L.

5.4 Univariate polynomial evaluation queries

We prove bounds for the query class Qypo, Of univariate polynomial queries.

Lemma 5.7. The query class Qu.ira, (Eq. 3) has the following:
* tail error e, (6, K, N) < %;
* solving time g, ., (€,;n) < n -

Proof. We compute the tail error and solving time for Q. separately.

Tail error. Let D be a k-admissible distribution for some k& € N. Fix £, N € N. For every m € [N/, define
the indicator variable ,, to be 1 if and only if the following holds:

[Sms1 # DA Syt # S | (S1=(21,81),---,SN+1 = (QNn+1,Bn41)) < Sampler(N,D)] .

Note that x,, = 1 implies that the Lagrange interpolation Lagrange(((Qi, 3;))icm+1)) exceeds the degree
bound ¢ — 1 or has larger degree than Lagrange(((Qi, 3;))ic[m))- Therefore,

N
Pr[ZXm§€] =1.
m=1
Hence,

N
> Elml <L

m=1

We conclude that

b [Sm1 70 m < [N] _1ZN: ¢
ASmi1# Sm | (S1,...,Sme1) < Sampler(m,D) | N

m=1
Solving time. Fix n € N. We construct a solver for Q,p., below:

SOIVerQUniPo|y((<aia Bi))ie[n]):
1. If n < ¢, compute Lagrange(((c, 5i))ic[¢) and output its coefficient vector.

2. Compute f = Lagrange(((ci, 5:))icin)-

35

3. For { +1 <i < n,if f(a;) # B, output L.
4. Output the coefficient vector of f.

The running time of Solverq,,,, can be upper-bounded by n - £. Hence,

tQUniPon (bn) <n-L.

5.5 Multivariate polynomial evaluation queries
D)

We prove bounds for the query class th’ipo,y of multivariate polynomial queries.

Lemma 5.8. The query class Qﬁﬁ;i@ly (Equation 4) has the following:

* tail error €_mpy (0, k,N) < %;
QultiPoly

* solving time tQﬁam&pp)u (t,n) <n- 0%
ultiPoly

Proof. We compute the tail error and solving time for Qﬁﬁ;‘?jly

Tail error. Let D be a k-admissible distribution for some k& € N. Fix £, N € N. For every m € [N/, define
the indicator variable x;,, to be 1 if and only if the following holds:

[Smi1 ZONA Spmi1 # Sm | (S1=(Q1,81),---,S8+1 = (@QNn+1,8n11)) < Sampler(N,D)] .

D)
Poly

separately.

Lety := (fyw)we{OMD}mZiG[m] w[i)<D> €ach query in th’i can be expressed as an inner product (v, IT)
for some v € F™. Therefore, for each i € [N + 1], (Q;, B;) defines a linear equation system. Note that

Xm = 1 implies that Q,,,11 lies outside the linear span of U} ; Q,,. Since the linear span of Ui]i 4{1 Q; has

dimension at most ¢,
N
Pr[ZXm§€] =1.

m=1
Hence,
N
> Elml <.
m=1
We conclude that
N
S, £ 0 m < [N] 1 l
pr |~ =—>YE < — .
' |: /\Sm+1 7é Sm ‘ (Sl, .o .,Sm+1) — Sampler(m,D) N mz:l [Xm] - N
Solving time. Fix n € N. We construct a solver for Qﬁﬂt’gjy below:
Solveryimo) (((ai, Bi))iepm)):
MultiPoly
1. Construct the linear equation system:
a1 (X) = A
X cF: :
an(X) = /Bn

2. Use Gaussian elimination to solve the system.
3. Output a random solution II. If there is no solution, output L.

(m,0) can be upper-bounded by n - £2. Hence,

The running time of Solver
QMultiPoly

tQ(m,D) (¢, n) <n-L% & (mp (4,n) <n-£%.

MultiPoly MultiPoly

5.6 Structured polynomial evaluation queries
We prove bounds for the query class Qs.u:[Q, m, (hg) ke[m](mm?Dv(hi)ie[m]) defined below.

Definition 5.9. For parameters m,n € N, a degree bound D € N, public multivariate polynomials
h; € F<Ph[Xy, ..., X,n] and ¢ = (m +n)(D + 1), the query class Qsyue:|Q, m, (hk)ke[n]](mvnva(hi)ielm]) is

Jdv e Fs.t.

o(I1) = (). Fon(D): Sy P10 Fn(3) - 63))
§1) = Yieppsy ¥ - TG = DO +1) +i] for j € m]
gk(7) = Xieip11 AL TI(m + k — 1)(D + 1) +] fork € [n]

a: Ft — Fmtl

Lemma 5.10. The query class Qsuu[Q, m, (hk)ke[nﬂ(m7n’D7(hi)ie[m]) has the following:
(6, k,N) <

e tail error € (m,n,D,(h;)
Struct (@ (M) g e[

* solving time t monD,(hy)s liu) <
g Struct[Qym;(hk)kE[n]](’ YD’(hl)“g[m])(’) -

ie[m])

Proof. We compute the tail error and solving time for Qs,...[Q, m, (hx) ke[nﬂ(mv”vD»(hi)ie[m]) separately.

Tail error. Let D be a k-admissible distribution for some k& € N. Fix £, N € N. For every m € [N/, define
the indicator variable x,,, to be 1 if and only if the following holds:

[Sm41 # DA Spg1 # Sm | (S1=(Q1,81); -+, SN+1 = (Qn+1, Bn11)) < Sampler(N, D)) .

Foreachi € [N +1], (Q;, 3;) defines a constraint system with £ = (m +n)(D + 1) variables, corresponding
to the coefficients of (fi,...,fmn,g1,...,8n). Since hy, ..., h,, are public, the system indeed forms a linear
equation system. Specifically, a query-answer pair («,) can be rewritten as

S 4l X[= 80

i€[D+1]
> 4T X[(D+1)+id] = B[2]
i€[D+1]
X eF’: :
> T X[(m = 1)(D + 1) +] = B[m]
i€[D+1]
> he(B).. ., Bm) Y YT X[(m4 k= 1)(D+ 1) +] = B[m + 1]
\ k€[n] 1€[D+1])

37

Consequently, x; = 1 implies that Q; 1 lies outside the linear span of ngl Q;. Since the linear span of
UNTQ; has dimension at most ¢,

N
Pr Z)@ﬁﬁ =1,
j=1

and
N

‘We conclude that

Sit1 #0 Jj <+ [N] & Lt
PT[A%HI#Sj’(ShanHﬂé—SmmhmﬁD)]_ EZEWAS

Solving time. Fix u € N. We construct a solver for Qs.,.[Q, m, (hk)ke[n]](m’“»D:(hi)ie[mJ) below:

Solver mom,D, (hy); &, Bi)); :
QStruct[Q7m7(hk)kE[n]](’ YD)(hJZE[m])(((HIBZ))ZG[U})
1. Construct the linear equation system:

al(X) =p1
X cF: :

2. Use Gaussian elimination to solve the system.
3. Output a random solution II. If there is no solution, output L.

The running time of Solver (2701 (hi) i 1)) can be upper-bounded by u - #2. Hence,

Qstruct[Q,m, (hi) kem)

2
Q Q m,n,D,(h;); f u) <u- E .
StruCt[’m’(hk)ke[n]](()le[m])(9) =

5.7 Bounded-degree functions

We analyze the tail error for query classes consisting of multivariate polynomials of bounded total degree.
Specifically, a query «(II) in the query class Q is an ¢-variate polynomial with a total degree bounded by D.

In particular, QLi,, Qpoint, QUniPoly, QMuItiPon and QStruct[Q7 m, (hk)k:e[n]] are special cases of quDnZ

Lemma 5.11. Fix a field F and ¢,D,q € N. Let
Qhol = F=P[X1,..., X]

be the query class of (-variate polynomial queries of total degree at most D. The query class QER)C has the

following:

- ()1
* tail error eQéﬁzc(&k,N) < B,
* solving time t o) (£,n) <n - Dol

Func

38

Proof. We compute the tail error and solving time for Q,(Ean)c separately.

Tail error. Let D be a k-admissible distribution for some k& € N. Fix £, N € N. For every m € [N/, define
the indicator variable y,, to be 1 if and only if the following holds:

[Smt1 # DA Smgr # S | (S1=(Q1,81), -, Sv+1 = (@n+1,Bn41)) < Sampler(N, D)] .

For eachi € [N + 1], (Q;, 3;) defines a constraint system with ¢ variables, which can be relaxed into a linear
equation system with (KJBD) — 1 variables by treating each possible monomial as a new variable. We denote
the relaxed linear equation system as (Q;, 3;),i € [N + 1]. Consequently, x,, = 1 implies that Q; ., lies

outside the linear span of U, Q' . Since the linear span of U\ * Q' has dimension at most (KJBD) -1,

Pr Lf:lxm< <€ED> _1] _

Hence

We conclude that

Smt1 # 0 m < [N] 1 g (!
Pr[/\sm-i-l # Sm ‘ (S1,...,Sm+1) < Sampler(m, D)] _NZE[XW] < N

D

un

Solving time. Fix n € N. We construct a solver for Q£ z below:

50|VerQ<Flu)n)c(((Oéi, Bi))iein)):
1. ForII € F*:
(a) Check if Vi € [n], a;(II) = 3;. Continue the loop if the check fails.
(b) Output II.

2. Output L.

The running time of Solver vy can be upper-bounded by n - |IF]£. Hence,

Func

too (Ln) <n-[F" .

Func

39

6 State-restoration security reduction

We prove a security reduction lemma for the state-restoration security of ARG := Funky[FIOP, bFC].

We start with some definitions. Let P°® be a state-restoration adversary for ARG with size txre and move

budget m. A move mv output by PSR can be one of the following two forms:

°

¢ (X/7 ((Cm;)ue[knop]’ ((217 B;))UE[kHOP
J € [Kerc], which we rewrites as (x/, ((cm!,, o
for simplicity.

us u))ue[knop]:((Q;w@))

Moreover, we assume that PSR has final output

, (em’)jeqis (07) jefi)) for some i € [keiop], which we rewrites as (x', ((cm’;, o

It]))jem) for simplicity;

€lkriop]’

(X, ((Cmi7 Ui))ie[kﬂop]’ ((Qu B;))16 keiop]? ((pmz’,jv ni,j))ie[kﬂop},jE[kac])

such that all its partial moves are included in tr*®

, which can be ensured by increasing the move budget from

m to M := m + keop + Kyee. Specifically, the following moves are included in tr®:

* forevery i € [Keiop), (X, ((cmj,oj))jem);

* forevery i € [kaC]’ (X7 ((ij’ o-j))jé[kﬂop]? ((ij Bj))je[kmop]’ ((pmj,uv nj,u))je[kmop],ue[i})'

Finally, for any move mv, we set round(mv) = i if mv is a move for round 7 (this is always unambiguous).

Lemma 6.1. There exists algorithms Ry, and R such that for every security parameter \ € N, instance size
bound n € N, number of rewindings N € N, auxiliary input distribution D, adversary size bound tprc € N,

adversary move budget m € N, and tpre-size m-move circuit PR the Jfollowing holds:

VIickeo) (x; (Pi)ieikaop]) 7 1
AV QiBilickgop] (x5 (i) iciknop]) = 1
Vi € [Keop] :
A Vierc (PP, cmi, Qi B, > =1
((PMy 5, vMij)) jelkerc]

Pr

pp + G(1*,n)
ai<— D
rnd = (rnd;)ickpop+korc] < UM iclkpop-rkorc])
X ((Cmi’ai) i€[kriop]’ (Q“BZ) i€[kriop]’
((pmz’,jv ni:j))iE[kFIOP]Je[kaC]’
(gé)ie[kﬂop}? (Vmi,j)iE[kHOPMG[kac]
& SRGame(s, rnd, PR, pp, ai)
Parse tr*% as ((Mvq, resq))acim]
For every a € [m] :
(HS))ie[round(mVa)}
trR, (x

(I:)ickpop] N
E[FIOP} (HZ))ae[m]’ie[round(mva)]

< Z (ech(/\ li,qi, N+ 1, Spec, meotch) + €q; (‘g’uq’u)))

i€[kriop]

where
* Sprc S S+ log((kFIOP N+ 1) : (m + kac));
* Mpec < (kFIOP N+ 1) : (m + kac); and

* tyre < O(N - (tare + M+ tVch)) + tQ(gmaxa N - Qax)-

40

} (p ;u)’ie[knop},ue[j])? ((U;)Ue[kmop] (771 u)ZE[kF|op] ue[]])) for some

(pm i,u’ni,u))le[kmopLue[ﬂ)

SR ai
L)(aa(resi)ie[a—l])

X, ((Cmi7 O—i))ie[kmop])7

)

6.1 Construction of the security reductors

We construct the algorithms Ry, and 21 in Lemma 6.1: R, rewindsz5SR multiple times to obtain FIOP strings
for a specific move by P*F; and R outputs the FIOP strings for 7P°F’s final output (given all the obtained
FIOP strings).

Construction 6.2. 9., has oracle access to P, takes in input a move index a € [f] and responses

(resi)ic[a—1)» and outputs FIOP strings (Hga))ie[mund(mva)].
PR (pp,ai
R) (a, (resi)icfa1):
1. Simulate SRGame until P°% makes the a-th move mv,,, answering the first a—1 moves with (res;);c[q—1]-
2. If round(mvq) > keiop, output L; otherwise parse mvg as (x*, ((cmy, 07))iejround(mva)])-

SR(

177
3. For every i € [round(mv,)], initialize a set of query-answer pairs Ki(a) = 0.
4. Rewind to obtain query-answer pairs. Sample N, < [N] and repeat the following N, times.
(a) For every ¢ € [k], initialize an empty partial function rnd;: {0, 1}* — {0, 1}" where

res, if mv is the v-th move of the simulation with v € [a@ — 1] and round(mv) = ¢

1 otherwise

rnd;(mv) = {

(b) Continue simulating SRGame using (rnd; ;<[to obtain the final output
(Xa ((Cmia O-i)>i€[kr:|op]’ ((Qla ’Bi))iE[kHop]’ ((pmz,ja 772'7j))iG[kHop],jE[kac]) .

When Pt makes a move mv for round i € [k]: if rnd;(mv) = L then sample p € {0,1}" and set
rnd;(mv) = p; either way, answer mv with rnd;(mv).
(c) Forevery j € [kurc], let (v, j)ic[keop] DE the response of SRGame for the move

(X’ ((Cmi’ O—i))ie[kHOP]7 ((QZ’ BZ))ZE[

(d) Forevery i € [round(mv,)]: if Viec(pp, cmy, Qi, By, ((PM; 5, VMi i) jelkore)) = 1, add (Qi, B;) to
K,
5. Solve for the FIOP strings. For every i € [round(mv,)]:
(a) Parse K i(a) as ((y, B5)) je[u]» Where u is the total number of query-answer pairs in K’ i(a).
(b) For analysis, define SZ-(G) to be the set of FIOP strings in X% consistent with K Z-(a):

((pmiﬂu 77i,u))i€[kp|op]7ue[j]) .

kriop]’

S = {1l € £ 1) € [u], ay(11;) = 85}
(¢) Run TI{*) + Solverq, (0,) jefu)-
6. Output (Hga))ie[round(mva)}'

The algorithm R, rewinds PSR and performs additional checks for at most N times, with each loop costing at
most time Zarc + Kriop * Ty, Moreover, for each round i € [krior)» Sim uses the query class solver Solverg
to reconstruct the i-th FIOP string. Hence, the running time of R, is

bty < N (tare + Kriop - tVch) + Z tQ(&, N-q;)
i€[kriop]

<N- (tARG —+ Kriop - tVch) + Kriop - tQ (gmaxa N - qmax) .

41

Construction 6.3. ‘R takes as input a move-response trace tr*%, a move (x, ((cm;, 0;))ic[kpop])» and a list of

FIOP strings (H(a))ae[wie[%], and outputs kgop FIOP strings.

7

R(trF, (x, ((cmi, 07))ickpop]) (ﬁz('a))ae[rﬁ],ie[ca]):
1. Forevery i € [Keop):

(a) Let a be the index of the first move mv in tr*® such that round(mv) < kgop and mv is of the form

(x, ((cmy, Uj))je[z‘]’ ((cm’, a}))je[u]\[i]) for some u > i. Set II; == Hga).
(b) If thgre is no such move, set ﬁi = 1.

2. Output (Hi)ie[kp|op]-

For every i € [keop|, the algorithm R scans all moves in search of a match, which takes time at most m.
Hence, $R runs in time
Lo < kriop - M < Keyop - (m + kriop + kac) .

6.2 Proof of Lemma 6.1

Throughout this proof, probabilities are with respect to the following experiment unless stated otherwise:

[pp+ G(1*,n)]
ai<— D
rnd = (mdi)ie[kHOP-i-kac] — u((ri)ié[kF|0P+kac])
* ((Cmi’ Ui))iﬂkﬂop}’ ((Qi”@i»ie[kﬂol’]’ trSR ~
((pmi’j, ni,j))ie[kﬂop],jé[kbpd7 — SRGame(s, rnd, PSR, PP, al)
(pi)ie[kHOP]’ (Vm@j)iE[kHOP]JE[kad

Fora € []: (I”),cjouna(mesy € R 0 (@ (1o)

| (ke < R(rR, (x, ((cmy, 03))ickeron])- (ﬁl('a))ae[ﬁq],ie[round(mva)]) i

Our goal is to upper-bound the probability of the following event:

i Vv iekiop] (x; (pi)iE[kFIOP]> 7 1
/\V([Qiﬂi])z‘e[kHOP] (x; (,Oi)ie[kHOP]) =1
Vi € [Keop] :
A Vi (pp,cm;, Q;, B;, > =1
L ((Pmi,jani,j))je[kad -

Let S; be the solution space from which ﬁz is selected as defined in Construction 6.2. Set S := S; N {II €
¥ Vo€ Q;,a(ll) = Bl(.a)}. The event above indicates that for some round ¢ € [kgop], either the reductor
fails to reconstruct the FIOP proof string I1,, or II; is inconsistent with (Qi, B;). This further implies that one
of the following two cases must hold:

1. There exits ¢ € [kpop) such that S = 0.

2. There exits i € [keop| such that Sf # () and SF # S;.

42

In other words, by union bound, we just need to upper-bound the following two probabilities to get a bound
for the target probability:

i Sr =10]
Pr di e [kFIOP]a AV < pp,cm;, in Biv) =1) (10)
bFC -
i ((sz’,jani,j))je[kac] .
and ~ -
SH#0
. ANSF#£S;
Pr | 3i € [keop), v A (11D
/\VbFC (pp7cml7 Q’“Bij) - 1
L ((PM; 55 VM3 5)) jé ko] -

6.2.1 Bound for Equation 10 from state-restoration function binding

We prove that the probability in Equation 10 can be bounded by the state-restoration function binding error of

bFC. First, we construct FC state-restoration adversaries (Pg. ;)ic[kpop] USing the argument state-restoration

adversary PR,

Construction 6.4. Let D be the auxiliary input distribution for ARG. The auxiliary input distribution D¢
for bFC is as follows.

Dyrc: Output ai +— D.

Construction 6.5. For every i € [keop], We define ﬁf,fc,i as follows.

Pssc,i(pprC? aiprc):
1. Parse pp, as pp and iy as ai.
2. Set I :={). _
3. Simulate the execution of SRGame with P*?(pp, ai) as follows.
(a) For every u € [k], initialize an empty partial function rnd,,: {0, 1}* — {0, 1}".
(b) When P® outputs a move mv of the form (x’, ((em}, 0%)) jefu)) for some u € [keiop]: if rndy (mv) =
L then sample p € {0,1}"™ and set rnd,,(mv) = p; either way, answer mv with rnd,,(mv).
(c) When PSR outputs a move mv of the form

(Xl? ((Cm;, U;L))ue[kﬂop]’ ((Q’/u7 IB{u))ue[kFIOP]? ((pm{(,LJ’ n;,j))ue[kﬂop],jé[d) for some ¢ € [kaC]

i. If mdygptc(mv) = L then set mdyggpyc(Mv) = (VMY)uelkpop] Where, for every u €

[kriop], vy, .. is obtained as follows:
/ /

A. Set mviee = (emiy, Qu, By (PMy) jelels (M) jele))-
B. If mvyec € I, modify 17, . to obtain a new move mvyc not in 75 add mv;; to I.
C. Make the move mv,.. in FCSRGame to get the answer vmy, _..
ii. Answer mv with rdyg,gp+c(mv).
4. Let tr*® be the query-answer trace of SRGame and (res,) ac[m] be the responses. Let the final output of

PSR be:

(X’ ((CmU? UU))UG[kHOP]? ((QU7 Bu))ue[kﬂop]’ ((pmu,_j? nuJ’ Vmu,j))UG[kHOP]JE[kad) .

43

5. Let a be the index of the first move mv, in tr*® such that round(mv,) < kgop and my, is of the form
(x, ((cmy, Uj))je[i]’ ((em, a]))je[u]\m) for some u > i.
6. Simulate SRGame until P} outputs the a-th move by answering the first a — 1 moves with (resy) ,e[q—1]
obtained from tr*®
7. Initialize K; = 0.
8. Rewind to obtain query-answer pairs. Sample N; < [N] and repeat the following for N; times.
(a) Continue the simulation of SRGame as follows and obtain the final output

(X* ((meau))ue [kriop]’ ((Q;kuﬁ))ue[kﬂop} ((pm;j’77;73'))UG[kHOPMG[kac]) :

i. Forevery u € [k], reinitialize the function rnd,,: {0,1}* — {0, 1}" where

du(mv) res, if mv is the v-th move of the simulation with v € [a — 1] and round(mv)
m =
L otherwise

ii. When P® outputs a move of the form mv := (x’ ; ((em’, 0%)) jefw)) for some u € [keiop]: if

rnd, (mv) = L then sample p € {0,1}" and set rndu(v) := p; either way, answer mv with
rnd,(mv).
iii. When P*® outputs a move mv of the form

(((Cmuv Uu))ue[kp|op]7 ((Qiu :6))ue[knop]’ ((pm;,j, n;,j))ue[kﬂop],je[c}) for some ¢ € [kac} .

- If rmdioptc(mv) = L then set rmdyg ot c(Mv) = (VM)uclkpop] Where, for every
u € [kpiop], vy, .. is obtained as follows:
* Set Mvyec = (Cm;u ;u /8 (pm ,])]6[0] (n;,j)je[c])'
If mvyec € I, modify 1, . to obtain a new move mvy.. not in /5 add mvyec to 1.
% Make the move mv,gc in FCSRGame to get the answer Vm&,c
— Answer mv with rndy,p4c(mv).

(b) For every ¢ € [kyec], let (vmy, .)yekpop) DE the response of SRGame for move

(X* ((Cmu7 UU))uE[kHOp]’ (<QZ7 ’BZ))UE[kHOP]’ ((pm:'v]7 nZ:j))ue[kFIOP]v‘je[c}) :

(©) If VbFC(ppv cmg, Q;k7 P ((pmz ¢’ Vm;c))CE[kac]) =1, add (Q;k’ i ((pmz ,C? n; c))CE[kac]) to KZ
9. Solve for the FIOP strings. Run II; < Solverq, (((@vj, B5)) jefu]) Where ((avj, B5)) el are all query-
answer pairs in K.
10. If i':[l # L, output the “dummy” tuple (cmq, L).
11 IfT; = L, add (Qs, By, ((PM; ;5 Misc)) eefkrc]) to K and output (cm;, K).

We discuss efficiency parameters of PbFC i

* Salt size sy of PbFC ;- The algorithm prRc,i relies on having enough distinct salts, specifically at most
(Keiop - N 4 1) - (m + ke) distinct salts to avoid duplicates in the set I (see Step 3¢ and Step 8(a)iii). This
demands setting the salt size s, larger than s, specifically most s + log((kpop - N + 1) - (M + kyec))-

* Move budget myec. In Step 3c and Step 8(a)iii, whenever PSR makes a move of the form
(((me UU))UE[kFIOP]7 ((Qlu’ ﬁ))UG[kFlop] ((pm;,j’ n;,j))ue[kﬂop]:je[c])
for some ¢ € [kyec], ﬁf,fc’ . may query bFCSRGame for the answer. Hence the move budget m,c is at most

(kFIOP N+ 1) : (m + kac)-

44

=Uu

* Running time tygc.

— Step 3 takes time at most tare + M.

— Step 5 takes time m.

— Step 8 takes time N - (tare + M + £y,).
— Step 9 takes time tq(¢;, N - q;).

Hence the time of 7355:7 , 18 at most

torc < tarc + M+ (fﬁ +N- (tARG +m+ tvac) + tQ(&‘, N Qz))
== tARG + 2rﬁ + N . (tARG + rh + tvaC) + tQ(érL, N N qz)
= O(N : (tARG +m+ tvac)) + tQ(Emaxa N - qmax) .

By Definition 3.25,

5t =0
Pr di € [k,:|op], AV c < pp,cms, QialBiJ
bF!

=1
((pmi,ja Vmi,j))jé[kad >

S =10

7

/\VbFC (pp,cmg, inﬁiv

< Z Pr
i€[kriop]

Vjie[N+1]:
‘Qj‘ S qmax
/\VbFC < pp,cm, Qj7/3j7

§ZP1"

i€[kriop]

< Z Eﬁsc()\,fi,%', N + 1, sprc, Miec, torc) -
i€ [kriop]

where Surc, Myec, torc Satisfy the same conditions as in Lemma 6.1.

6.2.2 Bound for Equation 11 from tail errors

We bound the probability in Equation 11 using tail errors.

((ij,uavmj,u))ue[kac]
ABTst. Vi€ N+ 1],a € Qj, a(ll) 255)

=1
((pmi7j7 Vmi,j))je[kad >

)

1

|

PPurc < bFC.Gen(l)‘,Emax)

aipre < Dyec
rndeC = (rndeC,i)iE[kad A Z/[((erC,i)iG[kac])
Qi7 /Bi)
pm; ;,
cm,
ni,j’
vmi,j

J€lkbrc] i€[N+1]
< bFCSRGame(syec, rdyec, Pirc . PPurcs aibrc)

Based on Construction 6.3, for every ¢ € [krop|, Set a; such that ﬁl = ﬁl(-ai). We define a q;-admissible

distribution D; 4, (res;) as follows.

jela;—1)

D(i7ai7(re5j)je[ai—l]):

1. Simulate SRGame until P} outputs the a;-th move mv by answering the first a; — 1 moves with

(resJ')jE[afl]-

1771

2. Let (x*, ((cm}, 07))ielround(mv)]) be the a;-th move mv of PSR,

3. Letr := max (maxie[kﬂop] FRIOP,is TNAX j [k rc] ToFC, ° Keiop), sample the reductor randomness

p = (pa)ae[rﬁ] A {07 l}r-rﬁ :

4. Continue the simulation of SRGame with p and obtain the final output
(3, ((em5,95)) s etieron) ((25585)) sciemopl? (P M) e lkeiopl uelkorc]) -
5. For every u € [k, let (VM u) je[keop) bE the response of SRGame for move
(35 ((em593)) seteropt (235 B9)) sctenonls (PMyc Mie) ielkeiopcelul) -

6. If Viec(pp, cmy, Qi, B, ((PM; j, VM) jelkyec)) = 1. output (Q;, B;); otherwise output ().

Let Sampler be the sampling procedure in Definition 5.3. For every i € [kriop),

Sr#£0
NSE#S;
Pr AV < pp,cm;, Qi,,@i, > —1
((Pm 5, vmi ;) jelkorc]
<Pr[5n+17é® n < [N]
< A Sni1 % Sn (S1y.-y Snt1) < Sampler(n,D(wh(resj)je[ar”))

< EQi(f’ia i, N) :
‘We conclude that
Sy # 0
Pr |30 € ko] : %1 7 S
ppacm’bQia/giv _
/\Vch =1
((pmi,javmi,j))jé[kad
Sy # 0
Pr NST #S;

pp, cm;, Q;, B,
P o (;) _1
i€[kpiop] bFC ((pmi7j,Vmi,j))jE[kac]

< Z eQi(Ei,th) .

1€[kriop]

IN

46

7 State-restoration security of the Funky protocol

Theorem 7.1. Let Qq, ..., Q. op be query classes, where Q; = {a: ¥t — DY} has tail error €q, and
solving time tq,. Consider the following two ingredients.

* FIOP = (P, V) is a public-coin FIOP with query classes Qu, ..., Qi op for a relation R with round
complexity keop, alphabet 3, proof length {, and query complexity q. We denote by €%, and k2, the
state-restoration soundness and state-restoration knowledge soundness errors of FIOP, respectively.

* bFC = (bFC.Gen, bFC.Commit, Pyec, Virc) is a kyec-round FC scheme with query classes Qu, . . ., Qkgiop-
We denote by e:X- the state-restoration function binding error of bFC.

Then ARG = (G, P, V) := Funky[FIOP, bFC]| (Construction 4.1) is a (2kpiop + 1 + 2kuec)-message public-
coin interactive argument system for R with state-restoration soundness error €3~ and state-restoration
knowledge soundness error k3% that satisfy

e, m, 8, M tare) < €nn(n, 8 + A, Meop) + Z (erc(A, €iy ais N+ 1, Syec, Muee, torc) + €q, (4564, N)) and
i€[kriop]

HiﬁG(A,n, 5, M, targ) < "‘ﬂS:.Rop(n, 54 A, Meop) + Z (Ech()\ i, 03y N4 1, Spec, Miee, tore) + €q; (€:,9i,)))
i€ [kriop]

where

* Mpop < M+ Keop;

triop < (m + kFIOP) : (N : (tARG + Kriop - tvbpc) + Kriop - lqQ (‘gmam N - qmax));

* Sprc < 5+ log((kpop - N4 1) - (M + kyec))s

* Myec < (kFIOP N+ 1) (m + kac) and

o tyre <O(N - (tapc + M + tyc)) + £Q Ly N+ Grna)-

Moreover, ARG’s extractor runs in time te., (A, 1,8, M, tar) < treg (12, Sriops Mriops triop) + triop.

Corollary 7.2 (negligible regime). Let ARG be defined as in Theorem 7.1. Assume that:
o R (N 4, L, Sprc, Myec, tore) = negl(A) when £, L, Suec, Mupc, tore are polynomials in A;
* for every polynomial p there is a polynomial p' such that eq,(¢,q,N) = 1/p(X) for all i € [kpop] and
N =p'(N).
Then, if m, tare, £, d, kKeiop are polynomials in \, we have:
ERe(Aym, 8, m tare) < R o(n, 8 + A, Meop) + negl(A) and

Ko (A, 1, 8, M tare) < Koo (1, 8 + A\, mpop) + negl(A) .

Proof. Suppose kgop = p1(A) for some polynomial p;. Let p2(A) be an arbitrary polynomial. Choose N =

pOIy(A) SuCh that GQi (£7q7 N) S m fOI‘ all Z S I:kF|OP}. HCHCG, meC — p0|y()\> al’ld tbFC - p0|y(/\)
Therefore,
1
xRN n, 8,m tage) < €in0(n, 8 + X, Mpop) + negl(N) + 3oV
1
< exp(n, s+ A, meop) + negl(N\) + 520
Since p» is an arbitrary polynomial, we conclude that
(AN, 1, 8, M tare) < €np(1, 8 + A, Meop) + negl(N) .
An analogous argument holds for £3%.. O

47

7.1 Construction of the FIOP state-restoration adversary

We construct an FIOP state-restoration adversary PS® we use in the proof of Theorem 7.1 using the argument
state-restoration adversary PR,

Construction 7.3. Let D be the auxiliary input distribution for ARG. The auxiliary input distribution D for
FIOP is defined as follows.
D:
1. Compute pp + G(1*,7n).
2. Sample ai < D.
3. Output ai := (pp, ai).
Construction 7.4. The FIOP state-restoration prover P is defined as follows.
PS®(ai):
1. Parse ai as (pp, ai).
2. Simulate SRGame with P5*(pp, ai) as follows.
(a) Forevery i € [k|, initialize an empty partial function rnd;: {0, 1}* — {0, 1}":.
(b) For a € [m], when PSR makes its a-th move mvg:
i. If mv, has the form (x', ((cm, 0%)) je[s)) for some i € [Keop]:
A. If rnd;(mv,) = L:
— Run (1Y, .. — PR (pp,ai) N .
un (ILY) e = Rm (a, (resi)ieja—1]) (Construction 6.2).
— For every j € [i], set the FIOP salt string ; := (cm}, 07).
— Make the FIOP move (x/, (ﬁ§a))je[,~], (74)jefi)) in FIOPSRGame to get an answer py.
— Set rnd;(mv,) = pq.
B. Answer mv with rnd;(mv).
ii. Otherwise, mv, has the form

(((Cmu7 UU))UE[kHop]? ((QQN ﬁ))ue[kﬂop} ((pmz ,u? 771 u))le[kﬂop] UG[}) fOI' some J € [kaC] .
A. If rndyg oo+ (Mmve) = L, sample p € {0, 1} Fopr+7 and set rndyg,p+j(Mve) = p.
B. Set (ﬁga))ie[mund(mva)] := L and answer mv, with rndy;,oo+;(mvy).

3. Let tr*® be the move-response trace of SRGame and let the final output of P be:
(X7 ((sz‘, Ui))iE[kF|op]7 ((Q’H ﬁ))’LG [keiop] ((pmz,]a Ui,j))ie[kgop},je[kbpc]) .

4. Run (I)icfinop] < R, (5, ((emi, 00) iciknop])s (T ac i) icround(mva)))-
5. Forevery i GN[kF.op], set the FIOP salt string 7; := (cm;, 0;).

6. Output (x, (Hi)ie[kﬂoﬂ’ (%)ie[kHOP])‘
We compute the efficiency parameters for PSR,

* Salt size Sriop Of PSR, Salt strings are used in Item 2(b)iA and the salt size sgpp is at most s + .

* Move budget mop. When P* makes a move of the form (x’ ; ((em}, 0%)) jefq)) for some i € [k], PS* may

make a move in FIOPSRGame (see Item 2(b)iA). Hence the move budget mgop is at most m + kg op.

* Running time trop. When P5* makes a move of the form (x/ , ((em}, 0%)) jefq)) for some i € [k], PS* may

run the reductor R, (Item 2(b)iA). From Construction 6.2, the running time of PR is at most

trop < (m + kFIOP) : (N : (tARG + Kriop - tvac) + Kriop - tQ(Emam N - qmax)) .

48

7.2 State-restoration soundness

We wish to upper-bound the following expression:

Ax ¢ L(R)
pp7x7 (Cmi)ie[kﬂop]?

((Q“ 'Bi))ie[knop}’ ('Oi)ie[kFIOP]’

((pmz‘,jv Vmiuj))’iE[kFIOP]Je[kad

ANV =1

I pp < G(1*,n)

rnd = (rndi)ie[kFIOP“’kad — u((ri)ie[kFlop-l-kac])
% ((cmi’ Ui))ie[kHOP]’ ((Qi’ﬁi))ie[kHOP]7
((pmi7jv ni,j))ie[kFlop]JE[kac]’
(pi)ie[kﬂoﬂ’ (Vmivj)ie[kFIOP]7j€[kaC]

S ~
& SRGame(s, rnd, PR, pp, ai)

(12)

We augment the experiment in Equation 12 by running R, (Construction 6.2) for every a € [m] and R as

follows:

[pp < G(1%n)

ai<— D

rnd = (rnd;)ic[kpop-+rkorc] < U((Fi)icknop+korc])
= ((Cmi’ Ui))ie[knop}’ ((Qi”gi))ie[kFIOP]’
((pmi,j7 niuj))iE[kFloP]JE[kad’
(pi)ie[kaP]’ (Vmi7j)ie[kFIOP]vje[kaC}

trSR

Fora € [ﬁ’]] : (ﬁga))ie[round(mva)]

& SRGame(s, rnd, PSR, pp, ai)

SR i
. %2 (pp;a)(a, (reSz’)ie[a—l])

| (I icikeop] < R(rR, (x, ((emy, 03))ickeron])- (ﬁz('a))ae[rﬁ],ie[round(mva)]) |

Throughout the proof, probabilities are with respect to the above experiment unless stated otherwise.

Note that (x, ((Cmi» Ji))ie[kHOP])

x| <n

Ax ¢ L(R)

PP, X, (Cmi)ie[kHOP]’

((9s, ﬁi))ie[kp.op}’ (Pi)iekpop]s

((pmm-, Vmi’j))ie[kFIOP]JE[kad

[x| <n

Ax ¢ L(R)

/\V([Qiyﬁi])ie[kﬂop](x; (Pi)ie[kp.op]) —1
Vi € [Keop) :

A\ V (PP, Ccmg, inﬁi?) =1
bFC -
L ((Pmi,jani,j))je[kac]
[x[<n

Ax ¢ L(R)
/\V(Hi)ie[k”op](x? (pi)ie[kHOP}) =1
AV (QHPDiekei0p) (x5 (p)ic fenop]) =
Vi € [Keiop] :
A Viee < pp,cm;, Q;, By,) 1
L J€kbrc]

((pmi,jv vm; ;)

Pr

ANV =1

=Pr

1 + Pr

49

is fully contained in tr*®. By the law of total probability,

| <n

Ax ¢ L(R)

/\V(Hi)i€[kFIOP](X; (pz‘)ie[kHoP]) 71

/\V([Qi:ﬁi])ie[kFIOP](x; (Pi)z‘e[kHOP]) =1
Vi € [kpop] :

A VbFC < pp,cmg, Qi:ﬁia > -1
L J€[kprc] i

((pmi,jv vm; ;)

We bound the latter term and then the former term.

Bound from security reduction. According to Lemma 6.1,

xl <0

Ax ¢ L(R)

/\V(Hi)ie[kFIOP](x; (pi)iE[kHoP]) #1

Pr | A vUQiBDiekpop) (x; (Pi)ie[kp|op]) =1

Vi € [keiop] :

A Virc (PP, cmy, Qi By,) =1

L ((pmi,jvvmi,j))je[kac] e
V(Hi)ie[kFIOP] (X; (pi)ié[knop}) #1

AV (QiBicteoel (5 (p1)iefkpop)) = 1

< Pr Vi e [kFIOP]7a € 9,
A vV pp,cmi,a,ﬁi(a), =1
bFC -
((sz‘,javmi,j))je[kad J

S Z (EEEC()\ygiquN + 1aSbFC7meC7tbFC) +€QZ(€Z7q’L7N)) N

i€[kriop]

Bound from FIOP state-restoration soundness. Let D be as in Construction 7.3 and let PSR be the FIOP
state-restoration adversary in Construction 7.4. According to Definition 3.15,

x| <n
Ax ¢ L(R)
AV Iicbeop] (x; (pi)iE[kHOP]) =1
Pri A vU@8Dictkeor) (x; (p1) e jeop)) = 1
Vi € [Keiop] :
A Vch(pp, cmi, Qi B;, > _1q
L)jelkoec]

((pm; 5, vmi ;)

x| < ai+ D
< Pr fx;Z(R) mdFchP = (rndFIOP,i)iG[kHOP] — u((rFIOP,i)iE[kHop])
- /\ V((ﬁ) ()) . 1 (x7 (Hi)ie[kﬂop]? (’Yi)ie[kﬂop}? (pi)iell(ﬂop])
5 HiJielkeor] Pi)iglkeior)) = < FIOPSRGame(ssop, Mdrop, P, ai)

SR
< €F|0P(na SFiop; mFIOP) .

50

7.3 State-restoration knowledge soundness

We wish to upper-bound the following expression:

x| <n
A(x,w) ¢ R
PP, X, (sz’)ie[kﬂop],

((sz /Bi))ie[kﬂop}) (Pi)ie[kplop])

((pm; E VmiJ))iG[kHOP]JG[kad

% =1

pp < G(1,n)
ai< D
rnd = (mdi)ie[kF|OP+kad — u((ri)ié[kHOP-i-kac])
% ((Cmi’ Ui))ie[kﬂop]’ ((Q“Bl i€lkriop]’
((pmz’,ja ni,j))ié[kFIOP]:je[kac]’
(pi)ie[kﬂoﬂ’ (Vmivj)ie[kFIOP],jG[kaC]
ﬁ SRGame(s, rnd, PR pp, ai)
x, ((em;, ai))ie[kﬂop]’

(Qi, B)) i€[kriop]’

PR (pp,ai) (
E(pm NE nw))lG[kF|0P]J€[kac]’
t

w <+ &

i)ie [krior] (Vmi,j)ie (kriop],J € [kpFc]
SR
r

13)

We augment the experiment in Equation 13 by running R;,, (Construction 6.2) for every a € [m] and R

as follows:

[pp < G(1*,n)
ai<—D

((sz‘,y Ui,j))ze[kmop]ue[kbl:d
(pi)ie[knop] (me)ZE[kFlop]JE kbrc)

SR B
W 557Z (pp,ai)

Fora € [m] : (ﬁga))ie[round(mva)]

rnd := (mdi)ie[kHOP-i-kac] — u((ri)ie[kF|0P+kac])
X, ((Cmi7 Ui))zé [kriop]’ ((QZHB'L) i€[kriop]’

(cmg, 05)z [kriop]’ (Q“'B))ie[kFIOP]’
((PMi 35 Mi,j) ie keiop] e kurc

(pZ)ZE[kFIOP] (le’])le[k“op] J€lkorc] e

— ;p PR a, (res;)icla—1))

(I)icfkrrop] R(ER, (55, ((emiy 07)icikerop])s (T)ac i ic round(mve)))

trSR

& SRGame(s, rnd, P}, pp, ai)

Throughout the proof, probabilities are with respect to the above experiment unless stated otherwise.
Note that (X, ((Cmi, Ui))ié[knop]) is fully contained in troR, By the law of total probability,

x| <n
AN(x,w) ¢ R
PP, X, (Cmi)ie[kﬂop]a
((Qs ﬁi))ie[kmpp (Pi)ielkeop)>
((pmz N Vmi,j))iG[kHoP],jE[kac]
[x| <n

A(x,w) ¢ R

AVULeBDiekaor) (35; (p7)ie fop)) = 1

Vi € [Keiop] :
Moy < pp, cmi, Q;, B;,
bFC

Pr
AV

=Pr

=1

=1
((pm; ,]7vmi7j))j€[kac]) -

51

[x| <n i [x| <n i
A(x,w) ¢ R A(x,w) ¢ R
/\V(Hi)ie[kﬂop](x§ (Pi)ielkmop)) = 1 /\V(Hi)ie[kﬂop](x5 (Pi)ielkeor)) 7 1
< Pr /\V([Qiyﬁi])ie[kﬂop](x; (Pi)ie[kp|op]) -1 + Pr Av([Qiaﬂi])iG[kHop](x; (pi)iE[kHop]) =1
Vi € [Keop] : Vi € [Keop] :
A Viee < pp, cm;, Qi By,) 1 N Vire (PP, cm;, Q;, By,) 1
I ((PMi 5, vMij)) je ko]] i ((PMyj, VM) jekorc]]

‘We bound the latter term and then the former term.

Bound from security reduction. According to Lemma 6.1:

| <

A, w) ¢ R

/\V(i)iel kriorl (x; (p z‘)ie[kHoP]) =1

Pr /\V([Qwﬁz])ze (kri0P] (x; (Pi)z‘e[kHOP]) =1

Vi € [Keiop)

A Ve < pp,cm;, Q;, B;, > =1

L ((pmz jvvmi,j))jE[kaC] -
V(Hi)iE[kHOP]((pz)ze [kriop]) #1

A VQiBiDie riop] (x; (pz)ze[knop}) =1

< Pr Vi € [Keiop) :

A VbFC (pp,cms, Qi)ﬁi?) =1
L ((pm; ,]7vmij))j€[kac] d

< Z (fbpc()\ i, iy N+ 1, Spec, meCutbFC) GQi(ei; qi, N)) .

i€ [kriop]

Bound from FIOP state-restoration knowledge soundness. Let D be defined as in Construction 7.3, Pk
be the FIOP state-restoration adversary constructed in Construction 7.4.
We construct the state-restoration knowledge extractor &g for ARG.

Construction 7.5. Let Eg; be the state-restoration extractor for FIOP. The state-restoration knowledge
extractor Esg for ARG is as follows.

Edn P (x, ((emi, 01) ie o> (D1 B))iclkenon]: (0)ielkon: (P .- Vi §iclkgropl jelhorc] r):
1. Setai:= (pp, ai).
2. Construct PSR using PSR as in Construction 7.4.
3. Simulate FIOPSRGame with PS*(ai) as follows.
4. Whenever PS® makes a move of the form (x/, (ﬁga))jem, (7j)jepi)) for some 7 € [k]:
(a) Parse (’Yj)gem as ((em’;, 0%)) jefi)-
(b) Setmv’ := (, ((em’, 0%)) jeq)-
(c) Answer mv’ with the corresponding response in tro®, B
5. Let tr3}, be the move-response trace of FIOPSRGame and let the final output of P*F be:

(X’ (Hi)ie[kp|op}7 (rYi)ZIG[kHOP]’ (pi)ie[kﬂop]) .

52

f)SR s ~
6. ComPUte W < ESR (a) (X7 (Hi)ie[kﬂop}? (fyi)iE[kHop]ﬂ (pi)ie[kﬂop]?tréﬁ)P)’

7. Output w.

Esr simulates the FIOP state-restoration game FIOPSRGame with PSR and runs the FIOP state-restoration

extractor Egg. The running time of & is at most

t.SSR(/\: n, 8, M, tagg) < leg, (n, Sriop» Mriop, triop) + Lriop -

According to Definition 3.16,

[x[<n

A(x,w) ¢ R

AV Hdielkeop) (x5 (pi)ickpop]) = 1

Pr | A v(QiBiDickpop (x; (Pz’)ie[kplop]) -1
Vi € [Krop) :

((pmj 5, vmi ;)

x| <n
<Pr| A(x,w)¢R
AV (x, (Hi)ie[kﬂoﬂ’ (pi)ie[kHOP]) =1

VAN Vi < pp,cm;, Qiaﬂi)v > -1
L J€[kbrc] i

SR
< Kiop (7, Sriop, Metop) -

ai+ D
rndFI?f = (rndFIOP,i)ie[kHop] — u((rFlop,z‘)ie[kplop])
(Xa (ls_[i)ie[kFl()P]’ (’yi)ie[kﬂop}? (pi)ié[kﬁop])

r R ~
JFP . E|OPSRGame(srop, Mdros, P, ai)

PSR(ai d
W < ESR ()(X7 (Hi)ie[kﬂop]’ (’yi)iG[kHop]? (pi)ie[kﬂop}’triﬁ)P) .

53

8 Batching and linearization for homomorphic functional commitment schemes

We describe generic FC-to-FC compilers for query classes of interest, and we show that these compilers
preserve the state-restoration function binding property.

Batching messages. We consider the batch-messages query class Qg.ccnmss[Q, S], Where a query a € Q is
applied to a batch of messages.

Definition 8.1. Let Q C {a : ¢ — D} be a query class, and let s € N. The batched-messages query class
Qe.icnmss [Q, 8] with message length s - € is the class of all queries o € Q applied to s subvectors of size {, i.e.,

Quuanie Q8] = {as 2 5 D*[3a € Q: st /(1) = (a((W[il + 1], TTi€ + £])))ie o, o-1) |

Every suitably homomorphic functional commitment FC for some query class Q gives rise to a natural
(optimized) batched functional commitment BatchMsg[FC] for the batched query class Qg.icnmss[Q, 5], We
give a detailed construction in Construction 8.6. We show that if FC is state-restoration function binding,
then so is BatchMsg[FC]:

Lemma 8.2 (state-restoration function binding of BatchMsg[FC, s]). Let FC be a non-interactive, triply
homomorphic FC scheme(Definition 8.5) with expected-time function binding error €. = €}.(\, £, L, t5.).
Then for any batch size s € N, the batch FC scheme BatchMsg[FC, s] for the query class Qg.icnms|Q, 5] has
state-restoration function binding error € such that for every security parameter \ € N, message length
{ €N, sample set size L € N, salt size sic € N, move budget mec € N, circuit size bound tyec € N,

s—1
EEEC()H 54, L, 8pc, Mec, tore) < L- (Mec +1) - o +erc(A G L)

where tf. < L(mgc 4+ 1)(s — 1) (toec + poly(s - £)) + s - tq(¢,L) + L - (s3 + s?).

Linearization trick. We consider the query class Qs.[Q, M, (h) xe[n)] (Definition 5.9), where queries
are non-linear combinations (parametrized by (hy) ke[n)) of the outputs of queries « in the base query class
Q. Such query classes arise in optimized argument constructions such as Plonk [GWC19].

Given a batch functional commitment bFC, we construct an efficient functional commitment Lin[bFC]
for Qs |Q, m, (hi) ke[n]] in Construction 8.8 by applying the linearization trick, and we show that if bFC is
state-restoration function binding, then so is Lin[bFC, m, (hg)xen)]:

Lemma 8.3 (state-restoration function binding for linearized FCs). Let bFC be a batch polynomial commit-
ment scheme with state-restoration function binding error e;8. = €8 (X, (m + n)l, L, Sec, Mec, torc). For any
m € Nand public polynomials (hi) e[y, the linearized functional commitment scheme linFC[bFC, m, (hy)efn]
has state-restoration function binding error €% . such that for every security parameter A € N, polynomial

degree bound D € N, sample set size L € N, and adversary size bound t,.c € N,
Eﬁch()\a (m + n)(D +]-)> l—, SFC, mFCa tlinFC) é Eisc()\ﬂ (m + 1)(D + 1)’ La SFCa mFCa tbFC) 9
where tyee < tinec.

Remark 8.4. Note that we place no restrictions on the public polynomials (hg) keln) In Definition 5.9
and Lemma 8.3. This is in contrast to previous analyses of the linearization trick [FFR24], which required
the public polynomials to be linearly independent. This restriction is a by-product of requiring extractability
of the commitment scheme; since we merely target function binding, we are able to lift this restriction.

54

8.1 Proof of Lemma 8.2 (batched-messages FC)

Definition 8.5. Ler FC be a non-interactive functional commitment scheme for a query set of functions
a € X8 — D. Let the query set Q, the evaluation domain D, and the set of proofs P be F-modules. FC is
triply homomorphic if for every cm, aux, aux’, o, 3, 3, pf, pf’:

FC.Check(ppec, cm, o, B, pf) =1

A FC.Check(ppec, cm’. . B, pf') = 1 = FC.Check(ppgc,cm +cm’, a, B+ ', pf + pf’) .
. FC» 9 9 b -

Construction 8.6 (FC for batched messages). Let FC be a triply homomorphic functional commitment for
the query class Q. For any s € N, we construct a functional commitment bFC := BatchMsg[FC, s] for the
query class Qgaicnmss[Q, 5] as follows:

* bFC.Gen(1%,¢, 5): Output pp,. + FC.Gen(1%, ¢).

* bFC.Commit(ppgc,f = (fb)be[s])3

1. For b € [s]: Compute cm;, := FC.Commit(ppec, fp)-
2. Setcm = (Cmb)be[s]-

3. Setaux :=f.

4. Output (cm, aux).

bFC(pchu Cm7 aux, O[, B)? VbFC(ppFC7 Cm7 O[, /8)>

Both Pyec and Ve parse cm as (cmy)pes and 5 as (5p)pes-

Phorc parses aux as (fb)be[s]-

Veec sends a random challenge v <— F to Ppec.

Porc computes pf, «+— FC.Open(cmy, fy, «, 5) for all b € [s] and sends pf := Zbe[s} 7'~ 1pfy to Vire.

Virc outputs FC.Check(ppg, Zbe[s] Vb_lcmba «, Zbe[s] ’Yb_lﬁba pf)

A S Y

In order to prove that BatchMsg[FC, s] satisfies state-restoration function binding (Definition 3.25), we
prove that it is s-special function binding (Definition A.1). Lemma 8.2 follows from Lemmas 8.7 and A.2.

Lemma 8.7. Let FC be a functional commitment scheme with function binding error egc = €c(, £, L, tec).
Then for any batch size s € N, BatchMsg[FC, s| has s-special function binding error €,spg = €psea(N, 4, S -
L, tres) such that for every security parameter A € N, message size ¢ € N, sample set size L € N, and
expected adversary size bound t}., € N,

EbSFl3(>\7 S - g? L7 tZSFB) é EFC(/\7 ga L7 tFC) 9
where tec < s + 5 - tQ(L, L) + L - (83 + s2).
Proof of Lemma 8.7. Given an s-special function binding adversary A,z against bFC, we construct the

following function binding adversary Ar against FC:

Arc(pp; airc):

1. Run (em, ((ai; Bi; Ti))ig(L)) <= Assee (PP, airc)

2. If there is no IT such that Vi € [L] : a;(II) = f3;, output L.
3. Parse cm as (cmp)pe(q)-

4. Fori € [L]:

(a) Parse f3; as (Bip)pefs-

55

(b) Parse T; as verifier challenges ('yi(b)) bels) and final prover messages (pfgb))be[s].

1 1)ys—
O A
(c) Compute V; :== : :
1 _
LAl e
Y1l v Yil,s—1
(d) If V; is invertible, compute Vfl = : : , and output L otherwise.
:Yi,s,l e :Yi,s,s
1
Pfi1 pf "
) Set | : | =V7"1]| :
pf;’,s pfz(s)

5. For j € [s]:
If there is no IT; such that Vi € [L] : o;(TI;) = B; 5, output (cmy, (v, Bi j))jern)s (Pfi)iel)-
6. Output L.

Running time. Each iteration of the loop in Step 2 requires s® + s? operations (to invert the Vandermonde
matrix and compute a matrix-vector product), and each iteration of the loop in Step 5 requires tq(/,L)
operations, so Agc runs in expected time at most £ + s - tq(f, L) + L - (s3 + s?).

Success probability. If A, is successful, Arc does not abort in Step 4d, and for every ¢ € [L] and k € [s],
FC.Check(Y (v\")" - emy, v, Z)= B0 petk)y =
be(s]

By construction, we have that for all s € [L] and j € [s],

Z 71,] k E 'Yz Cmp =cm;

kels] bels]
Z%,]kz b 1'/8i,b:Bi,j :
kels] be|s]

By triple homomorphism, this implies that for all ¢ € [L] and j € [s]:
FC.Check(cmy, ai, Bi 5, pf;)

= FC. Check Z ’Yl,]k; Z 'Yl -1 - CMyp, Oy, Z '7273 k Z b ! 67/ by Z ’71,],]{3 pf))

be|s] kels] be|s] ke(s]
=1,

ie., pf is an accepting proof for (cmj, o, 3; ;).
Further the function binding condition

B (My)pers € (F)* Vi€ [L] Vb€ [s] 1 ai(Th) = Bip

for bFC implies that the condition in Step 5 is satisfied for at least one j. To see why, assume towards a
contradiction that

_\(3] S [8] : EHJ Vi e [L] : ai(Hj) = 6i,j)

56

=Vje[s]: 3 :Vie[l]: (L) =6
= Iy)efs) : Vi € [L]:Vj € [s]: eu(lly) = Bij

which contradicts our assumption on the success of Apseg. L]

8.2 Proof of Lemma 8.3 (linearization trick)

We recall a generalized formulation of the linearization trick (also known as Maller’s trick) [GWC19]
[LPS24b, Section 4.2], [FFR24]. More specifically, given a batched functional commitment scheme bFC, we
construct a functional commitment scheme Lin[bFC] for Qg [Q, 7, (h)refr] (Definition 5.9).

Construction 8.8. Let IF be a field, m,n € N, and let Q be a query class over the alphabet 3 with length ¢.
Further, let bFC be a batch functional commitment for the query class Qg.icnmsg|Q, M + 1], Where both ¢
and the commitment space C are F-modules, and such that (i) batch commitments are done element-wise,
i.e., bFC.Commit(ppec, (Ip)sefs)) = (Commit(ppec, Ip))pefs)» and (i) commitments are homomorphic, i.e.,
VIL I : Commit(ppc, II + II') = Commit(ppec, II) + Commit(ppec, IT').

For any public polynomials hy, ..., h, € F[X1,..., X,,]<P, we construct a functional commitment
scheme linFC := Lin[bFC] for the query class Qsyuc[Q, 7, (hi)ke[n)] as follows:

« linFC.Gen(1*,m, n, £): Output pps. < bFC.Gen(1*,m + 1,).
¢ linFC.Commit(ppgc, IT):

1. Parse I as ((fi)kejm)» (80)ecn))
2. For k € [m]: Compute (cmy, , auxg,) <— Commit(ppec, f).
3. For ¢ € [n]: Compute (cmg,, auxg,) <— Commit(ppec, g¢).

4. Output cm = ((cmy,)refm]> (CMg,)eepn)) and aux = ((auxf,) xem]> (AUxg,)refn])

¢ <7D|inFC(ppFC7 cm, aux, &, 67 H)> VIinFC(pcha cm, aux, «, B)>
1. Pinrc and Ve both parse [as (51, - - -, Bm,).
2. Run (Pyec, Virc) for the commitment (cmg,, ..., cmg, , ZZe[n} he(B1,...,0m) - cmg,), the query c,
evaluations (81, . . ., Bm, 3), and for the witness (f1, ..., f,, Zée[n] he(B1y ...y Bm) - 8e)-

Proof of Lemma 8.3. Given an adversary 75“5nRFC against the state-restoration function binding of linFC, we
construct the following state-restoration function binding adversary P against bFC.

,Pbslfc(ppFo aiFC) : -
1. Simulate FCSRGame for P;} . with salt size sec, public parameters pp;., and auxiliary input aigc as
follows. Repeat the following until ﬁlfnic(ppm, airc) decides to exit the loop:
(@) Piyec makes a move (((cmy,)iepm), (Mg,)eefn])s @, (B5) jema+11, (PMy)jen> (Mi)jer)-
(b) Makeamove ((cms,, ..., cme,,, > e Me(Br, - - -, Bm)-cmg,), & (B5) jefm+1]> (PMy)jefs (1)) efi)
in PS%’s FCSRGame to get vim;.
(c) Answer ﬁ?ﬁc’s move with vm;. B
2. Get the FCSRGame output (cm, ((a, B, ((PMy 5, 7.5, VMij)) jelkec))iell]) < Pinkc(PPrc, airc).
3. Parse cm as (cm¢,,...,cmg, ,CMg,,...,CcMg,) and B; as (B;1,- .., Bim, ;) forall i € [L].
4. Setcm’ := (cmg,,...,cmy, | de[n] he(B1,- .-, Bm) - cmg,).
5. Output (cm’, (e, (Bi1, - -, Bigms B7), (PMy 55 Wi, VMG 5)) jelkec))ielL])

57

Success probability. If 73“SHRFC wins the state-restoration function binding game, then

Vgl g €S0 Fi € (L Y hp(ai(fy), s ailfm)) - ci(gr) # Bi 5 and
ke[n]

VbFC(ppFO Cm/a Qg /Bi) ((pmz,]7 Vmi,j))jé[kpd) = VIinFC(pcha cm, @y, Bia ((pmz,]) Vmi,j))jé[kpc]) = lforalli e [L]
We distinguish two cases:

L 3f,... f e Vie L] :Vk € [n]: ai(f) = Big, i-e., there exist fy which are consistent with all
query-evaluation pairs. This implies that for these f1, ..., f,,,

Ve g €N rFie U D hp(oa(fr), . 0ulfim)) - cilgr) # Bi -
k€[n]

Since Vi € [L] : VEk € [n] : a;(fy) = Bi . this is equivalent to

Ver,....gn €S Tie L) D he(Bins.o Bim) - ciler) # Bi
ke[n]

which directly implies the function binding condition for the batch FC (since the last function in the batch
will not be consistent with all query-evaluation pairs).

2. Vfy, ..., fm €Xf:3i € [L]: Ik € [n] : a;(fy) # Bix. This also implies the function binding condition
for the batch FC, since the sub-batch containing the first m entries will satisfy the function binding
condition.

O]

58

9 Application: variants of the KZG polynomial commitment scheme

We apply the generic results from Section 8 to variants of the KZG polynomial commitment scheme [KZG10].
In Section 9.1, we show that the KZG polynomial commitment scheme KZG is function binding under the
falsifiable ARSDH assumption.

Lemma 9.1 (KZG is function binding). Suppose the ARSDH assumption (Definition 9.5) holds with error
€arson = €arson(A, D, tarson). The KZG polynomial commitment scheme (Construction 9.4) has function
binding error ecc such that for every security parameter A € N, polynomial degree bound D € N, sample set
size L € N, and adversary size bound tec € N,

EFC(/\7 D+ 1, L7 th) < 6ARSDH()\; D7 tARSDH))

where tapson < tec +2L2 + L+ D(L+8) +2(D + 1)%

In Section 9.2, we then show that the batched PC bKZG = BatchMsg[KZG, s| is state-restoration
function binding under the same assumption.

Corollary 9.2 (Batched KZG is state-restoration function binding). Suppose the expected-time ARSDH
assumption (Definition 9.7) holds with error €zgp,, = €xrspn(Ns D, thrson). Then for any batch size s € N, the
batch polynomial commitment scheme bKZG = BatchMsg[KZG, s] has state-restoration function binding
error €8 such that for every security parameter \ € N, polynomial degree bound D € N, sample set size
L € N, and adversary size bound t,ec € N,

s—1
6§Ec<)‘v (D +1)s,L, spcs Mec, tore) < Lo (Mec +1) - o + €xrson (A D; tarson)

where tfeepy < L(mec +1)(s — 1) (toee +poly(s - D, L)) +s- (D+1)2+ (D4 1) -L) +L- (s3+ s?).

In Section 9.3, we show that the linearized KZG functional commitment linKZG = linFC[bKZG, m, (hg) pefn]
(as used in the Plonk construction [GWC19]) is state-restoration function binding.

Corollary 9.3 (Linearized KZG is state-restoration function binding). Suppose the expected-time ARSDH as-
sumption (Definition 9.7) holds with error €5zsp; = €xrson(As D, thrson). Then for any m € N and public poly-
nomials (h) e[, the linearized KZG functional commitment scheme linKZG = linFC[bKZG, m, (hy,) ke[|
(Construction 8.8) has state-restoration function binding error €8 such that for every security parameter
A € N, polynomial degree bound D € N, sample set size L € N, and adversary size bound trc € N,

m
Eﬁch()‘v (m + n)(D + 1)7 L, Sec, Mec, 75IinFC) <L (mFC + 1) : 27)\ + EZRSDH()\7 D, t:RSDH))
where
theson < L(mec1)-m-(timrc+poly (m+1)D, L)) +(m+1)-((D+1)*+(D+1)-L)+L-((m+1)*+(m+1)*) .

9.1 Proof of Lemma 9.1 (KZG)
Construction 9.4 (KZG). The FC scheme KZG for the query class Qo is defined as follows.

» KZG.Gen(1*,D):

59

1. Choose (p, G1, G2, [1]1, [1]2, G, e) where G1, G2, Gr are additive groups of prime order p, [1]; is a
generator of Gy, [1]2 is a generator of Ga, and e: G1 x Gy — G is a bilinear pairing.

2. Sample 7 + Zj, \ {0}.

3. Output ppp = ([1}17 [7-]17 [7—2]17 R [TD]la [1]2a [7]2)'

* KZG.Commit(pppc, p):

1. Parse PPpc as ([1]1, [7-]17 [7—2}17 SRR [TD]la [1]27 [7]2)'
2. Compute cm := [p(7)];.
3. Set aux = p.

4. Output (cm, aux).

* KZG.Open(pppc, aux, a, f):

1. Parse ppyc as ([1]1, [7]1, [T

2. Compute po(X) = p())ﬁf .
3. Compute pf := [pa(7)]1.

4. Output pf.

24, ..., [7P)1, [1]2, []2) and aux as p.

* KZG.Check(pppc, cm, a, 3, pf):
“Jn - [7P]0, [, [7)2).

1. Parse pppc as ([1]1, [T]1, [77]1, -
= e(pf, [T — a]2).

AT
2. Check that e(cm — [8]1,[1]2)

9

We reduce the function binding property of the KZG PCS to the following Diffie-Hellman-type assumption
over bilinear groups.

Definition 9.5 (ARSDH assumption [LPS24a]). Let F be a field and Zs(X) = [[,cg(X —5) for S C T, the
adaptive rational strong Diffie-Hellman (ARSDH) holds with error eprspn if for every security parameter
A, adversary size bound tagspu, tarspn-Size circuit Apgspn, and tuple (p,Gi, G, [1]1,[1]2, G, e) where
G1,Ga, Gy are groups of prime order p(\), [1]1 is a generator of Gy, [1]3 is a generator of Go, and
e: G1 x Gog = Gr is a bilinear pairing,

SCF, |S|=D+1

Zy\ {0}
Pr| Ahi,ho € Gi,hy £ [0 T A
g b2 17 Oh (S, 1, ha) < Angson([11, [7]1, [72]1, - - - [7P)1, [L]as [7)2)
/\h2_Zs(T) h

< GARSDH()\a D, tARSDH) .

Proof of Lemma 9.1. Fix the security parameter A € N, polynomial degree bound D € N, sample set
size L € N, and adversary size bound ¢t € N. For every auxiliary input distribution Dg. and tgc-size
adversary Agc against function binding, consider the following adversary Aarspn against ARSDH. Below,
Lagrange({(zi, ¥:) }ic[n)) denotes the unique polynomial of degree at most n — 1 that interpolates all points

AARSDH([l]lv [7]17 [7—2}17 SRR [TD]D [1]27 [7]2):
1. Sample airc < Dec and set ppyc == ([1]1, [7]1, [7%]1, - - -, [TP]1, [1]2, [T]2).
2. Run (em, {(a, Bi, pf;) biep)) < Arc(PPec; airc).
3. If there exists ¢, j € [L] such that o; = a5, B; # By
(a) Choose S to be a size-(D + 1) subset of F such that a; € S and [Zg(7)]1 # [0]1.

60

(b) Set hy = [ZS\{ai}(T)]l-
(c) Set hy = p;i_:%f_j.
J 7
(d) Output (S, hi, h2).
4. If deg(Lagrange({(a, Bi) }iep))) > D:
(a) Let Lo be the interpolation of the first D + 1 distinct points, denoted without loss of generality as
{ai}iep1.
(b) Find (g, Bg) fork € {D +2,...,L} such that 5y # Lo(c).
(c) Sample S := {a;}icp+1] from {i }icip+1jugky such that [Lagrange({(a, B[a]) }aes)]1 # cm.
(d) Set L(X) = Lagrange({af, B }icip41])-
(e) Sethy :==cm — [L(7)];.

(f) Compute d; := m foreachi € [D + 1].

(2) Set hy =01 d; - pfl.
(h) Output (S, hi, hQ).
5. Otherwise, output (L, L, 1).

Running time. Step 3 takes time at most L2, Step 3a takes time at most 2D, Step 3b takes time at most D,
Step 4 takes time L2, Step 4a takes time L + (D + 1)2, Step 4b takes time D - (L — D — 1), Step 4c takes
time at most 2D + (D + 1)?, Step 4d takes time (D + 1)2, Step 4e takes time D, and Step 4g takes time 2D.
Hence, the time complexity tagspn < trc +2L2 +L+D- (L +8)+2(D +1)2

Success probability. When A is successful, there are two cases:

1. There are two valid openings («, 3;, pf;) and (a, 8}, pf;) where 3; # f3;. Step 3 in Aarspu finds the two

. . . f,—pf. . . .
inconsistent openings and compute ho = % = [%]1 which implies that hy = [ih = Zsl(T) -hq.
7 7

2. deg(Lagrange({(a, i) }ici))) > D. According to the construction of Arspu, the following holds:

* There must exist (o, O)) for some k € {D + 2,...,L} such that 85, # Lo(ay), because otherwise
deg(Lagrange({ (v, 8i) }ie))) = deg(Lo) < D.

* deg(Lagrange({ (i, Bi) }icip+1jugk})) = D + 1, because otherwise, by the fundamental theorem of
algebra, we would have Lagrange({ (i, B:) }iep+1jufk}) = Lo-

* For all size-(D + 1) subsets of {(c, 3:) }ic|p+1]u{k}- their interpolations are pairwise distinct, because
otherwise deg(Lagrange({ (a, 5)bicips1j(sy)) < D-

Therefore, there are at least D + 1 among D + 2 possible subsets such that the corresponding interpolation
is not consistent with cm, which implies that hy = cm — [L(7)]; # [0]1, and hy = ZiD:J“ll d; - pfi =

i (em = [L(1)]1) = 54 - b

O]

9.2 Proof of Corollary 9.2 (batch KZG)

For KZG, the alphabet ¥ is IF, and the space of commitments and proofs is G;. Further, KZG is triply homo-
morphic, and can thus be compiled into a batch polynomial commitment scheme bKZG = BatchMsg[KZG, s]
using Construction 8.6. Thus, Corollary 9.2 follows from Lemmas 8.2 and 9.1.

Lemma 9.6. KZG is triply homomorphic (Definition 8.5).

61

Proof. Fix ppec, fixcm,cm’ € Gy, o, 8, 3’ € F, and pf, pf’ € Gy such that FC.Check(ppc,cm, a, 3, pf) =
1 and FC.Check(pp,.,cm’, a, ', pf’) = 1. Then

e((cm +cm’) — [B + 8|1, [1]2) — e(pf + pf’, [T — af2)
= e(em — [B]1, [1]2) + e(em’ — [B']1, [1]2) — e(pf, [T — a]2) — e(pf', [T — al2)
=0 .

O]

Definition 9.7 (Expected-time ARSDH assumption). Let I be a field and Zs(X) = [],cq(X — s) for
S C T, the expected-time adaptive rational strong Diffie-Hellman (ARSDH) holds with error €5y, if
for every security parameter \, adversary runtime bound tyqp,,, adversary Ajqsp,, running in expected time
trrson and tuple (p, G1, Ga, [1]1, [1]2, Gr, €) where G1, G, G are groups of prime order p(X), [1]1 is a
generator of Gy, [1]y is a generator of G, and e: G1 x Go — Gr is a bilinear pairing,

SCF,|S|=D+1

Zp \ {0}
Pr| Ahiho€ G hy [0 | 1.0 7
' hl :271 1. hl 7& []1 (S’ h1>h2) A A:RSDH(D]L [T]la [7_2]17 R [TD}D [1]2’ [7-]2)
N2 = z5m

* *
S 6ARSDH()\? D? tARSDH) :

Remark 9.8. [LPS24b, Section 4.1] considers a slightly different construction with a two-round protocol
(an initial round in which the verifier sends the evaluation point), and where the evaluation point o must
be chosen uniformly at random in F. In our case, we consider a one-round protocol and do not restrict the
distribution of the evaluation point (which allows us to compile the batch KZG FC with any FIOP).

9.3 Proof of Corollary 9.3 (linearized KZG)

The bKZG batch polynomial commitment scheme for the query class Qgaenvsg [Qunirolys 71 + 1] satisfies the
conditions required by Construction 8.8 (the message space ¢ and the commitment space G are F-modules,
batch commitments are done element-wise, and commitments are homomorphic). bKZG thus gives rise to the
linearized KZG functional commitment scheme linKZG, and Corollary 9.3 follows directly from Lemma 8.3
and Corollary 9.2.

62

A Special function binding

We define the notion of special function binding (a function binding analogue of special soundness), and
show that it implies state-restoration function binding. Special function binding can be seen as a weaker
version of standard special soundness: namely, if an FC satifies special function binding, then it is infeasible
for an adversary to produce accepting trees of transcripts for a commitment and a set of query-answer pairs
that are not consistent with a message. Special function binding is useful to show state-restoration function
binding for interactive functional commitment schemes when some rewinding is needed.

Definition A.1 (Special function binding). A FC scheme with a kec-round opening protocol has expected
(a1, ..., a)-special function binding error exc if for every security parameter X € N, message length
¢ € N, number of samples L € N, auxiliary input distribution Dgc, expected adversary size bound t%.,, and
adversary Asgg with expected runtime t%,

ppec — FC.Gen(1*,0)

Vie [L] . Ti isa (ab .. ,,akFC)—treefOV (Cm’ai’ﬁi) airc < D,
> FC FC

Pr A < Vi € [L] : Vec(PPec; €M, i, Bis ((PMy 55, vMi5)) jelkec]) = 1

AT st Vi € L], a;(TT) = B; (em, ((ai, Bi, Ti)ie)

< Asre(PPrc, airc)
< ESFB()‘y f, L, téFB) .

Lemma A.2 (Special function binding implies state-restoration function binding). If the commitment scheme
FC with a kec-round opening protocol and randomness complexities (fec 1, - . . rFkaFC) has expected-time
(a1, ..., ae)-special function binding error esgg, then FC has state-restoration function binding error

;—1
6§E(>‘7€7 L7 SFe) mFC’tig) S L- (mFC + 1) : Z L + €sFB(/\7£7 L,tzps))

QrFC,i
iE[kpc]

where they < L+ (mec + 1) (T e (0 = 1)) (£ + poly(£)).
To prove Lemma A.2, we will make use of the following lemma.

Lemma A.3. For any kec-round interactive argument (Pec, Vec) with randomness complexities (fec 1, - - . FFCkec),
for any move budget mec € N, and for any tree arity (a1, ..., ak) € NKFC there exists an algorithm
SRTreeFinder with rewinding access to the prover such that for every malicious prover Ppc, commitment cm,
point « and evaluation (3,

aipc < Dy
. For j € [kec| : rndec; < U(rec;)
Tisnotan (a1, age)-ree for em0,8) |- ((cm,a, 6) ((pmy, 75,vm;)) i)

A Veclem, e B, (pmj)ethec): (VMi)selkec) = 1| & SRGame(src, mdec, Prc, pyc, airc)

T « SRTreeFinderPPC((cm, a, 3), ((pmj, nj, ij))je[k’:c]7tr)

Pr

a; — 1
< (Mec +1) - Z QZFFC,Z- ’
iE[kpc]

where SRTreeFinder makes (mec + 1) [[;e (@i — 1) calls to Phoc in expectation.

63

Proof. This is a direct application of [CY24, Lemma 30.5.2] for the FC prover 75pc, the FC verifier Ve, and
the relation

{((cm,a,,@),ﬂ) | a(H) = ﬁ} :
O

Proof of Lemma A.2. Given an state-restoration function binding adversary 75F5§ for FC, we construct the
following reductor from state-restoration function binding to special function binding:

7 (pprc. aux):
1. Fori € [L]:
(a) Construct an SRGame adversary P; as follows: when playing the SRGame, P, simulates FCSRGame
towards 73§§ by forwarding its queries to the SRGame.
P; outputs (cm, (as, i, ((Pm; j5 Mi.5,VMi j))je[kec]))» i-€-» only the i-th point, its evaluation, and
the corresponding opening transcript.
(b) For j € [kec|: Lazily sample a random oracle rndec ; <— U(rec ;).
(¢) Run (em, (av, Bi, ((PM; 55 Mij, VMi) jekec])) & SRGame(sec, rdec, Py, ppec; airc) by lazily
simulating the random oracles rndg ;.
(d) Run T; + SRTreeFinder”i(cm, (o, 5;), ((PM; > Migs Vi j)) jelkec] s EF)-
2. Output (cm, ((ai, Bi))ieq)> (((PM; 5, 7.5, VM) jelkec] JielL) (Ti)ien))-

Running time. 93 makes L - (1 + (Mmec + 1) [Tie e (@i — 1)) calls to PSR in expectation.

Success probability. We first note that R perfectly simulates FCSRGame towards 75FS§, and thus the
experiments

[pp « FC.Gen(1*, n)
Dec < Drc
For r € [kec] : mdec,, < U(rec.,)

o, Bi _ .
cm, o < FCSRGame(sgc, rndec, PR, pp, ai
L (<< (pmi,T)T’E[kpc]7 (777;77‘)7"6[de7 (Vmi,T)re[de >>’L€[L}> (Fe Fe Fe PP FC)

and

ppec <+ FC.Gen(1%,0)
Esg == | airc < Drc

(em, ((as, Bi))iE[L}’ (((Pmi,y Mi,js Vmi,j))je[kpc])ie[L]a (Ti)ie[L]) A SRng(lopm airc)

are equivalent.
We bound

\V/Z c [L} : VFC((Cma (a’LHB’L))J (pmi,'r‘)TE[kFC]7 (Vmivr)re[kFC]) = 1
Pr| (Vi€ : Vee(ppec,cm, i, Bi, (PM; 5 vy)) jefiec)) = 1 Esre
ABIIs.t. Vi € [L], i (T1) = B;
Viell] : Tyisa(ag,...,ak,)-tree for (cm, a;, 5;)
_pr AVi € L]+ Vec((em, (a, Bi)), (pmi,r)ré[kFc]7 (Vmi,r)re[kpd) =1
A Vi € [L] © Vec(PPec, cm, as, Biy ((PM; 55 VM3) jelkec)) = 1
AP st Vi € [L], a5(IT) = B;

ESFB

64

Jie L] : T;isnota (ai,...,ak.)-tree for (cm, oy, B;)
+ Pr AV € [L] : Vec((em, (i, 8)), (P 1) refkec) (VMir)refkec]) = 1 Eses
A Vi€ L]+ Vec(PPrcs em, @iy Bis ((PM; 55 VM j)) jefke)) = 1
AP s.t. Vi € [L], oy (IT) = B;
Viell] : Tyisa(aq,...,ak)-tree for (cm, oy, 3;)
<Pr| (Vi€ [L] : Vec(PPecs €M, iy Bis ((PM; 55, vMi5)) jelkec]) = 1 Ese
ABIIs.t. Vi € [L], i (IT) = B;
Ji e [L] : T;isnota (ag,...,ak,)-tree for (cm, a;, 5;) ' E }
AVi € [L] : VFC((Cm7 (alﬁﬁi)% (pmi,r)re[kpd7 (Vmi,r)re[k,;d) =1 °re

—|—Pr[

The first probability is bounded by €ses(A, 4, L, t%). For the second term, we have

Pr [Ji € [L] : T;isnota (aq,...,ak.)-tree for (cm, oy, 53;) ‘ 5 }
AV € [L] = Vee((em, (e, Bi)), (PMy o)refiee)s (VMir)refiee) =1 |0
T;isnota (ay, ..., ak,)-tree for (cm, o, 3;)) ‘ }
<Pr| dielL Fe E
<Pr[3¢ 105 (1 om0 e ey =1)| P

T; is nota(al,...,ak)-tree for (cm, a;, 3;)]
< P FC E
%E] [AVec((em, (@, Bi)); (PM;)reikec) (VMir)refkee) =1 |00
—L.Pr [Tiisnota (a1, ..., ak.)-tree for (cm, oy, B3;) ‘ E}
A Vec((em, (s, 8i)), (PMy 1)refkec)s (VM) refkec]) = 1
a; — 1
<L -(mec+1)- (Z 9rFC,i) ’
i€ [kec]

where

[ppec + FC.Gen(1%,¢)
airc ¢ Dec

| T; < SRTreeFinderPi((cm, i, Bi), ((PM; ;Mg VM 5)) jelkec]s thi)

65

FE = Qag, /Bia > > trs i
cm, +— SRGame(s¢c, rnd ,771-7 ,ai
((< (pmi,r)re[kpc]a (ni/")TE[kFc]7 (Vmia"')TE[kFc] iG[L]) (Fe e PP FC)

O]

B Comparing function binding to other properties for KZG

We discuss how function binding relates to other properties of the KZG polynomial commitment schemes
introduced in prior works. We show in Appendix B.1 that function binding implies strong correctness
[KZG10]. In Appendix B.2, we show that function binding is implied by interpolation binding, and that
interpolation binding holds under the ARSDH assumption (the same assumption we use to show that KZG is
function binding in Section 9.1).

B.1 Function binding implies strong correctness

Definition B.1 (Strong correctness [KZG10]). A polynomial commitment scheme PC has strong correctness
error egcsc if for every security parameter A € N, polynomial degree bound D € N, auxiliary input distribution
D, adversary size bound tecsc € N, and trcsc-size circuit Arcsc,

d>D pPpc < PC.Gen(1*,D)
/\V’iE[d—l— 1],p(0¢¢):ﬁi ai<— D
Pr | AVie€ [d+ 1], PC.Check(pppc, cm, o, B;, pf;) =1 (d, p,cm, state) < Arcsc(PPpcs ai)
A deg(Lagrange({(ci, Bi) }icfa+1))) = d {aiticjapn « Fwith i # aj,Vi# j € [d+1]
A deg(Lagrange({(c, pf;) }icar1))) = d — 1 {(Bis pfi) Yicar1) < Arcsc(PPpc, { i ticiat 1), state)

< Echc()\, D7thsc) .

Lemma B.2. The KZG polynomial commitment scheme (Construction 9.4) has function binding error
erc = €rc(A, D, L, tec). Then KZG has strong correctness error €xcsc = €pcsc(A, D, teesc) such that for every
security parameter A € N, polynomial degree bound D € N, and adversary size bound tecsc € N,

L= O(thsc)

€FCSC()\7 D, thSC) < EFC()\a D7 La tFC) where {tFC = O(tFCSC)

Proof. Fix the security parameter A € N, polynomial degree bound D € N, and adversary size bound
tresc € N. For every auxiliary input ai and tqcsc-size adversary Agcsc against strong correctness, consider the
following adversary Arc against function binding:

AFC(pch7 aiFC):

1. Run (d, p,cm, state) < Aecsc(PPpe; ai)-

2. Sample {c;}ic(gq1] < F with o # o, Vi # j € [d+1].
3. Run {(Bi, pf;) Yicld+1) ¢ Arcsc(PPpcs {1 fic[d+1); State).
4. Output (cm, {(cv, Bi, Pf;) bicd+1))-

Success probability. When Agcsc successfully breaks strong correctness, the following holds:
e Vi€ [d+ 1], KZG.Check(pppc, cm, v, 3;, pf;) = 1; and
* d = deg(Lagrange({(a, fi) }ica+1))) > D.

Therefore,
d>D PPpc — KZG.Gen(1*,D)
AYi € [d+ 1], p(a;) = B ai+ D
Pr | AVie€ [d+ 1], KZG.Check(pppc, cm, avi, Bi, pf;) = 1 (d, p,cm, state) < Arcsc(Pppc, ai)
A deg(Lagrange({(ci, 8i) Yicja+1))) = d {aiticlasr) < Fwith a; # a;, Vi # j € [d+1]
A deg(Lagrange({(ai, pf;) }icjar1))) =d —1 {(Bi; pfi) biela+1) < Arcsc(PPpc; { @i tie(a+ 1), state)

66

Va € [L] : KZG.Check(pppc, cm, v, Bi, pf;) =1 | pppc + KZG.Gen(1*,D)
<Pr /\(Eliaje[l-]:ai:ajaﬁi?éﬁj > airc < Drc
v deg(Lagrange({ (e, 8i) }ien)) > D (em, {(ai, Bi, pfi) Fiei)) < Arc(PPec; airc)
< ec(N DL tec) -

Running time. Ag has sample size L = O(tgcsc), and adversary size tec = O(tpesc)- O

B.2 Interpolation binding implies function binding

Definition B.3 (Interpolation binding [AJMMS23]). A polynomial commitment scheme PC has interpolation
binding error eqc s if for every security parameter A € N, polynomial degree bound D € N, auxiliary input
distribution D, adversary size bound tecg € N, and tecig-size circuit Agcig,

Vi#je[D+1],0; # pPpc < PC.Gen(1*,D)
Pr | AVie€ D+ 1], PC.Check(pppc, cm, avi, B;, pf;) =1 ai< D

Acm # PC.Commit(pp,, Lagrange({(, Bi) biep+11)) | (em, {(cs, B, Pfi) biepp+1)) 4= Arcie(PPec; ai)
< 6FC|B(/\7 D7tFCIB) .

[AJMMS23] proves that the KZG polynomial commitment scheme has interpolation binding in the
algebraic group model, under the discrete logarithm (Definition C.9) and strong Diffie-Hellman assumption.
We show that interpolation binding implies function binding. For completeness, we also provide the proof for
interpolation binding from the ARSDH assumption, which is adapted from the proof for special soundness
from the ARSDH assumption, as given in [LPS24a].

Lemma B.4. Let KZG be the polynomial commitment scheme constructed in [KZG10] (Construction 9.4).
Assume KZG has evaluation binding error €zces = €rces(A\, D, teces) and interpolation binding error €gcig =
ercie(N\, D, trag). Then, KZG has function binding error égc = €xc(\, D, L, tec) such that for every security
parameter A € N, polynomial degree bound D € N, sample set size L € N, and adversary size bound
tec €N,

6Fc()h D, L; th) < €FCEB()\7 D7 tFCEB) + GFGB(/\, D, tFCIB) s

where tecgs < tee + L2 and teeg < tec +L+3L2+D-(L—D +1).

Proof of Lemma B.4. Fix the security parameter A € N, polynomial degree bound D € N, sample set size
L € N, and adversary size bound ¢¢ € N. For every auxiliary input ai and ¢gc-size adversary Agc against
function binding, consider the following adversaries: Arcgs against evaluation binding and Agc gz against
interpolation binding:

Arces(PPpc; Qirc):

L. Run (em, {(av, B, pf;) bielr)) < Arc(PPec; airc)-

2. If there exists i # j € [L] such that o; = a; and 3; # 3}, output (cm, oy, B4, B;, pf;; pf;).
3. Otherwise, output (cm, a1, 51, 51, pfy, pfq).

Step 2 in Arcs takes time at most L2, thus the running time of Agceg iS trces < trc + L2
AFClB(pppca ati)3
1. Run (em, {(a, Bi, pfi)}iE[L]) < Arc(PPpc; airc)-
2. If deg(Lagrange({ (o, 8i) }iepy)) > D:

67

(a) Let Lo be the interpolation of the first D + 1 distinct points, denoted without loss of generality as

{aitiep+1)-
(b) Find (g, Bk) for some k € {D + 2,...,L} such that 8y # Lo(ay).
(c) Sample S := {a;}icpy1) from {a;}icp1jugky such that [Lagrange({ (e, B[a]) aes)l1 # cm.
(d) OUtPUt (Cm7 {(O‘{L‘a /8':7 pf;)}ZE[DJrl])
3. Otherwise, output (cm, L).

In the construction of Arcs, Step 2 takes time L2, Step 2a takes time L + (D + 1)2, Step 2b takes time
D:(L— D —1), and Step 2c takes time at most 2D + (D + 1)2. Therefore, the total running time is
trop <tee+L+3L24D-(L—D+1).

When A successfully breaks function binding, there are two cases:
* There are two valid openings (c, 3;, pf;) and («, 35, pf;) where 3; # f3;. In this case, Arces succeeds.
* deg(Lagrange({(ci, Bi) }ier))) > D. From the construction of Agg, the following holds:

— There must exist (g, Ox) for some k € {D + 2,...,L} such that 5 # Lo(«ay), because otherwise
deg(Lagrange({(as, i) }iep))) = deg(Lo) < D.

— deg(Lagrange({(c, 8i) }icp+1)u{k})) = D + 1, because otherwise, by the fundamental theorem of
algebra, we would have Lagrange({(a, 8:) }iep+1jugry) = Lo-

— For all size-(D + 1) subsets of {(c, i) }ic[p+1)ufk}» their interpolations are pairwise distinct, because
otherwise deg(Lagrange({ (i, 5:) }icp+1ju{r})) < D.

Therefore, there are at least D + 1 among D + 2 possible subsets such that the corresponding interpolation
is not consistent with cm, which implies that Agcg succeeds with high probability.

By union bound,

Vi € [L] : KZG.Check(pppc, cm, ay, Bi, pf;) =1 | pppc + KZG.Gen(1*, D)

Pr A < Hi,j S [L] Loy = Oéj,ﬁi 75 ,Bj) digc — Dec
v deg(l-agrange({(aia5i)}ie[L])) >D (em, {(ay, Bi, Pfi)}ie[L]) < Arc(PPpc; airc)
B £ B; pPpc + KZG.Gen(1*,D)
7 ' .
< Pr | AKZG.Check(pppc,cm,a, Bi,pf;) =1 | jmi s
A KZG.Check(pppc, cm, a, Bj, pf ;) = 1 (5' ;)f" p:‘7<> < Arces(PPpc, ai)
I Pl Mg
Vi#je[D+1],a] # PPpc « KZG.Gen(1*,D)
+Pr | AVi€ [D+ 1],KZG.Check(pppc, cm, o, 81, pfi) =1 ai+ D

Aem # KZG.Commit(pch, Lagrange({(aiv ﬁz,)}ze[D+1])) (Cm7 {(aiv 6{7 pf;)}ie[D—H]) A AFCIB(ppPO ai)
< EFCEB()\a D, tFCEB) + EFCIB()\v D, tFCIB) .
Since the relation holds for any auxiliary input distribution Dg. and tpc-size adversary Agc against function

binding, we conclude that €xc(A, D, L, tec) < €rces(A, D, teces) + €ras(A, D, tecis), which completes the
proof. O

Lemma B.5. Assume the ARSDH assumption holds with error €xgspn = €arson (A, D, tarson). Let KZG be the
polynomial commitment scheme constructed in [KZG10] (Construction 9.4). Then KZG has interpolation

68

binding error €rcig = €rcis(\, D, tecis) such that for every security parameter A € N, polynomial degree
bound D € N, and adversary size bound trcg € N,

EFGB()\, D7tFCIB) < 6ARSDH(/\; DatARSDH))

where tagspy < tras + (D +1)%2 +3(D + 1).

Proof of Lemma B.5. Fix the security parameter A € N, polynomial degree bound D € N, and adversary size
bound ¢z € N. For every auxiliary input distribution D and tes-size adversary Agcs against interpolation
binding, consider the following adversary Aarspy against ARSDH:

Anrson (U1, [T, [P0, -, [7P1, (12, [7)2):

Sample ai + D and set ppyc == ([1]1, [7]1, [7%]1, . .., [TP]1, [1]2, [T]2).
Run (cm, {(ay, Bi, Pfi)}z‘e[D—H}) < Arcis(PPpc; ai).

Set S := {ai}ie[D—H]-

Set L(X) = Lagrange({ai, Bi}icp+1))-

Set hy :=cm — [L(T)]l.

. 1
Compute d’L = m

Set hy == Z?:—i_ll d; - pfi.
Output (S, hy, ha).

PN AR L=

Running time. In the construction of Axrspy, Step 4 takes time (D + 1)2, Step 5 takes time at most D, and
Step 7 takes time at most 2D. Therefore, the total running time is tagspy < trcis + (D + 1)2 + 3(D + 1).

Success probability. When Ars succeeds, the following holds:
* Vi#j € [D+1],a; # aj;, which implies that |S| = D + 1;
* cm # KZG.Commit(ppsc, Lagrange({ (i, 8i) }icip+1)) = [1}5(7), which implies that hy, hy € G; and

hi # [0]1;
e Vi € [D + 1], KZG.Check(pppc, cm, i, Bi, pf;) = 1, which means for every i € [D + 1], e(cm —
[Bil1, [1]2) = e(pf;, [T — a;]2). By the definition of Lagrange interpolation,

1
Zg(T) I
- Zsl<r> (em = [L{7)h)
1 D+1 Zs(r)d;
ZS(T) ; T — oy 1
D+1 ‘ D1 .
S) DKL) SR
=t ’ i=1 i
D+1 em— 5,
zz:; Ty
D+1
=) di-pf;
i=1
— hy

69

Hence,

Vi#je[D+1],a; # a pPpc + KZG.Gen(1*,D)
Pr | AVie D+ 1], KZG.Check(pppc, cm, avi, B4, pf;) = 1 ai< D
Acm # KZG.Commit(ppec, Lagrange({(ci, 8i) }icip+1))) (em, { (i, Bi, Pf;) biep+1]) < Arcis(PPpc; ai)
SCF, |S|=D+1
< Pr Ahl,h2€G17h1#[0]1
Ahgy = #(T) hy

SCF, [S|=D+1
= Pr| Ahi,ha € Gi,h1 #[0]1

Ahy = Zsl(T) +n

< EARSDH()‘v DatARSDH> .

PPpc < KZG.Gen (1, D)
(S, h1, h2) < Anrson(PPpc)

T < Zp \ {0}
(Sv h1, h2) A AARSDH([HD [T]lv [7-2]1> SRR [TD]lj [1]27 [7]2)

Since the relation holds for any auxiliary input distribution D and tpcs-size adversary Agcg against
interpolation binding, we conclude that egcig(\, D, trcig) < €arson(A, D, tarson), Which completes the proof.
O

70

C Function binding for polynomial commitment schemes based on DLog

For the sake of completeness, we include full proofs of function binding for two polynomial commitment
schemes (PCSs) of interest based on the discrete logarithm assumption: a square-root sized PCS inspired by
[BCGGHJ17; BG18] in Appendix C.1, and a Bulleproofs-style [BCCGP16] in Appendix C.2.2.

C.1 Square-root-sized polynomial commitment scheme

We analyze a non-interactive polynomial commitment scheme with square-root-sized opening proofs, inspired
by constructions from Bootle et al. [BCGGHJ17] and Bootle and Groth [BG18]. [BCGGHJ17] show that
their construction is knowledge sound in the Ideal Linear Commitment (ILC) model. [BG18] show that their
polynomial commitment scheme is “special-sound”, in the sense that it is possible to extract a polynomial
from an adversary that outputs valid proofs for sufficiently many distinct evaluation points. We show that this
construction satisfies function binding under the discrete logarithm assumption, using similar techniques as
[BG18].

Lemma C.1. Assume the discrete logarithm relation assumption (Definition C.3) holds with error €p| ogra =
€pLogrel (As D, €pLogrer). Then for every security parameter \ € N, polynomial degree bound D € N, sample set
size L € N, and adversary size bound tec € N, PC,. (Construction C.2) has function binding error

6F(:()\v D7 L7 tFC) S 6DLogReI()H \% D + 17 tDLogReI) 9

where toogra < trc + L2+ (D+1)2 + (L+1)vD + L.

Throughout this section, we assume that every polynomial p has degree at most D where D + 1 = d? for
some d € N. * For a polynomial p of degree at most D, we define the d x d matrix P as

Po - Pd(d-1)
P = (Pli—1)+d(—1))ijel = | * - : ,
Pa—1 '+ PD
such that
1
l‘d . .
I S L = > Pltyrd-nr 2T = p(z) .
-y | B

Construction C.2. Let G be a group of prime order p()\) > 2*.
+ PC,..Gen(1*,D):

1. Sample random generators (G) jeld < G*.

2. Output pppc = (Gj)je[d}'
« PC....Commit(ppyc, p):

1. Parse ppec as (G5) je[a)-

*If this condition is not satisfied, one can consider the next D’ > D such that D’ + 1 is square. Alternatively, one can define a
variation of this PCS where the coefficient matrix P is rectangular rather than square.

71

2. Compute cm = (cmi)ie[d], where cm; = Zje[d] P(i—1)+d(j—1)G 18 a Pedersen commitment to the i-th
row of P.

3. Set aux = P.

4. Output (cm, aux).

* PC..Open(pppc, aux, a):

1. Parse ppec as (G) jejq) and aux as P.

2. Set B == p(a). ‘

3. Compute pf = [1 a ... ad_l] P, with pf; = Zie[d} P(i—1)4d(j—1) ° at L,
4. Output (3, pf).

* PC,.Check(pppc, cm, a, 3, pf):

1. Parse pp, as (Gj)jg[d]- .
2. Check that Zie[d] ot lem; = Zje[d} pf;G; and 8 = Zje[d} pfjad(J_l).

We now show that PC,,, satisfies function binding under the discrete logarithm relation assumption,
which is closely related to the discrete logarithm assumption.

Definition C.3 (Discrete logarithm relation assumption). The discrete logarithm relation assumption holds
With error €ppogre = €pLogrel (s T, toLogral) if fOr every security parameter \, length parameter n € N, adversary
5iz€ torogrel € N, toiogre-Sized adversary Apyogre, and group G of prime order p(\) > 2N

by dien]:a; 0N ‘ (G1,...,Gp) < G

Zze[n] G@Gi =0 ((11, R an) — ADLogReI(G7 Gl) ey Gn

Definition C.4 (Discrete logarithm assumption). The discrete logarithm assumption holds with error e, =
oL (A, toL) if for every security parameter \, adversary size tp. € N, tp -sized adversary Ap,, and group G
of prime order p()\) > 2 with generator G,

)] < 6DLogReI<)\7n7tDLogRel) .

H<+G

Pr [G =H ‘ 2 Ao (G, p, G, H) } < e (A tor) -

Asymptotically, the discrete logarithm and the discrete logarithm relation assumption are equivalent; the
following lemma bounds the concrete relationship between the two assumptions.
Lemma C.5 (Discrete logarithm relation to discrete logarithm ([JT20])). Let G be a group of prime order

p(X\) > 2* and n > 1 be an integer. Then for any \ € N, torogra € N, we have

1
EDLogReI()\an7tDLogRel) < EDL()\vtDL) + 27 ,

where to, = O (tpLegre + 1)

Proof of Lemma C.1. Given a function binding adversary Ar., we construct the following discrete logarithm
relation adversary Apjogrei:

ADLogReI(Ga Gl, oo Gd)
1. Set pppe = (G1,...,Gy).
2. Sample aigc < Drc

72

3. (cm, (o, Ba; pfa)ae[L}) Arc(PPpc; airc)-
4. If there exists a # b € [L] such that a, = ay, but 8, # By: Output (pf,, ; — pfy ;) je(q)-

5. If deg(Lagrange({((aa; Ba))aci)})) > D:

(a) Find d distinct indices ay, . .., aq € [L] such that oy, , . . ., g, are distinct.
-1
PL1 'r Pld 1 .- agl 1 Pfa1,1 pf%d
(b) Compute | : : = . : : . :
Pd1 ' Pdd 1 - ot Plag1 - Plagd

(c) Finda™ € [L]\{a1,...,aq} suchthat 3j € [d] : pfys ; # > ey pijalt.

(d) Output (pfe j — > ey Pi,jafz:l)je[d]‘
6. Abort.

Running time. Ap .z, invokes Agc once. In Step 4, Ap, e searches for disagreeing answers for the same
query in a set of size L, which requires at most L? time, and outputs a vector of size d. In Step 5, finding d
distinct queries requires L steps, inverting the Vandermonde matrix requires at most d° steps, finding a* can
be done in d + L - d steps. This yields a total running time of at most

tee +max(L2+ d, L2+ d®+d+L-d) <tee+ L2+ (D+1)2 +(L+1)VD+1 .

Success probability. Suppose Arc wins the function binding game. Then at least one of the conditions
tested in Steps 4 and 5 must be true, which means that Ap .z, does not abort in Step 6.

In Step 4, Apioera checks whether Agc wins by breaking evaluation binding. In this case, Apiogra
finds @ and b such that o, = a but 5, # Bp. However since PC,,..Check(pppc, cm, aq, Ba, pf,) = 1 and
PCeqi-Check(pppc, cm, ay, By, pfp) = 1, it must be that 5, = Z; €ld pfwag(ﬁ) and By = Z €ld pfbjab(
and thus pf,, ; # pf;, ; for atleast one index j. Since 3,4 ai~tem; = > jeid PfaGiand 3 e g ap “lem; =
>_jeld Pfv,; G from the verification equations, 3 ;14 (Pf, ; — Pfy,)G = 0, and Apiogra Outputs a non-trivial
discrete logarithm relation in Step 4.

In Step 5, Apiogra Checks whether Agc wins by breaking degree binding. Since the queries g, . . ., aq,
are distinct, the Vandermonde matrix in Step 5b is invertible. Further, Ap ..z always find an index a* in step
Step Sc. To see why, assume towards a contradiction that pf, ; = >, eld } pZ jabforall j € [d]. Then, since

PC.qi-Check(pppc, cm, o, Ba, pf,) = 1 (and thus §, = Z]E[d] pfa]aa Yy forall a € [L], we have that
forall a € [L],

By = Z J%(J 1)

j€ld]

_ Z ZPZJO/ 1] 1)
j€[d] i€[d)
Z Pngé 1)4+d(5—-1) :
i,j€d]

which contradicts the assumption that deg(Lagrange({((®; 8a))aci)})) > D

Finally, Ap .« outputs a non-trivial discrete logarithm relation (pfa*,j — Zie[d} pi,jaéil) jeld) in Step 5d.
To show this, we first note that the i-row (p; ;) e[q iS @ pre-image of the commitment cm;, i.e., cm; =
Zje[d} pi;jG; for all i € [d]. More precisely, since PC,,..Check(ppec,cm, o, Ba, pf,) = 1 (and thus

73

1)

2

> ield] ai~tem; = >_jeia Pfa,;Gj) forall a € [L], we have that for all [€ [d]:

Z Oéil_lcmi = Z pfo, ;G

i€[d] Jj€ld]

=Y O pijai)G

jeld] i€ld]

= ai 'Y PG,

i€[d] JEld]
and thus
1 ... agfl cmy — Zje[d] P1;Gj
: =0 .
1o ot [ema = e PG

Since the Vandermonde matrix is invertible, it must be that cm; = >,y pi,;G; for all @ € [d]. This
immediately implies that Ap ra’s output in Step 5d is a non-trivial discrete logarithm relation, since

D (0= D pijon)Gy = D pfer Gy — D pijog: G
1€[d]

jeld] J€ld] i,j€[d]
= Z ai?lcmi — Z piJ-af;lGj
i€(d] i,7€[d]
=0 .

C.2 Bulletproofs-style polynomial commitment scheme

We show that a Bulletproofs-style [BCCGP16] interactive polynomial commitment scheme PCgp with
logarithmically many rounds satisfies (state-restoration) function binding under the discrete logarithm
assumption.

Lemma C.6 (State-restoration function binding of PCgp). Assume the expected-time discrete logarithm
relation assumption holds with error €f, o, = €5 ..ra(A, D, 15, o) (Definition C.8), PCgp (Construction C.7)
has state-restoration function binding error

14 2log(D +1)
2)\

6?2(A7 D7 L’ SFC? mFC7 tFC) S L : (mFC +]') : + E>|§LogRe|(>\7 D + 2’ tBLogRel) ’

where t5,cq = O (L (mec + 1) - (2(D + 1)1°83)(tec + poly(D)) + L2 + L - (D + 1)'°83).

In Appendix C.2.1, we present an interactive polynomial commitment scheme PCgp inspired by the
Bulletproofs protocol [BCCGP16] (we closely follow the description of Biinz et al. [BCMS20, Appendix
A]). We show that PCg; satisfies special function binding under the expected-time discrete logarithm relation
assumption in Appendix C.2.2. In Appendix C.2.3, we compare the proof technique and the concrete security
bound of state-restoration function binding with soundness and knowledge soundness.

74

C.2.1 Construction

Throughout this section, we assume that every polynomial has degree at most D where D + 1 is a
power of 2. We write p = (po,...,pp) for the coefficients of a polynomial p € F[X]<P. We denote
by L((v1,...,v2x)) = (v1,...,vx) the operation which returns the left half of a vector, and similarly
R((v1,...,va)) for the right half.

Construction C.7. Let G be a group of prime order p(\) > 2.
» PCgp.Gen(1*,D):

1. Sample random generators G+ GP*! H « G.
2. Output ppc = (G, H).

* PCgp.Commit(ppec, p): Outputs cm = (p, C_j>

* PCgp.Open, PCgp.FC.Check: The interactive protocol between Prc and Vi with common reference string
PPec, instance (cm, a,) and witness p proceeds as follows:

1. Vec samples &y < F \ {0} uniformly at random, and sends it to Prc.
2. Both Prc and Vi set

- H = ng,
- d%:=(1,a,...,aP), and
- GO =g

3. Pec sets p0) == p.
4. Vecsets CO :=cm+ - H'.
5. Forie {1,...,log(D+1)}:
(a) Pec sends L® and R to the verifier, where

L0 = (R(E), LEED)) + (RED), L@ D)) 1’
RO = (L(E), RGED)) + (L), R@)

(b) Vec samples &; < T\ {0}, computes C() == &' L@ + 00~ 4 ¢ RO, and sends &; to Pec.
(¢) Pec computes the inputs for the next round as follows:
= B = LE) + 6 R(EUY),
- d® = (@) + &R(@Y), and
- GO = L(GY) 4 & R(G-D).
6. Pec sends the constant polynomial u := p°8(P+1) € F to V..
7. Ve defines h(X) = HiozgéDH)_l(l + &log(D+1)—iX 2"y (with coefficient vector &) and checks that

C(g®+1) — (b, G) + u - h(a)H'.

C.2.2 Function binding

We show Lemma C.6 by showing that PCgp is special function binding under the expected-time discrete
logarithm relation assumption, and applying Lemma A.2.

Finally, we show that PCgp satisfies special function binding under the expected-time discrete logarithm
relation assumption.

75

Definition C.8 (Expected-time discrete logarithm relation assumption). The expected-time discrete logarithm
relation assumption holds with error € ., if for every security parameter X, length parameter n € N,
expected t} . -time adversary Ap oz and group G of prime order p(\) > 2%,

Pr| Ja; #0A Y cp) aiGi =0 ’ Gi,...,Gp <G

Definition C.9 (Expected-time discrete logarithm assumption). The expected-time discrete logarithm as-
sumption holds with error €}, if for every security parameter A\, expected t3, -time adversary Ap,, and group
G of prime order p(\) > 2 with generator G,

H+G

— * *
Pr [G =H ‘ 2 Ao (G,p, G, H) } <es (A t5) -

Asymptotically, the expected-time discrete logarithm and the expected-time discrete logarithm relation
assumption are equivalent; the following expected-time equivalent of Lemma C.5 bounds the concrete
relationship between the two assumptions.

Lemma C.10 (Expected-time discrete logarithm relation = expected-time discrete logarithm). Let G be a
group of prime order p(\) > 2> and n > 1 be an integer. Then for any X € N, toLogrel € N, we have

1

6SLogRel()‘v n, tBLogRel) < e (A tgL) =+ o

where 5, = O(tgLogRe, +n).

In order to upper-bound on the expected discrete logarithm error, one can either use reduce to the strict-time
discrete logarithm assumption, or use an upper-bound derived using an idealized model [JT20; SSY23].

Lemma C.11 (Special function binding of PCgp). PCgp has (2,3, ..., 3)-special function binding error
GSFB()\ D + 1 L tSFB) < 6DLogReI()\? D + 27 Z‘:‘}I;LogRel) 9

where tSLogReI = O(sre T L2 +L- (D + 1)103;3)_

Proof. We define the following adversary Asrg, which, when run on the output of a succesful special function
binding reductor R, outputs a non-trivial discrete logarithm relation for the generators Gy, ..., G4, H. In the
following, let d := log(D + 1) denote the number of rounds in the opening protocol.

ASFB(pch, (Cm> ((aia Bi, TZ))le[L]))
1. Fori € [L]:
(J0s+esjr—1)

(a) Parse T; asprovermessages((L(?f’ nir=1) . “))reld) o2 gt rrel3)s (Ui (Jo,- ,Jd))'

Jo€[2],

77777

(b) For (jo,- -, ja) € {1, 2} X {1 2 3}d

< €X A\ n, t* .
ai,...,0n S Zp < ADLogReI(G7 Gl, ey Gn) :| B DLogRel(T DLOgRel)

J15e-,Jd€[3]

i Set J(Jm Ja) ._ Z(g(m,)) 1L(JO: SJs—1) —I—Cm—l-ﬁl H+ Z 5'(;7;01-“,jS)RE‘j‘sOa-“jsfl) '

s€[d]

i, Set {703 () = TLEPTI T (1 4 gl estorn =) x2)

iii. Set pgjo"”’jd)(X) = y{for-ia) hz(jo’ +J4)(X'), with coefficient vector p(jo’ wJd)

)

76

iv. Check that o o o ,
JlGosda) @QO ,,,,, ja), G) + pl(.jo"“’]d)(ai) £

(2
abort otherwise.
(c) Forr =dto 1: For(jo,...,j,« 1) € {1, 2} {1,2,3}7 1
i. Check that (]O’ nir-1,1 ,§(JO’ nir=1,2 ,fJO’ ~Ir=13) are distinct; abort otherwise.
ii. Compute (uj) je[3) such that

(gz(’J'TcJ,...,jr—1,l))—1 (§(J07 oJr—1,)) 1 (51‘(;];,0’.."jr_1,3))_1 " 0
! 1 1 v| = |1
61'(7];‘0,.“,]'7»,1,1) é—i(];),...,jrfl,Q) 67;(7]7‘?"“’]'7'71’3) Vs 0
iii. Set Ji(jom.,jrfl) — Z VJJ(Jm wJr—1,3)
J€l]
= Z (51‘(7]'80""’%)) lL(Jo, Js— 1)—|-cm—|—ﬂZ H_|_ Z 5]07 Js Jo, Js—1) .
s€[r—1] o]
iv. Set pZJo, wir=1) ._ Zyjpljo, wir-1:4)
J€[3]

(At this point, each pE satisfies cm = (p; (o) ,G) + (p, ('“ (i) — 7’){} O H)
2. 1 pP) # p% for some i, j € [L], jo, jb € [2] (e (5. C) 4+ (0 () — B)el) H = (650 .Gy +

(p/“ <”r_1ﬂm) - 3/){El((;)) H)
(a) Setp:= pgjo) - pg-j‘/’).
(b) Output 5, (p") () — B — (7" () = By)ES .
3. Otherwise:
(a) Setp:= pgl) =...= pl(_Q).
(b) If p(a;) # B; for some i € [L] (i.e.. (play;) —){(”H (p(cv) — Bi)E2) H):

87
Output (0)ic(p+11- (P(e) — Bi) (€L — £57).
(c) Otherwise: abort.

Running time. Each tree of transcripts has 2 - 31°8(P+1) = 2. (D + 1)1°83 nodes. In Step 1, Aspg performs
at most L(2 - log(D + 1)83 + 2_reflog(D+1y] 2 * 37) operations. In Step 2, Aseg searches for disagreeing
answers for the same query among 2L query-answer pairs, which requires O(L?) operations. Finally, Step 3
only requires a linear scan over L values.
Success probability. Let ((«, 5i, T;));c)) be the output of a successful 93 adversary. Since each tree is
a valid tree, Asrs does not abort in Step l(b)lv. Furthermore, since the verifier challenges for each round
are non-zero, and guaranteed by SRTreeFinder to be distinct, the matrix in Step 1(c)ii is well-defined and
invertible. A

If the condition in Step 2 is satisfied, at least one coefficient of pz(] 0) pgjfrz is non-zero, and Agpg outputs
a valid discrete logarithm relation. Finally, note that the function binding condition

(Fi,5 € L] : s = o A Bi # Bj) ¥ deg(Lagrange({ (v, 3;)})) > D
is equivalent to the condition Ji € [L] : p(a;) # f; tested in Step 3b, which means that R does not abort in

Step 3. In this case, (p(«a;) — 5i)(§§71()) - 55%)) is non-zero, and Aggs also outputs a valid discrete logarithm
relation. O

77

C.2.3 Comparison with soundness and knowledge soundness

Bulletproofs and Bulletproofs-style protocols are known to satisfy knowledge soundness, which requires the
existence of an efficient extractor that, given an instance and rewinding access to a (potentially malicious)
prover, is able to efficiently extract a valid witness. The Bulletproofs protocol (and variants thereof),
are shown to be (asymptotically) knowledge sound under the expected-time discrete logarithm relation
assumption [BCCGP16; BBBPWM18; Tha22]. [JT20] gives a more formal and concrete treatment, and
provide knowledge soundness errors for both strict-time and expected-time extractors, also from the discrete
logarithm relation assumption. Interestingly, their strict-time knowledge soundness error is significantly worse
than the expected-time error; in general, for protocols with superconstant rounds, an expected-time tree finder
seems inherent for an efficient reductor or extractor [ACK21; JT20]. In the context of polynomial commitment
schemes, knowledge soundness requires the existence of an extractor which, given a commitment cm and an
opening proof for a query-answer pair («, (), can extract a polynomial p such that (i) deg(p) < D, (ii) cmis a
commitment to p, and (iii) p(«) = [BMMTV21]. For Bulletproofs-style protocols, knowledge soundness is
usually shown via special soundness [BCCGP16; BBBPWM18; JT20] (i.e., there exists an efficient, extractor
which outputs a valid witness polynomial when given as input a commitment, a query-answer pair, and a tree
of accepting transcripts). The final extractor is a concatenation of a tree finder algorithm (which finds a tree
of accepting transcripts with the required arity) and this special soundness extractor.

Note that for L = 1, the proof of Lemma C.11 can easily be adapted to show knowledge soundness (rather
than aborting in Step 3¢, Asrg outputs the valid witness p instead). In particular, both the special function
binding and the special soundness adversary requires a tree of the same arity (2,3, ..., 3). On the other hand,
one might consider soundness, i.e., the property that a malicious prover cannot convince a verifier for an
instance that is not in the language (in our case, every polynomial of degree at most D is either not committed
to in cm, or does not evaluate to 5 at «v). In particular, a natural minimal property for PCgp is state-restoration
soundness. For PCgp, we are not aware of any proof that specifically targets state-restoration soundness,
or even soundness; however, note that for L = 1, the proof of Lemma C.11 is a proof of state-restoration
soundness. One might ask whether (state-restoration) soundness can be shown from either a simpler proof
(without using special-soundness-type techniques), or from a tree with smaller arities. The former seems
difficult, owing to the superconstant number of rounds in the protocol. The latter also seems challenging (at
least when relying solely on the discrete logarithm assumption): the requirement for three distinct challenges
in each round is dictated by the structure of the “folding” step, and by the fact that the prover messages at
each step of the protocol define a quadratic polynomial evaluated at the verifier’s challenge.

78

Acknowledgments

Ziyi Guan thanks Ngoc Khanh Nguyen, Kshiteej Sheth, and Weiqiang Yuan for helpful discussions in early
stages of this work. The authors are partially supported by the Ethereum Foundation.

References

[ACK21]

[AGLMS22]

[AJMMS23]

[AY25]

[BBBPWM18]

[BBHMRI19]

[BCCGP16]

[BCG20]

[BCGGHIJ17]

[BCMS20]

[BCS16]

[BFS20]

[BGOS]

Thomas Attema, Ronald Cramer, and Lisa Kohl. “A Compressed >-Protocol Theory for Lattices”.
In: Proceedings of the 41st Annual International Cryptology Conference. CRYPTO ’21. 2021,
pp. 549-579.

Arasu Arun, Chaya Ganesh, Satya V. Lokam, Tushar Mopuri, and Sriram Sridhar. Dew: Transparent
Constant-sized zkSNARKs. Cryptology ePrint Archive, Report 2022/419. 2022.

Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad Stern. “Bingo: Adap-
tivity and Asynchrony in Verifiable Secret Sharing and Distributed Key Generation”. In: Proceedings
of the 43rd Annual International Cryptology Conference. CRYPTO °23. 2023, pp. 39-70.

Gal Arnon and Eylon Yogev. Towards a White-Box Secure Fiat-Shamir Transformation. Cryptology
ePrint Archive, Paper 2025/329. 2025. URL: https://eprint.iacr.org/2025/329.

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
“Bulletproofs: Short Proofs for Confidential Transactions and More”. In: Proceedings of the 39th
IEEE Symposium on Security and Privacy. S&P ’18. 2018, pp. 315-334.

James Bartusek, Liron Bronfman, Justin Holmgren, Fermi Ma, and Ron D. Rothblum. “On the
(In)security of Kilian-Based SNARGS”. In: Proceedings of the 17th Theory of Cryptography Confer-
ence. TCC ’19. 2019, pp. 522-551.

Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. “Efficient Zero-
Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting”. In: Proceedings of the
35th Annual International Conference on Theory and Application of Cryptographic Techniques.
EUROCRYPT ’16. 2016, pp. 327-357.

Jonathan Bootle, Alessandro Chiesa, and Jens Groth. “Linear-Time Arguments with Sublinear
Verification from Tensor Codes”. In: Proceedings of the 18th Theory of Cryptography Conference.
TCC *20. 2020, pp. 19-46.

Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi, and Sune K.
Jakobsen. “Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit Satisfiability”. In: Pro-

ceedings of the 23rd International Conference on the Theory and Applications of Cryptology and
Information Security. ASIACRYPT *17. 2017, pp. 336-365.

Benedikt Biinz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. “Recursive Proof
Composition from Accumulation Schemes”. In: Proceedings of the 18th Theory of Cryptography
Conference. TCC °20. 2020, pp. 1-18.

Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In: Proceed-
ings of the 14th Theory of Cryptography Conference. TCC *16-B. 2016, pp. 31-60.

Benedikt Biinz, Ben Fisch, and Alan Szepieniec. “Transparent SNARKSs from DARK Compilers”.
In: Proceedings of the 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 677-706.

Boaz Barak and Oded Goldreich. “Universal Arguments and their Applications”. In: SIAM Journal
on Computing 38.5 (2008). Preliminary version appeared in CCC ’02., pp. 1661-1694.

79

https://eprint.iacr.org/2025/329

[BG18]

[BMMTV21]

[CDDGS25]

[CDGS23]

[CDGSY24]

[CFFQR21]

[CGHO4]

[CHMMVW20]

[CY20]

[CY21a]

[CY21b]

[CY24]

[FFR24]

[FS86]

[GKO03]

[GW11]

Jonathan Bootle and Jens Groth. “Efficient Batch Zero-Knowledge Arguments for Low Degree
Polynomials”. In: Proceedings of the 21st IACR International Conference on Practice and Theory of
Public-Key Cryptography. PKC *18. 2018, pp. 561-588.

Benedikt Biinz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. “Proofs for Inner
Pairing Products and Applications”. In: Proceedings of the 27th International Conference on the
Theory and Application of Cryptology and Information Security. ASIACRYPT °21. 2021, pp. 65-97.

Alessandro Chiesa, Marcel Dall’ Agnol, Zijing Di, Ziyi Guan, and Nicholas Spooner. Quantum
Rewinding for IOP-Based Succinct Arguments. Cryptology ePrint Archive, Report 2025/947. 2025.

Alessandro Chiesa, Marcel Dall’ Agnol, Ziyi Guan, and Nicholas Spooner. On the Security of
Succinct Interactive Arguments from Vector Commitments. Cryptology ePrint Archive, Report
2023/1737. 2023.

Alessandro Chiesa, Marcel Dall’ Agnol, Ziyi Guan, Nicholas Spooner, and Eylon Yogev. “Untangling
the Security of Kilian’s Protocol: Upper and Lower Bounds”. In: Proceedings of the 22nd Theory of
Cryptography Conference. TCC 24. 2024.

Matteo Campanelli, Antonio Faonio, Dario Fiore, Anais Querol, and Hadridn Rodriguez. “Lunar: A
Toolbox for More Efficient Universal and Updatable zkSNARKSs and Commit-and-Prove Extensions”.
In: Proceedings of the 27th International Conference on the Theory and Application of Cryptology
and Information Security. ASIACRYPT °21. 2021, pp. 3-33.

Ran Canetti, Oded Goldreich, and Shai Halevi. “The random oracle methodology, revisited”. In:
Journal of the ACM 51.4 (2004), pp. 557-594.

Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas Ward.
“Marlin: Preprocessing zkSNARKSs with Universal and Updatable SRS”. In: Proceedings of the
39th Annual International Conference on the Theory and Applications of Cryptographic Techniques.
EUROCRYPT ’20. 2020, pp. 738-768.

Alessandro Chiesa and Eylon Yogev. “Barriers for Succinct Arguments in the Random Oracle
Model”. In: Proceedings of the 17th Theory of Cryptography Conference. TCC ’20. 2020, pp. 47-76.

Alessandro Chiesa and Eylon Yogev. “Subquadratic SNARGs in the Random Oracle Model”. In:
Proceedings of the 41st Annual International Cryptology Conference. CRYPTO *21. 2021, pp. 711-
741.

Alessandro Chiesa and Eylon Yogev. “Tight Security Bounds for Micali’s SNARGs”. In: Proceedings
of the 19th Theory of Cryptography Conference. TCC *21. 2021, pp. 401-434.

Alessandro Chiesa and Eylon Yogev. Building Cryptographic Proofs from Hash Functions. 2024.
URL: https://github.com/hash-based-snargs-book.

Antonio Faonio, Dario Fiore, and Luigi Russo. “Real-World Universal zkSNARKSs are Non-
Malleable”. In: Proceedings of the 2024 ACM SIGSAC Conference on Computer and Commu-
nications Security. 2024, pp. 3138-3151.

Amos Fiat and Adi Shamir. “How to prove yourself: practical solutions to identification and signature
problems”. In: Proceedings of the 6th Annual International Cryptology Conference. CRYPTO ’86.
1986, pp. 186—-194.

Shafi Goldwasser and Yael Tauman Kalai. “On the (In)security of the Fiat-Shamir Paradigm”. In:
Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science. FOCS *03.
2003, pp. 102-113.

Craig Gentry and Daniel Wichs. “Separating Succinct Non-Interactive Arguments From All Falsifi-
able Assumptions”. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing.
STOC ’11. 2011, pp. 99-108.

80

https://github.com/hash-based-snargs-book

[GWCI19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over Lagrange-
bases for Oecumenical Noninteractive arguments of Knowledge. Cryptology ePrint Archive, Report
2019/953. 2019.

[JT20] Joseph Jaeger and Stefano Tessaro. “Expected-Time Cryptography: Generic Techniques and Appli-
cations to Concrete Soundness”. In: Proceedings of the 18th Theory of Cryptography Conference.
TCC ’20. 2020, pp. 414-443.

[KRS25] Dmitry Khovratovich, Ron D. Rothblum, and Lev Soukhanov. How to Prove False Statements:
Practical Attacks on Fiat-Shamir. Cryptology ePrint Archive, Report 2025/118. 2025.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. “Constant-Size Commitments to Polynomials
and Their Applications”. In: Proceedings of the 16th International Conference on the Theory and
Application of Cryptology and Information Security. ASIACRYPT *10. 2010, pp. 177-194.

[Kil92] Joe Kilian. “A note on efficient zero-knowledge proofs and arguments”. In: Proceedings of the 24th
Annual ACM Symposium on Theory of Computing. STOC *92. 1992, pp. 723-732.
[LM19] Russell W. F. Lai and Giulio Malavolta. “Subvector Commitments with Application to Succinct

Arguments”. In: Proceedings of the 39th Annual International Cryptology Conference. CRYPTO *19.
2019, pp. 530-560.

[LPS24a] Helger Lipmaa, Roberto Parisella, and Janno Siim. “Constant-Size zk-SNARKSs in ROM from
Falsifiable Assumptions”. In: Proceedings of the 43rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques. EUROCRYPT ’24. 2024, pp. 34-64.

[LPS24b] Helger Lipmaa, Roberto Parisella, and Janno Siim. On Knowledge-Soundness of Plonk in ROM from
Falsifiable Assumptions. Cryptology ePrint Archive, Report 2024/994. 2024.

[Lee21] Jonathan Lee. “Dory: Efficient, Transparent Arguments for Generalised Inner Products and Poly-
nomial Commitments”. In: Proceedings of the 19th Theory of Cryptography Conference. TCC ’21.
2021, pp. 1-34.

[Mic00] Silvio Micali. “Computationally Sound Proofs”. In: SIAM Journal on Computing 30.4 (2000).
Preliminary version appeared in FOCS °94., pp. 1253-1298.

[RV09] Guy N. Rothblum and Salil Vadhan. “Are PCPs Inherent in Efficient Arguments?” In: Proceedings
of the 24th IEEE Annual Conference on Computational Complexity. CCC *09. 2009, pp. 81-92.

[SSY23] Gil Segev, Amit Sharabi, and Eylon Yogev. “Rogue-Instance Security for Batch Knowledge Proofs”.
In: Proceedings of the 21st Theory of Cryptography Conference. TCC *23. 2023, pp. 121-157.

[Tha22] Justin Thaler. “Proofs, Arguments, and Zero-Knowledge”. In: Found. Trends Priv. Secur. 4.2-4

(2022), pp. 117-660.DO1: 10.1561/3300000030. URL: https://people.cs.georgetown.
edu/jthaler/ProofsArgsAndZK.

[ValO8] Paul Valiant. “Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/Space
Efficiency”. In: Proceedings of the 5th Theory of Cryptography Conference. TCC ’08. 2008, pp. 1-
18.

81

https://doi.org/10.1561/3300000030
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK

	Abstract
	Contents
	1 Introduction
	1.1 Our results

	2 Techniques
	2.1 Limitations of prior analyses
	2.2 Warm-up: arguments based on functional PCPs
	2.3 Succinct arguments based on public-coin functional IOPs
	2.4 Function binding in action: On the security of Plonk

	3 Preliminaries
	3.1 Interactive arguments
	3.2 Functional interactive oracle proofs
	3.3 Functional commitment schemes

	4 The Funky protocol
	5 Solving time and tail errors
	5.1 Inefficient baseline for the general case
	5.2 Linear queries
	5.3 Point queries
	5.4 Univariate polynomial evaluation queries
	5.5 Multivariate polynomial evaluation queries
	5.6 Structured polynomial evaluation queries
	5.7 Bounded-degree functions

	6 State-restoration security reduction
	6.1 Construction of the security reductors
	6.2 Proof of Lemma 7.1

	7 State-restoration security of the Funky protocol
	7.1 Construction of the FIOP state-restoration adversary
	7.2 State-restoration soundness
	7.3 State-restoration knowledge soundness

	8 Batching and linearization for homomorphic functional commitment schemes
	8.1 Proof of Lemma 9.2 (batched-messages FC)
	8.2 Proof of Lemma 9.3 (linearization trick)

	9 Application: variants of the KZG polynomial commitment scheme
	9.1 Proof of Lemma 10.1 (KZG)
	9.2 Proof of Corollary 10.2 (batch KZG)
	9.3 Proof of Corollary 10.3 (linearized KZG)

	A Special function binding
	B Comparing function binding to other properties for KZG
	B.1 Function binding implies strong correctness
	B.2 Interpolation binding implies function binding

	C Function binding for polynomial commitment schemes based on DLog
	C.1 Square-root-sized polynomial commitment scheme
	C.2 Bulletproofs-style polynomial commitment scheme

	Acknowledgments
	References

