
On the Fiat–Shamir Security of
Succinct Arguments from Functional Commitments

Alessandro Chiesa
alessandro.chiesa@epfl.ch

EPFL

Ziyi Guan
ziyi.guan@epfl.ch

EPFL

Christian Knabenhans
christian.knabenhans@epfl.ch

EPFL

Zihan Yu
zihan.yu@epfl.ch

EPFL

May 27, 2025

Abstract

We study the security of a popular paradigm for constructing SNARGs, closing a key security gap left
open by prior work. The paradigm consists of two steps: first, construct a public-coin succinct interactive
argument by combining a functional interactive oracle proof (FIOP) and a functional commitment scheme
(FC scheme); second, apply the Fiat–Shamir transformation in the random oracle model. Prior work did
not consider this generalized setting nor prove the security of this second step (even in special cases).

We prove that the succinct argument obtained in the first step satisfies state-restoration security, thereby
ensuring that the second step does in fact yield a succinct non-interactive argument. This is provided the
FIOP satisfies state-restoration security and the FC scheme satisfies a natural state-restoration variant of
function binding (a generalization of position binding for vector commitment schemes).

Moreover, we prove that notable FC schemes satisfy state-restoration function binding, allowing us to
establish, via our main result, the security of several SNARGs of interest (in the random oracle model).
This includes a security proof of Plonk, in the ROM, based on ARSDH (a falsifiable assumption).

Keywords: Fiat–Shamir security; succinct arguments; functional commitment schemes

1

Contents
1 Introduction 3

1.1 Our results . 4

2 Techniques 7
2.1 Limitations of prior analyses . 7
2.2 Warm-up: arguments based on functional PCPs . 8
2.3 Succinct arguments based on public-coin functional IOPs . 12
2.4 Function binding in action: On the security of Plonk . 15

3 Preliminaries 17
3.1 Interactive arguments . 17
3.2 Functional interactive oracle proofs . 19
3.3 Functional commitment schemes . 21

4 The Funky protocol 30

5 Solving time and tail errors 32
5.1 Inefficient baseline for the general case . 32
5.2 Linear queries . 33
5.3 Point queries . 34
5.4 Univariate polynomial evaluation queries . 35
5.5 Multivariate polynomial evaluation queries . 36
5.6 Structured polynomial evaluation queries . 37
5.7 Bounded-degree functions . 38

6 State-restoration security reduction 40
6.1 Construction of the security reductors . 41
6.2 Proof of Lemma 6.1 . 42

7 State-restoration security of the Funky protocol 47
7.1 Construction of the FIOP state-restoration adversary . 48
7.2 State-restoration soundness . 49
7.3 State-restoration knowledge soundness . 51

8 Batching and linearization for homomorphic functional commitment schemes 54
8.1 Proof of Lemma 8.2 (batched-messages FC) . 55
8.2 Proof of Lemma 8.3 (linearization trick) . 57

9 Application: variants of the KZG polynomial commitment scheme 59
9.1 Proof of Lemma 9.1 (KZG) . 59
9.2 Proof of Corollary 9.2 (batch KZG) . 61
9.3 Proof of Corollary 9.3 (linearized KZG) . 62

A Special function binding 63

B Comparing function binding to other properties for KZG 66
B.1 Function binding implies strong correctness . 66
B.2 Interpolation binding implies function binding . 67

C Function binding for polynomial commitment schemes based on DLog 71
C.1 Square-root-sized polynomial commitment scheme . 71
C.2 Bulletproofs-style polynomial commitment scheme . 74

Acknowledgments 79

References 79

2

1 Introduction

A succinct non-interactive argument (SNARG) for a relation R is a computationally-sound non-interactive
proof system where, for a given instance x, an argument prover aims to convince the argument verifier that
there exists a witness w such that (x,w) ∈ R, while sending an argument string much shorter than |w|
bits. SNARGs have numerous theoretical and practical applications, and are studied in a large body of work.
Due to barriers [GW11], SNARGs are typically achieved in oracle models or from non-falsifiable (e.g.,
knowledge) assumptions (or both). In this paper we focus on the random oracle model (ROM).

SNARGs in the “pure” ROM. SNARGs exist unconditionally in the ROM [Mic00; Val08; BCS16; CY21b;
CY21a; CY24]. They are obtained by combining a PCP/IOP and a ROM-based vector commitment scheme
(specifically, a ROM-based Merkle commitment scheme). Security is proved via straightline (non-rewinding)
extraction. Alas, a weak point of known SNARG constructions in this “pure” ROM setting is argument size,
with state-of-the-art constructions achieving argument sizes around several tens of kilobytes. This state of
affairs has motivated the study of SNARGs in the ROM that additionally rely on cryptographic assumptions,
in order to achieve smaller argument size (than what is currently possible unconditionally in the ROM).

Smaller: SNARGs in the ROM plus cryptography. Smaller argument sizes are achieved by applying the
Fiat–Shamir transformation in the ROM [FS86] to succinct interactive arguments in the standard model (no
oracles) that, in turn, rely on cryptographic ingredients for small communication complexity. Various works
achieve argument sizes of several kilobytes this way [LM19; CHMMVW20; BFS20; CFFQR21; LPS24a].

Funky protocol. The succinct interactive arguments mentioned above all follow a familiar paradigm: they
combine a type of probabilistic proof and a corresponding notion of commitment scheme. In this paper we
describe and study this paradigm in full generality. We describe and study the Funky protocol (reminiscent
of “function”), which constructs a succinct interactive argument by combining an FC scheme (functional
commitment scheme) and an FIOP (functional interactive oracle proof); we elaborate on both notions later.

Special cases are studied in prior work: with vector commitment schemes [Kil92; BG08; CDGS23;
CDGSY24]; with linear commitment schemes [LM19]; and with polynomial commitment schemes [CHM-
MVW20; BFS20; CFFQR21; LPS24a]. These works do not show security of the SNARG in the ROM
obtained via the Fiat–Shamir transformation, leaving a security gap.1 Indeed, the Fiat–Shamir transformation
requires the interactive argument (in particular, the Funky protocol) to satisfy a soundness property stronger
than standard soundness (and similarly for knowledge soundness).2 Specifically, the Funky protocol must
satisfy state-restoration soundness [BCS16; CY24] (essentially equivalent to Fiat–Shamir security). We ask:

When does the Funky protocol satisfy state-restoration soundness?

What security for the FC scheme? Prior work studies the special case where the FC scheme is a PC
scheme (polynomial commitment scheme) [CHMMVW20; BFS20; CFFQR21; LPS24a], assuming that the
PC scheme is extractable, a strong property stating that there exists a (non-black-box or rewinding) extractor
that outputs a polynomial for the commitment output by the adversary. On the one hand, this does not suffice
to ensure Fiat–Shamir security (as explained above); on the other hand, extractability is unnecessary to prove
standard soundness (or knowledge soundness) of the interactive argument. Consider, by analogy, Kilian’s
protocol [Kil92], a succinct interactive argument that combines a PCP and a VC scheme. The security of

1[LPS24b], an exception, shows the special soundness of an interactive argument obtained from a specific polynomial IOP and a
specific polynomial commitment scheme, which implies the Fiat–Shamir security of that construction.

2For every kFIOP, there are kFIOP-round interactive arguments with standard (not state-restoration) soundness ϵARG for which the
soundness error after the Fiat–Shamir transformation in the ROM is mΩ(k) · ϵARG against m-query adversaries. This does not suffice
for asymptotic security when kFIOP is superconstant and, even when kFIOP is constant, yields poor concrete security.

3

Kilian’s protocol relies on the position binding property of the VC scheme [CDGSY24], which ensures that
different openings are consistent with one another; roughly, one rewinds the argument adversary sufficiently
many times to recover enough consistent fragments of the PCP, without any need to actually recover a PCP
that matches the commitment. A similar consideration applies to the IBCS protocol [CDGS23], which
extends Kilian’s protocol to interactive arguments obtained from an IOP (and a position-binding VC scheme).
Hence we ask: what is the “right” security property for the FC scheme underlying the Funky protocol? We
seek the natural analogue of position binding for FC schemes, as well as its state-restoration variant that
suffices for Fiat–Shamir security of the Funky protocol. As a result, constructions of FC schemes could be
proved secure via the “right” amount of effort (without overshooting by, say, proving extractability).

1.1 Our results

We describe the Funky protocol, which achieves a succinct interactive arguments in the standard model by
combining FC schemes (functional commitment schemes) and FIOPs (functional IOPs). We establish the
Fiat–Shamir security of the Funky protocol, closing a key security gap left open by prior work. Along the
way, we identify (the state-restoration variant of) function binding as the “right” security property for this
setting. We show that several FC schemes of interest satisfy this property and, in particular, establish that
Plonk (with optimizations) [GWC19] is secure in the ROM based on the ARSDH assumption.

1.1.1 Fiat–Shamir security of Funky

State-restoration (knowledge) soundness [BCS16; CY24] is an idealized game for a public-coin interactive
argument that implies the (knowledge) soundness of the non-interactive argument in the ROM that results
from applying the Fiat–Shamir transformation in the ROM. The game considers an adversary against the
interactive argument that aims to find an accepting transcript by making a bounded number of moves, with
each move receiving corresponding randomness in response.

We denote by Funky[FIOP,FC] the Funky protocol based on: (i) FIOP, a functional IOP with round
complexity kFIOP, proof length ℓ, and query complexity q; (ii) FC, an interactive FC scheme. We upper bound
the state-restoration soundness error ϵSRARG of Funky[FIOP,FC] in terms of the state-restoration soundness
error ϵSRFIOP of FIOP and the state-restoration function binding error ϵSRFC of FC.3 A similar statement (omitted
below) holds for state-restoration knowledge soundness. We elaborate on function binding in Section 1.1.2.

Theorem 1 (informal). The state-restoration soundness error ϵSRARG of Funky[FIOP,FC] against m-move
tARG-size adversaries satisfies the following for every error tolerance ϵ > 0:

ϵSRARG(m, tARG) ≤ ϵSRFIOP(m+ kFIOP) + kFIOP · ϵSRFC(mFC, tFC) + kFIOP · ϵ where

{
mFC = O(kFIOP·ℓ

ϵ ·m)

tFC = O(ℓϵ · tARG)
.

This implies negligible bounds in the negligible case.

The error tolerance ϵ in the theorem reflects the fact that, in the security analysis, rewinding the adversary
more times yields a smaller additive error. This is analogous to the error tolerance ϵ that arises in rewinding
security analyses of succinct interactive arguments based on VC schemes [CDGSY24; CDGS23]. Despite
the similarity, new technical challenges arise in the more general setting that we consider (see Section 2).

Theorem 1 implies, for special cases, bounds for standard (not state-restoration) security that are at least
as good as, and sometimes better than, in prior work.

3Both ingredients must be individually secure against state-restoration attacks, or else one can attack the Funky protocol.

4

• VC setting. Theorem 1 implies the same bound on standard (not state-restoration) security as in [CDGS23;
CDGSY24] for non-interactive VC schemes.

• LC setting. Theorem 1 implies a better bound compared to [LM19], which studies standard (not state-
restoration) security assuming the underlying linear PCP has negligible error.

• PC setting. [CHMMVW20; BFS20] proves standard (not state-restoration) security based on extractability
in the negligible regime. [LPS24a] proves standard (not state-restoration) security for a less efficient variant
of the protocol (it includes random openings that double the round complexity); moreover, [LPS24a]
relies on special soundness of the PC scheme, which cannot be achieved for notable PC schemes (see
Section 1.1.2) and, also, incurs unnecessary multiplicative overheads in the upper bound.

Applicability of Theorem 1. Many known FIOPs are (believed or) proven to have round-by-round
(knowledge) soundness, which implies state-restoration (knowledge) soundness [CY24]; also, many FC
schemes satisfy special soundness, which implies state-restoration function binding (Lemma 3.31). Hence
Theorem 1 applies to many known FIOPs and FC schemes. Moreover, [LPS24b] shows that a widely used PC
scheme is not special sound and, nevertheless, we show that it satisfies state-restoration function binding (see
Section 1.1.2), deducing the security of Plonk [GWC19] in the ROM based on ARSDH (see Section 1.1.3).

Are probabilistic proofs inherent to succinct arguments? Prior work studies “reverse compilers” for
succinct arguments: transformations that map any succinct argument in a certain class into a corresponding
(unconditionally secure) probabilistic proof, proving the latter’s necessity. This paper puts on a formal footing
intuitions about such compilers, as we now explain.

[RV09] studies succinct interactive arguments that are proved secure via a black-box reduction to a
falsifiable assumption, and shows that any such construction implies a corresponding PCP. The parameters of
PCPs achieved in [RV09] are rather poor. Intuitively, this is because succinct interactive arguments can be
built not only from PCPs (plus a VC scheme) but also from: (i) IOPs (plus a VC scheme), or (ii) PIOPs (plus
a PC scheme), or (iii) LIOPs (plus a LC scheme), or (iv) many other options enabled by the Funky protocol.

Our proof of Theorem 1 is a black-box reduction to a falsifiable assumption, hence all these options
are valid inputs to the compiler in [RV09]. We deduce that the poor PCP parameters in [RV09] are likely
inherent: the succinct interactive argument input to the transformation in [RV09] may have been obtained
from a PIOP or LIOP, both of which are much “weaker” notions compared to a PCP.

This stands in contrast to [CY20], which studies succinct (interactive and non-interactive) arguments with
unconditional security in the ROM, and shows that any such construction implies a corresponding IOP with
good parameters. This is consistent with our understanding of the “pure ROM” where we only know of the
approach that combines an IOP and the Merkle commitment scheme (a VC scheme). So in this setting the
probabilistic proofs input to a “forward compiler” and output by a “reverse compiler” essentially match.

Instantiating random oracles. Random oracles are replaced by efficient hash functions in practice. These
heuristic instantiations do not always work in the sense that there are interactive protocols for which the Fiat–
Shamir transformation is not secure for any efficient hash function [GK03; CGH04; BBHMR19; KRS25],
including some examples of succinct interactive arguments. Understanding precisely for which interactive
protocols the Fiat–Shamir transformation works in the standard model remains an open problem; moreover,
the Fiat–Shamir transformation can be modified to circumvent some of the attacks [AY25].

1.1.2 Function binding

The security analysis of Kilian’s protocol [CDGSY24] and the IBCS protocol [CDGS23] relies on the position
binding property of the underlying VC scheme; this property states that no efficient adversary can produce
two inconsistent valid openings for the same commitment. We consider function binding, which is the

5

analogous property for FC schemes that (we show) suffices for the standard security of the Funky protocol.
This definition is inspired by the function binding property for linear commitment schemes in [LM19].

Definition 1 (informal). FC has function binding error ϵFC = ϵFC(tFC) if for every tFC-size adversary that
outputs a commitment cm and a list of openings

(
(αi, βi, pfi)

)
i

valid for cm, with probability at most ϵFC,
there does not exists Π such that αi(Π) = βi for every i.

When the FC scheme has an interactive opening phase (this is common), we consider state-restoration
function binding, which is the idealized state-restoration game for function binding. We defer the definition
of state-restoration function binding to Section 3.3.

Targeting function binding (rather than special soundness or extractability) for FC schemes facilitates
basing the security of FC schemes on falsifiable assumptions. (E.g., it avoids knowledge assumptions that are
often used to prove extractability instead [CHMMVW20; BMMTV21].) We provide a notable example.

We study a widely used FC scheme that is obtained from batching the PC scheme in [KZG10] and
applying the linearization trick in [GWC19], which we call linKZG. This FC scheme supports a rich
query class QStruct[Q,m, (hk)k∈[n]] that captures certain sums of products of low-degree polynomials (see
Definition 5.9), and underlies concretely efficient SNARKs (it is used in Plonk [GWC19].

We prove that linKZG satisfies state-restoration function binding based on ARSDH (a falsifiable assump-
tion introduced by [LPS24a]).

Lemma 1 (informal). Assume that the adaptive rational strong Diffie–Hellman (ARSDH) assumption holds
with error ϵARSDH = ϵARSDH(λ, tARSDH). The FC scheme linKZG (Construction 8.8) has state-restoration
function binding error ϵSRFC against every tFC-size where

ϵSRFC(mFC, tFC) =
(mFC + 1)

2λ
+ ϵARSDH(λ, tARSDH) ,

where tARSDH = O((mFC + 1) · tFC).

Lemma 1 provides new insights over prior work. [LPS24b] proves that linKZG does not satisfy special
soundness (assuming the hardness of the DL problem); in fact, one can extend their analysis to show that
linKZG does not even satisfy extractability (special soundness implies extractability, and extractability and
state-restoration function binding are incomparable). No prior work establishes any security property of
linKZG (based on falsifiable assumptions) that is useful towards succinct non-interactive arguments.

1.1.3 Application: Plonk is secure based on ARSDH

Our results (Theorem 1 and Lemma 1) imply that Plonk [GWC19] is secure, in the ROM, based on ARSDH.

Corollary 1. Assuming ARSDH, Plonk is a succinct non-interactive argument of knowledge in the ROM.

Prior work establishes the security of Plonk in the ROM based on ARSDH and an additional falsifiable
assumption [LPS24b] (via a direct proof that does not distill a security property for linKZG).

6

2 Techniques

We overview our techniques. In Section 2.1 we describe challenges that arise when adapting ideas from
prior work to the general setting of FC schemes and FIOPs. In Section 2.2, as a warmup, we sketch how we
address these challenges for the special case of FPCPs. In Section 2.3 we discuss the general case of FIOPs,
including showing state-restoration security. In Section 2.4 we discuss Lemma 1 and Corollary 1.

Below is notation that we use throughout this section.

Query class. A query class Q is a set of functions of the form α : Σℓ → D for a given proof alphabet Σ,
proof length ℓ, and answer domain D. We define notable query classes that we use as examples in this section:
point queries in Equation 1, linear queries in Equation 2, univariate polynomial queries in Equation 3, and
multivariate polynomial queries in Equation 4. We also discuss evaluation queries on structured polynomials
in Section 2.4, which arise in Plonk [GWC19].

QPoint :=
{
α : Fℓ → F

∣∣∣ ∃ i ∈ [ℓ] s.t. α(Π) = Π[i]
}

, (1)

QLin :=

{
α : Fℓ → F

∣∣∣∣∣ ∃ γ ∈ Fℓ s.t. α(Π) =
ℓ∑

i=1

γ[i] ·Π[i]

}
, (2)

QUniPoly :=

{
α : Fℓ → F

∣∣∣∣∣ ∃ γ ∈ F s.t. α(Π) =
ℓ−1∑
i=0

γi ·Π[i]

}
, (3)

Q
(m,D)
MultiPoly :=

ℓ :=

(
m+ D

D

)
, α : Fℓ → F

∣∣∣∣∣∣∣∣
∃ γ ∈ Fm s.t.
α(Π) =

∑
ω∈{0,...,D}m∑
i∈[m] ω[i]≤D

γω ·Π[ω]

where γω := γ[1]ω[1] · · · γ[m]ω[m]

 . (4)

These query classes implicitly depend on parameters such as the alphabets (Σ,D,F), proof length (ℓ), degree
bounds, and so on.

Public-coin FIOPs. We fix a public-coin functional interactive oracle proof FIOP = (P,V) with query
class Q. The prover P receives as input an instance-witness tuple (x,w) and the verifier V receives as
input the instance x. For each round i ∈ [kFIOP], P outputs a proof string Π ∈ Σℓi and V sends uniformly
sampled randomness ρ ∈ {0, 1}rFIOP,i ; afterwards, V can make queries α ∈ Q to any Πi to obtain answers
α(Πi) ∈ D; finally, V accepts or rejects. A functional probabilistically checkable proof FPCP is a special
case of an FIOP with round complexity kFIOP = 1. (See Section 3.2 for the formal definition of an FIOP.)

FC schemes. We fix a functional commitment scheme FC = (FC.Commit,FC.Open,FC.Check) with query
class Q with the following syntax.
• FC.Commit: On input a message m ∈ Σℓ, FC.Commit outputs a commitment cm and auxiliary state aux.
• FC.Open: On input the auxiliary state aux and a query α ∈ Q, FC.Open outputs an opening proof pf.
• FC.Check: On input a commitment cm, query α ∈ Q, answer β ∈ D, and opening proof pf, FC.Check

determines if pf is valid for β being the evaluation of the query α on the message committed in cm.
We focus on non-interactive FC schemes in (most of) this section for simplicity. Theorem 1 works for
interactive FC schemes as well. (See Section 3.3 for the formal definition of an FC scheme.)

2.1 Limitations of prior analyses

Attempting to straightforwardly adapt prior work to prove Theorem 1 runs into challenges.

7

Challenge 1: from point queries to function queries. An FIOP (resp., FPCP) for QPoint is simply an IOP
(resp., PCP) and an FC scheme for QPoint is a VC scheme. The Funky protocol in the case Q = QPoint yields
familiar protocols as special cases: Kilian’s protocol (when the FIOP is an FPCP) and the IBCS protocol. Prior
work analyzes the security of these special cases in detail [CDGS23; CDGSY24]. For example, [CDGSY24]
shows that the soundness error ϵARG of Kilian’s protocol, when based on a PCP with proof length ℓ and
soundness error ϵPCP and a VC scheme with position binding error ϵVC, satisfies the following bound against
tARG-size adversaries:

∀ ϵ > 0 , ϵARG(x, tARG) ≤ ϵPCP(x) + ϵVC(tVC) + ϵ where tVC = O

(
ℓ

ϵ
· tARG

)
. (5)

Reducing the general case of an FPCP and FC scheme for a function class Q = {α : Σℓ → D} to the
aforementioned special case is tempting though problematic. One could map an FPCP string Π ∈ Σℓ to a
corresponding PCP string Π′ := (α(Π))α∈Q ∈ Dℓ′ with proof length ℓ′ := |Q|, viewing each query in Q as a
point query into a string of all query evaluations. However, this approach is insecure because a malicious PCP
string Π′ ∈ Dℓ′ need not be consistent with the all-query evaluation of any FPCP string Π ∈ Σℓ. Moreover,
even if we were to ignore this problem, we would (at best) obtain a bound where

tVC = O

(
ℓ′

ϵ
· tARG

)
= O

(
|Q|
ϵ
· tARG

)
.

We cannot afford such a bound: while for point queries |QPoint| = ℓ, in general |Q| may be much larger,
even exponentially larger, than ℓ. For example, for univariate polynomial queries |QUniPoly| = |F| ≫ ℓ and F
typically has exponential size for PIOPs and PC schemes of interest. This would result in the size tVC of the
FC scheme adversary being unacceptably large (the FC scheme adversary would have exponential size).

In sum, we seek a “direct” reduction approach for a given query class Q that is both secure and efficient.
In particular, security should depend on the FPCP/FIOP proof length ℓ, rather than on the size of Q.
Challenge 2: Fiat–Shamir security. Analyses of SNARGs in the pure ROM constructed directly from
PCPs/IOPs and Merkle commitment schemes prove Fiat–Shamir security, but rely on the straightline
extraction property of the ROM-based Merkle commitment scheme [BCS16; CY24], which is not achievable
by standard-model FC schemes. (Separately, as noted in Section 1, security analyses of succinct interactive
arguments in the standard model obtained from VC schemes or PC schemes neglect Fiat–Shamir security.)

2.2 Warm-up: arguments based on functional PCPs

We sketch how we address the challenges in Section 2.1 for a special case of the Funky protocol: we
temporarily focus on the case of a FPCP and a non-interactive FC scheme for a generic query class Q.

2.2.1 The Funky protocol (special case for FPCPs)

Funky[FPCP,FC] = (P,V) works as follows:

1. P computes the FPCP proof Π ← P(x,w), the commitment (cm, aux) ← FC.Commit(Π), and sends
cm to V .

2. V samples FPCP verifier randomness ρ← {0, 1}r and sends it to P .
3. P deduces the query set Q ⊆ Q that V(x; ρ) makes to Π. For each α ∈ Q, P sets the query answer

βα := α(Π) and computes an opening proof pfα := FC.Open(aux, α). P sends
(
(α, βα, pfα)

)
α∈Q to V .

4. V performs the following checks:

8

(a) for every α ∈ Q, FC.Check(cm, α, βα, pfα) = 1;
(b) V[(α,βα)]α∈Q(x; ρ) = 1.

The notation V[(α,βα)]α∈Q(x; ρ) is the decision of the FPCP verifier V, given instance x and FPCP random-
ness ρ, where each query α ∈ Q is answered with βα. (If V queries outside Q then V[(α,βα)]α∈Q(x; ρ) = 0.)

2.2.2 Soundness analysis

We informally argue that the Funky protocol for FPCPs is sound. (Showing knowledge soundness is similar.)
We review the proof of Kilian’s protocol in [CDGSY24] and explain how we build on it for our setting.
Review (special case): Kilian’s protocol. [CDGSY24] analyzes the security of Kilian’s protocol, i.e.,
Funky[PCP,VC] where PCP is a PCP and VC is a VC scheme. They describe a reductor R that, given oracle
access to an argument adversary P̃ , rewinds P̃ for sufficiently many times to recover an underlying PCP string
Π̃. Then they show that the probability of P̃ convincing the argument verifier V is close to the probability
of Π̃ convincing the PCP verifier V. In particular, when P̃ succeeds, one of the following happens: (i) VΠ̃

accepts; (ii) P̃ gives different answers to the same query during rewinding; or (iii) the verifier V queries
a location that is “missing” from the extracted PCP string Π̃. The first event can be bounded by the PCP
soundness error. The second event can be bounded by the position binding error of VC. The third event is
related to determining the “right” number of rewinds N, per the following question.

Question 1. Fix an error ϵ ∈ (0, 1). Run P̃ to obtain its first message cm (the commitment to an alleged
PCP string). Independently run the rest of the interaction with the argument verifier V for N+ 1 times (each
time with fresh randomness). If P̃ gives valid opening in the i-th run, record the query setQi and P̃’s answer
ansi. For what N does the following hold:

Pr

[(
∀ i, j ∈ [N+ 1] ∀ q ∈ Qi ∩Qj , ansi[q] = ansj [q]

)
∧QN+1 ̸⊆

⋃
i∈[N]Qi

]
≤ ϵ ?

(The first condition implies that P̃ does not violate the position binding of VC.)

[CDGSY24] shows that for sufficiently large N, the probability above is small. In particular, they consider the
distribution of a specific query location. For every j ∈ [ℓ], let δj be the probability that location j is queried
by a uniformly sampled verifier randomness and the adversary P̃ gives a valid opening. The probability that
j does not appear in Qi for any i ∈ [N] but is included in QN+1 is

(1− δj)
N · δj ,

which is bounded by 1
N for large enough N. By a union bound, the probability that R fails to obtain a valid

opening for a query is upper-bounded by ℓ
N , where ℓ is the proof length of the PCP. Setting N := ℓ

ϵ yields
(along with the rest of the security reduction) the upper bound stated in Equation 5.
Our reductor. We seek a reductor R so that the soundness error of Funky[FPCP,FC] reduces to the
soundness error of FPCP and the function binding error of FC. In the VC setting, each time it rewinds the
adversary P̃ , the reductor R records in a PCP string Π̃ ∈ Σℓ the answers given by P̃ (if valid). However, for
a general query class Q, recorded query-answer pairs (α1, β1), . . . , (αN, βN) ∈ Q× D are constraints on
the set of possible proof strings Π̃ ∈ Σℓ:

S :=

Π̃ ∈ Σℓ :

α1(Π̃) = β1
...

αN(Π̃) = βN

 . (6)

9

When Q = QPoint finding an element in this set is trivial: each query-answer directly specifies the location
and value of an entry of Π̃, so the reductor sets the entries of Π̃ accordingly and sets arbitrarily the rest. For
other query classes Q, finding an element in this set may involve non-obvious computations. For example,
when Q = QUniPoly, finding an element of this set is tantamount to interpolation, i.e., finding a bounded-degree
polynomial that agrees with a list of evaluations (if one exists). In other cases still, there may not even be an
efficient algorithm to find an element of this set. For example, suppose that the query set Q contains a single
function α : Σℓ → D that is one-way; if the prover uses a random Π̃ ∈ Σℓ then no efficient algorithm can,
given α and α(Π̃), recover any Π′ such that α(Π̃) = α(Π̃′).

In light of this, we require the query class Q to come with a solver SolverQ: an algorithm that receives as
input a list of query-answer pairs (α1, β1), . . . , (αN, βN) ∈ Q×D and outputs an FPCP string Π̃ in the set S
defined Equation 6, i.e., an FPCP string Π̃ that is consistent with all the given constraints (if one exists). We
denote by tQ the running time of SolverQ.

Informally, our reductor R rewinds P̃ for sufficiently many times, records all the valid query-answer
pairs, and runs the solver to find a suitable FPCP string Π̃ for the recorded constraints, as follows.

RP̃(aux,·)(cm): # aux is P̃’s internal state after outputting the first message
1. Initialize an empty list K.
2. Repeat the following N times:

(a) Sample FPCP verifier randomness ρ← {0, 1}r.
(b) Run P̃(aux, ρ) to get the openings ((α, βα, pfα))α∈Q.
(c) If FC.Check(cm, α, βα, pfα) = 1 for every α ∈ Q, then append ((α, βα, pfα))α∈Q to K.

3. Output Π̃ := SolverQ(K) ∈ Σℓ.

Next, we want to show that, if the number of rewinds N is sufficiently large, the probability that Π̃
convinces the FPCP verifier V is close to the probability that P̃ convinces the argument verifier V .

How to set the number of rewinds N? In the special case Q = QPoint, the number of rewinds N comes from
upper bounding the probability in Question 1. Moreover, each new filled-in location represents an additional
constraint on the space of possible FPCP strings consistent with all the query-answer pairs recorded so far.

We consider an analogue of the above probability for a general query class Q. Specifically, we introduce
and analyze a probability ϵQ(N) that we call the tail error of the query class Q. Informally, ϵQ(N) upper
bounds the probability that after N+ 1 rewinds: (i) the solution space is non-empty (i.e., function binding is
not violated); and (ii) the solution space shrinks from the N-th rewinding to the (N+ 1)-th rewinding.

Definition 2 (informal). A query class Q has tail error ϵQ = ϵQ(N) if, for every distribution D over
query-answer tuples (Q ⊆ Q,β : Q → D),

Pr

 SN+1 ̸= ∅
∧SN+1 ̸= SN

∣∣∣∣∣∣∣∣
S0 := Σℓ

For i ∈ [N+ 1] :
(Qi,βi)← D
Si := Si−1 ∩ {Π ∈ Σℓ : ∀α ∈ Qi, α(Π) = βi(α)}

 ≤ ϵQ(N) .

The above event is a direct generalization of the event in Question 1 for Q = QPoint. The condition
∀ i, j ∈ [N+1]∀ q ∈ Qi∩Qj , ansi[q] = ansj [q] (position binding is not violated) corresponds to SN+1 ̸= ∅
(function binding is not violated). The condition QN+1 ̸⊆

⋃
i∈[N]Qi corresponds to SN+1 ̸= SN.

This definition enables us to obtain an upper bound. We let D be the output distribution of P̃: D gives
the query set and answers (Q,β) if P̃ provides an accepting opening, otherwise D outputs ∅. Hence, fresh

10

samples from D corresponds to (fresh) rewinds of P̃; and Si is the set of all FPCP strings that are consistent
with P̃’s output after the i-th rewinding. This lets us prove that, for every N, the following holds:

ϵARG(x, tARG) ≤ ϵFPCP(x) + ϵFC(tVC) + ϵQ(N) where tVC = O (N · tARG + tQ) . (7)

This leaves us with the task of setting N so that ϵQ(N) is small, which leads to the next question.
How to compute tail errors? The analysis in [CDGSY24] (as explained in Section 2.2.2) shows that
ϵQPoint

(N) ≤ ℓ
N . However their analysis does not generalize (see Section 2.1). We take a different approach.

Consider the following alternative argument for ϵQPoint
(N) ≤ ℓ

N . There are at most ℓ different i ∈ [N+ 1]
such that Qi ̸⊆ ∪j∈[i−1]Qj since Qj ⊆ [ℓ] for every j ∈ [N+ 1]; therefore

N∑
i=1

Pr
[
Qi+1 ̸⊆ ∪j∈[i]Qj

]
≤ ℓ . (8)

Moreover, each query set Qi is a fresh sample, so Qi+1 ̸⊆ ∪j∈[i]Qj is more likely to happen than Qi′+1 ̸⊆
∪j∈[i′]Qj for i′ > i:

∀i, i′ ∈ [N] s.t. i′ > i,Pr
[
Qi+1 ̸⊆ ∪j∈[i]Qj

]
≥ Pr

[
Qi′+1 ̸⊆ ∪j∈[i′]Qj

]
. (9)

Therefore:

Pr

[(
∀ i, j ∈ [N+ 1] ∀ q ∈ Qi ∩Qj , ansi[q] = ansj [q]

)
∧QN+1 ̸⊆

⋃
i∈[N]Qi

]

≤ Pr

QN+1 ̸⊆
⋃
i∈[N]

Qi

≤ 1

N
·

N∑
i=1

Pr
[
Qi+1 ̸⊆ ∪j∈[i]Qj

]
(Equation 9)

≤ ℓ

N
. (Equation 8)

The proof outline above can be adapted to other query classes. Specifically, we show that, for every
Q ∈ {QPoint,QLin,QUniPoly,Q

(m,D)
MultiPoly},

ϵQ(N) ≤
ℓ

N
.

In fact, in the technical sections, we consider a relaxed setting that suffices for us. We borrow the random-
termination idea in [CDDGS25], leading to a minor modification of our reductor; then we suitably adapt the
definition of a tail error, and establish the above bound with particularly simple analyses. See Section 5.

2.2.3 Fiat–Shamir security

In this warmup example Fiat–Shamir security is “for free”. Let ARG := Funky[FPCP,FC] and let NARG :=
FS[ARG] be the non-interactive argument in the ROM after applying the Fiat–Shamir transformation to ARG.
Since the verifier sends only one message in ARG, the soundness error ϵNARG for NARG is closely related to
the soundness error ϵARG for ARG. Specifically, for an instance x not in the language, the soundness of NARG
against tNARG-size adversaries satisfies the following (see, e.g., [CY24, Lemma 12.2.1 and Lemma 12.3.1]):

ϵNARG(x, tNARG) ≤ O(tNARG) · ϵARG(x, tNARG) .

11

However, in general, it is not the case that the soundness error ϵNARG for NARG := FS[ARG], where ARG is a
(public-coin) kNARG-round interactive argument, is closely related to the soundness ϵARG for ARG. Specifically,
it holds that ϵNARG(x, tNARG) ≤ O(tkNARGNARG) · ϵARG(x, tNARG), and this upper bound is essentially tight. This is
why, when we leave the warmup and study the general case, the Fiat–Shamir security of the Funky protocol
is not “for free” — we directly establish it based on suitable properties of the underlying ingredients.

2.3 Succinct arguments based on public-coin functional IOPs

We discuss the general case: the Fiat–Shamir security of ARG := Funky[FIOP,FC], i.e., the Funky protocol
based on a functional interactive oracle proof FIOP and a functional commitment scheme FC for a generic
query class Q. As already explained, merely establishing the (standard) soundness of ARG is insufficient,
since superconstant-round protocols may be insecure after the Fiat–Shamir transformation; rather, we directly
establish the state-restoration soundness of ARG based on security properties of FIOP and of FC.

2.3.1 The Funky protocol (general case for every FIOP)

Funky[FIOP,FC] is the interactive argument ARG = (P,V) defined as follows:

1. For every FIOP round i ∈ [kFIOP]:
(a) P computes the i-th FIOP string Πi ← P(x,w, ρi−1), the commitment (cmi, auxi)← FC.Commit(Πi),

and sends cmi to V .
(b) V samples the i-th FIOP randomness ρi ← {0, 1}rFIOP,i and sends it to P .

2. P simulates V(Πi)i∈[kFIOP](x, (ρi)i∈[kFIOP]) to deduce the query sets (Qi)i∈[kFIOP] (Qi is V’s queries to Πi).
For every i ∈ [kFIOP] and α ∈ Qi:
(a) P sets βi,α := α(Πi);
(b) P computes the opening proof pfi,α := FC.Open(auxi, α);
(c) P sets βi := (βi,α)α∈Qi and pfi := (pfi,α)α∈Qi .

3. P sends
((
(α, βi,α, pfi,α)

)
α∈Qi

)
i∈[kFIOP]

to V .
4. V performs the following checks:

(a) for every i ∈ [kFIOP] and α ∈ Qi, FC.Check(cmi, α, βi,α, pfi,α) = 1;
(b) V[(α,βi,α)]i∈[kFIOP],α∈Qi (x, (ρi)i∈[kFIOP]) = 1.

See Section 4 for a detailed description of the Funky protocol. (In that description we no longer assume that
FC has a non-interactive opening phase, and for convenience we use a batch interface bFC for FC.)

2.3.2 State-restoration security of the Funky protocol

We review the notion of state-restoration soundness, and then we describe how we extend the basic ideas
from the warmup special case in Section 2.2 to prove Theorem 1.

State-restoration. The state-restoration game for a public-coin k-round interactive protocol is as follows.
The game samples random functions (rndi)i∈[k] to be used as the verifier randomness. The adversary has a
move budget m, and each move is a list of prover messages (mj)j∈[i] for some i ∈ [k]. The game answers
a move (mj)j∈[i] with rnd(x, (mj)j∈[i]). Eventually the adversary makes no more moves (by choice or by
exhausting the move budget), and outputs (m⋆

i)i∈[k]. The game sets ρ⋆i := rndi(x, (m
⋆
j)j∈[i]) for every i ∈ [k].

The adversary wins the state-restoration game if and only if the verifier accepts when given the instance x,
the randomness (ρ⋆i)i∈[k], and prover messages (m⋆

i)i∈[k].

12

The state-restoration soundness error ϵSRARG(m, tARG) for an interactive argument is an upper-bound on the
probability of any tARG-size m-move adversary winning the state-restoration game. This notion captures
Fiat–Shamir security: the soundness error of the non-interactive argument obtained from the Fiat–Shamir
transformation (in the ROM) is upper-bounded by the state-restoration soundness error of the given interactive
argument [CY24]. One can similarly define the state-restoration security for FIOPs; since FIOPs are
information-theoretically secure, the state-restoration soundness error ϵSRFIOP(mFIOP) depends only on the move
budget mFIOP of the FIOP state-restoration adversary (rather than also its size).
Proof sketch of Theorem 1 for non-interactive FC schemes. Analogously to standard (not state-restoration)
security, we want to reduce the state-restoration security of the Funky protocol to the state-restoration security
of the underlying FIOP. Ideally, given an argument state-restoration adversary P̃SR, we want to construct a
FIOP state-restoration adversary P̃SR := P̃SR(P̃SR) for FIOP where:

• whenever P̃SR makes a move (x, (cmj)j∈[i]), P̃SR rewinds P̃SR (some number of times) to reconstruct
corresponding FIOP strings (Π̃j)j∈[i], makes the move (x, (Π̃j)j∈[i]) in the FIOP state-restoration game
FIOPSRGame, and forwards the game’s response (i.e., verifier randomness) to P̃SR;

• when P̃SR halts and outputs
(
x
⋆, (cm⋆

i)i∈[kFIOP],
((
(α⋆, β⋆

α, pf
⋆
α)
)
α∈Qi

)
i∈[kFIOP]

)
, P̃SR rewinds P̃SR (some

number of times) to reconstruct corresponding FIOP strings (Π̃⋆
i)i∈[kFIOP] and then halts and outputs

(x⋆, Π̃⋆
i)i∈[kFIOP] in the FIOP state-restoration game FIOPSRGame.

There are challenges in turning the above rewinding template into a strategy that works.

• Challenge 1: How to extract for moves? Consider a move (x, (cmj)j∈[i]) made by P̃SR. In order to
reconstruct corresponding FIOP strings, P̃SR should rewind P̃SR multiple times in search of (valid) openings
for the commitments in the move. Each fresh run of P̃SR yields more moves (which do not contain
any openings) and a final output

(
x
⋆, (cm⋆

i)i∈[kFIOP],
((
(α⋆, β⋆

α, pf
⋆
α)
)
α∈Qi

)
i∈[kFIOP]

)
. If (x, (cmj)j∈[i]) ̸=

(x⋆, (cm⋆
j)j∈[i]) then this final output does not contribute any valid openings for the move. Worse, it can

be that no run of P̃SR yields any progress for (x, (cmj)j∈[i]) (P̃SR never opens the commitments for this
particular move).

Solution: If P̃SR cannot reconstruct FIOP strings for (x, (cmj)j∈[i]) then it suffices for P̃SR to use empty
FIOP strings for this move because P̃SR does not use this move to win SRGame. Hence, it suffices for P̃SR

to provide to P̃SR random and consistent answers. (To ensure that the mapping of moves from one game to
the other is injective, the commitments (cmj)j∈[i] are included in the salt string.)

• Challenge 2: How to extract for the (final) output? The final output
(
x
⋆, (cm⋆

i)i∈[kFIOP],
((
(α⋆, β⋆

α, pf
⋆
α)
)
α∈Qi

)
i∈[kFIOP]

)
of P̃SR contains valid openings for the commitments, so the above issue does not arise here. Instead there is
a different issue: P̃SR halts with the final output, so how can P̃SR rewind P̃SR from this point onward to
collect additional valid openings?

Solution: We augment P̃SR to output all partial moves induced by the final output. We consider an extended
argument state-restoration adversary P̂SR that works the same as P̃SR except that, before halting, additionally
makes these moves (ordered by increasing i):{

(x, (cmj)j∈[i])
}
i∈[kFIOP]

.

This increases the number of moves from m (for P̃SR) to m + kFIOP (for P̂SR). These additional partial
moves give P̃SR the chance to rewind (and extract) as they are all consistent with P̃SR’s final output.

13

Taking the above into account, we construct P̃SR as follows.

P̃SR:
1. Simulate SRGame using P̂SR.
2. For every move mv = (x, (cmj)j∈[i]) made by P̂SR:

(a) Let aux be the internal state of P̂SR after outputting the move.
(b) Repeat N times:

i. Continue the simulation of P̂SR(aux) using fresh randomness to answer P̃SR’s moves.
ii. If P̂SR provides answers and valid openings consistent with mv, record the answers.

(c) For every j ∈ [i], construct (Π̃j)j∈[i] using SolverQ from the recorded answers.
(d) Forward (x, (Π̃j)j∈[i]) to FIOPSRGame to get the next verifier randomness and answer the move

mv output by P̂SR.
3. Let (Π̃⋆

i)i∈[kFIOP] be the FIOP strings corresponds to the final output (cm⋆
i)i∈[kFIOP] of P̃SR.

4. Output (x, (Π̃⋆
i)i∈[kFIOP]).

We are left to argue that P̃SR is “as good as” P̃SR. For this, we extend to state-restoration games the ideas
that we introduced in Section 2.2.2. If P̃SR succeeds then one of the following happens: (i) P̃SR succeeds; (ii)
P̃SR violates function binding of FC; or (iii) P̃SR fails to extract enough information about the FIOP strings
underlying the final output of P̃SR. The first event can be bounded by the FIOP state-restoration soundness
error. The second event can be bounded by the function binding error of FC. The last event can be bounded
via tail errors as defined in Section 2.2.2. Overall, we bound the state-restoration soundness error ϵSRARG of
ARG as follows:

ϵSRARG(m, tARG) ≤ ϵSRFIOP(mFIOP) + kFIOP · ϵFC(tFC) + kFIOP · ϵQ(N) where

{
mFIOP = m+ kFIOP

tFC = O (N · tARG + tQ)
.

The round complexity kFIOP of the FIOP multiplicatively affects two terms: (a) the term kFIOP · ϵFC(tFC), as the
argument state-restoration adversary P̃SR could violate function binding at any round, and for each round we
construct a corresponding FC adversary AFC that rewinds N times and runs SolverQ; (b) the term kFIOP · ϵQ(N),
as each extracted FIOP string in the final output incurs the tail error ϵQ(N).

Interactive FC schemes. FC schemes with an interactive opening phase are widely used (e.g., [BBBPWM18;
Lee21; AGLMS22]). An interactive FC scheme FC is a tuple (FC.Commit,PFC,VFC) where PFC and VFC

interact with each other for kFC rounds. Establishing the state-restoration security of the Funky protocol in this
case demands that the FC scheme satisfies a state-restoration strengthening of the function binding property,
which we introduce via a suitable game FCSRGame (Definition 3.19) and binding property (Definition 3.20).

The challenge in extending the security reduction to this case is that the moves output by the state-
restoration argument prover P̃SR may attack the FIOP or the FC scheme. Hence we construct two state-
restoration adversaries: (i) P̃SR := P̃SR(P̃SR) for FIOP’s state-restoration game FIOPSRGame, analogously
to the non-interactive FC scheme case; and (ii) P̃SR

FC
:= P̃SR

FC (P̃SR) for FC’s state-restoration game FCSRGame.
In fact, P̃SR

FC consists of kFIOP adversaries (P̃SR
FC,i)i∈[kFIOP] where P̃SR

FC,i seeks to break the function binding
property in FCSRGame for the i-th commitment, by rewinding P̃SR’s moves corresponding to the FC
opening phase for the i-th commitment (as opposed to the FIOP interaction phase). When P̃SR outputs
a move of the form (x, (cmu)u∈[c]) for some c ∈ [kFIOP] (i.e., corresponding to an FIOP interaction),
P̃SR

FC,i answers this move via fresh (and consistent) randomness. Otherwise, P̃SR’s move is of the form
(x, (cmu)u∈[kFIOP], ((Qu,βu))u∈[kFIOP], (pmu,j)u∈[kFIOP],j∈[c]) for some c ∈ [kFC] where:

14

• ((Qu,βu))u∈[kFIOP] are the queries and answers for the corresponding commitments (cmu)u∈[kFIOP];
• for every u ∈ [kFIOP], (pmu,j)j∈[c] are c prover messages sent in the interactive opening phase for cmu.
In this case, P̃SR

FC,i makes the move (cmu, (Qu,βu), (pmu,j)j∈[c]) in the FC state-restoration game FCSRGame

for every u ∈ [kFIOP]. After this, P̃SR
FC,i runs SolverQ on the (valid) queries and answers collected during

rewinding, to determine if there is an FIOP string Πi ∈ Σℓi consistent with them. The adversary P̃SR
FC,i wins if

SolverQ does not find any such Πi, since this means that P̃SR
FC,i broke function binding of FC. We prove that if

Case ii happens when P̃SR successfully wins the argument state-restoration game SRGame then there exists
i ∈ [kFIOP] such that P̃SR

FC,i wins in the FC state-restoration game FCSRGame.
Note that since P̃SR

FC,i rewinds P̃SR for N times, and in the worst case each move by P̃SR results in kFIOP

moves by P̃SR
FC,i, the total number of moves by P̃SR

FC,i is O(N · kFIOP · (m+ kFC)). (Similarly to how we address
Challenge 2 in Section 2.3.2 in P̃SR, we augment P̃SR to output all partial moves corresponding to the FC
opening phase in its final output, which increases the number of moves by P̃SR from m to m+ kFC.)

Overall, for the Funky protocol, we upper bound the state-restoration soundness error ϵSRARG as

ϵSRARG(m, tARG) ≤ ϵSRFIOP(mFIOP)+kFIOP·ϵSRFC(mFC, tFC)+kFIOP·ϵQ(N) where

mFIOP = m+ kFIOP

mFC = O(N · kFIOP · (m+ kFC))

tFC = O (N · tARG + tQ)

.

where ϵSRFC is the state-restoration function binding error of the FC scheme.

In the technical sections. We prove a security reduction lemma that enables us to “couple” the state-
restoration security of the Funky protocol and the state-restoration security of the underlying FIOP in
Section 6. From there, we derive the state-restoration soundness and state-restoration knowledge soundness
of the Funky protocol in Section 7.

2.4 Function binding in action: On the security of Plonk

We outline how we prove Lemma 1 and Corollary 1.

Lemma 1: linKZG is state-restoration function binding. We prove the lemma via a sequence of simple
black-box reductions that apply to any (suitably) homomorphic PC scheme PC, of which the PC scheme KZG
in [KZG10] is an example. These reductions may be useful towards designing other optimized FC schemes.

• Every homomorphic polynomial commitment scheme PC for QUniPoly gives rise to an optimized batched
polynomial commitment scheme bPC = BatchMsg[PC, s] for the query class QBatchMsg[QUniPoly, s]. We
show that if PC is state-restoration function binding, then so is bPC (Section 8.1).

• Every homomorphic batch polynomial commitment scheme bPC for the query class QBatchMsg[QUniPoly,m+1]
gives rise to an optimized linearized polynomial commitment scheme linPC = Lin[bPC,m, (hk)k∈[n]]
for the query class QStruct[QUniPoly,m, (hk)k∈[n]] of structured polynomial evaluation queries, via the lin-
earization trick (also known as Maller’s trick) [GWC19; LPS24b; FFR24]. We show that if bPC is
state-restoration function binding, then so is linPC (Section 8.2).

In Lemma 9.1 we prove that the PC scheme KZG is state-restoration function binding under the (expected-
time) ARSDH assumption. Since KZG is homomorphic we can apply the black-box reductions outlined
above, establishing that

linKZG = Lin
[
BatchMsg[KZG,m+ 1],m, (hk)k∈[n]

]
15

is state-restoration function binding (see Corollaries 9.2 and 9.3 for details). In contrast, [LPS24b] showed
that under the discrete logarithm assumption, linKZG cannot be special sound in the standard model (in fact,
their attack can be extended to show that linKZG cannot be knowledge sound). Finally, we compare function
binding to other properties proposed for KZG in Appendix B.

Corollary 1: Plonk is secure assuming ARSDH. Recall how Plonk is constructed.

• Let PlonkIOP be the FIOP for the query class QStruct[QUniPoly,m, (hk)k∈[n]] described in [GWC19].
• Let linKZG be the FC scheme for the query class QStruct[QUniPoly,m, (hk)k∈[n]] discussed above.
• Let iPlonk := Funky[PlonkIOP, linKZG] be the interactive argument obtained via the Funky protocol.

Plonk (in the ROM) is the result of applying the Fiat–Shamir transformation in the ROM to iPlonk. Therefore,
to establish the soundness of Plonk, it suffices to show state-restoration soundness of iPlonk (and similarly
for knowledge soundness).

Our Theorem 1 reduces the above goal to upper bounding: (i) the state-restoration soundness error
ϵSRFIOP of PlonkIOP, (ii) the state-restoration function binding error ϵSRFC of linKZG, and (iii) the tail error of
QStruct[QUniPoly,m, (hk)k∈[n]]. We discuss each in turn.

• PlonkIOP is a constant-round FIOP, so its state-restoration soundness is polynomially related to its standard
soundness.

• We bound the state-restoration function binding error ϵSRFC for linKZG (our Lemma 1).
• We prove that ϵQStruct[Q,m,(hk)k∈[n]](N) ≤

(m+n)(D+1)
N (see Lemma 5.10).

[LPS24b] shows that iPlonk is special-sound (which implies Fiat–Shamir security in the ROM) assuming the
hardness of ARSDH and SplitRSDH (a new falsifiable assumption they propose), using an ad-hoc security
analysis. In contrast, our analysis is generic, and establishes the Fiat–Shamir security of iPlonk from the
ARSDH assumption alone.

Remark 2.1. To showcase how to prove function binding for other functional commitment schemes of
interest, we prove function binding for two schemes in Appendix C: a non-interactive polynomial commitment
scheme with square-root-sized proofs in Appendix C.1, and a log-round interactive polynomial commitment
scheme inspired by Bulletproofs in Appendix C.2.

16

3 Preliminaries

Definition 3.1. A relation R is a set of pairs (x,w) where x is an instance and w a witness. The corre-
sponding language L(R) is the set of instances x for which there exists a witness w such that (x,w) ∈ R.

Definition 3.2. A query class Q is a set of functions of the form α : Σℓ → D, where Σ is the input alphabet,
ℓ ∈ N is the input length, and D is the answer domain.

3.1 Interactive arguments

An interactive argument for a relation R (in the common reference string model) is a tuple of algorithms
ARG = (G,P,V) satisfying the following properties.

Definition 3.3. ARG = (G,P,V) has perfect completeness if for every security parameter λ ∈ N, instance
size bound n ∈ N, public parameter pp ∈ G(1λ, n), and instance-witness pair (x,w) ∈ R with |x| ≤ n,

Pr
[〈
P(pp,x,w),V(pp,x)

〉
= 1
]
= 1 .

Definition 3.4. ARG = (G,P,V) has (adaptive) soundness error ϵARG if for every security parameter
λ ∈ N, instance size bound n ∈ N, auxiliary input distribution D, circuit size bound tARG ∈ N, and tARG-size
circuit P̃ ,

Pr

 |x| ≤ n
∧x /∈ L(R)
∧ b = 1

∣∣∣∣∣∣∣∣
pp← G(1λ, n)
ai← D
(x, aux)← P̃(pp, ai)
b←

〈
P̃(aux),V(pp,x)

〉
 ≤ ϵARG(λ, n, tARG) .

Definition 3.5. ARG = (G,P,V) has (adaptive) knowledge soundness error κARG with extraction time tE
if there exists a probabilistic algorithm E such that for every security parameter λ ∈ N, instance size bound
n ∈ N, auxiliary input distribution D, circuit size bound tARG ∈ N, and tARG-size circuit P̃ ,

Pr

|x| ≤ n
∧ (x,w) ̸∈ R
∧ b = 1

∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
(x, aux)← P̃(pp, ai)
b

tr←−
〈
P̃(aux),V(pp,x)

〉
w← E P̃(aux)(pp,x, tr)

 ≤ κARG(λ, n, tARG) ;

moreover, E runs in time tE(λ, n, tARG).

Above, b tr←− ⟨P̃(aux),V(pp,x)⟩ denotes the fact that tr is the transcript of the interaction (i.e., the
messages exchanged between P̃ and V). Moreover, E P̃ means that E has black-box access to (each next-
message function of) P̃; in particular E can send verifier messages to P̃ in order to obtain the next message
of P̃ (for a partial interaction where V sent those messages).

Definition 3.6. For n ∈ N, U(n) is the uniform distribution over all functions f : {0, 1}∗ → {0, 1}n.
Moreover, for m ∈ N and (n1, . . . , nm) ∈ Nm, U((n1, . . . , nm)) := U(n1)× · · · × U(nm).

Definition 3.7. The argument state-restoration game for ARG = (G,P,V) with salt size s ∈ N, functions
rnd = (rndi)i∈[k] where rndi ← U(ri) for every i ∈ [k], argument state-restoration prover P̃SR, public
parameter pp, and auxiliary input ai is defined below.

17

SRGame(s, rnd, P̃SR, pp, ai):
1. Repeat the following until P̃SR(pp, ai) decides to exit the loop:

(a) P̃SR outputs (x, (mj)j∈[i], (σj)j∈[i]), where x is an instance, (mj)j∈[i] are prover messages, and
(σj)j∈[i] are salt strings in {0, 1}s.

(b) Set ρi := rndi(x, (mj)j∈[i], (σj)j∈[i]).
(c) Send ρi to P̃SR.

2. P̃SR outputs (x, (mi)i∈[k], (σi)i∈[k]).
3. For every i ∈ [k], set ρi := rndi(x, (mj)j∈[i], (σj)j∈[i]).
4. Output (x, (mi)i∈[k], (σi)i∈[k], (ρi)i∈[k]).

We denote by trSR the list of move-response pairs of the form ((x, (mj)j∈[i], (σj)j∈[i]), ρi) performed in the
loop. We show trSR in an execution of the argument state-restoration game SRGame using the following
notation:

(x, (mi)i∈[k], (σi)i∈[k], (ρi)i∈[k])
trSR←−− SRGame(s, rnd, P̃SR) .

We say that P̃SR is m-move if P̃SR exits the loop after at most m iterations.

Definition 3.8. ARG = (G,P,V) has state-restoration soundness error ϵSRARG if for every security parameter
λ ∈ N, instance size bound n ∈ N, auxiliary input distribution D, salt size s ∈ N, move budget m ∈ N,
circuit size bound tARG ∈ N, and m-move tARG-size circuit P̃SR,

Pr

 |x| ≤ n
∧x /∈ L(R)
∧V(x, (mi)i∈[k], (ρi)i∈[k]) = 1

∣∣∣∣∣∣∣∣
pp← G(1λ, n)
ai← D
rnd := (rndi)i∈[k] ← U((ri)i∈[k])
(x, (mi)i∈[k], (σi)i∈[k], (ρi)i∈[k])← SRGame(s, rnd, P̃SR, pp, ai)

≤ ϵSRARG(λ, n, s,m, tARG) .

Definition 3.9. ARG = (G,P,V) has state-restoration knowledge soundness error κSR
ARG with extraction

time tESR if there exists a probabilistic algorithm ESR such that for every security parameter λ ∈ N, instance
size bound n ∈ N, auxiliary input distribution D, salt size s ∈ N, move budget m ∈ N, circuit size bound
tARG ∈ N, and m-move tARG-size deterministic state-restoration prover P̃SR,

Pr

|x| ≤ n
∧ (x,w) /∈ R
∧V(x, (mi)i∈[k], (ρi)i∈[k]) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
rnd := (rndi)i∈[k] ← U((ri)i∈[k])
(x, (mi)i∈[k], (σi)i∈[k], (ρi)i∈[k])

trSR←−− SRGame(s, rnd, P̃SR, pp, ai)

w← E P̃
SR(pp,ai)

SR (x, (mi)i∈[k], (σi)i∈[k], (ρi)i∈[k], tr
SR)

≤ κSR

ARG(λ, n, s,m, tARG) ;

moreover, ESR runs in time tESR(λ, n, s,m, tARG).

We consider several efficiency measures for an argument:

• the round complexity k is the number of rounds (back-and-forth interactions) between the argument prover
and argument verifier;

• the randomness complexity r is the total number of random bits the argument verifier V sends, ri is the
number of random bits the argument verifier sends in round i, and rmax := maxi∈[k]{ri}.

18

• the prover-to-verifier communication complexity pc is the total number of bits sent by the argument prover,
pci is the number of bits sent by the argument prover in round i, and pcmax := maxi∈[k]{pci};

• the argument generator running time is tG;
• the argument prover running time is tP ;
• the argument verifier running time is tV ;
• the public parameter complexity pARG is the number of bits of the public parameter pp.

3.2 Functional interactive oracle proofs

The definition of (public-coin) functional interactive oracle proofs (FIOPs) is adapted from the definition of
IOPs with special queries in [BCG20].

Definition 3.10. A public-coin FIOP with query classes Q1, . . . ,QkFIOP
is a tuple FIOP = (P,V) where

P is the prover and V the verifier. The prover receives as input an instance-witness tuple (x,w) and the
verifier receives as input the instance x. The protocol has kFIOP rounds, and in each round i ∈ [kFIOP] the
prover sends a message Πi ∈ Σℓi

i where Σi is the alphabet and ℓi is the proof length, and the verifier replies
with a random string ρi ∈ {0, 1}rFIOP,i . The verifier has access to (Π1,Π2, . . . ,ΠkFIOP

) through queries in
Q1, . . . ,QkFIOP

. In more detail, the answer of a query α ∈ Qi to Πi for some i ∈ [kFIOP] is α(Πi) ∈ D (the
answer may be an error value ⊥ if Πi is not according to the expected format). After the interaction and
queries, the verifier V accepts or rejects.

A FIOP system for a relation R satisfies the following.

Definition 3.11. FIOP = (P,V) has perfect completeness if, for every instance-witness pair (x,w) ∈ R,

Pr [⟨P(x,w),V(x)⟩ = 1] = 1 .

Definition 3.12. FIOP = (P,V) has soundness error ϵFIOP if, for every (unbounded) circuit P̃ and auxiliary
input distribution D,

Pr

 |x| ≤ n
∧x ̸∈ L(R)
∧ b = 1

∣∣∣∣∣∣
ai← D

(x,aux)← P̃(ai)

b←
〈
P̃(aux),V(x)

〉
 ≤ ϵFIOP(n) .

Definition 3.13. FIOP = (P,V) has knowledge soundness error κFIOP if there exists a probabilistic
algorithm E such that, for every (unbounded) circuit P̃ and auxiliary input distribution D,

Pr

|x| ≤ n
∧ (x,w) ̸∈ R
∧ b = 1

∣∣∣∣∣∣∣∣∣
ai← D

(x,aux)← P̃(ai)

b
tr←−
〈
P̃(aux),V(x)

〉
w← EP̃(aux)(x, tr)

 ≤ κFIOP(n) ;

moreover, E runs in time tE(n).

Definition 3.14. The FIOP state-restoration game for FIOP = (P,V) with salt size sFIOP ∈ N, func-
tions rndFIOP = (rndFIOP,i)i∈[kFIOP] where rndFIOP,i : {0, 1}∗ → {0, 1}rFIOP,i for every i ∈ [kFIOP], FIOP state-
restoration prover P̃SR, and auxiliary input ai is defined below.

FIOPSRGame(sFIOP, rndFIOP, P̃
SR,ai):

19

1. Repeat the following until P̃SR(ai) decides to exit the loop:
(a) P̃SR outputs (x, (mj)j∈[i], (γj)j∈[i]), where x is an instance, (mj)j∈[i] are prover messages, and

(γj)j∈[i] are salt strings in {0, 1}sFIOP .
(b) Set ρi := rndFIOP,i(x, (mj)j∈[i], (γj)j∈[i]).
(c) Send ρi to P̃SR.

2. P̃SR outputs (x, (mi)i∈[kFIOP], (γi)i∈[kFIOP]).
3. For every i ∈ [kFIOP], set ρi := rndFIOP,i(x, (mj)j∈[i], (γj)j∈[i]).
4. Output (x, (mi)i∈[kFIOP], (γi)i∈[kFIOP], (ρi)i∈[kFIOP]).

We denote by trSRFIOP the list of move-response pairs of the form ((x, (mj)j∈[i], (γj)j∈[i]), ρi) performed in the
loop. We show trSRFIOP in an execution of the FIOP state-restoration game FIOPSRGame using the following
notation:

(x, (mi)i∈[kFIOP], (γi)i∈[kFIOP], (ρi)i∈[kFIOP])
trSRFIOP←−−− FIOPSRGame(sFIOP, rndFIOP, P̃

SR) .

We say that P̃SR is mFIOP-move if P̃SR exits the loop after at most mFIOP iterations.

Definition 3.15. FIOP = (P,V) has state-restoration soundness error ϵSRFIOP if for every instance size
bound n ∈ N, auxiliary input distribution D, salt size sFIOP ∈ N, move budget mFIOP ∈ N, and mFIOP-move
circuit P̃SR,

Pr

 |x| ≤ n
∧x /∈ L(R)
∧V(x, (mi)i∈[kFIOP], (ρi)i∈[kFIOP]) = 1

∣∣∣∣∣∣∣∣
ai← D
rndFIOP := (rndFIOP,i)i∈[kFIOP] ← U((rFIOP,i)i∈[kFIOP])

(x, (mi)i∈[kFIOP], (γi)i∈[kFIOP], (ρi)i∈[kFIOP])

← FIOPSRGame(sFIOP, rndFIOP, P̃
SR,ai)

≤ ϵSRFIOP(n, sFIOP,mFIOP) .

Definition 3.16. FIOP = (P,V) has state-restoration knowledge soundness error κSR
FIOP with extraction

time tESR
if there exists a probabilistic algorithm ESR such that for every instance size bound n ∈ N, auxiliary

input distribution D, salt size sFIOP ∈ N, move budget mFIOP ∈ N, circuit size bound tFIOP ∈ N, and mFIOP-move
tFIOP-size deterministic state-restoration prover P̃SR,

Pr

|x| ≤ n
∧ (x,w) /∈ R
∧V(x, (mi)i∈[kFIOP], (ρi)i∈[kFIOP]) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

ai← D
rndFIOP := (rndFIOP,i)i∈[kFIOP] ← U((rFIOP,i)i∈[kFIOP])

(x, (mi)i∈[kFIOP], (γi)i∈[kFIOP], (ρi)i∈[kFIOP])
trSRFIOP←−−− FIOPSRGame(sFIOP, rndFIOP, P̃

SR,ai)

w← E
P̃SR(ai)
SR (x, (mi)i∈[kFIOP], (γi)i∈[kFIOP], (ρi)i∈[kFIOP], tr

SR
FIOP)

≤ κSR

FIOP(n, sFIOP,mFIOP) .

Moreover, ESR runs in time tESR
(n, sFIOP,mFIOP, tFIOP).

We consider several efficiency measures for an FIOP:

• the round complexity kFIOP is the number of rounds (back-and-forth interactions) between the FIOP prover
and FIOP verifier;

• the alphabet Σ is the set over which symbols of prover messages are defined (we assume the alphabet
across all rounds);

20

• the proof length ℓ is the total number of alphabet symbols sent by the FIOP prover, ℓi is the length of the
proof sent by the FIOP prover in round i, and ℓmax := maxi∈[kFIOP]{ℓi};

• the query complexity q is the total number of queries that the FIOP verifier makes (each query is a element
in Qi and is answered by the corresponding evaluation in D), qi is the number of queries that the FIOP
verifier makes to the i-th FIOP string, and qmax := maxi∈[kFIOP]{qi};

• the randomness complexity rFIOP is the total number of random bits used by the FIOP verifier, rFIOP,i is the
number of random bits that the FIOP verifier uses in round i, and rFIOP,max := maxi∈[kFIOP]{rFIOP,i}.

Any efficiency measure may be a function of the instance x (e.g., of the instance size |x|).

3.3 Functional commitment schemes

3.3.1 Non-interactive functional commitment schemes

A non-interactive functional commitment (FC) scheme for a query class Q = {α : Σℓ → D} is a tuple of
algorithms

FC = (FC.Gen,FC.Commit,FC.Open,FC.Check)

that satisfies the following syntax.

• FC.Gen(1λ, ℓ)→ ppFC: On input a security parameter λ ∈ N and message length ℓ ∈ N, FC.Gen samples
public parameter ppFC.

• FC.Commit(ppFC,Π) → (cm, aux): On input a public parameter ppFC and a message vector Π ∈ Σℓ,
FC.Commit produces a commitment cm and the corresponding auxiliary state aux.

• FC.Open(ppFC, aux, α, β)→ pf: On input a public parameter ppFC, an auxiliary state aux, a query α ∈ Q
and a purported evaluation β ∈ D, FC.Open outputs an opening proof pf for the claim “β = α(Π)”.

• FC.Check(ppFC, cm, α, β, pf) → {0, 1}: On input a public parameter ppFC, a commitment cm, a query
α ∈ Q, an answer β ∈ D, and an opening proof pf, FC.Check determines if pf is a valid proof for β being
the answer of the query α on the vector committed in cm.

Definition 3.17 (Function binding). FC = (FC.Gen,FC.Commit,FC.Open,FC.Check) with query class Q
has function binding error ϵFC if for every security parameter λ ∈ N, message length ℓ ∈ N, sample set size
L ∈ N, auxiliary input distribution DFC, adversary size bound tFC, and tFC-size circuit AFC,

Pr

 ∀ i ∈ [L] : FC.Check(ppFC, cm, αi, βi, pfi) = 1
∧∄Π s.t. ∀ i ∈ [L], αi(Π) = βi

∣∣∣∣∣∣
ppFC ← FC.Gen(1λ, ℓ)
aiFC ← DFC

(cm, ((αi, βi, pfi))i∈[L])← AFC(ppFC, aiFC)

≤ ϵFC(λ, ℓ, L, tFC) .

Remark 3.18 (Monotonicity of ϵFC). We assume hereafter that the function binding error ϵFC is monotone in
each coordinate in the natural direction:

• ϵFC(·, ℓ, L, tFC) is non-increasing (larger security parameters decrease an adversary’s success);
• ϵFC(λ, ·, L, tFC) is non-decreasing (longer message vector decrease an adversary’s success);
• ϵFC(λ, ℓ, ·, tFC) is non-decreasing (The solution space with a set of constraints is smaller than that of its

subset); and
• ϵFC(λ, ℓ, L, ·) is non-decreasing (the success of an adversary increases with its computational power).

21

The last condition is trivially satisfied, while the first should also hold in any reasonable commitment scheme.
The remaining two are natural; in any case, otherwise one may replace, in our computations, expressions of
the type ϵFC(λ, ℓmax, Lmax, tFC), when ℓmax = maxi { ℓi } and Lmax = maxj { Lj }, with

max
i,j
{ϵFC(λ, ℓi, Lj , tFC)} .

3.3.2 Interactive functional commitment schemes

An interactive functional commitment scheme FC = (FC.Gen,FC.Commit,PFC,VFC) is defined similarly.
In particular, FC.Gen and FC.Commit are defined as in the non-interactive case, while the opening and
verification phases follow the interactive protocol below: given an public parameter ppFC, an instance
(cm, α, β) and an auxiliary state aux, the FC prover PFC and the FC verifier VFC engage in a public-coin
kFC-round interactive protocol:

⟨PFC(ppFC, aux, α, β),VFC(ppFC, cm, α, β)⟩
((pmi,vmi))i∈[kFC]−−−−−−−−−−−→ b .

Above, ((pmi, vmi))i∈[kFC] is the transcript of the interaction (that is, the kFC-round of prover messages and
the verifier randomness exchanged between PFC and VFC). For every j ∈ [kFC]:

• PFC’s j-th message.

1. Compute the j-th FC prover message pmj and auxiliary state:

(pmj , auxj)←

{
PFC(ppFC, aux, α, β) if j = 1

PFC(auxj−1, vmj−1) if j > 1
.

2. Send pmj to VFC.

• VFC’s j-th message.

1. Sample the j-th FC verifier randomness vmj ← {0, 1}rFC,j .
2. Send vmj to PFC.

Definition 3.19 (FC state-restoration game). The FC state-restoration game for FC with salt size sFC ∈ N,
functions rndFC = (rndFC,i)i∈[kFC] where rndFC,i ← U(rFC,i) for every i ∈ [kFC], public parameter ppFC,
auxiliary input aiFC, sample size L ∈ N, and FC state-restoration prover P̃SR

FC is defined below.

FCSRGame(sFC, rndFC, P̃SR
FC , ppFC, aiFC):

1. Repeat the following until P̃SR
FC (ppFC, aiFC) decides to exit the loop:

(a) P̃SR
FC outputs (cm, α, β, (pmj)j∈[i], (ηj)j∈[i]), where cm is a commitment, α is a query in Q, β is a

corresponding answer, (pmj)j∈[i] are prover messages, and (ηj)j∈[i] are salt strings in {0, 1}sFC .
(b) Set vmi := rndFC,i(cm, α, β, (pmj)j∈[i], (ηj)j∈[i]).
(c) Send vmi to P̃SR

FC .
2. P̃SR

FC outputs (cm, ((αi, βi, (pmi,j)j∈[kFC], (ηi,j)j∈[kFC]))i∈[L]).
3. For every i ∈ [L], j ∈ [kFC], set vmi,j := rndFC,j(cm, αi, βi, (pmi,k)k∈[j], (ηi,k)k∈[j]).
4. Output (cm, ((αi, βi, ((pmi,j , ηi,j , vmi,j))j∈[kFC]))i∈[L]).

22

We denote by trSRFC the list of move-response pairs of the form (cm, α, β, (pmj)j∈[i], (ηj)j∈[i]) performed in
the loop. We show trSRFC in an execution of the FC state-restoration game FCSRGame using the following
notation:

(cm, ((αi, βi, ((pmi,j , ηi,j , vmi,j))j∈[kFC]))i∈[L])
trSRFC←−− FCSRGame(sFC, rndFC, P̃SR

FC , ppFC, aiFC) .

We say that P̃SR
FC is mFC-move if P̃SR

FC exits the loop after at most mFC iterations.

Definition 3.20 (State-restoration function binding). An kFC-round interactive FC with query class Q has
state-restoration function binding error ϵSRFC if for every security parameter λ ∈ N, message length ℓ ∈ N,
sample set size L ∈ N, auxiliary input distribution DFC, salt size sFC ∈ N, move budget mFC ∈ N, circuit size
bound tFC ∈ N, and mFC-move tFC-size circuit P̃SR

FC ,

Pr

∀ i ∈ [L] : VFC(ppFC, cm, αi, βi, ((pmi,j , vmi,j))j∈[kFC]) = 1

∧∄Π s.t. ∀ i ∈ [L], αi(Π) = βi

∣∣∣∣∣∣∣∣∣∣∣∣∣

ppFC ← FC.Gen(1λ, ℓ)
aiFC ← DFC

rndFC := (rndFC,i)i∈[kFC] ← U((rFC,i)i∈[kFC])(
cm,

((
αi, βi,
((pmi,j , ηi,j , vmi,j))j∈[kFC]

))
i∈[L]

)
← FCSRGame(sFC, rndFC, P̃SR

FC , ppFC, aiFC)

≤ ϵSRFC(λ, ℓ, L, sFC,mFC, tFC) .

3.3.3 Batched functional commitment schemes

Definition 3.21 (Batched query class). Let Q = {α : Σℓ → D} be a query class, and let s ∈ N. The batched
query class Batch[Q, s] is defined as follows:

Batch[Q, s] :=
{
α′ : Σℓ → Ds

∣∣∣ ∃α1, . . . , αs ∈ Q s.t. α′(Π) = (αi(Π))i∈[s]

}
.

Non-interactive batched functional commitment schemes. A non-interactive batched FC scheme bFC =
(bFC.Gen, bFC.Commit, bFC.Open, bFC.Check) for a query class Q = {α : Σℓ → D} is a non-interactive
FC scheme for Batch[Q, s] (for some s ∈ N) that satisfies the following syntax.

• bFC.Gen(1λ, ℓ) → ppbFC: On input a security parameter λ ∈ N and message length ℓ ∈ N, bFC.Gen
samples public parameter ppbFC.

• bFC.Commit(ppbFC,Π) → (cm, aux): On input a public parameter ppbFC and a message vector Π ∈ Σℓ,
bFC.Commit produces a commitment cm and the corresponding auxiliary state aux.

• bFC.Open(ppbFC, aux,Q,β)→ pf: On input a public parameter ppbFC, an auxiliary state aux, a query set
Q ⊆ Q and a corresponding answer set β ∈ D|Q|, bFC.Open outputs an opening proof pf for the claim
“∀α ∈ Q, β(α) = α(Π)”.

• bFC.Check(ppbFC, cm,Q,β, pf)→ {0, 1}: On input a public parameter ppbFC, a commitment cm, a query
set Q ⊆ Q, an answer set β ∈ D|Q|, and an opening proof pf, bFC.Check determines if pf is a valid proof
for β being the answer of the query set Q on the vector committed in cm.

23

Definition 3.22 ((Batched) function binding). bFC = (bFC.Gen, bFC.Commit, bFC.Open, bFC.Check) with
query class Q has function binding error ϵbFC if for every security parameter λ ∈ N, message length ℓ ∈ N,
query set size s ∈ N, sample set size L ∈ N, auxiliary input distribution DbFC, adversary size bound tbFC, and
tbFC-size circuit AbFC,

Pr

 ∀ i ∈ [L] : |Qi| = s ∧ bFC.Check(ppbFC, cm,Qi,βi, pfi) = 1

∧∄Π s.t. ∀ i ∈ [L], α ∈ Qi, α(Π) = β
(α)
i

∣∣∣∣∣∣
ppbFC ← bFC.Gen(1λ, ℓ)
aibFC ← DbFC

(cm, ((Qi,βi, pfi))i∈[L])← AbFC(ppbFC, aibFC)

≤ ϵbFC(λ, ℓ, s, L, tbFC) .

Remark 3.23 (Monotonicity of ϵbFC). We assume hereafter that the (batched) function binding error ϵbFC is
monotone in each coordinate in the natural direction:

• ϵbFC(·, ℓ, s, L, tbFC) is non-increasing (larger security parameters decrease an adversary’s success);
• ϵbFC(λ, ·, s, L, tbFC) is non-decreasing (longer message vector decrease an adversary’s success);
• ϵbFC(λ, ℓ, ·, L, tbFC) is non-decreasing (The solution space with a set of constraints is smaller than that of its

subset);
• ϵbFC(λ, ℓ, s, ·, tbFC) is non-decreasing (The solution space with a set of constraints is smaller than that of its

subset); and
• ϵbFC(λ, ℓ, s, L, ·) is non-decreasing (the success of an adversary increases with its computational power).

The last condition is trivially satisfied, while the first should also hold in any reasonable commitment
scheme. The remaining three are natural; in any case, otherwise one may replace, in our computations,
expressions of the type ϵbFC(λ, ℓmax, smax, Lmax, tbFC), when ℓmax = maxi { ℓi }, smax = maxj { sj } and
Lmax = maxk { Lk }, with

max
i,j,k
{ϵbFC(λ, ℓi, sj , Lk, tbFC)} .

Interactive batched functional commitment schemes. An interactive batched FC scheme bFC =
(bFC.Gen, bFC.Commit,PbFC,VbFC) for a query class Q = {α : Σℓ → D} is an interactive FC scheme
for Batch[Q, s]. In particular, bFC.Gen and bFC.Commit are defined to be the same as the ones for non-
interactive batched FC scheme, while the opening and verification phases follow the interactive protocol
below: given an public parameter ppbFC, an instance (cm,Q,β) and an auxiliary state aux, the prover and
verifier engage in a public-coin kbFC-round interactive protocol:

⟨PbFC(ppbFC, aux,Q,β),VbFC(ppbFC, cm,Q,β)⟩
((pmi,vmi))i∈[kbFC]−−−−−−−−−−−→ b .

Above, ((pmi, vmi))i∈[kbFC] is the transcript of the interaction (that is, the kbFC-round of prover messages and
the verifier randomness exchanged between PbFC and VbFC). For every j ∈ [kbFC]:

• PbFC’s j-th message.

1. Compute the j-th FC prover message pmj and auxiliary state:

(pmj , auxj)←

{
PbFC(ppbFC, aux,Q,β) if j = 1

PbFC(auxj−1, vmj−1) if j > 1
.

2. Send pmj to VbFC.

24

• VbFC’s j-th message.

1. Sample the j-th FC verifier randomness vmj ← {0, 1}rbFC,j .
2. Send vmj to PbFC.

Definition 3.24 ((Batched) FC state-restoration game). The FC state-restoration game for bFC with salt
size sbFC ∈ N, functions rndbFC = (rndbFC,i)i∈[kbFC] where rndbFC,i ← U(rbFC,i) for every i ∈ [kbFC], public
parameter ppbFC, auxiliary input aibFC, sample size L ∈ N, and FC state-restoration prover P̃SR

bFC is defined
below.

bFCSRGame(sbFC, rndbFC, P̃SR
bFC, ppbFC, aibFC):

1. Repeat the following until P̃SR
bFC(ppbFC, aibFC) decides to exit the loop:

(a) P̃SR
bFC outputs (cm,Q,β, (pmj)j∈[i], (ηj)j∈[i]), where cm is a commitment, Q is a query set from Q,

β is the claimed answer, (pmj)j∈[i] are prover messages, and (ηj)j∈[i] are salt strings in {0, 1}sbFC .
(b) Set vmi := rndbFC,i(cm,Q,β, (pmj)j∈[i], (ηj)j∈[i]).
(c) Send vmi to P̃SR

bFC.
2. P̃SR

bFC outputs (cm, ((Qi,βi, (pmi,j)j∈[kbFC], (ηi,j)j∈[kbFC]))i∈[L]).
3. For every i ∈ [L], j ∈ [kbFC], set vmi,j := rndbFC,j(cm,Qi,βi, (pmi,k)k∈[j], (ηi,k)k∈[j]).
4. Output (cm, ((Qi,βi, ((pmi,j , ηi,j , vmi,j))j∈[kbFC]))i∈[L]).

We denote by trSRbFC the list of move-response pairs of the form (cm,Q,β, (pmj)j∈[i], (ηj)j∈[i]) performed in
the loop. We show trSRbFC in an execution of the FC state-restoration game FCSRGame using the following
notation:

(cm, ((Qi,βi, ((pmi,j , ηi,j , vmi,j))j∈[kbFC]))i∈[L])
trSRbFC←−−− bFCSRGame(sbFC, rndbFC, P̃SR

bFC, ppbFC, aibFC) .

We say that P̃SR
bFC is mbFC-move if P̃SR

bFC exits the loop after at most mbFC iterations.

Definition 3.25 ((Batched) state-restoration function binding). An kbFC-round interactive batched FCS bFC
with query class Q has state-restoration function binding error ϵSRbFC if for every security parameter λ ∈ N,
message length ℓ ∈ N, query set size s ∈ N, sample set size L ∈ N, auxiliary input distribution DbFC, salt size
sbFC ∈ N, move budget mbFC ∈ N, circuit size bound tbFC ∈ N, and mbFC-move tbFC-size circuit P̃SR

bFC,

Pr

 ∀ i ∈ [L] :
|Qi| = s
∧VbFC(ppbFC, cm,Qi,βi, ((pmi,j , vmi,j))j∈[kbFC]) = 1

∧∄Π s.t. ∀ i ∈ [L], α ∈ Qi, α(Π) = β

(α)
i

∣∣∣∣∣∣∣∣∣∣∣∣∣

ppbFC ← bFC.Gen(1λ, ℓ)
aibFC ← DbFC

rndbFC := (rndbFC,i)i∈[kbFC] ← U((rbFC,i)i∈[kbFC])(
cm,

((
Qi,βi,
((pmi,j , ηi,j , vmi,j))j∈[kbFC]

))
i∈[L]

)
← bFCSRGame(sbFC, rndbFC, P̃SR

bFC, ppbFC, aibFC)

≤ ϵSRbFC(λ, ℓ, s, L, sbFC,mbFC, tbFC) .

3.3.4 From FC to batched FC

Given a FC scheme for a query class Q, one can construct a batched FC scheme for Q by naively applying
bFC to each query in the query set.

Construction 3.26 (Non-interactive batched FC). Let FC be a non-interactive functional commitment for the
query class Q. We construct a functional commitment bFC for Q as follows:

25

• bFC.Gen(1λ, ℓ): Output ppbFC ← FC.Gen(1λ, ℓ).

• bFC.Commit(ppbFC,Π): Output (cm, aux)← FC.Commit(ppbFC,Π).

• bFC.Open(ppbFC, aux,Q,β):
1. Parse Q as (αi)i∈[|Q|] and β as (βi)i∈[|Q|]
2. For i ∈ [|Q|]: compute pfi ← FC.Open(ppbFC, aux, αi, βi).
3. Output (pfi)i∈[|Q|].

• bFC.Check(ppbFC, cm,Q,β, pf):
1. Parse Q as (αi)i∈[|Q|], β as (βi)i∈[|Q|] and pf as (pfi)i∈[|Q|].
2. For i ∈ [|Q|], compute bi ← FC.Check(ppbFC, cm, αi, βi, pfi).
3. If ∀i ∈ [|Q|], bi = 1, output 1; otherwise, output 0.

Lemma 3.27. Let FC be a non-interactive FC scheme for query class Q with function binding error
ϵFC = ϵFC(λ, ℓ, L, tFC). Let bFC be defined as in Construction 3.26. Then, bFC has batched function binding
error ϵbFC = ϵbFC(λ, ℓ, s, L, tbFC) such that

ϵbFC(λ, ℓ, s, L, tbFC) ≤ ϵFC(λ, ℓ, s · L, tFC) ,

where tFC ≤ tbFC + s · L.

Proof. Let AbFC be an adversary for bFC. We construct an adversary AFC for FC as follows:

AFC(ppFC, aiFC):
1. Run (cm, ((Qi,βi, pfi))i∈[L])← AbFC(ppFC, aiFC).
2. For every i ∈ [L], parse Qi as (αi,j)j∈[s], βi as (βi,j)j∈[s] and pfi as (pfi,j)j∈[s].
3. Output (cm, ((αi,j , βi,j , pfi,j))i∈[L],j∈[s]).

Note that AFC has size tFC ≤ tbFC + s · L.
Moreover,

Pr

 ∀ i ∈ [L] : |Qi| = s ∧ bFC.Check(ppbFC, cm,Qi,βi, pfi) = 1

∧∄Π s.t. ∀ i ∈ [L], α ∈ Qi, α(Π) = β
(α)
i

∣∣∣∣∣∣
ppbFC ← bFC.Gen(1λ, ℓ)
aibFC ← DbFC

(cm, ((Qi,βi, pfi))i∈[L])← AbFC(ppbFC, aibFC)

≤ Pr

 (∀ i ∈ [L], j ∈ [s] :
FC.Check(ppFC, cm, αi,j , βi,j , pfi,j) = 1

)
∧∄Π s.t. ∀ i ∈ [L], j ∈ [s], αi,j(Π) = βi,j

∣∣∣∣∣∣
ppFC ← FC.Gen(1λ, ℓ)
aiFC ← DFC

(cm, ((αi,j , βi,j , pfi,j))i∈[L],j∈[s])← AFC(ppFC, aiFC)

≤ ϵFC(λ, ℓ, s · L, tFC) .

Construction 3.28 (Interactive batched FC). Let FC be an interactive functional commitment for the query
class Q. We construct a functional commitment bFC for Q as follows:

• bFC.Gen(1λ, ℓ): Output ppbFC ← FC.Gen(1λ, ℓ).

• bFC.Commit(ppbFC,Π): Output (cm, aux)← FC.Commit(ppbFC,Π).

• ⟨PbFC(ppbFC, aux,Q,β),VbFC(ppbFC, cm,Q,β)⟩:

26

1. Both PbFC and VbFC parse Q as (αi)i∈[|Q|] and β as (βi)i∈[|Q|].
2. For j ∈ [kbFC]:

(a) PbFC’s j-th message.
i. For i ∈ [|Q|], compute

(pmi,j , auxi,j)←

{
PFC(ppbFC, aux, αi, βi) if j = 1

PFC(auxi,j−1, vmi,j−1) if j > 1
.

ii. Send (pmi,j)i∈[|Q|] to VbFC.
(b) VbFC’s j-th message.

i. For i ∈ [|Q|], sample vmi,j ← {0, 1}rbFC,j .
ii. Send (vmi,j)i∈[|Q|] to PbFC.

3. For i ∈ [|Q|], compute bi = VFC(ppbFC, cm, αi, βi, ((pmi,j , vmi,j))j∈[kbFC]).
4. If ∀i ∈ [|Q|], bi = 1, output 1; otherwise, output 0.

Lemma 3.29. Let FC be an interactive FC scheme for query class Q with state-restoration function binding
error ϵSRFC = ϵSRFC(λ, ℓ, L, sFC,mFC, tFC). Let bFC be defined as in Construction 3.28. Then, bFC has batched
state-restoration function binding error ϵSRbFC = ϵSRbFC(λ, ℓ, s, L, sbFC,mbFC, tbFC) such that

ϵSRbFC(λ, ℓ, s, L, sbFC,mbFC, tbFC) ≤ ϵSRFC(λ, ℓ, s · L,
sbFC

s
, s ·mbFC, tFC) ,

where tFC ≤ tbFC + s · L.

Proof. Let P̃SR
bFC be a state-restoration adversary for bFC. We construct a state-restoration adversary P̃SR

FC for
FC as follows:

P̃SR
FC (ppFC, aiFC):

1. Simulate the batched FC state-restoration game bFCSRGame with P̃SR
bFC(ppFC, aiFC) as follows:

(a) Get (cm,Q,β, (pmj)j∈[i], (ηj)j∈[i]) from P̃SR
bFC.

(b) Parse Q as (αu)u∈[s] and β as (βu)u∈[s].
(c) For j ∈ [i], parse pmj as (pmu,j)u∈[s] and ηj as (ηu,j)u∈[s].
(d) For u ∈ [s], output (cm, αu, βu, (pmu,j)j∈[i], (ηu,j)j∈[i]) and receive vmu,i.

(e) Send (vmu,i)u∈[s] to P̃SR
bFC.

2. Get (cm, ((Qi,βi, (pmi,j)j∈[kbFC], (ηi,j)j∈[kbFC]))i∈[L]) from P̃SR
bFC.

3. Parse Qi as (αu,i)u∈[s], βi as (βu,i)u∈[s], pmi,j as (pmu,i,j)u∈[s], and ηi,j as (ηu,i,j)u∈[s].
4. Output (cm, ((αu,i, βu,i, (pmu,i,j)j∈[kbFC], (ηu,i,j)j∈[kbFC]))i∈[L],u∈[s]).

Note that P̃SR
FC has size tFC ≤ tbFC + s · L, salt size sFC ≤ sbFC

s , and move budget mFC ≤ s ·mbFC.
Moreover,

Pr

∀ i ∈ [L] :
|Qi| = s

∧VbFC

 ppbFC, cm,
Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

 = 1

∧∄Π s.t. ∀ i ∈ [L], α ∈ Qi, α(Π) = β

(α)
i

∣∣∣∣∣∣∣∣∣∣∣∣∣

ppbFC ← bFC.Gen(1λ, ℓ)
aibFC ← DbFC

rndbFC := (rndbFC,i)i∈[kbFC] ← U((rbFC,i)i∈[kbFC])(
cm,

((
Qi,βi,
((pmi,j , ηi,j , vmi,j))j∈[kbFC]

))
i∈[L]

)
← bFCSRGame(sbFC, rndbFC, P̃SR

bFC, ppbFC, aibFC)

27

≤ Pr

∀ i ∈ [L], u ∈ [s] :

VFC

 ppFC, cm,
αu,i, βu,i,
((pmu,i,j , vmu,i,j))j∈[kbFC]

 = 1

∧∄Π s.t. ∀ i ∈ [L], u ∈ [s], αu,i(Π) = βu,i

∣∣∣∣∣∣∣∣∣∣∣∣∣

ppFC ← FC.Gen(1λ, ℓ)
aiFC ← DFC

rndFC := (rndFC,i)i∈[kFC] ← U((rFC,i)i∈[kFC])(
cm,

((
αu,i, βu,i,
((pmu,i,j , ηu,i,j , vmu,i,j))j∈[kFC]

))
i∈[L],u∈[s]

)
← FCSRGame(sFC, rndFC, P̃SR

FC , ppFC, aiFC)

≤ ϵSRFC(λ, ℓ, s · L,

sbFC

s
, s ·mbFC, tFC) .

3.3.5 State-restoration function binding from state-restoration knowledge soundness and binding

We show that if a functional commitment scheme FC is state-restoration knowledge sound and binding, then
it is also state-restoration function binding.

Definition 3.30 (Binding). An kFC-round interactive FC with query class Q has binding error ϵB if for every
security parameter λ ∈ N, message length ℓ ∈ N, auxiliary input distribution DFC, circuit size bound tFC ∈ N,
and tFC-size circuit P̃SR

FC ,

Pr

 Π ̸= Π′ ∧
FC.Commit(ppFC,Π) = FC.Commit(ppFC,Π

′)

∣∣∣∣∣∣
ppFC ← FC.Gen(1λ, ℓ)
ai← D
(Π,Π′)← AB(ppFC, ai)

 ≤ ϵB(λ, ℓ, tB) .

Lemma 3.31. Let FC be a functional commitment scheme with state-restoration knowledge soundness error
κSR

KS = κSR
KS(λ, ℓ, sFC,mFC, t

SR
KS) for the ternary relation

{(ppFC, (cm, α, β),Π) | cm = FC.Commit(ppFC,Π) ∧ α(Π) = β} ,

with extractor running time tESR . Further, let FC have binding error ϵB = ϵB(λ, ℓ, tB) (Definition 3.30). Then
FC has state-restoration function binding error ϵSRFC such that for every security parameter λ ∈ N, message
length ℓ ∈ N, sample set size L ∈ N, and adversary size bound L ∈ N,

ϵSRFC(λ, ℓ, L, sFC,mFC, t
SR
FC) ≤ L · κSR

KS(λ, ℓ, sFC,mFC, t
SR
KS) + ϵB(λ, ℓ, tB) ,

where tSRKS ≤ tSRFC + Lℓ and tB ≤ tSRFC + LtESR + L(ℓ+ sFCmFC).

Lemma 3.31 generically gives a concrete bound on the state-restoration function binding error for
constructions which have already been shown to satisfy state-restoration knowledge soundness and binding.

Proof sketch. Let ASRFB be a state-restoration function binding adversary against FC. Further, let ESR be a
state-restoration knowledge soundness extractor for FC, running in time tESR . For each i ∈ [L], we define
the following state-restoration knowledge soundness adversary (P̃SR

FC)
(i), which runs ASRFB and simulates

FCSRGame using its own state-restoration knowledge soundness game. When ASRFB outputs

(cm, ((αi, βi), ((pmi,j , ηi,j , vmi,j))j∈[kFC])i∈[L]) ,

(P̃SR
FC)

(i) outputs (cm, αi, βi, (pmi,j)j∈[kFC], (ηi,j)j∈[kFC]).

28

Consider the following adversary AB against the binding property of FC. For each i ∈ [L], AB simulates
FCSRGame towards (P̃SR

FC)
(i), and then runs the knowledge extractor ESR with rewinding access to (P̃SR

FC)
(i),

taking as input the instance (cm, αi, βi), prover messages (pmi,j)j∈[kFC] and salts (ηi,j)j∈[kFC]. The i-th
extraction will yield a valid witness Πi, except with probability κSR

KS(λ, ℓ, sFC,mFC, t
SR
KS). If all extractions

succeeds, AB searches for indices i, j ∈ [L] such that Πi ̸= Πj and outputs (Πi,Πj), and aborts if no such
indices exist.

If ASRFB is successful, then there is no Π such that αi(Π) = βi for all i ∈ [L]. If all L extractions succeed,
this implies that there exist i, j ∈ [L] such that Πi ̸= Πj , and AB is successful.

29

4 The Funky protocol

Consider the following two ingredients:

• FIOP = (P,V), a public-coin functional IOP system for a relation R with alphabet Σ, domain D, query
complexity q, round complexity kFIOP, query classes Q1, . . . ,QkFIOP

, and proof lengths ℓ1, . . . , ℓkFIOP
; and

• bFC = (bFC.Gen, bFC.Commit,PbFC,VbFC), an kbFC-round interactive batched functional commitment
scheme over the alphabet Σ, and domain D. We assume for simplicity that bFC supports a query class that
includes Q1, . . . ,QkFIOP

. In its full generality, the Funky protocol is built from kFIOP batched functional
commitment schemes bFC1, . . . , bFCkFIOP

, where bFCi supports Qi.

The construction of ARG := Funky[FIOP, bFC] is specified below.

Construction 4.1. The argument generator G receives as input a security parameter λ ∈ N and an instance
size bound n ∈ N, and works as follows.

G(λ, n):
1. Sample FC scheme public parameter: ppbFC ← bFC.Gen(1λ, ℓmax(n)).
2. Set public parameter for the interactive argument: pp := ppbFC.
3. Output pp.

The argument prover P receives as input the public parameter pp, an instance x, and a witness w, and the
argument verifier V receives as input the public parameter pp and the instance x. Then P and V interact as
follows.

1. P’s commitments and V’s query challenges.
For i ∈ [kFIOP]:

(a) P’s i-th commitment.
i. Compute the i-th FIOP string Πi ∈ Σℓi and auxiliary state:

(Πi,auxi)←

{
P(x,w) if i = 1

P(auxi−1, ρi−1) if i > 1
.

ii. Compute a functional commitment to the FIOP string: (cmi, auxi)← bFC.Commit(pp,Πi).
iii. Send cmi to V .

(b) V’s i-th query challenge.
i. Sample the i-th FIOP verifier randomness ρi ← {0, 1}rFIOP,i .

ii. Send ρi to P .

2. P’s response.

(a) Run the FIOP verifier VΠ1,...,ΠkFIOP (x; ρ1, . . . , ρkFIOP
) to deduce Q1, . . . ,QkFIOP

, where Qi ⊆ Qi is
the query set of V to Πi.

(b) For every i ∈ [kFIOP], α ∈ Qi, compute the evaluation β
(α)
i := α(Πi).

(c) Set βi := (β
(α)
i)α∈Qi .

(d) Send ((Qi,βi))i∈[kFIOP] to V .

3. Interaction for the opening proofs.
For every j ∈ [kbFC]:

30

(a) P’s j-th message.
i. For every i ∈ [kFIOP], compute the j-th FC prover message pmi,j and auxiliary state:

(pmi,j , auxi,j)←

{
PbFC(pp, auxi,Qi,βi) if j = 1

PbFC(auxi,j−1, vmi,j−1) if j > 1
.

ii. Send (pmi,j)i∈[kFIOP] to V .
(b) V’s j-th message.

i. For every i ∈ [kFIOP], sample the j-th FC verifier randomness vmi,j ← {0, 1}rbFC,j .
ii. Send (vmi,j)i∈[kFIOP] to P .

Set pfi := ((pmi,j , vmi,j))j∈[kbFC].

4. V’s decision.
Check that the following holds:

(a) V([Qi,βi])i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1;
(b) For every i ∈ [kFIOP], VbFC(pp, cmi,Qi,βi, pfi) = 1.

The protocol has 2kFIOP+1+2kbFC messages: the first 2kFIOP+1 simulate the FIOP, and the rest simulates
the bFC. For notational simplicity, we view the (2kFIOP + 1)-st message (Item 2d) of the prover and the
(2kFIOP + 2)-nd message (Item 3a for j = 1) as one single message. Hence, the protocol has 2kFIOP + 2kbFC in
total and the prover P and the verifier V interact for kFIOP + kbFC rounds.

Moreover, the protocol is public-coin because the verifier’s messages are uniformly sampled random
strings. We comment on the protocol’s efficiency measures:

• the generator outputs a public parameter of size pARG := |ppbFC| bits;
• the round complexity k := kFIOP + kbFC;
• the prover-to-verifier communication complexity, in bits, is

pc :=
∑

i∈[kFIOP]

|cmi|+ q · (log |Qi|+ log |D|) +
∑

i∈[kFIOP]

∑
j∈[kbFC]

∣∣pmi,j

∣∣ ,

moreover,

pci := |cmi| for i ∈ [kFIOP] ,

pckFIOP+1
:= q · (log |Qi|+ log |D|) +

∑
i∈[kFIOP]

∣∣pmi,1

∣∣ ,

pckFIOP+j
:=

∑
i∈[kFIOP]

∣∣pmi,j

∣∣ for 2 ≤ j ≤ kbFC ;

• the randomness complexity, in bits, is

r :=
∑

i∈[kFIOP]

rFIOP,i + kFIOP ·
∑

j∈[kbFC]

rbFC,j ,

moreover,

ri := rFIOP,i for i ∈ [kFIOP] ,

rkFIOP+j := kFIOP · rbFC,j for j ∈ [kbFC] ;

• the argument generator running time is tG := tbFC.Gen.
• the argument prover running time is tP := tP + kFIOP · tbFC.Commit + kFIOP · tPbFC

+ tV;
• the argument verifier running time is tV := tV + kFIOP · tVbFC

.

31

5 Solving time and tail errors

We introduce notions for a query class Q that we use in later sections: solver and tail error. Then we study
these notions for several query classes of interest.

Definition 5.1 (Solver). Fix n ∈ N. A solver for a query class Q is an algorithm SolverQ that receives as
input a list of query-answer pairs ((αi, βi))i∈[n] and outputs an arbitrary element in the set

∩ni=1{Π ∈ Σℓ : ∀i ∈ [n], αi(Π) = βi} .

We denote by tQ(ℓ, n) the running time of SolverQ on n query-answer pairs.

Definition 5.2. Fix k ∈ N. A distribution D is k-admissible for the query class Q if

supp(D) ⊆ {(Q,β) : Q ⊆ Q,β ⊆ D, |Q| = |β| ≤ k} ∪ ∅ .

Definition 5.3 (Tail error). A query class Q has tail error ϵQ if for every N, k, ℓ ∈ N and k-admissible
distribution D,

Pr

[
Sn+1 ̸= ∅
∧Sn+1 ̸= Sn

∣∣∣∣ n← [N]
(S1, . . . , Sn+1)← Sampler(n,D)

]
≤ ϵQ(ℓ, k,N) ,

where Sampler works as follows:

Sampler(n,D):
1. Set S0 := Σℓ.
2. For i ∈ [n+ 1]:

(a) Sample (Qi,βi)← D.
(b) Set Si := Si−1 ∩ {Π ∈ Σℓ : ∀α ∈ Qi, α(Π) = β

(α)
i }.

3. Output (S1, . . . , Sn+1).

5.1 Inefficient baseline for the general case

We prove (inefficient) baselines that hold for every query class Q. In subsequent sections we provide
(efficient) improvements for specific query classes of interest.

Lemma 5.4. Every query class Q has the following:
• tail error ϵQ(ℓ, k,N) ≤ |Q|·(lnN+1)

N ;
• solving time tQ(ℓ, n) ≤ n · |Σ|ℓ.

Proof. Fix a query class Q.

Tail error. We adapt the proof from [CDDGS25]. Let D be a k-admissible distribution for some k ∈ N. Fix
ℓ,N ∈ N. For every m ∈ [N], define the indicator variable χm to be 1 if and only if the following holds:

[Sm+1 ̸= ∅ ∧ Sm+1 ̸= Sm | (S1 = (Q1,β1), . . . , SN+1 = (QN+1,βN+1))← Sampler(N,D)] .

Note that χm = 1 implies that Qm+1 \ ∪mi=1Qi ̸= ∅. Hence,

E [χm]

32

≤ Pr [Qm+1 \ ∪mi=1Qi ̸= ∅]
= Pr [∃α ∈ Q : α ∈ Qm+1 ∧ α /∈ ∪mi=1Qi]

≤
∑
α∈Q

Pr [α ∈ Qm+1 ∧ α /∈ ∪mi=1Qi]

≤ |Q|
m

.

We conclude that

Pr

[
Sm+1 ̸= ∅
∧Sm+1 ̸= Sm

∣∣∣∣ m← [N]
(S1, . . . , Sm+1)← Sampler(m,D)

]
=

1

N

N∑
m=1

E [χm] ≤ |Q| · (lnN + 1)

N
.

Solving time. Fix n ∈ N. We construct SolverQ for Q below:

SolverQ(((αi, βi))i∈[n]):
1. For Π ∈ Σℓ:

(a) Check if ∀i ∈ [n], αi(Π) = βi. Continue the loop if the check fails.
(b) Output Π.

2. Output ⊥.

The running time of SolverQ can be upper-bounded by n · |Σ|ℓ. Hence,

tQ(ℓ, n) ≤ n · |Σ|ℓ .

5.2 Linear queries

We prove bounds for the query class QLin of linear queries.

Lemma 5.5. The query class QLin (Eq. 2) has the following:
• tail error ϵQLin

(ℓ, k,N) ≤ ℓ
N ;

• solving time tQLin
(ℓ, n) ≤ n · ℓ2;

Proof. We compute the tail error and solving time for QLin separately.
Tail error. Let D be a k-admissible distribution for some k ∈ N. Fix ℓ,N ∈ N. For every m ∈ [N], define
the indicator variable χm to be 1 if and only if the following holds:

[Sm+1 ̸= ∅ ∧ Sm+1 ̸= Sm | (S1 = (Q1,β1), . . . , SN+1 = (QN+1,βN+1))← Sampler(N,D)] .

For each i ∈ [N + 1], (Qi,βi) defines a linear equation system. Note that χm = 1 implies that Qm+1 lies
outside the linear span of ∪mi=1Qm. Since the linear span of ∪N+1

i=1 Qi has dimension at most ℓ,

Pr

[
N∑

m=1

χm ≤ ℓ

]
= 1 .

Hence,
N∑

m=1

E [χm] ≤ ℓ .

33

We conclude that

Pr

[
Sm+1 ̸= ∅
∧Sm+1 ̸= Sm

∣∣∣∣ m← [N]
(S1, . . . , Sm+1)← Sampler(m,D)

]
=

1

N

N∑
m=1

E [χm] ≤ ℓ

N
.

Solving time. Fix n ∈ N. We construct a solver for QLin below:

SolverQLin
(((αi, βi))i∈[n]):

1. Construct the linear equation system:X ∈ Fℓ :

α1(X) = β1
...

αn(X) = βn

 .

2. Use Gaussian elimination to solve the linear equation system.
3. Output an arbitrary solution Π. If there is no solution, output ⊥.

The running time of SolverQLin
can be upper-bounded by n · ℓ2. Hence,

tQLin
(ℓ, n) ≤ n · ℓ2 .

5.3 Point queries

We prove bounds for the query class QPoint of point queries.

Lemma 5.6. The query class QPoint (Eq. 1) has the following:
• tail error ϵQPoint

(ℓ, k,N) ≤ ℓ
N ;

• solving time tQPoint
(ℓ, n) ≤ n+ ℓ;

Proof. We compute the tail error and solving time for QPoint separately.
Tail error. Let D be a k-admissible distribution for some k ∈ N. Fix ℓ,N ∈ N. For every m ∈ [N], define
the indicator variable χm to be 1 if and only if the following holds:

[Sm+1 ̸= ∅ ∧ Sm+1 ̸= Sm | (S1 = (Q1,β1), . . . , SN+1 = (QN+1,βN+1))← Sampler(N,D)] .

Note that χm = 1 implies that Qm+1 contains a new position that is not in ∪mi=1Qm. Since there are ℓ
positions in total,

Pr

[
N∑

m=1

χm ≤ ℓ

]
= 1 .

Hence,
N∑

m=1

E [χm] ≤ ℓ .

We conclude that

Pr

[
Sm+1 ̸= ∅
∧Sm+1 ̸= Sm

∣∣∣∣ m← [N]
(S1, . . . , Sm+1)← Sampler(m,D)

]
=

1

N

N∑
m=1

E [χm] ≤ ℓ

N
.

Solving time. Fix n ∈ N. We construct a solver for QPoint below:

34

SolverQPoint
(((αi, βi))i∈[n]):

1. Set Π := (⊥)ℓ.
2. For every i ∈ [n]:

(a) If αi(Π) (the location in Π corresponding to αi) is ⊥, set it to be βi.
(b) Otherwise, if βi ̸= αi(Π), output ⊥.

3. For every position in Π that is ⊥, set it to be an arbitrary value in Σ.
4. Output Π.

The running time of SolverQPoint
can be upper-bounded by n+ ℓ. Hence,

tQPoint
(ℓ, n) ≤ n+ ℓ .

5.4 Univariate polynomial evaluation queries

We prove bounds for the query class QUniPoly of univariate polynomial queries.

Lemma 5.7. The query class QUniPoly (Eq. 3) has the following:
• tail error ϵQUniPoly

(ℓ, k,N) ≤ ℓ
N ;

• solving time tQUniPoly
(ℓ, n) ≤ n · ℓ;

Proof. We compute the tail error and solving time for QUniPoly separately.

Tail error. Let D be a k-admissible distribution for some k ∈ N. Fix ℓ,N ∈ N. For every m ∈ [N], define
the indicator variable χm to be 1 if and only if the following holds:

[Sm+1 ̸= ∅ ∧ Sm+1 ̸= Sm | (S1 = (Q1,β1), . . . , SN+1 = (QN+1,βN+1))← Sampler(N,D)] .

Note that χm = 1 implies that the Lagrange interpolation Lagrange(((Qi,βi))i∈[m+1]) exceeds the degree
bound ℓ− 1 or has larger degree than Lagrange(((Qi,βi))i∈[m]). Therefore,

Pr

[
N∑

m=1

χm ≤ ℓ

]
= 1 .

Hence,
N∑

m=1

E [χm] ≤ ℓ .

We conclude that

Pr

[
Sm+1 ̸= ∅
∧Sm+1 ̸= Sm

∣∣∣∣ m← [N]
(S1, . . . , Sm+1)← Sampler(m,D)

]
=

1

N

N∑
m=1

E [χm] ≤ ℓ

N
.

Solving time. Fix n ∈ N. We construct a solver for QUniPoly below:

SolverQUniPoly
(((αi, βi))i∈[n]):

1. If n ≤ ℓ, compute Lagrange(((αi, βi))i∈[ℓ]) and output its coefficient vector.
2. Compute f := Lagrange(((αi, βi))i∈[ℓ]).

35

3. For ℓ+ 1 ≤ i ≤ n, if f(αi) ̸= βi, output ⊥.
4. Output the coefficient vector of f .

The running time of SolverQUniPoly
can be upper-bounded by n · ℓ. Hence,

tQUniPoly
(ℓ, n) ≤ n · ℓ .

5.5 Multivariate polynomial evaluation queries

We prove bounds for the query class Q(m,D)
MultiPoly of multivariate polynomial queries.

Lemma 5.8. The query class Q(m,D)
MultiPoly (Equation 4) has the following:

• tail error ϵ
Q

(m,D)
MultiPoly

(ℓ, k,N) ≤ ℓ
N ;

• solving time t
Q

(m,D)
MultiPoly

(ℓ, n) ≤ n · ℓ2;

Proof. We compute the tail error and solving time for Q(m,D)
MultiPoly separately.

Tail error. Let D be a k-admissible distribution for some k ∈ N. Fix ℓ,N ∈ N. For every m ∈ [N], define
the indicator variable χm to be 1 if and only if the following holds:

[Sm+1 ̸= ∅ ∧ Sm+1 ̸= Sm | (S1 = (Q1,β1), . . . , SN+1 = (QN+1,βN+1))← Sampler(N,D)] .

Let γ′ := (γω)ω∈{0,...,D}m,
∑

i∈[m] ω[i]≤D, each query in Q
(m,D)
MultiPoly can be expressed as an inner product ⟨γ′,Π⟩

for some γ ∈ Fm. Therefore, for each i ∈ [N + 1], (Qi,βi) defines a linear equation system. Note that
χm = 1 implies that Qm+1 lies outside the linear span of ∪mi=1Qm. Since the linear span of ∪N+1

i=1 Qi has
dimension at most ℓ,

Pr

[
N∑

m=1

χm ≤ ℓ

]
= 1 .

Hence,
N∑

m=1

E [χm] ≤ ℓ .

We conclude that

Pr

[
Sm+1 ̸= ∅
∧Sm+1 ̸= Sm

∣∣∣∣ m← [N]
(S1, . . . , Sm+1)← Sampler(m,D)

]
=

1

N

N∑
m=1

E [χm] ≤ ℓ

N
.

Solving time. Fix n ∈ N. We construct a solver for Q(m,D)
MultiPoly below:

Solver
Q

(m,D)
MultiPoly

(((αi, βi))i∈[n]):

1. Construct the linear equation system:X ∈ Fℓ :

α1(X) = β1
...

αn(X) = βn

 .

36

2. Use Gaussian elimination to solve the system.
3. Output a random solution Π. If there is no solution, output ⊥.

The running time of Solver
Q

(m,D)
MultiPoly

can be upper-bounded by n · ℓ2. Hence,

t
Q

(m,D)
MultiPoly

(ℓ, n) ≤ n · ℓ2 .t
Q

(m,D)
MultiPoly

(ℓ, n) ≤ n · ℓ2 .

5.6 Structured polynomial evaluation queries

We prove bounds for the query class QStruct[Q,m, (hk)k∈[n]]
(m,n,D,(hi)i∈[m]) defined below.

Definition 5.9. For parameters m,n ∈ N, a degree bound D ∈ N, public multivariate polynomials
hi ∈ F≤Dh [X1, . . . , Xm] and ℓ = (m+ n)(D+ 1), the query class QStruct[Q,m, (hk)k∈[n]]

(m,n,D,(hi)i∈[m]) isα : Fℓ → Fm+1

∣∣∣∣∣∣∣∣∣
∃ γ ∈ F s.t.

α(Π) =
(
f1(γ), . . . , fm(γ),

∑
k∈[n] hk(f1(γ), . . . , fm(γ)) · gk(γ)

)
,

fj(γ) :=
∑

i∈[D+1] γ
i−1 ·Π[(j − 1)(D+ 1) + i] for j ∈ [m],

gk(γ) :=
∑

i∈[D+1] γ
i−1 ·Π[(m+ k − 1)(D+ 1) + i] for k ∈ [n]

 .

Lemma 5.10. The query class QStruct[Q,m, (hk)k∈[n]]
(m,n,D,(hi)i∈[m]) has the following:

• tail error ϵ
QStruct[Q,m,(hk)k∈[n]]

(m,n,D,(hi)i∈[m])
(ℓ, k,N) ≤ ℓ

N ;

• solving time t
QStruct[Q,m,(hk)k∈[n]]

(m,n,D,(hi)i∈[m])
(ℓ, u) ≤ u · ℓ2;

Proof. We compute the tail error and solving time for QStruct[Q,m, (hk)k∈[n]]
(m,n,D,(hi)i∈[m]) separately.

Tail error. Let D be a k-admissible distribution for some k ∈ N. Fix ℓ,N ∈ N. For every m ∈ [N], define
the indicator variable χm to be 1 if and only if the following holds:

[Sm+1 ̸= ∅ ∧ Sm+1 ̸= Sm | (S1 = (Q1,β1), . . . , SN+1 = (QN+1,βN+1))← Sampler(N,D)] .

For each i ∈ [N +1], (Qi,βi) defines a constraint system with ℓ = (m+n)(D+1) variables, corresponding
to the coefficients of (f1, . . . , fm, g1, . . . , gn). Since h1, . . . , hm are public, the system indeed forms a linear
equation system. Specifically, a query-answer pair (α, β) can be rewritten as

X ∈ Fℓ :

∑
i∈[D+1]

γi−1 ·X[i] = β[1]

∑
i∈[D+1]

γi−1 ·X[(D+ 1) + i] = β[2]

...∑
i∈[D+1]

γi−1 ·X[(m− 1)(D+ 1) + i] = β[m]

∑
k∈[n]

hk(β[1], . . . , β[m])
∑

i∈[D+1]

γi−1 ·X[(m+ k − 1)(D+ 1) + i] = β[m+ 1]

.

37

Consequently, χj = 1 implies that Qj+1 lies outside the linear span of ∪ji=1Qj . Since the linear span of
∪N+1
i=1 Qi has dimension at most ℓ,

Pr

 N∑
j=1

χj ≤ ℓ

 = 1 ,

and
N∑
j=1

E [χj] ≤ ℓ .

We conclude that

Pr

[
Sj+1 ̸= ∅
∧Sj+1 ̸= Sj

∣∣∣∣ j ← [N]
(S1, . . . , Sj+1)← Sampler(j,D)

]
=

1

N

N∑
j=1

E [χj] ≤
ℓ

N
.

Solving time. Fix u ∈ N. We construct a solver for QStruct[Q,m, (hk)k∈[n]]
(m,n,D,(hi)i∈[m]) below:

Solver
QStruct[Q,m,(hk)k∈[n]]

(m,n,D,(hi)i∈[m])
(((αi, βi))i∈[u]):

1. Construct the linear equation system:X ∈ Fℓ :

α1(X) = β1
...

αu(X) = βu

 .

2. Use Gaussian elimination to solve the system.
3. Output a random solution Π. If there is no solution, output ⊥.

The running time of Solver
QStruct[Q,m,(hk)k∈[n]]

(m,n,D,(hi)i∈[m])
can be upper-bounded by u · ℓ2. Hence,

t
QStruct[Q,m,(hk)k∈[n]]

(m,n,D,(hi)i∈[m])
(ℓ, u) ≤ u · ℓ2 .

5.7 Bounded-degree functions

We analyze the tail error for query classes consisting of multivariate polynomials of bounded total degree.
Specifically, a query α(Π) in the query class Q is an ℓ-variate polynomial with a total degree bounded by D.
In particular, QLin,QPoint,QUniPoly, QMultiPoly and QStruct[Q,m, (hk)k∈[n]] are special cases of Q(D)

Func.

Lemma 5.11. Fix a field F and ℓ,D, q ∈ N. Let

Q
(D)
Func := F≤D[X1, . . . , Xℓ]

be the query class of ℓ-variate polynomial queries of total degree at most D. The query class Q(D)
Func has the

following:

• tail error ϵ
Q

(D)
Func

(ℓ, k,N) ≤ (ℓ+D
D)−1

N ;

• solving time t
Q

(D)
Func

(ℓ, n) ≤ n · |F|ℓ;

38

Proof. We compute the tail error and solving time for Q(D)
Func separately.

Tail error. Let D be a k-admissible distribution for some k ∈ N. Fix ℓ,N ∈ N. For every m ∈ [N], define
the indicator variable χm to be 1 if and only if the following holds:

[Sm+1 ̸= ∅ ∧ Sm+1 ̸= Sm | (S1 = (Q1,β1), . . . , SN+1 = (QN+1,βN+1))← Sampler(N,D)] .

For each i ∈ [N +1], (Qi,βi) defines a constraint system with ℓ variables, which can be relaxed into a linear
equation system with

(
ℓ+D
D

)
− 1 variables by treating each possible monomial as a new variable. We denote

the relaxed linear equation system as (Q′
i,βi), i ∈ [N + 1]. Consequently, χm = 1 implies that Q′

m+1 lies
outside the linear span of ∪mi=1Q′

m. Since the linear span of ∪N+1
i=1 Q′

i has dimension at most
(
ℓ+D
D

)
− 1,

Pr

[
N∑

m=1

χm ≤
(
ℓ+ D

D

)
− 1

]
= 1 .

Hence
N∑

m=1

E [χm] ≤
(
ℓ+ D

D

)
− 1 .

We conclude that

Pr

[
Sm+1 ̸= ∅
∧Sm+1 ̸= Sm

∣∣∣∣ m← [N]
(S1, . . . , Sm+1)← Sampler(m,D)

]
=

1

N

N∑
m=1

E [χm] ≤
(
ℓ+D
D

)
− 1

N
.

Solving time. Fix n ∈ N. We construct a solver for Q(D)
Func below:

Solver
Q

(D)
Func

(((αi, βi))i∈[n]):

1. For Π ∈ Fℓ:
(a) Check if ∀i ∈ [n], αi(Π) = βi. Continue the loop if the check fails.
(b) Output Π.

2. Output ⊥.

The running time of Solver
Q

(D)
Func

can be upper-bounded by n · |F|ℓ. Hence,

t
Q

(D)
Func

(ℓ, n) ≤ n · |F|ℓ .

39

6 State-restoration security reduction

We prove a security reduction lemma for the state-restoration security of ARG := Funky[FIOP, bFC].
We start with some definitions. Let P̃SR be a state-restoration adversary for ARG with size tARG and move

budget m. A move mv output by P̃SR can be one of the following two forms:

• (x′, (cm′
j)j∈[i], (σ

′
j)j∈[i]) for some i ∈ [kFIOP], which we rewrites as (x′, ((cm′

j , σ
′
j))j∈[i]) for simplicity;

• (x′, ((cm′
u)u∈[kFIOP],

(
(Q′

u,β
′
u)
)
u∈[kFIOP]

, (pm′
i,u)i∈[kFIOP],u∈[j]), ((σ

′
u)u∈[kFIOP], (η

′
i,u)i∈[kFIOP],u∈[j])) for some

j ∈ [kbFC], which we rewrites as (x′, ((cm′
u, σ

′
u))u∈[kFIOP],

(
(Q′

u,β
′
u)
)
u∈[kFIOP]

, ((pm′
i,u, η

′
i,u))i∈[kFIOP],u∈[j])

for simplicity.

Moreover, we assume that P̃SR has final output(
x,
(
(cmi, σi)

)
i∈[kFIOP]

,
(
(Qi,βi)

)
i∈[kFIOP]

, ((pmi,j , ηi,j))i∈[kFIOP],j∈[kbFC]
)

such that all its partial moves are included in trSR, which can be ensured by increasing the move budget from
m to m̂ := m+ kFIOP + kbFC. Specifically, the following moves are included in trSR:
• for every i ∈ [kFIOP], (x, ((cmj , σj))j∈[i]);
• for every i ∈ [kbFC], (x, ((cmj , σj))j∈[kFIOP],

(
(Qj ,βj)

)
j∈[kFIOP]

, ((pmj,u, ηj,u))j∈[kFIOP],u∈[i]).
Finally, for any move mv, we set round(mv) := i if mv is a move for round i (this is always unambiguous).

Lemma 6.1. There exists algorithms Rm and R such that for every security parameter λ ∈ N, instance size
bound n ∈ N, number of rewindings N ∈ N, auxiliary input distribution D, adversary size bound tARG ∈ N,
adversary move budget m ∈ N, and tARG-size m-move circuit P̃SR, the following holds:

Pr

V(Π̃i)i∈[kFIOP](x; (ρi)i∈[kFIOP]) ̸= 1

∧V([Qi,βi])i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧

 ∀ i ∈ [kFIOP] :

VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
rnd := (rndi)i∈[kFIOP+kbFC] ← U((ri)i∈[kFIOP+kbFC]) x,

(
(cmi, σi)

)
i∈[kFIOP]

,
(
(Qi,βi)

)
i∈[kFIOP]

,

((pmi,j , ηi,j))i∈[kFIOP],j∈[kbFC],

(ρi)i∈[kFIOP], (vmi,j)i∈[kFIOP],j∈[kbFC]

trSR←−− SRGame(s, rnd, P̃SR, pp, ai)

Parse trSR as ((mva, resa))a∈[m̂]

For every a ∈ [m̂] :(
Π̃

(a)
i

)
i∈[round(mva)]

← R
P̃SR(pp,ai)
m (a, (resi)i∈[a−1])

(Π̃i)i∈[kFIOP] ← R

(
trSR, (x, ((cmi, σi))i∈[kFIOP]),

(Π̃
(a)
i)a∈[m̂],i∈[round(mva)]

)

≤

∑
i∈[kFIOP]

(
ϵSRbFC(λ, ℓi, qi,N+ 1, sbFC,mbFC, tbFC) + ϵQi

(ℓi, qi,N)
)
,

where
• sbFC ≤ s+ log((kFIOP · N+ 1) · (m+ kbFC));
• mbFC ≤ (kFIOP · N+ 1) · (m+ kbFC); and
• tbFC ≤ O(N · (tARG + m̂+ tVbFC

)) + tQ(ℓmax,N · qmax).

40

6.1 Construction of the security reductors

We construct the algorithms Rm and R in Lemma 6.1: Rm rewinds P̃SR multiple times to obtain FIOP strings
for a specific move by P̃SR; and R outputs the FIOP strings for P̃SR’s final output (given all the obtained
FIOP strings).

Construction 6.2. Rm has oracle access to P̃SR, takes in input a move index a ∈ [m̂] and responses
(resi)i∈[a−1], and outputs FIOP strings (Π̃(a)

i)i∈[round(mva)].

R
P̃SR(pp,ai)
m (a, (resi)i∈[a−1]):

1. Simulate SRGame until P̃SR makes the a-th move mva, answering the first a−1 moves with (resi)i∈[a−1].
2. If round(mva) > kFIOP, output ⊥; otherwise parse mva as (x∗, ((cm∗

i , σ
∗
i))i∈[round(mva)]).

3. For every i ∈ [round(mva)], initialize a set of query-answer pairs K(a)
i := ∅.

4. Rewind to obtain query-answer pairs. Sample Na ← [N] and repeat the following Na times.
(a) For every i ∈ [k], initialize an empty partial function rndi : {0, 1}∗ → {0, 1}ri where

rndi(mv) :=

{
resv if mv is the v-th move of the simulation with v ∈ [a− 1] and round(mv) = i

⊥ otherwise
.

(b) Continue simulating SRGame using (rndi)i∈[k] to obtain the final output(
x,
(
(cmi, σi)

)
i∈[kFIOP]

,
(
(Qi,βi)

)
i∈[kFIOP]

, ((pmi,j , ηi,j))i∈[kFIOP],j∈[kbFC]
)
.

When P̃SR makes a move mv for round i ∈ [k]: if rndi(mv) = ⊥ then sample ρ ∈ {0, 1}ri and set
rndi(mv) := ρ; either way, answer mv with rndi(mv).

(c) For every j ∈ [kbFC], let (vmi,j)i∈[kFIOP] be the response of SRGame for the move(
x,
(
(cmi, σi)

)
i∈[kFIOP]

,
(
(Qi,βi)

)
i∈[kFIOP]

, ((pmi,u, ηi,u))i∈[kFIOP],u∈[j]
)
.

(d) For every i ∈ [round(mva)]: if VbFC(pp, cm
∗
i ,Qi,βi, ((pmi,j , vmi,j))j∈[kbFC]) = 1, add (Qi,βi) to

K
(a)
i .

5. Solve for the FIOP strings. For every i ∈ [round(mva)]:
(a) Parse K

(a)
i as ((αj , βj))j∈[u], where u is the total number of query-answer pairs in K

(a)
i .

(b) For analysis, define S
(a)
i to be the set of FIOP strings in Σℓi consistent with K

(a)
i :

S
(a)
i := {Πi ∈ Σℓi : ∀j ∈ [u], αj(Πi) = βj} .

(c) Run Π̃
(a)
i ← SolverQi(((αj , βj))j∈[u]).

6. Output (Π̃(a)
i)i∈[round(mva)].

The algorithm Rm rewinds P̃SR and performs additional checks for at most N times, with each loop costing at
most time tARG + kFIOP · tVbFC

. Moreover, for each round i ∈ [kFIOP], Rm uses the query class solver SolverQ
to reconstruct the i-th FIOP string. Hence, the running time of Rm is

tRm ≤ N · (tARG + kFIOP · tVbFC
) +

∑
i∈[kFIOP]

tQ(ℓi,N · qi)

≤ N · (tARG + kFIOP · tVbFC
) + kFIOP · tQ(ℓmax,N · qmax) .

41

Construction 6.3. R takes as input a move-response trace trSR, a move (x, ((cmi, σi))i∈[kFIOP]), and a list of

FIOP strings (Π̃(a)
i)a∈[m̂],i∈[ca], and outputs kFIOP FIOP strings.

R
(
trSR, (x, ((cmi, σi))i∈[kFIOP]), (Π̃

(a)
i)a∈[m̂],i∈[ca]

)
:

1. For every i ∈ [kFIOP]:
(a) Let a be the index of the first move mv in trSR such that round(mv) ≤ kFIOP and mv is of the form(

x,
(
(cmj , σj)

)
j∈[i],

(
(cm′

j , σ
′
j)
)
j∈[u]\[i]

)
for some u ≥ i. Set Π̃i := Π̃

(a)
i .

(b) If there is no such move, set Π̃i := ⊥.
2. Output (Π̃i)i∈[kFIOP].

For every i ∈ [kFIOP], the algorithm R scans all moves in search of a match, which takes time at most m̂.
Hence, R runs in time

tR ≤ kFIOP · m̂ ≤ kFIOP · (m+ kFIOP + kbFC) .

6.2 Proof of Lemma 6.1

Throughout this proof, probabilities are with respect to the following experiment unless stated otherwise:

pp← G(1λ, n)
ai← D
rnd := (rndi)i∈[kFIOP+kbFC] ← U((ri)i∈[kFIOP+kbFC]) x,

(
(cmi, σi)

)
i∈[kFIOP]

,
(
(Qi,βi)

)
i∈[kFIOP]

,

((pmi,j , ηi,j))i∈[kFIOP],j∈[kbFC],

(ρi)i∈[kFIOP], (vmi,j)i∈[kFIOP],j∈[kbFC]

 trSR←−− SRGame(s, rnd, P̃SR, pp, ai)

For a ∈ [m̂] :
(
Π̃

(a)
i

)
i∈[round(mva)]

← R
P̃SR(pp,ai)
m (a, (resi)i∈[a−1])

(Π̃i)i∈[kFIOP] ← R
(
trSR, (x, ((cmi, σi))i∈[kFIOP]), (Π̃

(a)
i)a∈[m̂],i∈[round(mva)]

)

.

Our goal is to upper-bound the probability of the following event:
V(Π̃i)i∈[kFIOP](x; (ρi)i∈[kFIOP]) ̸= 1

∧V([Qi,βi])i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧

 ∀ i ∈ [kFIOP] :

VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

 .

Let Si be the solution space from which Π̃i is selected as defined in Construction 6.2. Set S∗
i := Si ∩ {Π ∈

Σℓ : ∀α ∈ Qi, α(Π) = β
(α)
i }. The event above indicates that for some round i ∈ [kFIOP], either the reductor

fails to reconstruct the FIOP proof string Π̃i, or Π̃i is inconsistent with (Qi,βi). This further implies that one
of the following two cases must hold:

1. There exits i ∈ [kFIOP] such that S∗
i = ∅.

2. There exits i ∈ [kFIOP] such that S∗
i ̸= ∅ and S∗

i ̸= Si.

42

In other words, by union bound, we just need to upper-bound the following two probabilities to get a bound
for the target probability:

Pr

 ∃ i ∈ [kFIOP],

 S∗
i = ∅

∧VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

 ; (10)

and

Pr

 ∃ i ∈ [kFIOP],

S∗
i ̸= ∅
∧S∗

i ̸= Si

∧VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

 . (11)

6.2.1 Bound for Equation 10 from state-restoration function binding

We prove that the probability in Equation 10 can be bounded by the state-restoration function binding error of
bFC. First, we construct FC state-restoration adversaries (P̃SR

bFC,i)i∈[kFIOP] using the argument state-restoration
adversary P̃SR.

Construction 6.4. Let D be the auxiliary input distribution for ARG. The auxiliary input distribution DbFC

for bFC is as follows.

DbFC: Output ai← D.

Construction 6.5. For every i ∈ [kFIOP], we define P̃SR
bFC,i as follows.

P̃SR
bFC,i(ppbFC, aibFC):

1. Parse ppbFC as pp and aibFC as ai.
2. Set I := ∅.
3. Simulate the execution of SRGame with P̃SR(pp, ai) as follows.

(a) For every u ∈ [k], initialize an empty partial function rndu : {0, 1}∗ → {0, 1}ru .
(b) When P̃SR outputs a move mv of the form (x′, ((cm′

j , σ
′
j))j∈[u]) for some u ∈ [kFIOP]: if rndu(mv) =

⊥ then sample ρ ∈ {0, 1}ru and set rndu(mv) := ρ; either way, answer mv with rndu(mv).
(c) When P̃SR outputs a move mv of the form

(x′, ((cm′
u, σ

′
u))u∈[kFIOP],

(
(Q′

u,β
′
u)
)
u∈[kFIOP]

, ((pm′
u,j , η

′
u,j))u∈[kFIOP],j∈[c]) for some c ∈ [kbFC] :

i. If rndkFIOP+c(mv) = ⊥ then set rndkFIOP+c(mv) := (vm′
u,c)u∈[kFIOP] where, for every u ∈

[kFIOP], vm′
u,c is obtained as follows:

A. Set mvbFC := (cm′
u,Q′

u,β
′
u, (pm

′
u,j)j∈[c], (η

′
u,j)j∈[c]).

B. If mvbFC ∈ I , modify η′u,c to obtain a new move mv′bFC not in I; add mv′bFC to I .
C. Make the move mv′bFC in FCSRGame to get the answer vm′

u,c.
ii. Answer mv with rndkFIOP+c(mv).

4. Let trSR be the query-answer trace of SRGame and (resa)a∈[m̂] be the responses. Let the final output of
P̃SR be: (

x, ((cmu, σu))u∈[kFIOP], ((Qu,βu))u∈[kFIOP], ((pmu,j , ηu,j , vmu,j))u∈[kFIOP],j∈[kbFC]
)
.

43

5. Let a be the index of the first move mva in trSR such that round(mva) ≤ kFIOP and mva is of the form(
x,
(
(cmj , σj)

)
j∈[i],

(
(cm′

j , σ
′
j)
)
j∈[u]\[i]

)
for some u ≥ i.

6. Simulate SRGame until P̃SR outputs the a-th move by answering the first a−1 moves with (resu)u∈[a−1]

obtained from trSR.
7. Initialize Ki := ∅.
8. Rewind to obtain query-answer pairs. Sample Ni ← [N] and repeat the following for Ni times.

(a) Continue the simulation of SRGame as follows and obtain the final output(
x
∗,
(
(cm∗

u, σ
∗
u)
)
u∈[kFIOP]

,
(
(Q∗

u,β
∗
u)
)
u∈[kFIOP]

, ((pm∗
u,j , η

∗
u,j))u∈[kFIOP],j∈[kbFC]

)
.

i. For every u ∈ [k], reinitialize the function rndu : {0, 1}∗ → {0, 1}ru where

rndu(mv) :=

{
resv if mv is the v-th move of the simulation with v ∈ [a− 1] and round(mv) = u

⊥ otherwise
.

ii. When P̃SR outputs a move of the form mv := (x′, ((cm′
j , σ

′
j))j∈[u]) for some u ∈ [kFIOP]: if

rndu(mv) = ⊥ then sample ρ ∈ {0, 1}ru and set rndu(mv) := ρ; either way, answer mv with
rndu(mv).

iii. When P̃SR outputs a move mv of the form

(x′, ((cm′
u, σ

′
u))u∈[kFIOP],

(
(Q′

u,β
′
u)
)
u∈[kFIOP]

, ((pm′
u,j , η

′
u,j))u∈[kFIOP],j∈[c]) for some c ∈ [kbFC] .

– If rndkFIOP+c(mv) = ⊥ then set rndkFIOP+c(mv) := (vm′
u,c)u∈[kFIOP] where, for every

u ∈ [kFIOP], vm′
u,c is obtained as follows:

* Set mvbFC := (cm′
u,Q′

u,β
′
u, (pm

′
u,j)j∈[c], (η

′
u,j)j∈[c]).

* If mvbFC ∈ I , modify η′u,c to obtain a new move mv′bFC not in I; add mvbFC to I .
* Make the move mvbFC in FCSRGame to get the answer vm′

u,c.
– Answer mv with rndkFIOP+c(mv).

(b) For every c ∈ [kbFC], let (vm∗
u,c)u∈[kFIOP] be the response of SRGame for move(

x
∗,
(
(cm∗

u, σ
∗
u)
)
u∈[kFIOP]

,
(
(Q∗

u,β
∗
u)
)
u∈[kFIOP]

, ((pm∗
u,j , η

∗
u,j))u∈[kFIOP],j∈[c]

)
.

(c) If VbFC(pp, cmi,Q∗
i ,β

∗
i , ((pm

∗
i,c, vm

∗
i,c))c∈[kbFC]) = 1, add (Q∗

i ,β
∗
i , ((pm

∗
i,c, η

∗
i,c))c∈[kbFC]) to Ki.

9. Solve for the FIOP strings. Run Π̃i ← SolverQi(((αj , βj))j∈[u]) where ((αj , βj))j∈[u] are all query-
answer pairs in Ki.

10. If Π̃i ̸= ⊥, output the “dummy” tuple (cm1,⊥).
11. If Π̃i = ⊥, add (Qi,βi, ((pmi,j , ηi,c))c∈[kbFC]) to Ki and output (cmi,Ki).

We discuss efficiency parameters of P̃SR
bFC,i.

• Salt size sbFC of P̃SR
bFC,i. The algorithm P̃SR

bFC,i relies on having enough distinct salts, specifically at most
(kFIOP · N+ 1) · (m+ kbFC) distinct salts to avoid duplicates in the set I (see Step 3c and Step 8(a)iii). This
demands setting the salt size sbFC larger than s, specifically most s+ log((kFIOP · N+ 1) · (m+ kbFC)).

• Move budget mbFC. In Step 3c and Step 8(a)iii, whenever P̃SR makes a move of the form

(x′, ((cm′
u, σ

′
u))u∈[kFIOP], ((Q

′
u, β

′
u))u∈[kFIOP], ((pm

′
u,j , η

′
u,j))u∈[kFIOP],j∈[c])

for some c ∈ [kbFC], P̃SR
bFC,i may query bFCSRGame for the answer. Hence the move budget mbFC is at most

(kFIOP · N+ 1) · (m+ kbFC).

44

• Running time tbFC.

– Step 3 takes time at most tARG + m̂.
– Step 5 takes time m̂.
– Step 8 takes time N · (tARG + m̂+ tVbFC

).
– Step 9 takes time tQ(ℓi,N · qi).

Hence the time of P̃SR
bFC,i is at most

tbFC ≤ tARG + m̂+ (m̂+ N · (tARG + m̂+ tVbFC
) + tQ(ℓi,N · qi))

= tARG + 2m̂+ N · (tARG + m̂+ tVbFC
) + tQ(ℓi,N · qi)

= O(N · (tARG + m̂+ tVbFC
)) + tQ(ℓmax,N · qmax) .

By Definition 3.25,

Pr

 ∃ i ∈ [kFIOP],

 S∗
i = ∅

∧VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

≤

∑
i∈[kFIOP]

Pr

 S∗
i = ∅

∧VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

≤
∑

i∈[kFIOP]

Pr

∀ j ∈ [N+ 1] :
|Qj | ≤ qmax

∧VbFC

(
pp, cm,Qj ,βj ,

((pmj,u, vmj,u))u∈[kbFC]

)
= 1

∧∄Π s.t. ∀ j ∈ [N+ 1], α ∈ Qj , α(Π) = β

(α)
j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ppbFC ← bFC.Gen(1λ, ℓmax)
aibFC ← DbFC

rndbFC := (rndbFC,i)i∈[kbFC] ← U((rbFC,i)i∈[kbFC])cm,

Qi,βi, pmi,j ,

ηi,j ,
vmi,j

j∈[kbFC]

i∈[N+1]

← bFCSRGame(sbFC, rndbFC, P̃SR

bFC,i, ppbFC, aibFC)

≤

∑
i∈[kFIOP]

ϵSRbFC(λ, ℓi, qi,N+ 1, sbFC,mbFC, tbFC) .

where sbFC,mbFC, tbFC satisfy the same conditions as in Lemma 6.1.

6.2.2 Bound for Equation 11 from tail errors

We bound the probability in Equation 11 using tail errors.
Based on Construction 6.3, for every i ∈ [kFIOP], set ai such that Π̃i := Π̃

(ai)
i . We define a qi-admissible

distribution D(i,ai,(resj)j∈[ai−1]) as follows.

D(i,ai,(resj)j∈[ai−1]):

1. Simulate SRGame until P̃SR outputs the ai-th move mv by answering the first ai − 1 moves with
(resj)j∈[a−1].

2. Let (x∗, ((cm∗
i , σ

∗
i))i∈[round(mv)]) be the ai-th move mv of P̃SR.

3. Let r := max (maxi∈[kFIOP] rFIOP,i,maxj∈[kbFC] rbFC,j · kFIOP), sample the reductor randomness

ρ := (ρa)a∈[m̂] ← {0, 1}r·m̂ .

45

4. Continue the simulation of SRGame with ρ and obtain the final output(
x,
(
(cmj , σj)

)
j∈[kFIOP]

,
(
(Qj ,βj)

)
j∈[kFIOP]

, ((pmj,u, ηj,u))j∈[kFIOP],u∈[kbFC]
)
.

5. For every u ∈ [kbFC], let (vmj,u)j∈[kFIOP] be the response of SRGame for move(
x,
(
(cmj , σj)

)
j∈[kFIOP]

,
(
(Qj ,βj)

)
j∈[kFIOP]

, ((pmj,c, ηj,c))i∈[kFIOP],c∈[u]
)
.

6. If VbFC(pp, cm
∗
i ,Qi,βi, ((pmi,j , vmi,j))j∈[kbFC]) = 1, output (Qi,βi); otherwise output ∅.

Let Sampler be the sampling procedure in Definition 5.3. For every i ∈ [kFIOP],

Pr

S∗
i ̸= ∅
∧S∗

i ̸= Si

∧VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

≤ Pr

[
Sn+1 ̸= ∅
∧Sn+1 ̸= Sn

∣∣∣∣ n← [N]
(S1, . . . , Sn+1)← Sampler(n,D(i,ai,(resj)j∈[ai−1]))

]
≤ ϵQi

(ℓi, qi,N) .

We conclude that

Pr

∃ i ∈ [kFIOP] :

S∗
i ̸= ∅
∧S∗

i ̸= Si

∧VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

≤
∑

i∈[kFIOP]

Pr

S∗
i ̸= ∅
∧S∗

i ̸= Si

∧VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

≤

∑
i∈[kFIOP]

ϵQi
(ℓi, qi,N) .

46

7 State-restoration security of the Funky protocol

Theorem 7.1. Let Q1, . . . ,QkFIOP
be query classes, where Qi = {α : Σℓi → D} has tail error ϵQi

and
solving time tQi

. Consider the following two ingredients.

• FIOP = (P,V) is a public-coin FIOP with query classes Q1, . . . ,QkFIOP
for a relation R with round

complexity kFIOP, alphabet Σ, proof length ℓ, and query complexity q. We denote by ϵSRFIOP and κSR
FIOP the

state-restoration soundness and state-restoration knowledge soundness errors of FIOP, respectively.
• bFC = (bFC.Gen, bFC.Commit,PbFC,VbFC) is a kbFC-round FC scheme with query classes Q1, . . . ,QkFIOP

.
We denote by ϵSRbFC the state-restoration function binding error of bFC.

Then ARG = (G,P,V) := Funky[FIOP, bFC] (Construction 4.1) is a (2kFIOP + 1 + 2kbFC)-message public-
coin interactive argument system for R with state-restoration soundness error ϵSRARG and state-restoration
knowledge soundness error κSR

ARG that satisfy

ϵSRARG(λ, n, s,m, tARG) ≤ ϵSRFIOP(n, s+ λ,mFIOP) +
∑

i∈[kFIOP]

(
ϵSRbFC(λ, ℓi, qi,N+ 1, sbFC,mbFC, tbFC) + ϵQi

(ℓi, qi,N)
)

and

κSR
ARG(λ, n, s,m, tARG) ≤ κSR

FIOP(n, s+ λ,mFIOP) +
∑

i∈[kFIOP]

(
ϵSRbFC(λ, ℓi, qi,N+ 1, sbFC,mbFC, tbFC) + ϵQi

(ℓi, qi,N)
)
,

where
• mFIOP ≤ m+ kFIOP;
• tFIOP ≤ (m+ kFIOP) · (N · (tARG + kFIOP · tVbFC

) + kFIOP · tQ(ℓmax,N · qmax));
• sbFC ≤ s+ log((kFIOP · N+ 1) · (m+ kbFC));
• mbFC ≤ (kFIOP · N+ 1) · (m+ kbFC); and
• tbFC ≤ O(N · (tARG + m̂+ tVbFC

)) + tQ(ℓmax,N · qmax).
Moreover, ARG’s extractor runs in time tESR(λ, n, s,m, tARG) ≤ tESR

(n, sFIOP,mFIOP, tFIOP) + tFIOP.

Corollary 7.2 (negligible regime). Let ARG be defined as in Theorem 7.1. Assume that:
• ϵSRbFC(λ, ℓ, L, sbFC,mbFC, tbFC) = negl(λ) when ℓ, L, sbFC,mbFC, tbFC are polynomials in λ;
• for every polynomial p there is a polynomial p′ such that ϵQi

(ℓ, q,N) = 1/p(λ) for all i ∈ [kFIOP] and
N = p′(λ).

Then, if m, tARG, ℓ, q, kFIOP are polynomials in λ, we have:

ϵSRARG(λ, n, s,m, tARG) ≤ ϵSRFIOP(n, s+ λ,mFIOP) + negl(λ) and

κSR
ARG(λ, n, s,m, tARG) ≤ κSR

FIOP(n, s+ λ,mFIOP) + negl(λ) .

Proof. Suppose kFIOP = p1(λ) for some polynomial p1. Let p2(λ) be an arbitrary polynomial. Choose N =
poly(λ) such that ϵQi

(ℓ, q,N) ≤ 1
2p1(λ)p2(λ)

for all i ∈ [kFIOP]. Hence, mbFC = poly(λ) and tbFC = poly(λ).
Therefore,

ϵSRARG(λ, n, s,m, tARG) ≤ ϵSRFIOP(n, s+ λ,mFIOP) + negl(λ) +
1

2p2(λ)

< ϵSRFIOP(n, s+ λ,mFIOP) + negl(λ) +
1

p2(λ)
.

Since p2 is an arbitrary polynomial, we conclude that

ϵSRARG(λ, n, s,m, tARG) ≤ ϵSRFIOP(n, s+ λ,mFIOP) + negl(λ) .

An analogous argument holds for κSR
ARG.

47

7.1 Construction of the FIOP state-restoration adversary

We construct an FIOP state-restoration adversary P̃SR we use in the proof of Theorem 7.1 using the argument
state-restoration adversary P̃SR.

Construction 7.3. Let D be the auxiliary input distribution for ARG. The auxiliary input distribution D for
FIOP is defined as follows.

D:
1. Compute pp← G(1λ, n).
2. Sample ai← D.
3. Output ai := (pp, ai).

Construction 7.4. The FIOP state-restoration prover P̃SR is defined as follows.

P̃SR(ai):
1. Parse ai as (pp, ai).
2. Simulate SRGame with P̃SR(pp, ai) as follows.

(a) For every i ∈ [k], initialize an empty partial function rndi : {0, 1}∗ → {0, 1}ri .
(b) For a ∈ [m̂], when P̃SR makes its a-th move mva:

i. If mva has the form (x′, ((cm′
j , σ

′
j))j∈[i]) for some i ∈ [kFIOP]:

A. If rndi(mva) = ⊥:

– Run (Π̃
(a)
j)j∈[i] := R

P̃SR(pp,ai)
m (a, (resi)i∈[a−1]) (Construction 6.2).

– For every j ∈ [i], set the FIOP salt string γj := (cm′
j , σ

′
j).

– Make the FIOP move (x′, (Π̃
(a)
j)j∈[i], (γj)j∈[i]) in FIOPSRGame to get an answer ρa.

– Set rndi(mva) := ρa.
B. Answer mv with rndi(mv).

ii. Otherwise, mva has the form

(x′, ((cm′
u, σ

′
u))u∈[kFIOP], ((Q

′
u,β

′
u))u∈[kFIOP], ((pm

′
i,u, η

′
i,u))i∈[kFIOP],u∈[j]) for some j ∈ [kbFC] .

A. If rndkFIOP+j(mva) = ⊥, sample ρ ∈ {0, 1}rkFIOP+j and set rndkFIOP+j(mva) := ρ.
B. Set (Π̃(a)

i)i∈[round(mva)] := ⊥ and answer mva with rndkFIOP+j(mva).
3. Let trSR be the move-response trace of SRGame and let the final output of P̃SR be:

(x, ((cmi, σi))i∈[kFIOP], ((Qi,βi))i∈[kFIOP], ((pmi,j , ηi,j))i∈[kFIOP],j∈[kbFC]) .

4. Run (Π̃i)i∈[kFIOP] ← R
(
trSR, (x, ((cmi, σi))i∈[kFIOP]), (Π̃

(a)
i)a∈[m̂],i∈[round(mva)]

)
.

5. For every i ∈ [kFIOP], set the FIOP salt string γi := (cmi, σi).
6. Output (x, (Π̃i)i∈[kFIOP], (γi)i∈[kFIOP]).

We compute the efficiency parameters for P̃SR.

• Salt size sFIOP of P̃SR. Salt strings are used in Item 2(b)iA and the salt size sFIOP is at most s+ λ.

• Move budget mFIOP. When P̃SR makes a move of the form (x′, ((cm′
j , σ

′
j))j∈[i]) for some i ∈ [k], P̃SR may

make a move in FIOPSRGame (see Item 2(b)iA). Hence the move budget mFIOP is at most m+ kFIOP.

• Running time tFIOP. When P̃SR makes a move of the form (x′, ((cm′
j , σ

′
j))j∈[i]) for some i ∈ [k], P̃SR may

run the reductor Rm (Item 2(b)iA). From Construction 6.2, the running time of P̃SR is at most

tFIOP ≤ (m+ kFIOP) · (N · (tARG + kFIOP · tVbFC
) + kFIOP · tQ(ℓmax,N · qmax)) .

48

7.2 State-restoration soundness

We wish to upper-bound the following expression:

Pr

|x| ≤ n
∧x /∈ L(R)

∧V

 pp,x, (cmi)i∈[kFIOP],(
(Qi,βi)

)
i∈[kFIOP]

, (ρi)i∈[kFIOP],

((pmi,j , vmi,j))i∈[kFIOP],j∈[kbFC]

 = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
rnd := (rndi)i∈[kFIOP+kbFC] ← U((ri)i∈[kFIOP+kbFC]) x,

(
(cmi, σi)

)
i∈[kFIOP]

,
(
(Qi,βi)

)
i∈[kFIOP]

,

((pmi,j , ηi,j))i∈[kFIOP],j∈[kbFC],

(ρi)i∈[kFIOP], (vmi,j)i∈[kFIOP],j∈[kbFC]

trSR←−− SRGame(s, rnd, P̃SR, pp, ai)

.

(12)
We augment the experiment in Equation 12 by running Rm (Construction 6.2) for every a ∈ [m̂] and R as
follows:

pp← G(1λ, n)
ai← D
rnd := (rndi)i∈[kFIOP+kbFC] ← U((ri)i∈[kFIOP+kbFC]) x,

(
(cmi, σi)

)
i∈[kFIOP]

,
(
(Qi,βi)

)
i∈[kFIOP]

,

((pmi,j , ηi,j))i∈[kFIOP],j∈[kbFC],

(ρi)i∈[kFIOP], (vmi,j)i∈[kFIOP],j∈[kbFC]

 trSR←−− SRGame(s, rnd, P̃SR, pp, ai)

For a ∈ [m̂] :
(
Π̃

(a)
i

)
i∈[round(mva)]

← R
P̃SR(pp,ai)
m (a, (resi)i∈[a−1])

(Π̃i)i∈[kFIOP] ← R
(
trSR, (x, ((cmi, σi))i∈[kFIOP]), (Π̃

(a)
i)a∈[m̂],i∈[round(mva)]

)

.

Throughout the proof, probabilities are with respect to the above experiment unless stated otherwise.
Note that (x,

(
(cmi, σi)

)
i∈[kFIOP]

) is fully contained in trSR. By the law of total probability,

Pr

|x| ≤ n
∧x /∈ L(R)

∧V

 pp,x, (cmi)i∈[kFIOP],(
(Qi,βi)

)
i∈[kFIOP]

, (ρi)i∈[kFIOP],

((pmi,j , vmi,j))i∈[kFIOP],j∈[kbFC]

 = 1

= Pr

|x| ≤ n
∧x /∈ L(R)

∧V([Qi,βi])i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧

 ∀ i ∈ [kFIOP] :

VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

≤ Pr

|x| ≤ n
∧x /∈ L(R)

∧V(Π̃i)i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧V([Qi,βi])i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧

 ∀ i ∈ [kFIOP] :

VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

+ Pr

|x| ≤ n
∧x /∈ L(R)

∧V(Π̃i)i∈[kFIOP](x; (ρi)i∈[kFIOP]) ̸= 1

∧V([Qi,βi])i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧

 ∀ i ∈ [kFIOP] :

VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

.

49

We bound the latter term and then the former term.

Bound from security reduction. According to Lemma 6.1,

Pr

|x| ≤ n
∧x /∈ L(R)

∧V(Π̃i)i∈[kFIOP](x; (ρi)i∈[kFIOP]) ̸= 1

∧V([Qi,βi])i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧

 ∀ i ∈ [kFIOP] :

VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

≤ Pr

V(Π̃i)i∈[kFIOP](x; (ρi)i∈[kFIOP]) ̸= 1

∧V([Qi,βi])i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧

 ∀ i ∈ [kFIOP], α ∈ Qi,

VbFC

(
pp, cmi, α, β

(α)
i ,

((pmi,j , vmi,j))j∈[kbFC]

)
= 1

≤

∑
i∈[kFIOP]

(
ϵSRbFC(λ, ℓi, qi,N+ 1, sbFC,mbFC, tbFC) + ϵQi

(ℓi, qi,N)
)
.

Bound from FIOP state-restoration soundness. Let D be as in Construction 7.3 and let P̃SR be the FIOP
state-restoration adversary in Construction 7.4. According to Definition 3.15,

Pr

|x| ≤ n
∧x /∈ L(R)

∧V(Π̃i)i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧V([Qi,βi])i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧

 ∀ i ∈ [kFIOP] :

VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

≤ Pr

 |x| ≤ n
∧x /∈ L(R)

∧V(x, (Π̃i)i∈[kFIOP], (ρi)i∈[kFIOP]) = 1

∣∣∣∣∣∣∣∣
ai← D
rndFIOP := (rndFIOP,i)i∈[kFIOP] ← U((rFIOP,i)i∈[kFIOP])

(x, (Π̃i)i∈[kFIOP], (γi)i∈[kFIOP], (ρi)i∈[kFIOP])

← FIOPSRGame(sFIOP, rndFIOP, P̃
SR,ai)

≤ ϵSRFIOP(n, sFIOP,mFIOP) .

50

7.3 State-restoration knowledge soundness

We wish to upper-bound the following expression:

Pr

|x| ≤ n
∧ (x,w) /∈ R

∧V

 pp,x, (cmi)i∈[kFIOP],(
(Qi,βi)

)
i∈[kFIOP]

, (ρi)i∈[kFIOP],

((pmi,j , vmi,j))i∈[kFIOP],j∈[kbFC]

 = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, n)
ai← D
rnd := (rndi)i∈[kFIOP+kbFC] ← U((ri)i∈[kFIOP+kbFC]) x,

(
(cmi, σi)

)
i∈[kFIOP]

,
(
(Qi,βi)

)
i∈[kFIOP]

,

((pmi,j , ηi,j))i∈[kFIOP],j∈[kbFC],

(ρi)i∈[kFIOP], (vmi,j)i∈[kFIOP],j∈[kbFC]

trSR←−− SRGame(s, rnd, P̃SR, pp, ai)

w← E P̃
SR(pp,ai)

SR

x,
(
(cmi, σi)

)
i∈[kFIOP]

,(
(Qi,βi)

)
i∈[kFIOP]

,

((pmi,j , ηi,j))i∈[kFIOP],j∈[kbFC],

(ρi)i∈[kFIOP], (vmi,j)i∈[kFIOP],j∈[kbFC],

trSR

.

(13)
We augment the experiment in Equation 13 by running Rm (Construction 6.2) for every a ∈ [m̂] and R

as follows:

pp← G(1λ, n)
ai← D
rnd := (rndi)i∈[kFIOP+kbFC] ← U((ri)i∈[kFIOP+kbFC]) x,

(
(cmi, σi)

)
i∈[kFIOP]

,
(
(Qi,βi)

)
i∈[kFIOP]

,

((pmi,j , ηi,j))i∈[kFIOP],j∈[kbFC],

(ρi)i∈[kFIOP], (vmi,j)i∈[kFIOP],j∈[kbFC]

 trSR←−− SRGame(s, rnd, P̃SR, pp, ai)

w← E P̃
SR(pp,ai)

SR

 x,
(
(cmi, σi)

)
i∈[kFIOP]

,
(
(Qi,βi)

)
i∈[kFIOP]

,

((pmi,j , ηi,j))i∈[kFIOP],j∈[kbFC],

(ρi)i∈[kFIOP], (vmi,j)i∈[kFIOP],j∈[kbFC], tr
SR

For a ∈ [m̂] :

(
Π̃

(a)
i

)
i∈[round(mva)]

← R
P̃SR(pp,ai)
m (a, (resi)i∈[a−1])

(Π̃i)i∈[kFIOP] ← R
(
trSR, (x, ((cmi, σi))i∈[kFIOP]), (Π̃

(a)
i)a∈[m̂],i∈[round(mva)]

)

.

Throughout the proof, probabilities are with respect to the above experiment unless stated otherwise.
Note that (x,

(
(cmi, σi)

)
i∈[kFIOP]

) is fully contained in trSR. By the law of total probability,

Pr

|x| ≤ n
∧ (x,w) /∈ R

∧V

 pp,x, (cmi)i∈[kFIOP],(
(Qi,βi)

)
i∈[kFIOP]

, (ρi)i∈[kFIOP],

((pmi,j , vmi,j))i∈[kFIOP],j∈[kbFC]

 = 1

= Pr

|x| ≤ n
∧ (x,w) /∈ R

∧V([Qi,βi])i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧

 ∀ i ∈ [kFIOP] :

VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

51

≤ Pr

|x| ≤ n
∧ (x,w) /∈ R

∧V(Π̃i)i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧V([Qi,βi])i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧

 ∀ i ∈ [kFIOP] :

VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

+ Pr

|x| ≤ n
∧ (x,w) /∈ R

∧V(Π̃i)i∈[kFIOP](x; (ρi)i∈[kFIOP]) ̸= 1

∧V([Qi,βi])i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧

 ∀ i ∈ [kFIOP] :

VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

.

We bound the latter term and then the former term.

Bound from security reduction. According to Lemma 6.1:

Pr

|x| ≤ n
∧ (x,w) /∈ R

∧V(Π̃i)i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧V([Qi,βi])i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧

 ∀ i ∈ [kFIOP] :

VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

≤ Pr

V(Π̃i)i∈[kFIOP](x; (ρi)i∈[kFIOP]) ̸= 1

∧V([Qi,βi])i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧

 ∀ i ∈ [kFIOP] :

VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

≤

∑
i∈[kFIOP]

(
ϵSRbFC(λ, ℓi, qi,N+ 1, sbFC,mbFC, tbFC) + ϵQi

(ℓi, qi,N)
)
.

Bound from FIOP state-restoration knowledge soundness. Let D be defined as in Construction 7.3, P̃SR

be the FIOP state-restoration adversary constructed in Construction 7.4.
We construct the state-restoration knowledge extractor ESR for ARG.

Construction 7.5. Let ESR be the state-restoration extractor for FIOP. The state-restoration knowledge
extractor ESR for ARG is as follows.

E P̃
SR(pp,ai)

SR (x, ((cmi, σi))i∈[kFIOP], ((Qi,βi))i∈[kFIOP], (ρi)i∈[kFIOP], (pmi,j , ηi,j , vmi,j)i∈[kFIOP],j∈[kbFC], tr
SR):

1. Set ai := (pp, ai).
2. Construct P̃SR using P̃SR as in Construction 7.4.
3. Simulate FIOPSRGame with P̃SR(ai) as follows.
4. Whenever P̃SR makes a move of the form (x′, (Π̃

(a)
j)j∈[i], (γj)j∈[i]) for some i ∈ [k]:

(a) Parse (γj)j∈[i] as ((cm′
j , σ

′
j))j∈[i].

(b) Set mv′ := (x′, ((cm′
j , σ

′
j))j∈[i]).

(c) Answer mv′ with the corresponding response in trSR.
5. Let trSRFIOP be the move-response trace of FIOPSRGame and let the final output of P̃SR be:

(x, (Π̃i)i∈[kFIOP], (γi)i∈[kFIOP], (ρi)i∈[kFIOP]) .

52

6. Compute w← E
P̃SR(ai)
SR (x, (Π̃i)i∈[kFIOP], (γi)i∈[kFIOP], (ρi)i∈[kFIOP], tr

SR
FIOP).

7. Output w.

ESR simulates the FIOP state-restoration game FIOPSRGame with P̃SR and runs the FIOP state-restoration
extractor ESR. The running time of ESR is at most

tESR(λ, n, s,m, tARG) ≤ tESR
(n, sFIOP,mFIOP, tFIOP) + tFIOP .

According to Definition 3.16,

Pr

|x| ≤ n
∧ (x,w) /∈ R

∧V(Π̃i)i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧V([Qi,βi])i∈[kFIOP](x; (ρi)i∈[kFIOP]) = 1

∧

 ∀ i ∈ [kFIOP] :

VbFC

(
pp, cmi,Qi,βi,
((pmi,j , vmi,j))j∈[kbFC]

)
= 1

≤ Pr

|x| ≤ n
∧ (x,w) /∈ R

∧V(x, (Π̃i)i∈[kFIOP], (ρi)i∈[kFIOP]) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

ai← D
rndFIOP := (rndFIOP,i)i∈[kFIOP] ← U((rFIOP,i)i∈[kFIOP])

(x, (Π̃i)i∈[kFIOP], (γi)i∈[kFIOP], (ρi)i∈[kFIOP])
trSRFIOP←−−− FIOPSRGame(sFIOP, rndFIOP, P̃

SR,ai)

w← E
P̃SR(ai)
SR (x, (Π̃i)i∈[kFIOP], (γi)i∈[kFIOP], (ρi)i∈[kFIOP], tr

SR
FIOP)

≤ κSR

FIOP(n, sFIOP,mFIOP) .

53

8 Batching and linearization for homomorphic functional commitment schemes

We describe generic FC-to-FC compilers for query classes of interest, and we show that these compilers
preserve the state-restoration function binding property.
Batching messages. We consider the batch-messages query class QBatchMsg[Q, s], where a query α ∈ Q is
applied to a batch of messages.

Definition 8.1. Let Q ⊆ {α : Σℓ → D} be a query class, and let s ∈ N. The batched-messages query class
QBatchMsg[Q, s] with message length s · ℓ is the class of all queries α ∈ Q applied to s subvectors of size ℓ, i.e.,

QBatchMsg[Q, s] :=
{
α′ : Σs·ℓ → Ds

∣∣∣ ∃α ∈ Q : s.t. α′(Π) = (α((Π[iℓ+ 1], . . . ,Π[iℓ+ ℓ])))i∈{0,··· ,s−1}

}
.

Every suitably homomorphic functional commitment FC for some query class Q gives rise to a natural
(optimized) batched functional commitment BatchMsg[FC] for the batched query class QBatchMsg[Q, s], we
give a detailed construction in Construction 8.6. We show that if FC is state-restoration function binding,
then so is BatchMsg[FC]:

Lemma 8.2 (state-restoration function binding of BatchMsg[FC, s]). Let FC be a non-interactive, triply
homomorphic FC scheme(Definition 8.5) with expected-time function binding error ϵ⋆FC = ϵ⋆FC(λ, ℓ, L, t

⋆
FC).

Then for any batch size s ∈ N, the batch FC scheme BatchMsg[FC, s] for the query class QBatchMsg[Q, s] has
state-restoration function binding error ϵSRFC such that for every security parameter λ ∈ N, message length
ℓ ∈ N, sample set size L ∈ N, salt size sFC ∈ N, move budget mFC ∈ N, circuit size bound tbFC ∈ N,

ϵSRbFC(λ, s · ℓ, L, sFC,mFC, tbFC) ≤ L · (mFC + 1) · s− 1

2λ
+ ϵ⋆FC(λ, ℓ, L, t

⋆
FC) ,

where t⋆FC ≤ L(mFC + 1)(s− 1) (tbFC + poly(s · ℓ)) + s · tQ(ℓ, L) + L · (s3 + s2).

Linearization trick. We consider the query class QStruct[Q,m, (hk)k∈[n]] (Definition 5.9), where queries
are non-linear combinations (parametrized by (hk)k∈[n]) of the outputs of queries α in the base query class
Q. Such query classes arise in optimized argument constructions such as Plonk [GWC19].

Given a batch functional commitment bFC, we construct an efficient functional commitment Lin[bFC]
for QStruct[Q,m, (hk)k∈[n]] in Construction 8.8 by applying the linearization trick, and we show that if bFC is
state-restoration function binding, then so is Lin[bFC,m, (hk)k∈[n]]:

Lemma 8.3 (state-restoration function binding for linearized FCs). Let bFC be a batch polynomial commit-
ment scheme with state-restoration function binding error ϵSRbFC = ϵSRbFC(λ, (m+ n)ℓ, L, sFC,mFC, tbFC). For any
m ∈ N and public polynomials (hk)k∈[n], the linearized functional commitment scheme linFC[bFC,m, (hk)k∈[n]]
has state-restoration function binding error ϵSRlinFC such that for every security parameter λ ∈ N, polynomial
degree bound D ∈ N, sample set size L ∈ N, and adversary size bound tlinFC ∈ N,

ϵSRlinFC(λ, (m+ n)(D+ 1), L, sFC,mFC, tlinFC) ≤ ϵSRbFC(λ, (m+ 1)(D+ 1), L, sFC,mFC, tbFC) ,

where tbFC ≤ tlinFC.

Remark 8.4. Note that we place no restrictions on the public polynomials (hk)k∈[n] in Definition 5.9
and Lemma 8.3. This is in contrast to previous analyses of the linearization trick [FFR24], which required
the public polynomials to be linearly independent. This restriction is a by-product of requiring extractability
of the commitment scheme; since we merely target function binding, we are able to lift this restriction.

54

8.1 Proof of Lemma 8.2 (batched-messages FC)

Definition 8.5. Let FC be a non-interactive functional commitment scheme for a query set of functions
α ∈ Σℓ → D. Let the query set Q, the evaluation domain D, and the set of proofs P be F-modules. FC is
triply homomorphic if for every cm, aux, aux′, α, β, β′, pf, pf ′:[

FC.Check(ppFC, cm, α, β, pf) = 1
∧FC.Check(ppFC, cm

′, α, β′, pf ′) = 1

]
⇒ FC.Check(ppFC, cm+ cm′, α, β + β′, pf + pf ′) .

Construction 8.6 (FC for batched messages). Let FC be a triply homomorphic functional commitment for
the query class Q. For any s ∈ N, we construct a functional commitment bFC := BatchMsg[FC, s] for the
query class QBatchMsg[Q, s] as follows:

• bFC.Gen(1λ, ℓ, s): Output ppFC ← FC.Gen(1λ, ℓ).

• bFC.Commit(ppFC, f = (fb)b∈[s]):

1. For b ∈ [s]: Compute cmb := FC.Commit(ppFC, fb).
2. Set cm := (cmb)b∈[s].
3. Set aux := f.
4. Output (cm, aux).

• ⟨PbFC(ppFC, cm, aux, α, β),VbFC(ppFC, cm, α, β)⟩
1. Both PbFC and VbFC parse cm as (cmb)b∈s and β as (βb)b∈s.
2. PbFC parses aux as (fb)b∈[s].
3. VbFC sends a random challenge γ ← F to PbFC.
4. PbFC computes pfb ← FC.Open(cmb, fb, α, βb) for all b ∈ [s] and sends pf :=

∑
b∈[s] γ

b−1pfb to VbFC.
5. VbFC outputs FC.Check(ppFC,

∑
b∈[s] γ

b−1cmb, α,
∑

b∈[s] γ
b−1βb, pf)

In order to prove that BatchMsg[FC, s] satisfies state-restoration function binding (Definition 3.25), we
prove that it is s-special function binding (Definition A.1). Lemma 8.2 follows from Lemmas 8.7 and A.2.

Lemma 8.7. Let FC be a functional commitment scheme with function binding error ϵFC = ϵFC(λ, ℓ, L, tFC).
Then for any batch size s ∈ N, BatchMsg[FC, s] has s-special function binding error ϵbSFB = ϵbSFB(λ, ℓ, s ·
L, t⋆bSFB) such that for every security parameter λ ∈ N, message size ℓ ∈ N, sample set size L ∈ N, and
expected adversary size bound t⋆bSFB ∈ N,

ϵbSFB(λ, s · ℓ, L, t⋆bSFB) ≤ ϵFC(λ, ℓ, L, tFC) ,

where tFC ≤ t⋆bSFB + s · tQ(ℓ, L) + L · (s3 + s2).

Proof of Lemma 8.7. Given an s-special function binding adversary AbSFB against bFC, we construct the
following function binding adversary AFC against FC:

AFC(pp, aiFC):
1. Run (cm, ((αi, βi,Ti))i∈[L])← AbSFB(pp, aiFC)
2. If there is no Π such that ∀ i ∈ [L] : αi(Π) = βi, output ⊥.
3. Parse cm as (cmb)b∈[s].
4. For i ∈ [L]:

(a) Parse βi as (βi,b)b∈[s].

55

(b) Parse Ti as verifier challenges (γ(b)i)b∈[s] and final prover messages (pf(b)i)b∈[s].

(c) Compute Vi :=

1 γ
(1)
i · · · (γ

(1)
i)s−1

...
...

. . .
...

1 γ
(1)
i · · · (γ

(s)
i)s−1

.

(d) If Vi is invertible, compute V −1
i =

γ̄i,1,1 · · · γ̄i,1,s−1
...

. . .
...

γ̄i,s,1 · · · γ̄i,s,s

, and output ⊥ otherwise.

(e) Set

pf
′
i,1
...

pf ′i,s

 := V −1
i

pf
(1)
i
...

pf
(s)
i

.

5. For j ∈ [s]:
If there is no Πj such that ∀ i ∈ [L] : αi(Πj) = βi,j , output (cmj , ((αi, βi,j))j∈[L], (pf

′
i,j)i∈[L]).

6. Output ⊥.

Running time. Each iteration of the loop in Step 2 requires s3 + s2 operations (to invert the Vandermonde
matrix and compute a matrix-vector product), and each iteration of the loop in Step 5 requires tQ(ℓ, L)
operations, so AFC runs in expected time at most t⋆bSFB + s · tQ(ℓ, L) + L · (s3 + s2).
Success probability. If AbSFB is successful, AFC does not abort in Step 4d, and for every i ∈ [L] and k ∈ [s],

FC.Check(
∑
b∈[s]

(γ
(k)
i)b−1 · cmb, α,

∑
b∈[s]

(γ
(k)
i)b−1 · β(b)

i , pf
(k)
i) = 1 .

By construction, we have that for all i ∈ [L] and j ∈ [s],∑
k∈[s]

γ̄i,j,k
∑
b∈[s]

(γ
(k)
i)b−1 · cmb = cmj ,

∑
k∈[s]

γ̄i,j,k
∑
b∈[s]

(γ
(k)
i)b−1 · βi,b = βi,j .

By triple homomorphism, this implies that for all i ∈ [L] and j ∈ [s]:

FC.Check(cmj , αi, βi,j , pf
′
i,j)

= FC.Check(
∑
k∈[s]

γ̄i,j,k
∑
b∈[s]

(γ
(k)
i)b−1 · cmb, αi,

∑
k∈[s]

γ̄i,j,k
∑
b∈[s]

(γ
(k)
i)b−1 · βi,b,

∑
k∈[s]

γ̄i,j,k · pf
(k)
i)

= 1 ,

i.e., pf ′i,j is an accepting proof for (cmj , αi, βi,j).
Further, the function binding condition

∄ (Πb)b∈[s] ∈ (Fℓ)s : ∀ i ∈ [L] : ∀ b ∈ [s] : αi(Πb) = βi,b

for bFC implies that the condition in Step 5 is satisfied for at least one j. To see why, assume towards a
contradiction that

¬(∃ j ∈ [s] : ∄Πj : ∀ i ∈ [L] : αi(Πj) = βi,j)

56

≡ ∀ j ∈ [s] : ∃Πj : ∀ i ∈ [L] : αi(Πj) = βi,j

⇒ ∃ (Πb)b∈[s] : ∀ i ∈ [L] : ∀ j ∈ [s] : αi(Πj) = βi,j ,

which contradicts our assumption on the success of AbSFB.

8.2 Proof of Lemma 8.3 (linearization trick)

We recall a generalized formulation of the linearization trick (also known as Maller’s trick) [GWC19]
[LPS24b, Section 4.2], [FFR24]. More specifically, given a batched functional commitment scheme bFC, we
construct a functional commitment scheme Lin[bFC] for QStruct[Q,m, (hk)k∈[n]] (Definition 5.9).

Construction 8.8. Let F be a field, m,n ∈ N, and let Q be a query class over the alphabet Σ with length ℓ.
Further, let bFC be a batch functional commitment for the query class QBatchMsg[Q,m+ 1], where both Σℓ

and the commitment space C are F-modules, and such that (i) batch commitments are done element-wise,
i.e., bFC.Commit(ppFC, (Πb)b∈[s]) = (Commit(ppFC,Πb))b∈[s], and (ii) commitments are homomorphic, i.e.,
∀Π,Π′ : Commit(ppFC,Π+Π′) = Commit(ppFC,Π) + Commit(ppFC,Π

′).
For any public polynomials h1, . . . , hn ∈ F[X1, . . . , Xm]≤Dh , we construct a functional commitment

scheme linFC := Lin[bFC] for the query class QStruct[Q,m, (hk)k∈[n]] as follows:

• linFC.Gen(1λ,m, n, ℓ): Output ppFC ← bFC.Gen(1λ,m+ 1, ℓ).

• linFC.Commit(ppFC,Π):

1. Parse Π as ((fk)k∈[m], (gℓ)ℓ∈[n])
2. For k ∈ [m]: Compute (cmfk , auxfk)← Commit(ppFC, fk).
3. For ℓ ∈ [n]: Compute (cmgℓ , auxgℓ)← Commit(ppFC, gℓ).
4. Output cm := ((cmfk)k∈[m], (cmgℓ)ℓ∈[n]) and aux := ((auxfk)k∈[m], (auxgℓ)ℓ∈[n])

• ⟨PlinFC(ppFC, cm, aux, α, β,Π),VlinFC(ppFC, cm, aux, α, β)⟩:
1. PlinFC and VlinFC both parse β as (β1, . . . , βm, β′).
2. Run ⟨PbFC,VbFC⟩ for the commitment (cmf1 , . . . , cmfm ,

∑
ℓ∈[n] hℓ(β1, . . . , βm) · cmgℓ), the query α,

evaluations (β1, . . . , βm, β′), and for the witness (f1, . . . , fm,
∑

ℓ∈[n] hℓ(β1, . . . , βm) · gℓ).

Proof of Lemma 8.3. Given an adversary P̃SR
linFC against the state-restoration function binding of linFC, we

construct the following state-restoration function binding adversary P̃SR
bFC against bFC.

P̃SR
bFC(ppFC, aiFC) :

1. Simulate FCSRGame for P̃SR
linFC with salt size sFC, public parameters ppFC, and auxiliary input aiFC as

follows. Repeat the following until P̃SR
linFC(ppFC, aiFC) decides to exit the loop:

(a) P̃SR
linFC makes a move (((cmfk)k∈[m], (cmgℓ)ℓ∈[n]), α, (βj)j∈[m+1], (pmj)j∈[i], (ηj)j∈[i]).

(b) Make a move ((cmf1 , . . . , cmfm ,
∑

ℓ∈[n] hℓ(β1, . . . , βm)·cmgℓ), α, (βj)j∈[m+1], (pmj)j∈[i], (ηj)j∈[i])

in P̃SR
bFC’s FCSRGame to get vmi.

(c) Answer P̃SR
linFC’s move with vmi.

2. Get the FCSRGame output (cm, ((αi, βi, ((pmi,j , ηi,j , vmi,j))j∈[kFC]))i∈[L])← P̃
SR
linFC(ppFC, aiFC).

3. Parse cm as (cmf1 , . . . , cmfm , cmg1 , . . . , cmgn) and βi as (βi,1, . . . , βi,m, β′
i) for all i ∈ [L].

4. Set cm′ := (cmf1 , . . . , cmfm ,
∑

ℓ∈[n] hℓ(β1, . . . , βm) · cmgℓ).
5. Output (cm′, ((αi, (βi,1, . . . , βi,m, β′

i), ((pmi,j , ηi,j , vmi,j))j∈[kFC]))i∈[L])

57

Success probability. If P̃SR
linFC wins the state-restoration function binding game, then

∀ f1, . . . , fm, g1, . . . , gn ∈ Σℓ : ∃ i ∈ [L] :
∑
k∈[n]

hk(αi(f1), . . . , αi(fm)) · αi(gk) ̸= βi , and

VbFC(ppFC, cm
′, αi, βi, ((pmi,j , vmi,j))j∈[kFC]) = VlinFC(ppFC, cm, αi, βi, ((pmi,j , vmi,j))j∈[kFC]) = 1 for all i ∈ [L].

We distinguish two cases:

1. ∃ f1, . . . , fm ∈ Σℓ : ∀ i ∈ [L] : ∀ k ∈ [n] : αi(fk) = βi,k, i.e., there exist fk which are consistent with all
query-evaluation pairs. This implies that for these f1, . . . , fm,

∀ g1, . . . , gn ∈ Σℓ : ∃ i ∈ [L] :
∑
k∈[n]

hk(αi(f1), . . . , αi(fm)) · αi(gk) ̸= βi .

Since ∀ i ∈ [L] : ∀ k ∈ [n] : αi(fk) = βi,k, this is equivalent to

∀ g1, . . . , gn ∈ Σℓ : ∃ i ∈ [L] :
∑
k∈[n]

hk(βi,1, . . . , βi,m) · αi(gk) ̸= βi ,

which directly implies the function binding condition for the batch FC (since the last function in the batch
will not be consistent with all query-evaluation pairs).

2. ∀ f1, . . . , fm ∈ Σℓ : ∃ i ∈ [L] : ∃ k ∈ [n] : αi(fk) ̸= βi,k. This also implies the function binding condition
for the batch FC, since the sub-batch containing the first m entries will satisfy the function binding
condition.

58

9 Application: variants of the KZG polynomial commitment scheme

We apply the generic results from Section 8 to variants of the KZG polynomial commitment scheme [KZG10].
In Section 9.1, we show that the KZG polynomial commitment scheme KZG is function binding under the
falsifiable ARSDH assumption.

Lemma 9.1 (KZG is function binding). Suppose the ARSDH assumption (Definition 9.5) holds with error
ϵARSDH = ϵARSDH(λ,D, tARSDH). The KZG polynomial commitment scheme (Construction 9.4) has function
binding error ϵFC such that for every security parameter λ ∈ N, polynomial degree bound D ∈ N, sample set
size L ∈ N, and adversary size bound tFC ∈ N,

ϵFC(λ,D+ 1, L, tFC) ≤ ϵARSDH(λ,D, tARSDH) ,

where tARSDH ≤ tFC + 2L2 + L+ D(L+ 8) + 2(D+ 1)2.

In Section 9.2, we then show that the batched PC bKZG = BatchMsg[KZG, s] is state-restoration
function binding under the same assumption.

Corollary 9.2 (Batched KZG is state-restoration function binding). Suppose the expected-time ARSDH
assumption (Definition 9.7) holds with error ϵ⋆ARSDH = ϵ⋆ARSDH(λ,D, t

⋆
ARSDH). Then for any batch size s ∈ N, the

batch polynomial commitment scheme bKZG = BatchMsg[KZG, s] has state-restoration function binding
error ϵSRFC such that for every security parameter λ ∈ N, polynomial degree bound D ∈ N, sample set size
L ∈ N, and adversary size bound tbFC ∈ N,

ϵSRbFC(λ, (D+ 1)s, L, sFC,mFC, tbFC) ≤ L · (mFC + 1) · s− 1

2λ
+ ϵ⋆ARSDH(λ,D, t

⋆
ARSDH) ,

where t⋆ARSDH ≤ L(mFC + 1)(s− 1) (tbFC + poly(s · D, L)) + s · ((D+ 1)2 + (D+ 1) · L) + L · (s3 + s2).

In Section 9.3, we show that the linearized KZG functional commitment linKZG = linFC[bKZG,m, (hk)k∈[n]]
(as used in the Plonk construction [GWC19]) is state-restoration function binding.

Corollary 9.3 (Linearized KZG is state-restoration function binding). Suppose the expected-time ARSDH as-
sumption (Definition 9.7) holds with error ϵ⋆ARSDH = ϵ⋆ARSDH(λ,D, t

⋆
ARSDH). Then for any m ∈ N and public poly-

nomials (hk)k∈[n], the linearized KZG functional commitment scheme linKZG = linFC[bKZG,m, (hk)k∈[n]]
(Construction 8.8) has state-restoration function binding error ϵSRFC such that for every security parameter
λ ∈ N, polynomial degree bound D ∈ N, sample set size L ∈ N, and adversary size bound tlinFC ∈ N,

ϵSRlinFC(λ, (m+ n)(D+ 1), L, sFC,mFC, tlinFC) ≤ L · (mFC + 1) · m
2λ

+ ϵ⋆ARSDH(λ,D, t
⋆
ARSDH) ,

where

t⋆ARSDH ≤ L(mFC+1)·m·(tlinFC+poly((m+1)D, L))+(m+1)·((D+1)2+(D+1)·L)+L·((m+1)3+(m+1)2) .

9.1 Proof of Lemma 9.1 (KZG)

Construction 9.4 (KZG). The FC scheme KZG for the query class QUniPoly is defined as follows.

• KZG.Gen(1λ,D):

59

1. Choose (p,G1,G2, [1]1, [1]2,GT , e) where G1,G2,GT are additive groups of prime order p, [1]1 is a
generator of G1, [1]2 is a generator of G2, and e : G1 ×G2 → GT is a bilinear pairing.

2. Sample τ ← Zp \ {0}.
3. Output ppPC := ([1]1, [τ]1, [τ

2]1, . . . , [τ
D]1, [1]2, [τ]2).

• KZG.Commit(ppPC, p):

1. Parse ppPC as ([1]1, [τ]1, [τ2]1, . . . , [τD]1, [1]2, [τ]2).
2. Compute cm := [p(τ)]1.
3. Set aux := p.
4. Output (cm, aux).

• KZG.Open(ppPC, aux, α, β):

1. Parse ppPC as ([1]1, [τ]1, [τ2]1, . . . , [τD]1, [1]2, [τ]2) and aux as p.
2. Compute pα(X) := p(X)−β

X−α .
3. Compute pf := [pα(τ)]1.
4. Output pf.

• KZG.Check(ppPC, cm, α, β, pf):

1. Parse ppPC as ([1]1, [τ]1, [τ2]1, . . . , [τD]1, [1]2, [τ]2).
2. Check that e(cm− [β]1, [1]2) = e(pf, [τ − α]2).

We reduce the function binding property of the KZG PCS to the following Diffie-Hellman-type assumption
over bilinear groups.

Definition 9.5 (ARSDH assumption [LPS24a]). Let F be a field and ZS(X) :=
∏

s∈S(X− s) for S ⊆ F, the
adaptive rational strong Diffie-Hellman (ARSDH) holds with error ϵARSDH if for every security parameter
λ, adversary size bound tARSDH, tARSDH-size circuit AARSDH, and tuple (p,G1,G2, [1]1, [1]2,GT , e) where
G1,G2,GT are groups of prime order p(λ), [1]1 is a generator of G1, [1]2 is a generator of G2, and
e : G1 ×G2 → GT is a bilinear pairing,

Pr

 S ⊆ F, |S| = D+ 1
∧h1, h2 ∈ G1, h1 ̸= [0]1
∧h2 = 1

ZS(τ)
· h1

∣∣∣∣∣∣ τ ← Zp \ {0}
(S, h1, h2)← AARSDH([1]1, [τ]1, [τ

2]1, . . . , [τ
D]1, [1]2, [τ]2)

≤ ϵARSDH(λ,D, tARSDH) .

Proof of Lemma 9.1. Fix the security parameter λ ∈ N, polynomial degree bound D ∈ N, sample set
size L ∈ N, and adversary size bound tFC ∈ N. For every auxiliary input distribution DFC and tFC-size
adversary AFC against function binding, consider the following adversary AARSDH against ARSDH. Below,
Lagrange({(xi, yi)}i∈[n]) denotes the unique polynomial of degree at most n− 1 that interpolates all points
{(xi, yi)}i∈[n].

AARSDH([1]1, [τ]1, [τ
2]1, . . . , [τ

D]1, [1]2, [τ]2):
1. Sample aiFC ← DFC and set ppPC := ([1]1, [τ]1, [τ

2]1, . . . , [τ
D]1, [1]2, [τ]2).

2. Run (cm, {(αi, βi, pfi)}i∈[L])← AFC(ppPC, aiFC).
3. If there exists i, j ∈ [L] such that αi = αj , βi ̸= βj :

(a) Choose S to be a size-(D+ 1) subset of F such that αi ∈ S and [ZS(τ)]1 ̸= [0]1.

60

(b) Set h1 := [ZS\{αi}(τ)]1.

(c) Set h2 :=
pfi−pfj
βj−βi

.
(d) Output (S, h1, h2).

4. If deg(Lagrange({(αi, βi)}i∈[L])) > D:
(a) Let L0 be the interpolation of the first D+ 1 distinct points, denoted without loss of generality as
{αi}i∈[D+1].

(b) Find (αk, βk) for k ∈ {D+ 2, . . . , L} such that βk ̸= L0(αk).
(c) Sample S := {α′

i}i∈[D+1] from {αi}i∈[D+1]∪{k} such that [Lagrange({(α, β[α])}α∈S)]1 ̸= cm.
(d) Set L(X) := Lagrange({α′

i, β
′
i}i∈[D+1]).

(e) Set h1 := cm− [L(τ)]1.
(f) Compute di :=

1
ZS\{α′

i
}(α

′
i)

for each i ∈ [D+ 1].

(g) Set h2 :=
∑D+1

i=1 di · pf ′i.
(h) Output (S, h1, h2).

5. Otherwise, output (⊥,⊥,⊥).

Running time. Step 3 takes time at most L2, Step 3a takes time at most 2D, Step 3b takes time at most D,
Step 4 takes time L2, Step 4a takes time L + (D + 1)2, Step 4b takes time D · (L − D − 1), Step 4c takes
time at most 2D+ (D+ 1)2, Step 4d takes time (D+ 1)2, Step 4e takes time D, and Step 4g takes time 2D.
Hence, the time complexity tARSDH ≤ tFC + 2L2 + L+ D · (L+ 8) + 2(D+ 1)2.

Success probability. When AFC is successful, there are two cases:

1. There are two valid openings (α, βi, pfi) and (α, βj , pfj) where βi ̸= βj . Step 3 in AARSDH finds the two

inconsistent openings and compute h2 :=
pfi−pfj
βj−βi

= [1
τ−α]1, which implies that h2 = [1

τ−α]1 =
1

ZS(τ)
·h1.

2. deg(Lagrange({(αi, βi)}i∈[L])) > D. According to the construction of AARSDH, the following holds:

• There must exist (αk, βk) for some k ∈ {D + 2, . . . , L} such that βk ̸= L0(αk), because otherwise
deg(Lagrange({(αi, βi)}i∈[L])) = deg(L0) ≤ D.

• deg(Lagrange({(αi, βi)}i∈[D+1]∪{k})) ≥ D + 1, because otherwise, by the fundamental theorem of
algebra, we would have Lagrange({(αi, βi)}i∈[D+1]∪{k}) = L0.

• For all size-(D+ 1) subsets of {(αi, βi)}i∈[D+1]∪{k}, their interpolations are pairwise distinct, because
otherwise deg(Lagrange({(αi, βi)}i∈[D+1]∪{k})) ≤ D.

Therefore, there are at least D+1 among D+2 possible subsets such that the corresponding interpolation
is not consistent with cm, which implies that h1 = cm − [L(τ)]1 ̸= [0]1, and h2 =

∑D+1
i=1 di · pf ′i =

1
ZS(τ)

· (cm− [L(τ)]1) =
1

ZS(τ)
· h1.

9.2 Proof of Corollary 9.2 (batch KZG)

For KZG, the alphabet Σ is F, and the space of commitments and proofs is G1. Further, KZG is triply homo-
morphic, and can thus be compiled into a batch polynomial commitment scheme bKZG = BatchMsg[KZG, s]
using Construction 8.6. Thus, Corollary 9.2 follows from Lemmas 8.2 and 9.1.

Lemma 9.6. KZG is triply homomorphic (Definition 8.5).

61

Proof. Fix ppFC, fix cm, cm′ ∈ G1, α, β, β′ ∈ F, and pf, pf ′ ∈ G1 such that FC.Check(ppFC, cm, α, β, pf) =
1 and FC.Check(ppFC, cm

′, α, β′, pf ′) = 1. Then

e((cm+ cm′)− [β + β′]1, [1]2)− e(pf + pf ′, [τ − α]2)

= e(cm− [β]1, [1]2) + e(cm′ − [β′]1, [1]2)− e(pf, [τ − α]2)− e(pf ′, [τ − α]2)

= 0 .

Definition 9.7 (Expected-time ARSDH assumption). Let F be a field and ZS(X) :=
∏

s∈S(X − s) for
S ⊆ F, the expected-time adaptive rational strong Diffie-Hellman (ARSDH) holds with error ϵ⋆ARSDH if
for every security parameter λ, adversary runtime bound t⋆ARSDH, adversary A⋆

ARSDH running in expected time
t⋆ARSDH, and tuple (p,G1,G2, [1]1, [1]2,GT , e) where G1,G2,GT are groups of prime order p(λ), [1]1 is a
generator of G1, [1]2 is a generator of G2, and e : G1 ×G2 → GT is a bilinear pairing,

Pr

 S ⊆ F, |S| = D+ 1
∧h1, h2 ∈ G1, h1 ̸= [0]1
∧h2 = 1

ZS(τ)
· h1

∣∣∣∣∣∣ τ ← Zp \ {0}
(S, h1, h2)← A⋆

ARSDH([1]1, [τ]1, [τ
2]1, . . . , [τ

D]1, [1]2, [τ]2)

≤ ϵ⋆ARSDH(λ,D, t

⋆
ARSDH) .

Remark 9.8. [LPS24b, Section 4.1] considers a slightly different construction with a two-round protocol
(an initial round in which the verifier sends the evaluation point), and where the evaluation point α must
be chosen uniformly at random in F. In our case, we consider a one-round protocol and do not restrict the
distribution of the evaluation point (which allows us to compile the batch KZG FC with any FIOP).

9.3 Proof of Corollary 9.3 (linearized KZG)

The bKZG batch polynomial commitment scheme for the query class QBatchMsg[QUniPoly,m+ 1] satisfies the
conditions required by Construction 8.8 (the message space Fℓ and the commitment space G1 are F-modules,
batch commitments are done element-wise, and commitments are homomorphic). bKZG thus gives rise to the
linearized KZG functional commitment scheme linKZG, and Corollary 9.3 follows directly from Lemma 8.3
and Corollary 9.2.

62

A Special function binding

We define the notion of special function binding (a function binding analogue of special soundness), and
show that it implies state-restoration function binding. Special function binding can be seen as a weaker
version of standard special soundness: namely, if an FC satifies special function binding, then it is infeasible
for an adversary to produce accepting trees of transcripts for a commitment and a set of query-answer pairs
that are not consistent with a message. Special function binding is useful to show state-restoration function
binding for interactive functional commitment schemes when some rewinding is needed.

Definition A.1 (Special function binding). A FC scheme with a kFC-round opening protocol has expected
(a1, . . . , akFC)-special function binding error ϵFC if for every security parameter λ ∈ N, message length
ℓ ∈ N, number of samples L ∈ N, auxiliary input distribution DFC, expected adversary size bound t⋆SFB, and
adversary ASFB with expected runtime t⋆SFB,

Pr

 ∀ i ∈ [L] : Ti is a (a1, . . . , akFC)-tree for (cm, αi, βi)

∧
(
∀ i ∈ [L] : VFC(ppFC, cm, αi, βi, ((pmi,j , vmi,j))j∈[kFC]) = 1

∧∄Π s.t. ∀ i ∈ [L], αi(Π) = βi

) ∣∣∣∣∣∣∣∣
ppFC ← FC.Gen(1λ, ℓ)
aiFC ← DFC

(cm, ((αi, βi,Ti))i∈[L])

← ASFB(ppFC, aiFC)

≤ ϵSFB(λ, ℓ, L, t

⋆
SFB) .

Lemma A.2 (Special function binding implies state-restoration function binding). If the commitment scheme
FC with a kFC-round opening protocol and randomness complexities (rFC,1, . . . rFC,kFC) has expected-time
(a1, . . . , akFC)-special function binding error ϵSFB, then FC has state-restoration function binding error

ϵSRFC(λ, ℓ, L, sFC,mFC, t
SR
FC) ≤ L · (mFC + 1) ·

 ∑
i∈[kFC]

ai − 1

2rFC,i

+ ϵSFB(λ, ℓ, L, t
⋆
SFB) ,

where t⋆SFB ≤ L · (mFC + 1)
(∏

i∈[kFC](ai − 1)
)
(tSRFC + poly(ℓ)).

To prove Lemma A.2, we will make use of the following lemma.

Lemma A.3. For any kFC-round interactive argument (PFC,VFC) with randomness complexities (rFC,1, . . . , rFC,kFC),
for any move budget mFC ∈ N, and for any tree arity (a1, . . . , akFC) ∈ NkFC , there exists an algorithm
SRTreeFinder with rewinding access to the prover such that for every malicious prover P̃PC, commitment cm,
point α and evaluation β,

Pr

T is not an (a1, . . . , akFC)-tree for (cm, α, β)
∧VFC(cm, α, β, (pmj)j∈[kFC], (vmj)j∈[kFC]) = 1

∣∣∣∣∣∣∣∣∣∣∣

aiFC ← DFC

For j ∈ [kFC] : rndFC,j ← U(rFC,j)
((cm, α, β), ((pmj , ηj , vmj))j∈[kFC])

tr←− SRGame(sFC, rndFC, P̃PC, ppFC, aiFC)

T← SRTreeFinderP̃PC((cm, α, β), ((pmj , ηj , vmj))j∈[kFC], tr)

≤ (mFC + 1) ·

 ∑
i∈[kFC]

ai − 1

2rFC,i

 ,

where SRTreeFinder makes (mFC + 1)
∏

i∈[kFC](ai − 1) calls to P̃PC in expectation.

63

Proof. This is a direct application of [CY24, Lemma 30.5.2] for the FC prover P̃PC, the FC verifier VFC, and
the relation

{((cm, α, β),Π) | α(Π) = β} .

Proof of Lemma A.2. Given an state-restoration function binding adversary P̃SR
FC for FC, we construct the

following reductor from state-restoration function binding to special function binding:

RP̃SR
FC (ppFC, aux):

1. For i ∈ [L]:
(a) Construct an SRGame adversary P̃i as follows: when playing the SRGame, P̃i simulates FCSRGame

towards P̃SR
FC by forwarding its queries to the SRGame.

P̃i outputs (cm, (αi, βi, ((pmi,j , ηi,j , vmi,j))j∈[kFC])), i.e., only the i-th point, its evaluation, and
the corresponding opening transcript.

(b) For j ∈ [kFC]: Lazily sample a random oracle rndFC,j ← U(rFC,j).
(c) Run (cm, (αi, βi, ((pmi,j , ηi,j , vmi,j))j∈[kFC]))

tri←− SRGame(sFC, rndFC, P̃i, ppFC, aiFC) by lazily
simulating the random oracles rndFC,j .

(d) Run Ti ← SRTreeFinderP̃i(cm, (αi, βi), ((pmi,j , ηi,j , vmi,j))j∈[kFC], tri).
2. Output (cm, ((αi, βi))i∈[L], (((pmi,j , ηi,j , vmi,j))j∈[kFC])i∈[L], (Ti)i∈[L]).

Running time. R makes L ·
(
1 + (mFC + 1)

∏
i∈[kFC](ai − 1)

)
calls to P̃SR

FC in expectation.

Success probability. We first note that R perfectly simulates FCSRGame towards P̃SR
FC , and thus the

experiments
pp← FC.Gen(1λ, n)
DFC ← DFC

For r ∈ [kFC] : rndFC,r ← U(rFC,r)(
cm,

((
αi, βi,
(pmi,r)r∈[kFC], (ηi,r)r∈[kFC], (vmi,r)r∈[kFC]

))
i∈[L]

)
← FCSRGame(sFC, rndFC, P̃SR

FC , pp, aiFC)

and

ESFB :=

 ppFC ← FC.Gen(1λ, ℓ)
aiFC ← DFC

(cm, ((αi, βi))i∈[L], (((pmi,j , ηi,j , vmi,j))j∈[kFC])i∈[L], (Ti)i∈[L])← RP̃SR
FC (ppFC, aiFC)

are equivalent.
We bound

Pr

 ∀ i ∈ [L] : VFC((cm, (αi, βi)), (pmi,r)r∈[kFC], (vmi,r)r∈[kFC]) = 1

∧
(
∀ i ∈ [L] : VFC(ppFC, cm, αi, βi, ((pmi,j , vmi,j))j∈[kFC]) = 1

∧∄Π s.t. ∀ i ∈ [L], αi(Π) = βi

) ∣∣∣∣∣∣ ESFB

= Pr

∀ i ∈ [L] : Ti is a (a1, . . . , akFC)-tree for (cm, αi, βi)
∧∀ i ∈ [L] : VFC((cm, (αi, βi)), (pmi,r)r∈[kFC], (vmi,r)r∈[kFC]) = 1

∧
(
∀ i ∈ [L] : VFC(ppFC, cm, αi, βi, ((pmi,j , vmi,j))j∈[kFC]) = 1

∧∄Π s.t. ∀ i ∈ [L], αi(Π) = βi

)
∣∣∣∣∣∣∣∣ ESFB

64

+ Pr

∃i ∈ [L] : Ti is not a (a1, . . . , akFC)-tree for (cm, αi, βi)
∧∀ i ∈ [L] : VFC((cm, (αi, βi)), (pmi,r)r∈[kFC], (vmi,r)r∈[kFC]) = 1

∧
(
∀ i ∈ [L] : VFC(ppFC, cm, αi, βi, ((pmi,j , vmi,j))j∈[kFC]) = 1

∧∄Π s.t. ∀ i ∈ [L], αi(Π) = βi

)
∣∣∣∣∣∣∣∣ ESFB

≤ Pr

 ∀ i ∈ [L] : Ti is a (a1, . . . , akFC)-tree for (cm, αi, βi)

∧
(
∀ i ∈ [L] : VFC(ppFC, cm, αi, βi, ((pmi,j , vmi,j))j∈[kFC]) = 1

∧∄Π s.t. ∀ i ∈ [L], αi(Π) = βi

) ∣∣∣∣∣∣ ESFB

+ Pr

[
∃i ∈ [L] : Ti is not a (a1, . . . , akFC)-tree for (cm, αi, βi)
∧∀ i ∈ [L] : VFC((cm, (αi, βi)), (pmi,r)r∈[kFC], (vmi,r)r∈[kFC]) = 1

∣∣∣∣ ESFB

]
.

The first probability is bounded by ϵSFB(λ, ℓ, L, t
⋆
SFB). For the second term, we have

Pr

[
∃i ∈ [L] : Ti is not a (a1, . . . , akFC)-tree for (cm, αi, βi)
∧∀ i ∈ [L] : VFC((cm, (αi, βi)), (pmi,r)r∈[kFC], (vmi,r)r∈[kFC]) = 1

∣∣∣∣ ESFB

]
≤ Pr

[
∃i ∈ [L] :

(
Ti is not a (a1, . . . , akFC)-tree for (cm, αi, βi)
∧VFC((cm, (αi, βi)), (pmi,r)r∈[kFC], (vmi,r)r∈[kFC]) = 1

) ∣∣∣∣ ESFB

]
≤
∑
i∈[L]

Pr

[
Ti is not a (a1, . . . , akFC)-tree for (cm, αi, βi)
∧VFC((cm, (αi, βi)), (pmi,r)r∈[kFC], (vmi,r)r∈[kFC]) = 1

∣∣∣∣ ESFB

]

= L · Pr
[
Ti is not a (a1, . . . , akFC)-tree for (cm, αi, βi)
∧VFC((cm, (αi, βi)), (pmi,r)r∈[kFC], (vmi,r)r∈[kFC]) = 1

∣∣∣∣ E]

≤ L · (mFC + 1) ·

 ∑
i∈[kFC]

ai − 1

2rFC,i

 ,

where

E :=

ppFC ← FC.Gen(1λ, ℓ)
aiFC ← DFC(
cm,

((
αi, βi,
(pmi,r)r∈[kFC], (ηi,r)r∈[kFC], (vmi,r)r∈[kFC]

))
i∈[L]

)
tri←− SRGame(sFC, rndFC, P̃i, pp, aiFC)

Ti ← SRTreeFinderP̃i((cm, αi, βi), ((pmi,j , ηi,j , vmi,j))j∈[kFC], tri)

65

B Comparing function binding to other properties for KZG

We discuss how function binding relates to other properties of the KZG polynomial commitment schemes
introduced in prior works. We show in Appendix B.1 that function binding implies strong correctness
[KZG10]. In Appendix B.2, we show that function binding is implied by interpolation binding, and that
interpolation binding holds under the ARSDH assumption (the same assumption we use to show that KZG is
function binding in Section 9.1).

B.1 Function binding implies strong correctness

Definition B.1 (Strong correctness [KZG10]). A polynomial commitment scheme PC has strong correctness
error ϵFCSC if for every security parameter λ ∈ N, polynomial degree bound D ∈ N, auxiliary input distribution
D, adversary size bound tFCSC ∈ N, and tFCSC-size circuit AFCSC,

Pr

d > D
∧∀ i ∈ [d+ 1], p(αi) = βi
∧∀ i ∈ [d+ 1],PC.Check(ppPC, cm, αi, βi, pfi) = 1
∧ deg(Lagrange({(αi, βi)}i∈[d+1])) = d

∧ deg(Lagrange({(αi, pfi)}i∈[d+1])) = d− 1

∣∣∣∣∣∣∣∣∣∣
ppPC ← PC.Gen(1λ,D)
ai← D
(d, p, cm, state)← AFCSC(ppPC, ai)
{αi}i∈[d+1] ← F with αi ̸= αj , ∀ i ̸= j ∈ [d+ 1]

{(βi, pfi)}i∈[d+1] ← AFCSC(ppPC, {αi}i∈[d+1], state)

≤ ϵFCSC(λ,D, tFCSC) .

Lemma B.2. The KZG polynomial commitment scheme (Construction 9.4) has function binding error
ϵFC = ϵFC(λ,D, L, tFC). Then KZG has strong correctness error ϵFCSC = ϵFCSC(λ,D, tFCSC) such that for every
security parameter λ ∈ N, polynomial degree bound D ∈ N, and adversary size bound tFCSC ∈ N,

ϵFCSC(λ,D, tFCSC) ≤ ϵFC(λ,D, L, tFC) where

{
L = O(tFCSC)

tFC = O(tFCSC)
.

Proof. Fix the security parameter λ ∈ N, polynomial degree bound D ∈ N, and adversary size bound
tFCSC ∈ N. For every auxiliary input ai and tFCSC-size adversary AFCSC against strong correctness, consider the
following adversary AFC against function binding:

AFC(ppPC, aiFC):
1. Run (d, p, cm, state)← AFCSC(ppPC, ai).
2. Sample {αi}i∈[d+1] ← F with αi ̸= αj , ∀ i ̸= j ∈ [d+ 1].
3. Run {(βi, pfi)}i∈[d+1] ← AFCSC(ppPC, {αi}i∈[d+1], state).
4. Output (cm, {(αi, βi, pfi)}i∈[d+1]).

Success probability. When AFCSC successfully breaks strong correctness, the following holds:
• ∀ i ∈ [d+ 1],KZG.Check(ppPC, cm, αi, βi, pfi) = 1; and
• d := deg(Lagrange({(αi, βi)}i∈[d+1])) > D.
Therefore,

Pr

d > D
∧∀ i ∈ [d+ 1], p(αi) = βi
∧∀ i ∈ [d+ 1],KZG.Check(ppPC, cm, αi, βi, pfi) = 1
∧ deg(Lagrange({(αi, βi)}i∈[d+1])) = d

∧ deg(Lagrange({(αi, pfi)}i∈[d+1])) = d− 1

∣∣∣∣∣∣∣∣∣∣
ppPC ← KZG.Gen(1λ,D)
ai← D
(d, p, cm, state)← AFCSC(ppPC, ai)
{αi}i∈[d+1] ← F with αi ̸= αj , ∀ i ̸= j ∈ [d+ 1]

{(βi, pfi)}i∈[d+1] ← AFCSC(ppPC, {αi}i∈[d+1], state)

66

≤ Pr

 ∀a ∈ [L] : KZG.Check(ppPC, cm, αi, βi, pfi) = 1

∧
(
∃i, j ∈ [L] : αi = αj , βi ̸= βj
⊻ deg(Lagrange({(αi, βi)}i∈[L])) > D

) ∣∣∣∣∣∣
ppPC ← KZG.Gen(1λ,D)
aiFC ← DFC

(cm, {(αi, βi, pfi)}i∈[L])← AFC(ppPC, aiFC)

≤ ϵFC(λ,D, L, tFC) .

Running time. AFC has sample size L = O(tFCSC), and adversary size tFC = O(tFCSC).

B.2 Interpolation binding implies function binding

Definition B.3 (Interpolation binding [AJMMS23]). A polynomial commitment scheme PC has interpolation
binding error ϵFCIB if for every security parameter λ ∈ N, polynomial degree bound D ∈ N, auxiliary input
distribution D, adversary size bound tFCIB ∈ N, and tFCIB-size circuit AFCIB,

Pr

 ∀ i ̸= j ∈ [D+ 1], αi ̸= αj

∧∀ i ∈ [D+ 1],PC.Check(ppPC, cm, αi, βi, pfi) = 1
∧ cm ̸= PC.Commit(ppPC, Lagrange({(αi, βi)}i∈[D+1]))

∣∣∣∣∣∣
ppPC ← PC.Gen(1λ,D)
ai← D
(cm, {(αi, βi, pfi)}i∈[D+1])← AFCIB(ppPC, ai)

≤ ϵFCIB(λ,D, tFCIB) .

[AJMMS23] proves that the KZG polynomial commitment scheme has interpolation binding in the
algebraic group model, under the discrete logarithm (Definition C.9) and strong Diffie-Hellman assumption.
We show that interpolation binding implies function binding. For completeness, we also provide the proof for
interpolation binding from the ARSDH assumption, which is adapted from the proof for special soundness
from the ARSDH assumption, as given in [LPS24a].

Lemma B.4. Let KZG be the polynomial commitment scheme constructed in [KZG10] (Construction 9.4).
Assume KZG has evaluation binding error ϵFCEB = ϵFCEB(λ,D, tFCEB) and interpolation binding error ϵFCIB =
ϵFCIB(λ,D, tFCIB). Then, KZG has function binding error ϵFC = ϵFC(λ,D, L, tFC) such that for every security
parameter λ ∈ N, polynomial degree bound D ∈ N, sample set size L ∈ N, and adversary size bound
tFC ∈ N,

ϵFC(λ,D, L, tFC) ≤ ϵFCEB(λ,D, tFCEB) + ϵFCIB(λ,D, tFCIB) ,

where tFCEB ≤ tFC + L2 and tFCIB ≤ tFC + L+ 3L2 + D · (L− D+ 1).

Proof of Lemma B.4. Fix the security parameter λ ∈ N, polynomial degree bound D ∈ N, sample set size
L ∈ N, and adversary size bound tFC ∈ N. For every auxiliary input ai and tFC-size adversary AFC against
function binding, consider the following adversaries: AFCEB against evaluation binding and AFCIB against
interpolation binding:

AFCEB(ppPC, aiFC):
1. Run (cm, {(αi, βi, pfi)}i∈[L])← AFC(ppPC, aiFC).
2. If there exists i ̸= j ∈ [L] such that αi = αj and βi ̸= βj , output (cm, αi, βi, βj , pfi, pfj).
3. Otherwise, output (cm, α1, β1, β1, pf1, pf1).

Step 2 in AFCEB takes time at most L2, thus the running time of AFCEB is tFCEB ≤ tFC + L2.

AFCIB(ppPC, aiFC):
1. Run (cm, {(αi, βi, pfi)}i∈[L])← AFC(ppPC, aiFC).
2. If deg(Lagrange({(αi, βi)}i∈[L])) > D:

67

(a) Let L0 be the interpolation of the first D+ 1 distinct points, denoted without loss of generality as
{αi}i∈[D+1].

(b) Find (αk, βk) for some k ∈ {D+ 2, . . . , L} such that βk ̸= L0(αk).
(c) Sample S := {α′

i}i∈[D+1] from {αi}i∈[D+1]∪{k} such that [Lagrange({(α, β[α])}α∈S)]1 ̸= cm.
(d) Output (cm, {(α′

i, β
′
i, pf

′
i)}i∈[D+1]).

3. Otherwise, output (cm,⊥).

In the construction of AFCIB, Step 2 takes time L2, Step 2a takes time L + (D + 1)2, Step 2b takes time
D · (L − D − 1), and Step 2c takes time at most 2D + (D + 1)2. Therefore, the total running time is
tFCIB ≤ tFC + L+ 3L2 + D · (L− D+ 1).

When AFC successfully breaks function binding, there are two cases:

• There are two valid openings (α, βi, pfi) and (α, βj , pfj) where βi ̸= βj . In this case, AFCEB succeeds.

• deg(Lagrange({(αi, βi)}i∈[L])) > D. From the construction of AFCIB, the following holds:

– There must exist (αk, βk) for some k ∈ {D + 2, . . . , L} such that βk ̸= L0(αk), because otherwise
deg(Lagrange({(αi, βi)}i∈[L])) = deg(L0) ≤ D.

– deg(Lagrange({(αi, βi)}i∈[D+1]∪{k})) ≥ D + 1, because otherwise, by the fundamental theorem of
algebra, we would have Lagrange({(αi, βi)}i∈[D+1]∪{k}) = L0.

– For all size-(D+ 1) subsets of {(αi, βi)}i∈[D+1]∪{k}, their interpolations are pairwise distinct, because
otherwise deg(Lagrange({(αi, βi)}i∈[D+1]∪{k})) ≤ D.

Therefore, there are at least D+ 1 among D+ 2 possible subsets such that the corresponding interpolation
is not consistent with cm, which implies that AFCIB succeeds with high probability.

By union bound,

Pr

 ∀ i ∈ [L] : KZG.Check(ppPC, cm, αi, βi, pfi) = 1

∧
(
∃i, j ∈ [L] : αi = αj , βi ̸= βj
⊻ deg(Lagrange({(αi, βi)}i∈[L])) > D

) ∣∣∣∣∣∣
ppPC ← KZG.Gen(1λ,D)
aiFC ← DFC

(cm, {(αi, βi, pfi)}i∈[L])← AFC(ppPC, aiFC)

≤ Pr

 βi ̸= βj
∧KZG.Check(ppPC, cm, α, βi, pfi) = 1
∧KZG.Check(ppPC, cm, α, βj , pfj) = 1

∣∣∣∣∣∣∣∣
ppPC ← KZG.Gen(1λ,D)
ai← D(
cm, α, βi,
βj , pfi, pfj

)
← AFCEB(ppPC, ai)

+ Pr

 ∀ i ̸= j ∈ [D+ 1], α′
i ̸= α′

j

∧∀ i ∈ [D+ 1],KZG.Check(ppPC, cm, α′
i, β

′
i, pf

′
i) = 1

∧ cm ̸= KZG.Commit(ppPC, Lagrange({(αi, β
′
i)}i∈[D+1]))

∣∣∣∣∣∣
ppPC ← KZG.Gen(1λ,D)
ai← D
(cm, {(αi, β

′
i, pf

′
i)}i∈[D+1])← AFCIB(ppPC, ai)

≤ ϵFCEB(λ,D, tFCEB) + ϵFCIB(λ,D, tFCIB) .

Since the relation holds for any auxiliary input distribution DFC and tFC-size adversary AFC against function
binding, we conclude that ϵFC(λ,D, L, tFC) ≤ ϵFCEB(λ,D, tFCEB) + ϵFCIB(λ,D, tFCIB), which completes the
proof.

Lemma B.5. Assume the ARSDH assumption holds with error ϵARSDH = ϵARSDH(λ,D, tARSDH). Let KZG be the
polynomial commitment scheme constructed in [KZG10] (Construction 9.4). Then KZG has interpolation

68

binding error ϵFCIB = ϵFCIB(λ,D, tFCIB) such that for every security parameter λ ∈ N, polynomial degree
bound D ∈ N, and adversary size bound tFCIB ∈ N,

ϵFCIB(λ,D, tFCIB) ≤ ϵARSDH(λ,D, tARSDH) ,

where tARSDH ≤ tFCIB + (D+ 1)2 + 3(D+ 1).

Proof of Lemma B.5. Fix the security parameter λ ∈ N, polynomial degree bound D ∈ N, and adversary size
bound tFCIB ∈ N. For every auxiliary input distribution D and tFCIB-size adversary AFCIB against interpolation
binding, consider the following adversary AARSDH against ARSDH:

AARSDH([1]1, [τ]1, [τ
2]1, . . . , [τ

D]1, [1]2, [τ]2):
1. Sample ai← D and set ppPC := ([1]1, [τ]1, [τ

2]1, . . . , [τ
D]1, [1]2, [τ]2).

2. Run (cm, {(αi, βi, pfi)}i∈[D+1])← AFCIB(ppPC, ai).
3. Set S := {αi}i∈[D+1].
4. Set L(X) := Lagrange({αi, βi}i∈[D+1]).
5. Set h1 := cm− [L(τ)]1.
6. Compute di :=

1
ZS\{αi}(αi)

.

7. Set h2 :=
∑D+1

i=1 di · pfi.
8. Output (S, h1, h2).

Running time. In the construction of AARSDH, Step 4 takes time (D+ 1)2, Step 5 takes time at most D, and
Step 7 takes time at most 2D. Therefore, the total running time is tARSDH ≤ tFCIB + (D+ 1)2 + 3(D+ 1).

Success probability. When AFCIB succeeds, the following holds:
• ∀ i ̸= j ∈ [D+ 1], αi ̸= αj , which implies that |S| = D+ 1;
• cm ̸= KZG.Commit(ppPC, Lagrange({(αi, βi)}i∈[D+1])) = [1]

L(τ)
1 , which implies that h1, h2 ∈ G1 and

h1 ̸= [0]1;
• ∀ i ∈ [D + 1],KZG.Check(ppPC, cm, αi, βi, pfi) = 1, which means for every i ∈ [D + 1], e(cm −
[βi]1, [1]2) = e(pfi, [τ − αi]2). By the definition of Lagrange interpolation,

1

ZS(τ)
· h1

=
1

ZS(τ)
· (cm− [L(τ)]1)

=
1

ZS(τ)
· (cm− [

D+1∑
i=1

βi ·
ZS(τ)di
τ − αi

]1)

=
1

ZS(τ)
· (

D+1∑
i=1

ZS(τ)di
τ − αi

· cm− [
D+1∑
i=1

βi ·
ZS(τ)di
τ − αi

]1)

=
D+1∑
i=1

di ·
cm− βi
τ − αi

=

D+1∑
i=1

di · pfi

= h2 .

69

Hence,

Pr

 ∀ i ̸= j ∈ [D+ 1], αi ̸= αj

∧∀ i ∈ [D+ 1],KZG.Check(ppPC, cm, αi, βi, pfi) = 1
∧ cm ̸= KZG.Commit(ppPC, Lagrange({(αi, βi)}i∈[D+1]))

∣∣∣∣∣∣
ppPC ← KZG.Gen(1λ,D)
ai← D
(cm, {(αi, βi, pfi)}i∈[D+1])← AFCIB(ppPC, ai)

≤ Pr

 S ⊆ F, |S| = D+ 1
∧h1, h2 ∈ G1, h1 ̸= [0]1
∧h2 = 1

ZS(τ)
· h1

∣∣∣∣∣∣ ppPC ← KZG.Gen(1λ,D)
(S, h1, h2)← AARSDH(ppPC)

= Pr

 S ⊆ F, |S| = D+ 1
∧h1, h2 ∈ G1, h1 ̸= [0]1
∧h2 = 1

ZS(τ)
· h1

∣∣∣∣∣∣ τ ← Zp \ {0}
(S, h1, h2)← AARSDH([1]1, [τ]1, [τ

2]1, . . . , [τ
D]1, [1]2, [τ]2)

≤ ϵARSDH(λ,D, tARSDH) .

Since the relation holds for any auxiliary input distribution D and tFCIB-size adversary AFCIB against
interpolation binding, we conclude that ϵFCIB(λ,D, tFCIB) ≤ ϵARSDH(λ,D, tARSDH), which completes the proof.

70

C Function binding for polynomial commitment schemes based on DLog

For the sake of completeness, we include full proofs of function binding for two polynomial commitment
schemes (PCSs) of interest based on the discrete logarithm assumption: a square-root sized PCS inspired by
[BCGGHJ17; BG18] in Appendix C.1, and a Bulleproofs-style [BCCGP16] in Appendix C.2.2.

C.1 Square-root-sized polynomial commitment scheme

We analyze a non-interactive polynomial commitment scheme with square-root-sized opening proofs, inspired
by constructions from Bootle et al. [BCGGHJ17] and Bootle and Groth [BG18]. [BCGGHJ17] show that
their construction is knowledge sound in the Ideal Linear Commitment (ILC) model. [BG18] show that their
polynomial commitment scheme is “special-sound”, in the sense that it is possible to extract a polynomial
from an adversary that outputs valid proofs for sufficiently many distinct evaluation points. We show that this
construction satisfies function binding under the discrete logarithm assumption, using similar techniques as
[BG18].

Lemma C.1. Assume the discrete logarithm relation assumption (Definition C.3) holds with error ϵDLogRel =
ϵDLogRel(λ,D, ϵDLogRel). Then for every security parameter λ ∈ N, polynomial degree bound D ∈ N, sample set
size L ∈ N, and adversary size bound tFC ∈ N, PCsqrt (Construction C.2) has function binding error

ϵFC(λ,D, L, tFC) ≤ ϵDLogRel(λ,
√
D+ 1, tDLogRel) ,

where tDLogRel ≤ tFC + L2 + (D+ 1)
3
2 + (L+ 1)

√
D+ 1.

Throughout this section, we assume that every polynomial p has degree at most D where D+ 1 = d2 for
some d ∈ N. 4 For a polynomial p of degree at most D, we define the d× d matrix P as

P := (p(i−1)+d(j−1))i,j∈[d] =

 p0 · · · pd(d−1)
...

. . .
...

pd−1 · · · pD

 ,

such that

[
1 x . . . xd−1

]
P

1
xd

...
xd(d−1)

 =
∑

i,j∈[d]

p(i−1)+d(j−1)x
i−1xd(j−1) = p(x) .

Construction C.2. Let G be a group of prime order p(λ) ≥ 2λ.

• PCsqrt.Gen(1
λ,D):

1. Sample random generators (Gj)j∈[d] ← Gd.
2. Output ppPC = (Gj)j∈[d].

• PCsqrt.Commit(ppPC, p):

1. Parse ppPC as (Gj)j∈[d].

4If this condition is not satisfied, one can consider the next D′ > D such that D′ + 1 is square. Alternatively, one can define a
variation of this PCS where the coefficient matrix P is rectangular rather than square.

71

2. Compute cm = (cmi)i∈[d], where cmi :=
∑

j∈[d] p(i−1)+d(j−1)Gj is a Pedersen commitment to the i-th
row of P.

3. Set aux := P.
4. Output (cm, aux).

• PCsqrt.Open(ppPC, aux, α):

1. Parse ppPC as (Gj)j∈[d] and aux as P.
2. Set β := p(α).
3. Compute pf :=

[
1 α . . . αd−1

]
P, with pfj =

∑
i∈[d] p(i−1)+d(j−1) · αi−1.

4. Output (β, pf).

• PCsqrt.Check(ppPC, cm, α, β, pf):

1. Parse ppPC as (Gj)j∈[d].
2. Check that

∑
i∈[d] α

i−1cmi =
∑

j∈[d] pfjGj and β =
∑

j∈[d] pfjα
d(j−1).

We now show that PCsqrt satisfies function binding under the discrete logarithm relation assumption,
which is closely related to the discrete logarithm assumption.

Definition C.3 (Discrete logarithm relation assumption). The discrete logarithm relation assumption holds
with error ϵDLogRel = ϵDLogRel(λ, n, tDLogRel) if for every security parameter λ, length parameter n ∈ N, adversary
size tDLogRel ∈ N, tDLogRel-sized adversary ADLogRel, and group G of prime order p(λ) ≥ 2λ,

Pr

[
∃ i ∈ [n] : ai ̸= 0 ∧∑

i∈[n] aiGi = 0

∣∣∣∣ (G1, . . . , Gn)← Gn

(a1, . . . , an)← ADLogRel(G, G1, . . . , Gn)

]
≤ ϵDLogRel(λ, n, tDLogRel) .

Definition C.4 (Discrete logarithm assumption). The discrete logarithm assumption holds with error ϵDL =
ϵDL(λ, tDL) if for every security parameter λ, adversary size tDL ∈ N, tDL-sized adversary ADL, and group G
of prime order p(λ) ≥ 2λ with generator G,

Pr

[
xG = H

∣∣∣∣ H ← G
x← ADL(G, p,G,H)

]
≤ ϵDL(λ, tDL) .

Asymptotically, the discrete logarithm and the discrete logarithm relation assumption are equivalent; the
following lemma bounds the concrete relationship between the two assumptions.

Lemma C.5 (Discrete logarithm relation to discrete logarithm ([JT20])). Let G be a group of prime order
p(λ) ≥ 2λ and n ≥ 1 be an integer. Then for any λ ∈ N, tDLogRel ∈ N, we have

ϵDLogRel(λ, n, tDLogRel) ≤ ϵDL(λ, tDL) +
1

2λ
,

where tDL = O(tDLogRel + n).

Proof of Lemma C.1. Given a function binding adversary AFC, we construct the following discrete logarithm
relation adversary ADLogRel:

ADLogRel(G, G1, . . . Gd):
1. Set ppPC := (G1, . . . , Gd).
2. Sample aiFC ← DFC

72

3. (cm, (αa, βa, pfa)a∈[L])← AFC(ppPC, aiFC).
4. If there exists a ̸= b ∈ [L] such that αa = αb but βa ̸= βb: Output (pfa,j − pfb,j)j∈[d].
5. If deg(Lagrange({((αa, βa))a∈[L]})) > D:

(a) Find d distinct indices a1, . . . , ad ∈ [L] such that αa1 , . . . , αad are distinct.

(b) Compute

p1,1 · · · p1,d
...

. . .
...

pd,1 · · · pd,d

 :=

1 · · · αd−1
a1

...
. . .

...
1 · · · αd−1

ad

−1 pfa1,1 · · · pfa1,d

...
. . .

...
pfad,1 · · · pfad,d

.

(c) Find a∗ ∈ [L] \ {a1, . . . , ad} such that ∃ j ∈ [d] : pfa∗,j ̸=
∑

i∈[d] pi,jα
i−1
a∗ .

(d) Output (pfa∗,j −
∑

i∈[d] pi,jα
i−1
a∗)j∈[d].

6. Abort.

Running time. ADLogRel invokes AFC once. In Step 4, ADLogRel searches for disagreeing answers for the same
query in a set of size L, which requires at most L2 time, and outputs a vector of size d. In Step 5, finding d
distinct queries requires L steps, inverting the Vandermonde matrix requires at most d3 steps, finding a∗ can
be done in d+ L · d steps. This yields a total running time of at most

tFC +max(L2 + d, L2 + d3 + d+ L · d) ≤ tFC + L2 + (D+ 1)
3
2 + (L+ 1)

√
D+ 1 .

Success probability. Suppose AFC wins the function binding game. Then at least one of the conditions
tested in Steps 4 and 5 must be true, which means that ADLogRel does not abort in Step 6.

In Step 4, ADLogRel checks whether AFC wins by breaking evaluation binding. In this case, ADLogRel

finds a and b such that αa = αb but βa ̸= βb. However since PCsqrt.Check(ppPC, cm, αa, βa, pfa) = 1 and
PCsqrt.Check(ppPC, cm, αb, βb, pfb) = 1, it must be that βa =

∑
j∈[d] pfa,jα

d(j−1)
a and βb =

∑
j∈[d] pfb,jα

d(j−1)
b ,

and thus pfa,j ̸= pfb,j for at least one index j. Since
∑

i∈[d] α
i−1
a cmi =

∑
j∈[d] pfa,jGj and

∑
i∈[d] α

i−1
b cmi =∑

j∈[d] pfb,jGj from the verification equations,
∑

j∈[d](pfa,j−pfb,j)Gj = 0, and ADLogRel outputs a non-trivial
discrete logarithm relation in Step 4.

In Step 5, ADLogRel checks whether AFC wins by breaking degree binding. Since the queries αa1 , . . . , αad

are distinct, the Vandermonde matrix in Step 5b is invertible. Further, ADLogRel always find an index a∗ in step
Step 5c. To see why, assume towards a contradiction that pfa,j =

∑
i∈[d] pi,jα

i−1
a for all j ∈ [d]. Then, since

PCsqrt.Check(ppPC, cm, αa, βa, pfa) = 1 (and thus βa =
∑

j∈[d] pfa,jα
d(j−1)
a) for all a ∈ [L], we have that

for all a ∈ [L],

βa =
∑
j∈[d]

pfa,jα
d(j−1)
a

=
∑
j∈[d]

(
∑
i∈[d]

pi,jα
i−1
a)αd(j−1)

a

=
∑

i,j∈[d]

pi,jα
(i−1)+d(j−1)
a ,

which contradicts the assumption that deg(Lagrange({((αa, βa))a∈[L]})) > D.
Finally, ADLogRel outputs a non-trivial discrete logarithm relation (pfa∗,j −

∑
i∈[d] pi,jα

i−1
a∗)j∈[d] in Step 5d.

To show this, we first note that the i-row (pi,j)j∈[d] is a pre-image of the commitment cmi, i.e., cmi =∑
j∈[d] pi,jGj for all i ∈ [d]. More precisely, since PCsqrt.Check(ppPC, cm, αa, βa, pfa) = 1 (and thus

73

∑
i∈[d] α

i−1
a cmi =

∑
j∈[d] pfa,jGj) for all a ∈ [L], we have that for all l ∈ [d]:∑

i∈[d]

αi−1
al

cmi =
∑
j∈[d]

pfal,jGj

=
∑
j∈[d]

(
∑
i∈[d]

pi,jα
i−1
al

)Gj

=
∑
i∈[d]

αi−1
al

∑
j∈[d]

pi,jGj ,

and thus 1 . . . αd−1
a1

...
. . .

...
1 . . . αd−1

ad

cm1 −

∑
j∈[d] p1,jGj

...
cmd −

∑
j∈[d] pd,jGj

 = 0 .

Since the Vandermonde matrix is invertible, it must be that cmi =
∑

j∈[d] pi,jGj for all i ∈ [d]. This
immediately implies that ADLogRel’s output in Step 5d is a non-trivial discrete logarithm relation, since∑

j∈[d]

(pfa∗,j −
∑
i∈[d]

pi,jα
i−1
a∗)Gj =

∑
j∈[d]

pfa∗,jGj −
∑

i,j∈[d]

pi,jα
i−1
a∗ Gj

=
∑
i∈[d]

αi−1
a∗ cmi −

∑
i,j∈[d]

pi,jα
i−1
a∗ Gj

= 0 .

C.2 Bulletproofs-style polynomial commitment scheme

We show that a Bulletproofs-style [BCCGP16] interactive polynomial commitment scheme PCBP with
logarithmically many rounds satisfies (state-restoration) function binding under the discrete logarithm
assumption.

Lemma C.6 (State-restoration function binding of PCBP). Assume the expected-time discrete logarithm
relation assumption holds with error ϵ⋆DLogRel = ϵ⋆DLogRel(λ,D, t

⋆
DLogRel) (Definition C.8), PCBP (Construction C.7)

has state-restoration function binding error

ϵSRFC(λ,D, L, sFC,mFC, tFC) ≤ L · (mFC + 1) · 1 + 2 log(D+ 1)

2λ
+ ϵ⋆DLogRel(λ,D+ 2, t⋆DLogRel) ,

where t⋆DLogRel = O
(
L · (mFC + 1) · (2(D+ 1)log 3)(tFC + poly(D)) + L2 + L · (D+ 1)log 3

)
.

In Appendix C.2.1, we present an interactive polynomial commitment scheme PCBP inspired by the
Bulletproofs protocol [BCCGP16] (we closely follow the description of Bünz et al. [BCMS20, Appendix
A]). We show that PCBP satisfies special function binding under the expected-time discrete logarithm relation
assumption in Appendix C.2.2. In Appendix C.2.3, we compare the proof technique and the concrete security
bound of state-restoration function binding with soundness and knowledge soundness.

74

C.2.1 Construction

Throughout this section, we assume that every polynomial has degree at most D where D + 1 is a
power of 2. We write p⃗ = (p0, . . . , pD) for the coefficients of a polynomial p ∈ F[X]≤D. We denote
by L((v1, . . . , v2k)) := (v1, . . . , vk) the operation which returns the left half of a vector, and similarly
R((v1, . . . , v2k)) for the right half.

Construction C.7. Let G be a group of prime order p(λ) ≥ 2λ.

• PCBP.Gen(1
λ,D):

1. Sample random generators G⃗← GD+1, H ← G.
2. Output ppFC = (G⃗,H).

• PCBP.Commit(ppFC, p): Outputs cm := ⟨⃗p, G⃗⟩.

• PCBP.Open,PCBP.FC.Check: The interactive protocol between PFC and VFC with common reference string
ppFC, instance (cm, α, β) and witness p proceeds as follows:

1. VFC samples ξ0 ← F \ {0} uniformly at random, and sends it to PFC.
2. Both PFC and VFC set

– H ′ := ξ0H ,
– α⃗(0) := (1, α, . . . , αD), and
– G⃗(0) := G⃗.

3. PFC sets p⃗(0) := p⃗.
4. VFC sets C(0) := cm+ β ·H ′.
5. For i ∈ {1, . . . , log(D+ 1)}:

(a) PFC sends L(i) and R(i) to the verifier, where

L(i) := ⟨R(⃗p(i−1)), L(G⃗(i−1))⟩+ ⟨R(⃗p(i−1)), L(α⃗(i−1))⟩H ′

R(i) := ⟨L(⃗p(i−1)),R(G⃗(i−1))⟩+ ⟨L(⃗p(i−1)),R(α⃗(i−1))⟩H ′

(b) VFC samples ξi ← F \ {0}, computes C(i) := ξ−1
i L(i) + C(i−1) + ξiR

(i), and sends ξi to PFC.
(c) PFC computes the inputs for the next round as follows:

– p⃗(i) := L(⃗p(i−1)) + ξ−1
i R(⃗p(i−1)),

– α⃗(i) := L(α⃗(i−1)) + ξi R(α⃗
(i−1)), and

– G⃗(i) := L(G⃗(i−1)) + ξi R(G⃗
(i−1)).

6. PFC sends the constant polynomial u := p⃗(log(D+1)) ∈ F to VFC.
7. VFC defines h(X) :=

∏log(D+1)−1
i=0 (1 + ξlog(D+1)−iX

2i) (with coefficient vector h⃗) and checks that
C(log(D+1)) = u⟨⃗h, G⃗⟩+ u · h(α)H ′.

C.2.2 Function binding

We show Lemma C.6 by showing that PCBP is special function binding under the expected-time discrete
logarithm relation assumption, and applying Lemma A.2.

Finally, we show that PCBP satisfies special function binding under the expected-time discrete logarithm
relation assumption.

75

Definition C.8 (Expected-time discrete logarithm relation assumption). The expected-time discrete logarithm
relation assumption holds with error ϵ⋆DLogRel if for every security parameter λ, length parameter n ∈ N,
expected t⋆DLogRel-time adversary ADLogRel and group G of prime order p(λ) ≥ 2λ,

Pr

[
∃ai ̸= 0 ∧

∑
i∈[n] aiGi = 0

∣∣∣∣ G1, . . . , Gn ← G
a1, . . . , an ∈ Zp ← ADLogRel(G, G1, . . . , Gn)

]
≤ ϵ⋆DLogRel(λ, n, t

⋆
DLogRel) .

Definition C.9 (Expected-time discrete logarithm assumption). The expected-time discrete logarithm as-
sumption holds with error ϵ⋆DL if for every security parameter λ, expected t⋆DL-time adversary ADL, and group
G of prime order p(λ) ≥ 2λ with generator G,

Pr

[
xG = H

∣∣∣∣ H ← G
x← ADL(G, p,G,H)

]
≤ ϵ⋆DL(λ, t

⋆
DL) .

Asymptotically, the expected-time discrete logarithm and the expected-time discrete logarithm relation
assumption are equivalent; the following expected-time equivalent of Lemma C.5 bounds the concrete
relationship between the two assumptions.

Lemma C.10 (Expected-time discrete logarithm relation⇒ expected-time discrete logarithm). Let G be a
group of prime order p(λ) ≥ 2λ and n ≥ 1 be an integer. Then for any λ ∈ N, t⋆DLogRel ∈ N, we have

ϵ⋆DLogRel(λ, n, t
⋆
DLogRel) ≤ ϵ⋆DL(λ, t

⋆
DL) +

1

2λ
,

where t⋆DL = O(t⋆DLogRel + n).

In order to upper-bound on the expected discrete logarithm error, one can either use reduce to the strict-time
discrete logarithm assumption, or use an upper-bound derived using an idealized model [JT20; SSY23].

Lemma C.11 (Special function binding of PCBP). PCBP has (2, 3, . . . , 3)-special function binding error

ϵSFB(λ,D+ 1, L, t⋆SFB) ≤ ϵ⋆DLogRel(λ,D+ 2, t⋆DLogRel) ,

where t⋆DLogRel = O(t⋆SFB + L2 + L · (D+ 1)log 3).

Proof. We define the following adversary ASFB, which, when run on the output of a succesful special function
binding reductor R, outputs a non-trivial discrete logarithm relation for the generators G0, . . . , Gd, H . In the
following, let d := log(D+ 1) denote the number of rounds in the opening protocol.

ASFB(ppFC, (cm, ((αi, βi,Ti))i∈[L])):
1. For i ∈ [L]:

(a) Parse Ti as prover messages ((L(j0,...,jr−1)
i,r , R

(j0,...,jr−1)
i,r))r∈[d],j0∈[2],j1,...,jr−1∈[3], (u

(j0,...,jd)
i)j0∈[2],j1,...,jd∈[3]

and verifier challenges (ξ(j0,...,jr)i,r)r∈[d],j0∈[2],j1,...,jr∈[3].
(b) For (j0, . . . , jd) ∈ {1, 2} × {1, 2, 3}d:

i. Set J (j0,...,jd)
i :=

∑
s∈[d]

(ξ
(j0,...,js)
i,s)−1L

(j0,...,js−1)
i,s + cm+ βiξ

(j0)
i,0 H +

∑
s∈[d]

ξ
(j0,...,js)
i,s R

(j0,...js−1)
i,s .

ii. Set h(j0,...,jd)i (X) :=
∏log(D+1)−1

s=0 (1 + ξ
(j0,...,jlog(D+1)−s)

i,log(D+1)−s X2s)

iii. Set p(j0,...,jd)i (X) := u
(j0,...,jd)
i · h(j0,...,jd)i (X), with coefficient vector p⃗(j0,...,jd)i .

76

iv. Check that
J
(j0,...,jd)
i = ⟨⃗p(j0,...,jd)i , G⃗⟩+ p

(j0,...,jd)
i (αi) · ξ(j0)i H ;

abort otherwise.
(c) For r = d to 1: For (j0, . . . , jr−1) ∈ {1, 2} × {1, 2, 3}r−1:

i. Check that ξ(j0,...,jr−1,1)
i,r , ξ

(j0,...,jr−1,2)
i,r , ξ

(j0,...,jr−1,3)
i,r are distinct; abort otherwise.

ii. Compute (νj)j∈[3] such that(ξ
(j0,...,jr−1,1)
i,r)−1 (ξ

(j0,...,jr−1,2)
i,r)−1 (ξ

(j0,...,jr−1,3)
i,r)−1

1 1 1

ξ
(j0,...,jr−1,1)
i,r ξ

(j0,...,jr−1,2)
i,r ξ

(j0,...,jr−1,3)
i,r

ν1ν2
ν3

 =

01
0

 .

iii. Set J (j0,...,jr−1)
i :=

∑
j∈[3]

νjJ
(j0,...,jr−1,j)
i

=
∑

s∈[r−1]

(ξ
(j0,...,js)
i,s)−1L

(j0,...,js−1)
i,s + cm+ βiξ

(j0)
i,0 H +

∑
s∈[r−1]

ξ
(j0,...,js)
i,s R

(j0,...js−1)
i,s .

iv. Set p(j0,...,jr−1)
i :=

∑
j∈[3]

νjp
(j0,...,jr−1,j)
i .

(At this point, each p
(j0)
i satisfies cm = ⟨⃗p(j0)i , G⃗⟩+ (p

(j0)
i (αi)− βi)ξ

(j0)
i,0 H .)

2. If p(j0)i ̸= p
(j′0)
j for some i, j ∈ [L], j0, j

′
0 ∈ [2] (i.e., ⟨⃗p(j0)i , G⃗⟩+ (p

(j0)
i (αi)− βi)ξ

(j0)
i,0 H = ⟨⃗p(j

′
0)

j , G⃗⟩+
(p

(j′0)
j (αj,m)− βj)ξ

(j′0)
j,0 H):

(a) Set p := p
(j0)
i − p

(j′0)
j .

(b) Output p⃗, (p(j0)i (αi)− βi)ξ
(j0)
i,0 − (p

(j′0)
j (αj)− βj)ξ

(j′0)
j,0 .

3. Otherwise:
(a) Set p := p

(1)
1 = . . . = p

(2)
L .

(b) If p(αi) ̸= βi for some i ∈ [L] (i.e., (p(αi)− βi)ξ
(1)
i,0H = (p(αi)− βi)ξ

(2)
i,0H):

Output (0)i∈[D+1], (p(αi)− βi)(ξ
(1)
i,0 − ξ

(2)
i,0).

(c) Otherwise: abort.

Running time. Each tree of transcripts has 2 · 3log(D+1) = 2 · (D+ 1)log 3 nodes. In Step 1, ASFB performs
at most L(2 · log(D + 1)log 3 +

∑
r∈[log(D+1)] 2 · 3r) operations. In Step 2, ASFB searches for disagreeing

answers for the same query among 2L query-answer pairs, which requires O(L2) operations. Finally, Step 3
only requires a linear scan over L values.
Success probability. Let ((αi, βi,Ti))i∈[L] be the output of a successful R adversary. Since each tree is
a valid tree, ASFB does not abort in Step 1(b)iv. Furthermore, since the verifier challenges for each round
are non-zero, and guaranteed by SRTreeFinder to be distinct, the matrix in Step 1(c)ii is well-defined and
invertible.

If the condition in Step 2 is satisfied, at least one coefficient of p(j0)i − p
(j′0)
j,m is non-zero, and ASFB outputs

a valid discrete logarithm relation. Finally, note that the function binding condition

(∃i, j ∈ [L] : αi = αj ∧ βi ̸= βj) ⊻ deg(Lagrange({(αi, βi)})) > D

is equivalent to the condition ∃i ∈ [L] : p(αi) ̸= βi tested in Step 3b, which means that R does not abort in
Step 3. In this case, (p(αi)− βi)(ξ

(1)
i,0 − ξ

(2)
i,0) is non-zero, and ASFB also outputs a valid discrete logarithm

relation.

77

C.2.3 Comparison with soundness and knowledge soundness

Bulletproofs and Bulletproofs-style protocols are known to satisfy knowledge soundness, which requires the
existence of an efficient extractor that, given an instance and rewinding access to a (potentially malicious)
prover, is able to efficiently extract a valid witness. The Bulletproofs protocol (and variants thereof),
are shown to be (asymptotically) knowledge sound under the expected-time discrete logarithm relation
assumption [BCCGP16; BBBPWM18; Tha22]. [JT20] gives a more formal and concrete treatment, and
provide knowledge soundness errors for both strict-time and expected-time extractors, also from the discrete
logarithm relation assumption. Interestingly, their strict-time knowledge soundness error is significantly worse
than the expected-time error; in general, for protocols with superconstant rounds, an expected-time tree finder
seems inherent for an efficient reductor or extractor [ACK21; JT20]. In the context of polynomial commitment
schemes, knowledge soundness requires the existence of an extractor which, given a commitment cm and an
opening proof for a query-answer pair (α, β), can extract a polynomial p such that (i) deg(p) ≤ D, (ii) cm is a
commitment to p, and (iii) p(α) = β [BMMTV21]. For Bulletproofs-style protocols, knowledge soundness is
usually shown via special soundness [BCCGP16; BBBPWM18; JT20] (i.e., there exists an efficient, extractor
which outputs a valid witness polynomial when given as input a commitment, a query-answer pair, and a tree
of accepting transcripts). The final extractor is a concatenation of a tree finder algorithm (which finds a tree
of accepting transcripts with the required arity) and this special soundness extractor.

Note that for L = 1, the proof of Lemma C.11 can easily be adapted to show knowledge soundness (rather
than aborting in Step 3c, ASFB outputs the valid witness p instead). In particular, both the special function
binding and the special soundness adversary requires a tree of the same arity (2, 3, . . . , 3). On the other hand,
one might consider soundness, i.e., the property that a malicious prover cannot convince a verifier for an
instance that is not in the language (in our case, every polynomial of degree at most D is either not committed
to in cm, or does not evaluate to β at α). In particular, a natural minimal property for PCBP is state-restoration
soundness. For PCBP, we are not aware of any proof that specifically targets state-restoration soundness,
or even soundness; however, note that for L = 1, the proof of Lemma C.11 is a proof of state-restoration
soundness. One might ask whether (state-restoration) soundness can be shown from either a simpler proof
(without using special-soundness-type techniques), or from a tree with smaller arities. The former seems
difficult, owing to the superconstant number of rounds in the protocol. The latter also seems challenging (at
least when relying solely on the discrete logarithm assumption): the requirement for three distinct challenges
in each round is dictated by the structure of the “folding” step, and by the fact that the prover messages at
each step of the protocol define a quadratic polynomial evaluated at the verifier’s challenge.

78

Acknowledgments

Ziyi Guan thanks Ngoc Khanh Nguyen, Kshiteej Sheth, and Weiqiang Yuan for helpful discussions in early
stages of this work. The authors are partially supported by the Ethereum Foundation.

References
[ACK21] Thomas Attema, Ronald Cramer, and Lisa Kohl. “A Compressed Σ-Protocol Theory for Lattices”.

In: Proceedings of the 41st Annual International Cryptology Conference. CRYPTO ’21. 2021,
pp. 549–579.

[AGLMS22] Arasu Arun, Chaya Ganesh, Satya V. Lokam, Tushar Mopuri, and Sriram Sridhar. Dew: Transparent
Constant-sized zkSNARKs. Cryptology ePrint Archive, Report 2022/419. 2022.

[AJMMS23] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad Stern. “Bingo: Adap-
tivity and Asynchrony in Verifiable Secret Sharing and Distributed Key Generation”. In: Proceedings
of the 43rd Annual International Cryptology Conference. CRYPTO ’23. 2023, pp. 39–70.

[AY25] Gal Arnon and Eylon Yogev. Towards a White-Box Secure Fiat-Shamir Transformation. Cryptology
ePrint Archive, Paper 2025/329. 2025. URL: https://eprint.iacr.org/2025/329.

[BBBPWM18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
“Bulletproofs: Short Proofs for Confidential Transactions and More”. In: Proceedings of the 39th
IEEE Symposium on Security and Privacy. S&P ’18. 2018, pp. 315–334.

[BBHMR19] James Bartusek, Liron Bronfman, Justin Holmgren, Fermi Ma, and Ron D. Rothblum. “On the
(In)security of Kilian-Based SNARGs”. In: Proceedings of the 17th Theory of Cryptography Confer-
ence. TCC ’19. 2019, pp. 522–551.

[BCCGP16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. “Efficient Zero-
Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting”. In: Proceedings of the
35th Annual International Conference on Theory and Application of Cryptographic Techniques.
EUROCRYPT ’16. 2016, pp. 327–357.

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. “Linear-Time Arguments with Sublinear
Verification from Tensor Codes”. In: Proceedings of the 18th Theory of Cryptography Conference.
TCC ’20. 2020, pp. 19–46.

[BCGGHJ17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi, and Sune K.
Jakobsen. “Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit Satisfiability”. In: Pro-
ceedings of the 23rd International Conference on the Theory and Applications of Cryptology and
Information Security. ASIACRYPT ’17. 2017, pp. 336–365.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. “Recursive Proof
Composition from Accumulation Schemes”. In: Proceedings of the 18th Theory of Cryptography
Conference. TCC ’20. 2020, pp. 1–18.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In: Proceed-
ings of the 14th Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. “Transparent SNARKs from DARK Compilers”.
In: Proceedings of the 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 677–706.

[BG08] Boaz Barak and Oded Goldreich. “Universal Arguments and their Applications”. In: SIAM Journal
on Computing 38.5 (2008). Preliminary version appeared in CCC ’02., pp. 1661–1694.

79

https://eprint.iacr.org/2025/329

[BG18] Jonathan Bootle and Jens Groth. “Efficient Batch Zero-Knowledge Arguments for Low Degree
Polynomials”. In: Proceedings of the 21st IACR International Conference on Practice and Theory of
Public-Key Cryptography. PKC ’18. 2018, pp. 561–588.

[BMMTV21] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. “Proofs for Inner
Pairing Products and Applications”. In: Proceedings of the 27th International Conference on the
Theory and Application of Cryptology and Information Security. ASIACRYPT ’21. 2021, pp. 65–97.

[CDDGS25] Alessandro Chiesa, Marcel Dall’Agnol, Zijing Di, Ziyi Guan, and Nicholas Spooner. Quantum
Rewinding for IOP-Based Succinct Arguments. Cryptology ePrint Archive, Report 2025/947. 2025.

[CDGS23] Alessandro Chiesa, Marcel Dall’Agnol, Ziyi Guan, and Nicholas Spooner. On the Security of
Succinct Interactive Arguments from Vector Commitments. Cryptology ePrint Archive, Report
2023/1737. 2023.

[CDGSY24] Alessandro Chiesa, Marcel Dall’Agnol, Ziyi Guan, Nicholas Spooner, and Eylon Yogev. “Untangling
the Security of Kilian’s Protocol: Upper and Lower Bounds”. In: Proceedings of the 22nd Theory of
Cryptography Conference. TCC ’24. 2024.

[CFFQR21] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaı̈s Querol, and Hadrián Rodrı́guez. “Lunar: A
Toolbox for More Efficient Universal and Updatable zkSNARKs and Commit-and-Prove Extensions”.
In: Proceedings of the 27th International Conference on the Theory and Application of Cryptology
and Information Security. ASIACRYPT ’21. 2021, pp. 3–33.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. “The random oracle methodology, revisited”. In:
Journal of the ACM 51.4 (2004), pp. 557–594.

[CHMMVW20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas Ward.
“Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS”. In: Proceedings of the
39th Annual International Conference on the Theory and Applications of Cryptographic Techniques.
EUROCRYPT ’20. 2020, pp. 738–768.

[CY20] Alessandro Chiesa and Eylon Yogev. “Barriers for Succinct Arguments in the Random Oracle
Model”. In: Proceedings of the 17th Theory of Cryptography Conference. TCC ’20. 2020, pp. 47–76.

[CY21a] Alessandro Chiesa and Eylon Yogev. “Subquadratic SNARGs in the Random Oracle Model”. In:
Proceedings of the 41st Annual International Cryptology Conference. CRYPTO ’21. 2021, pp. 711–
741.

[CY21b] Alessandro Chiesa and Eylon Yogev. “Tight Security Bounds for Micali’s SNARGs”. In: Proceedings
of the 19th Theory of Cryptography Conference. TCC ’21. 2021, pp. 401–434.

[CY24] Alessandro Chiesa and Eylon Yogev. Building Cryptographic Proofs from Hash Functions. 2024.
URL: https://github.com/hash-based-snargs-book.

[FFR24] Antonio Faonio, Dario Fiore, and Luigi Russo. “Real-World Universal zkSNARKs are Non-
Malleable”. In: Proceedings of the 2024 ACM SIGSAC Conference on Computer and Commu-
nications Security. 2024, pp. 3138–3151.

[FS86] Amos Fiat and Adi Shamir. “How to prove yourself: practical solutions to identification and signature
problems”. In: Proceedings of the 6th Annual International Cryptology Conference. CRYPTO ’86.
1986, pp. 186–194.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. “On the (In)security of the Fiat-Shamir Paradigm”. In:
Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science. FOCS ’03.
2003, pp. 102–113.

[GW11] Craig Gentry and Daniel Wichs. “Separating Succinct Non-Interactive Arguments From All Falsifi-
able Assumptions”. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing.
STOC ’11. 2011, pp. 99–108.

80

https://github.com/hash-based-snargs-book

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over Lagrange-
bases for Oecumenical Noninteractive arguments of Knowledge. Cryptology ePrint Archive, Report
2019/953. 2019.

[JT20] Joseph Jaeger and Stefano Tessaro. “Expected-Time Cryptography: Generic Techniques and Appli-
cations to Concrete Soundness”. In: Proceedings of the 18th Theory of Cryptography Conference.
TCC ’20. 2020, pp. 414–443.

[KRS25] Dmitry Khovratovich, Ron D. Rothblum, and Lev Soukhanov. How to Prove False Statements:
Practical Attacks on Fiat-Shamir. Cryptology ePrint Archive, Report 2025/118. 2025.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. “Constant-Size Commitments to Polynomials
and Their Applications”. In: Proceedings of the 16th International Conference on the Theory and
Application of Cryptology and Information Security. ASIACRYPT ’10. 2010, pp. 177–194.

[Kil92] Joe Kilian. “A note on efficient zero-knowledge proofs and arguments”. In: Proceedings of the 24th
Annual ACM Symposium on Theory of Computing. STOC ’92. 1992, pp. 723–732.

[LM19] Russell W. F. Lai and Giulio Malavolta. “Subvector Commitments with Application to Succinct
Arguments”. In: Proceedings of the 39th Annual International Cryptology Conference. CRYPTO ’19.
2019, pp. 530–560.

[LPS24a] Helger Lipmaa, Roberto Parisella, and Janno Siim. “Constant-Size zk-SNARKs in ROM from
Falsifiable Assumptions”. In: Proceedings of the 43rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques. EUROCRYPT ’24. 2024, pp. 34–64.

[LPS24b] Helger Lipmaa, Roberto Parisella, and Janno Siim. On Knowledge-Soundness of Plonk in ROM from
Falsifiable Assumptions. Cryptology ePrint Archive, Report 2024/994. 2024.

[Lee21] Jonathan Lee. “Dory: Efficient, Transparent Arguments for Generalised Inner Products and Poly-
nomial Commitments”. In: Proceedings of the 19th Theory of Cryptography Conference. TCC ’21.
2021, pp. 1–34.

[Mic00] Silvio Micali. “Computationally Sound Proofs”. In: SIAM Journal on Computing 30.4 (2000).
Preliminary version appeared in FOCS ’94., pp. 1253–1298.

[RV09] Guy N. Rothblum and Salil Vadhan. “Are PCPs Inherent in Efficient Arguments?” In: Proceedings
of the 24th IEEE Annual Conference on Computational Complexity. CCC ’09. 2009, pp. 81–92.

[SSY23] Gil Segev, Amit Sharabi, and Eylon Yogev. “Rogue-Instance Security for Batch Knowledge Proofs”.
In: Proceedings of the 21st Theory of Cryptography Conference. TCC ’23. 2023, pp. 121–157.

[Tha22] Justin Thaler. “Proofs, Arguments, and Zero-Knowledge”. In: Found. Trends Priv. Secur. 4.2-4
(2022), pp. 117–660. DOI: 10.1561/3300000030. URL: https://people.cs.georgetown.
edu/jthaler/ProofsArgsAndZK.

[Val08] Paul Valiant. “Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/Space
Efficiency”. In: Proceedings of the 5th Theory of Cryptography Conference. TCC ’08. 2008, pp. 1–
18.

81

https://doi.org/10.1561/3300000030
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK

	Abstract
	Contents
	1 Introduction
	1.1 Our results

	2 Techniques
	2.1 Limitations of prior analyses
	2.2 Warm-up: arguments based on functional PCPs
	2.3 Succinct arguments based on public-coin functional IOPs
	2.4 Function binding in action: On the security of Plonk

	3 Preliminaries
	3.1 Interactive arguments
	3.2 Functional interactive oracle proofs
	3.3 Functional commitment schemes

	4 The Funky protocol
	5 Solving time and tail errors
	5.1 Inefficient baseline for the general case
	5.2 Linear queries
	5.3 Point queries
	5.4 Univariate polynomial evaluation queries
	5.5 Multivariate polynomial evaluation queries
	5.6 Structured polynomial evaluation queries
	5.7 Bounded-degree functions

	6 State-restoration security reduction
	6.1 Construction of the security reductors
	6.2 Proof of Lemma 7.1

	7 State-restoration security of the Funky protocol
	7.1 Construction of the FIOP state-restoration adversary
	7.2 State-restoration soundness
	7.3 State-restoration knowledge soundness

	8 Batching and linearization for homomorphic functional commitment schemes
	8.1 Proof of Lemma 9.2 (batched-messages FC)
	8.2 Proof of Lemma 9.3 (linearization trick)

	9 Application: variants of the KZG polynomial commitment scheme
	9.1 Proof of Lemma 10.1 (KZG)
	9.2 Proof of Corollary 10.2 (batch KZG)
	9.3 Proof of Corollary 10.3 (linearized KZG)

	A Special function binding
	B Comparing function binding to other properties for KZG
	B.1 Function binding implies strong correctness
	B.2 Interpolation binding implies function binding

	C Function binding for polynomial commitment schemes based on DLog
	C.1 Square-root-sized polynomial commitment scheme
	C.2 Bulletproofs-style polynomial commitment scheme

	Acknowledgments
	References

