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Abstract. Non-interactive publicly verifiable secret sharing (PVSS)
schemes enable the decentralized (re-)sharing of secrets in adversarial
environments, allowing anyone to verify the correctness of distributed
shares. Such schemes are essential for large-scale decentralized applica-
tions, including committee-based systems that require both transparency
and robustness. However, existing PVSS schemes rely on group-based
cryptography, resulting them vulnerable to quantum attacks and limit-
ing their suitability for post-quantum applications.
In this work, we propose the first practical, fully lattice-based, non-
interactive PVSS scheme, grounded on standard lattice assumptions for
post-quantum security. At the heart of our design is a generic framework
that transforms vector commitments and linear encryption schemes into
efficient PVSS protocols. We enhance vector commitments by incorpo-
rating functional hiding and proof of smallness, ensuring that encrypted
shares are both verifiable and privacy-preserving. Our construction in-
troduces two tailored lattice-based encryption schemes, each supporting
efficient proofs of decryption correctness. This framework provides strong
verifiability guarantees while maintaining low proof sizes and computa-
tional efficiency, making it suitable for systems with large numbers of
participants.

1 Introduction

Publicly verifiable secret sharing (PVSS) schemes enable a dealer to distribute
a secret among multiple participants, in such a way that anyone — not only the
participants — can verify the correctness of the distributed shares [24]. PVSS
protocols are foundational components in decentralized cryptographic systems,
including distributed key generation, threshold signatures, and committee-based
consensus protocols [8, 3]. As decentralized systems continue to scale, efficient
PVSS schemes become critical to maintain transparency, robustness against ma-
licious dealers, and scalability to large committees.

A fundamental property of PVSS is public verifiability. This ensures that any
party, not just the participants, can audit the distribution process and detect



any misbehavior by the dealer. Public verifiability is particularly crucial in open,
decentralized environments where trust assumptions are minimal, and external
observers must independently verify the integrity of the secret sharing process.
However, many existing constructions rely heavily on pairing-based cryptogra-
phy or group-based assumptions to achieve this property, which leads to sub-
stantial computational costs and large proof sizes [10, 23, 5, 22, 13, 11, 4, 7]. These
inefficiencies hinder scalability, especially in systems with large committees.

Another critical requirement is compactness of proofs. In decentralized net-
works involving thousands of participants, the size of the proofs associated with
each share directly impacts communication overhead and verification efficiency.
Most recently, there have been efforts to design more efficient and compact PVSS
schemes [8, 3]. However, these constructions still rely on group-based primitives
and discrete logarithm assumptions, leaving them vulnerable to quantum attacks
and limiting their suitability for post-quantum applications.

Post-quantum security is increasingly vital in the era of quantum computing.
Cryptographic schemes based on traditional hardness assumptions, such as the
discrete logarithm or factoring problems, are rendered insecure against quantum
adversaries. Unfortunately, most PVSS constructions to date rely on these vul-
nerable foundations, leaving future decentralized systems exposed to potential
quantum attacks. Lattice-based cryptography, founded on hard problems such
as the Learning With Errors (LWE) and Integer Solution (SIS) problems [1, 20,
6, 15, 19, 17], provides a promising post-quantum secure alternative. However,
designing efficient, publicly verifiable, and compact PVSS schemes based solely
on lattice assumptions remains an open challenge. An important step towards
lattice-based PVSS was made by Gentry et al. [11], who proposed a PVSS con-
struction at EUROCRYPT 2022 that partially incorporates lattice-based primi-
tives. Their scheme combines LWE-based encryption with a discrete-logarithm-
based proof system. While this hybrid design improves efficiency and introduces
lattice techniques into PVSS, it falls short of achieving full post-quantum se-
curity. Specifically, because the underlying proof system relies on DL-based as-
sumptions, the security of the overall scheme is compromised in the presence of
quantum adversaries. In their work, Gentry et al. explicitly identified the con-
struction of an efficient, fully lattice-based PVSS scheme as an open problem.

Finally, modularity and flexibility of the construction are highly desirable
features for PVSS schemes. A modular design enables flexible instantiation of
building blocks, allowing protocol designers to adapt the scheme for varying
performance and security requirements. Yet, achieving such modularity in the
lattice setting while preserving efficiency and strong security properties poses
significant technical difficulties.

With all of this in mind, it is interesting to ask the following question:

Can we design a non-interactive, PVSS scheme that simultaneously
achieves post-quantum security, compact and efficient proofs, and mod-
ularity to support large-scale decentralized systems?

In this work, we answer this question affirmatively by introducing the first
fully lattice-based, practical, non-interactive PVSS scheme. Our design departs
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from traditional group-based approaches and instead builds a modular frame-
work that composes vector commitments with linear encryption schemes. At the
core of our framework lies a generic framework that transforms any compatible
vector commitment and encryption scheme into a PVSS protocol, providing both
correctness and public verifiability. We enhance vector commitments by intro-
ducing two crucial properties: functional hiding and proof of smallness. Func-
tional hiding ensures that the commitment reveals no information beyond what
is necessary for verification, while proof of smallness guarantees that the com-
mitted values remain within prescribed bounds, both essential for verifiability
in the lattice setting. To instantiate our framework concretely, we propose two
novel lattice-based encryption schemes, each supporting efficient zero-knowledge
proofs of decryption correctness. These choices allow us to overcome the scala-
bility barriers of existing PVSS constructions and deliver a solution well-suited
for decentralized systems with thousands of participants.

1.1 Our Contributions

In this work, we make several contributions towards constructing a practical,
fully lattice-based PVSS scheme. Our results advance the state of the art in
both the theoretical understanding and practical deployment of PVSS protocols,
particularly in the post-quantum setting. Our contributions are summarized as
follows:

– A fully lattice-based, practical PVSS scheme. We design the first
PVSS protocol based entirely on lattice assumptions, achieving post-
quantum security under standard hardness assumptions such as (Ring) LWE
and SIS.

– A generic framework for PVSS construction. We develop a modular
framework that generically composes vector commitments and linear encryp-
tion schemes into a PVSS protocol. Our framework requires the encryption
scheme to support efficient proofs of correct decryption, and the vector com-
mitment to satisfy linear opening, functional hiding, and proof of smallness
properties. This modularity allows our scheme to flexibly accommodate dif-
ferent cryptographic primitives, making it adaptable to a variety of perfor-
mance and security trade-offs.

– Two new lattice-based encryption schemes. To instantiate our frame-
work, we propose two novel lattice-based encryption schemes designed to ef-
ficiently support the required proof systems. These encryption schemes not
only ensure correctness and verifiability within our PVSS protocol but may
also find applications in other cryptographic constructions where efficiency
and post-quantum security are critical.

– Enhanced vector commitment with functional hiding and proof
of smallness. We extend existing lattice-based vector commitments by in-
troducing two crucial properties: functional hiding and proof of smallness.
Functional hiding ensures that commitments leak no unnecessary informa-
tion beyond what is required for verification. Proof of smallness enables the
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prover to demonstrate that the committed values lie within a specific range,
a property essential for ensuring both correctness and soundness in our PVSS
construction.

1.2 Our Technical Overview

Our central contribution is a generic framework that transforms any suitable
combination of a Vector Commitment (VC) scheme and a linear encryption
scheme into a secure PVSS protocol. Leveraging this compiler, we present
the first PVSS construction based entirely on standard lattice assumptions,
offering a scalable and post-quantum secure solution for decentralized secret
sharing. Below, we describe the essential components and technical choices in
our framework, unpacking both the cryptographic primitives and the intuition
behind their integration.

Vector Commitments with Proof of Smallness. At the heart of our design lies
an enhanced vector commitment scheme, which the dealer uses to commit to a
vector x containing:

– The secret-sharing polynomial coefficients a,
– The computed shares si,
– The encryption randomness values ri.

The commitment ensures that the dealer cannot alter these values post-
commitment (binding), and the opening proof attests that all entries of x satisfy
a consistency function M , verifying both the correct computation of shares and
the encryption of these shares under participants’ public keys.

To reinforce this commitment, we extend standard VC schemes with two
critical properties:

– Proof of Smallness: In lattice-based constructions, bounding the norm of
committed values is crucial to ensure decryption correctness and maintain
soundness. We incorporate efficient proofs that all sensitive entries of x,
notably si and ri, are bounded by a parameter β, ensuring:

∥xs∥ ≤ β ∀s ∈ S

where S denotes the index set of sensitive components.
– Functional Hiding: To preserve privacy, our scheme guarantees that the com-

mitment to x leaks no information beyond what is revealed by the evaluation
of the opening function M . Specifically, for any linear function f , the opening
proof π satisfies f(x) = y while hiding all other information about x. This
is vital for maintaining t-IND2 privacy in the presence of active adversaries.

Our instantiation builds upon the VC scheme of Albrecht et al. [2], which
we extend to support these properties efficiently within our framework.
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Linear Encryption with Proof of Decryption Correctness. Next, we employ a lin-
ear encryption scheme that is fully compatible with our vector commitment
structure and supports efficient zero-knowledge proofs of correct decryption. For
any message m, randomness r, and public key pk, encryption takes the form:

E .Encrypt(E .pp, pk,m, r) = m ·G+ r ·A

where G is a fixed public gadget matrix, and A is part of the public parameters.
To enable public verification of decryption correctness, the scheme provides:

– E .ProveDecrypt(sk; (pk,m,C)) — the decryptor generates a non-interactive
proof that C decrypts to message m, without revealing the secret key sk.

– E .VerifyDecrypt(pk,m,C, pf) — any verifier can efficiently check the validity
of this decryption proof pf.

We instantiate this encryption component using two novel lattice-based
schemes described in Sections 4.2 and 4.3:

– The first is a gadget-based scheme where the decryptor reveals r to prove
decryption correctness via:

C −m ·G = r ·A.

– The second is a trapdoor-sampling-based scheme where the decryptor pro-
vides auxiliary values (B′, e) to enable efficient public verification. Here:
• B′ = c2−p ·m is a blinded ciphertext component that hides the message,
• e = B′ − s⊤ · c1 is the decryption noise.

The verifier checks that ∥e∥ < β, where β is the public smallness bound
defined during setup. This ensures that the decryption is correct without
revealing the secret key s.

Both schemes balance compactness, efficiency, and post-quantum security,
while supporting public verifiability.

Identification Protocols for Key Generation and Decryption Proofs. To ensure
trust in public keys and decryption proofs, we integrate identification proto-
cols based on lattice assumptions, inspired by Lyubashevsky’s identification
scheme [15].

These protocols serve two roles:

– Key Generation Proofs: Each participant proves knowledge of their secret
key ski corresponding to the public key pki = A · ski. The proof is verified
using E .VerifyKey(E .pp, pki, pfKey,i).

– Decryption Proofs: Each participant, upon decrypting their ciphertext Ci,
proves that their decrypted share si is correct:

Ci − si ·G = ri ·A

Verification is performed using E .VerifyDecrypt(pki, si, Ci, pfDec,i).
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These protocols ensure public verifiability at both key generation and
decryption phases, without revealing secret information.

Our Generic framework: From Building Blocks to PVSS. We combine these
primitives into a complete PVSS protocol through our generic framework. The
workflow is as follows:

1. Setup: Initialize public parameters for Shamir secret sharing, vector com-
mitments, and encryption schemes.

2. Key Generation: Each participant generates (pki, ski) along with proof pfKey,i
of correct key generation.

3. Distribution:
– The dealer defines a polynomial f(x) of degree t such that f(0) = s.
– Compute shares si = f(i) and encrypt them:

Ci = E .Encrypt(E .pp, pki, si, ri)

– Form the vector x = (a, s1, . . . , sn, r1, . . . , rn), commit to x, and generate
an opening proof verifying:
• Correctness of shares: si = f(i)
• Correctness of ciphertexts: Ci = E .Encrypt(E .pp, pki, si, ri)

4. Distribution Verification: Any party verifies the dealer’s commitment and
opening proof, ensuring correct distribution.

5. Decryption: Each participant decrypts their ciphertext and produces a
proof pfDec,i of correct decryption.

6. Reconstruction: Using Lagrange interpolation on decrypted shares si, any
set of at least t participants can reconstruct the secret s.

Concrete Instantiation and Practicality. Our concrete instantiation composes
the above primitives into a fully lattice-based PVSS scheme. Specifically:

– We extend the vector commitment scheme of Albrecht et al. [2] to support
proof of smallness and functional hiding.

– We design two linear encryption schemes optimized for efficiency and verifi-
able decryption, using either gadget-based techniques or trapdoor sampling.

– We integrate lattice-based identification protocols to guarantee public veri-
fiability of key generation and decryption.

Our construction derives security from standard lattice assumptions (Ring)
LWE and SIS. The result is a PVSS protocol that is compact, scalable to thou-
sands of participants, and secure against quantum adversaries — making it suit-
able for deployment in decentralized, large-scale environments.

1.3 Comparison

Comparison with state-of-the-art works. We denote G to be a cyclic group of
order q and assume that each element in G has log q bits. The notation opG
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Table 1. Comparisons.

Work Communication Computation Secret Assumptions
[7] O((n+ ℓ) · log q) O((n2 + nℓ+ n log2 n) · opZq

) Gℓ DLOG+ROM
[11] O(n · (u+ v) · log q) O(n · (u+ v) log q) Zq LWE+DLOG+ROM
[9] O(n · log q) O(n · opG + n log2 n · opZq

) G DLOG+ROM
[8] O(n · log q) O(n · opG + n log2 n · opZq

) Zq DLOG+ROM
Ours 1 O(n · log2 q) O(n2 log3 q · opRq

) Zq LWE+k-R-ISIS
Ours 2 O(n · log q) O(n2 log q · opRq

) Zq R-LWE+k-R-ISIS

refers to the number of exponentiations in G, and opZq
refers to the number of

arithmetic operations in Zq. Table 1 summarizes the efficiency of our PVSS con-
struction in terms of communication, computation, and underlying assumptions,
benchmarked against prior state-of-the-art schemes [7, 11, 9, 8]. Our construction
achieves communication complexity of O(n · log q), matching the best known re-
sults, while offering substantially better computational efficiency. Specifically,
the computation cost of our scheme is O(n2 log q · opRq

), where opRq
denotes

ring operations over the lattice modulus ring. This is enabled by our tightly in-
tegrated design combining lattice-based vector commitments, linear encryption
schemes, and efficient proofs of decryption correctness. Unlike earlier works that
rely on group-based cryptography, random oracles, or hybrid hardness assump-
tions, our scheme is built entirely from standard lattice assumptions, namely
(R-)LWE and k-R-ISIS. This ensures strong post-quantum security and yields
a more modular and scalable design, well-suited for deployment in large-scale
decentralized systems.

We propose two distinct constructions building upon the established frame-
work, each leveraging a specific combination of Vector Commitment (VC) and
encryption schemes. Our first construction (Ours 1) employs a plain LWE based
cryptosystem (as detailed in Section 4.2 or Section 4.3) in conjunction with the
VC scheme from Section 3.1. The security of this construction is founded on
the standard LWE assumption. Our second construction (Ours 2) incorporates
the compact ring-based cryptosystem presented in Section 4.4. This alternative
relies on the Ring-LWE (R-LWE) assumption and offers the advantage of faster
computation.
Concurrent Work. In a concurrent work, Minh et al. [18] introduce a post-
quantum secure PVSS framework based on the LWE assumption and trapdoor
Σ-protocols, with security proven in the standard model. While achieving these
desirable properties, their construction exhibits significant computational and
communication overheads. Specifically, as indicated in their work (cf. Table 1),
the communication complexity is Ω(nλ(u+ v) log q), and the total computation
cost is Ω(λ(n2 + nuv)) · opZq

, where λ denotes the security parameter, q is the
modulus, and u, v represent lattice dimensions. A further contributing factor to
this high cost is the reliance on binary-challenge Σ-protocols, which necessitate
λ parallel repetitions to achieve a negligible soundness error, thereby magnifying
the overall expenses. Moreover, their parameterization, as detailed in Table 1 of
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their paper, suggests a modulus q on the order of λ11n. Such a polynomial depen-
dency of the modulus on the security parameter λ is uncharacteristic of typical
cryptographic constructions and presents practical challenges. If λ is chosen to-
wards the lower end of cryptographically secure values to maintain manageable
costs, the λ11 scaling might result in a modulus q that offers insufficient con-
crete security, particularly against adversaries equipped with substantial compu-
tational power (e.g., supercomputers). Conversely, selecting a λ large enough to
guarantee robust security would lead to an exceptionally large modulus, further
exacerbating the already considerable communication and computation costs,
likely rendering the protocol impractical for many applications.

In contrast, our construction is non-interactive by design and leverages effi-
cient lattice-based components. We achieve a much tighter communication com-
plexity of O(n · log q) and computation complexity O(n2 · log q · opRq

), while
supporting compact proofs and practical efficiency. Our design avoids λ-fold
repetition and achieves negligible soundness error through direct integration of
proof-of-smallness techniques within vector commitments and verifiable linear
encryption. This makes our protocol more scalable and better suited for deploy-
ment in real-world post-quantum settings.

2 Preliminaries

Notation. Throughout this paper, we use bold lowercase letters such as x to
denote vectors and bold uppercase letters such as A for matrices. We write ⟨·, ·⟩
to denote the standard inner product of vectors. Let ◦ denotes component-wise
multiplication. The set of integers modulo q is denoted by Zq, and for a ring R,
we write R× to denote its multiplicative group of units. We use R to denote the
ring associated with the lattice-based construction (e.g., Zn

q ), and K to denote
the base field. All algorithms are probabilistic polynomial-time (PPT) unless
otherwise stated. When we write x← D, we mean that x is sampled from distri-
bution D. The security parameter is denoted by λ, and all negligible functions
are implicit in λ.

2.1 Publicly Verifiable Secret Sharing

We first present the definitions of a PVSS and security properties, where we
mainly adopt the definitions from [8].

Definition 2.1 (Publicly Verifiable Secret Sharing). A PVSS scheme con-
sists of the following algorithms.

Setup:

– pp← Setup(1λ, 1n, 1t): The setup algorithm generates the public parameters
on input the security parameter λ ∈ N, number of parties λ ∈ N and recon-
struction thresholds t ∈ N. The public parameters include a description of
spaces of secrets and shares S and spaces of private and public keys SK and
PK and the relation RKey ⊆ PK × SK describing valid key pairs.
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– (ski, pki, pfKey,i) ← KeyGen(pp, i): The key generation algorithm generates
(pki, ski) ∈ RKey and proof pfKey,i for identification of pki.

– b ← VerifyKey(pp, i, pki, pfKey,i): The key verification algorithm outputs a
bit b deciding whether to accept or reject that pki is a valid identification.

Distribution:

– ((Ci)i∈[n], pfD) ← Dist(pp, (pki)i∈[n], s) The distribution algorithm outputs
encrypted shares Ci and a proof pfD of sharing correctness on input the
secret s ∈ S.

Distribution Verification:

– b← VerifyDist(pp, (pki, Ci)i∈[n], pfD): The distribution verification algorithm
outputs a bit b deciding whether to accept or reject that for each i share Ci

is valid.

Reconstruction:

– (si, pfDec,i) ← Decrypt(pp, i, pki, ski, Ci): The decrypt share algorithm out-
puts a decrypted share si and a proof pfDec,i of correct decryption.

– s′ ← Reconstruct(pp, {si : i ∈ T}): The reconstruction algorithm for some
T ⊆ [n] outputs an element of the secret space s′ ∈ S or an error symbol ⊥.

– b ← VerifyDecrypt(pp, i, pki, siCi, pfDec,i): The decryption verification algo-
rithm outputs a bit b deciding whether to accept or reject that si is a valid
decryption of Ci.

Security properties We require a PVSS to satisfy correctness, verifiabil-
ity and IND2-secrecy. We briefly summarize these here and defer the formal
definitions to Appendix A.2.

Correctness. If all parties behave honestly, the protocol guarantees that:

– All verification procedures succeed, including key verification VerifyKey, dis-
tribution verification VerifyDist, and decryption verification VerifyDecrypt.

– Any set of at least t honest participants can successfully reconstruct the
secret from their decrypted shares.

Verifiability. The scheme ensures that all cryptographic objects are publicly
verifiable:

– Key verifiability: Any public key is certified to correspond to a valid secret
key via VerifyKey.

– Distribution verifiability: The dealer’s distribution of encrypted shares and
proof pfD certifies correct sharing of the secret using VerifyDist.

– Decryption verifiability: Each decrypted share is accompanied by a proof of
correctness, verified using VerifyDecrypt.
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Privacy We now define indistinguishability of secrets against an adversary cor-
rupting t parties. We follow the notions from [2]. In this definition, the adversary
is allowed to compute the public keys of the corrupted parties after seeing those
of the honest parties. Then, provided two secrets (s0, s1) and a sharing of a ran-
dom secret sb, the adversary has negligible advantage in guessing which secret
was shared. In this paper, we choose the IND2-privacy flavor where the adver-
sary can choose s0, s1. This is stronger than IND1-privacy where the challenger
chooses the secrets at random.

Definition 2.2. The PVSS is t-IND2-private if for any poly(1λ)-time adversary
A corrupting t parties (w.l.o.g. A corrupts [n− t+ 1, n]), we have

Pr[Gameind−secrecy,0
A,PVSS (λ) = 1]− Pr[Gameind−secrecy,1

A,PVSS (λ) = 1] = negl(λ)

where for b = 0, 1, Gameind−secrecy,b
A,PVSS (λ) is the following game:

– The challenger runs pp← Setup(1λ, 1n, 1t) and sends pp to A.
– For i ∈ [n − t], the challenger runs (ski, pki, pfKey,i) ← KeyGen(pp, i) and

sends all created (pki, pfKey,i) to A.
– For the corrupted parties, A creates (pki, pfKey,i)i∈[n−t+1,n] ← A(pp, (pki,

pfKey,i)i∈[n−t]) and sends them to the challenger, together with two values
s0, s1 in S.

– The challenger runs VerifyKey(pp, i, pki, pfKey,i) for i ∈ [n− t+1, n]. If any
of these output 0 (reject), the challenger sends ⊥ to A.

– Otherwise, if all key verification proofs accept, the challenger runs
(C1, . . . , Cn, pfD)← Dist(pp, {pki : i ∈ [n]} , sb), and sends (C1, . . . , Cn, pfD)
to A.

– A outputs a guess b′ ∈ {0, 1}.

2.2 Linear Public Key Encryption

We describe here explicitly the encryption scheme as we use it in our protocol.
Let E = (Setup,KeyGen,VerifyKey,Encrypt,Decrypt) be a public key encryption
scheme (see Appendix A.1 for the detailed definition). The results in this paper
require linear encryption schemes with proofs of decryption correctness.
Proofs of Decryption Correctness [9]. We need proofs of decryption correctness,
where of, of course the prover wants to keep their secret key hidden, i.e., proofs
for the relation.

RE,Decrypt = {(sk; (pk,m, c)) :

(pk, sk)is a valid key-pair for Encrypt and m = Decrypt(sk, c)}

Definition 2.3. These algorithms add to E:

– pfDec ← ProveDecrypt(sk; (pk,m,C)): The proof of decryption correctness
algorithm generates a proof pfDec.
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– b ← VerifyDecrypt(pk,m,C, pfDec): The decryption verification algorithm
outputs a bit b deciding whether to accept or reject that m is a valid de-
cryption of C.

Definition 2.4. The public key encryption scheme E satisfies verifiability of
decryption if the following is satisfied: For every PPT A,

Pr
[
E .VerifyDecrypt(pk,m,Ci, pfDec) = 1

∧ ∄sk ∈ SK s.t. (m, ·)← E .Decrypt(pp, pk, sk, C)∣∣∣ pp← E .Setup(1λ, p),
(pk,m,C, pfDec)← A(pp)

]
is negligible in λ.

If the prover knows the randomness under which the message
was encrypted or recovers a valid randomness, the proving algorithm
ProveDecrypt(sk; (pk,m,C)) can simply output that randomness as pfDec ; the
verification VerifyDecrypt(pk,m,C, pfDec) accepts if Encrypt(pk,m; pfDec) = C.

Alternatively, we leverage the identification protocol to prove the validity of
decrypted shares. This approach ensures that the decrypted shares are consistent
with the ciphertexts and the corresponding secret key, providing an additional
layer of verifiability.

2.3 Vector Commitments

A vector commitment (VC) scheme is a cryptographic primitive that allows a
committer to fix a vector of values and subsequently prove the correctness of
evaluations on the committed vector. Formally, a VC scheme consists of four
PPT algorithms:

– Setup(1λ, 1v, 1w, 1o): A setup algorithm that generates public parameters pp
given the security parameter λ and the dimensions of the function family.

– Com(pp,x): A commitment algorithm that outputs a commitment c to a
vector x along with auxiliary information aux.

– Open(pp, f, z, aux): An opening algorithm that generates a proof π that the
committed vector x satisfies f(z,x) = y for a given public input z and
function f .

– Verify(pp, f, z,y, c, π): A verification algorithm that checks whether the proof
π correctly certifies the claimed evaluation result.

A VC scheme must satisfy the following security properties:

– Correctness: Any honestly generated commitment and proof must pass ver-
ification for correctly computed evaluations.

– Binding: An adversary must not be able to produce two valid openings of
the same commitment to different outputs for the same function.

– Functional Hiding: The commitment and proof should reveal no more about
the committed vector than what is implied by the evaluation outputs.

We defer to Appendix A.3 for the full formal definition.
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3 New Framework: A Compiler from VC to PVSS

In this section, we present our new framework for constructing PVSS schemes
from vector VC. Our goal is to achieve a generic, modular design that transforms
any suitably structured vector commitment and linear encryption scheme into a
secure and publicly verifiable PVSS protocol. We begin by revisiting the under-
lying vector commitment primitive and formalizing a specialized variant that we
refer to as Linear Vector Commitments with Proof of Smallness (LVC-PoS). This
variant enhances standard VC schemes by incorporating mechanisms for proving
the smallness of certain parts of the committed vector, which is crucial for our
later compiler construction. After defining LVC-PoS and its security properties,
we proceed to describe our generic compiler. The compiler transforms any LVC-
PoS scheme together with a compatible linear encryption scheme into a PVSS
protocol that ensures correctness, verifiability, and privacy in the public setting.
We provide the full details of this compiler in Algorithm 1 and rigorously ana-
lyze its security in the subsequent subsections. The generic nature of our design
enables flexible instantiation with a variety of lattice-based primitives, which we
will explore in Section 4.

3.1 Linear Vector Commitments with Proof of Smallness

We now define our extended vector commitment scheme, LVC-PoS. This primi-
tive extends conventional vector commitments by enforcing linearity of the sup-
ported function family and providing explicit proofs of smallness for specific
components of the input vector. The smallness proofs are essential in scenarios
where certain quadratic relations, such as ensuring the binary nature or bounded
norm of vector components, must be enforced alongside linear function correct-
ness. By embedding these proofs within the VC structure, we ensure that our
framework preserves both soundness and efficiency. We formally define the LVC-
PoS scheme and its security properties below.

Definition 3.1 (LVC-PoS). A LVC-PoS scheme is parameterized by the fam-
ily

F = {Fv,w,o ⊆ {f : Rv ×Rw → Ro}}v,w,o∈N

of linear functions over R, and an input alphabet X ⊆ R. The parameters v, w,
and o represent the dimensions of public inputs, secret inputs, and outputs of the
function f , respectively. The LVC-PoS scheme consists of the PPT algorithms
(Setup,Com, Open,Verify) defined as follows:

– pp← Setup(1λ, 1v, 1w, 1o, S, βS): Generate public parameters given the secu-
rity parameter λ ∈ N, dimensions v, w, o ∈ N, a smallness bound βS, and
an index set S = {s1, s2, ..., sk} indicating the positions in the input vector
x for which smallness proofs are required.

– (c, aux) ← Com(pp,x): Compute a commitment c to the vector x ∈ Xw,
along with auxiliary opening information aux.
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– π ← Open(pp, f, z, aux): Generate a proof π for function f ∈ Fv,w,o evaluated
at public input z ∈ X v, together with proofs that each indexed subvector xs

satisfies ∥xs∥ ≤ βS for all s ∈ S.
– b← Verify(pp, f, z,y, c, π): Given public parameters, function f , public input

z, claimed output y ∈ X o, commitment c, and proof π, output a bit b that
decides whether:

f(z,x) = y and ∀s ∈ S, ∥xs∥ ≤ βS

Remark on Proof Structure. The proof π generated by the Open algorithm can
be conceptually partitioned into two components:

– πf : proof of correctness of the linear function evaluation.
– {πs}: individual proofs of smallness for each subvector in S.

Thus, the proof can be expressed as π = (πf , {πs}). For efficiency, aggregation
techniques can be employed to compress multiple proofs into a single compact
proof, which is beneficial for reducing communication and verification overhead.

Definition 3.2 (Correctness). An LVC-PoS scheme is correct if for any
λ, v, w, o ∈ N, any pp ∈ Setup(1λ, 1v, 1w, 1o, S, βS), any (f, z,x,y) ∈ Fv,w,o ×
X v ×Xw ×X o such that:

f(z,x) = y and ∀s ∈ S, ∥xs∥ ≤ βS

and for any (c, aux)← Com(pp,x) and π ← Open(pp, f, z, aux), it holds that:

Verify(pp, f, z,y, c, π) = 1

The notions of weak binding and functional hiding closely follow the standard
definitions for vector commitments, which we recall in Appendix A.3. For clarity
and self-containment, we also define them explicitly here.

Definition 3.3 (Weak Biniding). Let ρ : N3 → [0, 1]. A LVC-PoS scheme
for F ,X ,Y) is said to be weakly binding if for any pair of PPT adversary A
and any s, w ∈ poly(λ) it holds that the following expression is upper-bounded by
ρ(λ, s, w):

Pr

∀i ∈ {0, 1}, pp← Setup(1λ, 1v, 1w, 1o)
Verify(pp, fi, zi,yi, c, πi) = 1, (c, (fi, zi,yi, πi)

1
i=0)← A(pp)

∧f0(z0, ·) = f1(z1, ·) ∧ y0 ̸= y1


Definition 3.4 (Functional Hiding). An LVC-PoS scheme satisfies func-
tional hiding if, given a commitment c and an opening proof πf for a func-
tion f , no adversary can distinguish between commitments to different vectors
x,x′ ∈ Xw, beyond what is revealed by f(z,x) and the smallness proofs.
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3.2 Compiler from Vector Commitment to PVSS

Our compiler generically transforms a VC scheme and a linear encryption scheme
into a PVSS protocol. The central idea is to commit to the dealer’s secret shares,
the associated encryption randomness, and the polynomial coefficients used for
secret sharing, all within a single vector. This commitment, together with an
opening proof, serves as a verifiable certificate of correct share generation and
encryption.
Setup. The Setup procedure initializes the system parameters for the PVSS pro-
tocol. A prime modulus p is selected to define the finite field over which Shamir’s
secret sharing will operate. The encryption scheme is instantiated to accommo-
date plaintext messages up to p3, ensuring sufficient capacity for the shares. The
vector size w accounts for the secret, the polynomial coefficients, the shares, and
the encryption randomness. Meanwhile, the output size o determines the capac-
ity for verifying the correctness of both the shares and the ciphertexts. Finally,
the vector commitment parameters are established to handle this configuration
and to support efficient proof generation and verification.
Key Generation. In this step, each participant generates their own encryption
key pair along with a corresponding proof of correct key generation. These proofs
ensure that the public keys are correctly formed and trustworthy, allowing all
parties to verify the validity of the public encryption keys before they are used
in the distribution of shares.
Distribution procedure. During the Distribution phase, the dealer constructs a
degree-t polynomial where the secret is embedded as the constant term, and
the remaining coefficients are randomly sampled. Each participant’s share is
computed by evaluating this polynomial at their index. These shares are then
encrypted under the corresponding public keys using fresh randomness. To bind
all these values together, the dealer commits to a vector containing the poly-
nomial coefficients, the shares, and the encryption randomness. The opening
function M(x) enforces two consistency checks: it verifies that each share cor-
responds to the correct evaluation of the polynomial, and that each ciphertext
encrypts the corresponding share correctly. The dealer then generates both a
commitment and an opening proof with respect to M(x), producing a publicly
verifiable distribution proof.
Distribution Verification. The correctness of the dealer’s behavior is verified
through the Distribution Verification procedure. Verifiers recompute the open-
ing function M(x) and check the validity of the commitment and opening proof
against the published ciphertexts and public parameters. This step ensures that
the dealer has honestly generated and encrypted the shares, providing public
verifiability without requiring trust in the dealer.
Decrypt Share. After distribution, each participant decrypts their ciphertext us-
ing the Decrypt Share procedure to recover their individual share. In addition
to recovering the share, participants generate a decryption proof that certifies
the correctness of their decryption relative to the original ciphertext. This de-
cryption proof is crucial for ensuring the integrity of the reconstruction process,
allowing other parties to verify that decrypted shares are valid.
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Algorithm 1 PVSS Framework
procedure Setup(1λ, 1n, 1t)

Let p = poly(λ) such that n < p
E .pp← E .Setup(1λ, p3)
w ← n(r + 1) + t+ 1
o← n(m+ 1)
VC.pp← VC.Setup(1λ, 1v, 1w, 1o, {n+ t+ 2, . . . , w} , E .pp.R)
return pp = (n, t, p, E .pp,VC.pp)

procedure Key Generation(pp, i)
(pki, ski, pfKey,i)← E .KeyGen(E .pp)
return ski, pki, pfKey,i

procedure Key Verification(pp, i, pki, pfKey,i)
return E .VerifyKey(E .pp, pki, pfKey,i)

procedure Distribution(pp, (pki), s)
(a1, . . . , at)← Zt

p

a← (s, a1, . . . , at)
for i = 1 to n do

bi ← (i0 mod p, . . . , it mod p)
si ← ⟨bi,a⟩
ri ←R
Ci ← E .Encrypt(E .pp, pki, si, ri)

x← (a, s1, . . . , sn, r1, . . . , rn)
Define opening function:

M(x) =

{
si = ⟨bi,a⟩ ∀i ∈ [n]

E .Encrypt(E .pp, pki, si, ri) = Ci ∀i ∈ [n]

(c, aux)← VC.Com(VC.pp,x)
pf ← VC.Open(VC.pp,M,⊥, aux)
return Encrypted shares: (C1, . . . , Cn)
return Distribution proof: pfD = (c, pf)

procedure Distribution Verification(pp, (Ci), pfD, (pki))
Recompute M as in Distribution
y← ([0]n, C1, . . . , Cn)
return VC.Verify(VC.pp,M,⊥,y, c, pf)

procedure Decrypt Share(pp, i, pki, ski, Ci)
si ← E .Decrypt(E .pp, ski, Ci)
pfDec,i ← E .ProveDecrypt(ski; (pki, si, Ci))
return si, pfDec,i

procedure Reconstruction(pp, (si))
return Lagrange interpolation over (si mod p)

procedure Decryption Verification(pp, i, pki, si, Ci, pfDec,i)
return E .VerifyDecrypt(pki, si, Ci, pfDec,i)

Decryption Verification. The validity of each participant’s decryption is checked
using the Decryption Verification procedure. Verifiers use this step to confirm that
the decrypted share corresponds correctly to the ciphertext and the participant’s
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public key. This verification ensures that dishonest participants cannot inject
invalid shares into the reconstruction process.
Reconstruction. Finally, once a sufficient number of correct decrypted shares
have been collected, the secret is reconstructed using the Reconstruction proce-
dure. Standard Lagrange interpolation is applied over the finite field defined by
modulus p, recovering the original secret without interaction between partici-
pants.

This design ensures that all critical steps of the PVSS protocol—distribution,
encryption, decryption, and reconstruction—are fully verifiable and publicly au-
ditable. By leveraging the binding and hiding properties of vector commitments,
alongside efficient encryption schemes, our compiler guarantees both correctness
and robustness. In the next section, we discuss how to instantiate this frame-
work concretely with suitable lattice-based components to achieve practical and
post-quantum secure PVSS constructions.

3.3 Security Proofs

In this section, we prove the security properties of our generic PVSS framework.
Specifically, we prove that our construction satisfies correctness, verifiability of
key generation, verifiability of distribution, verifiability of share decryption, and
privacy (IND2-privacy) under standard assumptions on the underlying encryp-
tion scheme and vector commitment scheme. Each proof relies on the modular
structure of our compiler, allowing security to be inherited directly from the
underlying primitives.

Theorem 3.5 (Correctness). The PVSS framework described in Algorithm 1
satisfies correctness with t-reconstruction, provided that the VC scheme is com-
plete and the encryption scheme is correct.

We defer the proof to Appendix B.2.

Theorem 3.6 (Verifiability of Key Generation). The PVSS framework
satisfies verifiability of key generation, provided that the underlying encryption
scheme supports verifiable key generation.

Proof. The Key Verification procedure in Algorithm 1 directly corresponds to
the key verification mechanism of the underlying encryption scheme. Since we
assume the encryption scheme provides verifiable key generation, correctness of
this verification implies that any participant’s public key is valid only if the
associated proof pfKey,i verifies successfully.

Theorem 3.7 (Verifiability of Distribution). The PVSS framework satis-
fies verifiability of distribution, provided that the underlying vector commitment
scheme is sound.

Proof. The Distribution Verification procedure in Algorithm 1 leverages the ver-
ification mechanism of the vector commitment scheme. If the commitment is
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sound, then the verification procedure guarantees that the shares and ciphertexts
are consistent with the committed data. Therefore, verifiability of distribution
follows from the soundness of the vector commitment.

Theorem 3.8 (Verifiability of Share Decryption). The PVSS framework
satisfies verifiability of share decryption, provided that the underlying encryption
scheme supports proofs of correct decryption.

Proof. The Decryption Verification procedure in Algorithm 1 corresponds to the
verification algorithm for the decryption correctness proof provided by the en-
cryption scheme. Thus, assuming the encryption scheme correctly supports proof
of decryption, this procedure ensures that only valid decrypted shares will be
accepted.

Theorem 3.9 (Privacy). The PVSS framework achieves t-IND2-privacy, pro-
vided that the vector commitment scheme satisfies functional hiding and the en-
cryption scheme is semantically secure.

Proof. Assume an adversary A corrupts up to t parties. Let

Pr[Gameind-secrecy,0A (λ) = 1]− Pr[Gameind-secrecy,1A (λ) = 1] = ϵ

denote the adversary’s distinguishing advantage between two secret distribu-
tions.

We construct a distinguisher D against the functional hiding property of the
vector commitment scheme. The reduction proceeds as follows:

– D samples a random bit b ∈ {0, 1} and runs the setup procedure of the
functional hiding game to obtain public parameters pp.

– D generates public keys and proofs for the n− t honest parties and receives
from A the public keys, proofs, and challenge secrets s0, s1 for the corrupted
parties.

– D verifies the key generation proofs and aborts if any verification fails.
– Following the PVSS protocol, D constructs the instance (M,x, z) and sub-

mits it to the functional hiding challenger, receiving the simulated commit-
ment c and proof pf.

– D forwards the resulting public values (C1, . . . , Cn, c, pf) to A and outputs
the adversary’s guess b∗ as its own guess.

If the adversary A can distinguish between the distributions of s0 and s1 with
advantage ϵ, then D breaks the functional hiding property of the vector com-
mitment scheme with the same advantage, contradicting its assumed security.

3.4 Computation Cost of Our PVSS Compiler

The computational cost of our PVSS protocol is analyzed by considering each
procedure defined in Algorithm 1. We express these costs in terms of opera-
tions performed by the underlying cryptographic primitives: a linear encryption
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scheme E and a vector commitment scheme VC. Let n be the number of par-
ticipants and t be the threshold. The vector x = (a, s1, . . . , sn, r1, . . . , rn) con-
tains the t + 1 coefficients of the polynomial a = (s, a1, . . . , at), the n shares
(s1, . . . , sn), and the n randomness values (r1, . . . , rn) used for encryption. As-
suming that each randomness ri is treated as r elements for length counting
purposes, the total length of the committed vector x is t+ 1+ n+ nr = O(nr).

The subscript p3 associated with the E operations indicates that the scheme
is instantiated to support a message space of size p3, where p is the modulus for
Shamir’s secret sharing. This ensures that inner products used to compute shares
si = ⟨bi,a⟩ do not overflow, i.e., si < p3. The parameters p3, nr, n for the VC
operations refer to characteristics related to the bound of the elements involved,
the length of the committed vector, and the number of outputs, respectively.
The 2n relations checked by the opening function M(x) are implicitly handled
by the VC operations, whose costs depend primarily on nr and n.
Setup. This procedure is run once, typically by a trusted party or as a distributed
process, to establish the common parameters. It involves initializing the encryp-
tion scheme parameters via E .Setup(1λ, p3); this has a computational cost of
opE.Setupp3 . Additionally, it sets up the vector commitment public parameters
through VC.Setup(1λ, 1v, 1w, 1o, . . . ). The crucial parameters for the VC scheme
derived from our framework are the vector length nr, and the number of relations
2n. The cost of this VC setup is denoted as opVC.Setupp3,nr,n

. The total compu-
tational cost for the Setup procedure is therefore opE.Setupp3 + opVC.Setupp3,nr,n

.
Key Generation. Each of the n participants executes this procedure once to gen-
erate their individual encryption key pair (pki, ski) and a corresponding proof of
correct key generation pfKey,i. This is performed by calling E .KeyGen(E .pp).
The computational cost incurred by each participant for Key Generation is
opE.KeyGenp3 .
Key Verification. To verify a participant’s public key pki using its associated
proof pfKey,i, any interested party (e.g., the dealer, other participants) invokes
E .VerifyKey(E .pp, pki, pfKey,i). The computational cost for verifying a single pub-
lic key is opE.VerifyKeyp3 .
Distribution. This procedure is executed once by the dealer to share the secret s.

1. Polynomial definition and evaluation: The dealer defines a degree-t polyno-
mial P (x) = s + a1x + · · · + atx

t. Then, n shares si = P (i) are computed.
Each evaluation si = ⟨bi,a⟩ (where bi = (i0, . . . , it)) requires O(t) arith-
metic operations in Zp. This step totals n ·O(t) operations.

2. Encryption of shares: Each share si is encrypted under the respec-
tive participant’s public key pki using fresh randomness ri: Ci ←
E .Encrypt(E .pp, pki, si, ri). This involves n encryptions, leading to a total
cost of n · opE .Encryptp3 .

3. Vector Commitment : The dealer commits to the vector x =
(a, s1, . . . , sn, r1, . . . , rn) of length nr. This operation, (c, aux) ←
VC.Com(VC.pp,x), has a cost of opVC.Comp3,nr,n

.
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4. Opening Proof Generation: An opening proof pf is generated for the
relations defined in M(x). These relations ensure that si = ⟨bi,a⟩
and E .Encrypt(E .pp, pki, si, ri) = Ci for all i ∈ [n]. This step, pf ←
VC.Open(VC.pp,M,⊥, aux), costs opVC.Open(p3,nr,n).

The overall computational cost for the Distribution procedure, approximating the
n ·O(t) term as n2 (as t = O(n) is typical), is:

n(n+ opE.Encryptp3 ) + opVC.Comp3,nr,n
+ opVC.Open(p3,nr,n)

Distribution Verification. This procedure can be performed by any party to verify
the integrity of the dealer’s actions using the public ciphertexts (C1, . . . , Cn)
and the distribution proof pfD = (c, pf). It involves reconstructing the open-
ing function M (which is a specification and has negligible computational cost)
and then executing VC.Verify(VC.pp,M,⊥,y, c, pf), where y = ([0]n, C1, . . . , Cn).
The dominant computational cost for Distribution Verification is opVC.Verifyp3,nr,n

.
Decrypt Share. Each participant Pi who has received an encrypted share Ci per-
forms this procedure.

1. Decryption: The participant decrypts Ci using their secret key ski to obtain
the share si ← E .Decrypt(E .pp, ski, Ci). This costs opE.Decryptp3

.
2. Proof of Decryption: A proof pfDec,i is generated certifying that si is the cor-

rect decryption of Ci with respect to pki. This is done via E .ProveDecrypt(ski;
(pki, si, Ci)), costing opE.ProveDecryptp3

.

The total computational cost for a participant to decrypt their share and gen-
erate the accompanying proof is opE.Decryptp3

+ opE.ProveDecryptp3
.

Decryption Verification. To confirm the validity of a decrypted share si (provided
by participant Pi along with Ci and pfDec,i), any party can perform this verifi-
cation. It involves calling E .VerifyDecrypt(pki, si, Ci, pfDec,i). This step is crucial
before using the share si in the reconstruction phase. The computational cost
for verifying one decrypted share is opE.VerifyDecryptp3

.
Reconstruction. Once a threshold of at least t + 1 valid decrypted shares (i, si)
are collected, the original secret s (i.e., P (0)) is recovered using Lagrange in-
terpolation over the field Zp. The computational cost for Reconstruction using
standard interpolation algorithms is O(t2) arithmetic operations in Zp. More
advanced techniques (e.g., FFT-based algorithms) can reduce this to O(t log2 t)
or O(t log t); we conservatively state O(t2).

Table 2 below summarizes the computational cost for each procedure.
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Procedure Computation Cost

Setup opE.Setup
p3

+ opVC.Setup
p3,nr,n

Key Generation (per participant) opE.KeyGen
p3

Key Verification (per key) opE.VerifyKey
p3

Distribution n(n+ opE.Encrypt
p3
) + opVC.Com

p3,nr,n
+ opVC.Open

p3,nr,n

Distribution Verification opVC.Verify
p3,nr,n

Decrypt Share (per share) opE.Decrypt
p3

+ opE.ProveDecrypt
p3

Decryption Verification (per share) opE.VerifyDecrypt
p3

Reconstruction O(t2) operations in Zp

Table 2. Computation costs for the core procedures in our PVSS protocol. All
encryption-related costs are parameterized by the message space size p3. VC costs
are driven by the committed vector length O(nr) and output size n.

4 Instantiations: PVSS Constructions

In this section, we provide three instantiations of the proposed framework. First,
we instantiate our extended vector commitment (LVC-PoS) using the VC scheme
from [2]. Then, we construct two linear encryption schemes inspired by [21, 15],
both tailored to support publicly verifiable decryption within our framework.
Our third instantiation utilizes the compact ring-based encryption scheme by
Lyubashevsky et al. [16], offering a more efficient structure in the ring setting.
Together with our compiler, these components yield three fully lattice-based
PVSS constructions.

4.1 Instantiation of LVC-PoS

In this section, we present our extended vector commitment, Proof-of-Smallness
Vector Commitment (LVC-PoS), which serves as a foundational component in
our PVSS construction. Starting from the VC scheme of Albrecht et al. [2], we
make two essential modifications:

– We restrict its evaluation to linear and multi-output linear functions, suitable
for our framework.

– We extend it to support proofs of smallness, including a specific focus on
binary satisfiability of committed vectors.

These extensions are crucial. In our PVSS, the committed vectors include
secret sharing coefficients, shares, and encryption randomness — all of which
must be proven to be well-formed and small. Since the vectors in our construction
are inherently binary and of fixed length, this guarantees smallness automatically
(bounded by 2length of randomness). For general cases with larger input lengths, we
refer to techniques such as those proposed by Libert et al. [14].

We formally define our construction in two stages:
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Algorithm 2 Vector Commitment [2]
procedure Setup(1λ, 1v, 1w, 1o)

v← (R×
q )

w, h← Ro
p

(A, td) = TrapGen(1η, 1l, q, R, β)
t← T
ui,j = SampPre(td,

vi
vj

t, β), ∀i, j ∈ Zw| i ̸= j

return (A, t, {ui,j} ,v, h)
procedure Com(pp,x)

c = ⟨v,x⟩ mod q
for i = 1 to w do

ui =
∑

j ̸=i xj · uj,i

aux = (ui)i∈Zw

return (c, aux)

procedure Open(pp, f, z, aux)
π =

∑
i∈Zo

∑
j∈Zw

hifi,j(z)uj

return π
procedure Verify(pp, f, z,y, c, π)

a1 =
(
A · u ?

=
(∑

k∈Zo
hk

(∑
j∈Zw

fk,j(z)
c
vj
− yk

))
· t mod q

)
a2 =

(
∥u∥

?

≤ δ0

)
return a1 ∧ a2

– First, we recall the base VC scheme [2] (Algorithm 2).
– Second, we extend it into a lattice-based LVC-PoS scheme (Algorithm 3).

Base Vector Commitment (Algorithm 2). The goal of the VC scheme is to
allow a dealer to commit to a vector x and later provide succinct, non-interactive
proofs that linear relations over x hold, without revealing x itself. We recall the
VC scheme [2] in Algorithm 2. For more details see Appendix A.4 .
LVC-PoS Scheme (Algorithm 3). We now extend the VC scheme to support
proof of smallness and binary satisfiability.
Setup: The setup is similar to the base VC but with a refined commitment key:

v′ ← (R×
p )

w, v =
1

v′ mod q

This transformation simplifies the commitments required for verifying quadratic
relations in the binary proof.
Commit: Commitment is delegated to the base VC. Additionally, we define an
internal function Com for auxiliary commitments: c = ⟨x, 1

v ⟩ mod q.
Open and Verify: We combine three proof components:

– Base proof π (as in VC).
– Proof πeq ensuring consistency of auxiliary commitment ch◦x with h ◦ x.
– Inner product proof πip verifying the binary relation.

The final verification checking cx · ch◦(x−1) · t
?
= ⟨A, πip⟩ confirms that the

committed vector x is binary.
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Algorithm 3 LVC-PoS
procedure Setup(1λ, 1v, 1w, 1o, S, βS)

Let v′ ← (R×
p )

w

Let v =
1

v′ mod q

h← Ro
p

(A, td) = TrapGen(1η, 1l, q, R, β)
t← T
ug = SampPre(td, g(v)t, β), ∀g ∈ G ▷ Where G =

{
vi
vj
|i ̸= j

}
return Public Parameters: (A, t, (ug)g∈G, v, h, S, βS)

procedure Com(pp,x) ▷ Inner function

Let c =<
1

v
,x > mod q

for i ∈ {1, . . . , w} do
Let ui =

∑w
i ̸=j=1 xju vi

vj

Let aux = (ui)i∈{1,...,w}
return Commitment: (c, aux)

procedure Com(pp,x)
return Commitment: VC7.Com(pp,x)

procedure Open(pp, f, z, aux)
Let π = VC.Open(pp, f, z, aux)
Let ch◦x, auxh◦x = Com(χS(h) ◦ x)

Let πeq = VC.Open(pp,
χS(h)

v
, z, auxh◦x)

Let πip =
∑

i,j∈Zw :i̸=j xi((χS(h))j(xj − 1))ui,j

return Proof: (π, ch◦x, πeq, πip)

procedure Verify(pp, f, z,y, c, π)
Let b1 = VC.Verify(pp, f, z,y, c, π)
Let b2 = VC.Verify(pp, h

v
, z, ch◦x, cx, πeq)

Let ch◦(x−1) = ch◦x− < h,
1

v
>

Let b3 = (cx × ch◦(x−1) × t
?
=< A, πip > ×t)

return
∧3

i=1 bi

Binary Satisfiability Proof. Finally, we prove that a committed vector x is binary.
The prover constructs:

πip =
∑

i,j∈Zw,i̸=j

xi (hj(xj − 1))ui,j

The verifier reconstructs ch◦(x−1) = ch◦x −
〈
h, 1

v

〉
and checks cx · ch◦(x−1) · t

?
=

⟨A, πip⟩. Thus, we conclude that x is a binary vector.

Theorem 4.1 (Security Properties of LVC-PoS). Assuming the correct-
ness, functional hiding, and binding properties of the underlying VC scheme
(Algorithm 2), the LVC-PoS (Algorithm 3) achieves the following properties:
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– Correctness: Algorithm 3 correctly verifies both the evaluation of linear
functions and the smallness of specified indices in the committed vector.

– Functional Hiding: Algorithm 3 preserves functional hiding for linear
function openings, meaning that the commitment and proof reveal no infor-
mation about the committed vector beyond the output of the opened function
and smallness verification.

– Weak Binding: Algorithm 3 satisfies weak binding, ensuring that after com-
mitting to a vector, it is computationally infeasible to produce two distinct
valid openings.

We defer the proof to Appendix B.1.

4.2 Instantiation of Linear Encryption Scheme I

In this section, we present our first instantiation of the linear encryption scheme,
which we refer to as Linear Encryption Scheme I. This scheme is built upon
lattice-based assumptions and is designed to work seamlessly with our vector
commitment construction and PVSS framework. It supports both encryption of
messages (shares in our setting) and efficient public proofs of correct decryption,
an essential feature for enabling verifiability in distributed systems.

We detail the design of this scheme in Algorithm 4, and we now explain each
component of the construction, step by step, highlighting the technical rationale
and the role of each operation.
Setup: The scheme begins with the parameter setup, as specified in the Setup
procedure of Algorithm 4. We select appropriate cryptographic parameters:

– Define k = ⌈log(p)⌉ to capture the bit length of the modulus.
– Select dimensions: l (rows of public keys), m = 2lk (columns of public keys),

and gadget dimension d.
– Define the error bound parameter α =

√
p

4 , which limits noise growth in
encryption and ensures correctness of decryption and proofs.

These parameters balance security and efficiency, and set the environment for
trapdoor generation and gadget operations.
Key Generation: In the Key Generation procedure, we generate both the public
and secret keys:

– Use the trapdoor generation function to sample a public matrix A ∈ Zl×m
p

along with its associated trapdoor td:

(A, td) = TrapGen(1l, 1m, 1p, α)

– Generate a key proof: pf = SampPre(td,Hash(A), α).

The proof pf provides public verifiability of the key generation without revealing
td, which is crucial for the non-interactive verifiability of our PVSS scheme.
Key Verification. It checks the correctness of the public key using the proof pf:

A · pf ?
= Hash(A) ∧ ∥pf∥

?
< α
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Algorithm 4 Linear Encryption Scheme I
procedure Setup(1λ, p)

k = ⌈log(p)⌉
Select l ∈ N, m = 2lk, d ∈ N, and α =

√
p

4

return (p, l,m, d, α)

procedure Key Generation(p, l,m, d, α)
(A, td) = TrapGen(1l, 1m, 1p, α)
pf = SampPre(td,Hash(A), α)
return Secret Key: td, Public Key: A, Key Proof: pf

procedure Key Verification(A, pf)
a = A · pf
b = Hash(A)

return a
?
= b and ∥pf∥

?
< α

procedure Encryption(A,m, (B, f , e, e′))
U = A ·B
h⊤ = f⊤ ·A+ e⊤

C⊤ = f⊤ ·U+ e′⊤ +m · g⊤

return (U,h,C)

procedure Decryption(td, (U,h,C))
B′ = SampPre(td,U, α)
m = GadgetSolve(C− h⊤ ·B′)
return m

procedure Prove Decryption(td,A,m, (U,h,C))
B′ = SampPre(td,U, α)
e = h⊤ ·B′ +m · g⊤ −C
return (e,B′)

procedure Verify Decryption(A,m, (U,h,C), (e,B′))
a1 = A ·B′

b1 = U
a2 = h⊤ ·B′ + e⊤ +m · g⊤

b2 = C

return a1
?
= b1 and a2

?
= b2 and ∥e∥

?
< α and ∥B′∥

?
< α

If both conditions hold, the key is deemed valid. This ensures honest parameter
generation and prevents malicious setup attacks.
Encryption: To encrypt a message m, as described in Encryption, the sender
performs the following:

– Sample randomness: B ∈ Zm×d
p , f ∈ Zl

p, e ∈ Zm
p (with ∥e∥ < α), and e′ ∈ Zd

p

(with ∥e′∥ < α).
– Compute U = A ·B, h⊤ = f⊤ ·A + e⊤, and C⊤ = f⊤ ·U + e′⊤ +m · g⊤.

Where g is the public gadget vector.

The ciphertext is the tuple (U,h,C), which encapsulates both the randomized
encryption and the structured form enabling efficient decryption and proof gen-
eration.
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Decryption: As shown in the Decryption procedure, the decryptor uses the trap-
door td to sample: B′ = SampPre(td,U, α). With this, the message is recovered
by solving: m = GadgetSolve(C− h⊤ ·B′). The correctness of this step follows
from the structured form of the ciphertext.
Prove Decryption: To enable public verifiability of decryption, the decryptor runs
Prove Decryption. Using td, the decryptor computes: B′ = SampPre(td,U, α)
and e = h⊤ · B′ + m · g⊤ − C. The proof consists of the tuple (e,B′), which
shows that the ciphertext decrypts to m correctly.
Verify Decryption: Finally, anyone can run Verify Decryption to check the
correctness of the decryption proof. Specifically, the verifier checks:

1. Consistency of B′ with U: A ·B′ ?
= U.

2. Consistency of e with ciphertext C: h⊤ ·B′ + e⊤ +m · g⊤ ?
= C.

3. Norm bounds: ∥e∥
?
< α, ∥B′∥

?
< α.

If all checks succeed, the decryption proof is accepted.

Lemma 4.2. Let Regev encryption scheme be IND-CPA, then the encryption
scheme I in Algorithm 4 satisfies IND-CPA security.

Proof. The Regev encryption scheme is provably IND-CPA secure under the
LWE assumption. Algorithm 4 presents a variant of Regev’s scheme where:

– The key generation outputs (A, td) = TrapGen(1l, 1m, 1p, α) and pf =
SampPre(td,Hash(A), α). The view of the attacker is (A, pf) which is pseu-
dorandom [12].

– The encryption algorithm outputs U = A · B and h⊤ = f⊤ · A + e⊤ and
C⊤ = f⊤ ·U + e′⊤ + m · g⊤. The view of the attacker is (U,h,C), where
U is pseudorandom under the SIS assumption and (h,C) is pseudorandom
under the LWE assumption.

Consequently, Algorithm 4 satisfies IND-CPA security.

Lemma 4.3. The encryption scheme 4 satisfies verifiability of key generation
and verifiability of decryption.

Proof. The verifiability of key generation follows directly from SampPre defi-
nition from [12]. The verifiability of decryption follows from the fact that the
ProveDecrypt outputs randomness as pfDec, and the verification algorithm checks
consistency of the Encrypt algorithm.

Theorem 4.4 (Security of PVSS Instantiation with Linear Encryption
Scheme I). Assuming the hardness of the LWE and SIS problems, and the secu-
rity properties of the LVC-PoS and Linear Encryption Scheme I, our instantiated
PVSS construction achieves correctness, verifiability, and t-IND2 privacy.

We defer the proof to Appendix B.3.
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Algorithm 5 Linear Encryption Scheme II
procedure Setup(1λ, p)

k = ⌈log(p)⌉. Select l ∈ N, m = 2lk, d ∈ N, α =
√
p

4
, and A← Zl×m

p

return (p, l,m, d, α,A)

procedure Key Generation(p, l,m, d, α,A)
sk← {0, 1}m, pk = A · sk
pfKey = id.prove(A, pk, sk) [15]
return Secret Key: sk, Public Key: pk, Key Proof: pfKey

procedure Key Verification(A, pk, pf)
return id.verify(A, pk, pfKey) [15]

procedure Encryption(A, pk,m, (B, e, e′))
C = B ·A+ e
C′ = B · pk+ e′ +m · g
return (C,C′)

procedure Decryption(sk, (C,C′))
B′ = C · sk
m = GadgetSolve(C′ −B′)
return m

procedure Prove Decryption(sk, pk,m, (C,C′))
B′ = C · sk
e = B′ +m · g −C′

pfDec = id.prove(C,B′, sk) [15]
return (e,B′, pfDec)

procedure Decryption Verification(pk,m,C,C′, e,B′, pfDec)
a = B′ + e+m · g
b = C′

return a
?
= b and ∥e∥

?
< α and id.verify(C,B′, pfDec) [15]

4.3 Instantiation Linear Encryption Scheme II

We now present our second instantiation of the linear encryption scheme, which
we refer to as Linear Encryption Scheme II. Unlike the first scheme, this design
leverages direct lattice-based encryption using secret keys sampled from binary
spaces, and public keys validated via lattice-based identification protocols [15].
This approach offers strong structural simplicity and compatibility with our
compiler and verification mechanisms. Algorithm 5 outlines the full construction.

We explain each step below, highlighting both the cryptographic intuitions
and operational flow.
Setup: As defined in Setup of Algorithm 5, we initialize public parameters:

– Security parameter λ, and modulus p.
– Dimension parameters: k = ⌈log(p)⌉, l ∈ N (rows of public keys), m = 2lk

(columns of public keys), and gadget dimension d ∈ N.
– Error bound α =

√
p

4 , ensuring correctness and noise control.
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We then sample a random matrix A ∈ Zl×m
p as part of the public parameters,

which is shared by all parties.
Key Generation: As shown in Key Generation, the secret key sk is sampled
uniformly at random from binary space sk← {0, 1}m. The corresponding public
key is computed as pkKey = A · sk. To allow public verifiability of the key, we
generate a key proof pfKey using a lattice-based identification protocol [15]:

pfKey ← id.prove(A, pk, sk)

This zero-knowledge proof attests to the correctness of pk without revealing sk.
Key Verification: Anyone can run Key Verification to check the validity of
the public key and its proof, id.verify(A, pk, pfKey) [15]. This ensures trust in
the public key without exposing secret material.
Encryption: In Encryption, given public parameters and public key pk, the
sender encrypts message m using fresh randomness:

– Sample: B ∈ Zd×l
p , e ∈ Zd×m

p with ∥e∥ < α, and e′ ∈ Zd
p with ∥e′∥ < β < α.

– Compute C = B ·A+ e and C′ = B · pk+ e+m · g, where g is the public
gadget vector.

The ciphertext consists of (C,C′). This structure preserves linearity and
enables efficient decryption and verification.
Decryption: As described in Decryption, the decryptor computes: B′ = C ·
sk. The message is then recovered by solving m = GadgetSolve(C′ − B′). The
correctness follows from the ciphertext structure and proper randomness bounds.
Prove Decryption: To publicly verify the decryption, the decryptor runs Prove
Decryption:

– Compute B′ = C · sk and e = B′ +m · g −C′.
– Generate the proof of correctness of B′ [15]: pfDec ← id.prove(C,B′, sk) .

The proof (e,B′, pfDec) enables anyone to verify the decryption.
Verify Decryption: Finally, Decryption Verification checks the validity of the
decryption proof:

1. Ciphertext consistency: B′ + e+m · g ?
= C′.

2. Norm bound on noise: ∥e∥
?
< α.

3. Proof of correct B′: id.verify(C,B′, pfDec) [15].

If all checks succeed, the ciphertext is correctly decrypted.

Lemma 4.5. Let Regev encryption scheme be IND-CPA, then the encryption
scheme II in Algorithm 5 satisfies IND-CPA security.

Proof. The Regev encryption scheme is provably IND-CPA secure under the
LWE assumption. Algorithm 5 presents a variant of Regev’s scheme where:

– The key generation outputs sk ← {0, 1}m and pk = A · sk and pf =
id.prove(A, pk, sk). The view of the attacker is (pk, pf), where pk is pseu-
dorandom under the SIS assumption and pf is pseudorandom under [15].
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– The encryption algorithm outputs C = B ·A+e and C′ = B ·pk+e+m ·g.
The view of the attacker is (C,C′), which is pseudorandom under the LWE
assumption.

Consequently, Algorithm 5 satisfies IND-CPA security.

Lemma 4.6. The encryption scheme 5 satisfies verifiability of key generation
and verifiability of decryption.

Proof. This follows directly from public key identification from [15].

Theorem 4.7 (Security of PVSS Instantiation with Linear Encryption
Scheme II). Assuming the hardness of the LWE and SIS problems, and the se-
curity properties of the LVC-PoS and Linear Encryption Scheme II, our instan-
tiated PVSS construction achieves correctness, verifiability, and t-IND2 privacy.

We defer the proof to Appendix B.4.

4.4 Instantiation Linear Encryption Scheme III

Our third instantiation utilizes the compact ring-based encryption scheme by
Lyubashevsky et al. [16], which is established as IND-CPA secure. For key ver-
ification and the generation of decryption proofs, this instantiation, similar to
our second one, leverages the identification protocol from Lyubashevsky [15].
The full specification of this construction is detailed in Algorithm 6.

Corollary 4.8 (Security of PVSS Instantiation with Linear Encryption
Scheme III). Assuming the hardness of the LWE and SIS problems, and the
security of the LVC-PoS and Linear Encryption Scheme III, our PVSS instan-
tiation achieves correctness, verifiability, and t-IND2 privacy. This follows from
Theorems in Section 3.3, as Scheme III meets the compiler’s requirements.
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Algorithm 6 Linear Encryption Scheme III
procedure Setup(1λ, p)

k = ⌈log(p)⌉
Select λ-bit prime q s.t. q = 1 mod k
Let R = Z[x]/(xk + 1)
a← Rq

return (a, k, p, q, R)

procedure Key Generation(a, k, p, q, R)
Let sk, e← R be small and pk = a · sk+ e
pfKey = id.prove((a, 1), pk, (sk, e)) [15]
return Secret Key: sk, Public Key: pk, Key Proof: pfKey

procedure Key Verification(a, pk, pf)
return id.verify((a, 1), pk, pfKey) [15]

procedure Encryption(a, pk,m, (r, e, e′))
Let m̂ be a polynomial such that its i-th coefficient is m’s i-th bit
c = r · a+ e
c′ = r · pk+ e′ + m̂

⌊
q
2

⌋
return (c, c′)

procedure Decryption(sk, (c, c′))
b = c · sk
m′ = [ c

′−b
q/2

] mod 2

return m = m′(2)

procedure Prove Decryption(sk, pk,m, (c, c′))
b = c · sk
e = b+ m̂

⌊
q
2

⌋
− c′

pfDec = id.prove(c, b, sk) [15]
return (e, b, pfDec)

procedure Decryption Verification(pk,m, c, c′, e, b, pfDec)
a = b+ e+ m̂

⌊
q
2

⌋
return a

?
= c′ and ∥e∥

?
< α and id.verify(c, b, pfDec) [15]
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A Omitted Preliminaries

A.1 Basic Notions on Public Key Encryption

In this section we introduce well-known concepts on public key encryption.

Definition A.1. A public key encryption scheme consists of five polynomial
time algorithms (Setup,KeyGen,VerifyKey,Encrypt,Decrypt) as follows:

– pp ← Setup(1λ, p): The setup algorithm generates the public parameters on
input the security parameter λ ∈ N and modulus p.

– (sk, pk, pfKey)← KeyGen(pp): The key generation algorithm generates a pair
(sk, pk) consisting of a secret key and a public key along with proof pfKey for
identification of pk on input the public parameters pp.

– b ← VerifyKey(pp, pk, pfKey): The key verification algorithm outputs a bit b
deciding whether to accept or reject that pk is a valid identification.

– C ← Encrypt(pp, pk,m, r): The encryption algorithm generate ciphertext C
on input the public parameters pp, the public key pk, the plaintext m ∈ M
and randomness r ∈ R.

– m′ ← Decrypt(pp, sk, C): The decrypt algorithm outputs a decrypted message
m′ on input the public parameters pp, the secret key sk and encrypted message
C.

and which satisfy that for every (pk, sk) output by KeyGen, and for every m ∈M
and r ∈ R,

Pr[Decrypt(pp, sk,Encrypt(pp, pk,m, r))] = 1

The most widely recognized security notion for public key encryption is IND-
CPA security, which demands that encryptions of any two messages under a
public key pk remain computationally indistinguishable without the knowledge
of the corresponding sk. Here we consider the notion of ℓ-multi-key IND-CPA
security. This requires that the encryptions of two vectors of messages of the
same length, where each coordinate is encrypted under a public key pki, are
indistinguishable. The notions are equivalent as long as ℓ is polynomial in the
security parameter.

Definition A.2. A public key encryption scheme E satisfies ℓ-multi-key IND-
CPA security if for any poly(1λ)-time adversary A, we have

Pr
[
Gameℓ-IND-CPA,0

A,E (λ) = 1
]
− Pr

[
Gameℓ-IND-CPA,1

A,E (λ) = 1
]
≤ negl(λ)

where for b = 0, 1, Gameℓ-IND-CPA,b
A,E (λ) is the following game against a chal-

lenger:
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– The challenger run E .Setup(1λ, p) and then ∀i ∈ [ℓ] runs (pki, ski) ←
E .KeyGen(pp, i) and sends (pki)i∈[ℓ] to A.

– The attacker return two vectors of messages of the same length
(m0

1,m
0
2, · · · ,m0

ℓ), (m
1
1,m

1
2, · · · ,m1

ℓ)← A(pp, (pki)i∈[ℓ]).
– The challenger ∀i ∈ [ℓ] choose random ri ∈ R and run Ci =
E .Encrypt(pp, pki,mb

i , ri) and sends (Ci)i∈[ℓ] to A.
–
– The attacker A((Ci)i∈[ℓ]) outputs a guess b′ ∈ {0, 1}.

The case ℓ = 1 is the usual IND-CPA definition and for ℓ = poly(⟨) a standard
hybrid argument shows that a scheme is ℓ-multi-key IND-CPA if and only if it
is IND-CPA.

Definition A.3. A public key encryption scheme E satisfies verifiability of key
generation for RKey if for all PPT A,

Pr
[
E .VerifyKey(pp, pk, pfKey) = 1

∧ ∄sk ∈ SK s.t. (pk, sk) ∈ RKey∣∣∣ pp← Setup(1λ, p),

(pk, pfKey)← A(pp)
]

is negligible in λ.

A.2 Security Definitions of PVSS

A PVSS scheme should satisfy correctness, verifiability and IND2-secrecy.

Correctness The correctness with r-reconstruction requirement ensures that if
everybody is honest, then all proofs involved pass and any set of at least r
participants can reconstruct the secret from their shares (by first having each
party decrypt their share and then jointly applying the reconstruction algorithm
Rec).

Definition A.4. For a set T ⊆ [n], and a probability distribution Ds over the
secret space, define the following experiment ExpCorrT,Ds(1

λ).

– pp← Setup(1λ, 1n, 1t)
– ∀i ∈ [n], (ski, pki, pfKey,i)← KeyGen(pp, i)
– s← Ds

– ((Ci)i∈[n], pfD)← Dist(pp, {pki : i ∈ [n]} , s)
– ∀i ∈ T , (si, pfDec,i)← Decrypt(pp, pki, ski, Ci)
– s′ ← Reconstruct(pp, {si : i ∈ T}), where s′ ∈ S ∪ {⊥}
– Output (pp, (pki, pfKey,i, Ci)i∈[n], pfD, (pfDec,i)i∈T , s, s

′)

We say that the PVSS is correct with r-reconstruction if for all T ⊆ [n] of size
at least r, any probability distribution Ds over the secret space,

Pr
[
VerifyKey(pp, i, pki, pfKey,i) = 1∀i ∈ [n]
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∧ VerifyDist(pp, (Ci)i∈[n], pfD, (pki)i∈[n]) = 1

∧ VerifyDecrypt(pp, i, pki, si, Ci, pfDec,i) = 1 ∀i ∈ T

∧ s′ = s
∣∣∣ (pp, (pki, pfKey,i, Ci)i∈[n], pfD, (pfDec,i)i∈T , s, s

′)

← ExpCorrT,Ds(1
λ)
]
= 1

Verifiability The verifiability properties assert that passing the verification pro-
cedures VerifyKey, VerifyDist, and VerifyDecrypt guarantee respectively that the
key pairs are well constructed, that the set of encrypted shares is indeed a correct
sharing of a secret, and that the shares have been correctly decrypted.

Definition A.5. The PVSS satisfies verifiability of key generation if underlying
encryption scheme satisfies verifiability of key generation A.3.

Definition A.6. The PVSS satisfies verifiability of sharing distribution if for
every PPT A,

Pr
[
VerifyDist(pp, (Ci)i∈[n], pfD, (pki)i∈[n]) = 1

∧ ∄s ∈ S s.t. ((Ci)i∈[n], ·)← Dist(pp, {pki : i ∈ [n]} , s)∣∣∣ pp← Setup(1λ, 1n, 1t),

((Ci)i∈[n], pfD)← A(pp)
]
is negligible in λ.

Definition A.7. The PVSS satisfies verifiability of share decryption if the un-
derlying encryption scheme satisfies verifiability of decryption 2.4.

Privacy We now define indistinguishability of secrets against an adversary cor-
rupting t parties. We follow the notions from [2]. In this definition, the adversary
is allowed to compute the public keys of the corrupted parties after seeing those
of the honest parties. Then, provided two secrets (s0, s1) and a sharing of a ran-
dom secret sb, the adversary has negligible advantage in guessing which secret
was shared. In this paper, we choose the IND2-privacy flavor where the adver-
sary can choose s0, s1. This is stronger than IND1-privacy where the challenger
chooses the secrets at random.

Definition A.8. The PVSS is t-IND2-private if for any poly(1λ)-time adver-
sary A corrupting t parties (w.l.o.g. A corrupts [n− t+ 1, n]), we have

Pr[Gameind−secrecy,0
A,PVSS (λ) = 1]− Pr[Gameind−secrecy,1

A,PVSS (λ) = 1] = negl(λ)

where for b = 0, 1, Gameind−secrecy,b
A,PVSS (λ) is the following game against a chal-

lenger:

– The challenger runs pp← Setup(1λ, 1n, 1t) and sends pp to A.
– For i ∈ [n − t], the challenger runs (ski, pki, pfKey,i) ← KeyGen(pp, i) and

sends all created (pki, pfKey,i) to A.
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– For the corrupted parties, A creates (pki, pfKey,i)i∈[n−t+1,n] ←
A(pp, (pki, pfKey,i)i∈[n−t]) and sends them to the challenger, together
with two values s0, s1 in S.

– The challenger runs VerifyKey(pp, i, pki, pfKey,i) for i ∈ [n− t+1, n]. If any
of these output 0 (reject), the challenger sends ⊥ to A.

– Otherwise, if all key verification proofs accept, the challenger runs
(C1, . . . , Cn, pfD)← Dist(pp, {pki : i ∈ [n]} , sb), and sends (C1, . . . , Cn, pfD)
to A.

– A outputs a guess b′ ∈ {0, 1}.

A.3 Vector Commitments

We recall a non-interactive variant of vector commitments [2].

Definition A.9 (Vector Commitments (VC)). A vector commitment (VC)
scheme is parameterised by the families

F = {Fv,w,o ⊆ {f : Rv ×Rw → Ro}}v,w,o∈N

of functions over R and an input alphabet X ⊆ R. The parameters v, w,
and o are the dimensions of public inputs, secret inputs, and outputs of f respec-
tively. The VC scheme consists of the PPT algorithms (Setup,Com,Open,Verify)
defined as follows:

– pp← Setup(1λ, 1v, 1w, 1o): The setup algorithm generates the public param-
eters on input the security parameter λ ∈ N, the size parameters v, w, o ∈ N.

– (c, aux)← Com(pp,x): The commitment algorithm generates a commitment
c of a given vector x ∈ Xw with some auxiliary opening information aux.

– π ← Open(pp, f, z, aux): The opening algorithm generates a proof π for f(z, ·)
for the public input z and function f ∈ Fv,w,o.

– b ← Verify(pp, f, z,y, c, π): The verification algorithm inputs public param-
eters pp, linear function f ∈ Fv,w,o, z ∈ X v, y ∈ X o and a commitment
c, and an opening proof π. It outputs a bit b deciding whether to accept or
reject that the vector x committed in c satisfies f(z,x) = y.

Definition A.10 (Correctness). A VC scheme for (F ,X ) is said to be cor-
rect if for any λ, v, w, o ∈ N, any pp ∈ Setup(1λ, 1v, 1w, 1o), any (f, z,x,y) ∈
Fv,w,o × X v,Xw × X o satisfying f(z,x) = y, any (c, aux) ← Com(pp,x), any
π ∈ Open(pp, f, z,y, aux), it holds that

Verify(pp, z,y, c, π) = 1.

Definition A.11 (Biniding). Let ρ : N3 → [0, 1]. A VC scheme for F ,X ,Y)
is said to be weakly ρ-binding if for any pair of PPT adversary A and any s, w ∈
poly(λ) it holds that the following expression is upper-bounded by ρ(λ, s, w):

Pr

∀i ∈ {0, 1}, pp← Setup(1λ, 1v, 1w, 1o)
Verify(pp, fi, zi,yi, c, πi) = 1, (c, (fi, zi,yi, πi)

1
i=0)← A(pp)

∧f0(z0, ·) = f1(z1, ·) ∧ y0 ̸= y1
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We say that the scheme is weakly binding if it is weakly ρ-binding and
ρ(λ, s, w) is negligible in λ for any s, w ∈ poly(λ).

The scheme is said to be ρ-binding if for any PPT adversary A and w, t =
poly(λ) it holds that the following expression is upper-bounded by ρ(λ):

Pr


∀i ∈ I, pp← Setup(1λ, 1v, 1w, 1o)
Verify(pp, fi, zi,yi, c, πi) = 1, (c, I, (fi, zi,yi, πi)i∈Zt)
∧¬(∃x ∈ Kw, ← A(pp)
∀i ∈ I, fi(zi, x) = yi)


We say that the scheme is binding if it is ρ-binding and ρ(λ, s, w) is negligible

in λ for any s, w ∈ poly(λ).

Note that in the binding definition the existence of x is checked over the base
field K rather than the ring R. The reason for this choice will become clear when
we discuss the binding property of our construction.

We discuss potential approaches to modify the VC construction to achieve
hiding and functional hiding.

Definition A.12 ((Functional) Hiding)). : A VC scheme for (F ,X ,Y) is
said to be statistically/computationally hiding if for any λ,w, o ∈ N, any pp ∈
Setup(1λ, 1w, 1o), and any x,x′ ∈ Xw, the distributions

{c : (c, aux)← Com(pp,x)} and {c : (c, aux)← Com(pp,x′)}
are statistically/computationally indistinguishable.
A VC scheme for (F ,X ,Y) is said to be statistically/computationally func-

tional hiding if there exists a tuple of PPT simulators S = (S0,S1) such that,
for any λ,w, o ∈ N and any (f,x,y) ∈ Fw,o ×Xw ×Yo satisfying f(x) = y, the
distributions  pp← Setup(1λ, 1w, 1o),

(c, π) : (c, aux)← Com(pp,x)
π ← Open(pp, f, aux)


and (pp, td)← S0(1λ, 1w, 1o)

(c, π) :
(c, π)← S1(pp, td, f,y)


are statistically/computationally indistinguishable.

A.4 Base VC of Albrecht et al. [2]

The goal of the VC scheme is to allow a dealer to commit to a vector x and
later provide succinct, non-interactive proofs that linear relations over x hold,
without revealing x itself. We recall the VC scheme [2] in Algorithm 7.
Setup: In Setup, the public parameters are generated as follows:
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– Sample v ∈ (R×
q )

w to act as the commitment key.
– Sample a vector h ∈ Ro

p for random linear combinations in proofs.
– Generate a trapdoor matrix A and auxiliary data td.
– Precompute helper vectors ug = SampPre(td, g(v)t, β) for all g = vi

vj
in the

set G.

The vectors ug enable efficient proofs of linear relations by acting as compressed
witnesses for relations between components of x.
Commit: In Com, to commit to vector x ∈ Rw

q , compute:

c = ⟨v,x⟩ mod q

Additionally, compute auxiliary vectors ui =
∑

j ̸=i xj · u vj
vi

. These are stored in
aux for future proof generation.
Open: Given a linear function f and the vector x, the dealer computes the
opening proof:

π =

o∑
i=1

w∑
j=1

hifij(x)uj

This proves that f(x) evaluates to the claimed value without revealing x.
Verify: The verifier checks two properties:

1. Correctness of the proof π:

A · u ?
=

 o∑
k=1

hk

 w∑
j=1

fkj
c

vj
− yk

 · t mod q

2. Smallness of auxiliary vector u: ∥u∥ ≤ δ0.
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Algorithm 7 Vector Commitment [2]
procedure Setup(1λ, 1v, 1w, 1o)

v← (R×
q )

w

h← Ro
p

(A, td) = TrapGen(1η, 1l, q, R, β)
t← T
ui,j = SampPre(td,

vi
vj

t, β), ∀i, j ∈ Zw| i ̸= j

return (A, t, {ui,j} ,v, h)
procedure Com(pp,x)

c = ⟨v,x⟩ mod q
for i = 1 to w do

ui =
∑

j ̸=i xj · uj,i

aux = (ui)i∈Zw

return (c, aux)

procedure Open(pp, f, z, aux)
π =

∑
i∈Zo

∑
j∈Zw

hifi,j(z)uj

return π
procedure Verify(pp, f, z,y, c, π)

a1 =
(
A · u ?

=
(∑

k∈Zo
hk

(∑
j∈Zw

fk,j(z)
c
vj
− yk

))
· t mod q

)
a2 =

(
∥u∥

?

≤ δ0

)
return a1 ∧ a2

B Omitted Proofs

B.1 Security Proof of LVC-PoS

Theorem B.1 (Security Properties of LVC-PoS). Assuming the correct-
ness, functional hiding, and binding properties of the underlying vector commit-
ment scheme (Algorithm 7), the extended construction Algorithm 3 achieves the
following properties for LVC-PoS:

– Correctness: Algorithm 3 correctly verifies both the evaluation of linear
functions and the smallness of specified indices in the committed vector.

– Functional Hiding: Algorithm 3 preserves functional hiding for linear
function openings, meaning that the commitment and proof reveal no infor-
mation about the committed vector beyond the output of the opened function
and smallness verification.

– Weak Binding: Algorithm 3 satisfies weak binding, ensuring that after com-
mitting to a vector, it is computationally infeasible to produce two distinct
valid openings.

We prove each property in turn:

Proof. Correctness. The proof consists of three components: (π, πeq, πip).
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π: This is the opening proof from Algorithm 7 for standard linear function eval-
uation. Since the correctness of Algorithm 7 is established in [2], correctness
of this component follows directly.

πeq: This component verifies the auxiliary commitment consistency. Specifically,
we use a commitment with parameter vector v = 1

v . Since we possess the

trapdoor for all ratios
1
vi
1
vj

, and this commitment operates over the same

algebraic structure as the underlying VC, the correctness of πeq follows from
the correctness of Algorithm 7.

πip: This component proves the smallness (binary property) of the committed
vector. The validity is demonstrated by the following relation:

cx · ch◦(x−1) =

(∑
i∈w

xivi

)
·
(∑

i∈w

hi(xi − 1)
1

vi

)
=

∑
i,j∈Zw:i ̸=j

xi(hj(xj − 1))
vi
vj

+ ⟨h ◦ (x− 1),x⟩

= ⟨a, πip⟩+ 0

Therefore, the correctness of πip is established.

Functional Hiding. The functional hiding of Algorithm 3 follows directly from
the functional hiding property of Algorithm 7 as shown in [2]. In particular,
since our commitments and proofs are constructed entirely from homomorphic
evaluations over the original VC structure, and since the auxiliary commitments
and openings correspond to linear functions of the original committed vector,
functional hiding is preserved.

Moreover, by applying a Gaussian variant of the Leftover Hash Lemma
(cf. [2]), we argue that the distributions of the commitments and associated
proofs remain statistically close to uniform modulo the leakage of the opened
function value and smallness verification. This ensures that no additional infor-
mation about the committed vector x is revealed.

Weak Binding. The binding property of Algorithm 3 similarly follows from
the binding of the underlying VC (Algorithm 7) as established in [2]. Specifically,
the commitments in Algorithm 3 are homomorphic transformations of the base
commitments in Algorithm 7.

The binding property in [2] guarantees that once a commitment is fixed,
no adversary can open it to two different vectors that satisfy different outputs
of the function or smallness proofs. Since πeq and πip are linear functions over
the same commitment, and since the openings rely on the trapdoor structure
inherited from the original VC, the weak binding of Algorithm 3 follows.

B.2 Security Proofs of Our Generic Compiler for PVSS

In this section, we prove the security properties of our generic PVSS framework.
Specifically, we prove that our construction satisfies correctness, verifiability of
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key generation, verifiability of distribution, verifiability of share decryption, and
privacy (IND2-privacy) under standard assumptions on the underlying encryp-
tion scheme and vector commitment scheme. Each proof relies on the modular
structure of our compiler, allowing security to be inherited directly from the
underlying primitives.

Theorem B.2 (Correctness). The PVSS framework described in Algorithm 1
satisfies correctness with t-reconstruction, provided that the vector commitment
scheme is complete and the encryption scheme is correct.

Proof. Assuming all participants honestly generate their keys, each public key
pki is associated with a valid secret key ski, and the corresponding proof pfKey,i

validates successfully.
If the dealer is honest, the shares are computed as si = ⟨bi,a⟩ = a′(i) mod p,

where a′(x) is the dealer’s polynomial of degree t with constant term a′(0) = s,
the secret. Each ciphertext is computed as Ci = E .Encrypt(E .pp, pki, si, ri) for
freshly sampled randomness ri. The dealer commits to the vector x containing
(a, s1, . . . , sn, r1, . . . , rn), and the opening proof pfD with commitment c guar-
antees that M(x) = y holds as defined in the algorithm.

Given valid decryption keys ski, participants can correctly decrypt their ci-
phertexts to obtain si = E .Decrypt(E .pp, ski, Ci). Finally, any subset of at least
t correctly decrypted shares suffices to reconstruct the secret s = a′(0) via La-
grange interpolation. Therefore, correctness holds.

B.3 Security Proof of PVSS Instantiation with Linear Encryption
Scheme I

Theorem B.3 (Security of PVSS Instantiation with Linear Encryption
Scheme I). Assuming the hardness of the LWE and SIS problems, and the
security properties of the extended vector commitment and Linear Encryption
Scheme I, our instantiated PVSS construction achieves correctness, verifiability,
and t-IND2 privacy.

Proof (Proof Sketch). Follows from the security of the generic framework estab-
lished in Section 3, together with the properties of Linear Encryption Scheme I
from Section 4.2.

B.4 Secuity Proof of PVSS Instantiation with Linear Encryption
Scheme II

Theorem B.4 (Security of PVSS Instantiation with Linear Encryption
Scheme II). Assuming the hardness of the LWE and SIS problems, and the
security properties of the extended vector commitment and Linear Encryption
Scheme II, our instantiated PVSS construction achieves correctness, verifiability,
and t-IND2 privacy.

Proof (Proof Sketch). Follows from the security of the generic framework estab-
lished in Section 3, together with the properties of Linear Encryption Scheme II
from Section 4.3.
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