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Abstract. This paper presents an efficient protocol for private set intersection in a
setting with multiple set owners and a semi-honest cloud server. The core idea is to
reduce the intersection computation to secure operations over Bloom filters, enabling
both scalability and efficiency. By leveraging this transformation, our protocols
achieve strong privacy guarantees while minimizing computation and communication
overhead.
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1 Introduction
This paper presents a novel solution to the Delegated Private Set Intersection (D-PSI)
problem using Threshold Additive/Fully Homomorphic Encryption. Unlike the standard
multi-party private set intersection (PSI) setting, an additional computing entitya cloud
serveris introduced. The framework consists of three types of computing parties: a cloud
server C, delegated users A1, A2, . . . , AN , and a querying user B ∈ {Ai}i. Each delegated
user Ai delegates their private set to the cloud server C, while the querying user B not
only delegates their set to C but also eventually learns the intersection result. The goal
of D-PSI is to collaboratively compute the intersection while ensuring that individual sets
remain private.

In the D-PSI model, the cloud server plays a crucial role by handling the majority of
the computation and communication workload while remaining untrusted by the other
computing parties, including {Ai}. The intersection computation is represented by a
function f , such that: ∩

i

Ai ← f(A1, . . . , AN ).

A natural approach is for all users {Ai} to encrypt their sets and send them to the cloud
server C, which then performs homomorphic computation of the intersection function:

Enc(
∩

i

Ai)← f(Enc(A1), . . . , Enc(AN )).

Finally, the cloud server C returns the encrypted intersection result Enc(
∩

i Ai) to the
querying user B, who decrypts it locally to obtain the intersection.

However, this framework presents several major challenges:

1. Set Size Scalability. Current practical Fully Homomorphic Encryption (FHE)
schemes typically support nearly unlimited-depth homomorphic addition, but still
suffer from significant limitations on multiplication depth. This constraint directly
limits the size of polynomials that can be evaluated, and indirectly restricts the
maximum size of the input sets that the PSI protocol can support. A core question
arises: How can we design an intersection function f that enables large-scale set
intersection under the current multiplicative depth limitations of FHE?
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2. Computing Party Scalability. Most existing FHE-based PSI constructions are
designed for two-party settings and cannot be naturally extended to multi-party
computation. Thus, another critical question is: How can we construct an intersec-
tion function f that preserves privacy while naturally scaling to multiple computing
parties?

3. Efficiency of Set Intersection. Even if an intersection function f satisfying
the above two conditions can be constructed, its homomorphic evaluation efficiency
remains a major concern. Given that addition is significantly cheaper than multi-
plication in FHE systems, an important design goal is: How can we maximize the
use of addition operations while minimizing the number of multiplications in order
to achieve a more efficient intersection computation?

After extensive analysis, we propose a concrete construction of the intersection function
f and prove its existence. Our approach demonstrates that f can be constructed using
only addition operations.

Our Contributions We summarize the contributions of this paper as follows:

• We propose a completely new construction for delegated PSI. Unlike previous works
that rely on a primitive called randomized intersection encoding, our approach avoids
this dependency and instead bases delegated PSI on Bloom filters, which are even-
tually transformed into simple addition operations.

• Our construction achieves sub-optimal Ω(Nk log k) computational complexity and
optimal Ω(Nk) communication complexity, where N denotes each party’s set size
and k is the number of parties.

• We introduce several optimization techniques to enhance concrete efficiency, such as
lightweight FHE parameter instantiation, compact secure-AND protocol parameter
design, and SIMD-style FHE batching. These optimizations may be of independent
interest to the community.

2 Related works
The standard Private Set Intersection (PSI) model assumes that all computing parties
hold their sets locally and perform computations independently, without relying on a cloud
server. However, in practice, cloud computing is widely adopted and offers significantly
greater computational and communication capabilities than individual users. An ideal
solution should allow users to securely delegate their sets to a cloud server, which performs
most of the computation. Since the cloud may be untrusted, user data must remain private
to the cloud, and the computation process must not leak any information about the sets.
This model is referred to as Delegated Private Set Intersection (Delegated-PSI).

We now review work related to delegated multi-party private set intersection. Delegated-
PSI protocols leverage cloud computing for both computation and storage, and can be
categorized into two types: protocols supporting one-off delegation and those enabling
repeated delegation.

One-off delegation protocols (e.g., [Ker12, KMRS14]) require clients to locally re-
encode their data for each intersection computation and do not allow reuse of previously
outsourced encrypted data. However, these protocols are designed exclusively for two-
party scenarios.

In contrast, repeated delegation PSI protocols allow clients to outsource their en-
crypted data to the cloud once, and subsequently perform multiple PSI computations
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under the data owners authorization, without needing to keep a local copy or re-encode
data for each execution. Representative works in this category include [ATD15, ATD17,
ATMD17]. Among them, [ATD15, ATD17] use public key encryption to represent the
entire dataset as a "blinded" polynomial and outsource it to the cloud. In particular,
[ATMD17] is the first to propose a more efficient Delegated-PSI protocol based on se-
cret sharing, and it further improves PSI computation performance through a hash table
structure.

It is worth noting that all these secure protocols mentioned above are designed for
two-party settings with static datasets. In contrast, [ATD20] introduces a novel technique
called Randomized Intersection Encoding (RIE) to enable intersection computation un-
der secret sharing. This approach overcomes the limitations of two-party computation
and static data, enabling support for multi-party scenarios and dynamic dataset updates.
However, [ATD20] faces a scalability issue in practical deployment: user B must broadcast
their shares to all delegated users A, effectively delegating to multiple cloud servers. This
is not scalable when the number of delegated users grows, as user-to-user communication
is typically less stable than connections to a centralized cloud server. To address this,
[HLZ25] proposes an improved solution based on Beaver multiplication triples, mitigating
the issue without increasing computational or communication complexity.

It is clearly seen that the only existing delegated PSI protocols that support the
multi-party setting are based on secret sharing. This raises a natural question: Is it
possible to design a secure and efficient multi-party delegated PSI protocol using other
cryptographic primitives? In this paper, we address this question by leveraging threshold
fully homomorphic encryption (FHE), secure-AND subprotocols, and other supporting
techniques.

3 Preliminaries
Throughout this paper, we use the following notations:

• (N, k) The symbols N and k parameterize the main protocol, i.e., private set inter-
section (PSI). Here, N denotes the number of participating parties computing the
intersection, and each party holds a set containing k elements.

• (t, ℓ) The parameters t and ℓ are used in the privacy-preserving AND subprotocol
ΠAND. In this subprotocol, each bit is encoded as a vector over Fℓ

t. Initially, we
use binary vectors, and thus set t = 2.

• (h, ϵ) The parameters h and ϵ are used in the Bloom filter construction. Here, h
denotes the number of independent hash functions used, and ϵ denotes the false
positive rate of the Bloom filter.

• (n, q, t) We use the symbols n, q, and t to parameterize the fully homomorphic
encryption (FHE) scheme. Specifically, n denotes the lattice dimension (which also
corresponds to the degree of the polynomial in the polynomial ring R), q denotes
the ciphertext modulus, and t denotes the plaintext modulus.

3.1 Privacy-preserving AND operation
Given N bits {xi}i=1,··· ,N ,each of which is held by a party privately, we consider how
N parties perform a logical AND operation on their bits without compromising privacy,
denoted as protocol ΠAND:

1. Each party Ai encrypts their bit xi ∈ {0, 1} using a public-key encryption scheme,
denoted as Encpk(xi):
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(a) If xi = 1, then xi is set as a zero vector of ℓ bits:

xi ← 0 w.r.t. 0 = (0, . . . , 0).

(b) Else xi is set as a random ℓ-bit vector:

xi
$← {0, 1}ℓ.

2. Each Ai sends their ciphertext Encpk(xi) to the cloud server C.

3. The cloud server C computes:

∑
i

Encpk(xi) = Encpk

(∑
i

xi mod 2

)
.

4. The cloud server C sends Encpk (
∑

i xi) to any arbitrary party Ai.

5. Ai decrypts locally to obtain:
r =

∑
i

xi.

6. If the vector r is a zero vector, then
∧N

i=1 xi = 1, otherwise
∧

i xi = 0.

If the encryption scheme Encpk(·) is semantically secure, then it is straightforward to
prove the protocol is semi-honest secure. Thereby we focus on proving the correctness of
the protocol.

Proof. If
∧

xi = 1, then all xi are zero vectors, implying:

r =
∑

i

xi =
∑

i

0 = 0.

If
∧

xi = 0, then at least one xi is a random vector. Consequently,
∑

i xi is also a
random vector, and the probability that the vector r results in an all-zero vector is only
1
2ℓ , which is negligible. Thus, the proof is complete.

Remark Protocol ΠAND demonstrates that a homomorphic AND operation can be per-
formed as long as the encryption scheme Enc(·) supports homomorphic addition. This
technique originates from the well-known SYY approach [SYY99].

3.2 Set Intersection Operation
A given set A can be represented using a Bloom Filter (BF). The algorithm constructing
the bloom filter HTA from a set A, denoted as ABF , is as follows:

1. Initialize a hash table (one-dimensional array) HTA, setting all storage positions to
zero.

2. Prepare h independent hash functions, denoted as Hj for j = 1, . . . , h.

3. For each a ∈ A:

(a) Compute h hash values:
i(j)
a ← Hj(a), ∀j.
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(b) Set the corresponding bits in the Bloom Filter:

HTA[i(j)
a ]← 1, ∀j.

4. Return HTA.

To determine whether an element x belongs to A, we use the Bloom Filter membership
test:

1. Compute h hash values for x:

i(j)
x ← Hj(x), ∀j.

2. If HTA[i(j)
x ] = 1 for all j, return x ∈ A; Otherwise, return x /∈ A.

Remark Since Bloom Filters allow false positives (i.e., mistakenly identifying a non-
member as a member), we define the false positive rate ϵ as:

ϵ = Pr(a /∈ A and HTA[Hj(a)] = 1 for all j).

In practice, system parameters are often chosen as h = 40, |HTA| = 57.67 · |A|, and
ϵ = 2−40.

3.2.1 Bloom Filter-Based Set Intersection

Given N sets {Ai}i and their corresponding Bloom Filters HTAi
, the intersection Bloom

Filter HT∩Ai
is computed as:

HT∩Ai

def=
∧

i

HTAi ,

where the bitwise AND operation is applied across all Bloom Filters. We argue the
correctness of the defined set intersection operation with the following proof.

Proof. If x ∈ ∩Ai, then HTAi
has ’1’ at Hj(x) for all j. Since HT∩Ai

is constructed
using a bitwise AND operation across all HTAi

, it also has ‘1’ at these positions. Thus, x
will always pass the membership test of HT∩Ai

, proving the correctness of the operation
when x is indeed in the intersection. Therefore, the remaining task is to argue that when
x /∈ ∩Ai, it cannot pass the membership test of HT∩Ai except with negligible probability.

If x /∈ ∩Ai but still passes the membership test of HT∩Ai
, it means that for a randomly

chosen x, all h positions in HTX ∩HTY must be set to ‘1’.
The probability that a specific position in HTAi

is set to 1 is:

pAi
= 1−

(
1− 1
|HT |

)h|Ai|

≈ 1− e− h|Ai|
|HT | .

where it requires that |HTAi
| = |HTA|,∀i. Thus, the probability that a specific posi-

tion in HT∩Ai
is set to 1 is:

p∩Ai =
∏

i

pAi ≈
∏

i

(
1− e− h|Ai|

|HT |

)
.

The false positive rate for HT∩Ai is then:

ϵ∩Ai
= (p∩Ai

)h = ph
A1
· · · ph

AN
= ϵA1 · · · ϵAN

,

where ϵAi
= ph

Ai
represents the false positive rate of HTAi

. Clearly, ϵ∩Ai
< ϵAi

,
confirming that using HT∩Ai

for set intersection is feasible.
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3.3 Two-Party Fully Homomorphic Encryption
We use one of the most popular Fully Homomorphic Encryption (FHE) schemes called
BFV, suitable for two-party computation. In this setting, there exist two computing
parties: P1, who exclusively holds the secret key sk, and both parties share knowledge of
the public key pk.

• P1 uses the common public key to encrypt its data x, producing Encpk(x).

• P1 sends the encrypted data Encpk(x) to P2 for homomorphic evaluation of a func-
tion f .

• P2 computes the homomorphic evaluation f(x) and returns Encpk(f(x)) to P1.

• Finally, P1 decrypts Encpk(f(x)) using the secret key sk to obtain the result f(x).

Key Generation Algorithm AFHE.KeyGen(1λ):

1. Sample s← DG(σ2), a← U(Rq), and e← DG(σ2).

2. Output public key pk = (a,−(as + e)) and secret key sk = s.

Here, pk corresponds to an RLWE ciphertext encrypting zero.

Encryption Algorithm AEncrypt(pk, m ∈ Rt):

1. Sample u, e0, e1 ← DG(σ2).

2. Return ciphertext:

ct = (pk[0] · u + e0, pk[1] · u + e1 + ∆ ·m).

Let ∆ = ⌊q/t⌋. Here, (pk[0], ct[0]) is one RLWE sample, and (pk[1], ct[1]) is another
RLWE sample.

Decryption Algorithm Decrypt(sk = s, ct):

1. Compute m′ ← ct[0] · s + ct[1].

2. Return m←
⌊

t·m′

q

⌉
.

Correctness We have:

s · ct[0] + ct[1] = −eu + e0s + e1 + ∆ ·m.

Define:

e′ = −eu + e0s + e1, ε = q

t
−∆ < 1.

It is easy to see that when:

||e′||∞ <
q

2t
− t,

then: ⌊
t ·m′

q

⌉
=
⌊

m + t

q
(e′ −m)

⌉
= m.
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Homomorphic Addition Algorithm BFV FHE can support both homomorphic additions
and multiplications. We stay focused on homomorhpic addition for our purpose.
ABFV.Add(ct0, ct1):

1. Perform vector addition:

ctadd ← (ct0[0] + ct1[0], ct0[1] + ct1[1]).

2. Return ctadd.

Correctness We have:

s · ctadd[0] + ctadd[1] = −eu′ + e′
0s + e′

1 + ∆ · (m0 + m1).
Here, the noise terms:

µ′, e′
0, e′

1 ∼ DG(2σ2),
thus the upper bound of the total noise is:

|| − eu′ + e′
0s + e′

1||∞ ≤ 16σρN + 16σh + 6σ.

Since this bound is much smaller than ∆/2, decryption remains correct.

3.4 Multi-party Fully Homomorphic Encryption
(Joint) Public Key Generation Protocol The key generation protocol ΠBFV.PKGen is as
follows:

1. P1 and P2 agree on a common random polynomial a ∈ Rq (common random string,
CRS).

2. P1 computes b1 = −as1 + x.

3. P2 computes b2 = −as2 + y.

4. P1 and P2 exchange b1 and b2 and compute b = b1 + b2.

5. The final public key is returned as pk = (a, b).

Based on the RLWE assumption, we have:

b1 ≈c U, b2 ≈c U,

which ensures that the above algorithm securely computes pk without leaking the private
keys s1 and s2.

Public Key Encryption Algorithm The secure public key encryption algorithmABFV.PKE
is formally defined as follows:

1. Run the public key generation algorithm PKGen(s1, s2) to obtain the (joint) public
key:

pk = (a, b = −a(s1 + s2) + e).

2. Generate "small" noise values u, e0, e1 ∼ χ satisfying ∥e1 + eu + e2∥1 < B1.

3. Generate "large" noise e∗ $← [−B2, B2] such that B1
B2

= ϵ(λ).

4. Compute ct0 ← au + e0.

5. Compute ct1 ← bu + e1 + e∗.

6. Return the ciphertext ct = (ct0, ct1).
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Security analysis First, we show that the encryption algorithm eliminates the informa-
tion leakage issue in decryption noise. Observe that:

Encpk(m) = (au + e0, bu + e1 + e∗ + ∆m).

Substituting b:

= (au + e0,−as1u− as2u + (x + y)u + e1 + e∗ + ∆m).

Since:
b = −as∗ + e,

decryption using the global secret key s∗ yields:

s∗(au + e0)− aus∗ + e∗ + ∆m = e0s∗ + e∗ + ∆m.

Since e∗ follows a uniform distribution and is independent of s∗, information leakage is
entirely eliminated.

To prove the encryption algorithm is semantically secure, we must show that:

Encpk(m) ≈c (U, U).

Proof. Using contradiction, assume an adversary A can distinguish between Encpk(m)
and uniform randomness (U, U). We construct an adversary A′ that can break the RLWE
hardness assumption.

Consider an adversary A′ in a Threshold FHE setting, where party P2 receives pk1 =
(a, b1 = −as1 + e) from P1 where e = x + y. The adversary A′ proceeds as follows:

1. P2 generates its private key s2.

2. P2 encrypts m using pk1:

Encpk1(0) = (ct0 = au + e0, ct1 = b1u + e1).

3. P2 sets ct∗
0 = ct0.

4. P2 generates a "large" noise e∗ $← [−B2, B2].

5. P2 computes ct∗
1 = ct1 − s2 · ct0 + e∗.

6. P2 feeds (ct∗
0, ct∗

1) and random samples (u1, u2) ∼ U into adversary A.

Observe that Encpk(0) = (au + e0, bu + e1 + e∗). Substituting b:

Encpk(0) = (au + e0,−as1u− as2u + (x + y)u + e1 + e∗).

Since:
ct∗

1 = ct1 − s2ct0 + e∗ = (−as1 + e1)u− s2(au + e0) + e∗,

we obtain:

ct∗
1 = −as1u− as2u + e1u− e0s2 + e∗ ≈c −as1u− as2u + e∗.

Thus:
(ct∗

0, ct∗
1) ≈c Encpk(0).

Since (ct∗
0, ct∗

1) is constructed from an RLWE ciphertext (ct0, ct1), if A can distinguish
(ct∗

0, ct∗
1), then A′ can distinguish (ct0, ct1), contradicting the RLWE assumption. This

completes the proof.
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(Joint) Decryption Protocol The formally defined secure public key decryption algo-
rithm is as follows:

1. Each party Pi receives the ciphertext:

ct = (au + e0, bu + e1 + ∆m),

and computes:
wi ← si(au + e0).

2. Each Pi generates a large noise e∗ ∈ [−B, B] satisfying |e0si|1
B = ϵ(λ). and computes:

wi ← wi + e∗.

3. Assuming P1 is the final plaintext recipient, it computes:

w1 + w2 + (bu + e1 + ∆m) ≈ ∆m.

Proof. We prove that wi is pseudo-random (computationally indistinguishable from a
uniform distribution). Suppose, for contradiction, that there exists an efficient algorithm
A that can distinguish wi from a truly random value. Then, we can construct an RLWE
distinguisher to break the RLWE assumption:

1. Pi uses its public key: pki = (a, bi) = (a,−asi + e), to encrypt zero, obtaining an
RLWE sample:

Encpki(0) = (au + e0, (−asi + e)u + e1).

2. Pi applies masking with a large noise e∗ to the ciphertext

c← −((−asi + e)u + e1 + e∗).

3. Pi randomly generates c′ $← Rq, and applies another large noise e∗∗ ∈ [−B, B] as
masking:

c′ ← c′ + e∗∗.

4. Pi provides both c and c′ to A to distinguish.

Since c ≈s wi and c′ follows a uniform distribution, if A can distinguish between c
and c′, it implies that RLWE samples can be distinguished from random distributions,
contradicting the RLWE assumption.

Remark The above proof of wi being pseudo-random also implies that joint decryption
protocol is semi-honest secure. Detailed proof of this claim is omitted for brevity.

Homomorphic Addition Algorithm The homomorphic addition in MP-FHE is identical
to its counterpart in TP-FHE, and we skip the descriptions here.
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4 Privacy-Preserving Set Intersection, A Framework
At this point, we present the overview framework for the privacy-preserving set intersection
(PSI) protocol ΠP SI :

1. Each Ai (for all i) computes its private Bloom filter where each bit is encoded to
either a zero vector or a random vector as mentioned in ΠAND, denoted as BFAi .

2. Each Ai encrypts its private Bloom filter, denoted as Encpk(BFAi
), and sends it to

the cloud server C.

3. The cloud C applies the privacy-preserving AND operation (ΠAND) to compute the
encrypted Bloom filter of the intersection:

Encpk(BF∩Ai) = Encpk(
∑

i

BFAi).

4. The party B performs the followings to finally recover ∩Ai

(a) For each b ∈ B:

i. Enc(xb)←
∑h

j=1 Enc(BF∩Ai [Hj [b]]).
ii. The parties {Ai} and B perform decryption collaboratively, allowing B to

learn xb =
∑

j BF∩Ai [Hj [b]]
iii. If xb = 0, then b is in the intersection: ∩Ai ← b.

5. The final intersection ∩Ai is returned.

Remarks on security: Unfortunately, the proposed framework protocol ΠPSI is inse-
cure. The vulnerability arises in Step 5, where the exposure of xb related to the Bloom
filter BF∩Ai

corresponding to the intersection set ∩Ai may leak certain differential in-
formation. For instance, suppose the first item b1 ∈ B maps to the Bloom filter entries
BF∩Ai

[1], BF∩Ai
[2], BF∩Ai

[3], while the second item b2 ∈ B maps to BF∩Ai
[1], BF∩Ai

[2], BF∩Ai
[4].

Then, the difference xb1 − xb2 could reveal information about BF∩Ai
[3] − BF∩Ai

[4]. To
address this potential information leakage, we propose a privacy-preserving zero test mech-
anism, which eliminates the leakage and ensures the security of our protocol.

Remarks on performance: Assuming each computing party’s set has size k, Step 1 re-
quires each bit of BFAi

to be encoded as a vector according to the ΠAND protocol,
incurring linear encoding and computational overhead of Ω(k). Step 2 requires each BFAi

to be encrypted as Encpk(BFAi), which costs each Ai an optimal computational overhead
of Ω(k) and an optimal communication overhead of Ω(k). Step 3 requires the cloud to
perform homomorphic additions to realize the ΠAND subprotocol, with a total computa-
tional complexity of Ω(Nk). Step 4 involves threshold decryption of FHE ciphertexts and
thus incurs a computational cost of Ω(Nk).

To conclude, the performance bottlenecks of the protocol are as follows:

• Computational bottleneck: Arises in Step 3 during the privacy-preserving AND
operation, with computational complexity Ω(Nk), matching the optimal theoretical
lower bound.

• Communication bottleneck: Occurs in Step 2, with communication complexity
Ω(Nk), matching the theoretical lower bound.
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Although both computation and communication complexities have reached their the-
oretical lower bounds, this does not necessarily imply optimal practical performance, as
asymptotic analysis does not consider privacy-preserving AND operation parameters ℓ or
specific homomorphic encryption system parameters (n, q). Below are some techniques to
enhance practical performance:

• Utilizing SIMD-like encoding in fully homomorphic encryption: This in-
creases the parallelism of the AND operation and reduces communication overhead,
optimizing performance.

• Simplifying homomorphic encryption system parameters: The new privacy-
preserving set intersection protocol only requires additive homomorphism, allowing
for smaller parameter settings in fully homomorphic encryption, thereby improving
efficiency.

4.1 Privacy-preserving Zero Test
We now detail how to resolve the partial information leakage issue in the framework
protocol. Starting from Step 5, where an FHE encryption of a membership test indicator
xb with respect to b ∈ ∩iAi has already been computed on the cloud side (such that
xb = 0 if b ∈ ∩iAi, and otherwise xb ̸= 0), we proceed with the following steps:

1. The cloud generates a random vector of the same size as xb, denoted by

x(C)
b

$← Zℓ
t.

2. The cloud homomorphically computes

Encpk(xb − x(C)
b )← Encpk(xb)− Encpk(x(C)

b ).

3. All computing parties jointly decrypt Encpk(xb − x(C)
b ) and provide the enquiring

user B with its secret share
x(B)

b

def= xb − x(C)
b .

4. The cloud (holding x(C)
b ) and the user B (holding x(B)

b ) engage in a zero test protocol
to compute shares x

(C)
b and x

(B)
b such that

xb = x
(C)
b + x

(B)
b ,

where xb = 1 if xb = 0 and xb = 0 otherwise.

5. The cloud securely sends its share to the enquiring user B, who reconstructs xb and
thus learns whether b ∈ ∩iAi.

Remarks on Correctness: Steps 1–3 generate additive secret shares of xb. Step 4 com-
putes the zero-test function

f(xb) =

{
1, if xb = 0,

0, otherwise.

The final value xb
def= f(xb) is binary: xb = 1 indicates that b belongs to the intersection

∩iAi, and xb = 0 indicates otherwise.
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Remarks on Security: The proposed protocol purely relies on additive secret sharing
and homomorphic encryption. Its security naturally follows from the underlying security
guarantees of secret sharing and homomorphic encryption schemes.

4.2 Constructing Zero Test from Additive Homomorphic Encryption
The performance bottleneck lies step 4 of the zero test, i.e. how to efficiently test whether
the secret-shared vector xb = (xb[1], . . . , xb[ℓ]) ∈ Zℓ

t is zero. In this section, we propose a
new construction only requiring the underlying homomorphic encryption scheme supports
homomorphic additions. The construction proceeds as follows:

1. The cloud and the user B agree on a public prime p such that p > 240 and p >
2(tℓ − 1), and set the plaintext space of the homomorphic encryption scheme to Zp.

2. The cloud holds its share of the membership indicator vector xb ∈ Zℓ
t, denoted by

x(C)
b = (x(C)

b [1], . . . , x(C)
b [ℓ]), and computes:

u(C) ←
ℓ∑

i=1
x(C)

b [i] · ti−1 ∈ Ztℓ .

3. Similarly, user B holds his share x(B)
b = (x(B)

b [1], . . . , x(B)
b [ℓ]) and computes:

u(B) ←
ℓ∑

i=1
x(B)

b [i] · ti−1 ∈ Ztℓ .

4. User B encrypts u(B) using his secret key sB to get Enc(u(B)), and sends the
ciphertext to the cloud.

5. The cloud computes:

Enc(u′)← Enc(u(B)) + (u(C) − tℓ).

6. The cloud samples a random r
$← Z∗

p and performs a homomorphic scalar multipli-
cation:

Enc(r · u′)← r · Enc(u′),

and sends Enc(r · u′) back to user B.

7. User B decrypts Enc(r · u′) to recover r · u′. If r · u′ = 0, set xb = 1; otherwise, set
xb = 0.

Correctness of the Zero Test. Steps 2–3 convert the vector xb into an integer u = g(xb)
using a one-to-one mapping g : Zℓ

t → Ztℓ defined by

g(xb) =
ℓ∑

i=1
xb[i] · ti−1.

This process yields two additive shares u(B) and u(C) such that u = u(B) + u(C) mod tℓ,
and each share appears as a uniformly random element in Ztℓ

After Step 5, we have:

u′ def= u(B) + u(C) − tℓ = u− tℓ mod p,
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where u = u(B) + u(C). If xb = 0, then u ∈ {0, tℓ}, and the probability that u = 0 is
only 1

tℓ . By choosing a sufficiently large tℓ, e.g., tℓ ≥ 240, we can ensure that u = tℓ with
overwhelming probability, implying u′ = 0.

Conversely, if xb ̸= 0, then u ∈ {1, 2, . . . , tℓ − 1} ∪ {tℓ + 1, . . . , 2tℓ − 2}, and hence
u′ ̸= 0. Thus, in Step 7, the decrypted value r ·u′ is zero if and only if xb = 0. Otherwise,
it is uniformly random in Z∗

p, and hence non-zero with probability 1. This allows user B
to determine xb.

Security of the Zero Test. All communication is encrypted using homomorphic en-
cryption, ensuring that privacy is preserved. Moreover, the final value r · u′ reveals no
information about xb beyond whether it is the all-zero vector.

Performance. Although the homomorphic scalar multiplication in Step 6 can be inter-
preted as performing r homomorphic additions, the value of r is typically large, rendering
this approach impractical. Instead, we assume that the underlying homomorphic en-
cryption scheme supports scalar multiplication and that such operations are efficient—an
assumption that holds for lattice-based homomorphic encryption schemes. Since the pro-
posed zero-test requires only one homomorphic scalar multiplication over Zp, the overall
protocol remains highly efficient in practice.

Furthermore, the computation cost in Step 6 can be amortized by leveraging the
standard SIMD encoding technique. Specifically, we can batch the scalar multiplications
by computing

Enc(r⊙ u′)← r · Enc(u′),

where r $← ZN
p , and each element u′ ∈ u′ is computed as

u′ = u− tℓ =
ℓ∑

i=1
xb[i]ti−1 − tℓ mod p,

corresponding to a specific input bit vector xb ∈ B.

4.3 Applicability to Standard Private Set Intersection
The delegated private set intersection (Delegated PSI) scheme framework discussed above
assumes the presence of an untrusted third party, namely the cloud server. In fact, the
construction proposed in this paper can also be applied to the standard PSI setting: by
simply executing the cloud-side computation locally by any one of the computing parties,
the cloud server assumption can be removed, resulting in a third-party-free PSI protocol.
Moreover, the scheme achieves the theoretical lower bounds for both computational and
communication overhead in the asymptotic sense.

Previous approaches [CLR17, CMdG+21] to constructing standard PSI protocols us-
ing homomorphic encryption typically rely on Oblivious Polynomial Evaluation (OPE).
When additive homomorphic encryption (e.g., Paillier) is used, OPE cannot be performed
efficiently, resulting in extremely poor performance for large sets (e.g., on the order of mil-
lions). While fully homomorphic encryption (FHE), such as BFV, does support efficient
OPE, current FHE schemes only support limited multiplicative depth (typically 6—9),
which still limits the supported set size to well below the million scale. Furthermore, such
approaches only support the asymmetric set case (i.e., in Delegated PSI, the query user’s
set must be much smaller than the delegated users’), and cannot be extended effectively
to symmetric set scenarios.

In contrast, our construction based on Bloom filters completely avoids the dependence
on OPE and homomorphic multiplication, thereby significantly enhancing scalability to
support set sizes of tens or even hundreds of millions. In addition, since FHE schemes
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perform addition much more efficiently than multiplication, our construction also demon-
strates strong practical performance advantages.

The current most efficient standard PSI protocol [RS21] in practice is based on VOLE
(Vector Oblivious Linear Evaluation), which also achieves the theoretical lower bounds
in both computation and communication. However, its advantage is primarily observed
in the two-party model and does not extend efficiently to settings with three or more
parties. In comparison, our proposed construction naturally supports arbitrary numbers
of computing parties, offering clear scalability advantages and making it applicable to a
broader range of real-world scenarios.

5 Smaller FHE System Parameters
When implementing the proposed PSI protocol using Fully Homomorphic Encryption
(FHE), one of the critical challenges is setting the FHE system parameters to align with
the protocol’s security and performance requirements. Specifically, it is necessary to
ensure that the FHE scheme supports the required multiplication (or addition) depth
while maintaining the desired level of security.

In practice, a security strength of 128 bits is widely considered sufficient for most
applications. Therefore, this paper fixes the target security strength at 128 bits and further
explores the relationship between multiplication/addition depth and system parameter
size to optimize the proposed PSI protocol.

FHE System Parameters FHE ciphertexts are defined over the polynomial ring:

Rq ×Rq = Zq[x]/(xn + 1)× Zq[x]/(xn + 1),

where plaintexts are defined in the polynomial ring:

Rt = Zt[x]/(xn + 1).

The standard deviation of system noise is denoted as σ. Thus, the FHE system parameters
can be defined as:

params def= (n, q, t, σ ≈ 3.2).

Setting the system parameters requires balancing security strength and computational
depth, which are inherently conflicting goals:

• Enhancing FHE Security: This requires choosing a sufficiently large n (i.e.,
higher-dimensional lattices) and minimizing the signal-to-noise ratio q/σ (where
q indirectly determines the plaintext space size, and σ represents ciphertext noise
magnitude).

• Increasing Addition/Multiplication Depth: This necessitates keeping n as
small as possible (since a large n leads to increased decryption and multiplicative
noise) while maximizing the signal-to-noise ratio q/σ to provide adequate noise
tolerance for deeper computations.

Thus, parameter selection is fundamentally an optimization trade-off: ensuring suf-
ficient security while maximizing computational depth to meet the targeted application
demands.
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5.1 Two-party FHE
We begin by examining the simplest case, where only two parties exist alongside an un-
trusted cloud. Specifically, when ciphertexts are decrypted, added, or multiplied, the
noise within the ciphertext increases. Therefore, it is crucial to analyze the noise growth
bounds to estimate the number of additions and multiplications that can be performed
while maintaining correct decryption. To achieve this, we study the noise behavior in
three key operations: decryption noise, addition noise, and multiplication noise.

Decryption Noise Typically, Fully Homomorphic Encryption (FHE) operates in an
asymmetric encryption setting, where encryption is performed using a public key, and
decryption requires a private key. However, the process of decrypting a ciphertext using
the private key inherently introduces additional noise. In a sense, encrypting a plaintext
m with the public key can be viewed as encrypting the same plaintext with the private
key but with increased noise, expressed as:

Encpk(∆ ·m) = Encsk(∆m + einit)

where einit
def= −eu + e0s + e1

and the noise components follow a discrete Gaussian distribution:

e, u, e0, e1 ∼ DG(σ
2).

To quantify noise levels, we use the canonical norm. We introduce several key results:

1. If e ∼ U(Rt), then ||e||can ≤ 6
√

nt2

12 .

2. If e ∼ DG(σ2), then ||e||can ≤ 6
√

nσ2.

3. If e0, e1 ∼ DG(σ2), then ||e0e1||can ≤ 16 · nσ2.

4. If e ∼ DG(σ2) and m ∼ U(Rt), then ||em||can ≤ 16 · nσt/
√

12.

Using these bounds, we can derive:

||einit||can ≤ ||eu||can + ||e0s||can + ||e1||can ≤ 16 · σ2 · n + 16 · σ2 · n + 6 · σ ·
√

n.

Addition Noise We analyze the relationship between system parameters and addition
depth using the mainstream FHE scheme, BFV. Assume we have two BFV ciphertexts
ct0 and ct1, which are encryptions of plaintexts m0 and m1, respectively:

cti = Enc(mi).

The discrete Gaussian noise within the ciphertexts ct0 and ct1 is denoted as:

e0 ∼ DG(σ
2
0), e1 ∼ DG(σ

2
1).

Denote the additive depth as k. Since homomorphic addition results in linear noise
growth, after a single homomorphic addition, the noise follows:

eadd ∼ DG(σ
2
0 + σ2

1).

To ensure correct decryption, the noise in the ciphertext must be bounded by an upper
limit:

6 · ||eadd|| <
q

2t
. (1)
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The above equation establishes a quantitative relationship between the noise of a single
homomorphic addition and the FHE system parameters. Based on this, we outline the
following algorithm to estimate the additive depth:

1. Initialize noise levels σ0, σ1, σadd, ensuring:

σ0 = σ1 = σadd = 16 · σ2 · n + 16 · σ2 · n + 6 · σ ·
√

n.

2. Set k = 0.

3. While 6 · σadd < q
2t , repeat the following steps:

(a) Compute σadd ←
√

σ2
0 + σ2

1 .
(b) Update σ0 ← σadd, σ1 ← σadd.
(c) Increment k ← k + 1.

4. Return k.

Proposed Concrete Parameters Currently, the most effective attacks against Fully Ho-
momorphic Encryption (FHE) include primal attacks, dual attacks, and BKW attacks.
We propose three sets of concrete FHE parameters, evaluating their respective security
levels using the LWE estimator and estimating their additive depths using the approach
proposed above. The results are presented in the following table.

Table 1: Concrete FHE Parameters with Security Levels and Estimated Depths

(n, log q, log t, σ) Security Level (bits) Additive Depth
(1024, 28, 1, 3.19) ≥ 128 10
(2048, 54, 8, 3.19) ≥ 128 46
(4096, 110, 8, 3.19) ≥ 128 ≥ 99

5.2 Multi-Party FHE
For the Multi-Party FHE case, due to the distributed key generation, the internal noise in
the public key depends on the number of parties and is therefore greater than its counter-
part in the two-party setting. Moreover, to prevent secret key leakage, a relatively large
noise is introduced to obscure the original internal decryption noise, ensuring compliance
with security requirements. We give detailed analysis on these considerations as follows:

Decryption Noise After public key encryption, the ciphertext ct ← Encpk(m) corre-
sponds to the original decryption noise:

edec = eu + e0s∗ + e1

Since the noise contains a multiplicative component, a more precise estimation using
the canonical norm is required. Given that:

u, e0, e1 ∼ DG(σ2), e, s∗ ∼ DG(Nσ2)

we derive the upper bound:

B1 = ||edec||can ≤ ||e1||can + ||eu||can + ||e0s∗||can ≤ 6nσ + 16n
√

Nσ2 + 16n
√

Nσ2
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where the parameter N represents the number of computing parties in the threshold
FHE scheme, and the parameter n comes from the polynomial ring Rq

def= Zq[x]/(xn + 1).
Finally, we determine the upper bound for the large noise e∗:

B2 = 2λB1 = 2λ(6nσ + 16n
√

Nσ2 + 16n
√

Nσ2) ≈ 2λ · 32n
√

Nσ2

Addition Noise Note that in the above analysis of decryption noise, we have assumed
that no homomorphic operations are performed. However, if homomorphic operations
are introducedas in our case, where homomorphic addition is appliedthe decryption noise
will further increase. Consequently, an even larger noise must be used to obscure the
decryption noise and prevent potential secret key leakage.

In more detail, the deeper the addition depth, the larger the smudging noise required
to effectively obscure the decryption noise and maintain security. Based on this, we outline
the following algorithm to estimate the additive depth:

1. Initialize noise levels σ0, σ1, σadd, ensuring

σ0 = σ1 = σadd = 6nσ + 16n
√

Nσ2 + 16n
√

Nσ2.

2. Set k = 0.

3. While 6σadd + 2λ · 6σadd < q
2t , repeat the following steps:

(a) Compute σadd ←
√

σ2
0 + σ2

1 .
(b) Update σ0 ← σadd, σ1 ← σadd.
(c) Increment k ← k + 1.

4. Return k.

Remark In the algorithm above, 6σadd serves as a high-probability bound for the original
ciphertext noise after performing homomorphic addition. To ensure security, the bound
for the superpolynomially scaled smudging noise is conservatively set to 2λ · 6σadd.

Proposed Concrete Parameters We propose two sets of concrete FHE parameters, eval-
uating their respective security levels using the LWE estimator and estimating their addi-
tive depths using the approach proposed above. The results are presented in the following
table.

Table 2: Concrete FHE parameters with security levels and estimated depths. The sta-
tistical security parameter is set to λ = 40, and the number of parties is N = 1, 000, 000.

FHE Parameters (n, log q, log t, σ) Security Level (bits) Additive Depth
(4096, 110, 8, 3.19) ≥ 128 56
(4096, 110, 16, 3.19) ≥ 128 40

6 SIMD-like Working Mode
Modern Fully Homomorphic Encryption (FHE) operates over an algebraic structure known
as a polynomial ring. In other words, instead of encrypting individual integers, FHE en-
crypts polynomials over the ring:

Rt = Zt[x]/(xn + 1).
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As discussed in the previous subsection, we encode a single bit of information into a vector
of ℓ bits, enabling homomorphic operations through the addition of two ℓ-bit vectors.

The key challenge now is how to efficiently perform homomorphic addition on two
ℓ-bit vectors. We propose the following approach:

1. Each party Ai encodes its bit x into an ℓ-bit vector:

x = (x1, x2, . . . , xℓ).

2. Each party Ai embeds the vector x into a plaintext polynomial:∑
j

xjXj ∈ Rt.

3. All parties {Ai}i jointly invoke a privacy-preserving protocol to compute the logical
AND operation.

Remark By encoding the entire vector x into a single ciphertext instead of encrypting
each of the ℓ bits separately, both the computational complexity and communication
overhead are reduced by a factor of ℓ.

Further note that ℓ is significantly smaller than the FHE parameter n. This charac-
teristic allows us to encode at least ⌊n/ℓ⌋ bits into a single ciphertext, thereby reducing
both computational and communication complexity by nearly a factor of n.

To summarize, the final SIMD working mode of the privacy-preserving AND protocol
proceeds as follows:

1. Each party Ai encodes its ⌊n/ℓ⌋ bits, denoted as {xi,j}j=1,...,⌊n/ℓ⌋, into ⌊n/ℓ⌋ vectors,
each of length ℓ:

xj = (xj,1, xj,2, . . . , xj,ℓ), for j = 1, . . . , ⌊n/ℓ⌋.

2. Each party Ai embeds all ⌊n/ℓ⌋ vectors {xj}j into a single plaintext polynomial:

⌊n/ℓ⌋∑
j=1

ℓ∑
k=1

xj,kX(j−1)·ℓ+k−1 ∈ Rt.

3. All parties {Ai}i collaboratively execute a privacy-preserving protocol to compute
the logical AND operation.

7 More Efficient Privacy-preserving AND Protocol
As discussed in Subsection 3.1, a single bit x can be encoded into an ℓ-bit vector x, enabling
a privacy-preserving AND protocol via homomorphic addition. A closer examination
reveals that, to achieve a negligible failure probability of the protocol (i.e., returning an
incorrect result) is at most 2−λ, the vector length ℓ must be set equal to λ.

However, this encoding expansion rate λ can be relatively large in practice. For in-
stance, a typical choice is λ = 40, and our experiments confirm that this setting signifi-
cantly burdens the preprocessing phase of the entire PSI protocol. Specifically, each party
must encode every bit of their Bloom filter into a long binary vector and then perform
FHE encryption in a SIMD-like manner to produce the encrypted representation. Reduc-
ing the length of the encoded vector would thus substantially improve the efficiency of the
preprocessing phase in our PSI protocol.



Sicheng Wei and Jingwei Hu 19

To achieve the goal of reducing vector length, we propose a modified privacy-preserving
AND protocol that aligns seamlessly with the SIMD-like representation required by FHE
encryption. The key intuition is to exploit the size of each SIMD slot: each slot resides
in the integer ring Zt, where t can be greater than 2. This flexibility allows us to encode
a single bit x into a much shorter vector x over Zt, significantly reducing the encoding
overhead.

To summarize, the modified, more efficient privacy-preserving AND protocol ΠAND
proceeds as follows:

1. Each party Ai encrypts their bit xi ∈ {0, 1} using an FHE scheme, denoted as
Encpk(xi):

(a) If xi = 1, then xi is set as a zero vector over Zt:

xi ← 0 w.r.t. 0 = (0, . . . , 0) ∈ Zℓ
t where ℓ

def= λ

log t
.

(b) Else xi is set as a random Zℓ
t vector :

xi
$← Zℓ

t.

2. Each Ai sends their ciphertext Encpk(xi) to the cloud server C.

3. The cloud server C computes:

∑
i

Encpk(xi) = Encpk

(∑
i

xi mod t

)
.

4. The cloud server C sends Encpk (
∑

i xi) to any arbitrary party Ai.

5. Ai decrypts locally to obtain:

r =
∑

i

xi mod t.

6. If the vector r is a zero vector, then
∧N

i=1 xi = 1, otherwise
∧

i xi = 0.

Remark The correctness and security of the proposed protocol follow from the analysis
presented in Subsection 3.1, and we omit the details here. Instead, we focus on the
performance improvements achieved. Our PSI protocol is computationally dominated
by the encryption/decryption phase, where each party encrypts or decrypts their Bloom
filter. With the proposed privacy-preserving AND protocol, the number of ciphertexts
required to represent the Bloom filter is reduced by a factor of log t, thereby significantly
decreasing the encryption time. Moreover, since the main communication bottleneck lies
in transmitting the encrypted Bloom filter to the cloud server, this ciphertext reduction
also leads to a substantial decrease in communication overhead. As discussed in Section 5,
we may set t ≈ 28, resulting in log t = 8. Consequently, both the computational and
communication overheads are improved by nearly an order of magnitude, leading to a
significant overall performance gain for the PSI protocol.
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8 Conclusion
In this paper, we presented a novel and efficient framework for Delegated Private Set In-
tersection (D-PSI), leveraging threshold homomorphic encryption and Bloom filter-based
encodings. Unlike prior work that relies on complex cryptographic primitives such as
randomized intersection encoding, our approach reduces the intersection computation to
a series of homomorphic additions, significantly simplifying the protocol design and im-
proving its scalability.

Our construction achieves computational complexity of Ω(Nk) and communication
complexity of Ω(Nk), matching known asymptotic lower bounds, while also supporting
large-scale datasets and multiple parties in a semi-honest cloud setting. We further in-
troduced a suite of concrete optimization techniquesincluding lightweight FHE parameter
selection, faster secure-AND protocol design, and SIMD-style batching that greatly im-
prove practical performance.

Beyond the D-PSI setting, we also demonstrated that our construction can be adapted
to standard PSI scenarios without reliance on any trusted third party, thus broadening
its applicability.

We are currently implementing the proposed protocol and will report our experimental
results in a future version of this paper. We believe our work opens a promising direction
toward scalable, efficient, and privacy-preserving set intersection protocols.
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