
Highway to Hull:
An Algorithm for Solving the General Matrix

Code Equivalence Problem

Alain Couvreur1,2 and Christophe Levrat1,2

1 Inria
2 Laboratoire LIX,
École Polytechnique,

Institut Polytechnique de Paris,
France

{alain.couvreur, christophe.levrat}@inria.fr

Abstract. The matrix code equivalence problem consists, given two ma-
trix spaces C,D ⊂ Fm×n

q of dimension k, in finding invertible matrices
P ∈ GLm(Fq) and Q ∈ GLn(Fq) such that D = PCQ−1. Recent sig-
nature schemes such as MEDS and ALTEQ relate their security to the
hardness of this problem. Recent works by Narayanan, Qiao and Tang
on the one hand and by Ran and Samardjiska on the other hand tackle
this problem. The former is restricted to the “cubic” case k = m = n

and succeeds in Õ(q
k
2) operations. The latter is an algebraic attack on

the general problem whose complexity is not fully understood and which
succeeds only on O(1/q) instances. We present a novel algorithm which
solves the problem in the general case. Our approach consists in reducing
the problem to the matrix code conjugacy problem, i.e. the case P = Q.
For the latter problem, similarly to the permutation code equivalence
problem in Hamming metric, a natural invariant based on the Hull of
the code can be used. Next, the equivalence of codes can be deduced
using a usual list collision argument. For k = m = n, our algorithm
achieves the same time complexity as Narayanan et al. but with a lower
space complexity. Moreover, ours extends to a much broader range of
parameters.

Introduction

In the last decades, so-called equivalence problems have frequently been used for
cryptographic applications. The first examples probably come from multivariate
cryptography with the Matsumoto-Imai [19] or HFE [22] schemes, whose security
relies on the hardness of the polynomial isomorphism problem: deciding whether
two spaces of polynomials are equivalent with respect to a linear or affine change
of variables.

In recent years, we observed an intensification of this trend but also a di-
versification of the equivalence problems used for cryptography. In particular,
in NIST’s recent on-ramp call for signature3, many signature schemes involve

3 https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

equivalence problems which are not the polynomial isomorphism one. For in-
stance, Hawk ’s [5] security rests among others on the hardness of the Lattice
Isomorphism Problem (LIP), LESS [1] rests on the monomial equivalence of
Hamming metric codes, MEDS [9] on the matrix code equivalence and ALTEQ
[4] on the equivalence of alternate trilinear forms. The latter problem (equiva-
lence of alternate trilinear forms) is in fact a sub-case of the former: the matrix
code equivalence problem, which is the purpose of the present article. The two
problems are actually proven to be polynomially equivalent [14, Prop. 8.3].

Given two matrix spaces C,D ⊂ Fm×n
q , the matrix code equivalence problem

consists in deciding whether there exists P ∈ GLm(Fq) and Q ∈ GLn(Fq) such
that D = PCQ−1. The search version of the problem asks to return, if exists, a
pair (P,Q) providing the equivalence. Even though its use for cryptography is
rather new, this problem has been known for a long time in algebraic complex-
ity theory where it is usually formulated in an equivalent way as the 3–tensor
isomorphism problem. This problem is assumed to be hard and is in particular
known to be at least as hard as the monomial code equivalence problem (see [14]
or [11]).

Our contribution

In this article, we present a new algorithm for solving the matrix code equivalence
problem, or equivalently the 3–tensor isomorphism problem. Given equivalent
k–dimensional m× n matrix spaces with entries in Fq, we are able to solve the
search equivalence problem in

Õ(qmax(k
2 ,k−m+2))

operations in Fq. Note in particular that in the specific case k = m = n which
is the one that is used in the parameters of MEDS and ALTEQ, we achieve the
time complexity Õ(q k

2) which is the one achieved by Narayanan, Qiao and Tang
[20]. However,

1. our algorithm rests on completely different invariants;

2. in the specific case k = m = n, the space complexity of our algorithm is
O(nq n

2 −1), which is is smaller than that of [20] by a factor n2;

3. our result does not require the parameters k,m, n to be equal, while this is
necessary for Narayanan et. al.’s algorithm to run.

Note that, if the equivalence of alternate trilinear forms problem on which
ALTEQ is built requires by design to have k = m = n, there is no need
to instantiate MEDS with such a constraint on k,m, n. It turns out that
MEDS’ proposed parameters [9] satisfy this condition making them vulner-
able to Narayanan et. al.’s attack, but MEDS’ designers could have easily
circumvented the aforementioned attack just by breaking the symmetry on
the parameters k,m, n. Still, the algorithm introduced in the present article
attacks a much broader range of triples k,m, n.

2

A specificity of our algorithm is that, taking its inspiration from the Hamming
metric counterpart of the code equivalence problem problem and Sendrier’s fa-
mous support splitting algorithm [27], we use the Hull of the code, i.e. its inter-
section with its orthogonal space w.r.t some given bilinear form.

Related works

The schemes MEDS and ALTEQ [9, 4] were both submitted to NIST’s on-ramp
call for digital signatures. Before, ALTEQ’s and MEDS’ specifications were re-
spectively presented in the articles [30] and [10]. In [3], Beullens describes a new
algorithm solving the trilinear form equivalence problem, harming the proposed
parameters for ALTEQ. More recently, Narayanan, Qiao and Tang [20] presented
an algorithm solving the same problem but also the matrix code equivalence
problem in the case of k–dimensional spaces of k × k matrices. Their approach
combines a collision list argument with a nice algebraic invariant and achieves a
complexity in Õ(q k

2). Finally, Ran and Samardjiska [24] designed an algorithm
for the 3-tensor isomorphism problem which looks for triangles in tensor graphs.
Such triangles exist in roughly 1/q of all instances of the problem. In these
instances and for current parameters of MEDS and ALTEQ, their algorithm
provides a speedup compared to all previous works.

1 The matrix code equivalence problem

Definition 1. Let m,n, k be positive integers. An m× n matrix code of dimen-
sion k is a k-dimensional Fq-linear subspace of Fm×n

q .

Definition 2 (Matrix code equivalence problem). Let m,n, k be positive
integers. Consider two k-dimensional linear subspaces C,D of Fm×n

q . The matrix
code equivalence problem MCEm,n,k(C,D) consists in finding (if exist) matrices
P ∈ GLm(Fq), Q ∈ GLn(Fq) such that

D = PCQ−1.

When m = n = k, we call it the cubic matrix code equivalence problem:
CMCEn(C,D).

Remark 1. We may suppose that m ⩽ n. Indeed, if D = PCQ−1 then

D⊤ = (Q−1)⊤C⊤P⊤

so any algorithm solving the case m ⩽ n can also be used, after transposing the
whole problem, to solve the case n ⩽ m. In the remainder of this article, we will
always suppose that m ⩽ n. Moreover, we may switch C and its dual C⊥ in order
to have dim(C⊥) ⩽ dim(C). Indeed, if D = PCQ−1 then

D⊥ = (P−1)⊤C⊥Q⊤.

Hence, the case where mn−k = m = n may be reduced to an instance of CMCE.

3

The CMCE problem is notably the basis of the former NIST signature scheme
candidate MEDS. A polynomial-time equivalent problem [25], the alternating tri-
linear form equivalence problem, underpins the former NIST signature candidate
ALTEQ. An attack against these problems was recently described by Naranayan,
Qiao and Tang in [20].

1.1 Related problems

The trilinear forms equivalence problem

Definition 3 (Trilinear Form Equivalence Problem (TFE)). The trilinear
forms equivalence problem TFEm,n,k is the following. Given two trilinear forms
f, g : Fm

q ×Fm
q ×Fk

q → Fq, find three matrices (P,Q,R) ∈ GLm(Fq)×GLn(Fq)×
GLk(Fq) such that for any x, y, z ∈ Fm

q × Fn
q × Fk

q ,

f(Px,Qy,Rz) = g(x, y, z).

The following well-known result shows the the matrix code equivalence prob-
lem reduces to the trilinear forms equivalence problem with the same parameters.

Lemma 1. The problem MCEm,n,k admits a (deterministic) polynomial-time
reduction to TFEm,n,k.

Proof. Let (C,D) be an instance of MCEm,n,k. Denote by (C1, . . . , Ck) a basis of
C and by (D1, . . . , Dk) a basis of D. We may define the trilinear forms

f : (x, y, z) 7→
∑
i,j,ℓ

(Ck)ijxiyjzℓ

g : (x, y, z) 7→
∑
i,j,ℓ

(Dk)ijxiyjzℓ.

If g(x, y, z) = f(Px,Qy,Rz) for all (x, y, z) ∈ Fm
q ×Fn

q ×Fk
q , then straightforward

computations show that D = P⊤CQ⊤, and the element Rij is the i-th coordinate
of Dj when expressed in the basis (P⊤C1Q

⊤, . . . , P⊤CkQ
⊤) of D. ⊓⊔

Remark 2. Even if the two aforementioned problems are actually polynomially
equivalent (see [14]), the converse of this construction does not directly yield a
deterministic polynomial-time reduction of TFEm,n,k to MCEm,n,k. Indeed, let
(f, g) be an instance of TFEm,n,k. We may write

f : (x, y, z) 7→
∑
i,j,ℓ

cijkxiyjzℓ

g : (x, y, z) 7→
∑
i,j,ℓ

dijkxiyjzℓ.

For r ∈ {1 . . . k}, construct the matrices Cr = (cijr)i,j and Dr = (dijr)i,j .
Now, it is not guaranteed that the codes C = Span(C1, . . . , Ck) and D =

4

Span(D1, . . . , Dk) are k-dimensional. However, if they are, this is indeed an
instance of MCEm,n,k and if we find a solution (P,Q) such that D = PCQ,
we can immediately solve this instance of TFEm,n,k. Indeed, consider the ma-
trix R = (rij) ∈ GLk(Fq) where rij is i-th coordinate of Dj when expressed in
the basis (PC1Q, . . . , PCkQ) of D. Then, we have f(P⊤x,Q⊤y,Rz) = g(x, y, z)
for all (x, y, z). In practice, given a random trilinear form, the matrices Ci are
random elements of Fm×n

q , and they are very likely to be linearly independent.

Alternate trilinear form equivalence problem A sub-case of the trilinear
form equivalence problem that has been considered for the design of ALTEQ is
the alternate trilinear forms equivalence problem ATFE. An alternate trilinear
form is a trilinear form f : Fn

q × Fn
q × Fn

q such that for any x ∈ Fn
q ,

f(x, x, ·) ≡ f(x, ·, x) ≡ f(·, x, x) ≡ 0.

This is equivalent to the fact that, given any permutation σ ∈ S3 (the group of
permutation on 3 letters), and any triple (x1, x2, x3) ∈ (Fn

q)
3,

f(xσ(1), xσ(2), xσ(3)) = ε(σ)f(x1, x2, x3),

where ε(σ) denotes the signature of the permutation σ. This definition leads to
the following problem.

Definition 4 (Alternate Trilinear Form Equivalence Problem (ATFE)).
The alternate trilinear forms equivalence problem ATFEm,n,k is the following.
Given two alternate trilinear forms f, g : Fm

q × Fm
q × Fk

q → Fq, find a matrix

P ∈ GLn(Fq) such that for any x, y, z ∈ Fm
q × Fn

q × Fk
q ,

f(Px, Py, Pz) = g(x, y, z).

3–tensor isomorphism. On the tensor product Fm
q ⊗Fn

q⊗Fk
q , there is a natural

action of GLm(Fq)×GLn(Fq)×GLk(Fq), and the 3–tensor isomorphism problem
consists in deciding whether two tensors T1, T2 ∈ Fm

q ⊗ Fn
q ⊗ Fk

q are in the same
orbit with respect to the aforementioned group action.

The equivalence between the matrix code equivalence problem and the 3–
tensor isomorphism one, is very explicit. Given two tensors, one can consider
the matrix subspaces of Fm

q × Fn
q spanned by their “slices” and the tensors

are isomorphic if and only if the corresponding matrix spaces are equivalent.
Conversely, given two matrix spaces, one can take a basis for each one, and
stack elements of a basis in order to create a 3–tensor. Then, the matrix spaces
will be equivalent if and only if the corresponding 3–tensors are isomorphic.

Remark 3. Note that the terminology of cubic matrix code equivalence problem
introduced in Definition 2 refers to the corresponding tensors, which will be
n× n× n, i.e. cubic tensors.

5

Similarly, the equivalence between the 3–tensor isomorphism and the equiv-
alence of trilinear forms, can be made explicit since a trilinear form is encoded
by a 3-tensor T ∈ Fm

q ⊗ Fn
q ⊗ Fk

q . The equivalence of the problems mentioned in
this section and more is summarized in [14, Figure 2].

Finally, ATFE can be reformulated in terms of the equivalence of alternate
tensors which are tensors T ∈ Fn

q ⊗ Fn
q ⊗ Fn

q such that for any σ ∈ S3,

σ(T) = ε(σ) · T,

where σ(T) denotes the image of T under the natural action of S3 on such
3–tensors and ε(σ) denotes the signature of σ.

Remark 4. Rewriting an instance of MCE as an instance of TFE or of 3–tensor
isomorphism shows that the problem is symmetric in the three parameters
m,n, k. In particular, we may choose to permute m,n, k as we like in our al-
gorithm in order to minimize its complexity. Moreover, as we will explain in
Lemma 2, we may also switch k for mn− k.

1.2 Related works on attacks on MCE and ATFE

About ALTEQ. In article [30] in which the design of ALTEQ is established,
various cryptanalysis techniques are considered to solve ATFE problem. They
include algebraic attacks: computing the matrix P as the solution of a quadratic
system; or MinRank based attacks (re discussed further as “Leon–like techni-

ques”). The authors then consider a collision search attack with a cost Õ(q 2n
3),

which they claim to be the best possible. Finally, NIST proposal ALTEQ [4]
selects parameters with respect to a finer analysis of algebraic and MinRank
based attacks.

About MEDS. For the design of MEDS [10], the authors consider a graph-
search based approach inspired from the works of Bouillaguet, Fouque and Véber
[6] on the polynomial isomorphism problem for spaces of quadratic forms. This

approach leads to an attack of complexity Õ(q 2
3 (m+n)). Also, they consider the

possibility of algebraic modelling which turns out to be harder than for ATFE
since the unknown correspond to a pair of matrices (P,Q) instead of a single
one. They also study a “Leon–like” approach, a reference to Leon’s algorithm
[17] for determining code equivalence that consists in harvesting minimum weight
codewords to determine the code equivalence. When transposed to the matrix
code setting, the Hamming weight is replaced by the rank and such an approach
is nothing but the aforementioned MinRank based technique, which, following
a recent result from Beullens [2] on Hamming metric code equivalence, can be
combined with a collision search technique. MEDS’ parameter selection rests on
the complexity of both algebraic attacks and Leon–like ones.

Subsequent attacks. Recently, two attacks taking their inspiration from the
Graph–based techniques of Bouillaguet, Fouque and Véber [6] appeared in the
literature.

6

Beullens’ attack. First, Beullens proposed a graph–search–based technique to
solve ATFE. His attack turns out to be particularly efficient for small values of n.
For instance, for n odd, he could achieve a complexity inO(q(n−5)/2n11+qn−7n6).
This permitted to identify weak keys in [30].

Narayanan, Qiao and Tang’s attack. In [20], the authors introduced a new al-
gorithm solving both ATFE and MCE in the cubic case k = m = n. We conclude
this section by sketching the principle of this algorithm in order to point out the
need for being in the cubic case.

As already explained in § 1.1, the problem can be reformulated into that of
the equivalence of two trilinear forms

f : Fn
q × Fn

q × Fn
q −→ Fq and g : Fn

q × Fn
q × Fn

q −→ Fq,

where we look for a triple P,Q,R ∈ GLn(Fq) such that for any x, y, z ∈ Fn
q ,

g(x, y, z) = f(Px,Qy,Rz).

The idea of the algorithm consists first in guessing a pair (x1, x
′
1) ∈ (Fn

q)
2

such that x′1 = Px1 and f(x1, ·, ·) is a bilinear form of rank n−1. Next, due to the
rank constraint, from x1 can be deduced a unique y1 (up to scalar multiplication)
such that f(x1, y1, ·) ≡ 0. Similarly, they deduce a z1 such that f(·, y1, z1) ≡ 0,
and an x2 such that f(x2, ·, z1) ≡ 0 and so on. By this manner, they construct
3 sequences x1, . . . , xn, y1, . . . , yn and z1, . . . , zn for f and similarly construct
x′1, · · · , x′n, y′1, . . . , y′n and z′1, . . . , z

′
n for g. Stacking these vectors as columns of

n × n matrices, we get 6 matrices X,Y, Z,X ′, Y ′ and Z ′ that will be invertible
with a high probability.

The key observation is that

X ′ = PX Y ′ = QY and Z ′ = RZ.

Therefore, for any x, y, z

f(X ′x, Y ′y, Z ′z) = f(PXx,QY y,QZz) = g(Xx, Y y, Zz).

Thus, (up to some action of diagonal matrices that we do not discuss here) the

trilinear forms fx1

def
= f(X ′ ·, Y ′ ·, Z ′ ·) and gx′

1

def
= g(X ·, Y ·, Z ·) coincide.

In view of this observation, the algorithm solving MCE consists in a colli-
sion search between two dictionaries. The first one collects pairs (fx1

, x1), the
left–hand term being the search key and the right–hand one being the corre-
sponding value, and the second one collects pairs (gx′

1
, x′1). Once such a collision

is found, determining the equivalence becomes easy (see [20] for further details).
The space complexity of their algorithm is essentially the expected size of the
computed dictionaries. Each dictionary has length q(n−2)/2, and its entries are
pairs consisting of a point of Pn(Fq) and a cubic 3-tensor of dimension n×n×n.
Hence the total space complexity is O(n3q(n−2)/2).

Conclusion about Narayanan, Qiao and Tang. It should be emphasized that the
crux of their algorithm rests on the unique possibility (up to scalar multiplica-
tion) of passing from xi to yi, from yi to zi and from zi to xi+1. Such a technique

7

is possible only because at each step, the corresponding bilinear form is repre-
sented by a rank n− 1 matrix of size n×n. Hence, their approach strongly rests
on the fact that they lie in the cubic case k = m = n.

Ran and Samardjiska’s attack. In [24], the authors describe a graph-based algo-
rithm which solves the 3-tensor isomorphism problem in a specific case, namely
when the graphs of the two isomorphic tensors contain cycles of length 3. This
only happens in ∼ 1/q of all instances. However, contrary to [20], they are not
limited to the cubic case. Their article contains a generic algorithm for the ten-
sor isomorphism problem, and two versions adapted specifically to the MCE and
ATFE problems. They all rely on the same modus operandi :

– first, model by algebraic equations the existence of triangles in the graphs
associated with the two tensors, and solve these using Gröbner basis tech-
niques in order to construct lists of triangles found in each tensor’s graph;

– then, for each pair of triangles in the two lists, try to construct the isometry
by solving a system of linear and quadratic equations.

The authors provide timings showing that their attack is more efficient with
real-world parameters than the previous ones, even going as far as breaking the
designed Level I parameters of ALTEQ in under half an hour. However, this
only applies to those 1/q of all instances in which the considered tensors do have
triangles in their associated graphs.

Comparison with the present work. We do not expect our work to beat the time
complexity of [20] or [24] in the cases where they apply. However, our algorithm
solves theMCE problem in a very broad range of parameters, and is not restricted
to the cubic case like [20] or to those (very rare) tensors whose graphs contain
triangles like [24]. Moreover, it improves upon the space complexity of [20] by a
factor Θ(n2).

2 Technical overview

In this article, we propose an algorithm to solve MCEm,n,k(C,D) for the range
of parameters m,n, k such that n ⩾ m and

k < m2 − 1 or mn− k < m2 − 1

(see Remark 6). This includes the cubic case, i.e., k = m = n, in which the
complexity of our algorithm turns out to be similar to that of [20].

2.1 Preliminaries

Our algorithm will use in a crucial way the notion of dual matrix code and that
of Hull. We give both definitions below. Recall that the trace Tr(M) of a square
matrix M is the sum of its diagonal coefficients.

8

Definition 5. Let C ⊂ Fm×n
q be a linear code. The dual of C is the code

C⊥ def
= {M ∈ Fm×n

q | ∀C ∈ C,Tr(M⊤C) = 0}.

Definition 6. Let C ⊂ Fm×m
q be a matrix code. We will call hull of C the code

h(C) = {M ∈ C | ∀C ∈ C,Tr(MC) = 0}.

Remark 5. Beware that the hull is not the intersection of C with its dual as
defined in Definition 5. It is the intersection with another orthogonal subspace,
this time with respect to the bilinear form

(X,Y) 7→ Tr(XY).

The definition of the hull (Definition 6) is the only place of the article where this
nonstandard bilinear form is used. Besides, every dual or orthogonal complement
which appears in the article is taken with respect to the usual inner product

(X,Y) 7→ Tr(X⊤Y).

The subsequent lemmas yield two key observations for our algorithms:

1. if two codes are equivalent, so are their duals;
2. if two codes are conjugate, so are their hulls.

Lemma 2. Let C,D ⊂ Fm×n
q be two Fq-vector spaces, and P ∈ GLm(Fq), Q ∈

GLn(Fq) be matrices such that D = PCQ−1. Then

D⊥ = (P−1)⊤C⊥Q⊤.

Proof. Since C and D have the same dimension, so do D⊥ and (P−1)⊤C⊥Q⊤.
Hence, it is enough to prove that one of these spaces is included in the other.
Consider any B ∈ D and A ∈ C⊥. There is a matrix C ∈ C such that B =
PCQ−1. We have:

Tr(B⊤(P−1)⊤AQ⊤) = Tr((Q−1)⊤C⊤P⊤(P−1)⊤AQ⊤)

= Tr((Q−1)⊤C⊤AQ⊤)

= Tr(C⊤A) = 0. (since A ∈ C⊥)

Hence, D ⊆ (P−1)⊤C⊥Q⊤. ⊓⊔

Lemma 3. Let C,D ⊂ Fm×m
q be two Fq-vector spaces. Let P ∈ GLm(Fq) be a

matrix such that D = PCP−1. Then

h(D) = Ph(C)P−1.

Proof. Let C ∈ h(C), and set D = PCP−1 ∈ D. Let us show that D ∈ h(D).
Let B ∈ D. There exists A ∈ C such that B = PAP−1. We have

Tr(BD) = Tr(PAP−1PCP−1)

= Tr(AC) = 0. (since C ∈ h(C))

The other inclusion is proved in the same way. ⊓⊔

9

The following proposition, which says that roughly 1/q of all codes have a
one-dimensional hull, is a consequence of results presented in [26]. It is explained
in Appendix B, and will be crucial in the complexity analysis.

In the sequel, we denote by ker(Tr) the subspace of Fm×m
q of matrices whose

trace is zero.

Proposition 1. The proportion of m×m matrix codes contained in ker(Tr) and
whose hull has dimension 1 is asymptotically equal to

1

q

(
1 +O

(
m2

q(m2−1)/2

))
.

2.2 Summary of the algorithm

We are given two k-dimensional subspaces C,D of Fm×n
q . Our aim is to find two

matrices P ∈ GLm(Fq) and Q ∈ GLn(Fq) verifying D = PCQ−1. If we have
found a suitable matrix P , computing Q can be done using linear algebra (see
Section 5). The strategy for finding P consists first in guessing a pair (A,B) ∈
C⊥ × D⊥ such that B = (P−1)⊤AQ⊤, that is, a pair A,B which match with
respect to the equivalence D⊥ = (P−1)⊤C⊥Q⊤ given by Lemma 2. With such a
pair at hand, one can reduce the equivalence problem to the conjugacy problem
of the codes

CA
def
= CA⊤ and DB

def
= DB⊤. (1)

Indeed, if B = PAQ−1 we prove in Lemma 4 further that DB = PCAP−1.
Solving a matrix code conjugacy problem in this context is generally as hard as
solving MCE [14], but it is easy in a particular case: when the hull of both codes
has dimension 1, we may easily find conjugate generators of these two hulls. The
two main steps in order to find P are the following.

1. From C,D, construct two conjugate codes CA,DB with one-dimensional hull.

2. Compute a matrix R that conjugates these hulls and deduce a matrix P such
that that DB = PCAP−1.

First step. We begin by finding two matrices A ∈ C⊥ and B ∈ D⊥ such that the
codes CA and DB of (1) have conjugate hulls. For any A, one may find at least
one such B, which is (P−1)⊤AQ⊤.

In order to determine these matrices A and B, we construct a dictionary
whose keys are (normalized and suitably chosen) polynomials χ ∈ Fq[t] of degree
m. The values corresponding to a key χ are the pairs (A,U) ∈ Fm×n

q × Fm×m
q

such that the hull h(CA) is one-dimensional and generated by the matrix U with
characteristic polynomial χ. Then, we apply the same process to D and look for
collisions. This step is explained in detail in Section 3.

10

Second step. Once we have a pair of matrices (A,B) ∈ C⊥×D⊥ such that h(CA)
and h(CB) are one-dimensional and generated by conjugate matrices U and V ,
we may easily compute a matrix R ∈ GLm(Fq) such that V = RUR−1. We
also impose in the collision search that the characteristic polynomial χ of U, V
is squarefree so that U, V are both diagonalizable in an extension of Fq. In this
context, we will observe that the matrix P we are looking for, i.e. the one such
that DB = PCAP−1, is the product of R by some invertible matrix which can
be expressed as f(U) for some polynomial f ∈ Fq[t] of degree less than m. The
calculation of this polynomial is explained in Section 4.

2.3 A comment on matrix code equivalence v.s. matrix code
conjugacy

A remark that arises from our work, is that the equivalence problem seems
to become much easier when reducing from general matrix code equivalence
(i.e. arbitrary P,Q) to matrix code conjugacy (i.e. m = n and P = Q). It
is interesting to observe that from a complexity theory point of view the two
problems are polynomially equivalent [14, Thm. A]. Still, the use of the hull
gives a heuristic polynomial-time algorithm that solves a proportion O(1/q) of
instances of the conjugacy problem (the 1/q coming from the fact that a random
matrix code has a one-dimensional hull with probability O(1/q)).

This phenomenon could be compared with what happens in classical coding
theory, where two problems arise : the permutation equivalence problem (finding
a permutation matrix sending a code to another) and the monomial equivalence
problem (finding a monomial matrix, i.e. the product of a permutation matrix
and a nonsingular diagonal matrix sending one code to another). When the
ground field cardinality q is polynomial in the code length, the two problems are
known to be polynomially equivalent [28] but Sendrier’s Support Splitting algo-
rithm [27] is on average efficient on the former while being completely inefficient
on the latter.

2.4 Complexity and impact

The complexity of the algorithm is dominated by the collision search in the
first step. Given a uniformly random code C and a uniformly random full-rank
matrix A ∈ C⊥, the codes CA are uniformly distributed among the matrix codes
in ker(Tr) ⊂ Fm×m

q . Among these, a proportion of approximately 1/q have a one-
dimensional hull. By an argument similar to the birthday paradox, computing

two lists of length roughly q(k
⊥−2)/2 is enough to find some collisions. This

requires picking matrices A, and for each of these, computing the hull of CA.
The total time complexity, given in Theorem 1, is

Õ
(
qmax(k⊥

2 ,k⊥−m+2)
)

operations in Fq, where k
⊥ def

= mn − k is the dimension of the dual code C⊥.
In the cubic case m = n = k, by switching C and C⊥, this complexity can be

11

reduced to
Õ
(
qn/2

)
.

The space complexity is

O
(
(k⊥ +m+ 1)qmin(k⊥

2 −1,m−3)
)

elements of Fq, which is essentially the size of the computed dictionaries. In the
cubic case, this amounts to

O
(
nq

n
2 −1

)
elements of Fq. This reduces the space complexity of [20] by a factor n2, which,
with the initial cubic parameters of MEDS-128, is about 200.

3 Reducing to probably conjugate spaces

We look at k-dimensional matrix codes inside Fm×n
q . Given a code of dimension

k, we will denote by k⊥ = mn− k the dimension of its dual.

3.1 Structure of the reduction

Lemma 2 shows that the instances (C,D) and (C⊥,D⊥) of MCE are equivalent.
In particular, for complexity reasons, we may switch (C,D) for (C⊥,D⊥): we will
systematically choose the instance with the highest dimension. Indeed, since
collision search is performed on the dual codes, we fit in the situation where the
codes have the smallest possible duals. Thus from now on, we suppose

k⊥ ⩽ k.

Lemma 2 also shows that given A ∈ C⊥, the matrix B = (P−1)⊤AQ⊤ belongs
to D⊥. The key of the algorithm lies in the following lemma.

Lemma 4. Let (A,B) ∈ C⊥×D⊥ such that B = (P−1)⊤AQ⊤. Then, the codes

CA
def
= CA⊤ and DB

def
= DB⊤

satisfy
DB = PCAP−1.

Proof. This is a straightforward computation. ⊓⊔

The aim of the first step of our algorithm is to find pairs (A,B) such that
CA and DB are two conjugate k-dimensional codes, in order to find P . Given
any CA, DB , finding a matrix P such that DB = PCAP−1 is complicated: this is
the code conjugacy problem (see for instance [14]). However, it is much easier if
one knows a distinguished pair of conjugate elements U ∈ CA, V ∈ DB . In order
to find such a pair (U, V), we need to find conjugate one-dimensional subspaces
in both CA and DB . We can do this when the hulls of both CA and DB are
one-dimensional, since, as shown in Lemma 3, the hulls of two conjugate matrix
codes are conjugate.

12

Remark 6. By construction, there is an inclusion CA ⊂ ker(Tr). Moreover, in
order to have a one-dimensional hull, we need this inclusion to be a strict. Since
we require CA to have the same dimension as C, this means that our algorithm
in this form only works for

k < m2 − 1.

Given an instance (C,D) of MCEm,n,k, our goal is to find matrices P ∈
GLm(Fq) and Q ∈ GLn(Fq) such that D = PCQ−1. The method below allows
us to reduce the problem to the case where m = n, P = Q, and C and D have
non trivial conjugate hulls. The reduction consists in the following steps.

1. Construct a dictionary {χ : (A,U)}, where CA = CA⊤ has a one–dimensional
hull, U ∈ Fm×m

q \ {0} generates this hull and χ ∈ Fq[t]⩽m is the character-
istic polynomial of U , which we require to be squarefree. This is done in
a very straightforward way: pick A at random, compute h(CA) and if it is
one-dimensional and generated by a matrix U , compute its characteristic
polynomial χU and add the entry (χ : (A,U)) to the dictionary. To make the
second step easier, we only keep A when χ is separable. The precise proce-
dure is explained in Algorithm 2. In order to find collisions more easily, we
normalize the characteristic polynomials as explained in Appendix A: this
reduces the number of possible characteristic polynomials to approximately
qm−3 (see Lemma 15).

2. Pick random matrices B ∈ D⊥, and if the hull of DB⊤ is one-dimensional,
check if the characteristic polynomial of one of its generators is a key in
the dictionary. The aforementioned conditions on the characteristic polyno-
mials directly imply that the generators U, V of h(CA), h(DB) having the
same characteristic polynomial χ are conjugate: for each collision, we imme-
diately compute R ∈ GLm(Fq) such that V = RUR−1. The collision-finding
procedure is described in Algorithm 3.

This yields a list of tuples (A,B,U, V,R) such that the codes CA and DB have
one-dimensional hulls respectively generated by matrices U, V such that V =
RUR−1. To these tuples, we then apply an algorithm of Section 4 which allows
to find a suitable matrix P such that DB = PCAP−1. In order to compute Q, we
now need to solve D = (PC) · Q, where PC is known. This is an easy problem,
which is solved by linear algebra as explained in Section 5.

13

Algorithm 1: ComputeNormalizedCharpoly

Data: k-dimensional code C ⊂ ker(Tr) ⊂ Fm×m
q such that dimh(C) = 1

Result: Pair (χ,U) where U ∈ Fm×m
q generates h(C), and χ ∈ Fm−2

q − {0}
represents U ’s characteristic polynomial

Compute a generator U of h(C)
Compute char. polynomial a0 + a1t+ · · ·+ am−3t

m−3 + tm of U
Set χ = (am−3, am−4, . . . , a0) ∈ Fm−2

q − {0}
λ =Normalize(U, χ) using Algorithm 7
return (λ ⋄ χ, λU) (where ⋄ is defined further below Eq. (⋆ ⋆ ⋆))

Algorithm1 computes the normalized generator of the hull of a code with
one-dimensional hull.

Algorithm 2: ConstructDict

Data: k-dimensional code C ⊂ Fm×n
q , integer L

Result: Dictionary {χ : (A,U)} with L keys
where U ∈ Fm×m

q generates h(CA) and has characteristic polynomial χ

Dict = {}
Compute a basis of C⊥

while length(Dict) < L do

Pick a random A ∈ C⊥

if rk(A) = m and dim(CA) = k then
if dimh(CA) = 1 then

(χ,U) = ComputeNormalizedCharpoly(CA)
if gcd(χ(t), χ′(t)) = 1 and χ /∈ Dict then

Add entry (χ : (A,U)) to Dict
return Dict

Algorithm2 constructs a dictionary whose keys are separable polynomials, and
whose values are pairs of matrices (A,U) such that h(CA) = FqU .

Algorithm 3: Finding P

Data: k-dimensional code D ⊂ Fm×n
q , integer N , dictionary Dict

Result: Triple (A,B, P) ∈ (Fm×n
q)2 × (Fm×m

q)2 ×GLm(Fq) s.t. DB = PCAP
−1

i = 0
while i < N do

Pick a random B ∈ D⊥

if rk(B) = m and dim(DB) = k then
if dimh(DB) = 1 then

i = i+ 1
(χ, V) = ComputeNormalizedCharpoly(DB)
if χ is a key of Dict with value A then

Use one of the Algorithms of Section 4 to deduce P
if success then

return (A,B, P)

return ⊥

Algorithm3 returns a triple (A,B, P) where DB = PCAP−1.

14

3.2 Distribution of the computed matrix spaces and polynomials

In this section, we discuss the distribution of the matrix spaces and characteristic
polynomials obtained using the algorithms above. Given a vector space V and
an integer d, we denote by Grd(V) (resp. Gr⩽d(V)) the set of all d-dimensional
(resp. at most d-dimensional) linear subspaces of V . We prove that given a uni-
formly random C ∈ Grk(Fm×n

q) and A ∈ C⊥ such that CA has one-dimensional
hull (and some mild additional conditions), the distribution of the characteristic
polynomials of a generator of these hulls is asymptotically uniform with respect
to q.

Given a matrix A ∈ Fm×n
q , we define the map

ϕA : Fm×n
q −→ Fm×m

q

M 7−→MA⊤.

For a k-dimensional code C ⊂ Fm×n
q and a matrix A ∈ Fm×n

q , we consider in our
reduction the code ϕA(C) = CA ⊂ Fm×m

q . This amounts to considering the map

Φ : Grk(Fm×n
q)× Fm×n

q −→ Gr⩽k(Fm×m
q)

(C, A) 7−→ ϕA(C) = CA.

We will choose A to have full rank m (recall that m ⩽ n). This entails that ϕA
is surjective. The preimages of a k-dimensional code D ⊂ Fm×m

q under Φ are

exactly the pairs (C, A) such that C ⊂ ϕ−1
A (D) and C ∩ ker(ϕA) = 0. We now set

X
def
= {(C, A) ∈ Grk(Fm×n

q)× Fm×n
q | A ∈ C⊥, rk(A) = m, C ∩ ker(ϕA) = 0}.

Lemma 5. The restricted map

f1 = Φ|X : X → Grk(ker(Tr)), (⋆)

where Grk(ker(Tr)) denotes the set of k–dimensional spaces of m×m matrices
whose trace is zero, is surjective and equidistributed (i.e. each element of its
image has the same number of preimages).

Proof. Given D ∈ Grk(Fm×m
q) whose elements have trace zero, any element

(C, A) ∈ Φ−1
|X (D) satisfies A ∈ C⊥. Given a rank m matrix A ∈ Fm×n

q , the codes

C such that CA⊤ = D and (C, A) ∈ X are exactly the complementary subspaces
of ker(ϕA) in ϕ

−1
A (D). The number of elements in Φ−1

|X (D) is the number of rank

m matrices in Fm×n
q multiplied by the number of complementary subspaces of

an m(n−m)-dimensional subspace in a (k +m(n−m))-dimensional Fq-vector
space. The latter number is nonzero and does not depend on a particular choice
of D. Hence, the map f1 is surjective and equidistributed. ⊓⊔

Lemma 6. In a code CA ⊂ ker(Tr), any element in the hull of CA satisfies
Tr(U2) = 0.

15

Proof. This is a direct consequence of the definition of the hull (Definition 6).

Lemma 7. If q is not a power of 2, the map

f2 : {C ∈ Grk(ker(Tr)) | dimh(C) = 1} → {U ∈ Fm×m
q | Tr(U) = Tr(U2) = 0}/F×

q

(⋆⋆)
which sends C to a generator of h(C) (modulo the action of F×

q) is equidistributed.
In particular, as soon as the set on the left is nonempty, f2 is surjective.

Proof. We work in ker(Tr) with the non-degenerate bilinear form (X,Y) 7→
Tr(XY). Consider any two matrices U1, U2 such that Tr(Ui) = Tr(U2

i) = 0.
To prove equidistribution, it is enough to construct a bijection between their
preimages under this map. The map FqU1 → FqU2 which sends U1 to U2 is an
isometry with respect to the aforementioned bilinear form. Since char(Fq) ̸= 2,
Witt’s extension theorem [15, Thm. 5.2] ensures that this map extends to an
isometry g of ker(Tr). Then, the map

{C ⊂ ker(Tr) | h(C) = FqU1} → {C ⊂ ker(Tr) | h(C) = FqU2}

which sends C to g(C) is a bijection. ⊓⊔

Remark 7. Recall that Proposition 1 states that asymptotically, 1/q of all matrix
codes in Grk(kerTr) have a one-dimensional hull. Hence, the number of these

codes is equivalent to qk(m
2−1−k)−1 when q → ∞. Therefore, for big enough q,

such codes exist, and the map f2 is always surjective.

Lemma 8. Let χ ∈ Fq[t] be a separable polynomial of degree m such that χ(0) ̸=
0. The number of matrices U with characteristic polynomial χ is asymptotically
(when q →∞) equivalent to qm

2−m.

Proof. Let U be a matrix with characteristic polynomial χ. Since χ is separable,
it is also the minimal polynomial of U , and the matrices with characteristic
polynomial χ are conjugates of U . There are as many conjugates of U as elements
in the quotient

GLm(Fq)/{P ∈ GLm(Fq) | PUP−1 = U}.

Since U has a separable characteristic polynomial, any matrix which commutes
with U is a polynomial in U [16, Cor. IV.E.8]. We are looking for the cardinality
of Fq[U]∩GLm(Fq). A classical consequence of Cayley Hamilton theorem entails
that Fq[U] ∩ GLm(Fq) is nothing but the group Fq[U]× of invertible elements
of the ring Fq[U]. Hence, the polynomials f ∈ Fq[t]/(χ) such that f(U) is not
invertible are those that are divisible by an irreducible factor of χ. Their number
is maximal when U is diagonalizable over Fq, in which case there are less than
mqm−1 such polynomials. Hence, Fq[U] ∩GLm(Fq) has at least q

m −mqm−1 =
qm(1−m/q) elements; since it always has less than qm elements, its cardinality
is equivalent to qm, and that of GLm(Fq)/(Fq[U] ∩ GLm(Fq)) is equivalent to

qm
2−m. ⊓⊔

16

Consider the set of matrices U ∈ GLm(Fq) such that Tr(U) = Tr(U2) = 0,
up to scalar multiplication. The characteristic polynomial χU ∈ Fq[t] of such a
matrix U is of the form tm + am−3t

m−3 + · · ·+ a1t+ a0, with a0 ̸= 0 since U is
invertible. For any λ ∈ F×

q , the characteristic polynomial of λU is

χλU = tm + λ3am−3 + · · ·+ λm−1a1 + λma0.

Hence, there is a map

f3 : {U ∈ GLm(Fq) | Tr(U) = Tr(U2) = 0}/F×
q −→ Fm−2

q /F×
q

U 7−→ (am−3, . . . , a0) (⋆ ⋆ ⋆)

where F×
q acts on Fm−2

q via λ ⋄ (am−3, . . . , a0) = (λ3am−3, . . . , λ
ma0). Its image

is (Fm−2
q − (Fm−3

q × {0}))/F×
q . Lemma 8 asserts that any element of the form

(am−3, . . . , u0) corresponding to a separable polynomial has ∼ qm2−m preimages
under f3.

Denote by
Sepq,m ⊂ (Fm−2

q − (Fm−3
q × {0}))/F×

q

the set of classes of separable characteristic polynomials with nonzero constant
coefficient.

Remark 8. We give more details about this construction in Appendix A. In
particular, we show in Lemma 15 that the set Sepq,m has ∼ qm−3 elements.
In Algorithm 1, we use a unique representative of each class of characteristic
polynomials. The way of computing such a normalized representative is also
explained in Appendix A and presented in Algorithm 7.

Proposition 2. Suppose q is not a power of 2. Denote by

fq = f3 ◦ f2 ◦ f1 : X → Fm−2
q /F×

q

the map which sends (C, A) to the equivalence class of the tuple of coefficients of
the characteristic polynomial of a generator of the hull of CA. The maps f1, f2, f3
are defined in (⋆), (⋆⋆), (⋆ ⋆ ⋆). The map

fq |f−1
q (Sepq,m) : f

−1
q (Sepq,m)→ Sepq,m

is asymptotically equidistributed, i.e.

min
χ∈Sepq,m

|f−1
q (χ)| ∼

q→∞
max

χ∈Sepq,m

|f−1
q (χ)|.

Proof. It is a direct consequence of Lemmas 5, 7 and 8. ⊓⊔

Remark 9. The elements produced by Algorithm 2 are characteristic polynomi-
als obtained by picking uniformly random elements of f−1

q (Sepq,m) and com-
puting a normalized representative of their image under the map f . Hence,
Proposition 2 shows that given uniformly random inputs C ∈ Grk(Fm×n

q), the
distribution of normalized characteristic polynomials χ ∈ Sepq,m produced by
Algorithm 2 is asymptotically uniform.

17

Remark 10. The result above shows that the distribution of the computed char-
acteristic polynomials is asymptotically uniform for random C and A. But in
practice, a fixed code C is given to us. In that case, we have not said anything
about the distribution of the codes CA⊤ yet. In the special case m = n, the map

ψC : C⊥ ∩GLm(Fq)→ Grk(Fm×m
q)

sending A to CA⊤ is equidistributed. Indeed, given two codes D1 = CA⊤
1 ∈

Grk(Fm×m
q) and D2 = CA⊤

2 , the map

ψ−1
C (D1) −→ ψ−1

C (D2)

B1 7−→ A2A
−1
1 B1

is a bijection.

3.3 Complexity analysis

In this section, the symbol ∼ always denotes asymptotic equivalence, and the
notation o(·) denotes asymptotic domination, with respect to the parameter q.
We make the following assumption, justified by Remarks 9 and 10.

Assumption 1. Given a code C, distinct full-rank matrices A yield distinct
codes CA = CA⊤ and the characteristic polynomials χ are uniformly distributed
among the codes CA with one-dimensional hull. For this, we require k ⩽ m2− 2:
otherwise, the codes CA⊤ would be the full ker(Tr) as soon as A has full rank,
and could not have a one-dimensional hull.

We are going to answer the following questions:

1. How many matrices A do we need to sample to find enough characteristic
polynomials?

2. How many operations are needed to compute the dictionary?
3. What is the total complexity of running Algorithms 2 and 3 with the pa-

rameters answering the previous questions?

How many matrices A do we need to sample in order to find enough
characteristic polynomials? For any A ∈ C⊥ and any λ ∈ F×

q , CA = CλA.
Hence, the total number of codes CA, A ∈ C⊥ is less than

1

q − 1
(#C⊥ − 1) =

qk
⊥ − 1

q − 1
∼ qk

⊥−1

where k⊥ = dim(C⊥) = mn − k. The number of CA with one-dimensional hull

is therefore equivalent to qk
⊥−2 by Proposition 1. The total number of possible

classes of separable characteristic polynomials is ∼ qm−3 (see Lemma 15).

18

Thus, the dictionary constructed in Algorithm 2 will have size L ⩽ qm−3.
Then, according to the usual list collision arguments, the number L′ of one-
dimensional hulls to check in Algorithm 3 should satisfy

LL′ ∼ qk
⊥−2.

We have to treat two cases separately:

(i) k⊥ − 2 ⩽ 2(m− 3), where the dictionary constructed by Algorithm 2 will
not need to cover all the possible characteristic polynomials and we take

L ∼ q k⊥
2 −1 and L′ ∼ q k⊥

2 −1;

(ii) k⊥ − 2 > 2(m − 3), where there are not enough different characteristic
polynomials to have L ∼ L′, and we take

L ∼ qm−3 and L′ ∼ qk
⊥−m+1.

Lemma 9. Let r be an integer. The average number of matrices to sample in
Algorithm 2 in order to get r distinct characteristic polynomials is ∼ qr if r =
o(qm−3) and ∼ qr log(r) if r ∼ qm−3.

Proof. The latter case is a classical result usually called coupon collector’s prob-
lem, while for the former we prove a variant. Denote by

Nχ ∼ qm−3

the total number of possible characteristic polynomials with the shape Xm +

am−3X
m−3 + · · · + a0, by M ⩽ (qk

⊥ − 1)/(q − 1) the number of elements in
(C⊥ − {0})/F×

q with full rank and by Sr the number of matrices A we have to
sample in order to get r different characteristic polynomials of matrices spanning
one-dimensional hulls of codes CA. Denote by sj the number of matrices to sample
after having a list of j − 1 distinct polynomials in order to get the j-th one. We
seek to compute the expected value

E(Sr) = E(s1) + · · ·+ E(sr).

The random variable sj follows a geometric distribution: it is the first success of
a Bernoulli variable. The parameter pj of this variable is computed as follows:
it is the proportion, among all the elements of (C⊥ − {0})/F×

q , of those (equiv-
alence classes of) matrices A yielding a code CA with one-dimensional hull and
characteristic polynomial that is not among the j polynomials already in the
list. From Proposition 1, the number of full–rank matrices A that yield a code
CA with one-dimensional hull is

M

(
1

q
+O

(
m2

q(m2+1)/2

))
.

19

Under Assumption 1, the number of matrices that yield a code CA with a one-
dimensional hull and one of the j characteristic polynomials already in the list
is

j ·
M
(

1
q +O

(
m2

q(m2+1)/2

))
Nχ

·

Hence

pj =
1

M

[
M

q
+O

(
m2M

q(m2+1)/2

)
− j M

qNχ
+

j

Nχ
O
(

m2M

q(m2+1)/2

)]
=

1

q

(
1− j

Nχ

)
+O

(
m2

q(m2+1)/2

)
∼ 1

q

(
1− j

Nχ

)
(since 1

qNχ
∼ 1

qm−2)

∼ Nχ − j
qNχ

.

The expected value of the geometric random variable sj with parameter pj is
1/pj . Hence, using the fact that r = o(Nχ),

E(Sr) ∼ qNχ

(
1

Nχ
+ · · ·+ 1

Nχ − r + 1

)
∼ qNχ log

(
Nχ

Nχ − r

)
∼ −qNχ log (1− r/Nχ) ∼ qr.

⊓⊔

Complexity of computing the dictionary

Lemma 10. The average complexity of Algorithm 2 with input a k-dimensional
code C ⊂ Fm×n

q and a desired list length L is

O(qLk(nmω−1 + km2)) if L = o(qm−3)

O(qm−2km(nmω−1 + km2)) if L ∼ qm−3.

Proof. In order to get L distinct characteristic polynomials, Lemma 9 tells us
that we need to sample ∼ qL matrices A if L = o(qm−3) and ∼ qL logL if
L ∼ qm−3. In this last case, this requires to sample ∼ mqm−2 matrices. For each
of these, we first need to compute a basis (C1, . . . , Ck) of CA⊤, which is given
by k products of a matrix of size m× n by a matrix of size n×m; this requires
O(knmω−1) operations in Fq. Then, we need to compute CA∩C⊥A , which is given
by the kernel of the (symmetric) Gram matrix (Tr(CiCj))1⩽i,j⩽k. Computing the
diagonal entries of a given product CiCj requires O(m2) operations in Fq. Hence,
the Gram matrix is computed in O(k2m2) operations in Fq. Computing its kernel

20

takes O(kω) operations in Fq. When the hull has dimension 1, we then only need
to compute the characteristic polynomial of the generator we have found, which is
done inO(mω) operations [21, Thm. 1.1], and to normalize it. This normalization
can be precomputed for a proportion (1− 2/q) of all cases (see Remark 13). So
sampling one matrix takes O(knmω−1 + k2m2 + kω + mω) operations, which,
since k ⩽ m2 and m ⩽ n gives O(k(nmω−1 + km2)). Multiplying this by the
number of sampled matrices (mentioned in the beginning of the present proof)
yields the result. ⊓⊔

Total complexity of this reduction step Recall that we allowed ourselves
to replace C with C⊥ if needed, in order to ensure that k⊥ ⩽ k and that we need
k < m2 − 1 for the algorithm to work (see Remark 6).

Theorem 1. Suppose that m ⩽ n and k⊥ ⩽ k < m2− 1 and that Assumption 1
holds. Under Assumption 2, Algorithm 3 takes an expected complexity of

O
(
km(nmω−1 + km2)qmax(k⊥

2 ,k⊥−m+2) +m2ωqk
⊥−m+1

)
operations in Fq, and a space complexity of

O
(
(k⊥ +m+ 1)qmin(k⊥

2 −1,m−3)
)

elements of Fq.

Remark 11. One can get rid of Assumption 2 by replacing the techniques of
Subsection 4.1 by those of Subsection 4.2 at the cost of another sub-exponential
term in the time complexity (Lemma 13). Namely, this would give an overall
complexity of

O
(
km(nmω−1 + km2)qmax(k⊥

2 ,k⊥−m+2) + qk
⊥−m+1kω−1m2q3

√
m/

√
logm log q

)
operations in Fq.

Proof. We consider separately Cases (i) and (ii) introduced in Page 19. The time
complexity of Algorithm 2, given by Lemma 10, is

O
(
k(nmω−1 + km2)qmax(k⊥

2 ,k⊥−m+2)
)
.

The cost of Algorithm 3 depends on the number of “false positives” encountered,
i.e. situations where we find for h(DB) a characteristic polynomial which is an
entry of the dictionary but running an Algorithm of Section 4 shows that DB

is not a conjugate of the code CA corresponding to that entry. For each key

of the dictionary, there are ∼ qk
⊥−2/qm−3 = qk

⊥−m+1 one-dimensional hulls
corresponding to this key, roughly all of which are false positives.

In Case (i), Algorithm 3 costs

O
(
km(nmω−1 + km2)q

k⊥
2 +m2ωqk

⊥−m+1
)
.

21

In Case (ii), recall that the algorithms of Section 4, whose complexities are

given in Lemma 11, have to be called on average qk
⊥−m+1 times. Here, the

complexity of calling the algorithms of Section 4 outweighs that of computing
the dictionary, and the time complexity of Algorithm 3 is

O(m2ωqk
⊥−m+1).

The space complexity is simple to compute: it is dominated by the number L

of entries in the dictionary. There are O(qmin(k⊥
2 −1,m−3)) such entries, which

consist of a matrix A ∈ C⊥ and a characteristic polynomial. To reduce space
complexity, one may store in each of these entries only the coordinates of the
matrix A in a basis of C⊥ as well as the characteristic polynomial of the generator
of h(CA), which amounts to k⊥ +m+ 1 field elements per entry. ⊓⊔

4 Finding the right matrix

In order to shorten the notations, we now denote by C,D the codes CA,DB .
We are in the following situation: we are given two codes C,D ⊂ Fm×m

q with
one-dimensional hulls generated respectively by matrices U, V and a matrix R ∈
GLm(Fq) such that V = RUR−1. Our aim is to decide whether CA and DB are
conjugate by some matrix P ∈ GLm(Fq), and if they are, find such a matrix.

In this section, we propose two approaches. The first one is based on multi-
variate polynomial system solving and has a polynomial time complexity con-
ditioned by some assumption. The second one is based on diagonalization argu-
ments, has a sub-exponential time complexity but does not rest on any assump-
tion.

4.1 First approach: using polynomial system solving

The one-dimensional hulls of the codes C and D are respectively generated by
conjugate matrices U, V ∈ GLm(Fq) having a squarefree characteristic poly-
nomial. We can compute a matrix R ∈ GLm(Fq) such that V = RUR−1,
hence h(D) = Rh(C)R−1. We are looking for a matrix P ∈ GLm(Fq) such that
D = PCP−1. We know that the matrix P ∈ Fm×m

q we are looking for satisfies
V = PUP−1. Therefore, there exists a matrix T ∈ Fm×m

q which commutes with
U such that P = RT . Since the characteristic polynomial of U is separable, we
can write T = f(U), where f = α0 + α1t + · · · + αm−1t

m−1 ∈ Fq[t] (see [16,
Cor. IV.E.8]). We know R and search for a polynomial f such that

D = Rf(U)Cf(U)−1R−1. (◦)

A usual argument (for instance by Cayley-Hamilton Theorem) shows that there
exists a polynomial g of degree < m such that f(U)−1 = g(U). Then, we can
solve the following system whose unknowns are the coefficients of f, g:

Rf(U)Cg(U)R−1 ⊂ D. (2)

22

The above system is bilinear in the m coefficients of f and the m coefficients
of g. Thus, when linearizing, this yields m2 unknowns while C,D ∈ Fm×m

q both
have dimension k (recall that for short we denote CA,DB by C,D), hence the
system has k(m2 − k) equations which exceeds m2 as soon as 1 < k < m2 − 1.
Thus, the linearized system is over-constrained, which encourages to make the
following assumption.

Assumption 2. The linearized version of System (2) has a space of solutions
of dimension 1 when C,D are conjugate and no nonzero solution otherwise.

Lemma 11. Under Assumption 2, the calculation of the polynomial f and hence
of the matrix P requires O(m2ω) operations in F.

4.2 Second approach: using diagonalization

Our strategy may be broken down into the following two steps:

1. Since their characteristic polynomial is separable, U and V are diagonalizable
over an extension of Fq: we may reduce to the case where they are diagonal.

2. We find the matrix P , which is R multiplied by some element of Fq[U], by
considering its action on some subspaces of C.

Reducing to diagonal matrices Under the assumption that U, V have a
squarefree characteristic polynomial, there is a diagonal matrix ∆ and a matrix
S ∈ GLm(Fq′) both defined over an extension Fq′ of Fq such that V = S∆S−1.
Such matrices S,∆ are easily computable. Therefore,

U = R−1V R = R−1S∆S−1R

and (◦) is equivalent to

D = Sf(∆)S−1RCR−1Sf(∆)−1S−1

i.e.,

S−1DS = f(∆) · S−1RCR−1S · f(∆)−1.

We may compute bases of D′ = S−1DS and C′ = S−1RCR−1S. The problem at
hand is now to compute f ∈ Fq[t] of degree at most m−1 such that, given codes
C′,D′ ⊂ Fm×m

q of dimension k and a diagonal matrix ∆,

D′ = f(∆)C′f(∆)−1.

The reduction is summed up in the algorithm below.

23

Algorithm 4: Reducing to diagonal matrices

Data: Codes C,D ⊂ Fm×m
q

Matrices U, V ∈ Fm×m
q with separable characteristic polynomial s.t.

h(C) = Fq · U and h(D) = Fq · V
Matrix R ∈ GLm(Fq) such that V = RUR−1

Result: Tuple (C′,D′, ∆, S) where:
S ∈ GLm(Fq′) for some extension Fq′/Fq,
∆ ∈ GLm(Fq′) diagonal, V = S∆S−1, C′ = S−1RCR−1S and
D′ = S−1DS.

Compute field extension Fq′ of Fq over which U is diagonalizable
Compute S ∈ GLm(Fq′) and diagonal ∆ ∈ Fm×m

q′ s.t. V = S∆S−1

Compute bases of C′ = S−1RCR−1S and D′ = S−1DS
return (C′,D′, ∆, S)

Conjugating by the right matrix Replacing q, C,D with q′, C′,D′, we are now
left with the following problem. We are given codes C,D ⊂ Fm×m

q of dimension
k and a diagonal matrix ∆, and need to find a polynomial f ∈ Fq[t] such that
deg(f) < m and D = f(∆)Cf(∆)−1. Note that if a polynomial f verifies this,
any scalar multiple of f does, so we may assume that f is monic. We may write

∆ =


δ1
δ2

. . .

δm


and since ∆ is diagonal,

f(∆) =


f(δ1)

f(δ2)
. . .

f(δm)

 .

Our strategy is the following:

– Find the entries of f(∆).
– Knowing ∆, retrieve f using Lagrange interpolation.

We may easily find a set Λ of k − 1 non-diagonal indexes (i, j) ∈ {1 . . .m}2
such that the respective intersections C(Λ),D(Λ) of C,D with the subspace EΛ

of Fm×m
q defined by the equations {xi,j = 0}(i,j)∈Λ are one-dimensional.

Lemma 12. The subspaces C(Λ),D(Λ) satisfy

f(∆)C(Λ)f(∆)−1 = D(Λ).

24

Proof. Since ∆ is diagonal, so is f(∆), and conjugating a matrix by f(∆) does
not change those of its entries which are equal to zero. Hence,

f(∆)EΛf(∆)−1 = EΛ.

The result now follows from the equalities below.

f(∆)C(Λ)f(∆)−1 = f(∆)(C ∩ EΛ)f(∆)−1

= (f(∆)Cf(∆)−1) ∩ (f(∆)EΛf(∆)−1)

= (f(∆)Cf(∆)−1) ∩ EΛ

= D(Λ).

⊓⊔

We now pick a matrix C = (cij)i,j ∈ C(Λ), and a matrix D = (dij)i,j ∈ D(Λ).
After multiplying by an element of Fq, we may suppose that they have the same
characteristic polynomial, and solve Df(∆) = f(∆)C. This means solving the
system of m(m− 1)/2− (k − 1) equations

dijf(λj) = f(λi)cij (1 ⩽ i < j ⩽ m, (i, j) ̸∈ S)

which yields the m values f(δ1), . . . , f(δm) up to a scalar multiple. We then find
a polynomial f corresponding to these values using Lagrange interpolation.

Remark 12. Note that in some rare cases, in particular if k is very small, the
matrix C could have too many zeros for the system to determine f uniquely. In
that case, picking another set S of coordinates does the trick.

Algorithm 5: Find the right polynomial

Data: Codes C,D ⊂ Fm×m
q

Diagonal ∆ = Diag(δ1, . . . , δn) ∈ Fm×m
q s.t. δ ∈ C and ∆ ∈ D

Result: Polynomial f ∈ Fq[t] such that D = f(∆)Cf(∆)−1 (if exists)

while true do
Pick set Λ of k − 1 random non diagonal indexes (i, j) ∈ {1, . . . ,m}2
Compute C(Λ) = C ∩ {xij = 0}(i,j)∈Λ, D(Λ) = D ∩ {xij = 0}(i,j)∈Λ

if dim C(Λ) = dimD(Λ) = 1 then
Pick C ∈ C(Λ), D ∈ D(Λ) with the same characteristic
polynomial (if exist)
Solve system dijuj = uicij for (i, j) ∈ {1 . . .m}2
if The system has no solution then

return ⊥
Compute polynomial f such that f(δi) = ui
return f

25

Algorithm 6: Find the right P

Data: Codes C,D ⊂ Fm×m
q

Matrices U, V ∈ Fm×m
q with separable characteristic polynomial s.t.

h(C) = Fq · U and h(D) = Fq · V
Matrix R ∈ GLm(Fq) such that V = RUR−1

Result: A matrix P (if exists), such that D = PCP−1

Compute (C′,D′, ∆, S) using Algorithm 4 with inputs (C,D, U, V,R)
Compute f using Algorithm 5 with inputs (C′,D′, ∆)
if f = ⊥ then

return ⊥
return Sf(∆)S−1R

Complexity analysis

Lemma 13. Given conjugate codes C,D ⊂ Fm×m
q with one-dimensional hulls

and generators of these hulls with separable characteristic polynomials, the av-
erage complexity of finding P ∈ Fm×m

q such that D = PCP−1 using Algorithm 6
is

Õ(kω−1m2q3
√
m/(

√
logm log q)).

Proof. The smallest field extension Fq′ over which the matrix U is diagonalizable
is the splitting field of its characteristic polynomial, which has degree m. The
average degree d of the splitting field of a monic polynomial of degree m over Fq

verifies [12, Thm. 2]

d = exp
(
C
√
m/ log(m) +O

(√
m log(logm)/ log(m)

))
where C < 3. This shows that d = O(q3

√
m/(

√
logm log q)). We can do all the

computations over Fqd , which means the number of Fq-operations will be that of

Fqd -operations multiplied by Õ(d) (using FFT-based algorithm for polynomial
arithmetic, see for instance [13, Thm. 8.23]). Diagonalizing U and V is done in
time O(mω). Computing the subspaces C ∩EΛ, D∩EΛ is just linear algebra and
requires O(kω−1m2) operations in Fqd . Solving the system of equations takes

O(m) multiplications in Fqd . In total, the complexity is Õ(dkω−1m2). ⊓⊔

5 Recovering Q once we know P

Note first that, given a code CA, the probability that a random code D is a
conjugate of CA is less than

|GLm(Fq)|/|Grk(Fm×m
q)| ∼ qm

2−k(m2−k).

This is less than q−m2

for any m ⩾ 3 and 2 ⩽ k ⩽ m2 − 2. Thus, it is highly
unlikely that we find matrices A,B, P such that DB = PCAP−1 without there

26

existing a matrix Q such that D = PCQ−1, and on average, the first (A,B, P)
found will be correct.

The problem we are now trying to solve is the following: given two k-dimen-
sional codes C,D ⊂ Fm×n

q , find a matrix Q ∈ GLm(Fq) such that D = CQ. Let
(C1, . . . , Ck) be a basis of C. Given any invertible matrix Q ∈ Fn×n

q such that
C1Q, . . . , CkQ ∈ D, we have CQ = D. Define the linear map

ψC : Fn×n
q −→ (Fm×n

q)k

Q 7−→ (C1Q, . . . , CkQ).

The suitable matrices Q are exactly the elements of ψ−1
C (Dk) ∩ GLn(Fq). Con-

cretely, computing the space ψ−1
C (Dk) requires O(n2 · (mnk)ω−1) operations in

Fq. Then, an invertible matrix Q is generally found quite easily by picking a
random element in this space. Note that it may happen that invertible elements
are rare in such a space. However, we claim that this situation is rather unlikely
to happen. Moreover, even in the worst cases, the problem of finding such a Q
can be done in polynomial time as explained in [7, Thm. 3.7] and [11].

References

1. Baldi, M., Barenghi, A., Beckwith, L., Biasse, J.F., Esser, A., Gaj, K., Mohajerani,
K., Pelosi, G., Persichetti, E., O. Saarinen, M.J., Santini, P., Wallace, R.: LESS
(Linear Equivalence Signature Scheme). NIST, Post–Quantum Cryptography : Ad-
ditional Digital Signature Schemes (2023), https://www.less-project.com/

2. Beullens, W.: Not enough LESS: An improved algorithm for solving code equiva-
lence problems over Fq. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.)
Selected Areas in Cryptography. pp. 387–403. Springer International Publishing,
Cham (2021)

3. Beullens, W.: Graph-theoretic algorithms for the alternating trilinear form equiva-
lence problem. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology
– CRYPTO 2023. pp. 101–126. Springer Nature Switzerland, Cham (2023)

4. Bläser, M., Duong, D.H., Narayanan, A.K., Plantard, T., Qiao, Y., Sipasseuth,
A., Tang, G.: ALTEQ. NIST, Post–Quantum Cryptography : Additional Digi-
tal Signature Schemes (2023), https://csrc.nist.gov/csrc/media/Projects/pqc-dig-
sig/documents/round-1/spec-files/ALTEQ-Spec-web.pdf

5. Bos, J.W., Bronchain, O., Ducas, L., Fehr, S., Huang, Y.H., Pornin, T., Postleth-
waite, E.W., Prest, T., Pulles, L.N., van Woerden, W.: Hawk: a signature scheme
inspired by the lattice isomorphism problem. NIST, Post–Quantum Cryptography :
Additional Digital Signature Schemes (2023), https://hawk-sign.info/

6. Bouillaguet, C., Fouque, P.A., Véber, A.: Graph-theoretic algorithms for the “Iso-
morphism of Polynomials” problem. In: Johansson, T., Nguyen, P.Q. (eds.) Ad-
vances in Cryptology – EUROCRYPT 2013. pp. 211–227. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2013)

7. Brooksbank, P.A., Wilson, J.B., O’Brien, E.A.: Testing isomorphism of graded
algebras. Trans. Amer. Math. Soc. 372(11), 8067–8090 (2019)

8. Caldero, P., Germoni, J.: Nouvelles histoires hédonistes de groupes et
de géométries. Mathématiques en devenir, Calvage et Mounet (Feb 2018),
https://hal.science/hal-02161089

27

9. Chou, T., Niederhagen, R., Persichetti, E., Ran, L., Randrianarisoa, T.H., Reijn-
ders, K., Samardjiska, S., Trimoska, M.: MEDS (Matrix Equivalence Digital Signa-
ture Scheme). NIST, Post–Quantum Cryptography : Additional Digital Signature
Schemes (2023), https://www.meds-pqc.org/

10. Chou, T., Niederhagen, R., Persichetti, E., Randrianarisoa, T.H., Reijnders, K.,
Samardjiska, S., Trimoska, M.: Take your MEDS: Digital signatures from matrix
code equivalence. In: El Mrabet, N., De Feo, L., Duquesne, S. (eds.) Progress
in Cryptology - AFRICACRYPT 2023. pp. 28–52. Springer Nature Switzerland,
Cham (2023)

11. Couvreur, A., Debris-Alazard, T., Gaborit, P.: On the hardness of code equivalence
problems in rank metric (Nov 2020), https://hal.archives-ouvertes.fr/hal-02997801,
preprint

12. Dixon, J.D., Panario, D.: The degree of the splitting field of a random polynomial
over a finite field. The Electronic Journal of Combinatorics pp. R70–R70 (2004)

13. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, 3rd edn. (2013)

14. Grochow, J., Qiao, Y.: On the complexity of isomorphism problems for tensors,
groups, and polynomials I: tensor isomorphism-completeness. SIAM J. Comput.
52(2), 568–617 (2023)

15. Grove, L.C.: Classical groups and geometric algebra, vol. 39. American Mathemat-
ical Soc. (2002)

16. Kerr, M.: Algebra I Lecture Notes, https://www.math.wustl.edu/ matk-
err/5031/index.html

17. Leon, J.: Computing automorphism groups of error-correcting codes. IEEE Trans.
Inform. Theory 28(3), 496–511 (1982)

18. López, A., Maisner, D., Nart, E., Xarles, X.: Orbits of Galois In-
variant n-Sets of P1 under the Action of PGL2. Finite Fields Appl.
8(2), 193–206 (2002). https://doi.org/https://doi.org/10.1006/ffta.2001.0335,
https://www.sciencedirect.com/science/article/pii/S1071579701903351

19. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for effi-
cient signature-verification and message-encryption. In: Advances in Cryptol-
ogy—EUROCRYPT’88: Workshop on the Theory and Application of Crypto-
graphic Techniques Davos, Switzerland, May 25–27, 1988 Proceedings 7. pp. 419–
453. Springer (1988)

20. Narayanan, A.K., Qiao, Y., Tang, G.: Algorithms for matrix code and alternating
trilinear form equivalences via new isomorphism invariants. In: Joye, M., Leander,
G. (eds.) Advances in Cryptology – EUROCRYPT 2024. pp. 160–187. Springer
Nature Switzerland, Cham (2024)

21. Neiger, V., Pernet, C.: Deterministic computation of the characteris-
tic polynomial in the time of matrix multiplication. J. Complexity 67,
101572 (2021). https://doi.org/https://doi.org/10.1016/j.jco.2021.101572,
https://www.sciencedirect.com/science/article/pii/S0885064X21000273

22. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials
(IP): two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) Ad-
vances in Cryptology - EUROCRYPT ’96, International Conference on the The-
ory and Application of Cryptographic Techniques, Saragossa, Spain, May 12-16,
1996, Proceeding. Lecture Notes Comput. Sci., vol. 1070, pp. 33–48. Springer
(1996). https://doi.org/10.1007/3-540-68339-9“˙4, https://doi.org/10.1007/3-540-
68339-9 4

28

23. Perret, M.: On the number of points of some varieties over finite fields. Bull. Lond.
Math. Soc. 35(3), 309–320 (05 2003). https://doi.org/10.1112/S0024609302001820,
https://doi.org/10.1112/S0024609302001820

24. Ran, L., Samardjiska, S.: Rare structures in tensor graphs. In: Chung, K.M., Sasaki,
Y. (eds.) Advances in Cryptology – ASIACRYPT 2024. pp. 66–96. Springer Nature
Singapore, Singapore (2025)

25. Ran, L., Samardjiska, S., Trimoska, M.: Algebraic algorithm for the alternating
trilinear form equivalence problem. In: Esser, A., Santini, P. (eds.) Code-Based
Cryptography. pp. 84–103. Springer Nature Switzerland, Cham (2023)

26. Sendrier, N.: On the dimension of the hull. SIAM J. Discrete Math.
10(2), 282–293 (1997). https://doi.org/10.1137/S0895480195294027,
https://doi.org/10.1137/S0895480195294027

27. Sendrier, N.: Finding the permutation between equivalent linear codes: The support
splitting algorithm. IEEE, Trans. Inform. Theory 46(4), 1193–1203 (2000)

28. Sendrier, N., Simos, D.E.: The hardness of code equivalence over and its application
to code-based cryptography. In: Post-Quantum Cryptography 2013. Lecture Notes
Comput. Sci., vol. 7932, pp. 203–216. Springer (2013)

29. Serre, J.P.: Lettre à M. Tsfasman. Astérisque 198, 199–200 (1989)

30. Tang, G., Duong, D.H., Joux, A., Plantard, T., Qiao, Y., Susilo, W.: Practical
post-quantum signature schemes from isomorphism problems of trilinear forms. In:
Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT
2022. pp. 582–612. Springer International Publishing, Cham (2022)

A Normalizing matrices and characteristic polynomials

We consider the map introduced in Section 3.2

{U ∈ Fm×m
q | Tr(U) = Tr(U2) = 0}/F×

q −→ (Fm−2
q − (Fm−3

q × {0}))/F×
q

U 7−→ (am−3, . . . , a0)

where the characteristic polynomial of U is tm + am−3t
m−3 + · · ·+ a1t+ a0 and

F×
q acts on Fm−2

q via λ ⋄ (am−3, . . . , a0) = (λ3am−3, . . . , λ
ma0).

Lemma 14. The set (Fm−2
q − (Fm−3

q × {0}))/F×
q has

q + q2 + · · ·+ qm−3 ∼ qm−3

elements.

Proof. The set (Fm−2
q /F×

q) − {(0, . . . , 0)} is a subset of the set of Fq-rational

points of the weighted projective space Pm−3
3,...,m of dimension m− 3 and weights

3, . . . ,m over Fq [23, Lem. 6]. By [23, Lem. 7], this has (qm−2 − q)/(q − 1)
elements. ⊓⊔

Lemma 15. The subset Sepq,m ⊂ (Fm−2
q − (Fm−3

q × {0}))/F×
q of classes of

separable polynomials has ∼ qm−3 elements.

29

Proof. The monic inseparable polynomials of degree m over Fq are the points
of an open subset of a hypersurface of degree 2m− 2 in Pm [18, §1]. The set of
inseparable polynomials whose coefficients of degree m − 1,m− 2 vanish is the
intersection of this with two hyperplanes that do not contain it. Hence, it is an
open subset of a hypersurface of degree ⩽ 2m− 2 in Pm−2, and has

O
(
(2m− 2)qm−3

)
elements by the Serre bound [29, Théorème]. Since every element of Pm−3

3,...,m(Fq)

has exactly q − 1 preimages in Fm−2
q [23, Lem. 7], this means that there are

O(mqm−4) classes of inseparable polynomials in Pm−3
3,...,m(Fq). Hence, by Lemma 14,

Sepq,m has qm−3 −O(mqm−4) ∼ qm−3 elements. ⊓⊔

Here is how to choose and compute a normalized representative of any ele-
ment χ = (am−3, . . . , a0) ∈ Fm−2

q modulo F×
q . First, the normalized representa-

tive of 0 is itself. Now, consider χ ∈ Fm−2
q −{0}. Denote by i0 < i1 < · · · < iℓ the

indices such that am−ij ̸= 0. Choose a generator g of F×
q , and write am−ij = gsj .

– If i0 is prime to q− 1, there is a unique λ ∈ F×
q such that λi0am−i0 = 1; this

λ is g−s0·i0−1 mod q. In that case, we choose χ′ = λ ⋄ χ to be the normalized
representative of χ.

– If d0
def
= gcd(i0, q − 1) > 1, there are d0 elements λ satisfying this property.

Let us describe how to find the right one.

1. Here is how to compute one such λ. Write i0 = d0i
′
0, and denote by j′0

the inverse of i′0 modulo q − 1. The set F×
q /(F×

q)
i0 has d0 elements: the

equivalence classes of 1, g, . . . , gd0−1. Compute the Euclidean division

s0 = s′0 · d0 + r0 of s0 by d0. Then the element λ0
def
= g−s′0j

′
0 satisfies

λi00 am−i0 = gr0 . Any product of λ0 by a d0-th root of unity in Fq still
satisfies this relation.

2. Now let am−i1 be the next nonzero coefficient of χ. We want to normalize
am−i1λ

i1
0 = gs1 by multiplying it by a d0-th root of unity. Set d1 =

gcd(d0, i1). For any integer δ, denote by µδ(Fq) the group of δ-th roots
of unity in Fq. The set

F×
q /µd0

(Fq)
i1 = F×

q /µd0/d1
(Fq)

has (q−1)d1/d0 elements. Write i1 = d1i
′
1 and denote by j′1 the inverse of

i′1 modulo d0. Compute the Euclidean division s1 = s′1 ·d1(q−1)/d0+r1.

The element α1 = g−s′1j
′
1(q−1)/d0 satisfies αi1

1 g
s1 = gr1 . Set λ1

def
= λ0α1.

We have λi01 am−i0 = gr0 and λi11 am−i1 = gr1 .
3. If d1 ̸= 1, continue with d2 = gcd(d1, i2). Stop after the k-th step if k = ℓ

or dk = 1. Return χ′ = λk ⋄ χ. The algorithm is summed up below.

The element χ′ ∈ Fm−2
q returned by this algorithm is equivalent to χ. More

generally, given equivalent inputs in Fm−2
q , it returns the same output.

30

Algorithm 7: Normalize

Data: Matrix U ∈ Fm×m
q , tuple χ = (am−3, . . . , a0) ∈ Fm−2

q − {0}
Generator g of F×

q

Result: Matrix U ′ ∈ Fm×m
q , tuple χ′ ∈ Fm−2

q − {0}

Set d = q − 1, i = 2 and λ = 1
while d ̸= 1 and (am−i−1, . . . , a1) ̸= (0, . . . , 0) do

Set i = min{j ∈ {i+ 1 . . .m} | am−j ̸= 0}
Parse λiam−i = gs

Set d′ = gcd(d, i) and i′ = i/d′

Compute inverse j′ ∈ Z of i′ modulo d
Compute Euclidean division s = s′ · (q − 1)d′/d+ r
Set λ← λg−s′j′(q−1)/d

Set d← d′, i← i+ 1
return λU , (λ3am3 , . . . , λ

ma0)

Remark 13. The complexity of Algorithm 7 isO(m log(q)2). To reduce its impact
on the complexity of our attack, one can precompute the normalization of the
most frequent characteristic polynomials. For instance, on may compute in ad-
vance the suitable λ for vectors (am−3, . . . , a0) such that am−3, am−4 ̸= 0. Since
3 and 4 are coprime, a unique λ is found knowing only am−3, am−4: construct-
ing a dictionary {(am−3, am−4) : λ} allows to precompute the normalization for
(q − 1)2qm−4 ∼ qm−2 elements of Fm−2

q , that is, almost all of them.

B Proportion of codes with one-dimensional hull

This section explains how the following proposition can be deduced from a similar
statement found in the literature.

Proposition 1. The proportion of m×m matrix codes contained in ker(Tr) and
whose hull has dimension 1 is asymptotically equal to

1

q

(
1 +O

(
m2

q(m2−1)/2

))
.

Sendrier’s work [26] gives detailed results about the number of codes with a
hull of given dimension. His results are proven in the case of codes inside Fn

q with
the usual inner product. In our case however, we consider Fm×m

q endowed with
the bilinear form (X,Y) 7→ Tr(XY). Denoting by σn,i the number of totally
isotropic [n, k]q-codes for a given bilinear form, the number An,k,1-codes whose
intersection with their orthogonal complement has dimension 1 is equal to [26,
Theorem 2]

An,k,1 =

k∑
i=1

[
n− 2i

k − i

][
i

1

]
(−1)i−1q(i−1)(i−2)/2σn,i

31

where
[
n
k

]
is the Gaussian binomial coefficient which denotes the number of k-

dimensional linear subspaces of Fn
q . The proof of this result does not involve the

nature of the considered non-degenerate bilinear form. Sendrier goes on to show
[26, Theorem 3], using asymptotic results based on explicit values of σn,i specific
to a bilinear form of discriminant 1, that for 1 ⩽ k ⩽ n/2,

An,k,1q
k(k+1)/2 =

([
n

k

][
k

1

] k−1∏
i=0

(qi − (i mod 2))

)(
1 +O

(
k

qn/2−1

))
.

There are different formulas of σn,i given in [26, Theorem 1] depending on the
remainders of n, q modulo 2 and 4 and on the size of k. However, they are asymp-
totically equivalent, which yields this uniform result. For a bilinear form of differ-
ent discriminant, these formulas are simply permuted; a general expression may
be found in [8, IV, Proposition 3.5]. This does not change the asymptotic result
above. Moreover, for k ⩾ n/2, the number of [n, k]-codes with one-dimensional
hull is that of [n, n− k]-codes with one-dimensional hull, since the hull of a code
C is exactly that of its dual. In particular, this means that for any k such that
1 ⩽ k ⩽ n− 1,

An,k,1[
n
k

] =
1

q

(
1 +O

(
min(k, n− k)

qn/2−1

))
or equivalently, that the proportion of codes whose hull has dimension 1 is asymp-
totically equivalent to 1/q.

32

