
Exploring General Cyclotomic Rings in Torus-Based Fully

Homomorphic Encryption: Part I - Prime Power Instances∗

P. Chartier†, M. Koskas‡ and M. Lemou§

May 28, 2025

Abstract

In this article, we delve into the domain of fully homomorphic encryption over the
torus, focusing on the algebraic techniques required for managing polynomials within
cyclotomic rings defined by prime power indices. Our study encompasses essential
operations, such as modulo reduction, efficient homomorphic evaluation of trace op-
erators, blind extraction, and the blind rotation pivotal to the bootstrapping process,
all redefined within this mathematical context. Through the extensive application of
duality theory and trace operators in general cyclotomic rings or fields, we systematize
and enhance these operations, introducing a simplified formulation of bootstrapping
alongside an effective packing strategy. This investigation serves as an initial step
toward addressing the broader case of composite cyclotomic indices, which we expect
will open up new avenues for cryptographic applications and functionalities.

Keywords: fully homomorphic encryption, residue number system, trace operator,
extraction, bootstrapping.

Contents

1 Introduction 2

2 Related works 5

3 Algebraic setting 6
3.1 Prime power cyclotomic polynomials . 6
3.2 The cyclotomic field K and the ring of algebraic integers R 7
3.3 The module T of polynomials with coefficients in T and its dual T ∨ 10

4 Plaintext messages in the TFHE framework 11
4.1 The set of torus plaintexts . 11
4.2 The set of polynomial plaintexts . 12

∗This work was partly conducted while the first and last authors were affiliated with Ravel Technologies
and is protected by Ravel Technologies patents.

†INRIA-IRMAR-University of Rennes, Campus de Beaulieu, 35042 Rennes Cedex
‡Ravel Technologies, 75 rue de Richelieu, 75002 Paris
§CNRS-IRMAR-University of Rennes, Campus de Beaulieu, 35042 Rennes Cedex

1

5 LWE and RLWE encryptions cryptographic schemes 12
5.1 Encryption/decryption schemes in T . 12
5.2 Encryption/decryption schemes in T and T ∨ 13
5.3 Encryption/decryption schemes in R and R∨ 16
5.4 Homomorphic addition . 18
5.5 Homomorphic modular product . 19
5.6 Key switching . 20

6 Extraction of a LWE from a RLWE 20
6.1 An extraction procedure using dual bases 20
6.2 Blind extraction using registers . 23

6.2.1 Simple extraction . 24
6.2.2 Representation of a linear form of a vector in TN 25

7 Bootstrapping in the prime power cyclotomic setting 26
7.1 General formulation of the compatibility conditions 27
7.2 Explicit computation of the test polynomial 28
7.3 Homomorphic implementation . 29
7.4 Error estimate of the bootstrap output . 31
7.5 Prime-power bootstrapping versus standard one 33

8 Trace operators and their homomorphic evaluations 35
8.1 The complete trace and its encryption . 35
8.2 Partial traces and fast evaluation of the complete trace 36

8.2.1 Fast evaluation of the trace: a first approach 37
8.2.2 Fast evaluation of the Trace: the algebraic approach 39
8.2.3 General expression of the trace for t ≥ 3. 43

9 Fast packing operations 44
9.1 From a single LWE-ciphertext to an RLWE-ciphertext 45
9.2 Packing a set of LWE-ciphertexts into one RLWE-ciphertext 46

9.2.1 A first strategy . 47
9.2.2 A second strategy . 47
9.2.3 The optimal strategy . 49

1 Introduction

Non-power of two cyclotomic polynomials, which pertain to cyclotomic rings indexed by
integers M that are not restricted to the form M = 2k, carry significant implications for
fully homomorphic encryption (FHE) systems. Non-power of two cyclotomic polynomials
ΦM are associated with a wider variety of primitive roots of unity. Generally speaking,
this diversity allows for richer algebraic structures and facilitates computations on more
complex data types, thereby enhancing the versatility of Fully Homomorphic Encryption
(FHE) schemes. Specifically, we highlight five key advantages that we believe strongly
justify the significance of our current work. Several of these points have already been
emphasized by Vadim Lyubashevsky, Peikert, and Regev in [30], as well as by Joye and
Walter in [25].

• Increased Input Space: Utilizing cyclotomic rings beyond powers of two can sig-
nificantly expand the plaintext space available for bootstrapping operations. This

2

makes it feasible to encrypt and perform homomorphic computations on a greater
range of data, improving the overall utility of the encryption scheme. In the power-
of-two case, algebraic constraints effectively halves the size of messages that can be
accurately bootstrapped. In general, the proportion of the usable plaintext space is
limited by the ratio N/M , where N is the degree of the cyclotomic polynomial. For
M = tα, we have N = (t− 1)tα−1, which yields N/M = 1− 1

t . This ratio increases
with larger values of t, indicating improved efficiency in the available plaintext space.
Here, we will further demonstrate how to completely eliminate the so-called “nega-
cyclicity” condition involved in bootstrapping by choosing parameter t adequately
and without any additional cost.

• Flexibility in Parameter Choices: Non-power of two cyclotomic polynomials enable
the customization of FHE parameters to better align with specific applications or
security requirements. For instance, achieving a particular security level may ne-
cessitate a ring dimension significantly smaller than the next-largest power of two.
Restricting parameters to powers of two can thus result in key sizes and runtimes that
are at least twice as large as necessary, impacting practicality. This flexibility is es-
sential for developing implementations that meet targeted performance benchmarks
or operational constraints. Powers of two are indeed inherently sparsely distributed,
as illustrated in the table below, where we have enumerated all possible values of
M = tα ranging from 500 to 10000, with those corresponding to t = 2 highlighted
in bold.

t α tα

2 9 512
23 2 529
5 4 625
3 6 729
29 2 841
31 2 961
2 10 1024
11 3 1331

t α tα

37 2 1369
41 2 1681
43 2 1849
2 11 2048
3 7 2187
13 3 2197
47 2 2209
7 4 2401

t α tα

53 2 2809
5 5 3125
59 2 3481
61 2 3721
2 12 4096
67 2 4489
17 3 4913
71 2 5041

t α tα

73 2 5329
79 2 6241
3 8 6561
19 3 6859
83 2 6889
89 2 7921
2 13 8192
97 2 9409

In Section 7.5, a plot demonstrates that using non-power-of-two values forN provides
greater flexibility in supporting a fixed number of additions within the cryptosystem.
Of course, allowing for general indices M further broadens the range of options
available.

• Flexibility in Using NTT-like Algorithms: The most computationally intensive step
during bootstrapping is performing a series of multiplications within the cyclotomic
ring Zq[X]/ΦM (X). In most current implementations, both q and N are chosen
as powers of two-commonly q = 232 or q = 264, with 210 ≤ N ≤ 216. Due to the
large polynomial degrees, Fast Fourier Transform (FFT) techniques are employed
to perform these multiplications efficiently. However, FFT methods introduce ap-
proximation errors, which can impact the accuracy of the computations. The ap-
proach proposed here offers greater flexibility in utilizing NTT-like algorithms such as
SchÃ¶nhage-Strassen or Nussbaumer, providing an alternative to FFT-based meth-
ods, especially when FFT is ill-conditioned. Indeed, more options exist for selecting
NTT-friendly parameters, such as choosing q mod M = 1 or just gcd(q,M) = 1.
This enhanced adaptability can lead to more robust and efficient implementations
of FHE.

3

• Beginning the Transition to General Cyclotomic Polynomials: In addition to provid-
ing more options for parameter selection (as illustrated in the second point regarding
M = tα), advancing towards fully general cyclotomic polynomials (which will be ex-
plored in a forthcoming publication) offers several theoretical and computational
benefits. Certain applications require the use of non-power-of-two cyclotomic rings
because power-of-two cyclotomic rings often lack the algebraic properties necessary
for efficient SIMD operations or for managing plaintext spaces isomorphic to finite
fields other than Z2 itself. An important additional motivation is the diversification
of security assumptions (a point highlighted in [30]): while it is conjectured that
ring-LWE remains hard across all high-order cyclotomic rings, some of these rings
may be significantly more vulnerable than others.

• Potential for Optimized Bootstrapping: With access to a wider variety of polynomial
structures, it becomes possible to develop strategies that improve both the efficiency
and effectiveness of noise mitigation techniques. In particular, a novel approach-
bootstrapping the error rather than the message-is presently being studied and will
be detailed in a forthcoming publication.

The standard TFHE [16] and FHEW [21] schemes, primarily operating under the
assumption thatM = 2k, have rarely been practically extended to more general cyclotomic
rings. In fact, such extensions have typically been limited to cyclotomic polynomials of
the forms M = 2α3β [24, 25] or M = tα as shown in [4], particularly for homomorphically
testing the equality of an encrypted message with a specified plaintext message. Here, we
propose an extension of both the FHEW and TFHE comprehensive frameworks to include
the class ofM -th cyclotomic polynomials withM = tα, where t is any prime integer greater
than or equal to 3, and α is any non-zero integer. More concretely, whereas traditional
TFHE systems often operate within the polynomial ciphertext space defined as:

Z[X]/(X2k + 1) and T[X]/(X2k + 1), T = Q/Z,

we are addressing a broader scenario characterized by:

R := Z[X]/(ΦM (X)) and T := T[X]/(ΦM (X)),

where M adopts the aforementioned form M = tα. The extension to the fully general case
M = tα1

1 tα2
2 · · · tαr

r , which introduces additional complexities as well as new possibilities,
will be elaborated upon in Part II.

In the upcoming sections, we will explore the processes of extraction, bootstrapping,
and efficient homomorphic evaluation of the trace operator. We will investigate tasks
such as blind extraction and fast packing, and the algorithms we develop are expected
to contribute innovative solutions in this context. Our aim is to clarify the objectives
of each procedure and demonstrate how existing methods can be adapted, enhanced, or
streamlined for our current applications. Before we delve into these topics, Section 3
will present the essential algebraic tools necessary for constructing the various algorithms
discussed. Furthermore, we will offer a brief overview of standard procedures for LWE and
RLWE, including encryption, decryption, addition, and external product, as described
in Section 5. It is essential to highlight that throughout this text, the scalar messages
considered are contained within 1

pZp for moderate values of p, with applications to large
integers via the Residual Number System in mind, as discussed for instance in [8, 9, 10, 11].

We will now summarize the main content of the paper: Section 6 centers on the
extraction of a coefficient µi from the encrypted polynomial µ(X). While this process is

4

standard practice, we introduce a systematic framework for defining it within the context
of any prime-power cyclotomic field. This section also emphasizes the significance of the
dual basis related to the scalar product, which we express in terms of the trace operator
(refer to Section 3). Notably, the application of duality techniques facilitates a natural
approach to scenarios where the index i is also encrypted.

In Section 7, we present a new formulation of the standard functional bootstrapping
procedure in terms of the trace operator and the dual basis. We show that this formula-
tion allows for a clear articulation of the “negacyclic” conditions that the functions to be
bootstrapped to must satisfy, particularly within the context of prime-power cyclotomic
fields. Furthermore, we demonstrate that employing non-power-of-two cyclotomic rings
does not adversely affect the error performance. Specifically, we provide a noise analysis of
the bootstrap output for general t ≥ 3, showing that the increase in variance when transi-
tioning from t = 2 to t ≥ 3 is bounded by a factor of two-precisely the growth in variance
associated with a single addition. Note that our analysis recovers some results from [20].
It is important to note that we have postponed a complete security analysis to the upcom-
ing Part II. FHE schemes are indeed characterized by two primary security concepts, the
latest of which, IND-CPAD, recently introduced in [29], accounts for potential decryption
failures. In the presence of a negligible failure probability, achieving IND-CPAD security
often necessitates selecting parameters that are significantly larger than those sufficient for
IND-CPA security. One primary source of such failures is the modulo-switch operation,
which introduces a drift in noise levels [3]. An in-depth analysis of this aspect within our
broader framework-particularly in the setting of fully general cyclotomic polynomials-will
be addressed in future work.

Section 8 provides a comprehensive overview of the various trace operations discussed
throughout this paper. Building on the strategy introduced by [13] for power-of-two cyclo-
tomic fields, we will demonstrate how classical Galois theory can be effectively employed
within our specific algebraic framework to improve the efficiency of computing the trace
from a field to its subfield. This constitutes a nontrivial extension to the general case of
prime-power cyclotomic indices, and we believe that the trace operator offers significant
advantages for a range of applications.

Finally, Section 9 will explore various variants of the packing operation, which combines
multiple LWE encryptions into a single polynomial encryption. The structure of the fields
considered in this paper introduces additional complexities to standard algorithms. Once
again, we will revisit acceleration techniques, as demonstrated in [13], and show how they
can be effectively adapted while maintaining computational efficiency.

To conclude this introductory section, we would like to note that a Part II will soon
be submitted for publication, building upon this work by extending all the techniques and
procedures discussed here to composite cyclotomic rings. As a specific application, we
will demonstrate how large collections of encrypted data can be efficiently managed using
encrypted coordinates. Additionally, we will provide error estimates for all operations and
propose practical parameter choices.

2 Related works

The selection of underlying algebraic structures, particularly cyclotomic polynomials, is a
crucial element of Fully Homomorphic Encryption (FHE) schemes, as these choices sig-
nificantly influence efficiency and functionality. Notably, several studies have investigated
the adaptation of the Number Theoretic Transform (NTT) for these polynomials, which
can greatly enhance the speed of polynomial multiplication, with efficiency gains being

5

especially pronounced for specific parameter selections, as demonstrated by Bajard et al.
[2] in their RNS variant of FV-like schemes. In addition to efficiency, noise growth be-
havior presents another critical concern, particularly as it differs from what is observed in
power-of-two cyclotomic rings; this issue was examined in the recent paper by De Micheli
et al. [20], underscoring the importance of understanding noise dynamics for establishing
the parameters and overall effectiveness of FHE schemes. For instance, Kim et al. [26] ex-
plore how these polynomials specifically impact noise growth within the context of private
query processing. When employing prime-power cyclotomic polynomials, selecting opti-
mal parameters becomes increasingly complex due to the interplay between polynomial
structure, noise growth, and security considerations. Costache and Smart [18] provide a
comprehensive comparison of various ring choices, offering detailed evaluations of schemes
that utilize different prime-power cyclotomic structures. Given the critical nature of se-
curity in FHE schemes based on prime-power cyclotomic polynomials, Eric Crockett and
Chris Peikert [19] explore significant obstacles associated with the Ring Learning With
Errors (Ring-LWE) problem. They discuss various factors that complicate the imple-
mentation and security of RLWE-based schemes, including issues related to parameter
selection, the implications of error distributions, and the impact of specific polynomial
structures on both security and efficiency. Finally, extension to multivariate RLWE with
several cyclotomic polynomials is for instance considered in [5] while Chen et al. [14] in-
vestigate potential vulnerabilities and attack strategies that could be exploited due to the
unique characteristics of Galois non-dual RLWE families.

3 Algebraic setting

In this section, we present several basic definitions essential for the foundation of the
encryption protocol. While some of this material could have been introduced later in the
paper, doing so would have compromised clarity, as many concepts here also possess more
compact though more abstract definitions we could have relied upon. The identification
of the dual sets R∨ and T ∨ with their expressions is provided below.

3.1 Prime power cyclotomic polynomials

We begin by briefly revisiting the definition of cyclotomic polynomials, along with some
of their properties and representations when M is a power of a prime.

Definition 3.1 The M th cyclotomic polynomial is defined by the formula

ΦM (X) =
∏

1≤k≤M

gcd(k,M)=1

(
X − e2iπ

k
M

)
.

The cyclotomic polynomials are monic polynomials with integer coefficients that are irre-
ducible over the field of the rational numbers. Except for M = 1, 2, they are palindromes
of even degree. The degree of ΦM , or in other words the number of M th- primitive roots
of unity, is N = φ(M), where φ is Euler’s totient function. As we consider indices of the
form M = tα, where t is a prime number and α ≥ 1, only two relational definitions are
necessary for computing the cyclotomic polynomials we need:

1. Cyclotomic Polynomial for a Prime: If t is a prime number, the tth cyclotomic

6

polynomial Φt(X) is defined as:

Φt(X) = 1 +X +X2 + · · ·+Xt−1 =
t−1∑
k=0

Xk.

This polynomial has roots that are the primitive tth roots of unity, and it is irreducible
over the integers.

2. Cyclotomic Polynomial for Prime Powers: If M = tα with α ≥ 2, where t is prime,
the M th cyclotomic polynomial can be expressed as:

Φtα(X) = Φt(X
tα−1

) =

t−1∑
k=0

Xktα−1
.

This relation indicates that the cyclotomic polynomial for the prime power tα is
derived by substituting Xtα−1

into the tth cyclotomic polynomial. The resulting
polynomial captures the multiples of tα−1 in its exponents.

We end up this subsection by stating a useful (and well-known) relation on cyclotomic
polynomials:

Proposition 3.2 Let M be a positive integer and d a coprime with M . Then

ΦM (X)|ΦM (Xd).

3.2 The cyclotomic field K and the ring of algebraic integers R

All sets of polynomials examined in the following sections are embedded within the set
of polynomials with rational coefficients modulo ΦM , which we will refer to as K. This
set constitutes a Galois extension of Q and possesses the structure of both a field and a
Q-linear space with dimension N = φ(M). It is thus natural to consider the action of the
trace operator on K, the associated scalar product on K2 and to develop the dual basis
of the canonical basis from which both R∨ and T ∨ can be described. In this paper, we
will use the notation P mod ΦM interchangeably to refer either to the equivalence class
P (X) + ΦM (X)Q(X), where Q ∈ Q[X], or to the representative element P of this class.

Definition 3.3 (Field of rational polynomials modulo ΦM) The field of polynomials with
coefficients in Q modulo ΦM (X) is defined as the quotient ring

K =
Q[X]

(Φ(X))
=
{
P mod ΦM , P ∈ QN−1[X]

}
.

The field K is also a Galois extension of Q of dimension N = φ(M). We denote the ring
of algebraic integers of K as R: it is made of the equivalence classes of K which have
representatives in ZN−1[X], that is to say

R =
{
P mod ΦM , P ∈ ZN−1[X]

}
.

The trace operator in the context of Galois extensions is a linear map from a field extension
(here K) back to its base field (here Q). Denoting the associated Galois group Gal(K/Q),
the trace of an element P ∈ K is given by

TrK/Q(P) =
∑

τ∈Gal(K/Q)

τ(P) ∈ Q,

7

where the sum accounts for the action of each automorphism τ in the Galois group (that
is to say here the group of substitutions X 7→ Xd for all 1 ≤ d ≤M coprime with M) on
P . As the trace plays a crucial role in studying the structure and properties of K, we give
below its definition instantiated in the context of cyclotomic rings:

Definition 3.4 (Trace operator) The trace operator Tr is defined as the linear map

Tr : K −→ Q
P (X) 7−→

∑
gcd(d,M)=1

P (Xd) mod ΦM (1)

The trace is a well-defined operator on K, as its value does not depend on the particular
representative of a class inK: for any d such that gcd(d,M) = 1, the cyclotomic polynomial
ΦM (X) indeed divides ΦM (Xd) (Proposition 3.2), so that∑

gcd(d,M)=1

(P + kΦM)(Xd) =
∑

gcd(d,M)=1

P (Xd) mod ΦM .

We are now in position to introduce the following scalar product:

Definition 3.5 (Scalar product) The scalar product ⟨·, ·⟩ is defined on K2 as follows

∀(P,Q) ∈ K2, ⟨P,Q⟩ = Tr
(
P (X)Q̄(X)

)
∈ Q (2)

with Q̄(X) = Q(X−1) mod ΦM = Q(XM−1) mod ΦM .

Once more, this definition demonstrates consistency since the value of ⟨P,Q⟩ remains in-
variant regardless of the particular representatives selected for P mod ΦM andQ mod ΦM .
This invariance is a consequence of the relation Φ̄M = 0 mod ΦM (see Proposition 3.2).
Furthermore, it is straightforward to verify that this scalar product adheres to the typical
requirements found in vector spaces, such as bilinearity, symmetry, and positive definite-
ness. This ensures that ⟨P,Q⟩ is both a well-defined and fundamentally sound operation
within the context of this algebraic framework.

Now, given any basis (Bi)0≤i<N of K, it possesses a dual basis that we shall denote
(B∗

i)0≤i<N ⊂ K defined by

∀0 ≤ i, j < N, ⟨B∗
i , Bj⟩ = δi,j .

It is important to notice that the dual basis (Ω∗
i)0≤i<N of the canonical basis (Xi)0≤i<N

has the following explicit form (see Proposition 8.1)

Ω∗
i (X) =

1

M

(
Xi −XN+[i]M/t

)
, 0 ≤ i < N, (3)

=
1

M

Ωi(X) +
∑

0 ≤ j ≤ N − 1
s.t. [j − i]M

t
= 0

Ωj(X)


where for 0 ≤ i < N , [i]M/t denotes the integer 0 ≤ j < M

t such that i = j mod M
t .

Conversely, the inverse formula is given by

Ωi(X) = MΩ∗
i (X)− M

t

∑
0 ≤ j ≤ N − 1

s.t. [j − i]M
t

= 0

Ω∗
j (X) (4)

8

A few remarks are now in order. First of all, since Ω∗
0(X) = 1−XN

M and ΦM (X) are
coprime elements of the euclidean ring Q[X], the Bezout identity asserts that there exist
U and V in Q[X] such that

Ω∗
0(X)U(X) + ΦM (X)V (X) = 1

so that
U = (Ω∗

0)
−1 mod ΦM

and it can be checked that whereas V (X) = 1 + 1
t

(
XN − ΦM (X)

)
∈ T ,

(Ω∗
0)

−1(X) = tα−1
(
1 +

t−2∑
k=1

(k + 1− t)XkM
t

)
︸ ︷︷ ︸

∈ZN−1[X]

mod ΦM

is the representative of an element of R. In particular, it has integer coefficients. This
implies, not only that the N -dimensional Q-linear space

K =
{N−1∑

i=0

λiX
i mod ΦM , (λ0, . . . , λN−1) ∈ QN

}
coincides, through the paring ⟨·, ·⟩ and the usual identification of linear forms with elements
of K, with its dual space

K∨ =
{N−1∑

i=0

ω∗
iΩ

∗
i mod ΦM , (ω∗

0, . . . , ω
∗
N−1) ∈ QN

}
= Ω∗

0K = K

where the last equality stems from the fact that K is a field, but also that the dual R∨ of
R can be identified similarly to Ω∗

0R. As a matter of fact, a linear form ℓ on

R =
{N−1∑

i=0

niX
i mod ΦM , (n0, . . . , nN−1) ∈ ZN

}
is the restriction to R of a linear form defined on K and is thus the action though the
pairing ⟨·, ·⟩ of an element Ω∗ mod ΦM ∈ K∨ = K with Ω∗ =

∑N−1
i=0 ω∗

iΩ
∗
i , i.e.

∃Ω∗ mod ΦM ∈ K∨, ∀P ∈ R, ℓ(P) = ⟨Ω∗, P ⟩ ∈ Q.

For the image of ℓ to be included in Z, as is required for a linear form on the Z-module
R, it can be seen that for all P mod ΦM ∈ R with P (X) =

∑N−1
i=0 niX

i, one must have

∀n ∈ ZN , ℓ(P) =
N−1∑
i=0

ω∗
i ni ∈ Z

that is to say ω∗ ∈ ZN , or in other words

Ω∗ mod ΦM ∈ R∨ =
{N−1∑

i=0

ω∗
iΩ

∗
i mod ΦM , (ω∗

0, . . . , ω
∗
N−1) ∈ ZN

}
= Ω∗

0R.

9

The last equality is derived from the fact that (Ω∗
0Ωj)

N−1
j=0 , which forms a basis for the

Q-linear space K, also acts as a basis for R∨. Specifically, we have:

⟨Ω∗
0Ωj ,Ωk⟩ = ⟨Ω∗

0,Ω−jΩk⟩ ∈ Z

owing to the fact that Ω−jΩk ∈ R. In particular, the change of basis
1

(Ω∗
0)

−1Ω∗
1

...
(Ω∗

0)
−1Ω∗

N−1

 = Φt(J
M
t)


1
X
...

XN−1

 = ΦM (J)


1
X
...

XN−1

 mod ΦM

where

J =



0 0

1
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 . . . 0 1 0


∈MN (Z),

is cleary unimodular with inverse (I−J
M
t) ∈MN (Z). Furthermore, we observe in passing

that R∨ ⊂ 1
MR.

3.3 The module T of polynomials with coefficients in T and its dual T ∨

We start by recalling that the torus T is defined as the set of rational numbers modulo 1,
i.e. T = Q/Z.

Definition 3.6 The quotient of the Z[X]-module K by the sub-module R is the quotient
Z[X]-module T = K/R, that is to say the set of equivalence classes

T =
{N−1∑

i=0

xiX
i mod Z[X] mod ΦM , (x0, . . . , xN−1) ∈ QN

}
.

Definition 3.7 The quotient of the Z[X]-module K by the sub-module R∨ is the quotient
Z[X]-module T ∨ = K/R∨, that is to say the set of equivalence classes

T ∨ =
{N−1∑

i=0

ω∗
iΩ

∗
i (X) mod Ω∗

0Z[X] mod ΦM , (ω∗
0, . . . , ω

∗
N−1) ∈ QN

}
.

Remark 3.8 The polynomial product is well-defined from R∨ × T to T ∨, as well as from
R× T ∨ to T ∨. Specifically, we have:(

Ω∗
0(X)Z1(X) + ΦM (X)Q1(X)

)
×
(
P2(X) + Z2(X) + ΦM (X)Q2(X)

)
= Ω∗

0(X)Z1(X)P2(X) + Ω∗
0(X)Z1(X)Z2(X) + ΦM (X)Q3(X)

= Ω∗
0(X)Z1(X)P2(X) mod R∨

And symmetrically,(
Z1(X) + ΦM (X)Q1(X)

)
×
(
Ω∗
0(X)P2(X) + Ω∗

0(X)Z2(X) + ΦM (X)Q2(X)
)

= Ω∗
0(X)Z1(X)P2(X) + Ω∗

0(X)Z1(X)Z2(X) + ΦM (X)Q3(X)

= Ω∗
0(X)Z1(X)P2(X) mod R∨

10

Here, Z1 and Z2 are polynomials in Z[X], while P2, Q1, Q2, and Q3 are polynomials in
Q[X]. Note that the multiplication of a polynomial of R by a a polynomial of T also makes
sense, in contrast with the case where both are in the duals R∨ and T ∨.

Remark 3.9 Consider a linear form ℓ ∈ L(K,Q) represented by

N−1∑
i=0

ω∗
iΩ

∗
i (X) + ΦM (X)Q̃(X)

in K∨ = K, where Q̃ is a polynomial in Q[X]. The application ℓ can be consistently defined
on T as follows:

ℓ : T → T
N−1∑
i=0

xiX
i + Z(X) + ΦM (X)Q(X) 7→

〈N−1∑
i=0

ω∗
iΩ

∗
i (X),

N−1∑
i=0

xiX
i
〉
mod 1

provided that (ω∗
0, . . . , ω

∗
N−1) ∈ ZN−1. In fact, the value of

〈N−1∑
i=0

ω∗
iΩ

∗
i (X) + ΦM (X)Q̃(X),

N−1∑
i=0

xiX
i + Z(X) + ΦM (X)Q(X)

〉
=

N−1∑
i=0

ω∗
i xi +

〈N−1∑
i=0

ω∗
iΩ

∗
i (X), Z(X)

〉
mod 1

depends on Z unless ⟨
∑N−1

i=0 ω∗
iΩ

∗
i , Z⟩ ∈ Z, which necessitates that (ω∗

0, . . . , ω
∗
N−1) ∈ ZN−1.

In other words, ℓ is defined by an element of R∨.

4 Plaintext messages in the TFHE framework

In the context of TFHE, all messages, also referred to as plaintext messages or simply plain-
texts, can be classified into two types: either as elements of the torus T, or as polynomials
within a cyclotomic ring, with coefficients that belong either to T or Z.

4.1 The set of torus plaintexts

Despite the fact that all elements of the torus can be encrypted, only a discretized subset
can be safely decrypted. This observation leads to the following definition:

Definition 4.1 (Discretized torus for messages) Let p ≥ 3 be an odd integer. The structure
of the discrete torus Tp is inherited from (Zp,+,×), with privileged representative1

i mods p.

The discrete torus Tp ⊂ T = [−1
2 ,

1
2) + Z is defined by Tp =

1
pZp:

Tp =
{
− (p− 1)/(2p), ..., (p− 1)/(2p)

}
+ Z

1The symmetric modulo operation returns the remainder of a division such that the result is centered
around zero. For a number i and odd modulus p, it maps i to the interval

{
− (p − 1)/2, ..., (p − 1)/2

}
,

ensuring the result is balanced symmetrically around zero.

11

This definition is crucial in the design of schemes such as TFHE, where ensuring the
integrity of decrypted messages relies on restricting the plaintext space to a manageable
and well-defined subset. The choice of this discretized subset ultimately influences the effi-
ciency, security, and overall functionality of the homomorphic encryption system. It allows
the framework to balance between operational flexibility and the necessary constraints im-
posed by noise growth during cryptographic operations. Note that Tp, the p-adic torus, is
a ring that is isomorphic to (Zp,+,×). Its structure can be outlined as follows:

1. Addition: The addition operation in Tp is inherited from the torus T. Specifically,
for any (x, y) ∈ Tp × Tp:

x+ y ≡ x+ y mod 1.

2. Multiplication: The multiplication in Tp is inherited from the integers modulo p.
For any (x, y) ∈ Tp × Tp:

x× y = (px)× y mod 1.

4.2 The set of polynomial plaintexts

The extension to prime power cyclotomic rings manifests itself when considering polyno-
mial messages and all subsequent attached procedures (packing, extraction, bootstrap-
ping...).

Definition 4.2 (Polynomial plaintext) Let M be a non-zero integer and let ΦM be the M th

cyclotomic polynomial. Polynomial plaintexts are polynomial representatives of equivalence
classes, either in R or in

Tp =
{
P (X) mod Z[X] mod ΦM , P ∈ 1

p
Z[X]

}
⊂ T .

The polynomials in Tp can not only be encrypted and manipulated but also decrypted
exactly with a high probability under standard parameter conditions (see next Section).

5 LWE and RLWE encryptions cryptographic schemes

5.1 Encryption/decryption schemes in T

Learning With Errors (LWE) is a cryptographic problem widely used in post-quantum
cryptography due to its hardness against quantum attacks [34]. The LWE problem consists
in solving systems of noisy linear equations. More specifically, given a secret vector s ∈ Sn,
where S is a finite subset of Z, if we are given a set of linear equations of the form

c = A · s+ e,

where A is randomly chosen matrix over a finite field (e.g., modulo Zq) and e is a random
noise vector with small entries, recovering s from the equations is computationally hard.
Of course, if A ∈Mn(Zq) and e ∈ (Zq)

n, the actual hardness depends on how large q and
n are. When it is hard enough, the LWE-problem is said to be secure.

Now, assume the LWE-problem on Zq is secure and assimilate T ≡ 1
qZq for the purpose

of the following definition [15, 16].

12

Definition 5.1 (EncryptLWEs(µ)) The LWE-encryption of a message µ ∈ T with the secret
key s ∈ Sn is defined as

c = LWEs(µ) = (a, b) ∈ Tn+1

with
a = (a1, . . . , an)

$←− Tn, e← N (0, σ2)

and
b = s · a+ µ+ e.

Algorithm 1 LWE Encryption of Message µ

Input: Message µ ∈ T , secret key s ∈ Sn.

1: Generate random vector: a = (a1, . . . , an)
$←− T n

2: Sample error term: e← N (0, σ2)
3: b← s · a+ µ+ e
4: Return c = (a, b).

Definition 5.2 (DecryptLWEs (c, p)) The LWE-decryption of a ciphertext (a, b) ∈ Tn+1

with secret key s ∈ Sn is defined as

πp(b− s · a) ∈ Tp

where πp is a projection on the discrete torus Tp.

Algorithm 2 LWE Decryption

Input: Ciphertext (a, b) ∈ T n+1, secret key s ∈ Sn, modulus p.

1: φ← b− s · a
2: Return

⌊pφ⌉
p
∈ Tp.

It is clear that if c = (a, b) is the LWE-encryption of a message µ in Tp, then

πp(b− a · s) = µ

if |e| is small enough, more precisely if |e| < 1
2p . Here, the projection πp is defined as

πp(µ) =
⌊pµ⌉
p for all µ ∈ T.

5.2 Encryption/decryption schemes in T and T ∨

The security of Ring Learning With Errors (Ring-LWE) is rooted in the same principles as
the standard LWE problem [35]. As mentioned earlier, the dual sets T and T ∨ respectively,
while abstractly well-defined, can be represented in the following respective forms that are
convenient to work with:

T =
{
P mod Z[X] mod ΦM , P ∈ QN−1[X]

}
= K/R,

T ∨ =
{
Ω∗
0P mod Ω∗

0Z[X] mod ΦM , P ∈ QN−1[X]
}
= K/R∨.

13

The Ring-LWE problem (adapted to the torus in this context) as articulated by Regev in
[35] is defined as follows:

Ring-LWE problem. For M > 1, consider the cyclotomic ring R and the cyclotomic
Z[X]-module T ∨. Given samples of the form

(a∗, b∗) ∈ T ∨ × T ∨,

with b∗ = s · a∗ + e∗ and where

• a∗ is chosen uniformly at random from T ∨;

• s is a secret element in R with coefficients in S;

• e∗ is a small error term sampled from a normal distribution over T ∨;

it is a computationally hard problem to distinguish such samples from uniformly random
pairs in T ∨ × T ∨.

The security of Ring-LWE is built upon its reduction to hard problems on ideal lattices
[35], such as the Ideal Shortest Vector Problem (Ideal-SVP) and the Ideal Closest Vector
Problem (Ideal-CVP). Once again, the effective level of security depends in particular on
how large parameters M and q in T ≡ 1

qZq are.

Now, assume the RLWE-problem is secure. We may encrypt and decrypt polynomial
messages as follows:

Definition 5.3 (EncryptRLWE*s(µ
∗)) The RLWE∗-encryption of a message µ∗(X) ∈ T ∨

with the secret key

s(X) =
N−1∑
i=0

siX
i ∈ R, (s0, . . . , sN−1) ∈ SN ,

is defined as
c∗(X) = RLWE∗

s(µ
∗(X)) = (a∗(X), b∗(X)) ∈ T ∨ × T ∨

with

(a∗0, . . . , a
∗
N−1)

$←− TN , a∗(X) =

N−1∑
i=0

a∗iΩ
∗
i (X),

(e∗0, . . . , e
∗
N−1)

N (0,σ2)←−−−−− TN , e∗(X) =
N−1∑
i=0

e∗iΩ
∗
i (X),

and
b∗ = s · a∗ + µ∗ + e∗ mod R∨.

In other words, the equality holds modulo Ω∗
0Z[X] and ΦM , and b∗ ∈ T ∨.

Algorithm 3 RLWE* Encryption of a polynomial message in T ∨

Input: Message µ∗(X) ∈ T ∨ and secret key s(X) ∈ R.

1: Generate: (a∗0, . . . , a
∗
N−1)

$←− TN and (e∗0, . . . , e
∗
N−1)

N (0,σ2)←−−−−− TN

2: a∗(X)←
∑N−1

i=0 a∗iΩ
∗
i (X) and e∗(X)←

∑N−1
i=0 e∗iΩ

∗
i (X)

3: b∗(X)← s(X) · a∗(X) + µ∗(X) + e∗(X) mod R∨.
4: Return c∗(X) = (a∗(X), b∗(X)) ∈ T ∨ × T ∨.

14

Remark 5.4 It is also possible to choose s ∈ R∨ and sample a ∈ T , so that b ∈ T ∨ as in
[36, 35].

Definition 5.5 (EncryptRLWEs(µ)) The RLWE-encryption of a message µ(X) ∈ T with
the secret key

s(X) =

N−1∑
i=0

siX
i ∈ R, (s0, . . . , sN−1) ∈ SN ,

is defined as
c(X) = RLWEs(µ(X)) = (a(X), b(X)) ∈ T × T

with a = (Ω∗
0)

−1a∗ mod ΦM , b = (Ω∗
0)

−1b∗ mod ΦM and where

(a∗(X), b∗(X)) = RLWE∗
s(Ω

∗
0(X)µ(X)).

Note that
b = s · a+ µ+ e mod R,

with e = (Ω∗
0)

−1e∗. The equality holds modulo Z[X] and ΦM , and b ∈ T .

Algorithm 4 RLWE Encryption of Message µ

Input: Message µ(X) ∈ T , secret key s(X).

1: Compute the RLWE*-encryption: (a∗(X), b∗(X)) = RLWE∗
s(Ω

∗
0(X)µ(X)).

2: a←
(
(Ω∗

0)
−1a∗ mod ΦM

)
mod R

3: b←
(
(Ω∗

0)
−1b∗ mod ΦM

)
mod R

4: Return c(X) = (a(X), b(X)) ∈ T × T .

Definition 5.6 (DecryptRLWE∗
s (c∗(X), p)) The RLWE∗-decryption of the ciphertext c∗(X) =

(a∗(X), b∗(X)) ∈ T ∨ × T ∨ with the secret key s ∈ R is defined as

πp

(
b∗(X)− s(X)a∗(X)

)
∈ Tp

where πp is a projection coefficient by coefficient (in the basis (Ω∗
i (X))0≤i<N) on the dis-

crete torus Tp.

Algorithm 5 RLWE* Decryption

Input: Ciphertext c∗(X) = (a∗(X), b∗(X)) ∈ T ∨ × T ∨, secret key s ∈ R, modulus p.

1: φ∗(X)← b∗(X)− s(X)a∗(X) mod R∨.
2: Return

φ̃(X) =
N−1∑
i=0

⌊pφ∗
i ⌉

p
Ω∗
i (X) ∈ T ∨

p .

Definition 5.7 (DecryptRLWEs (c(X), p)) The RLWE-decryption of the ciphertext c(X) =
(a(X), b(X)) ∈ T × T with the secret key s ∈ R is defined as

πp

(
b(X)− s(X)a(X)

)
∈ Tp

where πp is a projection coefficient by coefficient in the basis (Ωi)0≤i<N on the discrete
torus Tp.

15

Algorithm 6 RLWE Decryption

Input: Ciphertext c(X) = (a(X), b(X)) ∈ T × T , secret key s ∈ R, modulus p.

1: φ(X)← b(X)− s(X)a(X) =
∑N−1

i=0 φiX
i mod R.

2: Return

φ̃(X) =
N−1∑
i=0

⌊pφi⌉
p

Xi ∈ Tp.

It is clear that if c(X) = (a(X), b(X)) is the RLWE-encryption of a message µ(X) in Tp,
then

πp

(
b(X)− s(X)a(X)

)
= µ(X)

if ∥e∥∞ is small enough, more precisely if ∥e∥∞ < 1
2p . The norm ∥ · ∥∞ of a polynomial

denotes here, as is customary, the maximum of the absolute values of its coefficients in the
basis (Ωi)0≤i<N .

5.3 Encryption/decryption schemes in R and R∨

In this subsection, we describe the encryption of elements in the dual sets R and R∨:

R =
{
P mod ΦM , P ∈ ZN−1[X]

}
⊂ K and R∨ =

{
Ω∗
0P mod ΦM , P ∈ ZN−1[X]

}
⊂ K.

Definition 5.8 (EncryptGRLWE*s(µ
∗)) Given two intergers D ≥ 2 and ℓ ≥ 1, the GRLWE∗-

encryption of a message

µ∗(X) =

N−1∑
i=0

µ∗
iΩ

∗
i (X) ∈ R∨

with the secret key

s(X) =
N−1∑
i=0

siX
i ∈ R, (s0, . . . , sN−1) ∈ SN ,

is defined as

C∗(X) = GRLWE∗
s(µ

∗(X)) =


RLWE∗

s

(
µ∗(X)

D

)
...

RLWE∗
s

(
µ∗(X)
Dℓ

)
 .

Algorithm 7 GRLWE* Encryption of Message µ∗ ∈ R∨

Input: Message µ∗(X) ∈ R∨, secret key s(X), integers D ≥ 2 and ℓ ≥ 1.

1: Initialize an empty vector: C∗(X)← ∅.
2: for each k from 1 to ℓ do
3: c∗k(X)← RLWE∗

s

(
µ∗(X)
Dk

)
.

4: Append c∗k(X) to C∗(X).
5: end for
6: Return

C∗(X) =

c∗1
...
c∗ℓ

 .

16

Definition 5.9 (EncryptGRLWEs(µ)) Given two intergers D ≥ 2 and ℓ ≥ 1, the GRLWE-
encryption of a message

µ(X) =
N−1∑
i=0

µiX
i ∈ R

with the secret key

s(X) =
N−1∑
i=0

siX
i ∈ R, (s0, . . . , sN−1) ∈ SN ,

is defined as

C(X) = GRLWEs(µ(X)) =


RLWEs

(
µ(X)
D

)
...

RLWEs

(
µ(X)
Dℓ

)
 .

Algorithm 8 GRLWE Encryption of Message µ ∈ R
Input: Message µ(X) ∈ R, secret key s(X), integers D ≥ 2 and ℓ ≥ 1.

1:

2: Initialize an empty vector: C(X)← ∅.
3: for each k from 1 to ℓ do
4: ck ← RLWEs

(
µ(X)
Dk

)
.

5: Append ck to C.
6: end for
7: Return

C(X) =

c1
...
cℓ

 .

Definition 5.10 (EncryptRGSW*s(µ
∗)) Given two intergers D ≥ 2 and ℓ ≥ 1, the RGSW∗-

encryption of a message µ∗(X) ∈ T ∨ with the secret key

s(X) =

N−1∑
i=0

siX
i ∈ R, (s0, . . . , sN−1) ∈ SN ,

is defined as

c∗(X) = RGSW∗
s(µ

∗(X)) =

(
GRLWE∗

s(−s(X)µ∗(X))
GRLWE∗

s(µ
∗(X))

)
.

Algorithm 9 RGSW* Encryption of Message µ∗

Input: Message µ∗(X) ∈ T ∨, secret key s(X), integers D ≥ 2 and ℓ ≥ 1.

1: Compute the RGSW* encryptions: C∗
1 = GRLWE∗

s(−s(X)µ∗(X)) and C∗
2 =

GRLWE∗
s(µ

∗(X)).
2: Return

C∗(X) =

(
C∗
1

C∗
2

)
.

17

Definition 5.11 (EncryptRGSWs(µ)) Given two intergers D ≥ 2 and ℓ ≥ 1, the RGSW-
encryption of a message µ(X) ∈ T with the secret key

s(X) =
N−1∑
i=0

siX
i ∈ R, (s0, . . . , sN−1) ∈ SN ,

is defined as

C(X) = RGSWs(µ(X)) =

(
GRLWEs(−s(X)µ(X))

GRLWEs(µ(X))

)
.

Algorithm 10 RGSW Encryption of Message µ

Input: Message µ(X) ∈ T , secret key s(X), integers D ≥ 2 and ℓ ≥ 1.

1: C1 ← GRLWEs(−s(X)µ(X))
2: C2 ← GRLWEs(µ(X)).
3: Return

C(X) =

(
C1

C2

)
.

5.4 Homomorphic addition

We denote unambiguously by⊕ the addition of (R)LWE-ciphertexts and RGSW-ciphertexts,
as well as (R)LWE∗-ciphertexts and RGSW∗-ciphertexts,. We recall that, if c1 and c2 are
two (R)LWE-ciphertexts, i.e.

c1 = (R)LWEs(µ1) and c2 = (R)LWEs(µ2),

then
c1 ⊕ c2 = (R)LWEs(µ1 + µ2)

where the equality means that

Decrypt(R)LWEs(c1 ⊕ c2, p) = µ1 + µ2.

Similarly, if C1 and C2 are two RGSW-ciphertexts, i.e.

C1 = RGSWs(m1) and C2 = RGSWs(m2)

then
C1 ⊕ C2 = RGSWs(m1 +m2)

where the equality means that both sides are (possibly different) encryptions of m1 +m2.
Finally, if C∗

1 and C∗
2 are two RGSW-ciphertexts, i.e.

C∗
1 = RGSW∗

s(m
∗
1) and C∗

2 = RGSW∗
s(m

∗
2)

then
C∗
1 ⊕ C∗

2 = RGSW∗
s(m

∗
1 +m∗

2)

In all cases, the effective addition is component-wise (with polynomial coefficients).

18

5.5 Homomorphic modular product

We recall that the ZN [X]-module TN [X] is by definition endowed with a modular product
· whose counterpart on RGSW-ciphertexts is the co-called external product ⊡. Besides, if

C∗ = RGSW∗
s(m

∗) ∈ R∨ and c = RLWEs(µ) ∈ T ,

then
C∗ ⊡ c = RLWE∗

s(m
∗ · µ) ∈ T ∨

in the sense that

C∗ ⊡ c is an RLWEs-encryption of m∗ · µ. (5)

The effective external product of C∗ and c is obtained through the vector-matrix multi-
plication (with polynomial coefficients)

C∗ ⊡ c = decD,ℓ(c) C
∗

where decD,ℓ(c) = (decD,ℓ(a(X)), decD,ℓ(b(X))) and

decD,ℓ(a(X)) =

(
N−1∑
r=0

decD,ℓ(ar)1X
r, . . . ,

N−1∑
r=0

decD,ℓ(ar)ℓX
r

)
,

decD,ℓ(b(X)) =

(
N−1∑
r=0

decD,ℓ(br)1X
r, . . . ,

N−1∑
r=0

decD,ℓ(br)ℓX
r

)
,

for some integers D ≥ 2 and ℓ ≥ 1. To complete the definition of decD,ℓ(c) we decompose
any x ∈ T ≡ [−1

2 ,
1
2) as:

x =

ℓ∑
g=1

decD,ℓ(x)gD
−g + δ(x), decD,ℓ(x)t ∈ {−D/2, . . . , D/2}, |δ(x)| ≤ D−ℓ

2
.

The dual product C ⊡ c and C ⊡ c∗ are defined similarly with the only difference that
decD,ℓ(c

∗) = (decD,ℓ(a
∗(X)), decD,ℓ(b

∗(X))) where

decD,ℓ(a
∗(X)) =

(
N−1∑
r=0

decD,ℓ(a
∗
r)1Ω

∗
r(X), . . . ,

N−1∑
r=0

decD,ℓ(a
∗
r)ℓΩ

∗
r(X)

)
,

decD,ℓ(b
∗(X)) =

(
N−1∑
r=0

decD,ℓ(b
∗
r)1Ω

∗
r(X), . . . ,

N−1∑
r=0

decD,ℓ(b
∗
r)ℓΩ

∗
r(X)

)
.

Note that, for instance

decD,ℓ(a(X)) =

ℓ∑
g=1

D−g

(
N−1∑
r=0

decD,ℓ(ar)gX
r

)
+ δ(a(X))), δ(a(X)) =

N−1∑
r=0

δ(ar)X
r

and

decD,ℓ(a
∗(X)) =

ℓ∑
g=1

D−g

(
N−1∑
r=0

decD,ℓ(a
∗
r)gΩ

∗
r(X)

)
+δ(a∗(X))), δ(a∗(X)) =

N−1∑
r=0

δ(a∗r)Ω
∗
r(X).

We then have the following standard formulas:

Proposition 5.12 Let C and c = (a, b) be respectively RGSWs and RLWEs encryptions of
m and µ. Then the following equality holds for all integers D ≥ 2 and ℓ ≥ 1:

Err(C ⊡ c) = decD,ℓ(c) · Err(C) +m(δ(b)− s δ(a)) +mErr(c).

Furthermore, similar equalities hold for Err(C∗ ⊡ c) and Err(C ⊡ c∗).

19

5.6 Key switching

Key switching is a technique that changes a RLWE-ciphertext (or RLWE*-ciphertext)
of the same message encrypted under one key to another RLWE-ciphertext (or RLWE*-
ciphertext) encrypted under another key, without decrypting the message. This process
uses a key switching key: the key switching key, written as KSKs1→s2 , is created by
encrypting the first key s1 using the second key s2. This is a standard method described
in many research papers (see, for example, [15, 16, 21]), and for our purposes, we will just
assume we have a function called

KeySwitchs1(X)→s2(X)

that performs this operation2.

6 Extraction of a LWE from a RLWE

This section describes a procedure aimed at extracting an LWE-encryption LWEs(µi) of
the ith coefficient µi ∈ T from a RLWE-ciphertext RLWEs(µ), where the polynomial
message is expressed as

µ(X) =
N−1∑
i=0

µiΩi(X),

where (Ωi(X))0≤i<N = (Xi)0≤i<N but which could be any basis of R. The connection
between s and s will be elucidated in the subsequent discussion.

6.1 An extraction procedure using dual bases

The extraction operation can be articulated using the scalar product: from the polynomial
message µ(X), the coefficient µi can be obtained as

µi = ⟨Ω∗
i (X), µ(X)⟩

This expression is equal to µi by definition of Ω∗
i . Now, considering that

µ(X) = b(X)− s(X) · a(X)− e(X) mod R,

that is to say that µ(X) is given in RLWE-encrypted form c(X) = (a(X), b(X)) ∈ T ×T ,
we have the following relations:

µi = ⟨Ω∗
i (X), µ(X)⟩ = ⟨Ω∗

i (X), b(X)⟩ − ⟨Ω∗
i (X), s(X) · a(X)⟩ − ⟨Ω∗

i (X), e(X)⟩

= ⟨Ω∗
i (X), b(X)⟩ −

N−1∑
j=0

sj⟨Ω∗
i (X), Bj(X) · a(X)⟩ − ⟨Ω∗

i (X), e(X)⟩

:= b(i) − s · a(i) − e(i)

where we have assumed that s(X) is written in a basis (Bj)0≤j<N as

s(X) =
N−1∑
j=0

sjBj(X) and sj = sj−1 for j = 1, . . . , N. (6)

2We don’t need to go into the details of how it works internally, as the process is the same regardless
of the specific cyclotomic polynomial used in the encryption scheme.

20

The values b(i), a(i) and e(i) are thus defined as

b(i) = ⟨Ω∗
i (X), b(X)⟩, a

(i)
j = ⟨Ω∗

i (X), Bj−1(X) · a(X)⟩ for j = 1, . . . , N,

and e(i) = ⟨Ω∗
i (X), e(X)⟩. Thus, we obtain an LWE-encryption of µi as

LWEs(µi) = (a(i), b(i)).

In order to get explicit expressions, we can assume for instance, that Bi(X) = Ωi(X) =
Xi and that a(X) =

∑N−1
j=0 ajΩj(X), b(X) =

∑N−1
j=0 bjΩj(X). Using the expression of

s(X) · a(X) mod ΦM furnished in Lemma 9.2, we then obtain

a
(i)
j = ai−j+1 − aN−j+1+[i]M

t

for j = 1, . . . , N,

and a LWE-encryption of µi as

LWEs(µi) = (a(i), bi).

The dual version of this procedure can be derived in a similar fashion: given an RLWE*-
encryption (a∗(X), b∗(X)) of the polynomial message

µ∗(X) =

N−1∑
j=0

µ∗
jΩ

∗
j (X),

the coefficient µ∗
i can be obtained as

µ∗
i = ⟨Ωi(X), µ∗(X)⟩

= ⟨Ωi(X), b∗(X)⟩ −
N−1∑
j=0

sj⟨Ωi(X), Bj(X) · a∗(X)⟩ − ⟨Ωi(X), e∗(X)⟩

:= b(i) − s · a(i) − e(i)

where we have assumed relations (6). The values b(i), a(i) and e(i) are thus defined as

b(i) = ⟨Ωi(X), b∗(X)⟩, a
(i)
j = ⟨Ωi(X), Bj−1(X) · a∗(X)⟩ for j = 1, . . . , N,

and e(i) = ⟨Ωi(X), e∗(X)⟩. Thus, we obtain an LWE-encryption of µi as

LWEs(µi) = (a(i), b(i)).

Again, explicit expressions can be obtained by assuming for instance, that Bi(X) =
Ωi(X) = Xi and that a∗(X) =

∑N−1
j=0 a∗jΩ

∗
j (X), b∗(X) =

∑N−1
j=0 b∗jΩ

∗
j (X). In that case

a
(i)
j = ⟨Xi−j+1, a∗(X)⟩

and using the expression of Xi−j+1 mod ΦM furnished in Lemma 9.2, we finally obtain

for 1 ≤ j ≤ i+ 1 : a
(i)
j = a∗i−j+1

for i+ 2 ≤ j ≤ M
t + i+ 1 : a

(i)
j = −

∑t−1
ℓ=1 a

∗
ℓM

t
+i−j+1

for M
t + i+ 2 ≤ j ≤ N : a

(i)
j = a∗M+i−j+1

and a LWE-encryption of µ∗
i as

LWEs(µ
∗
i) = (a(i), b∗i).

21

Proposition 6.1 Given an encryption (a(X), b(X)) ∈ T × T of

µ(X) =

N−1∑
j=0

µjΩj(X)

with key s(X) =
∑N−1

j=0 sjBj(X) and an integer index i ∈ {0, . . . , N − 1}, a LWE-
encryption with key s = (s0, . . . , sN−1) of µi is obtained as

LWEs(µi) = (a(i), b(i)),

where

b(i) = ⟨Ω∗
i (X), b(X)⟩, a

(i)
j = ⟨Ω∗

i (X), Bj−1(X) · a(X)⟩ for j = 1, . . . , N.

If we furthermore assume that Ωi(X) = Bi(X) = Xi for 0 ≤ i < N and that

a(X) =

N−1∑
j=0

ajX
j and b(X) =

N−1∑
j=0

bjX
j ,

then

b(i) = bi and a
(i)
j = ai−j+1 − aN−j+1+[i]M

t

for j = 1, . . . , N.

Similarly, given an encryption (a∗(X), b∗(X)) ∈ T ∨ × T ∨ of

µ∗(X) =

N−1∑
i=0

µ∗
iΩ

∗
i (X)

with key s(X) =
∑N−1

j=0 sjBj(X) and an integer index i ∈ {0, . . . , N − 1}, a LWE-
encryption with key s = (s0, . . . , sN−1) of µ

∗
i is obtained as

LWEs(µ
∗
i) = (a(i), b(i)),

where

b(i) = ⟨Ωi(X), b∗(X)⟩ and a
(i)
j = ⟨Ωi(X), Bj−1(X) · a∗(X)⟩ for j = 1, . . . , N.

If we furthermore assume that Ωi(X) = Bi(X) = Xi for 0 ≤ i < N and that

a∗(X) =
N−1∑
j=0

a∗jΩ
∗
j (X) and b∗(X) =

N−1∑
j=0

b∗jΩ
∗
j (X),

then

b(i) = b∗i and


a
(i)
j = a∗i−j+1 for 1 ≤ j ≤ i+ 1

a
(i)
j = −

∑t−1
ℓ=1 a

∗
ℓM

t
+i−j+1

for i+ 2 ≤ j ≤ M
t + i+ 1

a
(i)
j = a∗M+i−j+1 for M

t + i+ 2 ≤ j ≤ N.

(7)

22

Remark 6.2 Alternatively, we could have expressed

µi = ⟨Ω∗
i (X), µ⟩ = ⟨Ω∗

i (X), b(X)⟩ − ⟨Ω∗
i (X), s(X) · a(X)⟩ − ⟨Ω∗

i (X), e(X)⟩
= bi − s · a− ei

by assuming

a(X) =
N−1∑
j=0

ajΩj(X) and b(X) =
N−1∑
j=0

bjΩj(X),

and writing

⟨Ω∗
i (X), s(X) · a(X)⟩ =

N−1∑
j=0

aj⟨Ω∗
i (X),Ωj(X)s(X)⟩,

so that

aj = aj−1 and sj = ⟨Ω∗
i (X),Ωj−1(X)s(X)⟩ for j = 1, . . . , N.

This corresponding encryption is characterized by the use of a secret key with components
drawn from a larger set than the original set S, which could be a disadvantage in certain
implementations.

Algorithm 11 LWE extraction of µi from µ(X) =
∑N−1

j=0 µjΩj(X) ∈ T
Input: (a(X), b(X)) = RLWEs(µ(X)) ∈ T × T , index i ∈ {0, . . . , N − 1}.
1: for each j from 1 to N do
2: aj ← ai−j+1 − aN−j+1+[i]M

t
3: sj ← sj−1

4: end for
5: bi ← (b(X))i
6: Return: LWEs(µi) = (a, bi)

Note: a(X), b(X), s(X) are expressed in (Ωj)0≤j<N

Algorithm 12 LWE extraction of µ∗
i from µ∗(X) =

∑N−1
j=0 µ∗

jΩ
∗
j (X) ∈ T ∨

Input: (a∗(X), b∗(X)) = RLWE∗
s(µ

∗(X)) ∈ T ∨ × T ∨, index i ∈ {0, . . . , N − 1}.
1: for each j from 1 to N do
2: aj ← ⟨Xi+M−j+1, a∗(X)⟩
3: sj ← sj−1

4: end for
5: b∗i ← (b∗(X))i
6: Return: LWEs(µi) = (a, b∗i)

Note: a∗(X), b∗(X) expressed in (Ω∗
j)0≤j<N and s(X) in (Ωj)0≤j<N

6.2 Blind extraction using registers

If the index i of the coefficient we want to extract from

(i) : µ(X) ∈ T or (ii) : µ∗(X) ∈ T ∨

23

is not provided as a specific value but instead as an encrypted index, then the previous
procedure becomes ineffective. In this subsection, we consider the scenario where i is
represented as an RGSW∗-encryption of Ω∗

i (in case (i)) or as an RGSW-encryption of Ωi

(in case (ii)). These RGSW-encryptions are referred to as registers in [33].
In the first scenario, we write

µi = ⟨Ω∗
i (X), µ⟩ = Tr

(
Ω̄∗
i (X)µ(X)

)
where now both µ(X) ∈ T and Ω̄∗

i (X) ∈ R∨ are encrypted as

c(X) = (a(X), b(X)) = RLWEs(µ(X)) ∈ T × T

and
C∗(X) = (a∗j (X), b∗j (X))1≤j≤2ℓ = RGSW∗

s(Ω̄
∗
i (X)) ∈ (T ∨ × T ∨)2ℓ.

A homomorphic external product results in:

c∗(X) = (a∗(X), b∗(X)) = C∗(X)⊡ c(X) = RLWE∗
s(Ω̄

∗
i (X)µ(X))

It then remains to obtain a LWE-encryption of the trace of c∗ and this can be done as in
Proposition 6.1.

In the dual version, we express

µ∗
i = ⟨Xi, µ∗⟩ = Tr

(
X−iµ∗(X)

)
where now both µ∗(X) ∈ T ∨ and X−i ∈ R are encrypted as

c∗(X) = (a∗(X), b∗(X)) = RLWE∗
s(µ

∗(X)) ∈ T ∨ × T ∨

and
C(X) = (aj(X), bj(X))1≤j≤2ℓ = RGSWs(X

−i) ∈ (T × T)2ℓ.

An homomorphic external product then gives

c∗(X) = (a∗(X), b∗(X)) = C(X)⊡ c∗(X) = RGSWs(X
−iµ(X))

and it remains to get a LWE-encryption of the trace of c∗: to this aim, we proceed as in
Proposition 6.1.

6.2.1 Simple extraction

Assume s(X) =
∑N−1

j=0 sjΩj(X) and let (Bi(X))0≤i≤N−1 be a basis ofR and (B∗
i (X))0≤i≤N−1

its dual w.r.t. ⟨·, ·⟩.

Objective: from an encryption C∗(X) = RGSW∗
s(X)(B̄

∗
i (X)) of an index 0 ≤ i < N

and an encryption c(X) = RLWEs(X)(µ(X)) of the polynomial µ(X) =
∑N−1

i=0 µiBi(X),
get a LWE-encryption of µi.

Procedure: (i) compute c∗(X) = (a∗(X), b∗(X)) = C∗(X)⊡ c(X) = RLWE∗
s(X)(B̄

∗
i (X)µ(X));

(ii) write the corresponding LWE-encryption. To this aim, we just write µi = ⟨B∗
i (X), µ(X))⟩

in encrypted form (recall that B̄∗
i (X)µ(X) = b∗(X)− s(X)a∗(X)− e∗(X)):

µi = ⟨B∗
i (X), µ(X))⟩ = Tr(b∗(X))−

N−1∑
j=0

sj⟨Ω̄j(X), a∗(X)⟩ − Tr(e∗(X))

24

so that

LWEs(µi) = (a, b) with aj = ⟨Ω̄j−1(X), a∗(X)⟩, j = 1, . . . , N and b = Tr(b∗(X)).

If a∗(X) and b∗(X) are, for instance, both expressed in the basis Ω∗ as a∗(X) =
∑N−1

k=0 a∗kΩ
∗
k(X)

and b∗(X) =
∑N−1

k=0 a∗kΩ
∗
k(X), then we have b = b∗0 and

aj =

N−1∑
k=0

a∗k⟨XM−j+1,Ω∗
k(X)⟩ = a∗M−j+1 for

M

t
+ 1 < j ≤ N,

= −
t−1∑
ℓ=1

a∗
ℓM

t
−j+1

for 1 ≤ j ≤ M

t
+ 1.

Algorithm 13 Blind Extraction of Coefficient µi of µ(X) ∈ T
Input: Encryption c(X) ∈ T × T of µ(X) =

∑N−1
j=0 µjBj(X) and encryption C∗(X) =

RGSW∗
s(X)(B̄

∗
i (X)) of an index 0 ≤ i < N .

1: c∗(X) = (a∗(X), b∗(X))← C∗(X)⊡ c(X)
2: b← Tr(b∗(X))
3: for j = 1 to N do
4: aj ← ⟨Ω̄j−1(X), a∗(X)⟩,
5: sj ← sj−1

6: end for
7: Return LWEs(µi) = (a, b).

6.2.2 Representation of a linear form of a vector in TN .

Assume s(X) =
∑N−1

j=0 sjΩj(X) and let (Bi(X))0≤i≤N−1 be a basis ofR and (B∗
i (X))0≤i≤N−1

its dual w.r.t. ⟨·, ·⟩. Let ℓ ∈M1,N−1(Z) be a linear form from TN−1 to T:

µ ∈ TN 7→ ℓTµ =
N−1∑
i=0

ℓiµi ∈ T.

Objective: from an encryption C∗(X) = RGSW∗
s(X)(L

∗(X)) of a well-chosen polyno-

mial L∗(X) and an encryption c(X) = RLWEs(X)(µ(X)) of the polynomial µ(X) =∑N−1
i=0 µiBi(X), get a LWE-encryption of ℓTµ.

Procedure: (i) compute c∗(X) = (a∗(X), b∗(X)) = C∗(X)⊡ c(X) = RLWE∗
s(X)(L̄

∗(X)µ(X));

(ii) write the corresponding LWE-encryption.

If C∗ is built to encrypt

L∗(X) =

N−1∑
i=0

ℓiB
∗
i (X)

then we get

⟨L∗(X), µ(X))⟩ =
N−1∑
i=0

ℓi⟨B∗
i (X), µ(X))⟩ =

N−1∑
i=0

ℓiµi.

The corresponding Algorithm is given below:

25

Algorithm 14 Blind Extraction of
∑N−1

i=0 ℓiµi from µ(X) ∈ T
Input: Encryption c(X) ∈ T × T of µ(X) =

∑N−1
j=0 µjBj(X) and encryption C∗(X) =

RGSW∗
s(X)(L̄

∗(X)) with L∗(X) =
∑N−1

i=0 ℓiB
∗
i (X).

1: c∗(X) = (a∗(X), b∗(X))← C∗(X)⊡ c(X)
2: b← Tr(b∗(X))
3: for j = 1 to N do
4: aj ← ⟨Ω̄j−1(X), a∗(X)⟩,
5: sj ← sj−1

6: end for
7: Return LWEs(ℓ

Tµ) = (a, b).

Note that a linear map from TN to TV can be viewed as a set of V linear forms, and
it can be “encrypted” similarly. This corresponds to the linear component of a neural
network layer where both the input data and the weights are encrypted (possibly by two
different persons).

7 Bootstrapping in the prime power cyclotomic setting

The primary objective of bootstrapping in fully homomorphic encryption (FHE) is to
reduce the noise that builds up in ciphertext during operations, as excessive noise can
impede decryption. The key objectives of bootstrapping can be summarized as follows:

(i) Noise Reduction: Enables an unlimited number of homomorphic operations by re-
freshing the ciphertext and lowering the noise level;

(ii) Function Mapping: Facilitates the application of a function during the bootstrapping
process;

(iii) Security Maintenance: Ensures that the original data remains secure throughout the
operation.

In the context of TFHE, this goal can be articulated as follows:

Goal of bootstrapping: Given a LWE-encryption c of µ ∈ Tp with error e and a func-
tion f that maps Tp to T, produce a LWE-encryption of f(µ) with a fresh error of smaller
size than e.

In summary, bootstrapping is crucial for the practical implementation of encrypted com-
putations in HE. A significant contribution of the authors of TFHE was the improvement
of the efficiency of their variant of FHEW bootstrapping, highlighting the need to pre-
serve this efficiency in the context of prime power cyclotomic polynomials. Therefore, it
becomes essential to reformulate the mathematical representation of bootstrapping in a
manner that aligns with our context. The following function serves as the foundation for
our formulation of the bootstrapping process:

Definition 7.1 Given a polynomial v∗(X) ∈ T ∨, the bootstrap function Θv∗ is defined as

Θv∗ : T → T
µ 7→ Tr

(
X−⌊Mµ⌉v∗(X)

)
= ⟨X⌊Mµ⌉, v∗(X)⟩

26

It is important to highlight that this definition and its implementation retain the concepts
of the bootstrapping procedure proposed by Ducas and Micciancio [21], with the distinction
lying solely in its formulation. It is evident that Θv∗ is fully characterized by the values

Θv∗

(i

M

)
, 0 ≤ i ≤M − 1,

along with the observation that

∀µ ∈ T, Θv∗(µ) = Θv∗

(
⌊Mµ⌉

)
.

A homomorphic and efficient implementation of this function, essential for the correctness
of the bootstrapping procedure, must satisfy the following:

Requirement: For all µ ∈ Tp and for all error e ∈ T such that |e| ≤ 1
2p

Θv∗

(
µ+ e

)
= f(µ). (8)

Note that condition (8) implies that

∀µ ∈ T, Θv∗

(
µ
)
= f

(⌊pµ⌉
p

)
.

In this section, we aim to establish clear and concise compatibility conditions on f that
guarantee the existence of v∗ and explicitly determine its form.

7.1 General formulation of the compatibility conditions

Let the function F be defined on the interval 0 ≤ i ≤M − 1 by

F (i) = Θv∗

(i

M

)
= Tr(X−iv∗(X)), 0 ≤ i ≤M − 1,

that is to say

F (i) = Θv∗

(i

M

)
= ⟨Xi, v∗(X)⟩, 0 ≤ i ≤M − 1.

The coefficients of the polynomial

v∗(X) =

N−1∑
i=0

v∗iΩ
∗
i (X) ∈ T ∨

are completely and uniquely determined by the relations

F (i) = Θv∗

(i

M

)
= ⟨Xi, v∗(X)⟩, 0 ≤ i ≤ N − 1,

which leads to
v∗i = F (i), 0 ≤ i ≤ N − 1.

However, the values of F (i) for N ≤ i ≤M − 1 are then constrained by

F (i) = ⟨Xi, v∗(X)⟩, N ≤ i ≤M − 1.

27

For N ≤ i < M , we can express Xi as

Xi =
N−1∑
j=0

βijX
j .

Under this condition, we find that

∀N ≤ i ≤M − 1, F (i) =
N−1∑
j,k=0

βijv
∗
k⟨Xj ,Ω∗

k⟩ =
N−1∑
j=0

βijF (j)

This results in M − N compatibility conditions that may be equivalently expressed in
terms of f as

∀N ≤ i ≤M − 1, f
(⌊p i

M ⌉
p

)
=

N−1∑
j=0

βij f
(⌊p j

M ⌉
p

)
.

7.2 Explicit computation of the test polynomial

It is easy to check from Lemma 9.1 that

∀N ≤ i ≤M − 1, Xi = −
∑

0 ≤ j ≤ N − 1,
[j]M/t = i − N

Xj ,

so that
βij = −δi,N+[j]M/t

where, as is standard, δi,j = 1 if i = J and 0 otherwise. The compatibility relations thus
write

N ≤ i ≤M − 1, F (i) +
∑

0 ≤ j ≤ N − 1,
[j]M/t = i − N

F (j) = 0

or equivalently

∀0 ≤ r ≤ M

t
− 1,

t−1∑
k=0

F
(
ktα−1 + r

)
= 0.

In summary, we can state the following:

Proposition 7.2 There exists a polynomial v∗ ∈ T ∨ such that

∀µ ∈ Tp, Θv∗

(
µ+ e

)
= f(µ)

for all errors e ∈ T with |e| ≤ 1
2p if and only if the function f satisfies the compatibility

conditions

∀0 ≤ r ≤ M

t
− 1,

t−1∑
k=0

f

(⌊(ktα−1 + r) p
M ⌉

p

)
= 0. (9)

The polynomial v∗ are then determined by the relation

v∗(X) =

N−1∑
i=0

f
(⌊p i

M ⌉
p

)
Ω∗
i (X).

28

Remark 7.3 In the specific case where p = t, the compatibility relations simplify to a single
equation:

t−1∑
k=0

f

(
k

t

)
= 0.

This can be understood by noting that for any integer ℓ ∈ Z, it holds that

t−1∑
k=0

f

(
k

t
+

ℓ

t

)
=

t−1∑
k=0

f

(
k

t

)
.

It is important to note that this condition can be easily eliminated by adding a constant to
f prior to bootstrapping and subsequently removing it from the result.

7.3 Homomorphic implementation

We now convert Definition 7.1 into a practical algorithm that operates on the ciphertext
(a, b), which encrypts µ ∈ Tp with a secret key s:

µ = b− s · a− e.

The first step, while not critical to the definition of bootstrapping, is essential for enhancing
its efficiency. This step involves re-encrypting the ciphertext with a smaller key ŝ ∈ Sn̂,
such that

µ = b̂− ŝ · â− ê.

Bootstrapping fundamentally entails the homomorphic computation of an LWE-encryption
of Θv∗(µ) from an LWE-encryption of µ. Since rounding to an integer is not inherently a
homomorphic operation, it is necessary to first approximate

⌊Mµ⌉ = ⌊M(b̂− ŝ · â− ê)⌉

To achieve this, we employ the collapsing strategy from [9]. For the sake of simplicity, we
suppose here that m divides n̂. We denote, on the one hand,

s̃k =
(
ŝm(k−1)+1, ŝm(k−1)+2, . . . , ŝmk

)
∈ Sm, k = 1, . . . , n̂/m, (10)

and on the other hand

ãk =
(
âm(k−1)+1, âm(k−1)+2, . . . , âmk

)
∈ Tm

q , k = 1, . . . , n̂/m, (11)

so that

µ+ e = b̂− ŝ · â = b̂−
n̂/m∑
k=1

s̃k · ãk.

As explained in [9], we then round partial sums s̃k · ãk and not individual products skak
as it is customary [15, 16, 21]. This leads to the approximation

⌊M(µ+ e)⌉ ≈ −
n̂/m∑
k=1

∑
j̃∈Sm

δj̃,s̃k āk,̃j = −
n̂/m∑
k=1

āk,s̃k =: ı, (12)

29

where we denote δ̃i,̃j, for (̃i, j̃) ∈ Sm×Sm, the symbol with value 1 if ĩ = j̃ and 0 otherwise,
and where

ā1,ȷ̃ = ⌊M ã1 · j̃−Mb⌉, āk,̃j = ⌊M ãk · j̃⌉ for k = 2, . . . , n̂/m and j̃ ∈ Sm. (13)

Note that the sum in (12) is valid for all m dividing n̂, in particular for m = 1, where we
recover the usual expression, as seen in [15], for example, or for m = n̂, where the two
sides (of the approx sign) in equation (12) become equal. We finally observe that

X−ı =

n̂/m∏
k=1

X āk,s̃k =

n̂/m∏
k=1

∑
j̃∈Sm

δj̃,s̃kX
āk,ȷ̃ =

n̂/m∏
k=1

Hk(X) (14)

with

Hk(X) =
∑
j̃∈Sm

δj̃,s̃kX
āk,ȷ̃ ∈ R, k = 1, . . . , n̂/m, (15)

so that X−ı · v∗(X) can be computed as the result of n̂/m successive modular products
R× T ∨ applied from the right to the left

X−ı · v∗(X) = Hn/m(X) . . . (H2(X) · (H1(X) · v∗(X))) . . .) (16)

The full bootstrapping procedure involves three steps:

1. Keyswitch Operation: Given c = (a, b) a LWEs-encryption of a message µ ∈ Tp,

compute ĉ = (â, b̂) a LWEŝ-encryption for a reduced size key ŝ;

2. Blind Rotate Operation: Given RGSWs-encryptions of the δj̃,s̃k , computes a RLWE∗
s-

encryption of X−ı · v∗(X);

3. Extract Operation: Compute an LWEs-encryption of the trace of X−ı ·v∗(X), which
is the final output of the bootstrap3.

The first step is entirely standard and resembles for instance what is done in the context
of powers-of-two cyclotomic polynomials; therefore, we will omit its description. Below,
we will outline the two other essential steps in detail.

Blind rotation

Given RGSWs-encryptions of the δj̃,s̃k , it is straightforward to compute the homomorphic
RGSWs-encryptions ofHk(X) for k = 1, . . . , n̂/m,as outlined in Formula (15). Specifically,
we have:

RGSWs(Hk) =
⊕
j̃∈Sm

(
X āk,̃j · RGSWs(δj̃,s̃k)

)
, (17)

where the · denotes the product of the polynomial X āk,̃j ∈ R by each of the polynomial
components of RGSWs(δj̃,s̃k), all of which reside in T ∨. The RLWE∗

s-encrypted value

X−ı · v∗(X) can now be computed homomorphically according to Formula (16) as follows:

RGSWs(Hn/m)⊡ (. . . (RGSWs(H1)⊡ RLWE∗
s(v

∗)) . . .). (18)

Note that RLWE∗
s(v

∗) is defined here as the trivial noise-free zero-mask (0, . . . , 0, v∗(X)).
Additionally, we assume that v∗ aligns with its definition in Proposition 7.2 for the specified
target function f .

3The final LWE-key is fully specified by the polynomial key s(X) =
∑N−1

j=0 sjX
j ∈ R, and the extraction

procedure we adopt guarantees that s = (s0, s1, . . . , sN−1).

30

Algorithm 15 Blind Rotation Algorithm

1: Input: c = (a, b) ∈ Tn̂+1 and RGSWs(δj̃,s̃k) for j̃ ∈ Sm, k = 1, . . . , n̂/m.

2: for j̃ ∈ Sm do
3: Compute: ā1,ȷ̃ = ⌊M ã1 · j̃−Mb⌉
4: for k = 2 to n̂/m do
5: Compute: āk,̃j = ⌊M ãk · j̃⌉.
6: end for
7: end for
8: for k = 1 to n̂/m do
9: Initialize: RGSWs(Hk) = RGSWs(0)

10: for j̃ ∈ Sm do

11: Compute: RGSWs(Hk) = RGSWs(Hk)
⊕(

X āk,̃j · RGSWs(δj̃,s̃k)
)

12: end for
13: end for
14: Initialize: ACC∗ = (0, v∗(X)).
15: for k = 1 to n̂/m do
16: Compute: ACC∗ = RGSWs(Hk)⊡ACC∗

17: end for
18: Output: ACC∗ = RLWE∗

s(X
−ıv∗(X)) with ı = −

∑n̂/m
k=1 āk,s̃k .

Extraction

Assuming that the polynomial key s has been constructed from the key s = (s0, . . . , sN−1)
as

s(X) =
N−1∑
j=0

sjX
j ,

the extraction of the trace Tr(X−ı ·v∗(X)) is straightforward using formula (19) of Propo-
sition 6.1 with i = 0. That is to say, given the encryption (a∗(X), b∗(X)) = RLWE∗

s(X
−ı ·

v∗(X)) ∈ T ∨ × T ∨ of the ACC∗-output of the blind rotate, a LWE-encryption with key
s = (s0, . . . , sN−1) of Tr(X

−ı · v∗(X))) is obtained as

LWEs(Tr(X
−ı · v∗(X))) = (a, b),

with

b = b∗0 and


a1 = a∗0
aj = −

∑t−1
ℓ=1 a

∗
ℓM

t
−j+1

for 2 ≤ j ≤ M
t + 1

aj = a∗M−j+1 for M
t + 2 ≤ j ≤ N.

(19)

7.4 Error estimate of the bootstrap output

An interesting question now arises as to whether the validity of the output error estimate,
established in the standard case t = 2, extends to other primes within the current frame-
work. The next proposition will demonstrate that the increase in variance when moving
from t = 2 to t ≥ 3 is bounded by a factor of two-a growth exactly corresponding to the
variance increase resulting from a single addition.

31

Proposition 7.4 Assume ŝ ∈ Sn̂, with an integer 1 ≤ m ≤ n̂ dividing n̂, and s(X) =∑N−1
j=0 sjX

j. Consider bootstrapping keys

RGSWs(δj̃,s̃i), 1 ≤ i ≤ n̂

m
, j̃ ∈ Sm,

where s̃i are as per (10) and δj̃,s̃i as per (12) and define c
(0)
∗ the trivial noise-free RLWE∗

s

encryption of v∗ and, for k = 1, . . . , n̂/m

c
(k)
∗ = (a

(k)
∗ , b

(k)
∗) = C(k) ⊡ c

(k−1)
∗ where C(k) =

⊕
j̃∈Sm

(
X āk,̃j · RGSWs(δj̃,s̃k)

)
.

Then the variance Var(E) of the LWE-encryption error E = ⟨1, c(n/m)
∗ ⟩ of the bootstrap

output is given by n̂
m
−1∑

j=0

γ

 n̂
m∑

r=j+1

νr

 (1 + ∥s̄∥22)
D−2ℓ

12
+

 n̂
m
−1∑

j=0

Γ

āj+1,̃j +

k−1∑
r=j+2

νr

 ℓ
D2 + ξD

6
|S|mσ2

BK

(20)

with ξD = 2 if D is even and ξD = −1 if D is odd and with s̄(X) =
∑N−1

i=0 s̄iX
i and

∥s̄∥22 =
∑N−1

i=0 s̄2i . The cardinal of S is here denoted |S| and γ and Γ are defined in
Appendix (corollaries. 9.7,9.8).

Remark 7.5 The following bound holds for all t ≥ 2

∀0 ≤ ν ≤M − 1, Γ(ν) ≤ 2N,

and if we suppose that ν is a random variable uniformly distributed in {0, . . . ,M − 1},
then

E(γ(ν)) ≤ 2.

This implies that, in practice, the variance of the bootstrap error for t ≥ 3 is at most twice
as large as in the standard case t = 2.

Proof. The following induction, valid for 1 ≤ k ≤ n̂/m, can be easily derived from Propo-
sition 5.12:

Err(c
(k)
∗) = XνkErr(c

(k−1)
∗) +Xνkδ

(k−1)
∗ + Λ

(k)
∗

=

k−1∑
j=0

 k∏
r=j+2

Xνr

(Xνj+1δ
(j)
∗ + Λ

(j+1)
∗

)
,

where
δ
(j)
∗ = δ(b

(j)
∗)− sδ(a

(j)
∗) and Λ

(j+1)
∗ = decB,ℓ(c

(j)
∗) Err(C(j+1)).

The error embedded in the bootstrap output is obtained by extracting an LWE-encryption

of the trace of c
(n/m)
∗ , i.e., E = ⟨1, c(n/m)

∗ ⟩. Assuming all variables are independent and
centered, its variance is given by

Var(E) =
k−1∑
j=0

Var

〈1,
 k∏

r=j+1

Xνr

 δ
(j)
∗

〉+
k−1∑
j=0

Var

〈1,
 k∏

r=j+2

Xνr

Λ
(j+1)
∗

〉 .

32

The first sum can be split into two terms, computed using Corollary 9.7 of the Appendix:

Var

〈1,
 k∏

r=j+1

Xνr

 δ(b
(j)
∗)

〉
+

〈
1,

 k∏
r=j+1

Xνr

 sδ(a
(j)
∗)

〉 = γ

 k∑
r=j+1

νr

 (1 + ∥s̄∥22)
D−2ℓ

12
.

Similarly, the second sum is computed as follows (using Corollary 9.8 of the Appendix):

Var

ℓ−1∑
g=1

∑
j̃∈Sm

〈
1,

X āj+1,̃j

k∏
r=j+2

Xνr

 decB,ℓ(c
(j)
∗) Err(C(j+1))

〉 = 2ℓ|S|mΓj+1
D2 + ξD

12
,

where

Γj+1 = Γ

āj+1,̃j +
k−1∑

r=j+2

νr

 .

This completes the proof.

7.5 Prime-power bootstrapping versus standard one

This subsection showcases the enhanced flexibility of prime-power bootstrapping compared
to its standard counterpart. To illustrate this, we fix several parameters as follows:

• Security parameters: Consistent with common practice, we select binary keys |S| = 2
and S = {0, 1}, aiming for 128-bit security. Using the LWE-estimator from [1]-
maintained by Martin Albrecht-for q = 264, this translates to a noise standard devi-
ation:

σBK = 2−0.0265N+1.8709,

where N = φ(M) is the degree of the cyclotomic polynomial as well as the dimension
of the ambiant LWE-mask.

• Design parameters: We choose the collapse parameter m = 4, balancing computa-
tional efficiency and accuracy. For the decomposition steps (see Section 5.5), we set
ℓKS = 16, DKS = 2, ℓBR = 6, and DBR = 216. These parameters influence the error
similarly for t = 2 and larger primes t ≥ 3.

• Messages and external products: To examine how variations inN affect performance,
we fix n̂ = 464 and t = 31.

The expected computational cost-neglecting the very fast extraction phase-is approximated
by summing the costs of the bootstrap and key-switch operations:

CBR + CKS ,

where

CBR = n̂/m

(
8N(Km − 1)ℓBR + 4N

(
1 +

3

2
log2N

)
+ 4NℓBR

)
,

and

CKS = (ℓKS + 3)× 3

2
N log2N +N(3ℓKS − 1).

33

Note that for t ≥ 3, substitute N with M in the CBR formula; CKS remains unchanged.
Next, consider a ciphertext with error e, modeled as a centered Gaussian with standard
deviation σ, with density function:

f(x) =
1

σ
√
2π

e−
x2

2σ2 .

The probability of decryption failure-i.e., |e| > 1
2p -is:

P(fail) = P
(
|e| > 1

2p

)
= 2

∫ ∞

1/(2p)
f(x)dx = erfc

(
1

2pσ
√
2

)
.

Thus, for a prescribed failure probability Pfail, the noise threshold is:

σthreshold =
1

2p
√
2 erfc−1(Pfail)

.

When multiple bootstrap outputs are combined via addition, the resulting ciphertext
remains correct with high probability as long as:

nadd σ
2
E ≤ σ2

threshold,

where σE is the error standard deviation after one bootstrap. Building on this setting, we
analyze the maximum number of additions nadd permitted before the failure probability
exceeds Pfail. Specifically, we plot: ⌊

σ2
threshold

σ2
E

⌋
against CBR + CKS for several N values, using the variance Var(E) = σ2

E derived from
formula (20). Here, the sums involving γ and Γ are replaced by 2 and 2N for t ≥ 3, and
by 1 and N for t = 2. We have highlighted in red the points corresponding to values of
N that are powers of two, specifically N = 2048 and N = 4096. It is evident from this
distinction that if we require our cryptosystem to support a specific number of additions,
choosing non-power-of-two values for N provides significantly more options and flexibility.

Figure 1: Number of correct additions of bootstrap outputs versus the cost of a single
bootstrap.

34

8 Trace operators and their homomorphic evaluations

The trace operator is a crucial concept in the study of algebraic fields and structures. It
fundamentally allows for the mapping of elements from a field extension back to the base
field. Moreover, the trace operator is utilized to analyze and manipulate algebraic struc-
tures effectively. In this section, we will demonstrate how it can be computed efficiently
and highlight its significance for fast packing algorithms.

8.1 The complete trace and its encryption

We recall that if K is a Galois extension of a number field K0, then the associated Galois
group Gal(K/K0) is defined as the collection of all automorphisms of K that leave the
subfield K0 unchanged. In our context, the field K = Q[X]/ΦM (X) serves as a Galois
extension of the field K0 = Q. It is well-known that the Galois group in this scenario
comprises the automorphisms τd defined by

τd(P)(X) = P (Xd) for all P ∈ K,

where d is any integer that is co-prime to M . Notably, this group is isomorphic to Z×
M and

its cardinality is precisely N = φ(M), which also represents the degree of the extension.
In what follows, we will explicitly denote the extension and base fields in the notation of
the trace (refer to Definition 3.4) as follows:

TrK/K0
(P) (X) =

∑
1 ≤ d ≤ M
gcd(d,M) = 1

P (Xd), for all P ∈ K.

We have the following useful identities, from which the expression of the dual basis
(Ω∗

i)0≤i<N can be derived (see Formula (3)). Their proof is straightforward and there-
fore omitted:

Proposition 8.1 When M = tα with α ≥ 1 and t being a prime, we have the following
identity in K : For all n, k ∈ Z,

TrK/K0
(Xn) = 0 if [n]M/t ̸= 0 and TrK/K0

(
XkM/t

)
= Mδ[k]t,0 −

M

t
.

As a result, we obtain the following:

• For any polynomial µ(X) =
∑N−1

n=0 µnX
n ∈ K

TrK/K0
(µ(X)) =

t−2∑
k=0

(
Mδ[k]t,0 −

M

t

)
µkM/t = Nµ0 −

M

t

t−2∑
k=1

µkM/t.

• For any index i ∈ Z and any polynomial µ(X) =
∑N−1

n=0 µnX
n ∈ K, we have

TrK/K0

(
Ω̄∗
i (X)µ(X)

)
= µi,

where the definition of the coefficients µi is extended to indices i in Z as above.

Now, to derive an RLWE-encryption of the quantity TrK/K0
(µ(X)) from a RLWE-

encryption of µ(X) ∈ T , a well-established and intuitive strategy can be employed. Start
with an encryption c(X) = (a(X), b(X) ∈ T × T of µ(X) using the key s(X) ∈ R:

b(X) = s(X) · a(X) + µ(X) + e(X) mod R.

35

For any integer d that is co-prime to M , we can rewrite the expression as follows:

b(Xd) = s(Xd) · a(Xd) + µ(Xd) + e(Xd) mod R.

Since ΦM (Xd) is a multiple of ΦM (X) for all integers d co-prime to M (see Proposition
3.2), it follows that (a(Xd), b(Xd)) constitutes an encryption of µ(Xd) with the secret key
s(Xd). Next, a simple key switching from s(Xd) to s(X) transforms this encryption into
one of µ(Xd) under the key s(X), which is now independent of d. Finally, by summing
these encryptions over all integers d that are less than M and co-prime to M , we obtain
an encryption of TrK/K0

(µ(X)) with the key s(X).

Algorithm 16 RLWE Encryption of the Trace of µ(X) ∈ T
1: Input: RLWE encryption c(X) = (a(X), b(X)) ∈ T × T of µ(X) with key s(X) ∈ R
2: Initialize: (aΣ(X), bΣ(X)) = (a(X), b(X)) ∈ T × T
3: for d = 2 to M − 1 such that gcd(d,M) = 1 do
4: Compute: (a(Xd), b(Xd)) mod R
5: Perform key switching:

(ad(X), bd(X)) = KeySwitchs(Xd)→s(X)

(
(a(Xd), b(Xd))

)
6: (aΣ(X), bΣ(X))← (aΣ(X), bΣ(X)) + (ad(X), bd(X))
7: end for
8: Output: (aΣ(X), bΣ(X)) = RLWEs(X)(TrK/K0

(µ(X))) with key s(X)

Despite its straightforward nature, we note that the algorithm necessitates

φ(M) = N = (t− 1)tα−1

key-switches to obtain homomorphic encryptions of all quantities P (Xd) from the encryp-
tion of P (X). To mitigate this cost, we will utilize a Galois tower of field extensions

Q = K0 ⊂ K1 ⊂ . . . ⊂ Kα = K

along with the associated partial traces.

8.2 Partial traces and fast evaluation of the complete trace

When dealing with a tower of field extensions Q ⊆ L ⊆ K, the complete trace from K
to Q can be efficiently expressed in terms of partial traces. The procedure involves first
calculating the partial trace from K down to L, and then from L to Q. This decom-
position effectively simplifies what might otherwise be a complex computation into more
manageable steps. We will explore these optimization opportunities further in this section.

36

8.2.1 Fast evaluation of the trace: a first approach

A tower of fields can be intuitively constructed by introducing, for 1 ≤ j ≤ α, the exten-
sions Kj over Q, which have degree (t− 1)tj−1, defined as follows:

Q = K0 :=
{
P (XM/1) mod ΦM (X), P ∈ Q[X]

}
,

K1 :=
{
P (XM/t) mod ΦM (X), P ∈ Q[X]

}
,

K2 =
{
P (XM/t2) mod ΦM (X), P ∈ Q[X]

}
,

...

Kj =
{
P (XM/tj) mod ΦM (X), P ∈ Q[X]

}
,

...

Kα =
{
P (XM/tα) mod ΦM (X), P ∈ Q[X]

}
= K.

It is noteworthy that K1 is isomorphic to the field Q[X]/Φt(X), while K2 corresponds
to the field Q[X]/Φt2(X). This pattern continues until Kα which coincides with K =
Q[X]/ΦM (X). We then examine the tower structure defined by the following inclusions:

Q = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kα−1 ⊂ Kα = K,

which enables the decomposition of the trace utilizing the tower structure of the associated
Galois groups as follows:

TrK/K0
= TrK1/K0

◦ TrK2/K1
◦ · · · ◦ TrK/Kα−1

. (21)

Lemme 8.2 The Galois groups associated to the successive field extensions may be described
as follows: for all 1 ≤ j ≤ α,

Gal(Kj/K0) =
{
τd | 0 ≤ d ≤ tj − 1, gcd(d, t) = 1

}
,

and for all 0 ≤ j ≤ α− 1:

Gal(K/Kj) =
{
τd | d = ktj + 1, 0 ≤ k ≤ tα−j − 1

}
.

Furthermore, we have, for all 1 ≤ j ≤ α:

Gal(Kj+1/Kj) =
{
τd | d = ktj + 1, 0 ≤ k ≤ t− 1

}
. (22)

Proof. To prove (22), observe that we must have

∀ τd ∈ Gal(Kj+1/Kj), τd

(
XM/tj

)
= XM/tj .

Hence, X(d−1)M/tj = 1, so that (d− 1)M/tj = 0 mod M . In other words, d = ktj + 1 for
some k ∈ Z. In order to prove that we only need to consider values of k in {0, . . . , t− 1},
we decompose k = qt+ r with 0 ≤ r ≤ t− 1, and notice that

dM

tj+1
=

(ktj + 1)M

tj+1
=

((qt+ r)tj + 1)M

tj+1
=

((rtj + 1)M

tj+1
mod M.

37

This completes the proof of (22). Efficiency: We now elucidate why the decomposi-

tion formula (21) facilitates a more efficient homomorphic evaluation of an encryption of
TrK/K0

(µ(X)). The costs can be assessed in terms of the number of necessary automor-
phisms (or key-switchings). Recall that directly computing the complete trace requires
N − 1 = (t− 1)tα−1 − 1 non-trivial automorphisms. By utilizing the decomposition (21),
only t − 1 non-trivial automorphisms are needed for each partial trace TrKj+1/Kj

, for
1 ≤ j ≤ α− 1, and t− 2 automorphisms for evaluating TrK1/K0

. Indeed, the order of the
Galois group GalKj+1/Kj

is t for 1 ≤ j ≤ α − 1, and t − 1 for j = 0. Consequently, the
total number of required automorphisms is (α− 1)(t− 1) + t− 2 = α(t− 1)− 1, which is
significantly less than N − 1.

K0 = Q

K1

K2

K3

K4 = Q[X]
ΦM (X)

degree t− 1

degree t

degree t

degree t

degree (t− 1)t3

4(t− 1)− 1 = 4t− 5

Through partial traces:

(t− 1)t3 − 1

Direct Evaluation:

Efficiency Achieved Through Decomposition

Figure 2: Illustration of the Galois tower with α = 4 and the decomposition of the trace.

The structure of the Galois groups allows us to express the successive traces, for 1 ≤ j ≤
α− 1, as

∀P ∈ K, Trj(P)(X) =
∑

0≤k≤t−1

P (Xktj+1), (23)

and for the case j = 0:

∀P ∈ K, Tr0(P)(X) =
∑

0≤k≤t−1

P (Xk). (24)

Note that Trj(P)(X) = TrKj+1/Kj
(P)(X) for P ∈ Kj+1. Introducing the notation for

0 ≤ j ≤ α (note that Tα = T and T0 ≡ T)

Tj =
{
P (XM/tj) mod Z[X] mod ΦM (X), P ∈ Q[X]

}
,

their homomorphic computation can be carried out as described in the following algorithm:

38

Algorithm 17 Partial Trace Trj(µ) of µ(X) ∈ K for 1 ≤ j ≤ α− 1

1: Input: RLWE encryption c(X) = (a(X), b(X)) ∈ T × T of µ(X) with key s(X) ∈ R
2: Initialize: (aΣ(X), bΣ(X)) = (a(X), b(X)) ∈ T × T
3: for k = 1 to t− 1 do
4: Compute: d = ktj + 1
5: Compute: (a(Xd), b(Xd)) mod R
6: Perform key switching: (ad(X), bd(X)) = KeySwitchs(Xd)→s(X)

(
(a(Xd), b(Xd))

)
7: (aΣ(X), bΣ(X))← (aΣ(X), bΣ(X)) + (ad(X), bd(X))
8: end for
9: Output: (aΣ(X), bΣ(X)) = RLWEs(X)(TrKj+1/Kj

(µ(X))) with key s(X)

We will temporarily defer discussion of a similar algorithm for the trace Tr0 since it can
be further decomposed and optimized. In the meantime, we can present the following:

Proposition 8.3 Let M = tα with α ≥ 1, where t is a prime. We have the following
identities in K : For all ν ∈ Z and all 1 ≤ j ≤ α− 1, the trace is given by:

Trj (X
ν) =


tXν if [ν]M/tj = 0,

0 if [ν]M/tj ̸= 0 and [ν]M/tj+1 = 0,∑t−1
k=0X

ν(1+ktj) if [ν]M/tj+1 ̸= 0.

And for j = 0:

Tr0 (X
ν) =


t− 1 if [ν]M = 0,
−1 if [ν]M ̸= 0 and [ν]M/t = 0,∑t−1

k=1X
νk if [ν]M/t ̸= 0.

In particular

Tr0

(
(1−XM/t)Xν

)
=


t if [ν]M = 0,
0 if [ν]M ̸= 0 and [ν]M/t = 0,∑t−1

k=1X
νk
(
1−XkM/t

)
if [ν]M/t ̸= 0.

8.2.2 Fast evaluation of the Trace: the algebraic approach

We recall that a tower of fields can be constructed using the corresponding tower of Galois
groups via the fundamental theorem of Galois theory. This theorem asserts that for every
subgroup G of Gal(K/Q), there exists an intermediate field G such that Q ⊆ G ⊆ K, with
G being the fixed field of G. Specifically, the fixed field of G comprises those elements
in K that remain unchanged under all automorphisms in G. In our context, identifying
subgroups of Gal(K/Q) is particularly straightforward, as these subgroups are isomorphic
to the subgroups of Z×

M . To enumerate the elements of these Galois subgroups, it is
customary to utilize the generators of the group Z×

M . It is well-known that for a prime
t ≥ 3, the group (Ztα)

× has a generator, unlike the situation for t = 2, which only possesses
a generator if α = 2 or α = 4. Furthermore, this generator can be readily derived in one
of the following ways:

• If g̃ is of order t− 1 in (Ztα)
× then g = (t+ 1)g̃ serves as a generator of (Ztα)

×;

• Alternatively, if g̃ is a generator of Z×
t , it is known that either g = g̃ or g = g̃ + t

will act as a generator of Z×
t2

and also a generator of (Ztβ)
× for any power β ≥ 2 .

39

Thus, assuming that g is a generator of (Ztα)
× coinciding with g̃ or g̃ + t (where g̃ is a

generator of Z×
t), we have

Gal(K/Q) = {τgk , k = 0, . . . , N − 1} ∼= Z×
M
∼= (ZN ,+)

and we have the following sequence of inclusions of additive sub-groups:

(t− 1)tα−1Z1 ⊂ (t− 1)tα−2Zt ⊂ (t− 1)tα−3Zt2 ⊂ . . . ⊂ (t− 1)tZtα−2 ⊂ (t− 1)Ztα−1 ⊂ ZN ,

to which we can associate a tower of Galois groups

{τ1} ⊂ G1 = {τgk , k ∈ (t− 1)tα−2Zt} ⊂ . . . ⊂ Gα−1 = {τgk , k ∈ (t− 1)Ztα−1} ⊂ GalK/Q,

and by the Galois correspondence, a tower of Galois fields

K ⊃ Kα−1 ⊃ . . . ⊃ K1 ⊃ Q. (25)

Note that the fixed field Gj associated with Gj for 1 ≤ j ≤ α − 1 is unique and must
coincide with with Kj due to the following relationships:

[K : Kj] = |Gal(K/Kj)| = tα−j = |Gj | = [K : Gj].

In summary, we can state the following:

Lemme 8.4 The successive Galois groups associated with the field tower described in (25)
can be characterized as follows:

Gal(Kj+1/Kj) =
{
τd, d = gk(t−1)tj−1

, 0 ≤ k ≤ t− 1
}
, for all 1 ≤ j ≤ α− 1,

Gal(Kj/K0) =
{
τd, d = gk, 0 ≤ k ≤ (t− 1)tj−1 − 1

}
, for all 1 ≤ j ≤ α.

The corresponding composition of partial traces

TrK/K0
= Tr0 ◦ Tr1 ◦ · · · ◦ Trα−1.

involves
(α− 1)(t− 1) + t− 2 = α(t− 1)− 1

non-trivial automorphisms.

Another “natural” tower of Galois groups is given by the sequence

{τ1} ⊂ H1 = {τgk , k ∈ tα−1Zt−1} ⊂ . . . ⊂ Hα−1 = {τgk , k ∈ tZ(t−1)tα−2} ⊂ GalK/Q

which is associated with the field tower

K ⊃ Hα−1 = Q(τ(X), τ ∈ Hα−1) ⊃ . . . ⊃ H1 = Q(τ(X), τ ∈ H1) ⊃ Q.

where Q(τ(X), τ ∈ Hj) represents the field generated by the elements τ(X), τ ∈ Hj . The
associated trace decomposition differs slightly from the previous one but does not provide
any computational advantage; thus, it will not be further discussed.

Remark 8.5 In general, there are several possible configurations for towers of Galois groups.
For illustration, we will comprehensively construct these towers with t = 7 and α = 2.
Specifically, we create the Tower of Subgroups of the Multiplicative Group Z×

49:

40

(i) The group Z×
49 consists of integers from 1 to 48 that are coprime to 49. There are

|Z×
49| = φ(49) = 7 · 6 = 42 elements in Z×

49:

Z×
49 = {1, . . . , 6, 8, . . . , 13, 15, . . . , 20, 22, . . . , 27, 29, . . . , 34, 36, . . . , 41, 43, . . . , 48}.

(ii) The possible orders of the subgroups must divide 42 (the order of the group). Thus,
the possible orders are: 1, 2, 3, 6, 7, 14, 21, 42.

(iii) The subgroups of Z×
49 are thus:

Order 1: G0 = H0 = {1}.
Order 2: H0,2 = {1, 48}.
Order 3: H0,3 = {1, 18, 30}.
Order 6: H1 = {1, 18, 19, 30, 31, 48}.
Order 7: G1 = {1, 8, 15, 22, 29, 36, 43}.
Order 14: G1,3 = {1, 6, 8, 13, 15, 20, 22, 27, 29, 34, 36, 41, 43, 48}.
Order 21: G1,2 = {1, 2, 4, 8, 9, 11, 15, 16, 18, 22, 23, 25, 29, 30, 32, 36, 37, 39, 43, 44, 46}.
Order 42: G2 = H2 = Z×

49.

G0 = H0 = {1}

H0,2 = {1, 48} H0,3 = {1, 18, 30}

G1 = {1, 8, 15, 22, 29, 36, 43}

H1 = {1, 18, 19, 30, 31, 48}

G1,3 = {1, 6, 8, . . . , 41, 43, 48}

G1,2 = {1, 2, 4, . . . , 43, 44, 46}

G2 = H2 = Z×
49

Figure 3: Tower of subgroups of the multiplicative group Z×
49.

Note that we have not represented the more elementary towers with fewer subgroups such
as G0 ⊂ H1 ⊂ H2.

Now, a last observation is in order: as can be seen on the example in Remark 8.5, the
subgroups G1,2 or G1,3 can be introduced in the sequence

G1 ⊂ G1,2 ⊂ G2 or G1 ⊂ G1,3 ⊂ G2.

If ℓ divides t−1, it is in fact always possible to introduce a subgroup Gα−1,ℓ in the sequence
of inclusions

Gα−1 ⊂ Gα−1,ℓ ⊂ Gα = Z×
M

41

into strict subgroups of cardinals ℓ and (t − 1)/ℓ as soon as t ≥ 3. The Galois subgroup
Gα−1,ℓ is again characterized by the corresponding subgroup ℓZN

ℓ
of ZN

Gα−1,ℓ = {τgk , k ∈ ℓZN
ℓ
}

to which we can associated the field extension K1,ℓ := Q(τ(X), τ ∈ Gα−1,ℓ) in such a way
that

K1 ⊃ K1,ℓ ⊃ Q.

More generally, if t − 1 = ℓ1ℓ2 · · · ℓr with r ≥ 2, we can establish the following tower of
subgroups:

Gα−1 ⊂ Gα−1,ℓ1···ℓr ⊂ Gα−1,ℓ1···ℓr−1 ⊂ . . . ⊂ Gα−1,ℓ1 ⊂ Gα = Z×
M

Let K1,ℓ1···ℓj denote the associated fixed field such that:

K1 ⊃ K1,ℓ1···ℓr ⊃ K1,ℓ1···ℓr−1 ⊃ . . . ⊃ K1,ℓ1 ⊃ Q.

For 2 ≤ j ≤ r, we have:

Gal(K/K1,ℓ1ℓ2···ℓj−1
) = {τgk , k ∈ (ℓ1 · · · ℓj−1)Zℓj ···ℓr}.

Additionally,

Gal(K1,ℓ1ℓ2···ℓj/K1,ℓ1ℓ2···ℓj−1
) =

{
τ
gkℓ1···ℓj−1 , k ∈ Zℓj

}
.

As an immediate consequence, the first term of the decomposition in (21) can be factored
as follows:

TrK1/Q = TrK1,ℓ1
/Q ◦ TrK1,ℓ1ℓ2

/K1,ℓ1
◦ · · · ◦ TrK1,ℓ1ℓ2···ℓr/K1,ℓ1ℓ2···ℓr−1

.

The evaluation of this trace requires:

r∑
j=1

(ℓj − 1)

non-trivial automorphisms instead of t−2. This reduction is particularly significant when
t− 1 = 2γ , since

r∑
j=1

(ℓj − 1) =

γ∑
j=1

(2− 1) = γ = log2(t− 1).

It has become quite straightforward to obtain the following algorithm for the optimized
partial trace TrK1/Q:

42

Algorithm 18 Partial Trace Tr0(µ) of µ(X) ∈ K
1: Input: c(X) = (a(X), b(X)) = RLWEs(X)(µ(X)) of µ(X) with key s(X) ∈ R, g a

generator of Z×
M and t− 1.

2: Initialize: Π = t− 1, ℓ = 2 and (ã(X), b̃(X)) = (a(X), b(X)) ∈ T × T
3: while Π > 1 do
4: while ℓ ∤ Π do
5: ℓ← NextPrime(ℓ)
6: end while
7: Π← Π/ℓ
8: (aΣ(X), bΣ(X))← (ã(X), b̃(X))
9: for k = 1 to ℓ− 1 do

10: Compute: d = gkΠ

11: Compute: (ã(Xd), b̃(Xd)) mod R
12: Perform key switching:

(ãd(X), b̃d(X)) = KeySwitchs(Xd)→s(X)

(
(ã(Xd), b̃(Xd))

)
13: (aΣ(X), bΣ(X))← (aΣ(X), bΣ(X)) + (ãd(X), b̃d(X))
14: end for
15: (ã(X), b̃(X))← (aΣ(X), bΣ(X))
16: end while
17: Output: (ã(X), b̃(X)) = RLWEs(X)(Tr0(µ(X))) with key s(X)

8.2.3 General expression of the trace for t ≥ 3.

Assume g that is a generator of Z×
M and that N = ℓ1ℓ2 · · · ℓr, where (ℓk)1≤k≤r represents

a sequence of prime divisors, some of which may occur more than once. We define

Fℓ = {τgk , k ∈ ℓZN
ℓ
} ⊂ Z×

M

resulting in the following sequence of subgroup inclusions:

{1} = Fℓ1···ℓr ⊂ Fℓ1···ℓr−1 ⊂ . . . ⊂ Fℓ1 ⊂ F1 = Z×
M

Let Fℓ denote the fixed field associated with Fℓ, such that:

K = FN = Fℓ1···ℓr ⊃ Fℓ1···ℓr−1 ⊃ . . . ⊃ Fℓ1 ⊃ F1 = Q

Consequently, the trace can be expressed as:

TrK/Q = TrFℓ1
/Q ◦ TrFℓ1ℓ2

/Fℓ1
◦ · · · ◦ TrK/Fℓ1ℓ2···ℓr−1

.

The corresponding Galois groups are given for 0 ≤ j ≤ r by

Gal(Fℓ1···ℓj/Fℓ1···ℓj−1
) = {τgk , k ∈ (ℓ1 · · · ℓj−1)Zℓj}

where we adopt the convention that ℓ0 = 1. We now present the corresponding algorithm:

43

Algorithm 19 CompleteTrace: computes an encryption of TrK/Q(µ) for µ(X) ∈ T
1: Input: c(X) = (a(X), b(X)) = RLWEs(X)(µ(X)) of µ(X) with key s(X) ∈ R, g a

generator of Z×
M and N = φ(M).

2: Initialize: Π← N , ℓ← 2 and (ã(X), b̃(X))← (a(X), b(X)) ∈ T × T
3: while Π > 1 do
4: while ℓ ∤ Π do
5: ℓ← NextPrime(ℓ)
6: end while
7: Π← Π/ℓ
8: (aΣ(X), bΣ(X))← (ã(X), b̃(X))
9: for k = 1 to ℓ− 1 do

10: Compute: d = gkΠ

11: Compute: (ã(Xd), b̃(Xd)) mod R
12: Perform key switching: (ãd(X), b̃d(X)) = KeySwitchs(Xd)→s(X)

(
(ã(Xd), b̃(Xd))

)
13: (aΣ(X), bΣ(X))← (aΣ(X), bΣ(X)) + (ãd(X), b̃d(X))
14: end for
15: (ã(X), b̃(X))← (aΣ(X), bΣ(X))
16: end while
17: Output: (ã(X), b̃(X)) = RLWEs(X)(TrK/Q(µ(X))) with key s(X)

We conclude this section by presenting Algorithm 20 for the partial trace Tri,j , which
maps a Q-extension of degree i to a Q-extension of degree j|i within the field K:

Tri,j = Trj ◦ . . . ◦ Tri.

Note that if i/j has a non-trivial divisor, say d for instance, then it is more efficient to

Algorithm 20 PartialTracei→j : computes an encryption of Tri,j(µ) for µ(X) ∈ T
1: Input: c(X) = (a(X), b(X)) = RLWEs(X)(µ(X)) of µ(X) with key s(X) ∈ R, g a

generator of Z×
M , j|i, i|N = φ(M).

2: Initialize: ℓ← i/j and (aΣ(X), bΣ(X))← (a(X), b(X)) ∈ T × T
3: for k = 1 to ℓ− 1 do
4: Compute: d = gkj and (a(Xd), b(Xd)) mod R
5: Perform key switching: (ad(X), bd(X)) = KeySwitchs(Xd)→s(X)

(
(a(Xd), b(Xd))

)
6: (aΣ(X), bΣ(X))← (aΣ(X), bΣ(X)) + (ad(X), bd(X))
7: end for
8: Output: (aΣ(X), bΣ(X)) = RLWEs(X)(Tri,j(µ(X))) with key s(X)

compute Tri,j by applying Algorithm 20 twice, specifically as Tri,dj ◦ Trdj,j .

9 Fast packing operations

A complete packing operation typically processes several LWE-ciphertexts of messages
µi ∈ T and produces a single RLWE-ciphertext that encrypts a polynomial comprised of
the µi’s (or linear functions of the µi’s). This procedure has been established within the
framework of power of two cyclotomic polynomials; however, it remains unaddressed for
general cyclotomic fields.

44

In this section, our objective is to generalize this construction to cyclotomic polynomi-
als with index M = tα, where t is an arbitrary prime number. To achieve this, we will first
demonstrate how to derive a RLWE encryption from a LWE-ciphertext containing a single
message µ ∈ T, and subsequently extend this methodology to accommodate multiple LWE
ciphertexts.

9.1 From a single LWE-ciphertext to an RLWE-ciphertext

Consider a LWE-ciphertext c = (a, b) ∈ Tn × T representing a message µ ∈ T with the
key s = (s0, s1, . . . , sn−1):

b = s · a+ µ+ e mod 1.

Our aim is to transform c into an RLWE encryption of µ ∈ T , treating it as a constant
polynomial. In the conventional scenario where t = 2, it is well-established, as detailed
for instance in [12], that this can be achieved through the following procedure. First, we
define (assuming that N ≥ n)

a(X) =

n−1∑
i=0

ai+1X
−i mod (XN + 1) mod 1, b(X) = b,

and

s(X) =

n−1∑
i=0

si+1X
i,

and then compute
µ(X) = b− s(X) · a(X).

The pair (a(X), b(X)) does not directly serve as an RLWE-encryption of µ; rather, it is
an RLWE-encryption of µ(X), which encapsulates µ (with some associated noise) in its
constant term. To “purify” this ciphertext and eliminate unwanted coefficients, the trace
is then applied homomorphically, yielding the desired RLWE-encryption of µ.

In the broader context where M = tα with t being a prime greater than 3, this
methodology necessitates some modifications. We begin by (re-)defining:

a(X) =

n−1∑
i=0

ai+1Ω̃i(X) mod R, s(X) =

n−1∑
i=0

si+1X
i, b(X) = b,

where
Ω̃i(X) = (Ω̄∗

0)
−1(X)Ω̄∗

i (X) mod ΦM .

Note that this formulation encompasses the case t = 2, since in that scenario, Ω̃i(X) =
X−i. Now, we define

µ(X) = b(X)− s(X) · a(X),

and we can observe from Proposition 8.1 that the coefficient (µ(X))0 can be extracted
using the following trace formula in K:

µ(X)0 = Tr
(
Ω̄∗
0(X) · µ(X)

)
= b−

n∑
i=1

siai = µ+ e. (26)

45

Indeed, from Proposition 8.1, we have:

Tr
(
Ω̄∗
0(X) (b(X)− s(X) · a(X))

)
= b−

n−1∑
i,j=0

si+1aj+1Tr
(
Ω̄∗
i (X)Xj

)
= b−

n∑
i,j=1

siajδi,j .

At this juncture, several points merit attention. Firstly, it is essential to acknowledge
the importance of the multiplicative kernel Ω̄∗

0; in its absence, the trace would result in a
complex expression encompassing all coefficients of µ (refer to Proposition 8.1 for further
details). Secondly, the product Ω̄∗

0(X) · µ(X), which maps R∨ × T to T ∨, along with
similar products, must be calculated modulo R∨ (see Remark 3.8). Therefore, the most
judicious strategy is to carry out the computation

Tr
(
Ω̄∗
0(X) · µ(X)

)
in K and subsequently reduce the coefficients modulo 1 to return to the torus. The second
step now involves evaluating the quantity

Tr
(
Ω̄∗
0(X) · µ(X)

)
homomorphically in K. This trace is computed homomorphically through an appropri-

Algorithm 21 LWE-to-RLWE : re-encryption of a single LWE-ciphertext

Input: c = (a, b) = LWEs(µ) with b− s · a = µ+ e

1: a(X)←
∑n−1

i=0 ai+1Ω̃i(X) mod R, b(X)← b.

2: Return ĉ(X) = (â(X), b̂(X)) = Tr0 ◦ Tr1 ◦ · · · ◦ Trα−1(Ω̄
∗
0(X)a(X), Ω̄∗

0(X)b(X)).

ate decomposition along a tower of extensions (and the corresponding Galois groups of
automorphisms), as previously described:

TrK/K0
= Tr0 ◦ Tr1 ◦ · · · ◦ Trα−1. (27)

This can be accomplished very efficiently, as demonstrated in Lemma 8.4, or even more
effectively using Algorithm 19. A comprehensive description of the re-encryption procedure
is provided in Algorithm 21.

9.2 Packing a set of LWE-ciphertexts into one RLWE-ciphertext

We now turn our attention to the situation in which we seek to pack tβ N
M (with 1 ≤ β ≤

α− 1) LWE-encryptions of messages (µi)0≤i≤tβ N
M

−1 into a single RLWE-encryption of

tβ N
M

−1∑
i=0

µiX
iM
tβ .

To each µi, we can associate a ciphertext as previously described:

c(i)(X) = (a(i)(X), b(i)(X)),

where the phase µ(i)(X) includes µi as its constant coefficient (along with a certain level
of noise) while the other coefficients are yet to be eliminated. Our aim is to leverage the
decomposition property of the complete trace to minimize the computational cost of the

46

elimination process while packing the various LWE-ciphertexts together. There are three
methods to achieve an RLWE-encryption of

tβ N
M

−1∑
i=0

µiX
iM
tβ

from the ciphertexts c(i)(X), which we will now describe.

9.2.1 A first strategy

This first approach is somewhat naive; it involves cleaning each c(i)(X) by applying the
complete trace operator homomorphically to each c(i)(X) in order to obtain a new cipher-
text

ĉ(i)(X) = RLWEs(X)

(
Tr
(
Ω̄∗
0(X) · µ(i)(X)

))
as described in the previous section, that now serves as an RLWE-encryption of µi. Sub-
sequently, the expression

tβ N
M

−1∑
i=0

X
iM
tβ · ĉ(i)(X)

naturally provides a RLWE-encryption of

tβ N
M

−1∑
i=0

µiX
iM
tβ .

While we can employ a rapid evaluation of the trace Tr = TrK/K0
, this approach remains

expensive in practice, as it requires the computation of

tβ
N

M

(
(α− 1)(t− 1) +

r∑
i=1

(ℓj − 1)

)
automorphisms homomorphically (noting that t− 1 =

∏r
i=1 ℓr in this context).

Algorithm 22 LWEs-to-RLWE : packs several LWEs in an encrypted polynomial

Input: ci = (ai, bi) = LWEs(µi) for 0 ≤ i < tβ N
M

1: for i = 0 to tβ N
M − 1 do

2: ĉ(i)(X)← LWE-to-RLWE(ai, bi)
3: end for

4: Return ĉ(X) =
∑tβ N

M
−1

i=0 X
iM
tβ · ĉ(i)(X)

Note: The LWE-to-RLWE in step 2 refers to the homomorphic computation of the trace
as outlined in Algorithm 19.

9.2.2 A second strategy

We begin by observing that the partial traces in equation (27) can be rearranged in any
order when viewed as operators on K. This property is well-established and is briefly
illustrated in Figure 4. In particular, we have

TrK/K0
= Trα−1 ◦ · · · ◦ Tr1 ◦ Tr0.

47

Q

L = KH

K

[L : Q] =
|Gal(K/Q)|

|H|

[K : L] = |H|

H

Gal(K/Q)

{Id}

Q

M = KGal(K/Q)/H

K

[M : Q] = |H|

[K : L] =
|Gal(K/Q)|

|H|

Figure 4: Field towers corresponding to the subgroups H and Gal(K/Q)
H within Gal(K/Q)

are presented. The complete trace can be represented either as TrL/Q◦TrK/L or as TrM/Q◦
TrK/M. When all traces are extended to K, it follows with a slight abuse of notations that
TrL/Q ◦ TrK/L = TrK/L ◦ TrL/Q.

We will then undertake this packing process in two steps. In the first step, we will
homomorphically construct a polynomial that incorporates µi as the coefficient at the iM

tβ
-

th position for all 0 ≤ i ≤ tβ N
M −1, while the other coefficients will be inconsequential (this

step will require using the partial trace TrKβ/Q for each c(i)). In the second step, we will
apply the trace TrK/Kβ

to this polynomial, thereby eliminating the remaining unwanted
coefficients effectively.

To detail the first step, we first observe that the iM
tβ
-th coefficient of the quantity

µ(X) =

tβ N
M

−1∑
i=0

µ(i)(X)X
iM
tβ

encrypted by

c(X) =

tβ N
M

−1∑
i=0

c(i)(X)X
iM
tβ

does not coincide with the message µi, although, by construction, the constant coefficient
of µ(i) is equal to µi for all 0 ≤ i ≤ tβ N

M − 1. In order to construct a polynomial that has
this desired property we first apply the trace operator

TrKβ/Q = Trβ−1 ◦ Trβ−2 ◦ · · · ◦ Tr1 ◦ Tr0

to each

Ω̄∗
0(X)µ(i)(X), i = 0, . . . , tβ

N

M
− 1,

in order to remove all its monomials whose exponents are non-zero multiples of M
tβ

= tα−β

(refer to definitions (23) and (24) for these partial traces). Specifically:

• The operator Tr0 removes all monomials with exponents that are non-zero multiples
of tα−1.

• The operator Tr1 eliminates all monomials whose exponents are multiples of tα−2

but not multiples of tα−1, while preserving those monomials with exponents that are
multiples of tα−1.

48

• This elimination process continues in a similar fashion for the subsequent trace op-
erators.

• Lastly, the operator Trβ−1 discards all monomials with exponents that are multiples
of tα−β but not multiples of tα−β+1, while keeping intact those monomials with
exponents that are multiples of tα−β+1.

The resulting RLWEs are given by

ĉ(i)(X) = RLWEs(X)

(
TrKβ/Q

(
Ω̄∗
0(X)µ(i)(X)

))
.

These are then summed up to form

ĉ(X) =

tβ N
M

−1∑
i=0

ĉ(i)(X)X
iM
tβ .

Finally, the trace TrK/Kβ
is applied, resulting in

č(X) = RLWEs(X)

(
TrK/Kβ

(ĉ(X))
)
.

This process can be encapsulated in Algorithm 23. The total number of automorphisms

Algorithm 23 FastPack: packs tβ N
M LWE-ciphertexts in an encrypted polynomial

Input: c(i)(X) = RLWEs(X)(µ
(i)(X)) with (µ(i)(X))0 = µi and 1 ≤ β ≤ α− 1

1: for i = 0 to tβ N
M − 1 do

2: ĉ(i)(X)← PartialTraceN/tβ→1

(
Ω̄∗
0(X)c(i)(X)

)
3: end for

4: ĉ(X)←
∑tβ N

M
−1

i=0 X
iM
tβ · ĉ(i)(X)

5: č(X)← PartialTraceN→N/tβ (ĉ(X))

6: Return č(X) = RLWEs(X)

(∑tβ N
M

−1

i=0 µiX
iM
tβ

)
.

Note: The PartialTrace in steps 2 and 5 refers to the homomorphic computation of the
trace as outlined in Algorithm 20.

required in this strategy is (β − 1)(t − 1)tβ N
M + (α − β)(t − 1) +

∑r
j=1(ℓj − 1), which is

less than the cost tβ N
M ((α− 1)(t− 1) +

∑r
i=1(ℓj − 1)) of the first approach (noting that

β ≤ α− 1).

9.2.3 The optimal strategy

We now present an additional refinement aimed at reducing the computational cost of the
packing procedure. Our goal is to evaluate the following expression more efficiently:

µ(X) =

tβ N
M

−1∑
i=0

(
Tr
(
Ω̄∗
0(X) · µ(i)(X)

))
X

iM
tβ

=

tβ N
M

−1∑
i=0

TrK/Kβ
◦ TrKβ/Q

(
Ω̄∗
0(X) · µ(i)(X)

)
X

iM
tβ .

49

We first utilize the fact that TrK/Kβ
preserves the monomials with exponents that are

multiples of M
tβ
, which allows us to express:

µ(X) = TrK/Kβ
(µβ(X)), µβ(X) =

tβ N
M

−1∑
i=0

TrKβ/Q

(
Ω̄∗
0(X) · µ(i)(X)

)
X

iM
tβ .

For 0 ≤ i ≤ tβ N
M − 1, we decompose (uniquely) the index i as follows:

i = i0 + i1t+ . . .+ iβ−1t
β−1 =

β−1∑
k=0

ikt
βk

where 0 ≤ ik ≤ t− 1 for k = 0, . . . , β − 2 and 0 ≤ iβ−1 ≤ t− 2. We can then rewrite the
previous sum as:

µβ(X) =
∑

i0,...,iβ−2

∑
iβ−1

(
Trβ−1 ◦ · · · ◦ Tr0

(
Ω̄∗
0(X) · µ(i)(X)

))
X

i0
M

tβ
+i1

M

tβ−1+...+iβ−1
M
t

=
∑

i0,...,iβ−2

Trβ−1 ◦ · · · ◦ Tr1

∑
iβ−1

Tr0

(
Ω̄∗
0(X) · µ(i)(X)

)
Xiβ−1

M
t

Xi0...+iβ−2
M
t2

Here, we have utilized the fact that Trβ−1 ◦ · · · ◦ Tr1 keeps intact those monomials with
exponents that are multiples of M

t . Applying the same reasoning repetitively leads us to
the final sum:

∑
i0

Trβ−1

. . .

∑
iβ−2

Tr1

∑
iβ−1

Tr0

(
Ω̄∗
0(X) · µ(i)(X)

)
Xiβ−1

M
t

Xiβ−2
M
t2

 . . .

X
i0

M

tβ

Let us denote

µ
(i)
0 = Ω̄∗

0(X)µ(i)(X), i = 0, . . . , tβ
N

M
− 1.

The various steps involved in the computation are as follows:

1. Step 1: Compute

µ
(i)
1 (X) =

t−2∑
iβ−1=0

Tr0

(
µ
(i+iβ−1t

β−1)
0 (X)

)
Xiβ−1

M
t , i = 0, . . . , tβ−j N

M
− 1.

2. Step j (for j = 2, . . . , β − 1): Compute

µ
(i)
j (X) =

t−1∑
iβ−j=0

Trj−1

(
µ
(i+iβ−jt

β−j)
j−1 (X)

)
X

iβ−j
M

tj , i = 0, . . . , tβ−j N

M
− 1.

3. Step β: Compute µβ(X) =
∑t−1

i0=0Trβ−1

(
µ
(i0)
β−1(X)

)
X

i0
M

tβ .

4. Final step: Compute the final result µ(X) = Trα−1 ◦ . . . ◦ Trβ(µβ(X)).

50

We summarize the individual steps in the algorithms below, first for cleartexts and then
for ciphertexts. The associated computational cost can be readily assessed in terms of the
occurrences of automorphisms (recall that t − 1 =

∏r
i=1 ℓr in this context) by reviewing

the various steps outlined above:

N

M

(t− 1)tβ−1

(
r∑

i=1

(ℓj − 1)

)
+

β−1∑
j=2

t(t− 1)tβ−j

+ t(t− 1).

Algorithm 25 requires approximately β · t-times fewer keyswitching operations than Algo-
rithm 22 and is always strictly cheaper.

Algorithm 24 Packs tβ N
M LWE-cleartexts in an encrypted polynomial

1: Input: (µ(i)(X)) with (µ(i)(X))0 = µi, i = 0, . . . , tβ N
M − 1

2: Define µ
(i)
0 = Ω̄∗

0(X)µ(i)(X), i = 0, . . . , tβ N
M − 1

3: for i = 0 to tβ−1 N
M − 1 do

4: Initialize: µ
(i)
1 (X)← 0

5: for iβ−1 = 0 to t− 2 do

6: µ
(i)
1 (X)← µ

(i)
1 (X) + Tr0

(
µ
(i+iβ−1t

β−1)
0 (X)

)
Xiβ

M
t

7: end for
8: end for
9: for j = 2 to β − 1 do

10: for i = 0 to tβ−j N
M − 1 do

11: Initialize: µ
(i)
j (X)← 0

12: for iβ−j = 0 to t− 1 do

13: µ
(i)
j (X)← µ

(i)
j (X) + Trj−1

(
µ
(i+iβ−jt

β−j)
j−1 (X)

)
X

iβ
M

tj

14: end for
15: end for
16: end for
17: µβ(X)← 0
18: for i0 = 0 to t− 1 do

19: µβ(X)← µβ(X) + Trβ−1

(
µ
(i0)
β−1(X)

)
X

iβ
M

tβ

20: end for
21: Output: µ(X)← TrK/Kβ

(µβ(X))

Appendix

Elementary operations in prime power cyclotomic rings

In this section of the paper, we explore the elementary operations necessary for manipu-
lating the polynomials in K when the M -th cyclotomic polynomial ΦM is defined by

ΦM (X) =

t−1∑
k=0

XkM
t (28)

so that
ΦM (X)(X

M
t − 1) = XM − 1.

51

Algorithm 25 Packs tβ N
M LWE-ciphertexts in an encrypted polynomial

1: Input: c(i) = (a(i), b(i)) = LWEs(µi) for 0 ≤ i < tβ N
M

2: for i = 0 to tβ−1 N
M − 1 do

3: a(0,i)(X)←
∑N−1

j=0 a
(i)
j+1Ω̄

∗
j (X) mod R, b(0,i)(X)← Ω̄∗

0(X)b(i).
4: end for
5: for i = 0 to tβ−1 N

M − 1 do

6: Initialize: (a(1,i)(X), b(1,i)(X))← (0, 0)
7: for iβ−1 = 0 to t− 2 do
8: (a(1,i)(X), b(1,i)(X))← (a(1,i)(X), b(1,i)(X)) + TR0

(
a(1,i)(X), b(1,i)(X)

)
Xiβ−1

M
t

9: end for
10: end for
11: for j = 2 to β − 1 do
12: for i = 0 to tβ−j N

M − 1 do

13: Initialize: (a(j,i)(X), b(j,i)(X))← (0, 0)
14: for iβ−j = 0 to t− 1 do

15: (a(j,i)(X), b(j,i)(X))← (a(j,i)(X), b(j,i)(X)) + TRj−1

(
a(j,i)(X), b(j,i)(X)

)
Xiβ−j

M

tj

16: end for
17: end for
18: end for
19: Initialize: (a(β,i)(X), b(β,i)(X))← (0, 0)
20: for i0 = 0 to t− 1 do
21: (a(β,i)(X), b(β,i)(X))← (a(β,i)(X), b(β,i)(X)) + Trβ−1

(
a(β,i)(X), b(β,i)(X)

)
Xi0

M

tβ

22: end for
23: Output: (a(X), b(X))← TRα−1 ◦ · · · ◦ TRβ(a

(β,i)(X), b(β,i)(X))

52

Taking the modulo

We begin by deriving a straightforward formula that allows to take the modulo ΦM of any
polynomial of degree less than or equal to M − 1 within the ring K. This can always be
assumed as XM = 1 mod ΦM .

Lemme 9.1 Given M = tα and N = (t− 1)tα−1, consider the polynomial

R(X) =
M−1∑
i=0

riX
i ∈ K.

Then its unique representative modulo ΦM of degree less or equal to N − 1 is given by

(R mod ΦM)(X) =
N−1∑
i=0

(
ri − rN+(i mod M

t
)

)
Xi.

Proof. We first split R into two sums

R(X) =

M−1∑
k=0

rkX
k =

N−1∑
k=0

rkX
k +

M−1∑
k=N

rkX
k =

N−1∑
k=0

rkX
k +

M−N−1∑
k=0

rk+NXk+N .

and then use the following expression of ΦM

XN = −
t−2∑
j=0

XjM
t mod ΦM ,

to rewrite R as

R(X) =
N−1∑
k=0

rkX
k −

M−N−1∑
k=0

rk+N

t−2∑
j=0

Xk+jM
t mod ΦM .

Denoting

i = k + j
M

t
,

and taking into account that 0 ≤ k ≤M −N − 1 = M
t − 1, we have

0 ≤ i ≤M −N − 1 + (t− 2)
M

t
= N − 1 and k = [i]M

t
.

Eventually,

R(X) =
N−1∑
i=0

(
ri − rN+i mod M

t

)
Xi mod ΦM .

Multiplication of polynomials

We now give the expression of the product modulo ΦM of two polynomials.

Lemme 9.2 Consider the following two polynomials of degrees less than M − 1

D(X) =

M−1∑
k=0

dkX
k ∈ K and P (X) =

M−1∑
k=0

akX
k ∈ K.

53

The product D · P results in a polynomial in K, and its unique representative modulo ΦM

of degree less than or equal to N − 1 can be expressed as follows:

(D · P)(X) =
N−1∑
i=0

M−1∑
j=0

dj

(
ai−j − aN−j+i mod M

t

)Xi mod ΦM ,

where we adopt the convention that ak+M = ak for all k ∈ Z.

Proof. The product D · P modulo XM − 1 can easily be written as

D(X)P (X) =
M−1∑
i=0

M−1∑
j=0

djai−j

Xi mod XM − 1,

with the convention that aM+j = aj for all j ∈ Z. Now, by applying Lemma 9.1 to
R = D · P , we obtain the result stated in this lemma.

Remark 9.3 (for t = 2, M = 2N) If either of the polynomials D or P has a degree less
than or equal to (N − 1) –let’s assume D for instance– the summation over j can be
restricted to indices between 0 and N − 1. In the case where both polynomials have degrees
less than or equal to N − 1 and M = 2N , the sums can be further truncated. Specifically,
we have:

D(X)P (X) =

N−1∑
i=0

 i∑
j=0

djai−j −
N−1∑
j=i+1

djaN+i−j

Xi mod XN + 1.

Now, provided that the coefficients of D and P are extended by zeros for indices between
N and M − 1, and that both the negacyclicity and M -periodicity conventions dN+i = −di,
aN+i = −ai and dM+i = di , aM+i = ai for all i ∈ Z hold, then we obtain the simple (and
well-known) formula

D(X)P (X) =

N−1∑
i=0

N−1∑
j=0

djai−j

Xi mod XN + 1.

Estimates of the error growth resulting from a polynomial product

We now turn our attention to the number of non-zero terms in the coefficients of the
product modulo ΦM of two polynomials of degree less than N − 1. Specifically, we seek
to determine the number of non-zero terms in the sums given by

N−1∑
j=0

dj

(
ai−j − aN−j+[i]M

t

)
.

We will show that an accurate estimate of this quantity allows us to effectively evaluate how
the noise is amplified during various encryption operations, including bootstrapping, key-
switching, and packing. For instance, in the particular case where t = 2, this number equals
N (as opposed to 2N), which elucidates the multiplicative factor of N that appears in the
noise levels of nearly all encryption operations involving polynomials. More specifically,
we have the following lemma:

54

Lemme 9.4 Let t be a prime integer, M = tα, with α ≥ 2, and N = φ(M) = t−1
t M .

Consider the polynomials

D =
N−1∑
i=0

diX
i, E =

N−1∑
i=0

eiX
i

where the coefficients di and ei are independent random variables with common standard
deviations σ(D) and σ(E), respectively. Finally, let

P (X) = D(X) · E(X) mod ΦM (X) =
N−1∑
i=0

piX
i

The variance of the random variable pi can be expressed as follows:

σ(pi)
2 =

(
N + i− [i]M

t
+max

(
N − 1− M

t
− i, 0

))
σ(D)2σ(E)2, 0 ≤ i ≤ N − 1.

Proof. For 0 ≤ i ≤ N − 1, let

Ai =
{
0 ≤ j ≤ N − 1, s. t. (i− j) mod M ≤ N − 1 and

(
N − j + [i]M

t

)
≤ N − 1

}
,

Bi =
{
0 ≤ j ≤ N − 1, s. t. (i− j) mod M ≥ N and

(
N − j + [i]M

t

)
≤ N − 1

}
,

Ci =
{
0 ≤ j ≤ N − 1, s. t. (i− j) mod M ≤ N − 1 and

(
N − j + [i]M

t

)
≥ N

}
.

We have from lemma 9.2 the following expression for the coefficient pi:

pi =
∑
j∈Ai

dj

(
ei−j − eN−j+[i]M

t

)
−
∑
j∈Bi

djeN−j+[i]M
t

+
∑
j∈Ci

djei−j .

This formulation relies on the facts

0 ≤ N − j + [i]M
t
≤M − 1

and on the conventions di = ei = 0 for N ≤ i ≤ M − 1 and di+M = di, ei+M = ei for all
i ∈ Z. We also note that

[i− j]M ≥ N =⇒ N − j + [i]M
t
≤ N − 1.

Given the mutual independence of the random variables di and ei for 0 ≤ i ≤ N − 1, we
can derive the expression for the variance of pi:

σ(pi)
2 =

∑
j∈Ai

σ(dj)
2

(
σ(ei−j)

2 + σ(eN−j+[i]M
t

)2
)

+
∑
j∈Bi

σ(dj)
2σ(eN−j+[i]M

t

)2 +
∑
j∈Ci

σ(dj)
2σ(ei−j)

2.

Note that i− j mod M ̸= N − j + i mod M
t) for 0 ≤ j ≤ N − 1. We can easily determine

the sets:

Ai =
{
j such that 1 + [i]M

t
≤ j ≤ i or M −N + i+ 1 ≤ j ≤ N − 1

}
,

Bi =
{
j such that i+ 1 ≤ j ≤ min(N − 1,M −N + i)

}
,

Ci =
{
j such that 0 ≤ j ≤ [i]M

t

}
.

55

From this, we derive the sizes:

|Ai| = i− ([i]M
t
) + max(2N −M − i− 1, 0), |Bi| = min(N − 1,M −N + i)− i, |Ci| = 1 + ([i]M

t
).

Now, taking into account σ(di) = σ(D) and σ(ei) = σ(E), we obtain:

σ(pi)
2 = (2|Ai|+ |Bi|+ |Ci|)σ(D)2σ(E)2.

Finally noting that |Ai|+ |Bi|+ |Ci| = N , we conclude with the result of the lemma.

Remark 9.5 We have

σ((DP)i)
2 = σ(D)2σ(E)2 ×


2t−3
t−1 N − [i]M

t
− 1, if i ≤ (t− 2)

M

t
− 1,

2t− 3

t− 1
N, if i ≥ (t− 2)

M

t
.

Interestingly, these estimates align precisely with Theorem 1 in [20]. In particular, we
recover the formulas for variances that appear at the end of its proof, highlighting the
consistency of our results within that framework.

Lemme 9.6 Let 0 ≤ i ≤ N − 1 and 0 ≤ ν ≤M − 1. The following relation holds:

⟨X−ν ,Ω∗
i (X)⟩ =


δM−ν,i if M

t + 1 ≤ ν ≤M − 1

−δM
t
−ν,[i]M

t

if 1 ≤ ν ≤ M
t

δi,0 if ν = 0

(29)

Proof. We have −(M − 1) ≤ −ν ≤ 0, so that 1 ≤ M − ν ≤ M . We thus have three
cases: (i) 1 ≤M − ν ≤ N − 1: by definition of the dual basis, ⟨X−ν ,Ω∗

i (X)⟩ = δM−ν,i; (ii)

N ≤M − ν ≤M − 1: the application of the modulo gives XM−ν = −
∑t−2

j=0X
M−ν−jM

t so

that ⟨X−ν ,Ω∗
i (X)⟩ = −

∑t−2
j=0 δM−ν−jM

t
,i = −δM

t
−ν,[i]M

t

; (iii)ν = 0: ⟨X−ν ,Ω∗
i (X)⟩ = δ0,i

Corollary 9.7 Let 0 ≤ ν ≤ M − 1 and e∗(X) =
∑N−1

i=0 e∗iΩ
∗
i (X) ∈ K∨. The following

relation holds:

⟨X−ν , e∗(X)⟩ =


e∗M−ν if M

t + 1 ≤ ν ≤M − 1

−
∑t−1

j=1 e
∗
jM

t
−ν

if 1 ≤ ν ≤ M
t

e∗0 if ν = 0

(30)

Furthermore, if the coefficients of e∗ are all centered random variables with the same
standard deviation σ, then one has

Var
(
⟨X−ν , e∗(X)⟩

)
= σ2γ(ν) (31)

with

γ(ν) :=

{
1 if M

t + 1 ≤ ν ≤M − 1 or ν = 0

(t− 1) if 1 ≤ ν ≤ M
t .

(32)

Proof. The first part is a direct application of previous lemma. As for the second one, it
is a simple consequence of the fact that all e∗i ’s are independent variables with the same
variance σ2.

56

Corollary 9.8 Let P ∗(X) =
∑N−1

i=0 p∗iΩ
∗
i (X) ∈ K∨ and Q(X) =

∑N−1
i=0 qiΩi(X) ∈ K.

Assume the coefficients of P ∗ and Q are all independent centered random variables with
variances Var(P ∗) and Var(Q) respectively. Then the following formula holds:

Var
(
⟨X−ν , P ∗(X)Q(X)⟩

)
= Γ(ν)Var(P ∗)Var(Q) (33)

where

Γ(ν) =

N−1∑
i=0

γ ([ν + i]M) .

References

[1] Martin R. Albrecht, Rachel Player, and Sam Scott, On the concrete hardness of
Learning with Errors, Journal of Mathematical Cryptology, vol. 9, no. 3, pp. 169-
203, October 2015. ISSN (Online): 1862-2984, ISSN (Print): 1862-2976.

[2] J.-C. Bajard, T. Gouget, B. Laigle, and M. Naya-Plasencia, RNS Variant of FV-like
Schemes, in Proceedings of the 2017 IEEE International Symposium on Information
Theory (ISIT), 2017, pp. 1596–1600. IEEE.

[3] Bernard, O., Joye, M., Smart, N.P., Walter, M. (2025). Drifting Towards Better Er-
ror Probabilities in Fully Homomorphic Encryption Schemes. In: Fehr, S., Fouque,
PA. (eds) Advances in Cryptology - EUROCRYPT 2025. EUROCRYPT 2025. Lec-
ture Notes in Computer Science, vol 15608. Springer, Cham.

[4] J-F. Biasse and L. Ruiz, FHEW with efficient multibit bootstrapping. In Progress in
Cryptology - LATINCRYPT 2015 (Lecture Notes in Computer Science, Vol. 9230),
K. Lauter and F. RodrÃguez-HenrÃquez (Eds.). Springer, 119-135. https://doi.
org/10.1007/978-3-319-22174-8_7

[5] C. Bootland, W. Castryck, and F. Vercauteren, On the Security of the Multivariate
Ring Learning with Errors Problem, in Proceedings of the 2020 ACM Conference on
Computer and Communications Security (CCS), 2020, pp. 1237–1253. ACM.

[6] J.-P. Bossuat, A. Costache, C. Mouchet, L. Nürnberger, and J.R. Troncoso-
Pastoriza, Practical q-IND-CPA-D-Secure Approximate Homomorphic Encryption,
Cryptology ePrint Archive, Paper 2024/853, 2024.

[7] J. H. Cheon, A. Kim, and Y. Song, A Simple, Efficient Bootstrapping Method for
Fully Homomorphic Encryption over the Integers, Cryptology ePrint Archive, 2021.
https://eprint.iacr.org/2021/180

[8] P. Chartier, M. Koskas, M. Lemou, and F. Méhats, Homomorphic Sign Evaluation
with a RNS Representation of Integers, Advances in Cryptology-ASIACRYPT 2024,
Chung, K.M., Sasaki, Y. (eds.), Lecture Notes in Computer Science, vol. 15484,
Springer, Singapore, 2025. https://doi.org/10.1007/978-981-96-0875-1_9.

[9] P. Chartier, M. Koskas, M. Lemou, and F. Méhats, Fully Homomorphic Encryption
on Large Integers, Cryptology ePrint Archive, 2024.

[10] P. Chartier, M. Koskas, M. Lemou, and F. Méhats, Method for Homomorphically
Determining the Sign of a Message by Dilation, Associated Methods and Devices,
Patent no. WO2023242429 - 12/21/2023. Number and date of priority: FR2205957
- 06/17/2022.

57

https://doi.org/10.1007/978-3-319-22174-8_7
https://doi.org/10.1007/978-3-319-22174-8_7
https://eprint.iacr.org/2021/180
https://doi.org/10.1007/978-981-96-0875-1_9

[11] P. Chartier, M. Koskas, M. Lemou, and F. Méhats, Homomorphic Encryp-
tion Method and Associated Devices and System, Patent no. WO2022129979 -
06/23/2022. Number and date of priority: PCT/IB2020001147 - 12/18/2020.

[12] H. Chen, R. Gilad-Bachrach, K. Han, Z. Huang, A. Jalali, K. Laine, and K. Lauter,
Logistic Regression over Encrypted Data from Fully Homomorphic Encryption, Cryp-
tology ePrint Archive, Report 2018/462, 2018.

[13] H. Chen, W. Dai, M. Kim, and Y. Song, Efficient Homomorphic Conversion Between
(Ring) LWE Ciphertexts, In: K. Sako and N. O. Tippenhauer (eds), Applied Cryp-
tography and Network Security, ACNS 2021, Lecture Notes in Computer Science,
vol. 12726, Springer, Cham.

[14] H. Chen, K. Lauter, and K. E. Stange, Security Considerations for Galois Non-
Dual RLWE Families, Cryptology ePrint Archive, 2021. https://eprint.iacr.
org/2021/1620

[15] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, Faster Fully Homomorphic
Encryption: Bootstrapping in Less Than 0.1 Seconds, Advances in Cryptology –
ASIACRYPT 2016, pp. 3–33. Berlin, Heidelberg, Springer, 2016.

[16] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, TFHE: Fast Fully Homo-
morphic Encryption over the Torus, Journal of Cryptology, 33(1), pp. 34–91, 2020.

[17] A. Costache, B. R. Curtis, E. Hales, S. Murphy, T. Ogilvie, and R. Player, On
the Precision Loss in Approximate Homomorphic Encryption, Cryptology ePrint
Archive, Report 2022/162, 2022.

[18] A. Costache and N. P. Smart, Ring-LWE and its Applications to Lattice-Based Cryp-
tography, in Proceedings of the 2016 IEEE International Conference on Advanced
Information Networking and Applications (AINA), 2016, pp. 163–170.

[19] E. Crockett and C. Peikert, Challenges for Ring-LWE, in Proceedings of the 2017
IEEE International Conference on the Theory and Application of Cryptography
Technology (ACT), 2017, pp. 125–130. IEEE.

[20] De Micheli, G., Kim, D., Micciancio, D., Suhl, A. (2024). Faster Amortized FHEW
Bootstrapping Using Ring Automorphisms. In: Tang, Q., Teague, V. (eds) Public-
Key Cryptography - PKC 2024. PKC 2024. Lecture Notes in Computer Science, vol
14604. Springer, Cham. https://doi.org/10.1007/978-3-031-57728-4_11

[21] L. Ducas and D. Micciancio, FHEW: Bootstrapping Homomorphic Encryption in
Less Than a Second, Advances in Cryptology – EUROCRYPT 2015, pp. 617–640.
Berlin, Heidelberg, Springer, 2015.

[22] C. Gentry, Fully Homomorphic Encryption Using Ideal Lattices, 41st Annual ACM
Symposium on Theory of Computing, pp. 169–178. ACM Press, 2009.

[23] R. Geelen and F. Vercauteren, Fully Homomorphic Encryption for Cyclotomic Prime
Moduli, Cryptology ePrint Archive, Paper 2024/1587, 2024. https://eprint.iacr.
org/2024/1587

[24] M. Joye, SoK: Fully homomorphic encryption over the [discretized] torus PDF, IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2022(4):661-692,
2022

58

https://eprint.iacr.org/2021/1620
https://eprint.iacr.org/2021/1620
https://doi.org/10.1007/978-3-031-57728-4_11
https://eprint.iacr.org/2024/1587
https://eprint.iacr.org/2024/1587

[25] M. Joye, M. Walter, Liberating TFHE: Programmable Bootstrapping with General
Quotient Polynomials, WAHC’22: Proceedings of the 10th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography Pages 1 - 11 https://doi.org/
10.1145/3560827.3563376

[26] A. Kim, J. H. Cheon, and Y. Song, A Simple, Efficient Bootstrapping Method for
Fully Homomorphic Encryption over the Integers, in Proceedings of the 2020 ACM
Conference on Computer and Communications Security (CCS), 2020, pp. 123–145.
ACM.

[27] E. Lee, J.-W. Lee, J.-S. No, and Y.-S. Kim, Minimax Approximation of Sign Func-
tion by Composite Polynomial for Homomorphic Comparison, IEEE Transactions
on Dependable and Secure Computing, 2021.

[28] E. Lee, J.-W. Lee, Y.-S. Kim, and J.-S. No, Optimization of Homomorphic Compar-
ison Algorithm on RNS-CKKS Scheme, IEEE Access, 10, pp. 26163-26176, 2022.

[29] Li, B., Micciancio, D.: On the security of homomorphic encryption on approximate
numbers. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I.
LNCS, vol. 12696, pp. 648-677. Springer, Cham (Oct 2021).

[30] Vadim Lyubashevsky, Chris Peikert, and Oded Regev, A Toolkit for Ring-LWE
Cryptography, Cryptology ePrint Archive, Paper 2013/293, 2013. https://eprint.
iacr.org/2013/293

[31] Y. Lee, D. Micciancio, A. Kim, R. Choi, M. Deryabin, J. Eom, and D. Yoo, Efficient
FHEW Bootstrapping with Small Evaluation Keys, and Applications to Threshold
Homomorphic Encryption, Advances in Cryptology – EUROCRYPT 2023.

[32] D. Micciancio and Y. Polyakov, Bootstrapping in FHEW-like Cryptosystems, Asso-
ciation for Computing Machinery, New York, NY, USA, pp. 17–28, 2021.

[33] D. Micciancio and J. Sorrell, Ring Packing and Amortized FHEW Bootstrapping,
Cryptology ePrint Archive, Paper 2018/532, 2018.

[34] O. Regev, “Learning with Errors,” in Proceedings of the 37th Annual ACM
Symposium on Theory of Computing (STOC), pp. 84–93, 2005, ACM. DOI:
10.1145/1060590.1060608.

[35] O. Regev, “On LWE and RLWE,” in Proceedings of the 2010 5th Theory of Cryptog-
raphy Conference (TCC), vol. 5978, pp. 1–20, 2009.

[36] O. Regev, On Lattices, Learning with Errors, Random Linear Codes, and Cryptog-
raphy, Journal of the ACM (JACM), 56(6), pp. 1–40, 2009.

[37] R. Schwerdt, L. Benz, W. Beskorovajnov, S. Eilebrecht, J. Müller-Quade, and A.
Ottenhues, Sender-binding Key Encapsulation, Cryptology ePrint Archive, Paper
2023/127, 2023.

[38] M. Wang and F. Zhang, On the Construction of Lattice-Based Fully Homomorphic
Encryption Scheme with Prime Power Cyclotomic Polynomials, International Jour-
nal of Information Security, 17(5), pp. 547–560, 2018. https://doi.org/10.1007/
s10207-018-0437-1

59

https://doi.org/10.1145/3560827.3563376
https://doi.org/10.1145/3560827.3563376
https://eprint.iacr.org/2013/293
https://eprint.iacr.org/2013/293
https://doi.org/10.1007/s10207-018-0437-1
https://doi.org/10.1007/s10207-018-0437-1

	Introduction
	Related works
	Algebraic setting
	Prime power cyclotomic polynomials
	The cyclotomic field K and the ring of algebraic integers R
	The module T of polynomials with coefficients in T and its dual T

	Plaintext messages in the TFHE framework
	The set of torus plaintexts
	The set of polynomial plaintexts

	LWE and RLWE encryptions cryptographic schemes
	Encryption/decryption schemes in T
	Encryption/decryption schemes in T and T
	Encryption/decryption schemes in R and R
	Homomorphic addition
	Homomorphic modular product
	Key switching

	Extraction of a LWE from a RLWE
	An extraction procedure using dual bases
	Blind extraction using registers
	Simple extraction
	Representation of a linear form of a vector in TN.

	Bootstrapping in the prime power cyclotomic setting
	General formulation of the compatibility conditions
	Explicit computation of the test polynomial
	Homomorphic implementation
	Error estimate of the bootstrap output
	Prime-power bootstrapping versus standard one

	Trace operators and their homomorphic evaluations
	The complete trace and its encryption
	Partial traces and fast evaluation of the complete trace
	Fast evaluation of the trace: a first approach
	Fast evaluation of the Trace: the algebraic approach
	General expression of the trace for t3.

	Fast packing operations
	From a single LWE-ciphertext to an RLWE-ciphertext
	Packing a set of LWE-ciphertexts into one RLWE-ciphertext
	A first strategy
	A second strategy
	The optimal strategy

