
AsyRand: Asynchronous Distributed Randomness Beacon with Reconfiguration

Abstract—Distributed randomness beacon protocols, which
continuously generate publicly verifiable randomness val-
ues, are crucial for many applications. Recently, there have
been many approaches, such as Hydrand (S&P’20), SPURT
(S&P’22), OptRand (NDSS’23) and GRandLine (CCS’24),
based on publicly verifiable secret sharing (PVSS) to imple-
ment beacon protocols. However, two key challenges remain
unresolved: asynchrony and reconfiguration. In this paper,
we propose the AsyRand beacon protocol to address these
challenges. We incorporate a producer-consumer model to
decouple the distribution and reconstruction of PVSS secrets.
Parties continuously produce and distribute new PVSS com-
mitments, which are the encrypted shares and the proofs.
Meanwhile, all parties store received commitments using first-
in-first-out queues and collectively consume each commitment
to recover the corresponding secret for beacon generation. To
achieve asynchronous consensus, we employ reliable broadcast
for distribution and apply t-validated asynchronous Byzan-
tine agreement for reconstruction. To achieve reconfiguration,
honest parties can collectively remove a faulty party if his
queue remains empty for an extended duration, and a new
party can join the system using reliable broadcast. We also
introduce a novel PVSS scheme based on Sigma protocol
and Fiat-Shamir heuristic, which is of independent interest.
Consequently, AsyRand maintains state-of-the-art complexity
with O(n2) communication complexity, O(n) computation
complexity, and O(n) verification complexity while achieving
asynchrony and reconfiguration. Experimental results high-
light the performance of AsyRand compared to existing works.

1. Introduction

Distributed randomness beacon protocols are designed
to generate trustworthy and verifiable random values con-
tinuously [1], [6], [12], [13], [34], [35], [36]. Beacons have a
broad spectrum of applications, including secure multiparty
computation [2], consensus protocols [6], [18], anonymous
communication [7], [8], blockchain sharding [3], [4] and
Byzantine agreement protocols [5]. The key properties of a
beacon [12], [13], [34] are as follows:

• Liveness/Availability: All honest parties continu-
ously proceed to generate new random output for
every epoch.

• Bias resistance: Each randomness must be unbiased
and uniformly distributed.

• Unpredictability: No party should be able to predict
a beacon’s value before it is generated.

• Public verifiability: Any party can verify that the
beacon values are correctly generated following the
protocol.

• Responsiveness: Beacon values are delivered at the
speed of the actual network.

However, ensuring these properties in an asynchronous
network while supporting reconfiguration remains an open
challenge [10]. An asynchronous network allows messages
to experience arbitrary delays, mirroring real-world network
conditions [28], [46], [51]. Reconfiguration [33], [36], [43],
the process of updating parties, is essential for removing
faulty parties and adding external parties.

1.1. Our Approach in a Nutshell

We adopt publicly verifiable secret sharing (PVSS) (cf.
Section 2.1), the producer-consumer model (cf. Section 2.2),
reliable broadcast (RBC, cf. Section 2.3) and validated asyn-
chronous Byzantine agreement (t-VABA, cf. Section 2.4) to
enable asynchrony and reconfiguration in implementing the
proposed AsyRand beacon.

1.1.1. PVSS. We use PVSS as the underlying cryptographic
primitive in secrets hiding and revealing, where the secrets
serve as the seeds for beacon values generation. In PVSS,
a dealer divides a secret into encrypted shares, each paired
with a validity proof, forming a commitment that anyone
can publicly verify. The dealer distributes the commitment
to shareholders, who decrypt and validate their shares using
the proofs. A subset of these decrypted shares, which are
also publicly verifiable, can reconstruct the dealer’s secret.

1.1.2. Producer-Consumer Model. We leverage the
producer-consumer model to manage PVSS commitments
asynchronously. Each party, playing the role of PVSS dealer,
continuously and independently produces PVSS commit-
ments and distributes to all parties. All parties, as share-
holders, receive and collectively process these commitments
to generate beacon values as follows. Each party locally
maintains a collection of first-in-first-out (FIFO) queues
ComQ , where ComQ [i] stores party i’s PVSS commit-
ments. PVSS commitments are publicly verifiable, ensuring
that no invalid commitments are added to these queues.
Define an epoch as the period in which all parties consume
a PVSS commitment. In each epoch e, the objective is to
generate a new beacon value Re. In epoch e, a leader, say
party L, is randomly elected using the beacon value Re−1

from the previous epoch e−1. All parties reconstruct leader



TABLE 1: Comparison of PVSS-based beacon protocols.

Protocol Network Liveness Comm. Unpred. Bias-rist. Comp. Verif. Reconfig. Resp. Adversary

RandHerd [13] syn. ✗ O(c2 logn) 1 ✗ O(c2 logn) O(1) ✗ ✗ static
SCRAPE [15] syn. ✓ O(n3) 1 ✓ O(n2) O(n2) ✗ ✗ static
HydRand [12] syn. ✓ O(n2) f + 1 ✓ O(n) O(n) ✗ ✗ static
GRandPiper [33] syn. ✓ O(n2) f + 1 ✓ O(n2) O(n2) ✓ ✗ adaptive
SPURT [34] semi-syn. ✓ O(n2) 1 ✓ O(n) O(n) ✗ ✓ adaptive
OptRand [36] syn. ✓ O(n2) 1 ✓ O(n) O(n) ✓ ✓ static
GRandLine [35] syn. ✓ O(n2) 1 ✓ O(n) O(n) ✗ ✓ adaptive
AsyRand asyn. ✓ O(n2) f + 1 ✓ O(n) O(n) ✓ ✓ mobile‡

Unpred. depicts how many future epochs an adaptive rushing adversary can predict. In Hydrand [12], GRandPiper [33] and ours, a worst case exists with
little probability where l(≤ f) colluding malicious parties become leaders consecutively. In this occasion, the colluding parties can predict l future beacon
values. Randomness is fully unpredictable beyond epoch e+ f , due to the presence of at least one honest leader in any consecutive f + 1 epochs.
‡: We enable reconfiguration, meaning parties can join or leave. Thus, we assume a mobile adversary model and f < n/3 holds whenever n changes [48].

L’s secret gs by consuming the leader’s first commitment in
ComQ [L]. Then, the beacon randomness value Re of epoch
e is calculated as Re = Hash(Re−1, gs), where Hash is a
hash function.

1.1.3. Asynchronous Consensus. To guarantee consistency
of PVSS commitments in asynchronous network, we use
RBC for producing PVSS commitments and t-VABA for
consuming them. Each party, as PVSS dealer, continuously
leverages the RBC protocol to achieve consensus on new
PVSS commitments among all parties. All parties, as share-
holders, only add PVSS commitments that have reached
agreement to their local queues. We design a new protocol
t-VABA to enable parties, each holding a decrypted share,
to collaboratively recover the leader’s secret gs in each
epoch. Upon completion of t-VABA, the beacon value Re

is successfully delivered.

1.1.4. Achieving Reconfiguration. AsyRand supports re-
configuration by allowing parties to add or remove parties
dynamically. On the one hand, honest parties can monitor
the status of the queues to judge whether a party is faulty
or not. They can automatically trigger removal of party i
if ComQ [i] is empty for an extended duration, since party
i may have become faulty quietly. On the other hand, a
new party θ (outside the system) can be added via propos-
ing his PVSS commitment via a RBC protocol. Once the
RBC protocol reaches agreement, each party puts θ’s PVSS
commitment into its local queue ComQ [θ].

1.2. Related Works

Many approaches have been explored to build distributed
randomness beacon protocols. Heuristically, public random
numbers can be obtained as a byproduct of Bitcoin’s PoW
consensus [11]. Other cryptographic primitives are also em-
ployed as the underlying tools of beacon protocols, such as
verifiable randomness function (VRF) [9], [18], verifiable
delay function (VDF) [22], [37], threshold signatures [19],
verifiable secret sharing (VSS) [32], [33], [43] and publicly
verifiable secret sharing (PVSS) [12], [15], [34], [35]. Some
beacon protocols [19], [20], also necessitate distributed key

generation (DKG) [20], [21], [24], [25], [35] during the
initial setup. Summarily, these primitives are leveraged to
achieve a commit-and-reveal paradigm. In the committing
phase, distributed parties introduce private randomness or
entropy and broadcast the corresponding commitment to
others; In the revealing phase, the random value is uncovered
and the final beacon value is calculated.

In the context of constructing a commit-and-reveal
paradigm, PVSS schemes [15], [16], [23], [38], [41] are
widely adopted as they do not require a private com-
munication channel and can identify faulty parties. Rand-
Herd [13] divides parties into c-size subgroups to achieve
scalability with communication and computation complexity
O(c2 log n) at the cost of higher liveness failure proba-
bility. The verification complexity is O(1) due to the use
of collective signing with cryptographic multisignatures. In
Ouroboros [6] and SCRAPE [15], n PVSS commitments
from all parties are published for calculating a beacon value,
resulting in O(n3) communication complexity. Moreover,
SCRAPE leverages an optimized PVSS scheme, which
reduces its computation and verification complexities to
O(n2). HydRand [12], GRandPiper [33] and AsyRand lower
the complexity by randomly choosing leaders in each epoch.
In a synchronous network, HydRand and GRandPiper tol-
erates 1/3 and 1/2 faulty parties, respectively. SPURT [34]
improves communication efficiency by aggregating PVSS
commitments based on SCRAPE PVSS within a semi-
synchronous network. However, SPURT weakens the live-
ness of the beacon protocol. If the leader of an epoch is
faulty, the scheme allows parties to output a bot symbol
instead of a randomness value. OptRand [36] further ag-
gregates PVSS commitments and can tolerate up to 1/2
faulty parties, incorporating the advantages of SPURT and
GRandPiper. However, OptRand assumes a synchronous
network model. GRandLine [35] runs with an optimized
DKG in the pre-processing phase, which is based on a
recursive aggregable PVSS. Both GRandPiper [33] and
OptRand [36] facilitate reconfiguration in a synchronized
network. Rondo [43] (based on batched VSS and assuming
semi-synchronous network) enables reconfiguration by re-
quiring joining or leaving parties to actively submit online
proposals.



Byzantine agreement (BA), Byzantine fault tolerance
(BFT) or state machine replication (SMR) [26], [27]
are commonly employed to achieve continuous agreement
among distributed parties. Thus, the combination of PVSS
primitive with BA-, BFT- or SMR-based consensus is widely
employed to implement beacon protocols [12], [13], [33],
[34], [35], [36].

Table 1 compares the PVSS-based beacon protocols.
VSS-based beacon protocols are not included, as they re-
quire private communication channels.

1.3. Contributions

• We propose AsyRand, a new PVSS-based beacon for
asynchronous network, by leveraging a producer-consumer
model, RBC and t-VABA protocols. Each party produces
PVSS commitments continuously and independently. Mean-
while, all parties collectively consume each commitment
to deliver beacon value in every epoch. The production
and consumption of commitments are guaranteed to be
consistent via RBC and t-VABA protocols, respectively.
• Our AsyRand protocol supports reconfiguration. An

external party can request to join by producing a valid
PVSS commitment and distributing it using RBC, and all
honest parties will accept this party upon RBC agreement.
Each party can detect faulty parties by locally monitoring
the state of queues. If the queue corresponding to a party
remains empty for an extended duration, all honest parties
will trigger the removal of this party via t-VABA protocol.
• We propose t-VABA, a novel Byzantine agreement

protocol, where the agreement value may be none of parties’
inputs. Instead, the agreement value is collectively deter-
mined by any t honest parties. In AsyRand, t-VABA is
applied for honest parties to deliver beacon values and to
remove faulty parties.
• As of independent interests, we design a new PVSS

scheme maintaining state-of-the-art complexity by using
Sigma protocol [29] and Fiat-Shamir heuristic [30] to
achieve non-interactive zero knowledge (NIZK) proofs. Nu-
merical results show that our PVSS scheme performs well.

2. Preliminaries

2.1. Publicly Verifiable Secret Sharing (PVSS)

A publicly verifiable secret sharing (PVSS) [15], [17],
[42] enables a dealer to share secrets among distributed
shareholders in a publicly verifiable manner. Particularly,
the dealer shares a secret gs = gs among n shareholders
P = {P1, ..., Pn}, where s ∈ Zp. A PVSS scheme consists
of the following five phases:

1) ({ski, pki}) ← PVSS.Setup(λ, t, n) Each shareholder
Pi generates a key pair (pki, ski).

2) (C, π)← PVSS.Share(s, {pki}) The dealer divides the
secret into n shares. Each share is encrypted into Ci and
all encrypted shares are accompanied by NIZK proofs.
Then the dealer publishes the PVSS commitment, i.e.,
(C = {Ci}, π).

3) bool ← PVSS.Verify(C, π) Any external verifier can
check whether the dealer has honestly shared a secret
given (C, π).

4) Di ← PVSS.PreRecon(Ci, ski) Each shareholder de-
crypts his encrypted share to obtain decrypted share
Di.

5) gs ← PVSS.Recon(C, {Di}i∈T ) With a set of correct
decrypted shares T (|T | ≥ t), the secret value gs =
gs can be reconstructed. Note that incorrect decrypted
shares {Di}i∈T can be detected and be abandoned.

A PVSS scheme satisfies the properties of correctness,
public verifiability and IND1-Secrecy.

• Correctness Correctness ensures that at least t share-
holders follow the protocol, the reconstructed secret
will be identical to the original secret gs.

• Public Verifiability Public verifiability allows any-
one to verify the correctness of the encrypted shares.
Besides, the decrypted shares should also be publicly
verifiable in the reconstruction phase.

• IND1-Secrecy IND1-Secrecy guarantees that an ad-
versary, given any t − 1 secret keys {ski} and the
public information, learns no information about the
secret gs.

2.2. Producer-Consumer Model

Producer-consumer model is a coordination pattern
where a producer generates data items into a shared buffer
while a consumer processes them, enabling asynchronous
workflows. The buffer can be implemented using a FIFO
queue, which ensures that data is consumed in the same
order it is produced. A queue usually has a fixed length. Let
put(·) and get() represent the operations for adding data to
the queue and retrieving data from the queue, respectively.
If each data item is assigned with a sequence number, then
items with larger sequence numbers are suspended from
being added—even if they are ready earlier than others. We
refer the first data item as the earliest unconsumed element
in the queue. Figure 1 depicts the producer-consumer model
vividly.

Figure 1: The producer-consumer model

2.3. Reliable Broadcast

Reliable broadcast (RBC) ensures that a message broad-
cast by an honest dealer is received by all honest parties
in a distributed system. Particularly, Bracha RBC [28] is
regarded as a one-shot consensus algorithm in an asyn-
chronous setting, tolerating f < n/3 faulty parties, where
n is the number of total parties. Suppose the proposal is v.
We slightly modify the Bracha RBC protocol by replacing



the proposed value v (of size O(n)) with its hash value hv.
The details of the modified protocol are depicted as below:

Bracha RBC for O(n)-size v

Step 0. For the dealer j
broadcasts (initial, v).

Step 1. For party i, waits until the receipt of
(initial, v)

broadcasts (echo, hv).

Step 2. For party i, waits until the receipt of
2f + 1 (echo, hv) or (f + 1) (ready, hv)

broadcasts (ready, hv).

Step 3. For party i, accepts v and hv until
the receipt of 2f + 1 (ready, hv).

Note that if party i receives 2f + 1 (ready, hv) without
v in Step 3, it can fetch v from any other parties. The RBC
protocol has the following security properties [45], [46]:

• Validity If the dealer is honest, then all honest parties
eventually delivers the dealer’s proposal v.

• Agreement If an honest party delivers a value v′,
and another honest party delivers v′′, then v′ = v′′.

• Totality If an honest party delivers a value, then all
honest parties eventually deliver a value.

It is well-known that RBC protocols cannot handle cases
with a faulty dealer [26], as it may either prevent consensus
entirely or lead to unbounded termination time in asyn-
chronous settings. We define a symbol “⊥”, representing
an initial consensus status. Also, ⊥ can be initialized as the
default consensus value for all parties. It can be inferred
that consensus value can be changed from ⊥ to some
value v( ̸= ⊥). However, v will be immutable once upon
agreement by all honest parties due to validity, agreement
and totality. Therefore, Claim 1 holds.
Claim 1. In the Bracha asynchronous RBC protocol,

all honest parties eventually share the same consensus
value, either ⊥ or v(̸= ⊥).

2.4. t-Validated Asynchronous Byzantine Agree-
ment (t-VABA)

Suppose there are a group of n distributed parties and at
most f < n/3 of them are faulty. In validated asynchronous
Byzantine agreement (VABA) protocols [46], [51], each
party has an initial value at the beginning and all honest
parties reach agreement on a value in the end. Typically,
VABA protocols require that the agreement value is a pro-
posal from a party. In this section, we introduce a t-validated
asynchronous Byzantine agreement (t-VABA) protocol.
Definition 1 (t-VABA). Each party i has an initial valid

value Ci and all parties’ goal is to reach agreement on
a valid value v (i.e., Predicate(v) = true). v is none of

the initial values, but determined by any t honest parties,
where t is a fixed threshold value.

The predicates Predicate is utilized to validate the output
common value. Similarly to previous VABA protocols [46],
[47], t-VABA is required to achieve the following properties:

• External-validity: If an honest party decides on a
value v, then v is calculated with any t honest
parties’ initial values {Ci} and Predicate(v) = true.

• Agreement: All honest parties that terminate decide
on the same value v.

• Termination: If honest parties input valid initial
values, then they will eventually decide on a value.

3. System and Security Models

3.1. System Model and Assumption

The proposed distributed randomness beacon AsyRand
assumes pairwise connected network for broadcast in an
open environment. By “broadcast”, we mean the message is
sent to all parties (including the sender) through the network.
The network model is asynchronous, so messages can be
arbitrarily delayed. PKI is also assumed so that each party
leverages a public key as its identity.

Denote n as the number of parties remaining in the sys-
tem. f represents the number of faulty parties that may cause
Byzantine failures or disobey the protocols. For simplicity,
we assume n = 3f + 1. Parties can quietly leave without
sending any messages. As we allow for parties changing, we
assume mobile adversary [48], where the condition f < n/3
is assumed to hold regardless of regardless of how n varies.

Each party maintains four processes to produce ran-
domness beacons and handle party joining or removing.
Particularly:

• In the producer process, each party continuously
produces new PVSS commitments using RBC pro-
tocols;

• In the consumer process, a leader is randomly cho-
sen for each epoch and honest parties collectively
deliver a beacon value by consuming the leader’s
first PVSS commitment based on t-VABA protocol;

• In the removal process, honest parties propose to
remove faulty parties;

• In the joining process, honest parties collectively
decide whether to allow a new party to participate
in the system.

We set t = 2f + 1 for t-VABA protocols. An epoch
is the period of consuming a PVSS commitment (via a t-
VABA protocol) in the consumer process. Note that different
parties may in different epochs at a specific time due to
asynchronous network.

The initial beacon value and the initial leader are as-
sumed to be obtained in a decentralized way, which can be
obtained with VDF [37] or a nonce from Bitcoin [11].



Figure 2: Local view at a party, depicting the four processes and the queues recording PVSS commitments

3.2. Threat Model

In the system, malicious parties or adversaries can col-
lude to violate the above properties by arbitrarily biasing
the protocol. A summary of risks and potential attacks is
introduced below: In the producer process, each malicious
party has the following options: 1⃝ delay the delivery of
valid PVSS commitment; 2⃝ send invalid PVSS commit-
ment to honest parties; 3⃝ send contradicting valid PVSS
commitments to different honest parties; 4⃝ send nothing.
In the consumer process, a malicious party i also has similar
options in broadcasting a PVSS decryption key Di in each
epoch. Besides, the f malicious parties may collude to
predict the random beacon values in advance. We only
consider one party joining or removal at a time in the recon-
figuration. Actually, simultaneous reconfiguration degrades
into sequential, one-by-one reconfiguration.

4. The AsyRand Beacon Protocol

4.1. High-Level Overview and Global States

In the producer process, each party broadcasts new
PVSS commitments, which are the outputs of the
PVSS.Share algorithm, via continuously invoking RBC pro-
tocols. In the consumer process, a leader is randomly se-
lected for each epoch, and the earliest PVSS commitment
produced by this leader is consumed to recover a random
value with the t-VABA protocol. Further, the recovered
random value is adopted to generate a fresh beacon value.

We introduce the global states/variables in AsyRand. The
leader queue (LQ) records past f leaders. The candidate
list (CL) denotes potential leaders, i.e., the parties that
have not been leaders in the past f epochs. This design
helps avoid the situation where malicious parties dominate
leadership consecutively, giving them an undue advantage

in the protocol. It is apparent that CL = P − LQ . ComQ
is a collection of FIFO queues. Each PVSS commitment
from party i carries a monotonically increasing sequence
number j, denoted as seqij . For notational simplicity, we
use seqi throughout this paper rather than seqij , as the ad-
ditional index j serves no meaningful purpose in our writing.
Thus, ComQ [i] is a queue, of length queLen, recording
the PVSS commitments of party i in chronological order.
Hence, all parties share the same global states, including
{pki},LQ ,CL, Re−1, e, L,ComQ , seqi, queLen. Figure 2
depicts all the processes and the global states of AsyRand
with concrete examples within a party. Table 2 summarize
the global states, which are shared among all processes in
a party. Parties operate based on their local states in an
asynchronous network, without relying on a global clock.

TABLE 2: The global states shared by all processes

State description
P the set of all parties
n, f the number of parties and faulty parties
e current epoch
L the leader of current epoch e

Re−1, Re beacon value of epoch e− 1, e
pki the ith party’s public key
LQ a queue recording past f leaders
CL the leader candidates list, i.e., CL = P − LQ

ComQ collection of FIFO queues
ComQ [i] the FIFO queue recording unconsumed PVSS commit-

ments from party i

seqi the sequence number of a PVSS commitment at party i

queLen the maximum PVSS commitments each queue can store

4.2. The Producer Process

In the producer process, each party i independently and
continuously invokes RBC protocol to broadcast new PVSS



commitments as long as his queue is not full, as depicted by
Figure 3. Each of the PVSS commitment is generated using
the PVSS scheme inputting a fresh random value s ∈ Zp.
Particularly, the proposal is set as v = (i, C, π, seqi) in
Step 0, where (C, π) is output of the PVSS.Share(s, {pki})
algorithm and seqi denotes the seqi-th PVSS commitment.
The public verifiability property of PVSS scheme enables
anyone to check whether an RBC dealer has honestly pro-
duced PVSS commitments by leveraging the PVSS.Verify
algorithm in Step 1. Once an RBC instance is accom-
plished in Step 3, each party updates the global state by
ComQ [v.i].put(v).

Step 0. For party i, waits until |ComQ [i]| ≠
queLen, invokes (C, π) ← PVSS.Share. Denotes
v = (i, C, π, seqi) and

broadcasts (initial, v).

Step 1. For party i, waits until the receipt of
(initial, v), where PVSS.Verify(v.C, v.π) is true

broadcasts (echo, hv), where hv = Hash(v).

Step 2. For party i, waits until the receipt of
2f + 1 (echo, hv) or f + 1 (ready, hv)

broadcasts (ready, hv).

Step 3. For party i, waits until the receipt of
2f + 1 (ready, hv)

ComQ [v.i].put(v).

Figure 3: The producer process at each party i

Claim 2 (ComQ [i] is in order). The values in ComQ [i]∀i
are in the right order for all honest parties.

Proof. We leverage seqi to mark the seqi-th PVSS com-
mitment of party i. Therefore, it is impossible for an honest
party to accept two contradicting PVSS commitments for a
sequence number seqi, due to the RBC agreement property.
So, values in ComQ [i]∀i are in the right order for all honest
parties.

In an asynchronous RBC protocol, the absence of net-
work timeout assumptions prevents honest parties from re-
liably determining whether a dealer i is faulty or not. By
Claim 1, all honest parties will eventually have the same
consensus value ⊥ or v. If they agree on v, they will append
v to ComQ [i] as the seqi-th item; otherwise, they will take
no action to the queue ComQ [i]. Thus, honest parties can
shift their focus to the status of the queue ComQ [i] and
Claim 3 holds.
Claim 3 (Focus on queues). Honest parties in the producer

can just focus on the queue status ComQ [i] when party
i is the dealer, instead of accessing i’s honesty through
message analysis. Thus, the potential threats in the pro-
ducer process defined in system model (cf. Section 3.2)
are addressed.

We prove the safety and liveness for the producer pro-
cess by Theorem 1 and Theorem 2.
Theorem 1 (Safety of the producer process). No matter

whether a dealer i is faulty or not, the result of the
producer process, ComQ [i], will reach agreement for
all honest parties.

Proof. The producer process consists of infinite RBC in-
stances invoked by each party. Any two RBC instances led
by two dealers are independent. Hence, we discuss the case
where any party i invokes the RBC protocols as the dealer.
By Claim 3, honest parties can ignore whether a dealer i
is honest or not. Moreover, the elements in ComQ [i] are in
right order by Claim 2. Therefore, the global state ComQ [i]
will be eventually under consensus for all honest parties.
Theorem 2 (Liveness of the producer process). No ad-

versary could prevent honest parties from putting valid
PVSS commitment into ComQ [i] in the producer.

Proof. The producer process consists of infinite indepen-
dent RBC protocols led by all parties separately. The pro-
posal (i.e., PVSS commitment) of party i does not interfere
with the proposal of another party j, since they have inde-
pendent storage space, i.e., ComQ [i] and ComQ [j]. Since
n = 3f +1, the 2f +1 honest parties continuously propose
new valid PVSS commitments, which will reach agreement
among them due to RBC validity, guaranteeing the liveness
of the producers.

As each PVSS commitment has a sequence number and
each party independently produces its own PVSS commit-
ments. The back pressure problem is avoided since honest
parties will wait if their queues are full. A party’s PVSS
commitments can be discarded when ComQ [i] is full for
honest receivers. However, rational parties will avoid this
behavior, as it would result in their detection as faulty
and being eliminated via the removal process. Each party
can broadcast multiple commitments with a single RBC
protocol. We will demonstrate the performance improvement
in experimental results.

4.3. The Consumer Process

The consumer process continuously choose a random
leader L for each epoch e. In each epoch, all parties co-
operate to recover L’s first PVSS commitment and reach
consensus on a beacon value. Figure 4 depicts the consumer
process at party i for some epoch e using a t-VABA protocol
(cf. Definition 1). The t-VABA protocol begins with each
party holding an initial value Ci (in C) and it reaches agree-
ment on the beacon value Re in the end. The implementation
resembles RBC protocol but without a dealer in Step 0.

The gray text in Figure 4 considers the situation whether
the leader L is removed or not. The removal process is intro-
duced in Section 4.4. The FLP impossibility theorem [49]
proves that no deterministic asynchronous consensus pro-
tocol can guarantee both safety and liveness when even
one process may fail. To resolve the problem whether L
is truly removed by all honest parties, asynchronous bi-
nary agreement (ABA) protocol [50] is integrated into the



consumer process. ABA is widely adopted to achieve one-
shot byzantine consensus, where each party inputs a bit
0 or 1, in asynchronous environment. The ABA protocol
immediately outputs 0 (indicating L.status ̸= removed) if
|ComQ [L]| > 1 is detected in Step 0.

Step 0. For party i, L = CL[Re−1 mod |CL|] and
v ← ComQ [L].get(), parse v as (L,C, π, seqL).
Waits until |ComQ [L]| > 0 or L.status ≡ removed:

oldL← LQ .get() and CL.add(oldL)
Di ← PVSS.PreRecon(Ci, ski)
(Optional) starts ABA protocol to decide L.status
broadcasts (recon, Di).

Step 1. For party i, waits until the receipt of
t (recon, Di, ∗),

gs← PVSS.Recon(C, {Di})
Re ← Hash(Re−1, gs)
broadcasts (reconEcho, e, Re).

Step 2. For party i, waits until the receipt of 2f +1
(reconEcho, e, Re) or f + 1 (reconReady, e, Re)

broadcasts (reconReady, e, Re).

Step 3. For party i, waits until the receipt of
2f + 1 (reconReady, e, Re),

accepts Re

(Optional) waits ABA termination of L.status,
and if L.status = removed:

LQ .put(L) and CL.remove(L)
enters Step 0 to the next epoch e+ 1.

Figure 4: The consumer process leveraging a t-VABA

The t-VABA protocol is implemented following a
four-step structure analogous to the RBC protocol. In
Step 0, each party determines current leader as L =
CL[Re−1 mod |CL|], where Re−1 is the beacon value of
previous epoch e − 1. The party then obtains L’s first
PVSS commitment by v ← ComQ [L].get(), and parse v
as (L,C, π, seqL). The waiting condition |ComQ [L]| > 0
means that the t-VABA protocol really starts only if L has
1 or more PVSS commitments to consume. This design
proactively prevents the case where L is re-elected as leader
without having an unused PVSS commitment available, thus
eliminating potential liveness stalls in the consumer process.

If the above condition is met, the oldest leader oldL
(i.e., LQ .get()) should be placed into candidate list CL.
And if L is still alive in the system, it should be trans-
ferred from the candidate list CL to the leader queue LQ .
The encrypted share Ci (in C) serves as party i’s initial
value. Subsequently, each party i obtains the decryption key
Di ← PVSS.PreRecon(Ci, ski) for the commitment v and
broadcast it. In Step 1, each party recovers the PVSS secret
gs with at least t valid decryption keys, and constructs the
value Re. The Step 2 and Step 3 are the same with the

RBC protocol (cf. Section 2.3). In the end, all honest parties
accepts Re as the beacon value of the epoch e.

In summary, the consumer process updates the global
variables, i.e., L, CL, LQ , ComQ and outputs new beacon
value Re for each epoch e. Obviously, the execution of
the consumer process relies on the producer process. The
consumer process should be “slower” than the producer
process, so that the operation ComQ [L].get() always returns
a valid PVSS commitment in every epoch. The fact is
guaranteed and it is proved by Claim 4.
Claim 4 (ComQ [i] is non-empty). The set ComQ [i] is non-

empty, ensuring that the consumer process always has a
valid PVSS commitment to consume whenever a party
i is chosen as leader.

Proof. By Theorem 2, the queue ComQ [i] can be appended
without interruption. The condition, i.e., |ComQ [i]| > 0, in
Step 0 guarantees that ComQ [i] is non-empty for all honest
parties. If party i stops producing valid PVSS commit-
ments in the producer process, ComQ [i] will stop growing.
ComQ [i] will be empty in Step 0 if i is chosen as leader for
|ComQ [i]| times. In this case, the consumer process will be
suspended and it will be resumed after removing i by the
removal process.

We argue that the t-VABA implementation satisfies the
required security properties through Lemma 1, Lemma 2,
and Lemma 3, respectively. Further, we prove the consumer
process ensures properties of safety and liveness by Theo-
rem 3 and Theorem 4.
Claim 5 (Same beginning). At the beginning of each epoch

e with leader L, all honest parties share the same value
of v ← ComQ [L].get() in Step 0.

Proof. In Step 1 of each t-VABA protocol, Re is deter-
ministic due to correctness of PVSS scheme in computing
gs and uniqueness of hash in calculating Re. Thus, it can
be easily proved that honest parties have the same output at
the beginning of each epoch by applying mathematical in-
duction. Moreover, the producer process guarantees that all
honest parties have correct order of ComQ [L] (cf. Claim 2).
And there is at least one PVSS commitment in the queue
ComQ [L] (cf. Claim 4). Therefore, all honest parties have
the same value of ComQ [L].get() at the beginning of each
epoch.
Lemma 1 (External-validity of each epoch). If an honest

party outputs a beacon value Re for epoch e, then Re

is calculated with any t honest initial values {Ci} and
Predicate(Re) = true.

Proof. By Claim 5, honest parties have the same PVSS
commitment to consume at each epoch. Specifically, the
initial value for each party is Ci ← v.Ci, where v ←
ComQ [L].get() and it is parsed as (L,C = {Ci}, π, seqL).
Moreover, Ci has been validated by the PVSS.Verify al-
gorithm in the producer process. Then, each honest party
i will decrypt Ci to obtain Di via PVSS.PreRecon and
broadcast (recon, Di) in Step 0. Each party can collect at
least n − f > t valid {Di}, enabling it to calculate gs
by PVSS.Recon(C, {Di}). Further, the beacon value Re is



calculated as Re = Hash(Re−1, gs). All honest parties
will send (reconEcho, e, Re) in Step 1. The subsequent
steps (i.e., Step 2 and Step 3) are the same with RBC
protocol, guaranteeing that all honest parties will receive
2f + 1 reconReady messages and accept the same beacon
value Re as the beacon value for epoch e. Therefore, the
Predicate roughly consists of PVSS.PreRecon, PVSS.Recon
and Hash algorithms.
Claim 6. No two honest parties will send conflicting mes-

sages (reconReady, e, Re) and (reconReady, e, R′
e ̸=

Re), given the correctly chosen leader L at epoch e.

Proof. Claim 5 has demonstrated that honest parties are
consuming the same commitment for epoch e. Suppose two
honest parties i and j send reconReady message for two
different beacon values Re and R′

e, respectively. Party i must
have received a set A of 2f+1 reconEcho for Re and party
j must have received a set B of 2f + 1 reconEcho for R′

e.
Since |A| = |B| = 2f + 1, then |A

⋂
B| ≥ f + 1 due

to quorum intersection property. This implies that at least
f+1 parties have sent an echo to both i and j. It means that
at least one honest party must have sent two reconReady
messages for different values, violating the assumption.
Lemma 2 (Agreement of each epoch). If an honest party

accepts Re, then all honest parties accept Re for epoch
e.

Proof. First consider the scenario where faulty parties
collude or send invalid decryption keys {Di} for current
leader’s PVSS commitment in Step 0. However, invalid
keys can be detected by the PVSS.Recon(C, {Di}) algo-
rithm and they will be abandoned. And the PVSS threshold
t = 2f + 1 > f , making it impossible for colluding parties
to recover the leader L’s PVSS secret gs. Further, Claim 6
shows that no contradicting beacon values can be output
for two honest parties. Hence, all honest parties will reach
agreement on the same beacon value Re for epoch e.
Lemma 3 (Termination of each epoch). The consumer

process eventually outputs a valid beacon value Re for
the epoch e.

Proof. By Claim 4, ComQ [i] is always non-empty for each
epoch. When a party i is elected as leader, Step 0 can be
guaranteed to be executed for all honest parties. And honest
parties have the same PVSS commitment to consume by
Claim 5. The subsequent steps Step 1-3 follow the same
structure as the RBC protocol. Thus, all honest parties will
eventually accept Re for epoch e, similar to RBC validity.
Hence, each epoch achieves the termination property of t-
VABA protocol.
Theorem 3 (Safety of the consumer process). All honest

parties output the same beacon value in each epoch.

Proof. The safety property is implied by the agreement of
each epoch (cf. Lemma 2). Thus, the consumer process will
always reach agreement for all honest parties for any epoch.
Theorem 4 (Liveness of the consumer process). No ad-

versaries could prevent the consumer process from out-
putting a new beacon value and forwarding to the next
epoch.

Proof. The t-VABA termination property implies that each
epoch eventually ends. Besides, the consumer process can
successfully move to the next epoch due to Claim 4. Thus,
the consumer process normally proceeds with infinite t-
VABA instances. We further consider an abnormal case,
where the Step 0 may suspend due to |ComQ [L]| = 0
holds. However, in this occasion, party L will be removed in
the removal process and it will not be elected as leader. The
removal process notifies the consumer process to go on from
the suspended point in Step 0. Moreover, ABA protocol is
leveraged to eliminate the possibility of forks, induced by
faulty parties, which may impact liveness. Therefore, the
consumer process is guaranteed to achieve liveness.

4.4. The Removal Process

The removal process is designed to enable honest parties
to automatically remove faulty members without system
restart. Implied by Claim 3, we innovatively invent a mecha-
nism to discover faulty parties in an asynchronous network.
The mechanism allows a party to simply detect whether
another party is faulty/malicious by monitoring queue length
of the party. If the queue is empty for a long time, honest
parties can start to remove the party using a t-VABA pro-
tocol.

Step 0. For party i, if |ComQ [L]| = 0 holds for an
expiration event. Denote v = (L, e),

broadcasts (removal, v).

Step 1. For party i, waits until the receipt of
2f + 1 (removal, v),

broadcasts (removalEcho, v).

Step 2. For party i, waits until the receipt of 2f +1
(removalEcho, v) or f + 1 (removalReady, v)

broadcasts (removalReady, v).

Step 3. For party i, waits until the receipt of
2f + 1 (removalReady, v),

set L.status = removed
notify the consumer process.

Figure 5: The removal process to remove L at party i

For example, a party L may behave maliciously (the
possible behaviors are introduced in Section 3.2) in the pro-
ducer process, and no PVSS commitments will be added into
ComQ [L] for all honest parties. ComQ [L] will eventually
become empty after L is elected as leader for |ComQ [L]|
times. In this case, the leader L has no unconsumed com-
mitments, i.e., |ComQ [L]| = 0 in the consumer process
(cf. Figure 4) until an expiration event1, honest party i

1. In our design, the expiration event is defined as the condition where
at least 2f + 1 queues contain two PVSS commitments. This threshold
aligns with the mobile adversary model’s core assumption—that at least
two-thirds of the remaining participants are honest.



broadcasts the initialization message (removal, v), where
v = (L, e), in Step 0. The following steps are similar
to the RBC protocol. Once a party i receives 2f + 1
(removalReady, v), it marks that L is removed and no-
tifies its consumer process, which was suspended in Step
0 in consumer process. Figure 5 depicts the party removal
process in a t-VABA protocol. We assume that messages in
the removal process are well-signed.

We prove the removal process satisfy the required
external-validity, agreement and termination properties of
t-VABA protocol by Lemma 4, Lemma 5 and Lemma 6,
respectively.

Lemma 4 (External-validity of the removal process). If an
honest party agrees to remove L which is faulty in epoch
e, then (removal, v = (L, e)) has been proposed by at
least t parties and Predicate(v) = true.

Proof. If an honest party agrees to remove L, then at least
2f + 1 parties have broadcast removalReady in Step 3.
Further, it can be inferred that at least 2f + 1 = t parties
have broadcast removal in Step 1. The Predicate algorithm
can be obtained by collecting the messages of the t parties.

Claim 7. No two honest parties will send conflicting mes-
sage (removalReady, v) and (removalReady, v′ ̸= v),
where v.e = v′.e.

Proof. That means given a specific epoch e, no removal
agreement will achieve to remove multiple leaders. The
proof follows the same reasoning as in Claim 6 and is
therefore omitted here.

Lemma 5 (Agreement of the removal process). If an
honest party set L.status = removed in epoch e,
then eventually all honest parties will agree to set
L.status = removed.

Proof. If an honest honest party remove party L, it must
have received 2f + 1 (removalReady, v) messages, of
which at least f+1 came from honest parties. Consequently,
all honest parties will broadcast (removalReady, v), either
due to seeing the f + 1 removalReady messages or due
to seeing 2f + 1 removalEcho, as described in Step 2.
Claim 7 guarantees that no honest parties will broadcast
(removalReady, v′ ̸= v). So there will not be 2f + 1
removalEcho for v′ or f+1 removalReady for v′. Hence,
all honest parties will agree to set L.status = removed.

Lemma 6 (Termination of the removal process). All hon-
est parties will eventually terminate with agreement on
whether L.status = removed of epoch e.

Proof. It is apparent that all honest parties will terminate
if at least 2f + 1 parties incur expiration event. Otherwise,
honest parties may halt in the removal process. Due to the
use of ABA protocol in the consumer process, honest parties
can terminate the removal process upon transitioning to new
epochs, where L.status of epoch e is determined.

4.5. The Joining Process

We further introduce a party joining process that enables
the seamless addition of a new party without system restart.

Suppose a joining party θ composes a proposal v =
(e, e∗, pkθ, C, π, seqθ = 1), where e is the current epoch,
e∗ ≫ e is the expected epoch for θ to appear in the
system, pkθ is θ’s public key, (C, π) is the output of
PVSS.Share(s, {pki} ∪ pkθ) and seqθ is initialized to be
1 as the first proposal. Then, θ initiates the RBC protocol to
request to join the system by broadcasting (join, v). Figure 6
depicts the party joining process using RBC protocol.

Step 0. For a joining party θ, invokes (C, π) ←
PVSS.Share. Set v = (e, e∗, pkθ, C, π, seqθ = 1):

broadcasts (join, v).

Step 1. For party i, waits until the receipt of
(join, v), where PVSS.Verify(v.C, v.π) is true

broadcasts (joinEcho, hv), where hv is hash of v.

Step 2. For party i, waits until the receipt of
2f + 1 (joinEcho, hv) or f + 1 (joinReady, hv)

broadcasts (joinReady, hv).

Step 3. For party i, waits until the receipt of
2f + 1 (joinReady, hv) and it does not exceed e∗:

inputs 1 for ABA protocol:

Step 4. For party i, waits until e∗,
starts ABA and if it outputs 1:

ComQ [θ].put(v)
CL.add(θ)

Figure 6: The joining process for party θ at party i

The agreement of RBC protocol guarantees honest par-
ties to reach consensus in Step 3. However, it does not
guarantee that all honest parties have entered Step 3 before
epoch e∗. We leverage ABA protocol in Step 4 to ensure that
all honest parties reach consensus on admitting the joining
party θ at epoch e∗. Only if ABA outputs 1, honest parties
put the joining party θ in CL and place the proposal v in
ComQ [θ]. This design avoids forks in the joining process.
Clearly, the ABA protocol outputs 1 immediately when the
joining party is honest and has stable network connectivity.

In our design, honest parties refuse other joining requests
within epoch e∗, thus, we can only consider the one-by-
one sequential joining in this paper. We adopt a sequential
joining approach to preserve committee stability, as this
guarantees the consistent participation required for RBC
consensus. Our paper does not consider the placeholder
attack—an attack scenario wherein a joining party deliber-
ately blocks other nodes from joining before epoch e∗. We
posit that, in practical deployments, this vulnerability can be
mitigated by incorporating an effective incentive mechanism
or staking protocol.



4.6. Summary of the Processes

Bracha Reliable Broadcast (RBC) or t-VABA protocol is
a one-shot communication abstraction to achieve consensus.
To provide a concise overview of the processes, Table 3
is presented. The column Instance(s) indicates how many
RBC or t-VABA protocols are executed in each process. The
column Actions summarizes the PVSS algorithms involved
in each process. The column States introduces the global
states which are updated in each process.

TABLE 3: Summary of the processes in AsyRand

Process Protocol Instance(s) Actions States

Producer RBC infinite PVSS.Share
PVSS.Verify

ComQ [L]

Consumer t-VABA infinite PVSS.PreRecon
PVSS.Recon

LQ ,CL, L
ComQ [L], e, Re

Removal t-VABA 1 − L

Joining RBC 1 PVSS.Share
PVSS.Verify

CL,ComQ [θ]

The producer and joining processes are directly leverage
the RBC protocol. All parties first invoke the PVSS.Share
algorithm and initiate the RBC protocol with the output
PVSS commitment as proposal. Subsequently, PVSS.Verify
is triggered when a party receives the initial or join message.

The consumer and removal processes are constructed
based on t-VABA protocols. In the consumer process, the
PVSS.PreRecon and PVSS.Recon algorithms are executed
to recover the leader’s secret. Both the producer and con-
sumer processes run with an infinite number of RBC and
t-VABA instances, respectively, which form the foundation
of AsyRand. The removal and joining processes require
only a single instance of the RBC and t-VABA protocol,
respectively.

The RBC protocol has communication complexity of
O(n2) in the producer process, where parties broadcast
O(n)-size PVSS commitments. In the consumer process,
each party only broadcasts O(1) size messages in each
step. The ABA protocol, which is optionally included in the
consumer process, costs O(n2) communication complexity.
Consequently, the complexity of the consumer process is
also O(n2). Therefore, the overall communication complex-
ity of AsyRand is O(n2).

5. Properties of AsyRand

Theorem 5 (Liveness/Availability). No adversaries could
prevent the processes in AsyRand from proceeding.

Proof . We discuss all the four processes in AsyRand
described in Section 4. By Theorem 2, we prove that no
adversaries can prevent new PVSS commitments from being
appended into global state ComQ for honesty parties. By
Theorem 4, we prove that no adversaries could prevent
a PVSS commitment from being consumed. The removal
process and the joining process is guaranteed to achieve
liveness, due to the t-VABA termination and RBC va-
lidity, respectively. Further, the PVSS commitment queue
ComQ [L] of the leader L is always non-empty in the

consumer process by Claim 4. Then, a secret gs hidden
in v ← ComQ [L].get() can be eventually recovered with
2f + 1 (= t) PVSS decrypted shares from honest parties.
Therefore, a new beacon value Re for epoch e is guaranteed
to be calculated by Hash(gs,Re−1), showing property of
guaranteed output delivery [10], [12].
Theorem 6 (Bias Resistance). Adversaries cannot bias the

beacon output Re of epoch e in a predictable way.

Proof . As designed, beacon values are delivered in the
consumer process. In the consumer process, the condi-
tion |ComQ [L]| > 0 holds (cf. Figure 4) for leader L
when the earliest PVSS commitment v ← ComQ [L].get()
is consumed. Moreover, the leader queue LQ guarantees
that a party can be chosen as leader again only after
f epochs. Hence, the random beacon value of epoch e,
Re = Hash(gs,Re−1), depends on the secret gs hidden
in a PVSS commitment produced at least f epochs earlier.
Further, Re−1, which also affects the value of Re, is avail-
able at the end of epoch e−1. Summarily, gs and Re−1 are
determined by past commitments and cannot be controlled
or predicted by adversaries in the current epoch e. Thus, it
is impossible for adversaries to bias the beacon output Re

in a meaningful manner.
Theorem 7 (Unpredictability). An adversary should not

be able to predict (precompute) a future beacon value
Re+f+1, where e is the epoch of current time.

Proof . As described in Theorem 6, predicting a future
random beacon value Re requires knowledge of both PVSS
secret gs and the previous beacon value Re−1. PVSS IND1-
Secrecy ensures that the PVSS secret remains indistinguish-
able until it is reconstructed for honest parties. The PVSS
secret can be recovered only when at least t(> f) distinct
(recon, Di) messages are broadcast. Consider the worst-
case scenario where the f colluding malicious parties share
their PVSS secrets privately in real time. If l ≤ f of
these malicious parties are selected as leaders in consecutive
epochs starting from epoch e, then the beacon values from
epoch e to epoch e + l can be calculated in advance. The
probability of this case can be modeled as hypergeometric
distribution [12]. A party will be elected as leader at least
f epochs later, making it impossible to predict beacon
value after epoch Re+f+1. Therefore, to ensure complete
unpredictability in practice, it is recommended to use future
beacon values beyond epoch e+ f .
Theorem 8 (Public Verifiability). Any third party with

publicly known information can verify the correctness
of beacon value Re of each epoch e.

Proof . The AsyRand public verification property essen-
tially inherits from the PVSS functionality. In the pro-
ducer process, PVSS commitments are generated using the
PVSS.Share algorithm and broadcast in an open network,
making them publicly verifiable with the PVSS.Verify algo-
rithm. In the consumer process, the decrypted PVSS shares,
obtained using the PVSS.PreRecon algorithm, are also
broadcast in open network. These shares are then further
verified with the PVSS.Recon algorithm before being used



to recover the PVSS secret. Both the PVSS algorithms and
the calculation of beacon value are deterministic, enabling
any third party to verify the entire process of generating Re.

Theorem 9 (Responsiveness). AsyRand is responsive, mean-
ing that beacon values are delivered at the speed of the
real network.

Proof . By Claim 4, there always exists a PVSS commit-
ment to consume in each epoch. Thus, beacon values can
be delivered as the consumer process proceeds. From a
resource competition perspective, the consumer process is
typically slower than the producer. This is because while
RBC instances (in the producer) run in parallel across all
parties, t-VABA execution (in the consumer) requires joint
participation. Theoretically, n PVSS commitments can reach
consensus within the time needed to output one beacon
value. To balance this, our implementation strategically
throttles the producer to optimize consumer throughput.
Therefore, AsyRand delivers beacon values at the pace of
the consumer process, advancing at the speed of the actual
asynchronous network.

6. New PVSS Construction

6.1. Rationale

Previous studies [15], [23], [38] have shown that Shamir
secret sharing (cf. Section B) is a primary ingredient to im-
plement PVSS schemes. To ensure that the secret shares can
be publicly transferred, each share p(i) should be properly
encrypted, where p(x) is a polynomial and s = p(0) is the
secret. A natural intuition is to hide the ith share with the ith
shareholder’s public key pki, i.e., pkp(i)i . The dealer should
then prove honesty in the hiding, enabling the encrypted
shares to be publicly verifiable.

SCRAPE [15] is notable for being the first PVSS scheme
with O(n) verification complexity. SCRAPE chooses an-
other generator h ∈ G and computes hp(i) to validate the
dealer’s honesty through pairing or DLEQ proof [39]. More-
over, the scheme ensures the n shares p(i) correctly interpo-
late the secret s leveraging Reed-Solomon codes [40]. Simi-
lar to SCRAPE, more PVSS schemes with O(n) verification
complexity (ALBATROSS [16], HEPVSS/DHPVSS [17])
are proposed.

Sigma protocol is a practical approach to generate zero
knowledge proofs, which can be made non-interactive using
the Fiat-Shamir heuristic (cf. Section A). Thus, the dealer
can prove knowledge of each share p(i) by publishing the
statement pk

p(i)
i , leveraging NIZK proofs from the Sigma

protocol. Particularly, the dealer generates NIZK proofs for
each statement {pkp(i)i } for all i ∈ [1, n]. Moreover, the
NIZK proofs should also enable to prove that the n wit-
nesses {p(i)}i∈[1,··· ,n] correspond to the unique secret s. In
our solution, we establish this correspondence by leveraging
Lagrange interpolation.

6.2. Construction

Figure 7 depicts the concrete construction of the pro-
posed PVSS scheme using Sigma protocol and NIZK proof.
The required security properties are proved in Appendix C.

Functionality The proposed PVSS scheme

({ski, pki})← PVSS.Setup(λ, t, n) :

g ∈ G, ski
R←− Zp, pki ← gski

(C, π)← PVSS.Share(s, {pki}) :

p(x)
R←− poly(·),where p(0) = s

C =
{
{Ci = pk

p(i)
i }i∈[1,··· ,n]

}
p′(x)

R←− p(x),where p′(0) = s′
R←− Zp

C′ =
{
{C′

i = pk
p′(i)
i }i∈[1,··· ,n]

}

π ←


C′,

c = H(C,C′),

s̃ = s′ − cs,

{p̃(i) = p′(i)− c · p(i)}i∈[1,··· ,n],

bool← PVSS.Verify(C, π) :{
{C′

i
?
= pk

p̃(i)
i · Cc

i }i∈[1,··· ,n],

s̃
?
= intpl({(i, p̃(i))}i∈[1,··· ,n])

Di ← PVSS.PreRecon(Ci, ski) :

Di = C
1/ski
i = gp(i)

gs← PVSS.Recon(C, {Di}i∈T ) :

e(Di, pki)
?
= e(g, Ci) ∀i ∈ T

µi =
∏

j∈T,j ̸=i
j

j−i

gs←
∏

i∈T Dµi
i =

∏
i∈T gµi·p(i) = g

∑
i∈T µi·p(i) = gs

Figure 7: Construction of the proposed PVSS scheme

The PVSS.Setup algorithm takes the security parameter
λ, n, t as the input and generates an independent generator
g of G. In this algorithm, each shareholder Pi generates a
key pair (ski, pki) and the dealer collects all the public keys
{pki}.

In PVSS.Share, the dealer inputs a secret s
R←− Zp

and all shareholders’ public keys {pki}. The dealer chooses
a random polynomial p(x) with the condition p(0) = s.
Calculate each encrypted share p(i) as Ci = pk

p(i)
i . Denote

C = {{Ci}i∈[1,··· ,n]}. Further, the dealer generates the
Sigma protocol transcript, i.e., the Sigma commitment C ′,
the challenge c, the response s̃ and p̃(i). Denote π =
(C ′, c, (s̃, {p̃(i)})) as the NIZK proof. Finally, the dealer
publishes the PVSS commitment, i.e., (C, π) publicly.

With PVSS.Verify, anyone can check the validity of the
commitment (C, π). In the algorithm, each encrypted share
Ci is verified separately and the Lagrange interpolation is
leveraged to verify that all shares are generated from the
secret s. Particularly, intpl({(i, p̃(i))}i∈[1,··· ,n]) recovers the



secret of polynomial p̃(x), i.e., p̃(0), where p̃(x) = p′(x)−
c · p(x). That is correct due to additive homomorphism of
polynomials.

In PVSS.PreRecon, each shareholder Pi privately de-
crypts the share Di = C

1/ski
i and sends Di to a recoverer.

In PVSS.Recon, the recoverer firstly checks validity of
Di from each shareholder. Denote T as the indexes of t
valid decrypted shares. Then, the recoverer constructs the
dealer’s secret gs = gs, in which Lagrange interpolation is
implied.

6.3. Complexity Comparisons

Computation Complexity: In the PVSS.Share phase, the
dealer costs n exponentiations to generate C. And the
NIZK proofs, generated from Sigma protocol, π = (C ′, c,
s̃, {p̃i}i∈n), where C ′ also takes n exponentiations. Hence,
the PVSS.Share phase takes 2n exponentiations. In the
PVSS.Verify phase, it costs 2 exponentiations for verifying
each Ci. Therefore, the PVSS.Verify phase takes 2n expo-
nentiations. In the PVSS.Recon phase, it costs 2t pairings
to check validity of {Di} and t exponentiations to calculate
gs.

Communication Complexity: In the sharing phase, the
dealer publishes the encrypted shares C and the correspond-
ing NIZK proofs π = (C ′, c, s̃, {p̃i}i∈n). C contains n
elements in G, and the NIZK proofs π contain n elements in
G and n+2 elements in Zp. In the reconstruction phase, the
recoverer receives an array {Di}i∈T to decrypt C. Hence,
reconstruction phase requires t elements in G to recover the
secret gs.

TABLE 4: Computation complexity

Ref. Sharing Verfication Reconstruction
Exp. Exp. Pair Exp. Pair

[15]DBS 2n n 2n t+ 1 2t+ 1

[15]DDH 4n 5n − 5t+ 3 0

[16]ALBATROSS 2n 2n − 6t −
[17]HEPV SS 7n 4n − 3t −

[17]DHPV SS
n(n− t+
2) + 2

n(n −
t) + 4

− 5t −

Ours 2n 2n − t 2t

TABLE 5: Communication complexity

Ref. Sharing Reconstruction
G Zp G Zp

[15]DBS 2n 0 t 0

[15]DDH 4n n+ 1 3t t+ 1

[16]ALBATROSS 2n n+ 1 5t 4t

[17]HEPV SS 3n 2n t 2

[17]DHPV SS n+ 2 1 3t t

Ours 2n n+ 2 t 0

By Table 4 and Table 5, we compare the complex-
ity between our proposed PVSS scheme and previous
schemes [15], [16], [17], where n is the number of share-
holders and t is the threshold value. Appendix D presents
the detailed complexity analysis of previous PVSS schemes.

7. Implementation and Evaluation

We implement the proposed PVSS scheme with Charm-
Crypto library, which is a framework for constructing cryp-
tographic schemes. The Charm-Crypto framework is written
in Python language, however it has plausible performance
due to reliance of the GMP library [52] and the PBC
library [53]. We choose an asymmetric curve MNT159 to im-
plement the proposed PVSS scheme. We implement a fully-
connected peer-to-peer (p2p) network based on TCP socket
programming to enable pair-wise communication. Both the
consumer and the producer processes share the same P2P
network interface, thereby competing for network resources.
Our experiments are executed on 128 AWS cloud servers
t4g.medium scattered in 8 regions, namely, Canada, Ireland,
Ohio, Paris, SaoPaulo, Seoul, Singapore and Sydney. Each
of the servers is with 2 vCPUs and 4 GB RAM (similar
to SPURT [34]) and runs Linux ubuntu-bionic-18.04 with
Python 3.6.9.

TABLE 6: Cryptographic cost

ExpG0 ExpG1 Pair |G0|/|G1| |Zp|
0.46ms 4ms 3.6ms 100B/304B 48B

We begin by evaluating the cryptographic operation costs
of the curve MNT159, as shown in Table 6. Each element
on G0,G1,Zp element costs 100 Bytes, 304 Bytes and 48
Bytes, respectively. It is evident that the bilinear pairing
(e : G0×G1 → GT ) and ExpG1

incur a significantly higher
cost than ExpG0

.2
We then assess the performance of our proposed PVSS

scheme in comparison with related PVSS schemes. Fig-
ures 8, 9, and 10 illustrate the computation costs for sharing,
verification, and reconstruction phases, respectively. Since
G1 (cf. ExpG1 in Table 6) is used in SCRAPEDBS [15], it
results in the highest computation overhead in the distribu-
tion phase. The results also suggest that ALBATROSS [16],
which builds upon SCRAPEDDH [15], shifts the compu-
tational burden from the sharing and verification phases to
the reconstruction phase. The superlinear costs in sharing
(cf. Figure 8) and verification (cf. Figure 9) phases of
DHPVSS arise from evaluating a random (n-t-1)-degree
polynomial at each i, where i ∈ [1, · · · , n], leading to
approximately O(n2) exponentiations. SCRAPEDBS and
our PVSS incur higher computational costs than HEPVSS,
DHPVSS and SCRAPEDDH in the reconstruction phase
(see Figure 10), primarily because they use bilinear pairings
instead of DLEQ for verifying decrypted PVSS shares.

Figures 11 and 12 compare the communication overhead
during the sharing and reconstruction phases for the dealer
and the recoverer as the number of parties n increases.
Our PVSS scheme demonstrates competitive performance
in terms of communication efficiency.

Next, we evaluate the performance of AsyRand un-
der different configurations with n = 16, 32, 64, 128. The

2. In some programming libraries or on certain elliptic curves, such as
SS512, the bilinear pairing is faster than ExpG0 .
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Figure 15: Average beacon throughput
per minute

producer-consumer model decouples the production and
consumption of PVSS commitments, making it convenient
to identify performance bottlenecks. As expected, the pro-
ducer process operates faster than the consumer process.
Theorem 9 demonstrates that AsyRand beacon values are
generated at the speed of the consumer process. To pre-
vent the consumer process from lagging in computational
resource allocation, we introduce parameters to regulate the
producer’s speed. These parameters include queLen (the
maximum queue length) and cmtLen (the number of PVSS
commitments sent at a time by a party). Adjusting queLen
effectively slows down the producer process, while modi-
fying cmtLen reduces bandwidth consumption, as multiple
PVSS commitments can be transmitted via a single RBC.

By setting queLen to 3, the producer process is slowed
with minimal impact on throughput. Adjusting cmtLen to
2, 4, or 5 reduces bandwidth by approximately 17%-27%
compared to cmtLen = 1. Figure 13 shows the results of
bandwidth optimization.

Figure 14 illustrates the bandwidth usage (both sent
and received data) per beacon output. For n = 32 with
queLen = 2 and cmtLen = 4, the average bandwidth of a
party is around 51kB per beacon. The bandwidth usage in
AsyRand is higher than in SPURT [34] (35 kB per beacon),
because two consensus algorithms are occurring indepen-
dently in both the producer and consumer processes. How-
ever, this increased bandwidth does not hinder AsyRand’s
high throughput in an asynchronous setting.

As illustrated by Figure 15, AsyRand achieves sig-
nificantly higher throughput compared to Hydrand [12],
SPURT [34] and OptRand [36]. Specifically, with n = 128,
AsyRand produces 58 beacons per minute, while SPURT

and Hydrand produce only 12 and 8 beacons per minute,
respectively. The throughput of GRandLine [35] exhibits
significant degradation as n increases, likely due to its re-
liance on synchronous network assumptions. In synchronous
network, network delay upper bound is usually hard-coded.
Though GRandLine has a high throughput when n < 64, but
it might become insecure if the predetermined time bound
is exceeded.

8. Conclusion
In this paper, we introduce AsyRand, a distributed ran-

domness beacon protocol designed for asynchronous net-
work setting. AsyRand operates within a producer-consumer
model. Each producer process generates PVSS commit-
ments, which are then consumed by all consumer processes
to continuously produce beacon values. To reach consen-
sus among distributed parties, we integrate RBC and t-
VABA protocols in producer and consumer, respectively.
Additionally, AsyRand supports reconfiguration, enabling
the removal of faulty parties and the addition of new par-
ties without system restart. Our analysis establishes that
AsyRand achieves key properties, including liveness, unpre-
dictability, bias-resistance, public verifiability and respon-
siveness. Experimental results further validate the feasibility
and effectiveness of AsyRand. As an independent contribu-
tion, we introduce an innovative PVSS scheme based on
Sigma protocol and the Fiat-Shamir heuristic. In the future,
we plan to explore verifiable batched secret sharing [44]
to further reduce communication overhead and improve
throughput. We will also explore new t-VABA protocols
and the producer-consumer model in implementing asyn-
chronous BFT consensus.
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Appendix

1. Sigma Protocol and NIZK Proof

In a Sigma protocol [29], a prover (P) demonstrates
the validity of a statement x such that a verifier (V) learns
nothing about the witness w, where (x,w) ∈ R represents a
relation. A Sigma protocol follows a three-move interaction
pattern between the prover and the verifier:

1) Commitment (a): P selects a random value r and
computes a commitment a. P sends the a to V .

2) Challenge (e): V selects a random challenge e from a
challenge space and sends it to P .

3) Response (z): P computes a response z using r, e, and
the witness w. P sends the response z to V . Then, V
checks a verification equation involving a, e, and z.

In practice, NIZK proofs can be derived from the Sigma
protocol by leveraging Fiat-Shamir heuristic [30], where the
challenge value e is calculated by P with random oracle.
Sigma protocols have the following properties:

• Completeness. If P knows the witness, P can always
prove it.

• Soundness. If P does not know the witness, P
cannot convince the verifier that it does.

• Zero-Knowledge. Zero-knowledge ensures that the
verifier learns nothing beyond the validity of the
statement.

2. Shamir secret sharing

Shamir’s Secret Sharing [31] allows a dealer to distribute
a secret among a group of parties. The underlying principle
of Shamir’s Secret Sharing is based on polynomial interpo-
lation. Particularly, the dealer chooses a random (t-1)-degree
polynomial p(x) = s+

∑t−1
j=1 aix

j , where s is the dealer’s
secret. Then, the shares are calculated as si = p(i), for
i ∈ [1, · · · , n]. Each share si is sent to the corresponding
shareholder Pi in a secret channel. Anyone who collects

t shares can apply Lagrange interpolation to recover the
secret, i.e., s ← intpl({(j, p̃(j))}j∈[i1,··· ,it]). Nevertheless,
if with less than t shares, no information about the secret is
revealed.

3. Security Analysis of the Proposed PVSS

By Theorem 10, Theorem 11 and Theorem 12, we prove
the required security properties, defined in Section 2.1, of
the proposed PVSS scheme.
Theorem 10 (Correctness). Given at least t decrypted shares
{Di}i∈T , the secret gs can be successfully recovered.

Proof. The Lagrange interpolation ensures that∑
i∈T µi · p(i) interpolates to the value p(0), where {µi =∏
j∈T,j ̸=i

j
j−i} are the Lagrange coefficients. Consequently,

the PVSS secret gs can be reconstructed as gs = gp(0)

by evaluating
∏

i∈T Dµi

i where Di = gp(i). Therefore, the
correctness of the PVSS scheme is guaranteed.
Lemma 7 (Completeness of Sigma protocol). If the dealer

knows the secret s, he can prove it.

Proof. The dealer, acting as the prover, generates (C, πs)
using PVSS.Share algorithm. Then the equations in the
PVSS.Verify algorithm can be proved to be true as follows.

C ′
i = pk

p′(i)
i = pk

p̃(i)
i pk

c·p(i)
i = pk

p̃(i)
i · Cc

i , ∀i ∈ [1, · · · , n]
s̃ = p̃(0) = intpl({(i, p′(i)− c · p(i))})

= intpl({(i, p′(i))})− intpl({(i, c · p(i))})
= intpl({(i, p̃(i))})

Therefore, if the dealer knows the secret s, he can prove it
in (C, π) with probability 1.
Lemma 8 (Soundness of Sigma Protocol). If the dealer does

not know s, he cannot cheat the verifier successfully.

Proof. It is widely adopted to prove Sigma Protocol
Soundness by extracting the secret when two accepting
proofs with the same commitment and different challenges
are given [29]. Denote the two accepting proofs π1 =
(C ′, c1, (s̃1, {p̃1(i)})) and π2 = (C ′, c2, (s̃2, {p̃2(i)})) for
the statement C, where c1 ̸= c2. Hence, we have:{

C ′
i = pk

p̃1(i)
i · Cc1

i = pk
p̃1(i)+c1·p(i)
i ,

C ′
i = pk

p̃2(i)
i · Cc2

i = pk
p̃2(i)+c2·p(i)
i

,∀i ∈ [1, · · · , n]

By dividing the two equations, we get:

1G = pk
p̃2(i)−p̃1(i)+(c2−c1)·p(i)
i

Then p(i) can be calculated as:

p(i) =
p̃2(i)− p̃1(i)

c1 − c2

Further, s← intpl({(i, p(i))}i∈[1,··· ,n]) and the secret s can
be extracted with (C, π1, π2).
Theorem 11 (Public Verifiability). The messages from the

dealer and the shares sent by shareholders are publicly
verifiable.

https://gmplib.org
https://crypto.stanford.edu/pbc/


Proof. By Lemma 7 and Lemma 8, the Sigma protocol
used in the proposed PVSS provides a proof of knowledge
for the dealer, who acts as the prover. Specifically, the
output (C, π) of the PVSS.Share algorithm represents a non-
interactive proof of knowledge for the secret s or gs. More-
over, the proof π can be verified publicly. Then we consider
the public verifiability of shareholders in the reconstruction
phase. Since Ci (in C) is already publicly verified and pki
is publicly known, anyone can determine whether Di from
shareholder Pi is valid or not by e(Di, pki)

?
= e(g, Ci), as

shown in the PVSS.Recon algorithm.
Lemma 9 (Zero Knowledge of Sigma Protocol). The output

of PVSS.Share reveals no information about a share-
holder Pi’s gp(i), the dealer’s secret gs.

Proof. We introduce a simulator S, taking input a valid
statement C ∈ G and a challenge c ∈ Zp. We prove that
S can produce an accepting proof (C ′, c, (s̃, {p̃(i)})) for C.
Moreover, the proof should have the same distribution as a
transcript generated by a real-world prover and verifier.

In the PVSS.Share algorithm of the real world, an honest
prover can always output a transcript (C ′, c, (s̃, {p̃(i)})),
which is randomly distributed. Then, we argue the output
of the simulator S. For ∀i ∈ [1 · · · , n], it firstly calculates :

pt(i)
R←− Zp, Cit ← pk

pt(i)
i · Cc

i

and outputs a tuple (Cit, c, pt(i)). Notice that the tuple
always represents an accepting proof, as required. Further,
since c and pt(i) are randomly distributed in Zp, it follows
that Cit is also randomly distributed in G. Summarily, the
simulator S can always output a transcript that is indistin-
guishable from the output of real-world prover and verifier,
meaning that nothing about p(i) is leaked. Hence, the adver-
sary cannot obtain the Pi’s gp(i) without p(i). Besides, it is
also infeasible to defer gp(i) using C ′

i = pkp(i) = (gp(i))ski ,
due to discrete logarithm problem.
Definition 2 (IND1-Secrecy Game). A PVSS scheme

achieves IND1-Secrecy if for any polynomial time ad-
versary A corrupting at most t − 1 parties, A has
negligible advantage in the following game.

1) A challenger C runs the PVSS.Setup algorithm and
sends (g, pki, ski) to each uncorrupted shareholder Pi

and all public information to A.
2) A creates secret keys for the t − 1 corrupted parties

and sends the corresponding public keys {pki} to the
challenger C.

3) C selects two random values x0, x1 ∈ G and randomly
chooses b ← {0, 1}. It then runs the PVSS.Share
algorithm with secret x0 and sends all the output to
A, along with xb.

4) A outputs a guess b′ ∈ {0, 1}.
A’s advantage over the game is defined as |Pr[b = b′]-1/2|.
Theorem 12 (IND1-Secrecy). The proposed PVSS scheme

achieves IND1-Secrecy, i.e., for any probabilistic poly-
nomial time adversary A, corrupting fewer than t share-
holders, has a negligible advantage in obtaining infor-
mation about gs.

Proof. By Lemma 9, the Sigma protocol used in the
proposed PVSS provides zero knowledge about each gp(i)

for i ∈ [1, · · · , n] in the PVSS.Share phase. Then, we con-
sider the situation where A corrupts t− 1 shareholders. We
prove the IND1-Secrecy property by analyzing the security
game defined in Definition 2 based on discrete decisional
Diffie-Hellman (DDH) assumption. We argue that, if A can
break the IND1-Secrecy property of our PVSS, then there
exists an adversary ADDH which can use A to break DDH
assumption. Without lose of generality, denote the first t−1
shareholders, i.e., [P1, · · · , Pt−1], as the corrupted parties.

Let (g, gα, gβ , gγ) be an instance of the DDH problem.
Then, ADDH using A can sumulate an security game as
follows:

1) The challenger C sets h = gα. Then, C runs the
PVSS.Setup algorithm and sends (g, pki, ski) to each
uncorrupted shareholder Pi ∈ [t, · · · , n]. For t ≤ i ≤
n, ADDH samples ri

R← Zp and sends pki = gri to A.
2) For 1 ≤ i ≤ t−1, A chooses uniformly random values

ski
R← Zp and sets pki = hski and sends these to the

challenger.
3) For 1 ≤ i ≤ t− 1, C chooses uniformly random values

si ← Zp and sets Ci = pksii .
For t ≤ i ≤ n, C generates Si = gp(i) where p(x) is the
(t-1)-degree polynomial determined by p(0) = β and
p(j) = sj for 1 ≤ j ≤ t− 1. Note that ADDH knows
gβ (but does not know β) and gsj for 1 ≤ j ≤ t − 1.
So ADDH can use Lagrange interpolation to computes
Si = gsi = gp(i) for t ≤ i ≤ n and it also generates
shares Ci = (Si)

ri = pksii . Denote C = {Ci}i∈[1,··· ,n].
The challenger calculates the NIZK proofs π for C, as
the dealer does. Finally, C sends (C, π) and gγ to A,
where gγ plays the role of xb in the game.

4) Output: A makes a guess of b′.
If b′ = 0, ADDH guess that gγ = α · β, if b′ = 1,
ADDH guess that γ is a random element. The infor-
mation that A receives in setp 3) is distributed exactly
like a sharing of the value hβ = gαβ . If gγ sent to A is
the secret shared by the proposed PVSS, γ = α ·β. So
the advantage of ADDH is the same as the advantage
of A.

4. Complexity of Related PVSS

In the following, we analyze the computation and
communication complexity of some of the recent PVSS
schemes [16], [17] in detail. To better elaborate the com-
plexity, we first analyze the complexity of DLEQ algo-
rithms, which is widely adopted in aforementioned PVSS
schemes [15], [16], [17], [42]. The prover costs 2 exponenti-
ations to generate commitments, outputting two elements in
G and one element in Z. The verification algorithm requires
4 exponentiations.

SCRAPE [15] has analyzed its complexities and we omit
it here.

1) ALBATROSS [16]



Computation Complexity: In the sharing phase, the
dealer costs one exponentiation to compute the secret S and
n exponentiations to encrypt the shamir shares. In addition,
it also takes n exponentiations to produce the low degree
exponent interpolation (LDEI) proof, which essentially ex-
ecutes a standard Sigma protocol for each share. Thus, the
total cost in the sharing phase is 2n exponentiations. In the
verification phase, the verifier costs 2n exponentiations to
check the LDEI proof. In the reconstruction phase, the cost
includes 1 exponentiation to verify the local LDEI proof and
4 exponentiations to verify the DLEQ proof for each party
providing a decrypted share. Lastly, reconstructing the se-
cret S requires t exponentiations. Hence, the reconstruction
phase takes 6t exponentiations.

Communication Complexity: In the sharing pahse, the
dealer publishes the encrypted shares (σ̂1, ..., σ̂n) on the
public ledger along with the proof LDEI. The encrypted
shares contains n elements in G, and the proof LDEI
contains n elements in G and n + 1 elements in Z. In
the reconstruction phase, the secret S can be reconstructed
only if at least t shares are published in the ledger. So,
t shares contains t elements in G. In addition, each party
must publish DLEQ proof and the encrypted share to show
that the decrypted share corresponds to σ̂i, in total t DLEQ
proofs and t encrypted shares. Hence, reconstruction phase
requires 4t elements in G and t elements in Z.

2) HEPVSS [17]
Computation Complexity: In the sharing phase, the

dealer costs n exponentiations to generate the shares {Ai :
i ∈ [n]} and 2n exponentiations to encrypt these shares us-
ing ElGamal encryption, resulting in {Ci : i ∈ [n]}. Besides,
generating the corresponding NIZK proof Pfsh necessitates
4n exponentiations. Therefore, the total computation cost for
the sharing phase is 7n exponentiations. In the verification
phase, the verifier takes 4n exponentiations to verify the
NIZK proof Pfsh generated in the sharing phase. In the
reconstruction phase, it takes 2t exponentiations to verify
the proof PfDec, which is generated by all shareholders to
guarantee the correctness of the decrypted shares. Finally, t
exponentiations are cost to reconstruct the secret S. Hence,
the reconstruction phase takes 3t exponentiations, in total.

Communication Complexity: In the sharing phase, the
dealer publishes the encrypted shares {Ci : i ∈ [n]} and the
corresponding NIZK proof Pfsh. The set {Ci : i ∈ [n]}
contains 2n elements in G and the proof Pfsh contains n
elements in G and 2n elements in Z. the communication
complexity for the sharing phase is 3n elements in G and
2n elements in Z. In the reconstruction phase, the recoverer
receives t shares and the corresponding NIZK proof PfDec

to reconstruct the secret S. Each share contains one elements
in G, while PfDec contains 2t elements in Z in total. Thus,
the communication complexity for the reconstruction phase
is t elements in G and 2t elements in Z.

3) DHPVSS [17]
Computation Complexity: In the sharing phase, the

dealer costs n exponentiations to generate the shares
{Ai : i ∈ [n]} and an additional n exponentiations to
generate the encrypted shares {Ci : i ∈ [n]}. Then,

the dealer leverages DLEQ to generate the single proof
DLEQ(skD;G, pkD, U, V ). The computation of U and V
requires n exponentiations each, and involves evaluating a
random (n−t−1)-degree polynomial at i, for i ∈ [1, . . . , n],
which takes n(n−t−2) exponentiations. Therefore, the total
cost for computing U and V is n(n− t− 2)+ 2n exponen-
tiations. Hence, the sharing phase takes n(n − t + 2) + 2
exponentiations. In the verification phase, the verifier needs
to recompute the U and V and verify the DLEQ proof Pfsh.
Hence, the verification phase incurs a cost of n(n− t) + 4
exponentiations. In the reconstruction phase, verifying the t
DLEQ proofs costs 4t exponentiations, and reconstructing
the secret S requires an additional t exponentiations. Hence,
the total computation cost for the reconstruction phase is 5t
exponentiations.

Communication Complexity: In the sharing phase, the
dealer publishes ({Ci : i ∈ [n]}, Pfsh), where {Ci : i ∈
[n]} contains n elements in G, and Pfsh contains 2 elements
in G and one element in Z. Hence, the communication
complexity of the sharing phase is n+2 elements in G and
one element in Z. In the reconstruction phase, the recoverer
receives t shares and t DLEQ proofs. Each share is an
element in G. Therefore, the communication complexity of
the reconstruction phase is 3t elements in G and t elements
in Z.
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