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Abstract. This paper explores the possibility of using different bases in
Beyne’s geometric approach, a flexibility that was theoretically proposed
in Beyne’s doctoral thesis but has not been adopted in real cryptanalytic
attacks despite its potential to unify multiple attack paradigms. We re-
visit three bases from previous geometric approach papers and extend
them to four extra ones determined by simple rules. With the final seven
bases, we can obtain 72d different basis-based attacks in the d-th-order
spaces, where the order is defined as the number of messages used in
one sample during the attack. All these attacks can be studied in unified
automatic search methods.
We provide several demonstrative applications of this framework. First,
we show that by choosing an alternative pair of bases, the divisibility
property analyzed by Beyne and Verbauwhede with ultrametric inte-
gral cryptanalysis (ASIACRYPT 2024) can be interpreted as a single
element rather than as a linear combination of elements of the transi-
tion matrix; thus, the property can be studied in a unified way as other
geometric approach applications. Second, we revisit the multiple-of-2t

property (EUROCRYPT 2017) under our new framework and present
new multiple-of-2t distinguishers for SKINNY-64 that surpass the state-
of-the-art results, from the perspectives of both first-order and second-
order attacks. Finally, we give a closed formula for differential-linear
approximations without any assumptions, even confirming that the two
differential-linear approximations of SIMECK-32 and SIMECK-48 found by
Hadipour et al. are deterministic independently of concrete key values.
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1 Introduction

A secure symmetric-key primitive (block cipher, stream cipher, cryptographic
permutation, etc.) is expected to have an indistinguishable behavior from an
idealized one. In practice, whether the primitive meets this expectation is tested
by cryptanalysis: confidence is brought about by continuous analyses performed
by the community. There are many attack techniques in the toolbox of crypt-
analysts, such as differential [10], linear [27], and integral [23] cryptanalysis, as
well as some combined ones such as differential-linear attacks [24]. After creating
a cipher, designers and third-party cryptanalysts test its resistance against all
state-of-the-art cryptanalytic methods, and it is deemed secure only if it resists
all of them with sufficient security margin.

One issue with this process is that there are too many different types of at-
tacks, and testing all of them is a very tedious task. In addition, being secure
against all known attacks is not foolproof against potential new attacks. A well-
known example is the boomerang attack on COCONUT98 [36], which was de-
signed to be secure against differential and linear cryptanalysis, but was quickly
broken by this newly introduced technique. Sometimes, even for well-studied
ciphers, unexpected properties are uncovered many years after publication. At
Eurocrypt 2017, a structural property [17] (later named the multiple-of-8 prop-
erty and multiple-of-n property [14]; in this paper, we call it multiple-of-2t as
n is always divisible by 2t for a certain t) was found for the 5-round Advanced
Encryption Standard (AES) [15]. This was surprising as AES has been carefully
studied for almost 30 years, yet this simple property remained undiscovered.
Furthermore, although some cryptanalytic methods have been widely used to
evaluate the security of cryptographic algorithms, they may not yet be fully un-
derstood. For example, before 2015, integral cryptanalysis was already one of
the most mature cryptanalytic methods. However, Todo’s discovery of the divi-
sion property [34,35] and the following theories on parity sets [13] and monomial
predictions [20] revealed a close relationship between integral cryptanalysis and
the theory of Boolean functions of cryptographic algorithms – an evident con-
nection in hindsight that had not been truly utilized in integral attacks. More
recently, Beyne and Verbauwhede applied the geometric approach [4] to integral
cryptanalysis [8], significantly deepening the community’s understanding of the
integral attack and division property once again. This suggests that the current
knowledge of cryptanalysis remains relatively shallow.

A possible explanation for this situation is that cryptanalysis remains a task
heavily based on the experience of cryptanalysts. Although the field has achieved
great progress in the past four decades, it is fair to say that the community
still knows little about the underlying principles and interconnections of vari-
ous cryptanalytic methods. Usually, new attacks are found based on the good
intuition of the cryptanalysts rather than on some systematic methods. If a uni-
fied theory could be developed to describe all (or a large family of) attacks and
could be used to discover new ones, it would be extremely beneficial for the
advancement of the field.
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Recently, the geometric approach proposed by Beyne [6] has shown the po-
tential to bring about an interesting change in cryptanalysis. This technique has
been successfully used to reinterpret linear [4], (quasi-d-)differential [7,37] and
integral cryptanalysis [8], overcoming many difficulties that could not be solved
by classical methods. Based on this theory, Beyne and Verbauwhede proposed
a new attack called ultrametric integral cryptanalysis [5] and characterized the
divisibility property of the frequency of a ciphertext monomial evaluating to 1,
which was impossible before.

The key point of the geometric approach is to view the input and output
spaces of a cipher as free vector spaces and treat the cipher as a linear map in
the high-dimensional spaces. The geometric approach benefits from the extensive
knowledge and tools already developed in linear algebra.

In the following, we assume the plaintext and ciphertext spaces of a cipher
E : Fn

2 → Fn
2 are (Fn

2 )
d = Fn

2 × Fn
2 × · · · × Fn

2 , where × represents the Cartesian
product, and (Fn

2 )
d is called a d-th-order space which will be formally defined

in Definition 2. Choosing a field K and regarding all vectors in (Fn
2 )

d, denoted
by (δu, 0 ≤ u < 2dn)1, as a generating set, a free vector space over K can be
induced as

K[(Fn
2 )

d] =

{∑
u

kuδu : ku ∈ K, u = 0, 1, . . . , 2dn − 1

}
.

The pushforward operation T E is induced from the cipher E , which is a lin-
ear map that sends a vector of K[(Fn

2 )
d] to another in the same space. Here,

(δu, 0 ≤ u < 2dn) plays the role of the standard basis, under which the corre-
sponding matrix of T E is uniquely determined, denoted by T E , which is called
the transition matrix of E . When we choose a different basis for T E , denoted by
(βu, 0 ≤ u < 2dn), with the change-of-basis matrix being P that satisfies

(δ0, δ1, . . . , δ2dn−1) = (β0, β1, . . . , β2dn−1)P,

the corresponding matrix of T E becomes another matrix under the new basis
(βu, 0 ≤ u < 2dn), denoted by AE , that is similar to T E , i.e., AE = PT EP−1.
This process can also be performed in a dual way by considering the function
space from Fn

2 to K.
With a new proper basis, Beyne found that the elements of AE would be

related to some attacks. For example, when d = 1 and the new basis is chosen
as (χu, u = 0, 1, . . . , 2n − 1), where χu = [(−1)u

⊤x, 0 ≤ x < 2n] that is a column
vector of 2n length (u⊤x representing the dot product of u and x), the element
at the u-th column and v-th row of AE is

AE
v,u = 2−n

∑
x∈Fn

2

(−1)u
⊤x+v⊤E(x), (1)

1 We use the natural way to interpret a vector u ∈ Fn
2 as an integer

∑
0≤i<n ui2

n−1−i

where u0 is the most significant bit.
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which corresponds to a linear approximation of E with input and output masks
being u and v respectively [4].

From another perspective, for every pair (v, u), AE
v,u can serve as a statistic

on a set of inputs and outputs, so it provides an opportunity for cryptanalysts
to check if it follows the same probability distribution as a random permutation.
In linear cryptanalysis, for example, the expected value of AR

v,u in Equation (1)
of a random permutation R is zero, so if AE

v,u significantly deviates from 0, we
can distinguish E from R. To make the distinguishing process easier, an attacker
prefers to choose a pair (v, u) with the largest possible absolute deviation of AE

v,u

from zero, which corresponds to the process of finding a good pair of input and
output masks in linear cryptanalysis. In theory, we can also check the variances
or any other values to do the distinguishing attacks, as long as it is possible to
compare with a random permutation.

With various bases and different d, various transition matrices can be ob-
tained. Their elements can be regarded as different statistics of inputs and out-
puts, providing opportunities (in theory) to compare the cipher with a ran-
dom permutation. The linear [4], (quasi-d-)differential [7,37], integral [8], and
ultrametric integral attacks [5], all follow a similar philosophy. In each of these
previous applications of the geometric approach, the same kind of basis2 is al-
ways chosen for the input and output spaces. Such a same-basis configuration
works perfectly except for the ultrametric integral cryptanalysis: This attack de-
scribes the divisibility of the number of times that a ciphertext monomial value
is equal to 1 occurs under a set of specifically-chosen plaintexts. Given a cipher
E : Fn

2 → Fm
2 , the divisibility property is defined as3∑

x⪯u

τ(Ev(x)) ≡ 0 mod 2t (2)

where Ev(x) is the product of coordinates of E(x) according to the support of
v whose values are 0 or 1, and the function τ : Fn

2 → Q maps elements of F2

to their integer equivalents in Q, i.e., τ(0) = 0 and τ(1) = 1. When t = 1, this
is simply the zero-sum property studied by integral cryptanalysis. To study this
property, Beyne and Verbauwhede chose the basis as (µu, 0 ≤ u < 2n), where
µu = [(−1)wt(u⊕v)τ(uv), 0 ≤ v < 2n] (wt(v) represents the Hamming weight of
x)4. The corresponding transition matrix element is

AE
v,u =

∑
x⪯u

(−1)wt(u⊕x)τ(Ev(x)) (3)

By comparing Equations (2) and (3), one can observe that Equation (3) cannot
be used to study Equation (2) in a direct way due to the existence of (−1)wt(u⊕x).
2 In this paper, when we write same basis/different bases, by default we mean same

kind of basis/different kinds of bases. For example, linear bases for K[Fn
2 ] and K[Fm

2 ]
are the same (kind of) basis, although they are bases for different spaces.

3 The partial order x ⪯ u for x, u ∈ Fn
2 is defined as: for all indices, xi < ui if we

regard xi and ui as integers.
4 In [5], this basis is equivalently written as

∑
x⪯u(−1)wt(u⊕x)δx.
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This is because the left-hand of Equation (2) does not equal any single element of
AE in Equation (3), which makes the description of ultrametric integral crypt-
analysis different from the other applications of the geometric approach, and
more techniques are required to describe this attack.

Our contributions. In [6, Section 2.4.2], Beyne discussed the possibility of us-
ing different bases in the geometric approach. However, such flexibility has never
been adopted in concrete cryptanalytic attacks despite its potential to unify mul-
tiple attack paradigms. In this paper, we show that the geometric approach with
different bases is indeed more flexible and will contain more attacks. Given a pair
of (same or different) bases, one can obtain the corresponding transition matrix.
The elements of the matrix can serve as statistics that provide opportunities for
an attacker to examine whether the cipher’s input and output samples follow
the same distribution as a random permutation.

This way, given a set of t different bases, t2 attacks can be naturally defined by
them. We call these attacks a family of basis-based attacks defined on the t bases.
This paper first recalls three bases used in previous geometric approach papers,
then introduces three rules to generate four new bases from these three known
ones. To characterize the number of messages in a sample exploited in an attack,
we also define the order of a space and an attack. Bases that are used in higher-
order attacks can be generated from first-order bases by the Kronecker product.
Finally, from the seven bases used in our work, 72d attacks are obtained for the
d-th-order cases, including many known and unknown attacks. All these attacks
can be studied in a unified automatic search method. This has significantly
enlarged the scope of the geometric approach.

An immediate benefit of allowing different bases is that the geometric ap-
proach can now be applied to describe combined attacks such as differential-
linear cryptanalysis [24]. Choosing the basis used in quasi-differential crypt-
analysis [7] for the input space, and the basis used in linear cryptanalysis [4]
(actually, a variant of this basis), we derive a closed formula for the differential-
linear approximation without any independence assumption. Automatic search
tools are also developed in a natural way to calculate/approximate the exact
differential-linear correlation. By enumerating all trails, we managed to confirm
that two differential-linear approximations of SIMECK variants recently found by
Hadipour, Derbez, and Eichlseder are deterministic independently of keys [18].

Three more applications are provided to demonstrate the effectiveness of the
geometric approach with different bases.

In Section 4, we revisit Beyne and Verbauwhede’s ultrametric integral crypt-
analysis that studies the divisibility property. With an alternative choice of bases,
the divisibility property can be described as a simpler mix-basis attack, where
the correlation expression derived from the bases corresponds exactly to a single
element of the transition matrix. Thus, we can focus more on tracing trails from
all round functions’ transition matrices, rather than the linear combinations of
the divisibility property of different input vectors. In Sections 5 and 6, we ap-
ply our framework to the multiple-of-2t property, a generalized property of the
multiple-of-8 property which was originally discovered for the 5-round AES [17].
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This property reached only 5 rounds for SKINNY-64 before this paper, but our
automatic search method derived from the geometric approach easily extends its
length to 10 rounds. We also study the multiple-of-2t property as a first-order
attack. This is naturally similar to the original multiple-of-2t property. We find a
new distinguisher for SKINNY-64 that reaches 11 rounds, which is already of the
same length as the integral distinguishers. The applications in Sections 5 and 6
provide examples of how to study the same property for different orders.

Paper organization. The remaining paper is organized as follows. Section 2
introduces the notations and recalls some background knowledge. In Section 3,
we describe our main contribution. The following four sections give four examples
of applications of how to use the geometric approach with different bases in
cryptanalysis. Section 8 concludes the paper.

2 Preliminaries

2.1 Notations

We use double-struck uppercase letters such as U,V to represent sets. Uniquely,
Q is used for rational numbers and N is for all natural numbers. If V is a vector
space, dimV represents its dimension.

A column vector of length n whose values are chosen from a set S is written
as [x0, x1, . . . , xn−1] = [xi, 0 ≤ i < n] ∈ Sn. Its corresponding row vector is
[x0, x1, . . . , xn−1]

⊤ = [xi, 0 ≤ i < n]⊤. If all elements of a vector can be calcu-
lated by a function f(x) by enumerating x, this vector is also represented by
[f(x), 0 ≤ x < n]. For two vectors x, y ∈ Fn

2 , x ⪰ y means xi ≥ yi for all i.
Similarly, x ⪯ y means xi ≤ yi for all i. xi and yi are regarded as integers for
this comparison. ⊕ is the bit-wise addition modular 2 for two vectors in Fn

2 . A
vector x ∈ Fn

2 can be seen as an integer
∑

0≤i<n xi2
n−1−i where x0 is the most

significant bit; the integer form of a vector is used for indices. a||b ∈ Fn+m
2 is the

concatenation of a ∈ Fn
2 and b ∈ Fm

2 .
Functions are denoted by calligraphic upper letters, such as F and E . Matrices

are represented by uppercase letters like A and T , etc. The element at the v-th
row and u-th column of a matrix A is denoted by Av,u, which is also called the
(v, u)-element of A. When a matrix is a Kronecker product of multiple matrices,
the row and column indices are written as vector tuples. For example, A = B⊗C,
A(v0,v1),(u0,u1) = Bv0,u0

Cv1,u1
. An introduction to the Kronecker product can be

found in [6, Section 2.2.3].
Similar to the vector, if all (v, u)-elements of a matrix can be calculated

by a function fu(v) that is in S with enumerating u and v, the matrix is also
represented by A = [fu(v)]v,u ∈ Sn×n, where 0 ≤ v < n is the row index and
0 ≤ u < n is the column index.

The matrix can also be written by its column vectors, such as A = [fu(v)]v,u =
(f0, f1, . . . , fn−1), where fu = [fu(v), 0 ≤ v < n] is its u-th column vector.
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We introduce several functions that have been extensively used in previous
geometric approach papers and will play important roles in this work. For ex-
ample, some of these functions are used to represent the matrices or vectors in
the way above.

Function 1 (wt(·)) wt(·) : Fn
2 → N, for any x ∈ Fn

2 , wt(x) is the Hamming
weight of x defined by wt(x) =

∑
0≤i<n xi.

Function 2 ((−1)u
⊤(·)) Let u ∈ Fn

2 , we define (−1)u
⊤(·) : Fn

2 → Q as

(−1)u
⊤x =

{
1 if u⊤x = 0,

−1 if u⊤x = 1,

where u⊤x means the dot product of u and x, i.e., u⊤x =
∑

0≤i<n uixi mod 2.
Another popular form of this function is written as χu(·).

Function 3 (δu(·)) Let u ∈ Fn
2 , we define δu(·) : Fn

2 → Q as

δu(x) =

{
1 if x = u,

0 otherwise.

Remark. In this paper, the notation “δu” (rather than “δu(·)”) is also used to
represent the unit vector whose u-th element is 1. This interpretation is natural
when we express it as δu = [δu(x), 0 ≤ x < 2n].

Function 4 ((·)u) Let u ∈ Fn
2 , we define (·)u : Fn

2 → Q as

xu =

{
1 if x ⪰ u,

0 otherwise.

Note that in [5] and many previous papers, xu is defined as a value in F2. To
transform xu into values in Q, a Teichmüller lift

τ : F2 → Q, τ(0) = 0, τ(1) = 1

is applied to xu. However, since this paper only works in Q, we by default use
xu as a value in Q to omit the notation τ for the sake of a simpler description.

Function 5 (u(·)) Let u ∈ Fn
2 , we define u(·) : Fn

2 → Q as

ux =

{
1 if x ⪯ u,

0 otherwise.

Similarly to (·)u, we also omit the τ function and regard ux by default as a
rational number.
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2.2 Brief Introduction to Beyne’s Geometric Approach

This paper will discuss how to choose and combine different bases in Beyne’s
geometric approach, as well as generating new bases from existing ones by sim-
ple rules. Thus, in this subsection, we will only introduce how to describe an
attack with a chosen basis and the usage of automatic search tools in the one-
dimensional case [6, Section 2.4]. The geometric approach actually has a larger
scope, for more content such as the multidimensional theory [6, Section 2.5] and
deriving bases from group or monoid characters, we refer readers to [6,4,7,5].
Mathematical background knowledge about representations of finite groups and
monoids can also be found in textbooks such as [30] and [31].

Consider a function E : Fn
2 → Fm

2 . Beyne introduced the geometric approach,
which is a way to use linear algebra techniques to analyze the properties of E [6].
There are two methods for this purpose. One is to work in free vector spaces,
and the other is to start from function spaces. The two methods are dual to each
other, so we will only introduce the first one here. Let K be any field,

K[Fn
2 ] =

∑
u∈Fn

2

auδu, au ∈ K, u ∈ Fn
2


is called a free vector space over K with Fn

2 as the generating set. K[Fn
2 ] is a

vector space, and (δ0, δ1, . . . , δ2n−1) is the standard basis. In this paper, we tend
to write the basis as a matrix like [δu(v)]v,u by placing the u-th basis vector into
the u-th column of [δu(v)]v,u.

The pushforward operation of E is defined as

T E : K[Fm
2 ] → K[Fn

2 ],
∑
u∈Fn

2

auδu 7→
∑
u∈Fn

2

auδE(u).

Let u ∈ Fn
2 and v ∈ Fm

2 , E(u) = v is equivalent to T E(δu) = δv = δE(u). One
can easily verify that T E is a linear map. Under the standard basis, the matrix
of T E can be derived, which is denoted by T E ∈ K2m×2n with its (v, u)-element
being T E

v,u = δv(E(u)).
Note that T E is a linear map, thus, with doing a change-of-basis for the input

and output spaces we can obtain different matrices.
Suppose the new basis is [αu(v)]v,u (the lengths of basis vectors for the input

and output spaces are implicit). The change-of-basis matrix for the standard
basis and the new basis is Pn ∈ K2n×2n and Pm ∈ K2m×2m ,

[δu(v)]v,u = [αu(v)]v,uPn (input) and [δu(v)]v,u = [αu(v)]v,uPm (output).

The matrix of T E under the basis [αu(v)]v,u is then

AE = PmT EP−1
n . (4)

Note that [δu(v)]v,u is an identity matrix, thus Pm = [αu(v)]
−1
v,u and P−1

n =
[αu(v)]v,u. Here we assume [αu(v)]

−1
v,u can be represented by a compact form,
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denoted by [αu(v)]
−1
v,u = [α⋆

u(v)]v,u. Therefore

AE = [α⋆
u(v)]v,uT

E [αu(v)]v,u.

The (v, u)-element of A can be obtained by left-multiplying a unit row vector
δ⊤v , followed by the right-multiplication of a unit column vector δu, as

AE
v,u = δ⊤v [α⋆

u(v)]v,uT
E [αu(v)]v,uδu

= [α⋆
0(v), α

⋆
1(v), . . . , α

⋆
2m−1(v)]

⊤T E [αu(0), αu(1), . . . , αu(2
n − 1)]

=

 ∑
x∈Fm

2

α⋆
x(v)δx(E(0)), . . . ,

∑
x∈Fn

2

α⋆
x(v)δx(E(2n − 1))

⊤

[αu(0), . . . , αu(2
n − 1)]

=
∑
x∈Fn

2

α⋆
E(x)(v) · αu(x)

(5)
The formula of AE

v,u is called the correlation expression of the approximation
(u, v). As mentioned before, the correlation expression can be seen as a statis-
tic, which might follow different probability distributions for E being a random
function or a cipher.

In the following, we revisit the applications of the geometric approach to
linear [4], differential [7], and ultrametric integral cryptanalysis [5]. In this paper,
the free vector spaces are always over K := Q.

Geometric approach to linear cryptanalysis. In [4], Beyne chose the linear
basis as [(−1)u

⊤v]v,u, whose inverse satisfies [(−1)u
⊤v]−1

v,u = 2−n[(−1)u
⊤v]v,u.

With Equation (5), the transition matrix for linear cryptanalysis has the (v, u)-
element as

AE
v,u = 2−n

∑
x∈Fn

2

(−1)u
⊤x⊕v⊤E(x).

Geometric approach to differential cryptanalysis. In differential crypt-
analysis, the input of E can be considered as a value and a difference, i.e.,
(x0, x0⊕x1) ∈ Fn

2 ×Fn
2 . Thus, the free vector spaces induced from the input and

output spaces are Q[Fn
2 × Fn

2 ].
In [7], Beyne and Rijmen chose the quasi-differential basis as

[(−1)u
⊤
0 v0 ]v0,u0 ⊗ [δu1(v1)]v1,u1 = [(−1)u

⊤
0 v0δu1(v1)](v0,v1),(u0,u1).

According to the calculation rule of the Kronecker product, (M0 ⊗ M1)
−1 =

M−1
0 ⊗M−1

1 , thus

[(−1)u
⊤
0 v0δu1(v1)]

−1
(v0,v1),(u0,u1)

= [(−1)u
⊤
0 v0 ]−1

v0,u0
⊗ [δu1(v1)]

−1
v1,u1

= [2−n(−1)u
⊤
0 v0 ]v0,u0

⊗ [δu1
(v1)]v1,u1

.
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With Equation (5), the ((v0, v1), (u0, u1))-element of the quasi-differential tran-
sition matrix is

AE
(v0,v1),(u0,u1)

= 2−n
∑

x0∈Fn
2

E(x0)⊕E(x0⊕u1)=v1

(−1)u
⊤
0 x0⊕v⊤

0 E(x0).

In [37], Wang et al. managed to extend the quasi-differential framework to
d-differential cryptanalysis [33], with choosing the quasi-d-differential basis

[(−1)u
⊤
0 v0 ]v0,u0

⊗ [δu1
(v1)]v1,u1

⊗ · · · ⊗ [δud−1
(vd−1)]vd−1,ud−1

.

Geometric approach to ultrametric integral cryptanalysis. In [5], Beyne
and Verbauwhede introduced the ultrametric integral cryptanalysis to study di-
visibility properties. The ultrametric integral basis is chosen as [(−1)wt(u⊕v)uv]v,u,
whose inverse is [(−1)wt(u⊕v)uv]−1

v,u = [uv]v,u. According to Equation (5), the
(v, u)-element of the ultrametric integral transition matrix is

AE
v,u =

∑
x⪯u

(−1)wt(u⊕x)Ev(x).

2.3 Propagation of Transition Matrix, Metric, and Automatic
Search

Calculating the (v, u)-element of a transition matrix AE according to the corre-
lation expression is challenging, as it usually requires enumerating a variable in
a large size of set, e.g., Fn

2 . However, the transition matrices enjoy the following
property.

Theorem 1 (Propagation of transition matrices [7,4]). The transition
matrix of E : Fn

2 → Fm
2 satisfies:

(1) If E = Es0 || · · · ||Esm−1
, AE =

⊗m−1
i=0 AEi .

(2) if E = Er−1 ◦ · · · ◦ E1 ◦ E0, AE = AEr−1 · · · · ·AE1 ·AE0 .

According to Theorem 1, if E = Er−1 ◦ Er−2 ◦ · · · ◦ E0 we have

AE
ur,u0

=
∑

ur−1,ur−2,...,u1

r−1∏
i=0

AEi
ui+1,ui

. (6)

AE
ur,u0

is equal to the sum of correlations of all trails with input and output
masks being u0 and ur, respectively.

Definition 1 (Approximation, trail and correlation [4]). In Equation (6),
the mask pair (u0, ur) is called an approximation,

∑
ur−1,...,u1

∏r−1
i=0 AEi

ui+1,ui

is called its correlation. (u0, u1, . . . , ur) is called a trail belonging to (u0, ur).∏r−1
i=0 AEi

ui+1,ui
is called the correlation of this trail.
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Therefore, AE
ur,u0

is the sum of the correlations of all trails belonging to the
approximation (u0, ur). The search for a trail or the enumeration of trails has
been extensively studied in previous articles related to automatic search, such
as [28,32], which can be and have been reused in a natural way for the search
of trails in the geometric approach [6]. In Appendix B, we give a high-level
description of the current automatic search methods.

To use the correlation expression of AE
ur,u0

for a distinguishing attack, two
types of metrics are known. The first is the Archimedean absolute value of
AE

ur,u0
such as the correlation in linear attacks or the probability in differential

attacks. The values for a cipher and a random permutation are expected to
follow different probability distributions that can be distinguished with some
samples. The second is to use the 2-adic absolute value5 of AE

ur,u0
, which can

show if AE
ur,u0

is a multiple of a certain number (divisibility property). The 2-
adic absolute value of a rational number x = 2t rs with r and s being co-prime
odd integers and t is an integer, is equal to 2−t, denoted by |x|2 = 2−t. For
example, as Beyne and Verbauwhede recently showed, the zero-sum property
in integral cryptanalysis is equivalent to saying that the weight of the output
Boolean function under some input sets is a multiple of 2. Thus, it is natural
to consider whether the weight is also a multiple of 2t (t ≥ 2). This metric has
been introduced and well studied in [5]. According to the definition of the 2-adic
absolute value on Q, AE

ur,u0
≡ 0 mod 2t is equivalent to saying |AE

ur,u0
|2 ≤ 2−t.

Since the number of trails can be too large to exhaust, in most cases, only
one or a small percentage of trails that have the most significant correlations
can be searched and used. These trails are called dominant trails [6]. In the
first metric, the sum of dominant trails cannot ensure that the approximation is
always sound. Yet, in the second metric, due to the ultrametric triangle inequality
|x+ y|2 ≤ max{|x|2, |y|2}, the correlation of the dominant trails can bound the
summed correlations of all trails.

3 Geometric Approach While Allowing Different Bases

In [6, Section 2.4.2], Beyne showed that the transition matrices obtained for each
round function under different bases have analogous propagation properties with
the same bases case. However, prior related papers have not explored this possi-
bility. In this section, we demonstrate how to use this idea in real cryptanalysis
by combining different bases for the input and output spaces to describe new
attacks, which enhances the geometric approach significantly. We also introduce
the general framework for the geometric approach in the higher-order case.

3.1 Using Different Basis for Input and Output Spaces

Consider E : Fn
2 → Fm

2 . An attack on E can use samples (p0, p1, . . . , pd−1) ∈ (Fn
2 )

d

and corresponding (c0, c1, . . . , cd−1) ∈ (Fm
2 )d for a distinguishing or key-recovery

5 As implied by [5], using p-adic absolute value as a metric is also possible, but this
paper only focuses on 2-adic absolute value case.
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attack, where ci = E(pi) for 0 ≤ i < d. For a specific distinguishing attack, the ex-
perimental correlation is calculated from (p0, p1, . . . , pd−1) and (c0, c1, . . . , cd−1)
and reflects some statistical properties of the cipher. If the correlation of the tar-
get cipher follows a different probability distribution from a random function,
we can perform a distinguishing attack with some computational resources. The
number of sample components, i.e., d, is an important information about the
attack, defining the order of the input and output spaces. We call this number
the order of an attack.

Definition 2 (The order of an attack). The number d of (Fn
2 )

d is called the
order of the space (Fn

2 )
d. An attack that uses samples in a d-th-order space is

called the d-th-order attack.

For the sake of convenience, in the following we will say that a d-th-order
attack on E : Fn

2 → Fm
2 is an attack on E×d : (Fn

2 )
d → (Fm

2 )d (but in the cases
when the order is clear, “×d” might be omitted for simplicity). For example,
differential cryptanalysis is a typical second-order attack as it uses a pair of
messages, so we say that the differential attack is on E×2 : (Fn

2 )
2 → (Fm

2 )2.
Furthermore, note that in a d-th (d > 1) order attack, in fact we are more
interested in the difference between the i-th (i ≥ 1) and the first component of
the sample. Thus, we consider the input and output of E×d as

(p0, p0 ⊕ p1, . . . , p0 ⊕ pd−1) and (c0, c0 ⊕ c1, . . . , c0 ⊕ cd−1),

which is similar to the setting of polytopic attacks [33]. In the following, by de-
fault we will use (x0, ∆1, . . . ,∆d−1) to represent the input of an attack where
∆i (i ≥ 1) is the difference between the i-th and the first element, i.e., ∆i =
x0 ⊕ xi, and we will use (E(x0),D∆1

E(x0), . . . ,D∆d−1
E(x0)) to represent the

output where D∆E(x) = E(x) ⊕ E(x ⊕ ∆) is the derivative of E in direction
∆, evaluated on x. In this paper, for second-order attacks we use (x,∆) and
(E(x),D∆E(x)) for the input and output pairs, respectively. Such a writing style
can simplify the notation.

Consider the d-th-order space (Fn
2 )

d and the rational field Q, the free vector
space can be induced as Q[(Fn

2 )
d], where elements in (Fn

2 )
d is a basis of Q[(Fn

2 )
d].

It is similar to the cases we have discussed in Section 2, but we choose different
bases for the input and output free vector spaces here.

For E×d : (Fn
2 )

d → (Fm
2 )d, let T E×d

be the pushforward operation of E×d

that maps a standard basis of Q[(Fn
2 )

d] to a standard basis of Q[(Fm
2 )d], i.e.,

T E×d

(δu) = δE×d(u) where u ∈ (Fn
2 )

d. Under the standard basis, the correspond-
ing matrix of T E×d

is denoted by T E×d

with T E×d

v,u = δv(E×d(u)).
Suppose we choose two bases for the input and output spaces which satisfy

[δu(v)]v,u = [αu(v)]v,uP (input) and [δu(v)]v,u = [βu(v)]v,uQ (output),

where P ∈ F2n×2n

2 and Q ∈ F2m×2m

2 are the corresponding change-of-basis ma-
trices. A new transition matrix of E×d can be deduced similarly to Equation (4)
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[δu(x)]v,uP
−1 x [δu(x)]v,uT

E×d

P−1 x
T E×d

v,u = δv(E(u))

[αu(v)]v,ux T E×d

[αu(v)]v,ux = [βu(v)]v,uQT EP−1x
AE×d

v,u =?

[αu(v)]v,u = [δu(v)]v,uP
−1 [δu(v)]v,u = [βu(v)]v,uQ

Fig. 1: An illustration of the geometric approach on a cryptanalysis with two
different bases. Note P−1 = [αu(x)]x,u and Q = [βu(x)]

−1
x,u. Given a vector

[αu(x)]x,ux where x is the coordinate under the basis [αu(x)]x,u. After the
change-of-basis operation in the input space, it becomes a vector represented
by [δu(x)]x,u, and then transformed by T E×d

to [δu(x)]x,uT
E×d

P−1x (T E×d

is
the corresponding matrix of T E×d

under the basis [δu(x)]x,u). After the change-
of-basis operation in the output space, it becomes to the final form under the
basis [βu(x)]x,u whose coordinate is QT EP−1x.

as
AE×d

= Q T E×d

P−1, (7)

Clearly, P−1 = [αu(v)]v,u and Q = [βu(v)]
−1
v,u. If Q = [βu(v)]

−1
v,u can also be

represented in a compact way, say Q = [β⋆
u(v)]v,u, the (v, u)-element of AE×d

can be obtained similar to Equation (5) by multiplying to the left a row unit
vector δ⊤v and multiplying to the right a column unit vector δu, as

AE×d

v,u = δv
⊤ AE×d

δu = δ⊤v (Q T E×d

P−1) δu

= [β⋆
y(v), 0 ≤ y < 2dn]⊤ T E×d

[αu(x), 0 ≤ x < 2dn]

=
∑

x∈(Fn
2 )

⊗d

β⋆
E⊗d(x)(v) αu(x)

(8)

An illustration is provided in Figure 1.

Depending on whether the two bases for the input and output spaces are the
same, we divide attacks into two kinds.

Definition 3 (Same-basis and mix-basis attack). An attack on

E×d : (Fn
2 )

d → (Fm
2 )d

is called a same-basis attack if the bases chosen for the input and output spaces
are the same; otherwise, a mix-basis attack.

This partition is crucial for calculating the transition matrix from those of
its composite functions. Most modern ciphers are constructed from smaller com-
ponent functions, so computing the whole transition matrix of the cipher should
handle the propagation properties of the transition matrices of its components.
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Q[(Fn
2 )

d] Q[(Fn
2 )

d] Q[(Fn
2 )

d] Q[(Fn
2 )

d]
T E×d

0 T E×d
1 T E×d

2

Q[(Fn
2 )

d] Q[(Fn
2 )

d] Q[(Fn
2 )

d] Q[(Fn
2 )

d]

AE×d
0 = [αu(v)]

−1
v,uT

E×d
0 [αu(v)]v,u

AE×d
1 = [βu(v)]

−1
v,uT

E×d
1 [αu(v)]v,u

AE×d
2 = [βu(v)]

−1
v,uT

E×d
2 [βu(v)]v,u

Fig. 2: The illustration of the proof for Proposition 1. For E×d
0 , both the input and

output bases are [αu(v)]v,u. For E×d
1 , the input basis is [αu(v)]v,u and the output

basis is [βu(v)]v,u. For E×d
2 , both the input and output bases are [βu(v)]v,u.

Consider a d-th-order attack on E×d = E×d
2 ◦E×d

1 ◦E×d
0 , i.e., E×d divided into

three parts. When we choose the same basis for the input and output spaces of
E×d, the attack is a same-basis attack. According to Theorem 1, the transition
matrix of E×d is the product of the transition matrices of E×d

2 and E×d
1 and

E×d
0 . However, things are a bit more complicated for a mix-basis attack because

different bases are used for different parts of the cipher. We have the following
proposition, which is actually a direct corollary of [6, Theorem 2.5].

Proposition 1 (Propagation of the mix-basis transition matrices). For
E×d = E×d

2 ◦ E×d
1 ◦ E×d

0 , suppose that we select [αu(v)]v,u for the input space of
E×d (it is also the input space of E×d

0 ) and [βu(v)]v,u for the output space of E×d

(it is also the output space of E×d
2 ). Denote the transition matrix of E×d under

the two bases by AE×d

. Then we have

AE×d

= AE×d
2 AE×d

1 AE×d
0

where AE×d
0 is the transition matrix of E×d

0 under the same input and output basis
[αu(v)]v,u, AE×d

1 is the transition matrix of E×d
1 under the input basis [αu(v)]v,u

and output basis [βu(v)]v,u, and AE×d
2 is the transition matrix of E×d

2 under the
same input and output basis [βu(v)]v,u.

The proof is obvious with Equation (7), so we omit it. An illustration is
provided in Figure 2.

Corollary 1. Suppose E×d = E×d
r−1 ◦ · · · ◦E×d

0 . Choose r+1 bases [αu(v)]
(i)
v,u, 0 ≤

i < r + 1, denote the transition matrix of E×d
i under the input basis [αu(v)]

(i)
v,u

and output basis [αu(v)]
(i+1)
v,u by AE×d

i . Therefore, the transition matrix of E⊗d

under the input basis [αu(v)]
(0)
v,u and output basis [αu(v)]

(r)
v,u can be calculated by

AE×d

= AE×d
r−1AE×d

r−2 · · ·AE×d
0 .
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3.2 Basis of First-Order Spaces and Attacks

In this subsection, we revisit three bases for the first-order spaces that have
been used in the previous geometric approach and introduce rules to generate
new bases based on these existing bases.

Linear cryptanalysis. In [4], Beyne introduced the geometric approach for the
first time and applied it to linear cryptanalysis. The basis he chose for the linear
cryptanalysis can be represented by

Basis 1 (Linear basis [4]) [(−1)u
⊤v]v,u.

Quasi-differential cryptanalysis. In [7], Beyne and Rijmen introduced the
quasi-differential technique. Differential cryptanalysis is a second-order attack
whose input and output spaces are second-order spaces. Beyne and Rijmen chose
the quasi-differential basis as follows,

[(−1)u
⊤
0 v0 ]v0,u0 ⊗ [δu1(v1)]v1,u1 = [(−1)u

⊤
0 v0δu1(v1)](v0,v1),(u0,u1).

The first part of the quasi-differential basis is for the value, which is just the
linear basis. The second part is for the difference, which is the standard basis.

Basis 2 (Standard basis [7]) [δu(v)]v,u.

Ultrametric integral cryptanalysis. In [5], Beyne and Verbauwhede intro-
duced the ultrametric integral cryptanalysis to study the divisibility property,
where the ultrametric integral basis was used.

Basis 3 (Ultrametric integral basis [5]) [(−1)wt(u⊕v)vu]v,u.

Next, we introduce three simple rules that can generate new bases based on
existing ones. These rules follow a simple fact that any 2nd linearly independent
vectors can serve as a basis for a d-th-order space.

Remark. In theory, any operation that preserves the rank of a matrix can be
used to generate new bases here. However, practical applications of the geometric
approach usually require basis matrices with compact representation (i.e., all
elements can be calculated by a function), and an arbitrary operation might
break the compact representation. Thus, we restrain ourselves in this paper to
the following three rules, maintaining compact representations for the three bases
introduced above and leaving it as a future work to explore more possibilities of
more rules.

Rule 1 (Inverse) If [αu(x)]v,u is a basis, [αu(v)]
−1
v,u is also a basis.

Rule 2 (Transpose) If [αu(x)]v,u is a basis, [αu(v)]
⊤
v,u is also a basis.
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Table 1: Seven bases of the first-order space concluded from previous geometric
approach papers and induced from Rules 1, 2 and 3. The usage of their effects
of these bases for the input and output have been shown in Equation (8).

Index Basis Effect of input
αu(x)

Effect of output
β⋆
E(x)(v)

0 [δu(v)]v,u δu(x) δE(x)(v)

1 [(−1)u
⊤v]v,u (−1)u

⊤x 2−n(−1)E(x)⊤v

2 [2−n(−1)u
⊤v]v,u 2−n(−1)u

⊤x (−1)E(x)⊤v

3 [uv]v,u ux (−1)wt(v⊕E(x))Ev(x)

4 [(−1)wt(u⊕v)uv]v,u (−1)wt(u⊕x)ux Ev(x)

5 [vu]v,u xu (−1)wt(v⊕E(x))vE(x)

6 [(−1)wt(u⊕v)vu]v,u (−1)wt(u⊕x)xu vE(x)

Rule 3 (Scale) If [αu(v)]v,u is a basis, [kαu(v)]v,u is a basis, where k ̸= 0
belongs to the corresponding field, in this paper the field is Q.

According to these three rules, we obtain four more bases.

Basis 4 (Inverse of linear basis) [2−n(−1)u
⊤v]v,u.

It is easy to check [2−n(−1)u
⊤v]v,u · [(−1)u

⊤v]v,u = Identity.

Basis 5 (Inverse of ultrametric integral basis) [uv]v,u.

It is easy to check [uv]v,u · [(−1)wt(u⊕v)uv]v,u = Identity.

Basis 6 (Transpose of ultrametric integral basis) [(−1)wt(u⊕v)vu]v,u.

Basis 7 (Inverse and transpose of ultrametric integral basis) [vu]v,u.

When choosing specific bases for the input and output spaces, we can use
Equation (8) to calculate the element in the corresponding transition matrix.
The β⋆

E×d(x)(v) and αu(x) calculated according to the matrix composed of the
bases are called effects. We list them for the seven bases above in Table 1. These
effects can help us quickly write the correlation expression, i.e., the formula of
the element of the corresponding transition matrix, based on the chosen bases.

Combining these seven bases for the input and output spaces, 49 different
attacks, including 7 same-basis and 42 mix-basis ones, are generated. We list
them in Tables 6 and 7.

Remark. One may doubt if some of them can be called “attacks”. For example,
when choosing [δu(v)]v,u for both input and output spaces, the statistic

AE
v,u =

∑
x=u,E(x)=v

1
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says nothing except E(u) = v. Whether we should regard it as an attack de-
pends on the definition of “attacks”. On the one hand, considering E as a public
permutation, knowing E(u) = v is indeed useful to distinguish E from a random
permutation. On the other hand, when E is key-dependent, AE

v,u =
∑

x=u,E(x)=v 1
means there is a deterministic invariant behavior of E independently of the key
(practically, this statistic should always be influenced by the secret key for a
secure cipher). Therefore, we still include such simple statistics as attacks.

3.3 Basis of Higher-Order Spaces and Attacks

For a d-th-order attack, the input and output spaces are also d-th-order. In the-
ory, any 2dn linearly independent vectors can serve as a set of bases and lead to
a basis-based attack. However, a random basis is difficult to handle if it does not
have a compact representation. Thus, inspired by the quasi-differential crypt-
analysis [7], we generate a basis for higher-order spaces by the tensor product of
first-order space bases.

Proposition 2 (Basis for K[(Fn
2 )

d] ). For a d-th-order space K[(Fn
2 )

d], we
choose bases for each of its d components, denoted by [αu(v)]

(i)
v,u.

⊗
0≤i<d[αu(v)]

(i)
v,u

is a basis of K[(Fn
2 )

d].

Proof. This is from the calculation rules for the tensor product. Since [αu(v)]
(i)
v,u

spans to K[Fn
2 ],

⊗
0≤i<d[αu(v)]

(i)
v,u spans to

⊗
0≤i<d K[(Fn

2 )] = K[(Fn
2 )

d].

To compute Equation (8), we need the inverses of the basis matrices. Propo-
sition 3 gives a simple way of calculating.

Proposition 3 (Inverse of a higher-order basis matrix). Suppose that⊗
0≤i<d[αu(v)]

(i)
v,u is a basis of K[(Fn

2 )
d]. Then,

⊗
0≤i<d

(
[αu(v)]

(i)
v,u

)−1

is the

inverse of
⊗

0≤i<d[αu(v)]
(i)
v,u, which is also a basis of K[(Fn

2 )
d].

Proof. This directly follows from the fact that the inverse matrix of A ⊗ B is
A−1 ⊗B−1.

Therefore, combining the seven first-order bases in Table 1, 7d different d-
th-order bases are obtained. The 7d different bases lead to 72d attacks including
7d same-basis attacks and 72d− 7d mix-basis attacks. Again, similar to the first-
order case, not all of them look interesting, but we still see them as attacks to
keep the theory intact. The effects of 49 bases for the second-order case are listed
in Tables 8 and 9.

To quickly derive the correlation expression of an attack, we can use a similar
method with first-order attacks. Either we can write all attacks according to
the effects of the bases and check if some are interesting, or we can write the
correlation expression we are interested in and see if there are proper bases that
can lead to this attack.
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3.4 Trail Search for Mix-Basis Attacks

Recalling Theorem 1 and Equation (6), all (resp. some) trails are clustered and
their correlations are added to compute (resp. approximate) the transition ma-
trix elements. For the mix-basis attacks following Proposition 1 and Corollary 1,
transition matrices are calculated based on the corresponding input and output
bases, which completely follows the same method as the same-basis attacks like
linear [4], quasi-differential [7] and ultrametric integral cryptanalysis [5].

In terms of the metrics, the case of mix-basis attacks is also the same as that
of same-basis attacks. We can study the value of the correlation expression by
adding the correlations of trails, or look into the divisibility property by studying
their 2-adic absolute values. In this paper, we do not have a specific rule for how
to choose the metric, but we try both to see if we can get interesting attacks.

4 Example I: An Alternative Pair of Bases for Divisibility
Property

4.1 Revisiting the Ultrametric Integral Cryptanalysis from [5]

In [5], Beyne and Verbauwhede introduced ultrametric integral cryptanalysis to
describe the divisibility property. The divisibility property is a generalization of
the integral property [23], interpolating between bits that sum to zero (divisibil-
ity by 2) and saturated bits (divisibility by 2n−1 for 2n inputs). Given u ∈ Fn

2 ,
suppose Uu = {x ∈ Fn

2 : x ⪯ u} is a structure of the plaintexts, the divisibility
studies if ∑

x∈Uu

Ev(x) =
∑
x⪯u

Ev(x) ≡ 0 mod 2t. (9)

To study it, Beyne and Verbauwhede chose the ultrametric integral basis as

[(−1)wt(u⊕v)uv]v,u.

Denote the change-of-basis matrix between [(−1)wt(u⊕v)uv]v,u and the standard
basis [δu(v)]v,u by P , i.e.,

[δu(v)]v,u = [(−1)wt(u⊕v)uv]v,uP.

Each element in Q[Uu] can be expressed by a linear combination of basis
vectors in [(−1)wt(u⊕v)uv]v,u = (µ0, µ1, . . . , µ2n−1), thus δUu

:=
∑

x∈Uu
δx =∑

x⪯u δx is

δUu
=

∑
ν⪯u

2wt(u)−wt(ν)µν .

Let the transition matrix of E under the basis [(−1)wt(u⊕v)uv]v,u be AE , we have

AE
v,ν = δ⊤v AEδν = δ⊤v P T E P−1δν = PvT

Eµν ,
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where Pv is the v-th row of P . The corresponding summation of the ciphertext
is ∑

x⪯u

Ev(x) =
∑
x∈Uu

PvT
Eδx = PvT

EδUu =
∑
ν⪯u

2wt(u)−wt(ν)PvT
Eµν

=
∑
ν⪯u

2wt(u)−wt(ν)AE
v,ν .

There is an equivalence between
∑

x⪯u Ev(x) ≡ 0 mod 2t (t ≤ wt(u)) and∣∣∣∑x⪯u Ev(x)
∣∣∣
2
≤ 2−t. According to the ultrametric triangle inequality of the

2-adic absolute value |x+ y|2 ≤ max {|x|2, |y|2},∣∣∣∣∣∣
∑
x⪯u

Ev(x)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
ν⪯u

2wt(u)−wt(ν)AE
v,ν

∣∣∣∣∣∣
2

≤ max
ν⪯u

2wt(ν)−wt(u)
∣∣AE

v,ν

∣∣
2
.

Thus, if we prove maxν⪯u 2
wt(ν)−wt(u)

∣∣AE
v,ν

∣∣
2
≤ 2−t, we verify that

∑
x⪯u Ev(x) ≡

0 mod 2t. For those ν satisfying wt(ν) ≤ wt(u)− t, maxν⪯u 2
wt(ν)−wt(u)

∣∣AE
v,ν

∣∣
2
≤

2−t is already valid. For ν satisfying wt(ν) > wt(u) − t, we need to verify that∣∣AE
v,ν

∣∣
2
≤ 2−t−wt(ν)+wt(u) which can be done by searching for trails. That is, the

divisibility in Equation (9) is studied in an indirect way. The reason is that the
vector corresponding to the input set Uu is not any column index of the matrix
derived from the ultrametric integral basis.

4.2 An Alternative Method for Divisibility Property

Using two different bases for the input and output, we can derive a matrix whose
(v, u)-element is exactly

∑
x⪯u Ev(x), i.e.,

AE
v,u =

∑
x⪯u

Ev(x).

Note that AE
v,u =

∑
x⪯u Ev(x) =

∑
x∈Fn

2
uxEv(x). According to Table 1, if we

want a term ux, we can choose the basis

[uv]v,u

for the input space. For Ev(x), we can choose the basis

[(−1)wt(u⊕v)uv]v,u

for the output space. The (v, u)-element of the transition matrix under these two
bases is

AE
v,u =

∑
x∈Fn

2

uxEv(x) =
∑
x⪯u

Ev(x).
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Since the bases for the input and output spaces are different, this attack be-
longs to the mix-basis attacks. To characterize the propagation of the transition
matrices, we divide an r-round cipher E into three parts

E = E2 ◦ E1 ◦ E0,

where E0, E1 and E2 are three consecutive parts of E whose number of rounds
are respectively r0, r1 and r2 that satisfy r0 + r1 + r2 = r.

For E0, the transition matrix is obtained in the same-base attack framework
under the basis [uv]v,u for the input and output spaces. Thus, the (v, u)-element
of the transition AE0 is

AE0
v,u =

∑
x∈Fn

2

ux · (−1)wt(v⊕E(x))Ev(x) =
∑
x⪯u

(−1)wt(v⊕E(x))Ev(x). (10)

For E2, the transition matrix is also obtained in the same-basis attack frame-
work under the basis [(−1)wt(u⊕x)uv]v,u for both the input and output spaces.
Thus, the (v, u)-element of the transition AE2 is

AE2
v,u =

∑
x∈Fn

2

(−1)wt(u⊕x)ux · Ev(x) =
∑
x⪯u

(−1)wt(u⊕x)Ev(x). (11)

Note that AE2 is just the transition matrix of ultrametric integral cryptanalysis
derived by Beyne and Verbauwhede.

For E1, the transition matrix is derived from the same bases for E , so the
(v, u)-element of this transition matrix is

AE1
v,u =

∑
x∈Fn

2

ux · Ev(x) =
∑
x⪯u

Ev(x). (12)

Finally,
AE = AE2AE1AE0 .

The automatic search can be done with the same methods introduced in Sec-
tion 2.3 and [5], with the 2-adic absolute value | · |2 being the metric. The targets
of ultrametric integral cryptanalysis and our alternative attack are the same; our
method cannot find more distinguishers than ultrametric integral cryptanalysis.
However, our method does not require any more techniques in the automatic
search. We give an example on how to use the automatic search model for our
alternative attack and re-find the ultrametric integral distinguishers for 9-round
PRESENT in Appendix C.

5 Example II: First-Order Multiple-of-2t Property

The multiple-of-2t property was found for the first time by Grassi, Rechberger,
and Rønjom [17] for 5-round AES. For E : Fn

2 → Fm
2 , this property shows that

there exist two non-trivial linear subspaces U and V of Fn
2 satisfying: for any
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coset of U, say c⊕U, the number of distinct pairs {x, y} satisfying x ̸= y in c⊕U
such that E(x) and E(y) belong to the same coset of V is always divisible by 2t.
Later, Boura, Canteaut, and Coggia extended this property to more ciphers [14].
For example, they found that SKINNY [3] has multiple-of-2h−1 properties, where
h ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14} according to different subspace trails found
by the methods of [25]. However, since this proof heavily relies on the subspace
trail, the rounds for SKINNY’s multiple-of-2t property still stop at 5 rounds.

Inspired by ultrametric integral cryptanalysis [5], it is possible to choose a
pair of bases to describe the multiple-of-2t property. The original multiple-of-
2t property works for pairs of messages, so it should be studied as a second-
order attack. Interestingly, similar ideas are also applicable for the first-order
case, where we go to study the divisibility property of the number of inputs
and outputs that are in certain subspaces. In the following, we first describe the
first-order multiple-of-2t attack, as we obtain better results than the second-order
multiple-of-2t attack for SKINNY-64. The methods are also applicable in theory
to other ciphers such as AES. However, modelling the heavy AES components
such as the 8-bit Sbox and the MDS matrix remains an important obstacle, so
we will only focus on SKINNY-64 in this paper.

We first define the first-order multiple-of-2t property.

Definition 4 (First-order multiple-of-2t property). For E : Fn
2 → Fm

2 , let
a, u ∈ Fn

2 , b, v ∈ Fm
2 and u ̸= 1n, v ̸= 1m, where 1n (resp. 1m) is the bit vector

with all its n (resp. m) coordinates being 1. If the size of

{x : a⊕ x ⪯ u, E(x)⊕ b ⪯ v}

is divisible by 2t, we say E has a first-order multiple-of-2t property with respect
to a, u, b and v.

Denoting F(x) = E(x ⊕ a)⊕ b, i.e., F is a function with XORing constants
before and after E , this property can be characterized by the following correlation
expression,

AF
v,u =

∑
x⊕a⪯u,E(x)⊕b⪯v

1 =
∑

x⪯u,F(x)⪯v

1 =
∑
x∈Fn

2

ux︸︷︷︸
effect of

input basis

vF(x)︸ ︷︷ ︸
effect of

output basis

. (13)

Checking Table 1, it suffices to choose the input basis as [uv]v,u and the
output basis [(−1)wt(u⊕v)vu]v,u, to generate a mix-basis attack. E is divided into
three parts, as E = E2◦E1◦E0, then F = ⊕b◦E2◦E1◦E0◦⊕a, where ⊕a(x) = x⊕a,
⊕b(x) = x⊕ b, and E1 is usually set as a single layer of Sboxes.

For E ′
0 = E0 ◦⊕a, the same-basis attack with the basis [uv]v,u is applied. The

correlation expression is

A
E′
0

v,u =
∑
x⪯u

(−1)wt(E
′
0(x)⊕v)(E ′

0(x))
v. (14)
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Since ⊕a : Fn
2 → Fn

2 can be seen as n parallel bit-XOR operations, we have
A⊕a =

⊗
0≤i<n A

⊕ai , where

A⊕ai =

[
(−1)ai 0
ai 1

]
. (15)

Similarly, for E ′
2 = ⊕a◦E2, the same-basis attack with the basis [(−1)wt(u⊕v)vu]v,u

is applied. The correlation expression is

AE2
v,u =

∑
x⪰u

(−1)wt(x⊕u)vE(x). (16)

For ⊕b : Fm
2 → Fm

2 such that A⊕b =
⊗

0≤i<m A⊕bi , we have

A⊕bi =

[
(−1)bi bi

0 1

]
. (17)

Finally, the input basis [uv]v,u and output basis [(−1)wt(u⊕v)vu]v,u are applied
to E1 to get its correlation expression that is the same as Equation (13).

The automatic search model is constructed based on the transition matrix of
each part of F . To study if AF

v,u is divisible by 2t, we check if |AF
v,u|2 ≤ 2−t; this

can be done by proving that there is no trail whose correlation is larger than 2−t.
Due to the ultrametric triangle inequality |x+y|2 ≤ max{|x|2, |y|2} of the 2-adic
absolute value, we can search for a trail that connects u and v with the largest
2-adic absolute value. If this largest value is 2−t, then we know |AF

v,u|2 ≤ 2−t

and AF
v,u ≡ 0 mod 2t.

Choice of the position of E1. If all trails can be exhausted, the position of E1
does not affect the final correlation AF

v,u. However, in this paper, we only give
the upper bound on the 2-adic absolute value of the correlation by searching for
a trail that has the largest 2-adic absolute value, and thus the position of E1
does affect the results. No matter where E1 is positioned, all the upper bounds
that we obtain are real. In our applications, we will try all possibilities for the
position of E1 and choose the tightest bound as the final result.

Application to SKINNY-64. We apply the above method to round-reduced
SKINNY-64 (the specification of SKINNY-64 is provided in Appendix A.2) for
checking its first-order multiple-of-2t property. We divide r rounds of SKINNY-64
into three parts as E = E2 ◦ E1 ◦ E0 with E1 being one layer of Sboxes. According
to Equations (14), (13), (16), the transition matrices for components of E0, E1
and E2 can be constructed. The ⊕a and ⊕b operations are modeled with Equa-
tions (15) and (17). In our model, we do not specify concrete values for a and
b, and regard a, b as unknown constants. Thus, our results work for any con-
stants a and b. Next, we give more details about our automatic search model for
SKINNY-64.

For a component S which might be an Sbox in SC or an LBox in the MC (the
MixColumn operation of SKINNY-64 can be split into 16 parallel 4-bit Sboxes,
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Table 2: The first-order multiple-of-2t property of SKINNY-64 from 6 to 11 rounds.
The input/output values represent u and v, respectively. The constants in ⊕a

and ⊕b are set as unknown constants; thus, these distinguishers work for any a
and b.
Rnd. Input/Output Value Multiple-of-2t Configure

6 0fff′ffff′ffff′ffff → ffff′f0ff′ffff′ffff 247 3 + 1 + 2

7 0fff′ffff′ffff′ffff → ffff′f0ff′ffff′ffff 242 3 + 1 + 3

8 0fff′ffff′ffff′ffff → ffff′f0ff′ffff′ffff 229 4 + 1 + 3

9 0fff′ffff′ffff′ffff → ffff′f0ff′ffff′ffff 217 4 + 1 + 4

10 0fff′ffff′ffff′ffff → ffff′f0ff′ffff′ffff 28 4 + 1 + 5

11 0fff′ffff′ffff′ffff → ffff′f0ff′ffff′ffff 21 3 + 1 + 7

which are called LBox, see Appendix A.2 for more details), given the input mask
u and output mask v, the vectors

(
u, v,− log(|AS

v,u|2)
)

are modeled with the
automatic search tool language, in a classical way.

For operations such as SR, directly modifying variables suffices. For AC and
ART operations, known and unknown constants are XORed with the state, so
Equations (15) and (17) are used in models.

Finally, we want to maximize the product of correlations of all components
along a trail. Since each correlation x is transformed as − log(x), the equivalent
optimization goal becomes minimizing the sum of these negative logarithms.
This is similar to the popular manipulation of the probability in differential
cryptanalysis.

Results. The longest first-order multiple-of-2t property reaches 11 rounds for
SKINNY-64, as shown in Table 2. The 11-round SKINNY-64 has a first-order
multiple-of-2 property, which has the same length as the longest integral dis-
tinguishers [16].

From first-order to second-order multiple-of-2t distinguishers. Suppose
E has a first-order multiple-of-2t property with respect to a and b, and b ∈ Fm

2 .
Let c = n− wt(v), so c is the length of the constant part of the output coset, it
is equivalent to say that all messages in {x : x⊕ a ⪯ u} are divided into 2c sets,
and the size of each set is divisible by 2t. From each set, we can combine the
values into pairs whose differences related to the c bits are zero, and the number
of ordered pairs is a multiple of (at least) 2t−1. This is because if x = p × 2t,
then x(x−1)/2 = p2×22t−1−p×2t−1 ≡ 0 mod 2t−1. That is, the whole number
of ordered pairs from all 2c sets is also divisible by at least 2t−1. From Table 2,
we can obtain a multiple-of-16 property for the 10-round SKINNY-64, whereas
currently the best one only reaches 5 rounds [14]. In the next section, we will
develop a mix-basis attack to describe the second-order multiple-of-2t property,
and replay the same results with the automatic search method.
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6 Example III: Second-Order Multiple-of-2t Property

In this section, we apply the geometric approach to the second-order multiple-
of-2t property and construct the automatic search model for SKINNY-64. The
automatic search model can replay the same second-order multiple-of-2t property
described at the end of Section 5. Currently, though the same method also works
for heavier ciphers such as AES in theory, the complicated 8-bit Sbox and MDS
matrix make it difficult to construct efficient search models. Thus, we leave it as
a future work for these heavy ciphers.

We first recall the formal definition of the second-order multiple-of-2t prop-
erty.

Definition 5 (Second-order multiple-of-2t property [17]6). For E : Fn
2 →

Fm
2 , let a, u ∈ Fn

2 , v ∈ Fm
2 and u ̸= 1n, v ̸= 1m. If the size of

{{x, y} : x ̸= y, a⊕ x ⪯ u, a⊕ y ⪯ u, E(x)⊕ E(y) ⪯ v}

is divisible by 2t, we say E has a second-order multiple-of-2t property with respect
to a, u and v.

The property should be described as a second-order attack, as two values
are in a sample. Let F(x) = E(x ⊕ a) ⊕ b, we first try the following correlation
expression,

AF
(v0,v1),(u0,u1)

=
∑

x⪯u0,∆⪯u1

F(x)⪯v0,D∆F(x)⪯v1

1 =
∑

x∈Fn
2 ,∆∈Fn

2

ux
0u

∆
1︸ ︷︷ ︸

effect of input basis

v
F(x)
0 v

D∆F(x)
1︸ ︷︷ ︸

effect of output basis

(18)
where u0 = u1 = u and v0 = 1m, v1 = v. The condition v0 = 1m is required as
the value x is not restricted at all.

By checking the effects of bases in Tables 8 and 9, to construct this correlation
expression, the input basis can be chosen as [uv0

0 ]v0,u0⊗[uv1
1 ]v1,u1 , and the output

basis is chosen as [(−1)wt(v0⊕u0)vu0
0 ]v0,u0 ⊗ [(−1)wt(v1⊕u1)vu1

1 ]v1,u1 .
Note that the multiple-of-2t property is to count the number of distinct pairs,

while the number counted by Equation (18) is the ordered pairs (i.e., {a, b} are
counted twice). Besides, the trivial pairs such as {a, a} are also counted once.
To address this problem, we have the following proposition.

Proposition 4. When u0 = u1 = u, v0 = 1, v1 = v, and 2wt(u)−1 ≡ 0 mod 2t,

AF
(v0,v1),(u0,u1)

=
∑

x⪯u0,∆⪯u1

F(x)⪯v0,D∆F(x)⪯v1

1 ≡ 0 mod 2t+1

is equivalent to

|{{x, y} : x ̸= y, x ⪯ u, y ⪯ u,F(x)⊕F(y) ⪯ v}| ≡ 0 mod 2t.

6 This property is summarized from [17] by ourselves.
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Proof. Among the AF
(v0,v1),(u0,u1)

pairs, there are 2wt(u) trivial ones. After exclud-
ing these trivial pairs, there are AF

(v0,v1),(u0,u1)
− 2wt(u) non-trivial ordered pairs.

Thus, (AF
(v0,v1),(u0,u1)

−2wt(u))/2 is the number of distinct unordered pairs. Since
AF

(v0,v1),(u0,u1)
≡ 0 mod 2t+1, we have AF

(v0,v1),(u0,u1)
= p × 2t+1 for a certain p.

Therefore,(
AF

(v0,v1),(u0,u1)
− 2wt(u)

)
/2 =

(
p× 2t+1 − 2wt(u)

)
/2 = p× 2t − 2wt(u)−1.

Thus, 2wt(u)−1 ≡ 0 mod 2t leads to (AF
(v0,v1),(u0,u1)

− 2wt(u))/2 ≡ 0 mod 2t.

Conversely, from
(
AF

(v0,v1),(u0,u1)
− 2wt(u)

)
/2 ≡ 0 mod 2t and 2wt(u)−1 ≡

0 mod 2t, we know that AF
(v0,v1),(u0,u1)

≡ 0 mod 2t+1. ⊓⊔

Similar to ultrametric integral cryptanalysis [5], AF
(v0,v1),(u0,u1)

≡ 0 mod 2t

is equivalent to |AF
(v0,v1),(u0,u1)

|2 ≤ 2−t. Then the second-order multiple-of-2t
property of E can be modeled by a mix-basis attack on F .

Similar to the first-order case, E is divided into three parts, as E = E2◦E1◦E0,
and E1 is a single Sbox layer. Thus F = ⊕b ◦ E2 ◦ E1 ◦ E0 ◦ ⊕a.

For E ′
0 = E0 ◦ ⊕a, the same-basis attack with the basis [uv0

0 ]v0,u0
⊗ [uv1

1 ]v1,u1

is applied. The correlation expression is

A
E′
0

(v0,v1),(u0,u1)
=

∑
x⪯u0,∆⪯u1

E′
0(x)⪰v0,D∆E′

0(x)⪰v1

(−1)wt(v0⊕E′
0(x))(−1)wt(v1⊕D∆E′

0(x))

Since ⊕a : Fn
2 → Fn

2 can be seen as n parallel bit-XOR operations, thus we have
A⊕a =

⊗
0≤i<n A

⊕ai , where

A⊕ai =


(−1)ai 0 0 0

0 (−1)ai 0 0
ai 0 1 0
0 ai 0 1


Similarly, for E ′

2 = ⊕a◦E2, the same-basis attack with the basis [(−1)wt(u0⊕v0)vu0
0 ]v0,u0⊗

[(−1)wt(u0⊕v0)vu0
0 ]v0,u0

is applied. The correlation expression is

A
E′
2

(v0,v1),(u0,u1)
=

∑
x⪰u0,∆⪰u1

E′
2(x)⪯v0,D∆E′

2(x)⪯v1

(−1)wt(u0⊕x)(−1)wt(u1⊕∆)

For ⊕b : Fm
2 → Fm

2 such that A⊕b =
⊗

0≤i<m A⊕bi , we have

A⊕bi =


(−1)bi 0 bi 0

0 (−1)bi 0 bi
0 0 1 0
0 0 0 1
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Finally, the input basis [uv0
0 ]v0,u0

⊗[uv1
1 ]v1,u1

and output basis [(−1)wt(u0⊕v0)vu0
0 ]v0,u0

⊗
[(−1)wt(u1⊕v1)vu1

1 ]v1,u1
are applied to E1 to get its correlation expression that is

the same as Equation (18).
The automatic search model is constructed based on the transition matrix

of each part of F . To study if AF
(v0,v1),(u0,u1)

is divisible by 2t, we check if
|AF

(v0,v1),(u0,u1)
|2 ≤ 2−t similarly to the first-order case.

Application to SKINNY-64. The automatic search model for SKINNY-64 for the
second-order multiple-of-2t property is analogous to Section 5, except that the
vectors here are

(u0, u1, v0, v1,− log(|AS
(v0,v1),(u0,u1)

|2))
for an operation S.

Results and discussions. Up to 10 rounds, we can find new second-order
multiple-of-2t properties for SKINNY-64, by the automatic search model. These
distinguishers are identical to those derived by analyzing the first-order multiple-
of-2t properties for SKINNY-64. However, the second-order multiple-of-2t property
has the potential to be better than the first-order case, as the sum of several
numbers that are not divisible by 2t can still be a multiple of 2t. Thus, the poten-
tial of the automatic search model for the second-order multiple-of-2t property
has not been fully explored, which we leave as future work.

7 Example IV: Differential-Linear Cryptanalysis

Differential-linear (DL) cryptanalysis was originally proposed by Langford and
Hellman in 1994 [24]. In this attack, a cipher E is decomposed into two sub-
ciphers as E = E1◦E0, where a differential for E0 and a linear approximation for E1
are considered. The bias of this DL approximation can be estimated accordingly
under some independence assumptions.

As pointed out in [9], experiments are required to verify the estimated bias
when possible because the underlying assumptions may fail. A closed formula for
the DL bias, from Blondeau, Leander, and Nyberg [11], is given under the sole
assumption that E0 and E1 are independent. Let ε[δ E0−→ γ] denote the correlation
of a DL distinguisher over E0 with the input difference δ and output mask γ, and
c[γ

E1−→ λ] denote the linear correlation with input and output masks γ and λ,
respectively, over E1. Then, based on the independence assumption between E0
and E1, a DL distinguisher over E = E1 ◦ E0 with input difference δ and output
mask λ has the exact correlation

ε[δ
E−→ λ] =

∑
γ

ε[δ
E0−→ γ]c2[γ

E1−→ λ]. (19)

Recently, new methods to estimate the DL bias have been proposed. For ex-
ample, Bar-On et al. proposed the Differential-Linear Connectivity Table (DLCT) [1],
Liu et al. introduced the algebraic transitional form (DATF) to approximate
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Table 3: The second-order multiple-of-2t property on SKINNY-64 from 6 to 10
rounds. the input/output mask pairs represent (u0, u1)/(v0, v1). The constants
in ⊕a and ⊕b are set as unknown constants; thus, these distinguishers work for
any a and b.

Rnd. Input/Output Value-Difference Pairs Multiple
-of-2n(-n) Config.

6
(0fff′ffff′ffff′ffff, 0fff′ffff′ffff′ffff)

↓
(ffff′ffff′ffff′ffff, ffff′f0ff′ffff′ffff)

247(246) 2 + 1 + 3

7
(0fff′ffff′ffff′ffff, 0fff′ffff′ffff′ffff)

↓
(ffff′ffff′ffff′ffff, ffff′f0ff′ffff′ffff)

242(241) 3 + 1 + 3

8
(0fff′ffff′ffff′ffff, 0fff′ffff′ffff′ffff)

↓
(ffff′ffff′ffff′ffff, ffff′f0ff′ffff′ffff)

229(228) 4 + 1 + 3

9
(0fff′ffff′ffff′ffff, 0fff′ffff′ffff′ffff)

↓
(ffff′ffff′ffff′ffff, ffff′f0ff′ffff′ffff)

217(216) 4 + 1 + 4

10
(0fff′ffff′ffff′ffff, 0fff′ffff′ffff′ffff)

↓
(ffff′ffff′ffff′ffff, ffff′f0ff′ffff′ffff)

28(27) 4 + 1 + 5

the bias [26] followed by [19], Hadipour, Derbez and Eichlseder generalized the
DLCT to more rounds [18], and Peng et al. combined the truncated differential
for a precise estimation of the DL bias [29].

7.1 Closed Formula without Independence Assumption

Using our notations, the DL approximation over a cipher E with an input dif-
ference δ and an output mask λ can be described by the following statistic

AE
(v0,v1),(u0,u1)

= 2−n
∑

x∈Fn
2 ,∆=u1

(−1)u
⊤
0 x⊕v⊤

0 E(x)⊕v⊤
1 D∆E(x), (20)

where u0 = v0 = 0, u1 = δ and v1 = λ. Indeed, after replacing u0, v0, u1, v1 with
0, 0, δ, λ, the above equation becomes

ε[δ
E−→ λ] = AE

(0,λ),(0,δ) = 2−n
∑

x∈Fn
2 ,∆=δ

(−1)v
⊤
1 D∆E(x).

By checking the effects in Tables 8 and 9, Equation (20) can be obtained with
the geometric approach with the input basis [(−1)u

⊤v]v,u⊗ [δu(v)]v,u and output
basis [2−n(−1)u

⊤
0 v0 ]v0,u0 ⊗ [(−1)u

⊤
1 v1 ]v1,u1 (or another basis [(−1)u

⊤
0 v0 ]v0,u0 ⊗

[2−n(−1)u
⊤
1 v1 ]v1,u1

).
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Therefore, we can treat the DL attacks as a mix-basis attack. We first di-
vide E into three parts as E = E2 ◦ E1 ◦ E0. For E0, the quasi-differential crypt-
analysis [7] is applied, and the transition matrix is denoted by AE0 . For E1,
Equation (20) is used for the correlation expression, and the transition matrix is
denoted by AE1 . For E2, the correlation expression derived with the same basis
2−n[(−1)u

⊤
0 v0 ]v0,u0

⊗ [(−1)u
⊤
1 v1 ]v1,u1

for the input/output spaces is

AE2

(v0,v1),(u0,u1)
= 2−2n

∑
x∈Fn

2 ,∆∈Fn
2

(−1)u
⊤
0 x⊕v⊤

0 E(x)⊕u⊤
1 ∆⊕v⊤

1 D∆E(x)

The transition matrix of E with input basis [(−1)u
⊤
0 v0 ]v0,u0

⊗ [δu1
(v1)]v1,u1

and
output basis [2−n(−1)u

⊤
0 v0 ]v0,u0 ⊗ [(−1)u

⊤
1 v1 ]v1,u1 is calculated by

AE = AE2AE1AE0

Setting u0 = v0 = 0, u1 = δ and v1 = λ, we get

ε[δ
E−→ λ] = AE

(0,λ),(0,δ) =
∑

(θ0,θ1),(γ0,γ1)

AE2

(0,λ),(θ0,θ1)
AE1

(θ0,θ1),(γ0,γ1)
AE0

(γ0,γ1),(0,δ)
.

(21)
Equation (21) can be the closed formula for the DL approximation correlation.
Inherent in the geometric approach, such a formula holds without independence
assumptions. Using the automatic search tools to trace all trails derived from
Equation (21), we can get the exact correlation.

When treating E1 ◦ E0 as a whole part and considering E1 ◦ E0 and E2 as two
independent parts, we can get the same Blondeau-Leander-Nyberg formula from
Equation (21). The details are given in Appendix D.

7.2 Automatic Search for DL Approximation

Like previous applications, it is easy to develop an automatic search model to
look for DL distinguishers on a cipher. For a given input difference δ and an
output mask λ, we can use trails to approximate Equation (20). If we can exhaust
all possible trails, the sum of all trail correlations is the exact DL approximation.

In [18], Hadipour et al. extended the DLCT to cover more rounds to give an
efficient and precise method to estimate the correlation of DL approximations.
They applied the method to the block cipher SIMECK and obtained the currently
best-known DL distinguishers. Among the DL distinguishers they found, there
are two deterministic DL approximations, one for SIMECK-32 and one for SIMECK-
48, as shown in Table 4. However, as Hadipour et al.’s model was set based on the
classical assumption that the consecutive rounds are independent, it is difficult
to know if these deterministic DL approximations hold for all the key values.
This is actually a challenge for almost all classical cryptanalysis methods. The
geometric approach, as shown in previous applications, inherently works well
without independence assumptions, as long as we can exhaust all trails.
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Table 4: Two deterministic DL approximations of SIMECK found by Hadipour et
al. [18].

Cipher Round Input Diff Output Mask Cor.

SIMECK-32 7 00001000 00000400 1
SIMECK-48 8 000000020000 000000010000 1

We set the automatic search tools for the two DL distinguishers. Our auto-
matic search model is able to exhaust all trails for the two DL approximations,
thus calculating the exact correlations of them. According to our search results,
the sum of correlations of trails with non-zero masks for the values (which means
the concrete key values would affect the final correlation) is always zero. The
sum of correlations of trails with zero masks for the values (which means the
key values would not affect the final correlation) is finally 1. Therefore, we con-
firm that the two DL approximations have exactly 1 correlation, without being
affected by the key bits.

8 Conclusion

This paper extends Beyne’s geometric approach by allowing using two different
bases for the input and output spaces. We utilized three previously known bases
and generated four new ones according to some simple rules. Based on these
seven bases, we defined a family of basis-based attacks. For a d-th-order, the
seven bases lead to 72d attacks. The basis-based attacks provide a systematic way
to generate new ones rather than the classical intuitive method. Our extension
makes the geometric approach more flexible and able to describe/predict more
types of attacks. Inherent to the geometric approach, all basis-based attacks can
be studied with a similar automatic search method. The core is to track the
propagation trails and estimate the correlations according to certain metrics.
We provided four example applications to show how to take some basis-based
attacks into practice, including an alternative way for the divisibility property
studied by ultrametric integral cryptanalysis, multiple-of-2t properties for the
first-order and second-order attacks, and finally, the differential-linear attacks.

There are many future works. For example, one can explore how to quickly
check all these basis-based attacks and identify the most threatening one for a
certain cipher. Besides, Corollary 1 is not really used in this paper; it is interest-
ing to study how to find a “best basis chain” that can connect the bases for the
input and output spaces of each round that brings the best dominant trail [5,
Theorem 2.2], which can reduce the search burden significantly. Additionally, the
potential of the second-order multiple-of-2t properties requires a deeper explo-
ration. Finally, it would be interesting to study more possibilities of the bases,
in addition to the ones presented by this paper.
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Appendix

A Specifications of SKINNY-64, PRESENT and SIMECK

A.1 Specifications of PRESENT

PRESENT is a 64-bit block cipher supporting 80-bit and 128-bit keys designed by
Bogdanov et al. in 2007 [12]. The design is a SPN construction consisting of a
round key addition, a 4-bit Sbox layer, and a bit permutation layer. The S-box
is specified as follows:

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

The bit permutation and the entire round function are both illustrated in
Figure 3.
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Fig. 3: Round function of PRESENT. The figure is taken from [21].

A.2 Specifications of SKINNY-64

The block cipher family SKINNY was presented at CRYPTO 2016 [3] designed
under the TWEAKEY framework [22], whose goal is to compete with the NSA
design SIMON [2] in terms of hardware/software performance. According to the
length of block and tweakey, the SKINNY family consists of 6 different members
represented as SKINNY-n-t, where n ∈ {64, 128} and t ∈ {n, 2n, 3n}, which re-
spectively represent the sizes of block and tweakey. Here we introduce the 64-bit
version of SKINNY, i.e., SKINNY-64, under the single tweakey model. SKINNY-64
is chosen as its Sbox is 4-bit. Since the multiple-of-n property is described as a
2nd order attack, it is equivalent to describe the propagation for an 8-bit Sbox
ciphers in the classical automatic search.



36 K. Hu, C. Zhang, C. Cheng, J. Zhang, M. Wang, T. Peyrin

The round function of SKINNY-64 comprises five operations as SubCells (SC),
AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns
(MC), see Figure 4. So a round of SKINNY-64 can be written as

R = MC ◦ SR ◦ ART ◦ AC ◦ SC.

1. SC: SC is the only non-linear layer of SKINNY-64, using a 4-bit Sbox S as
follows,

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

2. AC and ART: In the AC operation, a 6-bit round-based constant is XORed
with the top two cells of the first column, and a constant 2 is XORed with
the third cell of the first column. In the ART operation, a 8-cell round key
is XORed with the first two rows of the state.

3. SR: SR circularly shifts the i-th row of the internal state to right with i
nibbles, where i = 0, 1, 2, 3.

4. MC: MC multiplies four nibbles of each state column with the binary matrix
M . The details of M are listed below,

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0


Since the non-zero elements in this matrix are only 1, the MC operation
can be decomposed into 4 parallel small operations called Lbox, denoted
by LBox. Let the input and output of M is x and y, (yi, yi+4, yi+8, yi+12 =
L(xi, xi+4, xi+8, xi+12) = (x0⊕x2⊕x3, x0, x1⊕x2, x0⊕x2), for i ∈ {0, 1, 2, 3}.

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 4: Round function of SKINNY-64. The figure is taken from [21].

A.3 Specifications of SIMECK

SIMECK is a family of lightweight block ciphers proposed at CHES 2015 [38]. The
design is similar to SIMON. The SIMECK family consists of several family members
SIMECK-2n/4n operating on n-bit words with a state size of 2n bits and a key
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size of 4n bits for n ∈ {16, 24, 32}. In round i, the 2n-bit input state of round
i is split into two n-bit words (Li, Ri) and updated with a Feistel-based round
function F to produce (Li+1, Ri+1) using the n-bit round key Ki. The round
function is a quadratic Feistel function using bitwise XOR (x⊕ y), bitwise AND
x ∧ y, and cyclic left-shifts by c bits (x ≪ c) (see Figure 5):

Ri+1 = Li

Li+1 = Ri ⊕Ki ⊕ (Li ∧ (Li ≪ 5))⊕ (Li ≪ 1).

The round key Ki is produced using a similar nonlinear update function. The
total number of rounds is 32 rounds for SIMECK 32/64 (referred to as SIMECK-32
for short), 36 rounds for SIMECK 48/96 (referred to as SIMECK-48).

xi yi

S0

S5

S1

ki

xi+1 yi+1

Fig. 5: Round function of SIMECK. The figure is adapted from [21].

B High-Level Viewpoint of Automatic Search for
Geometric Approach

In the past decade, automatic search methods have been very popular in crypt-
analysis and many classical attack techniques have been modeled. The idea is
to express a cryptanalytic problem into a constrained problem, such as Mixed
Integer Linear Programming (MILP) or the Satisfiability Problem (SAT), then
use off-the-shelf solvers to complete the search. The results are then translated
into solutions for the original cryptanalytic problem.

In the case of the geometric approach, the transition matrix is naturally
suitable to be modeled in such frameworks.

First, the cipher is divided into many small components, such as Sboxes, bit
permutations, and even XORs, ANDs, or COPYs (aka. Branches, where a bit
is copied into 2 or multiple bits). Then, each component can be viewed as a
“function” (the COPY function is also viewed as a function with one input and
two outputs), the correlation expression derived after choosing two bases for the
input and output is then applied to the function. For a function F : Fn

2 −→
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Fm
2 (note that n and m are usually small as they are the components of the

target cipher), we traverse all input and output values. For the d-th-order attack,
the input and output vectors should be u0||u1|| . . . ||ud−1 and v0||v1|| . . . ||vd−1,
respectively. Then, according to the statistic, a value related to the input/output
vectors, denoted by c, is obtained. Values c ̸= 0 are then made into an entry:

(u0, u1, · · · , ud−1, v0, v1, · · · , vd−1,M(c)),

where M(c) represents the values after applying some measures to c (usually forc-
ing it to a positive integer number). For example, if one targets a probability, then
M(c) is usually − log(c). While for the divisibility property, M(c) = − log(|c|2)
where |c|2 is the 2-adic absolute value of c. Usually, such an entry will be edited
as bit strings.

All these entries with c ̸= 0 will be called valid propagations. We generate
corresponding variables for the input and output of F , then we can use a set of
inequalities, CNF constraints, or other methods to make sure that these variables
have to be one of these valid propagations.

Finally, we define an objective function that usually sums up all variables
from M(c), and we use a solver to search for one trail that makes the summation
maximum or minimum. Sometimes, one can also want to search for all valid trails.

We recommend that readers refer to previous research on the geometric ap-
proach, such as [7] and [5], for a deeper understanding of how automation is
applied in this field.

C Automatic Search for the Simplified Ultrametric
Integral Crytanalysis

We replay here the ultrametric integral attack, but in the simplified way de-
scribed in Section 4. Setting u = fffffffffffffffe, we obtain the same results
for 9 rounds of PRESENT as for [5]. We divide the 9-round PRESENT without the
last bit permutation into 3 parts: E0 covers the first 4 rounds, E1 covers the Sbox
layer of the 5th round, and E2 covers the remaining 4 rounds. The transition
matrices of the Sboxes of E0, E1 and E2 can be computed according to Equa-
tions (10), (12) and (11). The transition matrix of E2 is the same as the one in
[5], but we still provide it here for a better comparison among the three matrices
of the PRESENT Sbox.

Now let us consider the propagation. For the Sbox layer, we first construct the
transition matrices for a single Sbox, which is not difficult since the correlation
expressions of the three matrices we constructed earlier already exist. Based on
the transition matrix of a single Sbox, the propagation rules of the Sbox layer
can be conveniently characterized: PRESENT’s Sbox layer consists of 16 Sboxes,
we have A

S0||···||S15
v,u =

∏15
i=0 A

Si
vi,ui

, where AS0||···||S15 is the transition matrix of
the Sbox layer and ASi is the transition matrix of the i-th Sbox.

For the bit permutation layer P , one can easily obtain that for all the three
matrices, Mv,u ̸= 0 if and only if v = P (u). For the round key layer K(x) = x⊕k,
we can regard it as 64 parallel 2-input-1-output functions, so we have
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AK =

63⊗
i=0

AKi =

63⊗
i=0

[
(−1)ki 0
ki 1

]
(for E0), AK =

63⊗
i=0

AKi =

63⊗
i=0

[
1 0
ki (−1)ki

]
(for E2),

Our goal is to obtain the 2-adic value of AE
v,u =

∑
y⪯u Ev(y). Because of the

triangle inequality of 2-adic value, we have

∣∣AE
ur,u0

∣∣
2
≤ max

ur−1,ur−2,...,u2

∣∣∣∣∣
r−1∏
i=0

AEi

ui+1,ui

∣∣∣∣∣
2

.

Therefore, we only need to utilize an automated search tool to find the path that
maximizes the 2-adic value of

∏r−1
i=0 AEi

ui+1,ui
according to the propagation rules

mentioned above. Table 5 presents the search results for 9-round PRESENT.

Table 5: Divisibility property for the integral distinguisher on 9-round PRESENT
searched by our simplified method, with input set {x : x ⪯ fffffffffffffffe}.
The number of times the i-th output bit equals one is divisible by 2bi . These
results are completely the same as [5].

bit i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
theoretical bi 2 1 1 1 2 0 0 0 2 0 0 0 2 0 0 0

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0

D Obtain Blondeau-Leander-Nyberg Formula from
Geometric Approach

Given Equation (21), and taking E1 ◦ E0 as a whole part, we get

ε[δ
E−→ λ] = AE

(0,λ),(0,δ) =
∑

(γ0,γ1)

AE2

(0,λ),(γ0,γ1)
AE1◦E0

(γ0,γ1),(0,δ)
,

we can set γ0 = 0 to force E1◦E0 and E2 to be independent. Indeed, AE1◦E0

(γ0=0,γ1),(0,δ)

represents the correlation of a DL approximation of E1 ◦E0 with the input differ-
ence δ and the output mask γ1. The independence of E1 ◦E0 and E2 is equivalent
to say that the intermediate values at the connection point can be any values,
which is equivalent to γ0 = 0.
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Note that

AE2

(0,λ),(0,γ1)
= 2−2n

∑
x∈Fn

2 ,∆∈Fn
2

(−1)γ
⊤
1 ∆⊕λ⊤D∆E(x)

= 2−2n
∑

x∈Fn
2 ,x⊕∆∈Fn

2

(−1)γ
⊤
1 x⊕γ⊤

1 (x⊕∆)⊕λ⊤E(x)⊕λ⊤E(x⊕∆)

=

2−n
∑
x∈Fn

2

(−1)γ
⊤
1 x⊕λ⊤E(x)

2−n
∑

x⊕∆∈Fn
2

(−1)γ
⊤
1 (x⊕∆)⊕E(x⊕∆))


= c2[γ1

E2−→ λ].

Thus, Equation (21) becomes to

ε[δ
E−→ λ] = AE

(0,λ),(0,δ) =
∑
(0,γ1)

AE2

(0,λ),(0,γ1)
AE1◦E0

(0,γ1),(0,δ)
=

∑
0||γ1

AE2

(0,λ),(0,γ1)
AE1◦E0

(0,γ1),(0,δ)

=
∑
γ1

ε[δ
E1◦E0−−−−→ γ1]A

E2

(0,λ),(0,γ1)
=

∑
γ1

ε[δ
E1◦E0−−−−→ γ1]c

2[γ1
E2−→ λ]

which is exactly Equation (19).



Table 6: First-order attacks (first part)

Output/Input [δu(v)]v,u [(−1)u
⊤v]v,u [2−n(−1)u

⊤v]v,u [uv]v,u

[δu(v)]v,u ∑
x=u,E(x)=v

1
∑
x∈Fn2

E(x)=v

(−1)u
⊤x 2−n

∑
x∈Fn2

E(x)=v

(−1)u
⊤x

∑
x⪯u

E(x)=v

1

[(−1)u
⊤v]v,u

2−n
∑
x=u

(−1)v
⊤E(x) 2−n

∑
x∈Fn2

(−1)u
⊤x⊕v⊤E(x) 2−2n

∑
x∈Fn2

(−1)u
⊤x⊕v⊤E(x) 2−n

∑
x⪯u

(−1)v
⊤E(x)

[2−n(−1)u
⊤v]v,u ∑

x=u

(−1)v
⊤E(x)

∑
x∈Fn2

(−1)u
⊤x⊕v⊤E(x) 2−n

∑
x∈Fn2

(−1)u
⊤x⊕v⊤E(x)

∑
x⪯u

(−1)v
⊤E(x)

[uv]v,u ∑
x=u

(−1)wt(v⊕E(x))Ev(x)
∑
x∈Fn2

(−1)u
⊤x(−1)wt(v⊕E(x))Ev(x) 2−n

∑
x∈Fn2

(−1)u
⊤x(−1)wt(v⊕E(x))Ev(x)

∑
x⪯u

(−1)wt(v⊕E(x))Ev(x)

[(−1)wt(u⊕v)uv]v,u ∑
x=u

Ev(x)
∑
x∈Fn2

(−1)u
⊤xEv(x) 2−n

∑
x∈Fn2

Ev(x)
∑
x⪯u

Ev(x)

[vu]v,u ∑
x=u

(−1)wt(v⊕E(x))vE(x)
∑
x∈Fn2

(−1)u
⊤x(−1)wt(v⊕E(x))vE(x) 2−n

∑
x∈Fn2

(−1)u
⊤x(−1)wt(v⊕E(x))vE(x)

∑
x⪯u

(−1)wt(v⊕E(x))vE(x)

[(−1)wt(u⊕v)vu]v,u ∑
x=u

vE(x)
∑
x∈Fn2

(−1)u
⊤xvE(x) 2−n

∑
x∈Fn2

(−1)u
⊤xvE(x)

∑
x⪯u

vE(x)



Table 7: First-order attacks (second part)
Output/Input [(−1)wt(u⊕v)uv]v,u [vu]v,u [(−1)wt(u⊕v)vu]v,u

[δu(v)]v,u ∑
x⪯u

E(x)=v

(−1)wt(u⊕x)
∑
x⪰u

E(x)=v

1
∑
x⪰u

E(x)=v

(−1)wt(u⊕x)

[(−1)u
⊤v]v,u

2−n
∑
x⪯u

(−1)wt(u⊕x)(−1)v
⊤E(x) 2−n

∑
x⪯u

(−1)v
⊤E(x) 2−n

∑
x⪰u

(−1)wt(u⊕x)(−1)v
⊤E(x)

[2−n(−1)u
⊤v]v,u ∑

x⪯u

(−1)wt(u⊕x)(−1)v
⊤E(x)

∑
x⪰u

(−1)v
⊤E(x)

∑
x⪰u

(−1)wt(u⊕x)(−1)v
⊤E(x)

[uv]v,u ∑
x⪯u

(−1)wt(u⊕x)(−1)wt(v⊕E(x))Ev(x)
∑
x⪰u

(−1)wt(v⊕E(x))Ev(x)
∑
x⪰u

(−1)wt(u⊕x)(−1)wt(v⊕E(x))Ev(x)

[(−1)wt(u⊕v)uv]v,u ∑
x⪯u

(−1)wt(u⊕x)Ev(x)
∑
x⪰u

Ev(x)
∑
x⪰u

(−1)wt(u⊕x)Ev(x)

[vu]v,u ∑
x⪯u

(−1)wt(u⊕x)(−1)wt(v⊕E(x))vE(x)
∑
x⪰u

(−1)wt(v⊕E(x))vE(x)
∑
x⪰u

(−1)wt(u⊕x)(−1)wt(v⊕E(x))vE(x)

[(−1)wt(u⊕v)vu]v,u ∑
x⪯u

(−1)wt(u⊕x)vE(x)
∑
x⪰u

vE(x)
∑
x⪰u

(−1)wt(u⊕x)vE(x)



Table 8: 49 Bases for the second-order attacks and their effects(first part)

Index Basis Effect of input
αu(x)

Effect of output
β⋆
E(x)(v)

0 [δu0(v0)]v0,u0 ⊗ [δu1(v1)]v1,u1 δu0(x)δu1(∆) δv0(E(x))δv1(D∆E(x))

1 [δu0(v0)]v0,u0 ⊗ [2−n(−1)u1
⊤v1 ]v1,u1 δu0(x)2

−n(−1)u
⊤
1 ∆ δv0(E(x))(−1)v

⊤
1 D∆E(x)

2 [δu0(v0)]v0,u0 ⊗ [(−1)u1
⊤v1 ]v1,u1 δu0(x)(−1)u

⊤
1 ∆ δv0(E(x))2−n(−1)v

⊤
1 D∆E(x)

3 [δu0(v0)]v0,u0 ⊗ [u1
v1 ]v1,u1 δu0(x)u1

∆ δv0(E(x))(−1)wt(v1⊕D∆E(x))(D∆E(x))v1

4 [δu0(v0)]v0,u0 ⊗ [(−1)wt(u1⊕v1)u1
v1 ]v1,u1 δu0(x)(−1)wt(u1⊕∆)u1

∆ δv0(E(x))(D∆E(x))v1

5 [δu0(v0)]v0,u0 ⊗ [v1
u1 ]v1,u1 δu0(x)∆

u1 δv0(E(x))(−1)wt(v1⊕D∆E(x))v
D∆E(x)
1

6 [δu0(v0)]v0,u0 ⊗ [(−1)wt(u1⊕v1)v1
u1 ]v1,u1 δu0(x)(−1)wt(u1⊕∆)∆u1 δv0(E(x))v

D∆E(x)
1

7 [2−n(−1)u0
⊤v0

]v0,u0 ⊗ [δu1(v1)]v1,u1 2−n(−1)u
⊤
0 xδu1(∆) (−1)v

⊤
0 E(x)δv1(D∆E(x))

8 [2−n(−1)u0
⊤v0

]v0,u0 ⊗ [2−n(−1)u1
⊤v1 ]v1,u1 2−n(−1)u

⊤
0 x2−n(−1)u

⊤
1 ∆ (−1)v

⊤
0 E(x)(−1)v

⊤
1 D∆E(x)

9 [2−n(−1)u0
⊤v0

]v0,u0 ⊗ [(−1)u1
⊤v1 ]v1,u1 2−n(−1)u

⊤
0 x(−1)u

⊤
1 ∆ (−1)v

⊤
0 E(x)2−n(−1)v

⊤
1 D∆E(x)

10 [2−n(−1)u0
⊤v0

]v0,u0 ⊗ [u1
v1 ]v1,u1 2−n(−1)u

⊤
0 xu1

∆ (−1)v
⊤
0 E(x)(−1)wt(v1⊕D∆E(x))(D∆E(x))v1

11 [2−n(−1)u0
⊤v0

]v0,u0 ⊗ [(−1)wt(u1⊕v1)u1
v1 ]v1,u1 2−n(−1)u

⊤
0 x(−1)wt(u1⊕∆)u1

∆ (−1)v
⊤
0 E(x)(D∆E(x))v1

12 [2−n(−1)u0
⊤v0

]v0,u0 ⊗ [v1
u1 ]v1,u1 2−n(−1)u

⊤
0 x∆u1 (−1)v

⊤
0 E(x)(−1)wt(v1⊕D∆E(x))v

D∆E(x)
1

13 [2−n(−1)u0
⊤v0

]v0,u0 ⊗ [(−1)wt(u1⊕v1)v1
u1 ]v1,u1 2−n(−1)u

⊤
0 x(−1)wt(u1⊕∆)∆u1 (−1)v

⊤
0 E(x)v

D∆E(x)
1

14 [(−1)u0
⊤v0

]v0,u0 ⊗ [δu1(v1)]v1,u1 (−1)u
⊤
0 xδu1(∆) 2−n(−1)v

⊤
0 E(x)δv1(D∆E(x))

15 [(−1)u0
⊤v0

]v0,u0 ⊗ [2−n(−1)u1
⊤v1 ]v1,u1 (−1)u

⊤
0 x2−n(−1)u

⊤
1 ∆ 2−n(−1)v

⊤
0 E(x)(−1)v

⊤
1 D∆E(x)

16 [(−1)u0
⊤v0

]v0,u0 ⊗ [(−1)u1
⊤v1 ]v1,u1 (−1)u

⊤
0 x(−1)u

⊤
1 ∆ 2−n(−1)v

⊤
0 E(x)2−n(−1)v

⊤
1 D∆E(x)

17 [(−1)u0
⊤v0

]v0,u0 ⊗ [u1
v1 ]v1,u1 (−1)u

⊤
0 xu1

∆ 2−n(−1)v
⊤
0 E(x)(−1)wt(v1⊕D∆E(x))(D∆E(x))v1

18 [(−1)u0
⊤v0

]v0,u0 ⊗ [(−1)wt(u1⊕v1)u1
v1 ]v1,u1 (−1)u

⊤
0 x(−1)wt(u1⊕∆)u1

∆ 2−n(−1)v
⊤
0 E(x)(D∆E(x))v1

19 [(−1)u0
⊤v0

]v0,u0 ⊗ [v1
u1 ]v1,u1 (−1)u

⊤
0 x∆u1 2−n(−1)v

⊤
0 E(x)(−1)wt(v1⊕D∆E(x))v

D∆E(x)
1

20 [(−1)u0
⊤v0

]v0,u0 ⊗ [(−1)wt(u1⊕v1)v1
u1 ]v1,u1 (−1)u

⊤
0 x(−1)wt(u1⊕∆)∆u1 2−n(−1)v

⊤
0 E(x)v

D∆E(x)
1

21 [u0
v0 ]v0,u0 ⊗ [δu1(v1)]v1,u1 u0

xδu1(∆) (−1)wt(v0⊕E(x))Ev0(x)δv1(D∆E(x))

22 [u0
v0 ]v0,u0 ⊗ [2−n(−1)u1

⊤v1 ]v1,u1 u0
x2−n(−1)u

⊤
1 ∆ (−1)wt(v0⊕E(x))Ev0(x)(−1)v

⊤
1 E([(−1)wt(u0⊕v0)u0

v0 ]v0,u0
)

23 [u0
v0 ]v0,u0 ⊗ [(−1)u1

⊤v1 ]v1,u1 u0
x(−1)u

⊤
1 ∆ (−1)wt(v0⊕E(x))Ev0(x)2−n(−1)v

⊤
1 D∆E(x)



Table 9: 49 Bases for the second-order attacks and their effects (second part)

Index Basis Effect of input
αu(x)

Effect of output
β⋆
E(x)(v)

24 [u0
v0 ]v0,u0 ⊗ [u1

v1 ]v1,u1 u0
xu1

∆ (−1)wt(v0⊕E(x))Ev0(x)(−1)wt(v1⊕D∆E(x))(D∆E(x))v1

25 [u0
v0 ]v0,u0 ⊗ [(−1)wt(u1⊕v1)u1

v1 ]v1,u1 u0
x(−1)wt(u1⊕∆)u1

∆ (−1)wt(v0⊕E(x))Ev0(x)(D∆E(x))v1

26 [u0
v0 ]v0,u0 ⊗ [v1

u1 ]v1,u1 u0
x∆u1 (−1)wt(v0⊕E(x))Ev0(x)(−1)wt(v1⊕D∆E(x))v

D∆E(x)
1

27 [u0
v0 ]v0,u0 ⊗ [(−1)wt(u1⊕v1)v1

u1 ]v1,u1 u0
x(−1)wt(u1⊕∆)∆u1 (−1)wt(v0⊕E(x))Ev0(x)v

D∆E(x)
1

28 [(−1)wt(u0⊕v0)u0
v0 ]v0,u0 ⊗ [δu1(v1)]v1,u1 (−1)wt(u0⊕x)u0

xδu1(∆) Ev0(x)δv1(D∆E(x))

29 [(−1)wt(u0⊕v0)u0
v0 ]v0,u0 ⊗ [2−n(−1)u1

⊤v1 ]v1,u1 (−1)wt(u0⊕x)u0
x2−n(−1)u

⊤
1 ∆ Ev0(x)(−1)v

⊤
1 D∆E(x)

30 [(−1)wt(u0⊕v0)u0
v0 ]v0,u0 ⊗ [(−1)u1

⊤v1 ]v1,u1 (−1)wt(u0⊕x)u0
x(−1)u

⊤
1 ∆ Ev0(x)2−n(−1)v

⊤
1 D∆E(x)

31 [(−1)wt(u0⊕v0)u0
v0 ]v0,u0 ⊗ [u1

v1 ]v1,u1 (−1)wt(u0⊕x)u0
xu1

∆ Ev0(x)(−1)wt(v1⊕D∆E(x))(D∆E(x))v1

32 [(−1)wt(u0⊕v0)u0
v0 ]v0,u0 ⊗ [(−1)wt(u1⊕v1)u1

v1 ]v1,u1 (−1)wt(u0⊕x)u0
x(−1)wt(u1⊕∆)u1

∆ Ev0(x)(D∆E(x))v1

33 [(−1)wt(u0⊕v0)u0
v0 ]v0,u0 ⊗ [v1

u1 ]v1,u1 (−1)wt(u0⊕x)u0
x∆u1 Ev0(x)(−1)wt(v1⊕D∆E(x))v

D∆E(x)
1

34 [(−1)wt(u0⊕v0)u0
v0 ]v0,u0 ⊗ [(−1)wt(u1⊕v1)v1

u1 ]v1,u1 (−1)wt(u0⊕x)u0
x(−1)wt(u1⊕∆)∆u1 Ev0(x)v

D∆E(x)
1

35 [v0
u0 ]v0,u0 ⊗ [δu1(v1)]v1,u1 xu0δu1(∆) (−1)wt(v0⊕E(x))v

E(x)
0 δv1(D∆E(x))

36 [v0
u0 ]v0,u0 ⊗ [2−n(−1)u1

⊤v1 ]v1,u1 xu02−n(−1)u
⊤
1 ∆ (−1)wt(v0⊕E(x))v

E(x)
0 (−1)v

⊤
1 D∆E(x)

37 [v0
u0 ]v0,u0 ⊗ [(−1)u1

⊤v1 ]v1,u1 xu0(−1)u
⊤
1 ∆ (−1)wt(v0⊕E(x))v

E(x)
0 2−n(−1)v

⊤
1 D∆E(x)

38 [v0
u0 ]v0,u0 ⊗ [u1

v1 ]v1,u1 xu0u1
∆ (−1)wt(v0⊕E(x))v

E(x)
0 (−1)wt(v1⊕D∆E(x))(D∆E(x))v1

39 [v0
u0 ]v0,u0 ⊗ [(−1)wt(u1⊕v1)u1

v1 ]v1,u1 xu0(−1)wt(u1⊕∆)u1
∆ (−1)wt(v0⊕E(x))v

E(x)
0 (D∆E(x))v1

40 [v0
u0 ]v0,u0 ⊗ [v1

u1 ]v1,u1 xu0∆u1 (−1)wt(v0⊕E(x))v
E(x)
0 (−1)wt(v1⊕D∆E(x))v

D∆E(x)
1

41 [v0
u0 ]v0,u0 ⊗ [(−1)wt(u1⊕v1)v1

u1 ]v1,u1 xu0(−1)wt(u1⊕∆)∆u1 (−1)wt(v0⊕E(x))v
E(x)
0 v

D∆E(x)
1

42 [(−1)wt(u0⊕v0)v0
u0 ]v0,u0 ⊗ [δu1(v1)]v1,u1 (−1)wt(u0⊕x)xu0δu1(∆) v

E(x)
0 δv1(D∆E(x))

43 [(−1)wt(u0⊕v0)v0
u0 ]v0,u0 ⊗ [2−n(−1)u1

⊤v1 ]v1,u1 (−1)wt(u0⊕x)xu02−n(−1)u
⊤
1 ∆ v

E(x)
0 (−1)v

⊤
1 D∆E(x)

44 [(−1)wt(u0⊕v0)v0
u0 ]v0,u0 ⊗ [(−1)u1

⊤v1 ]v1,u1 (−1)wt(u0⊕x)xu0(−1)u
⊤
1 ∆ v

E(x)
0 2−n(−1)v

⊤
1 D∆E(x)

45 [(−1)wt(u0⊕v0)v0
u0 ]v0,u0 ⊗ [u1

v1 ]v1,u1 (−1)wt(u0⊕x)xu0u1
∆ v

E(x)
0 (−1)wt(v1⊕D∆E(x))(D∆E(x))v1

46 [(−1)wt(u0⊕v0)v0
u0 ]v0,u0 ⊗ [(−1)wt(u1⊕v1)u1

v1 ]v1,u1 (−1)wt(u0⊕x)xu0(−1)wt(u1⊕∆)u1
∆ v

E(x)
0 (D∆E(x))v1

47 [(−1)wt(u0⊕v0)v0
u0 ]v0,u0 ⊗ [v1

u1 ]v1,u1 (−1)wt(u0⊕x)xu0∆u1 v
E(x)
0 (−1)wt(v1⊕D∆E(x))v

D∆E(x)
1

48 [(−1)wt(u0⊕v0)v0
u0 ]v0,u0 ⊗ [(−1)wt(u1⊕v1)v1

u1 ]v1,u1 (−1)wt(u0⊕x)xu0(−1)wt(u1⊕∆)∆u1 v
E(x)
0 v

D∆E(x)
1
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