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Abstract. Differential cryptanalysis relies on assumptions like Markov ciphers and
hypothesis of stochastic equivalence. The probability of a differential characteristic
estimated by classical methods is the key-averaged probability under the two assump-
tions. However, the real probability can vary significantly between keys. Hence, tools
for differential cryptanalysis in the fixed-key model are desirable. Recently, Beyne
and Rijmen applied the geometric approach to differential cryptanalysis and pro-
posed a systematic framework called quasi-differential (CRYPTO 2022).
As a variant of differential cryptanalysis, boomerang attacks rely on similar assump-
tions, so it is important to study their probability in the fixed-key model as well. A
direct extension of the quasi-differential for boomerang attacks leads to the quasi-3-
differential framework (TIT 2024). However, such a straightforward approach is dif-
ficult in practical applications because there are too many quasi-3-differential trails.
We tackle this problem by applying the mix-basis style geometric approach (CRYPTO
2025) to the boomerang attacks and construct the quasi-boomerang framework. By
choosing a suitable pair of bases, the boomerang probability can be computed by
summing correlations of quasi-boomerang characteristics. The transition matrix of
the key-XOR operation is also a diagonal matrix; thus, the influence of keys can be
analyzed in a similar way to the quasi-differential framework.
We apply the quasi-boomerang framework to SKINNY-64 and GIFT-64. For SKINNY-
64, we check and confirm 4 boomerang distinguishers with high probability (2 with
probability 1 and 2 with probability 2−4) generated from Hadipour, Bagheri, and
Song’s tool (ToSC 2021/1), through the analysis of key dependencies and the prob-
ability calculation from quasi-boomerang characteristics. We also propose a divide-
and-conquer approach following the sandwich framework for boomerangs with small
probability or long rounds to apply the quasi-boomerang framework. After checking
2/1 boomerang distinguisher(s) of SKINNY-64/GIFT-64, we find that the previously
considered invalid 19-round distinguisher of GIFT-64 is valid.
In addition, as a contribution of independent interest, we revisit Boura, Derbez,
and Germon’s work by extending the quasi-differential framework to the related-key
scenario (ToSC 2025/1), and show an alternative way to derive the same formulas
in their paper by regarding the key-XOR as a normal cipher component.
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2 Mix-Basis Geometric Approach to Boomerang Distinguishers

1 Introduction
Many modern cryptanalytic techniques, such as differential attack [BS90] and boomerang
attack [Wag99], practically rely on independence assumptions as the Markov cipher and
hypothesis of stochastic equivalence assumptions [LMM91]. Although these assumptions
may sometimes seem fairly reliable, the community has been continuously working to
verify or circumvent them.

The efforts on the validity of these assumptions can be roughly categorized into three
categories. The first type of method is based on automatic search tools such as MILP
or SAT. Usually, both the value and difference transitions of a differential characteristic
(DC) are described in certain forms with proper constraints and fed to the search tools.
The results of the search tool can reflect the validity of the target DC. For example, Liu et
al. [LIMY20] developed an MILP tool to verify the DCs for Gimli permutation and found
that many of them were invalid. Li et al. [LZH+24] proposed the AlgSAT tool that can
check if a DC has at least one right pair. Very recently, Nageler et al. [NGJE25] proposed
AutoDiVer based on the SAT tool, which can be used to verify a DC and compute its
probability for different key spaces considering the key schedule.

The second type studies the local internal dependencies between different rounds or
components of a cipher, sometimes with the key schedule. Linear or non-linear constraints
would be obtained, so the validity can be known by checking if these constraints are
solvable. For example, Peyrin and Tan analyzed the key dependencies arising from DCs
in GIFT and SKINNY [PT22]. This work has been extended recently by Peyrin et al., who
proposed an automated verifier Trail-Estimator to identify and analyze constraints
within differential trails for word-oriented block ciphers in [PTZZ25] and applied it to
SKINNY, LBLOCK, and TWINE. Their algorithm can also find the probability of a DC in
different key spaces.

The third one is the quasi-differential techniques proposed by Beyne and Rijmen [BR22].
This method is an application of the geometric approach [Bey23] to various attacks such as
the linear [Bey21], differential [BR22], (ultrametric) integral cryptanalysis [BV23, BV24a]
and some combined attacks [HZC+25]. In this method, differential cryptanalysis is de-
scribed by a transition matrix under the quasi-differential basis. The exact probability
of a DC can be calculated by summing correlations of all quasi-differential characteristics
(quasi-DCs) corresponding to this DC. If the sum of the correlations is zero, then the
target DC is invalid. Additionally, for key-alternating ciphers, the round keys will only
affect the positive/negative sign of a quasi-DC’s correlation, but not influence the abso-
lute value. Thus, a set of linear equations can usually be easily obtained by analyzing the
signs. Different solutions of the linear equations lead to different key subspaces, where the
probability of the DC in the corresponding key subspaces can be calculated. Very recently,
Boura et al. [BDG25] extended the quasi-differential framework from the single-key to the
related-key scenario and presented an approach to verify the validity of some related-key
DCs of AES [DR20] and SKINNY [BJK+16] that takes the key schedule into account.

To date, the primary focus of the above methods has been on DCs, whereas boomerang
distinguishers [Wag99], a significant variant of differential cryptanalysis, have remained
relatively underexplored.

Boomerang attacks [Wag99] regard the target F as a composition of two sub-ciphers,
i.e., F = F1 ◦ F0, assuming the upper DC of F0 and the lower DC of F1 are independent.
There are many works that handle the independence assumption between the upper DC
and lower DC of a boomerang. Cid et al. [CHP+18] proposed the Boomerang Connectivity
Table (BCT) to study the incompatibility of the two DCs based on the sandwich framework
(regarding F as F = F2 ◦F1 ◦F0 in [DKS10]) when the middle part F1 is only a single S-box
layer. Song et al. [SQH19], Wang and Peyrin [WP19] both revisited the BCT and evaluate
the dependency between two DCs through multiple rounds. However, no similar efforts
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Figure 1: The input and output of a boomerang distinguisher. For the input, ∆1 is known,
and x, ∆2 can be any value. For the output, ∇2 is known, and y, ∇1 can be any value.
For the input (resp. output), the four values in a quartet sum to zero as the four values
are x, x ⊕ ∆1, x ⊕ ∆2, x ⊕ ∆1 ⊕ ∆2 (resp. y, y ⊕ ∇1, y ⊕ ∇2, y ⊕ ∇1 ⊕ ∇2), to make it a
3rd-order space.

that analyze the independence assumptions for all rounds for boomerang distinguishers
have been reported.

Boomerang attacks (including the rectangle attacks [BDK01, BDK02]) are important,
as they often keep the longest attack records for many ciphers. For example, in the related-
key setting, the full-round boomerang/rectangle attack on AES-192 in [DEFN22, YSZ+24],
the 25/26/32-round rectangle attacks on SKINNY-64-128/SKINNY-128-256/SKINNY-128-384
in [YSZ+24, SYC+24, DQSW22], the 11-round boomerang attack on Deoxys-BC-256 in
[YSZ+24], the 15-round rectangle attack on Deoxys-BC-384 in [SYC+24], and the 26-round
rectangle attack on GIFT-64 in [DQSW22]. Without doubts, the validity of the indepen-
dence assumptions of these boomerang distinguishers is as important as that of DCs.
Thus, it is equally desirable to have some methods to find dependencies of boomerang
distinguishers. However, tools that are useful to check DCs are not trivially applicable to
boomerang distinguishers.

In [WSW+24], Wang et al. extended the quasi-differential framework to theoretical
quasi-d-differential cryptanalysis and revisited the boomerang attack from the perspective
of 3-differential (d = 3) [Tie16]. However, the quasi-3-differential framework is hard to
use in practice, as the correlation of each quasi-3-differential trail is too small. The deep
reason is that a boomerang distinguisher is actually a specially truncated 3-differential
where parts of input and output differences can be any values. Hence, to describe a
boomerang distinguisher, countless quasi-3-differential trails have to be accumulated. Due
to limited computing power, computing probabilities for boomerang distinguishers via
quasi-3-differential remains highly impractical. In fact, the authors of [WSW+24] only
searched and verified a part of the 2-round 3-differentials of the distinguisher of GIFT-64.

Recently, Hu et al. extended the geometric approach by allowing the use of different
bases for the input and output spaces [HZC+25], a flexibility that has been implied in
Beyne’s doctoral thesis [Bey23] but not utilized in any real cryptanalysis before. Using
different bases brings much more convenience in describing attacks. In [HZC+25], the
authors summarized three bases from previous geometric approach papers and extended
them to an additional four bases. They also described the principles to choose bases from
the seven bases for attacks of different orders, but they only provided examples for up to
second-order attacks.

Our contributions. This paper applies the geometric approach to the boomerang attack
by choosing a pair of proper bases, presenting a much more practical tool for studying
boomerang attacks in the fixed-key model. The main contributions include the theory
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4 Mix-Basis Geometric Approach to Boomerang Distinguishers

and the applications.
We propose the quasi-boomerang framework as a theoretical tool to study the boomerang

attack in the fixed-key model. This framework includes three key points, as follows,
3rd-order attack for describing boomerang attacks. Since the boomerang attack
handles 4 values (a quartet), according to [HZC+25], we should describe it as a 4th-
order attack. However, the transition matrix of a 4th-order attack will have a size of
4 times the cipher size, which is too heavy for searching trails. Instead, we notice that
the boomerang attacks make an implicit assumption that the sum of the four values in
a boomerang quartet is always zero. This inspires us to describe the boomerang attack
as a 3rd-order attack. That is, for F : Fn

2 → Fn
2 , we will trace a linearly dependent

quartet like (x0, x1, x2, x0 ⊕ x1 ⊕ x2) where x0, x1, x2 ∈ Fn
2 and the rank of these four

values is 3. For the sake of convenient reference, we call it the 3rd-order assumption. In
addition, in boomerang attacks, what we care about more is the difference rather than the
values. Hence, as shown in Figure 1, for the input, output of F, we consider the following
propagation

(x, ∆1, ∆2, x ⊕ ∆1 ⊕ ∆2) F−→ (y, ∇1, ∇2, x ⊕ ∇1 ⊕ ∇2).

Choice of the bases. Next, we choose suitable bases for this propagation to perform
change-of-basis operations. The input basis is chosen as

bin = [(−1)u>
0 x]x,u0 ⊗ [δu1(∆1)]∆1,u1 ⊗ [(−1)u>

2 ∆2 ]∆2,u2 .

The output basis is chosen as

bout = [(−1)u>
0 x]x,u0 ⊗ [(−1)u>

1 ∆1 ]∆1,u1 ⊗ [δu2(∆2)]∆2,u2 .

Under these two bases, the coordinate of the transition matrix for the boomerang attack
is

BF
(v0,v1,v2),(u0,u1,u2) = 1

22n

∑
x∈Fn

2 ,∆1=u1,∇2=v2

(−1)u>
0 x(−1)u>

2 ∆2(−1)v>
0 y(−1)v>

1 ∇1 ,

where y = F(x), ∇1 = F(x) ⊕ F(x ⊕ ∆1), ∇2 = F(x) ⊕ F(x ⊕ ∆2) and F(x ⊕ ∆1 ⊕ ∆2) =
y ⊕ ∇1 ⊕ ∇2.

One can check when setting u0 = u2 = v0 = v1 = 0, BF
(0,0,v2),(0,v1,0) counts the number

of quartets that satisfy ∆1 = u1, ∇2 = v2. Under the 3rd-order assumption, this is exactly
the probability of a rectangle distinguisher. The corresponding boomerang distinguisher’s
probability is 2n times the rectangle’s.
Boomerang characteristics and quasi-boomerang characteristics. Since the cho-
sen bases are different, the boomerang attack is described as a mix-basis attack [HZC+25].
Let F = F2 ◦ F1 ◦ F0. For F0 and F2, two same-basis attacks are derived with bin and bout

as the bases, respectively. For F1, a mix-basis attack applies.
Inherited from the geometric approach, the boomerang attack is now ready to be stud-

ied with trails. Analogous to the quasi-differential framework, the boomerang characteris-
tics (BCs) and quasi-boomerang characteristics (quasi-BCs) are defined. The probability
of a boomerang distinguisher (corresponding to a differential) is the sum of correlations of
all quasi-BCs (corresponding to quasi-differential trails). However, the number of quasi-
BCs can be huge, so we want to search for these trails in two phases, like we did in
the quasi-differential framework. In bin (resp. bout), when we set u0 = u2 = 0 (resp.
u0 = u1 = 0), the round-independence assumption is naturally introduced, as some inter-
mediate values and differences have no limitations now. The probability of a BC is the
sum of the correlations of all quasi-BCs related to it. Therefore, we can first search for all
BCs related to the boomerang distinguishers, then search for all quasi-BCs for each BC.
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Such a two-phase framework makes the search easier.

For applications, the quasi-boomerang framework is useful to compute the boomerang’s
probability in the fixed-key model and study the influence of keys similar to the quasi-
differential framework [BR22]. We apply this framework to SKINNY-64 and GIFT-64, ob-
taining the following results, which are summarized in Table 1 also.

First, in the application to SKINNY-64, we find that the four boomerang distinguishers
with high probabilities (2/2 with probability 1/2−4) generated by tools in [HBS21] are
all key-independent, and their probability can be calculated by summing the correlations
of quasi-BCs. Next, for the boomerang distinguishers with small probability or long
rounds, a divide-and-conquer approach is proposed to divide the boomerang into three
parts to apply the quasi-boomerang framework. Two boomerangs of SKINNY-64 and one
boomerang of GIFT-64 are checked using this approach, and the probability of the 19-round
boomerang distinguisher is larger than 2−64, which can be considered valid.

One interesting application of the quasi-boomerang framework is to address an open
question raised by Hadipour at FSE 2023. At FSE 2023, Hadipour et al. [HNE22] pre-
sented a deterministic boomerang distinguisher for 11 rounds of SKINNY-64-128 (see Fig-
ure 3)1. This distinguisher was deliberately constructed using two differential trails that
should be impossible according to the verification tool in [PT22], due to the dependency
issue within the individual underlying differential trails. The goal was to demonstrate that
the tool in [PT22] is limited to ordinary differential trails and cannot be used to verify
boomerang distinguishers. However, the proposed boomerang distinguisher by Hadipour
et al. was only verified experimentally for a limited number of random keys, and the
authors posed the development of an analytical method for verifying boomerang distin-
guishers as an open question. Our quasi-boomerang framework addresses this question
using the mix-basis geometric approach.

Finally, in Section 5, we discuss the influence of the key schedule on the quasi-boomerang
framework. By regarding the key-XOR as a standard cipher component, the quasi-
boomerang framework can be applied to key-alternating ciphers, considering the key
schedule in a natural way. We provide theories and formulas for this. Similarly, we
revisit Boura et al.’s work in [BDG25], where the authors defined two asymmetric func-
tions for constructing the transition matrix for the key-XOR operation in the related-key
setting, and provide an alternative way to get the same theorems.

We have made all source code and experimental results related to this paper available
at https://anonymous.4open.science/r/quasi-boomerang-1E87.

Outline. In Section 2, we briefly recall the related works of differential, boomerang
attacks, Beyne’s geometric approach, and the generalization of the geometric approach by
Hu et al.. In Section 3, we generalize the geometric approach to boomerang distinguishers
in both single-key and related-key scenarios. In Section 4, we apply the quasi-boomerang
framework to several boomerang distinguishers of SKINNY-64 and GIFT-64. Section 5
discusses the quasi-boomerang framework for key-alternating ciphers with the key schedule
being considered. Section 6 concludes this paper.

2 Preliminaries
In this section, we recall the differential cryptanalysis, the boomerang attacks and their
related-key variants, Beyne’s geometric approach theory, and Hu et al.’s mix-basis exten-
sion of the geometric approach.

1Page 10 in https://iacr.org/submit/files/slides/2023/fse/fse2023/tosc2022_3_36/slides.pdf.
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6 Mix-Basis Geometric Approach to Boomerang Distinguishers

Table 1: Our analysis results of the validity of Boomerang distinguishers. #Keys denotes
the size of the key space. KI denotes Key-Independent.

Cipher #R KI? #Keys Prob. Reference

SKINNY-64-128

11 3 2128 1 Section 4.1.1

12 3 2128 2−4 Section 4.1.2

17† 7

2128 2−48.72 [LGS17, Table 12]

2126 2−43.42

Section 4.2.12127 2−45.42

2126 0

SKINNY-64-192

15 3 2192 1 Section 4.1.3

16 3 2192 2−4 Section 4.1.4

22† 3
2192 2−54.94 [LGS17, Table 14]

2192 2−53.79 Section 4.2.2

GIFT-64 19†‡ 3

2128 2−50 [CWZ19, Table 5]

2128 2−68 [JZZD20]

2128 2−54.19 Section 4.2.3
† denotes the joint boomerang distinguishers that follow the sandwich framework.
‡ The probability of the 19-round distinguisher of GIFT-64 is 2−68 in [JZZD20], which is

smaller than 2−64, thus considered invalid.

2.1 Differential and Boomerang Cryptanalysis
Typically, differential cryptanalysis [BS91] focuses on functions F that are structured as
compositions, specifically F = Fr ◦Fr−1◦· · ·◦F1. Obtaining the input and output difference
for Fi, say (ai, ai+1), and connecting them, we can get a DC as (a1, a2, . . . , ar+1). The es-
timation of probabilities associated with these characteristics often assumes independence
between the intermediate differentials:

Pr
DC

[a0, . . . , ar+1] ≈
r∏

i=1
Pr[Fi(xi ⊕ ai) ⊕ Fi(xi) = ai+1]. (1)

In scenarios where the functions F1, . . . , Fr depend on keys k1, . . . , kr, the heuristic pro-
posed in Equation 1 can be supported by the Markov cipher assumption [LMM91]. Specif-
ically, it has been shown that if all round keys are uniformly random and independent, the
key-averaged probability of a characteristic corresponds to the product of the intermediate
key-averaged probabilities.

Wagner [Wag99] first introduced the boomerang attack, which can regard the target
cipher F as a composition of two sub-ciphers F0 and F1, i.e., F = F1 ◦ F0. The boomerang
attack is an adaptive chosen plaintext-ciphertext attack. We assume that there is a
differential α

F0−→ β with probability p, and γ
F1−→ δ with probability q, The expected

probability of the boomerang attack is:

Pr[F−1(F(P1) ⊕ δ) ⊕ F−1(F(P1 ⊕ α) ⊕ δ) = α] = p2q2. (2)

The boomerang attack relies on an independent assumption between F0 and F1. But
this assumption might be unreliable [Mur11]. Therefore, many papers have studied this
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problem thoroughly, including sandwich attack [DKS10] and boomerang connectivity table
(BCT) technique [CHP+18], and the generalized BCT techniques for multiple rounds
[SQH19, WP19, DDV20]. The BCT technique divides the cipher into three parts, say
F = F2 ◦ F1 ◦ F0. Assume F1 is a layer of parallel small Sboxes. For each Sbox, a BCT can
be established.

Definition 1 (Boomerang Connectivity Table, [CHP+18]). Let S : Fn
2 → Fn

2 be an
invertible Sbox, and β, γ ∈ Fn

2 . The Boomerang Connectivity Table (BCT) of S is given
by a 2n × 2n table, in which the entry for the (β, γ) position is given by

BCT (β, γ) = #{x ∈ Fn
2 |S−1(S(x) ⊕ γ ⊕ S−1(S(x ⊕ β) ⊕ γ) = β}

2n
.

If there is a differential α
F0−→ β with probability p, and γ

F2−→ δ with probability
q, the probability of a boomerang distinguisher of F is p2q2r where r = PrBCT [β, γ] =
BCT (β, γ).

Although these techniques have managed to handle the connecting point of F0 and F2,
however, the independent assumptions in other rounds still exist, such as the propagations
for F0 and F2. This paper verifies the boomerang distinguishers considering all these
independent assumptions.

The amplified boomerang attack, later renamed as the rectangle attack [BDK01,
BDK02], is proposed by Kelsey et al. [KKS00], turning the boomerang attack into the
chosen-plaintext scenario. In [KT22], Kidmose and Tiessen proved that the probability of
a boomerang distinguisher is 2n times that of the corresponding rectangle distinguisher,
with a formal analysis using 3-differential cryptanalysis, where n is the length of the block.
In this paper, we do not strictly distinguish the terms boomerang and rectangle attacks.
The geometric approach actually describes the rectangle attack; we will multiply a 2n

with the probability to make it satisfy the boomerang probability.

Boomerang attacks in the related-key setting. In [Bih94], Biham introduced related-
key attacks, where the attacker knows the specific difference of the round keys. In the
boomerang attacks, assume the key space is K, the attacker can query four related-key
oracles. Let ∆k and ∇k denote the key differences for subciphers F0 and F1, respectively,
and the base key is k1 ∈ K, the four keys generated from k1 are: k1, k2 = k1 ⊕ ∆k, k3 =
k1 ⊕ ∇k, and k4 = k1 ⊕ ∆k ⊕ ∇k. Then the attacker queries a plaintext pair (P1, P2) with
difference P1 ⊕ P2 = α to the k1 and k2 encryption oracles, respectively, obtaining the
corresponding ciphertext pair (C1, C2), and computes C3 = C1 ⊕ δ, C4 = C2 ⊕ δ. After
that, the attacker queries the ciphertext pair (C3, C4) to the k3 and k4 decryption oracles,
respectively, and gets the resulting plaintext pair (P3, P4). The probability that P3 ⊕ P4
is equal to α is p2q2. In this setting, longer related-key DC and boomerang distinguishers
might be obtained. The differential and boomerang attacks in the related-key setting
depend on similar independent assumptions between adjacent rounds.

2.2 Beyne’s Geometric Approach Theory and Its Mix-Basis Extension
The geometric approach was developed by Beyne [Bey23] as a novel and systematic
method to understand cryptanalytic attacks. This theory has been successfully used
in linear [Bey21], differential [BR22], (ultrametric) integral cryptanalysis [BV23, BV24b]
and some combined attacks [HZC+25]. This subsection briefly introduces the ideas of
the geometric approach, as well as its most recent extension to the mix-basis attacks in
[HZC+25]. The mix-basis geometric approach is closer to the techniques used in this
paper.

Before we start, we first introduce the order of a space and an attack that will play an
important role in this paper.
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Definition 2 (Order of a space and an attack [HZC+25](adapted)). If the rank of a
subspace S = {(x0, x1, . . . , xs−1) : xi ∈ Fn

2 } is d, i.e., any element in S can be computed
by an element in Fdn

2 , we say the order of S is d. Consider F : Fn
2 → Fn

2 . Suppose an
attack uses samples from d-th-order space, we call d the order of this attack.

For a d-th-order attack, the input and output can be generated by d linearly indepen-
dent elements x0, x1, . . . , xd−1 ∈ Fn

2 . Since Fdn
2

∼=
∏d

i=1 Fn
2 , we can also say that a d-th

attack works for F×d : Fdn
2 → Fdn

2 and denote the output as F×d(x) ∈ Fdn
2 for x ∈ Fdn

2 .
When describing the basic ideas of the geometric approach or the order information is
clear from the context, we will omit the superscript ×d for the sake of simplicity. Actu-
ally, in most parts of this paper, the order information is clear.

Consider Fn
2 (Note that in the following, n might be d times the block size of a cipher)

and let Q be the rational number field. Q[Fn
2 ] denotes the free vector space over Q

generated by the elements of Fn
2 , where the basis vectors correspond to the elements of

Fn
2 and the scalars are taken from Q, i.e.,

Q[Fn
2 ] =

{∑
i

kuδu, ku ∈ Q, u ∈ Fn
2

}
,

where δu represents the basis vector uniquely related to u.
For a function F : Fn

2 → Fn
2 that sends an element u ∈ Fn

2 to F(u) ∈ Fn
2 , we can induce

a linear mapping T F defined as

T F : Q[Fn
2 ] → Q[Fn

2 ],
∑

u

kuδu 7→
∑

u

kuδF(u).

(δu, 0 ≤ u < 2n) is a standard basis. Following the notations in [HZC+25], when the
elements of basis vectors can be represented by a function, we can use the function to
represent the basis. For example, consider the Dirac delta function

δu(·) : Fn
2 → Q, δu(x) =

{
1, if x = u;
0, otherwise.

Putting every basis vector δu into the u-th column of a matrix, we can obtain a matrix,
which can be written as [δu(x)]x,u, where 0 ≤ x < 2n and 0 ≤ u < 2n are respectively the
indices of the rows and columns. Generally, given a function fu(·) : Fn

2 → Q, a matrix can
be represented as [fu(x)]x,u with the same style of [δu(x)]x,u. Regarding all its columns
as a set of basis vectors (if the matrix is of full rank), [fu(x)]x,u is a basis of Q[Fn

2 ].

Remark. Here we use δu to represent a vector and δu(·) a function. Note that δu =
[δu(x), x = 0, 1, . . . , 2n − 1], which justifies the usage of δu as a standard basis vector and
δu(·) a function.

T F is a permutation matrix (when F is a permutation) called the transition matrix
under the standard basis. When choosing a new basis for the input space and another for
the output space, we can get another transition matrix of the linear mapping correspond-
ing to T F, after the change-of-basis operations. Let the input basis be [αu(x)]x,u, and
output basis [βu(x)]x,u. In addition, we assume that [βu(x)]−1

x,u can also be represented as
[β⋆

u(x)]x,u. According to [Bey23, HZC+25], the coordinate of the new matrix under the
new bases is

BF
v,u =

∑
x∈Fn

2

αu(x)β⋆
F(x)(v) (3)

According to whether [αu(x)]x,u = [βu(x)]x,u, the attacks described by the geometric
approach can be divided into the same-basis attack and mix-basis attack.
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Table 2: Seven bases of the first-order space listed in [HZC+25]. αu(x) and β⋆
F(x)(v) are

used in Equation 3.

Index Basis Effect of input
αu(x)

Effect of output
β⋆

E(x)(v)

0 [δu(v)]v,u δu(x) δE(x)(v)

1 [(−1)u>v]v,u (−1)u>x 2−n(−1)E(x)>v

2 [2−n(−1)u>v]v,u 2−n(−1)u>x (−1)E(x)>v

3 [uv]v,u ux (−1)wt(v⊕E(x))Ev(x)

4 [(−1)wt(u⊕v)uv]v,u (−1)wt(u⊕x)ux Ev(x)

5 [vu]v,u xu (−1)wt(v⊕E(x))vE(x)

6 [(−1)wt(u⊕v)vu]v,u (−1)wt(u⊕x)xu vE(x)

Definition 3 (Same-basis and mix-basis attack [HZC+25]). An attack on F : Fn
2 → Fn

2
is called a same-basis attack if the bases chosen for the input and output spaces are the
same; otherwise, it is called a mix-basis attack.

First-order attacks. In [HZC+25], Hu et al. revisited three bases from existing geo-
metric papers and generated four additional bases with simple rules. The seven bases are
listed in Table 2. By choosing a pair of bases for the input and output spaces, we can
derive the coordinate expression of the corresponding matrix, which is related to a certain
attack.

Example 1. Consider F : Fn
2 → Fn

2 . We choose [(−1)u>x]x,u as the basis of the input
and output spaces, the transition matrix coordinate is then

AF
v,u =

∑
x∈Fn

2

αu(x)β⋆
F(x)(v) = 2−n

∑
x∈Fn

2

(−1)u>x⊕v>F(x).

This is related to the linear cryptanalysis [Bey21].

Higher-order attacks. For 0 ≤ i < d, suppose [αu(x)](i)
x,u is a basis of Q[Fn

2 ], then⊗
0≤i<d[αu(x)](i)

x,u is a basis for Q[Fdn
2 ] =

⊗
0≤i<d Q[Fn

2 ], where ⊗ is the Kronecker product.

According to the rule of the Kronecker product, if
(

[βu(x)](i)
x,u

)−1
= [β⋆

u(x)](i)
x,u, then

 ⊗
0≤i<d

[βu(x)](i)
x,u

−1

=
⊗

0≤i<d

[β⋆
u(x)](i)

x,u.

Hence, for a d-th order on F×d
2 : Fdn

2 → Fdn
2 , we can choose d first-order bases to

generate a d-th-order basis, and further obtain the matrix coordinate expression according
to Equation 3.

Example 2. Consider a second-order attack on F×2 : F2n
2 → F2n

2 . We select [(−1)u>
0 x]x,u⊗

[δu1(∆)]∆,u1 as the basis for both the input and output spaces. The transition matrix co-
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ordinate is then

AF×2

(v0,v1),(u0,u1) =
∑

(x,∆)∈F2n
2

(−1)u>
0 xδu1(∆)(−1)v>

0 (x)δv1(F(x) ⊕ F(x ⊕ ∆))

= 2−n
∑

∆=u1
F(x)⊕F(x⊕u1)=v1

(−1)u>
0 x⊕v>

0 F(x) (4)

This expression is the one for quasi-differential in [BR22].

2.3 Trails in Geometric Approach and Automatic Search Method
Coordinates of the transition matrix of the whole cipher are usually impossible to compute
due to the huge complexity. However, ciphers are built on the small components, whose
transition matrices are easy to construct. The transition matrices enjoy the following
properties, making it possible to compute or approximate the coordinates for the whole
cipher.

Theorem 1 ([BR22], Theorem 3.2). Let n be a positive integer and F : Fn
2 → Fn

2 a
function. The transition matrix B has the following properties:

(1) If F = F1|| . . . ||Fm, then BF =
⊗m

i=1 BFi .

(2) If F = Fr ◦ · · · ◦ F1, then BF =
∏

1≤i≤r BFi .

According to Theorem 1, for a composite cipher F = Fr ◦ Fr−2 ◦ · · · ◦ F1 we have

BF
ur+1,u1 =

∑
ur,...,u2

r∏
i=1

BFi

ui+1,ui .

(u1, u2, . . . , ur+1) is called a trail and
∏r

i=1 BFi

ui+1,ui is its correlation. The whole
correlation BF

ur+1,u1 is equal to the sum of all corresponding trails’ correlations. For a
d-th-order attack, ui is a d-tuple, like ui = (ui

1, ui
2, . . . , ui

d). Sometimes we need to put
some constraints on u1 and ur+1 to meet an existing attack.

Example 3. Consider the quasi-differential transition matrix coordinate in Example 2.
By setting u0 = v0 = 0, we obtain the probability of a differential (u1, v1).

To approximate AF×2

(0,v1),(0,u1), we need to enumerate all trails (DCs) that connect (0, v1)
and (0, u1) and sum their correlations (probabilities). The sum of the correlations is the
exact differential probability.

Dominate trails assumption. In practice, the number of trails is usually huge, making
it is impossible to enumerate all of them. Thus, cryptanalysis relies on the dominant trail
assumption. For example, in linear cryptanalysis, we assume that the linear trail that has
the maximum absolute correlation would dominate the sum of all trails’ correlations (or
provide some reasonable bounds). In the quasi-differential framework, sometimes, it is also
assumed that a small part of quasi-differential trails with the largest absolute correlations
would reflect the whole probability of a DC.

3 Geometric Approach for Boomerang Cryptanalysis
In this section, we generalize the geometric approach to describe boomerang cryptanalysis.
To represent the boomerang attack shown in Figure 1, we first choose the order of the
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attack and define the bases for the input and output spaces, so that boomerang attacks
can be described as a 3rd-order mix-basis attack [HZC+25]. After that, the two upper
and lower differentials (characteristics) can be connected through a single S-box layer
in the middle. Next, we define the concepts of BCs and quasi-BCs, and show how to
compute the probability of a boomerang in the fixed-key model. The influence of round
keys on the boomerang probability can be analyzed similarly to the quasi-DCs in the
quasi-differential framework. Finally, we show that the quasi-boomerang framework also
applies to the related-key boomerang attacks.

3.1 Choose the Order for Boomerang Attacks
According to [HZC+25], when extending the geometric approach to new attacks, we should
first decide the order of the attack. Since the boomerang attack treats four values (a quar-
tet), the orders of the input and output spaces are both 4. In this sense, the boomerang
attack can be described by a 4th-order attack. In fact, in [WSW+24], Wang et al. ex-
tended the quasi-differential framework to quasi-d-differential cryptanalysis. When d = 3,
the quasi-3-differential cryptanalysis can be used to describe the boomerang attack. This
is also similar to the d-difference of the polytope attacks [Tie16].

However, the quasi-3-differential cryptanalysis has two drawbacks: the number of rows
and columns in the transition matrix is four times the size of the S-box, which makes the
search process very slow, and the number of quasi-3-differential trails is too huge, resulting
in the search being impractical. In fact, the authors in [WSW+24] actually searched for
only a part of the quasi-3-differentials that correspond to the two middle rounds of a
boomerang distinguisher they aimed to check.

To make the search practical, we notice that the orders of the input and output spaces
can be described as 3, which is inspired by an implicit assumption that the four values in
a quartet will sum to zero for both the classical boomerang distinguishers and the refined
ones with BCT 2. In this case, i.e., assuming that the inner quartet always sums to zero,
the theoretical boomerang probability is indeed an estimate of the actual boomerang
probability. Then the boomerang analysis can be simplified by adding a constraint to
make sure the sum of the quartet is always zero. When checking the probability of a
boomerang distinguisher, the differences of the state and key (following key schedule) can
be known, making the transition matrices for boomerangs further reduce to twice the size
of the S-box, so the search process becomes easier.

In the following, we will refer to this assumption as the third-order assumption. We
emphasize that most previous boomerang attacks also work under this assumption.

3.2 Quasi-Boomerang Bases as a 3rd-Order Attack
Consider a 3rd-order space X = {(a, b, c, d) : a⊕b⊕c⊕d = 0, a, b, c, d ∈ Fn

2 }, and construct
the free vector space Q[X]. We can induce a linear mapping T F : Q[X] → Q[X] for a cipher
F.

As shown in Figure 1, in boomerang attacks, we consider the propagation

(x, ∆1, ∆2) → (y = F(x), ∇1 = F(x) ⊕ F(x ⊕ ∆1), ∇2 = F(x) ⊕ F(x ⊕ ∆2)).

Under the standard basis, the transition matrix of F can be obtained, whose coordinate is

T F
(v0,v1,v2),(u0,u1,u2) = δv0(F(u0))δv1(F(u0) ⊕ F(u0 ⊕ u1))δv2(F(u0) ⊕ F(u0 ⊕ u2))

Next, we choose an alternative basis to describe the boomerang attack. For the
input space, only ∆1 is explicitly fixed, so we use the standard basis for it, given by

2x0 ⊕ x1 ⊕ x2 ⊕ x3 = 0 is equivalent to x0 ⊕ x1 = x2 ⊕ x3 or x0 ⊕ x2 = x1 ⊕ x3.

https://orcid.org/0009-0006-8528-7179
https://orcid.org/0000-0002-3820-3765
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[δu1(∆1)]∆1,u1 . Simultaneously, x and ∆2 can take any value. Similar to the setting for
input and output values in the quasi-differential framework, we use a linear basis for x

and ∆2, given by [(−1)u>
0 x]x,u0 and [(−1)u>

2 ∆2 ]∆2,u2 . Putting these components together,
the basis for the input space is

bin = [(−1)u>
0 x]x,u0 ⊗ [δu1(∆1)]∆1,u1 ⊗ [(−1)u>

2 ∆2 ]∆2,u2

= [(−1)u>
0 xδu1(∆1)(−1)u>

2 ∆2 ](u0,u1,u2),(v0,v1,v2)
(5)

In the output space, y and ∇1 can take any value, but ∇2 will be fixed and determined.
Following the same structure as the input, we choose the output basis as

bout = [(−1)v>
0 y]y,v0 ⊗ [(−1)v>

1 ∇1 ]∇1,v1 ⊗ [δv2(∇2)]∇2,v2

= [(−1)v>
0 y(−1)v>

1 ∇1δv2(∇2)](y,∇1,∇2),(v0,v1,v2)
(6)

Since the input and output bases are different, the boomerang attack can be described
as a mix-basis attack. Following [HZC+25], we divide the target cipher F into three parts,
F = F2 ◦ F1 ◦ F0, where F1 is an S-box layer. We then construct the transition matrices
for each of the three parts.

For F0 : (x, ∆1, ∆2) → (y, ∇1, ∇2), the basis bin in Equation 5 is used for the input,
output, and intermediate spaces. So we obtain a same-basis attack, where the coordinate
of the corresponding transition matrix is

BF0
(v0,v1,v2),(u0,u1,u2) = 1

22n

∑
x,∆1,∆2

(−1)u>
0 xδu1(∆1)(−1)u>

2 ∆2(−1)v>
0 yδv1(∇1)(−1)v>

2 ∇2

= 1
22n

∑
x∈Fn

2 ,∆2∈Fn
2

∆1=u1,∇1=v1

(−1)u>
0 x⊕u>

2 ∆2⊕v>
0 y⊕v>

2 ∇2

(7)
under the constraint F0(x ⊕ ∆1 ⊕ ∆2) = F0(x) ⊕ F0(x ⊕ ∆1 ⊕ ∆2), where this constraint
is to ensure that the elements are from the 3rd-order space X.

For F2 : (x, ∆1, ∆2) → (y, ∇1, ∇2), the basis bout in Equation 6 is used for the input,
output, and intermediate spaces. Therefore, we also obtain a same-basis attack. The
coordinate of the corresponding transition matrix is given by

BF2
(v0,v1,v2),(u0,u1,u2) = 1

22n

∑
x,∆1,∆2

(−1)u>
0 x(−1)u>

1 ∆1δu2(∆2)(−1)v>
0 y(−1)v>

1 ∇1δv2(∇2)

= 1
22n

∑
x∈Fn

2 , ∆1∈Fn
2

∆2=u2, ∇=v2

(−1)u>
0 x⊕u>

1 ∆1⊕v>
0 y⊕v>

1 ∇1

(8)
under the constraint F2(x ⊕ ∆1 ⊕ ∆2) = F2(x) ⊕ F2(x ⊕ ∆1 ⊕ ∆2), which ensures that the
elements belong to the 3rd-order space X.

Definition 4 (Quasi-biDDT). We refer to the transition matrices defined in Equation 7
and Equation 8 as the quasi-biDDT, since they model the propagation of two differences.
To distinguish between them, we call the one for F0 the upper quasi-biDDT, and the one
for F2 the lower quasi-biDDT.

For F1 : (x, ∆1, ∆2) → (y, ∇1, ∇2), we use bin as the input basis and bout as the output
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basis. The corresponding transition matrix is

BF1
(v0,v1,v2),(u0,u1,u2) = 1

22n

∑
x,∆1,∆2

(−1)u>
0 xδu1(∆1)(−1)u>

2 ∆2(−1)v>
0 y(−1)v>

1 ∇1δv2(∇2)

= 1
22n

∑
x∈Fn

2 , ∆2∈Fn
2

∆1=u1, ∇2=v2

(−1)u>
0 x0⊕u>

2 ∆2⊕v>
0 y⊕v>

1 ∇1

(9)
Again, we impose the constraint F1(x ⊕ ∆1 ⊕ ∆2) = F1(x) ⊕ F1(x ⊕ ∆1 ⊕ ∆2) to ensure
that the transition respects the structure of the 3rd-order space X.

Definition 5 (Quasi-BCT). The transition matrix defined by Equation 9 models the
propagation from the upper difference to the lower difference, similar to the BCT. However,
unlike the classical BCT, it also takes the values into account. Thus, we call this matrix
quasi-BCT.

Remark. The value calculated by Equation 9 represents the probability of a rectangle
distinguisher. To obtain the boomerang probability, we need to multiply this value by a
factor of 2n. Throughout this paper, we report the probability of the boomerang distin-
guishers, so we always apply the 2n factor to the probability obtained from Equation 9.

3.3 Probability Calculation from Quasi-Boomerang Characteristics
To compute the probability of boomerang distinguishers, we build a framework similar
to the one used for differentials. A given differential distinguisher may include many
quasi-DCs, some of which play a dominant role in determining the overall probability.
Following the structure of the framework for basic differential distinguishers, we first
define the concept of boomerang characteristics (BCs) and then show that the probability
of a boomerang distinguisher can be determined by the probability of its so-called quasi-
boomerang characteristics (quasi-BCs).

Consider F = Fr ◦ · · · ◦ F2 ◦ F1. By Theorem 1 and Equation 7, Equation 8 and
Equation 9, we have

BF
ωr+1,ω1

=
∑

ω2,...,ωr

r∏
i=1

BFi
ωi+1,ωi

, (10)

where wi = (ui
0, ui

1, ui
2) is a 3-tuple. To obtain the exact probability of the boomerang

distinguisher (under the 3rd-order assumption) with the input difference of the upper DC
being ∆1 and the output difference of the lower DC being ∇2, we can set ω1 = (0, ∆1, 0)
and ωr+1 = (0, 0, ∇2), search for all trails (ω1, ω2, . . . , ωr+1) that connect ω1 and ωr+1,
and sum up their correlations.

However, usually the number of trails is huge, so it is difficult to exhaust all of them.
To make the search easier, we mimic the quasi-differential framework by defining the
boomerang characteristics (BCs) and quasi-boomerang characteristics (quasi-BCs). In
this way, first, we search for BCs. Second, for each BC, we search for quasi-BCs corre-
sponding to this BC.

Definition 6 (Boomerang characteristic (BC)). Consider a composite cipher F = Fr ◦
· · · ◦ Fm+1 ◦ Fm ◦ Fm−1 ◦ · · · ◦ F1, where the subcipher Fm−1 ◦ · · · ◦ F1 has a differen-
tial characteristic (a1, . . . , am), and the subcipher Fr ◦ · · · ◦ Fm+1 has a differential char-
acteristic (am+1, . . . , ar+1). Assuming that the BCT connects am and am+1, the full
sequence (a1, . . . , am, am+1, . . . , ar+1) can serve as an approximation of the boomerang
distinguisher, which we refer to as a boomerang characteristic, abbreviated as BC.
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Under the round-independence assumption, the probability of a boomerang character-
istic is approximated as 3

Pr
BC

[a1, . . . , am, am+1, . . . , ar+1] ≈
(

Pr
DC

[a1, . . . , am]
)2

·
(

Pr
DC

[am+1, . . . , ar+1]
)2

· Pr
BCT

[am, am+1]

≈
m−1∏
i=1

(Pr
DC

[ai, ai+1])2 Pr
BCT

[am, am+1]
r∏

i=m+1
(Pr
DC

[ai, ai+1])2

(11)
The approximate probability of a BC is natural when we set u0 = u2 = v0 = v2 = 0

in Equation 7, set u0 = u1 = v0 = v1 = 0 in Equation 8, and set u0 = u2 = v0 = v1 = 0
in Equation 9.

An intuitive explanation for this is that these zero values allow any values for in-
termediate values and some differences, which actually leads to the round-independence
assumption.

According to Theorem 1, the probability of a boomerang distinguisher for F, can be
calculated by summing all the correlations of the quasi-boomerang characteristics.
Definition 7 (Quasi-boomerang characteristic (quasi-BC)). A quasi-boomerang charac-
teristic for a function F = Fr◦· · ·◦Fm+1◦Fm◦· · ·◦F1 is a sequence ω1, . . . , ωm, ωm+1, . . . , ωr+1
of triples, where each ωi = (ui

0, ui
1, ui

2) for 1 ≤ i ≤ r + 1. We calculate the correlation
of the quasi-BC as

∏r
i=1 BEi

ωi+1,ωi
. Here, BFi is the transition matrix associated with the

component Fi:
• for i < m, BFi is the upper quasi-biDDT (Equation 7),

• for i = m, BFi is the quasi-BCT (Equation 9),

• for i > m, BFi is the lower quasi-biDDT (Equation 8).
When ∀i, ui

0 = 0, ∀i ≤ m, ui
2 = 0, and ∀i ≥ m + 1, ui

1 = 0, the quasi-BC corresponds
to a BC. Similar to [BR22, Theorem 4.1], we can use the quasi-BC to compute the exact
probability of a BC, as stated in the following proposition. Note that Equation 11 gives
the approximate probability of a BC under the round-independence assumption, but the
following is without the assumption.
Proposition 1. Consider F = Fr ◦ · · · ◦ Fm+1 ◦ Fm ◦ · · · ◦ F1. The exact probability of a
BC (a1, . . . , am, am+1, . . . , ar+1) is equal to the sum of the correlations of all quasi-BCs
that share the same intermediate differences (we use t to represent 1 or 2. For example,
ut can be u1 or u2, according to the round number):

Pr
BC

[a1, a2, . . . , ar+1] = Pr
BC

[
r∧

i=1
ai

Fi−→ ai+1

]
=

∑
u2

0,...,ur
0

∑
u1

t ,...,ur
t

r∏
i=1

BFi
ωi+1,ωi

, (12)

where ωi = (ui
0, ai, ui

2) for 1 ≤ i ≤ m, and ωi = (ui
0, ui

1, ai) for m + 1 ≤ i ≤ r + 1, with
u1

0 = ur+1
0 = 0, ur+1

1 = 0, and u1
2 = 0.

Proof. The proof is analogous to that of [BR22, Theorem 4.1]. After substituting quasi-
biDDTs and quasi-BCT into the right side of Equation 12, we get

r∏
i=1

BFi
ωi+1,ωi

= 1
22nr

∑
x1,...,xr

∆1
t ,...,∆r

t
ai→ai+1

r∏
i=1

(−1)(ui
0)>xi⊕(vi

0Fi(xi)(−1)(ui
t)>∆i

t⊕(vi
t)>F(xi)⊕F(xi⊕∆i

t)

3The BC takes the same position as the DC in the quasi-differential framework. However, the prob-
ability of a BC is usually far smaller than the real probability of a boomerang distinguisher, as the
independence assumption and dominant trail assumption barely hold for boomerang attacks, which is
very different from the DC cases. Hence, the probability of a BC is not used for computing/approximat-
ing the probability of the boomerang distinguisher in this paper. BCs are used as a bridging step for
searching for quasi-BCs.
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Summing over (u2
0, u2

t ), (u2
0, u2

t ), . . . , (ur
0, ur

t ) results in

∑
(u1

0,u1
t ),...,(ur

0,ur
t )

r∏
i=1

BFi
ωi+1,ωi

=
∑

x1,...,xr

∆1
t ,...,∆r

t
ai→ai+1

r∏
i=1

2−n
∑
ui

0

(−1)(ui
0)>(xi+1⊕F(xi))

2−n
∑
ui

0

(−1)(ui
t)>(∆i+1

t ⊕F∆(∆i
t))



= 1
22n

∑
x1,...,xr

∆1
t ,...,∆r

t
ai→ai+1

r∏
i=1

δxi+1 (F(xi)) δ∆i+1
t

(F∆
i (∆i

t)).

F∆
i (∆i

t) means the value ∆i
t becomes after F, which can be the output difference of the

upper-biDDT, the lower-biDDT, or the quasi-BCT according to the round number. Writ-
ing the last part of the above equation into the probability leads to the result.

To end this section, we give the proposition about the quasi-BC whose absolute cor-
relation is equal to the BC’s probability (Equation 11). This proposition is analogous to
[BR22, Theorem 4.2]. Similarly to the quasi-differential framework, such quasi-BCs are
of specific interest, as they are useful to split the key space, which will be used in our
applications.

Proposition 2. For F = Fr◦· · ·◦Fm+1◦Fm◦· · ·◦F1 and a BC (a1, . . . , am, am+1, . . . , ar+1)
with probability p, it holds that:

(1) If (u1
0, a1, u1

2), . . . , (um
0 , am, um

2 ), (um+1
0 , um+1

1 , am+1), . . . , (ur+1
0 , ur+1

1 , ar+1) is a quasi-
BC with correlation (−1)bp, where b ∈ {0, 1}, then for any quasi-BC (v1

0 , a1, v1
2), . . . ,

(vm
0 , am, vm

2 ), (vm+1
0 , vm+1

1 , am+1), . . . , (vr+1
0 , vr+1

1 , ar+1) with correlation c, the cor-
relation of the quasi-BC (u1

0 + v1
0 , a1, u1

2 + v1
2), . . . , (um

0 + vm
0 , am, um

2 + vm
2 ), (um+1

0 +
vm+1

0 , um+1
1 + vm+1

1 , am+1), . . . , (ur+1
0 + vr+1

0 , ur+1
1 + vr+1

1 , ar+1) is (−1)bc.

(2) If the correlations of any number of quasi-BCs with differences (a1, . . . , am, am+1, . . . , ar+1)
of the BC and correlation ±p sum to zero, then the probability of the BC (a1, . . . , am, am+1,
. . . , ar+1) is zero.

Proof. For the first property, if the quasi-BC (u1
0, a1, u1

2), . . . , (um
0 , am, um

2 ), (um+1
0 , um+1

1 ,
am+1), . . . , (ur+1

0 , ur+1
1 , ar+1) with absolute correlation (−1)bp, b ∈ {0, 1}, then BFi

ωi+1,ωi
is

equal to (−1)bipi for 1 ≤ i ≤ r, where

pi =


BFi

(0,ai+1,0)(0,ai,0), 1 ≤ i ≤ m − 1,

BFi

(0,0,ai+1),(0,ai,0), i = m

BFi

(0,0,ai+1),(0,0,ai), m + 1 ≤ i ≤ r

That is, the expressions of the power of (−1) for all x and ∆1/∆2 satisfying the constraint
F(x ⊕ ∆1 ⊕ ∆2) = F(x) ⊕ F(x ⊕ ∆1 ⊕ ∆2) in the Equation 7, Equation 8 and Equation 9
have the same sign (−1)bi . Thus, the correlation of the i-th transition matrix BFi of
the quasi-BC (u1

0 + v1
0 , a1, u1

2 + v1
2), . . . , (um

0 + vm
0 , am, um

2 + vm
2 ), (um+1

0 + vm+1
0 , um+1

1 +
vm+1

1 , am+1), . . . , (ur+1
0 + vr+1

0 , ur+1
1 + vr+1

1 , ar+1) is multiplied by (−1)bi .
The first property implies that all quasi-BCs with absolute correlation p have a total

power of two and can be divided into subsets according to those quasi-BCs with correlation
−p, i.e., the probability of the BC is zero if there exists a quasi-BC with correlation −p.
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Figure 2: The BC in the related-key setting for a composite key-alternating cipher F =
Fr ◦ · · · ◦ Fm+1 ◦ Fm ◦ · · · ◦ F1.

3.4 Quasi-BC for Key-Alternating Ciphers
In this subsection, we consider the quasi-boomerang framework for the key-alternating
ciphers. As a convention, we assume that the round keys are independent variables, as
illustrated in Figure 2.

Single-key model. Let F = Fr ◦ · · · ◦ Fm+1 ◦ Fm ◦ Fm−1 ◦ · · · ◦ F1 be a key-alternating
cipher. In the single-key model, Fi = Fki

◦ Gi, where Fk(x) = x ⊕ k. From Equation 10
and Theorem 1(2), we can get

BF
ωr+1,ω1

=
∑

ω2,...,ωr

r∏
i=1

(−1)(ui
0)>kiBGi

ωi+1,ωi
, (13)

where ωi = (ui
0, ui

1, ui
2) for 1 ≤ i < r. Analogous to the quasi-differential, the round key

values only affect the sign of a quasi-BC’s correlation for key-alternating ciphers. In terms
of the BC’s probability, a corollary of Proposition 1 is obtained.

Corollary 1. Consider a key-alternating cipher F = Fr ◦· · ·◦Fm ◦· · ·◦F1, where Fi = Fki
◦

Gi and let Fm be the middle subcipher. The probability of a BC (a1, . . . , am, am+1, . . . , ar+1)
is

Pr
BC

[a1, a2, . . . , ar+1] =
∑

u2
0,...,ur

0
u2

2,...,um
2 ,um+1

1 ...,ur
1

r∏
i=1

(−1)(ui
0)>kiBFm

ωm+1,ωm

r∏
i=1

BGi
ωi+1,ωi (14)

where ωi = (ui
0, ai, ui

2) for 1 ≤ i ≤ m, and ωi = (ui
0, ui

1, ai) for m + 1 ≤ i ≤ r + 1, with
u1

0 = ur+1
0 = 0, ur+1

1 = 0, and u1
2 = 0.

Related-key setting. As illustrated in Figure 2, in related-key boomerang attacks,
Fi = Fki,∆ki,∇ki

◦ Gi, where

Fk,∆k,∇k : (x, ∆1, ∆2) → (x ⊕ k, ∆1 ⊕ ∆k, ∆2 ⊕ ∇k).

The upper quasi-biDDT for Fk,∆1k,∆2k can be calculated according to Equation 7 as

B
Fk,∆k,∇k

(v0,v1,v2),(u0,u1,u2) = 1
22n

∑
x∈Fn

2 ,∇k∈Fn
2 ,∆1=u1

u1⊕∆k=v1

(−1)u>
0 x⊕u>

2 ∆2⊕v>
0 (x⊕k)⊕v>

2 (∆2⊕∇k)

= (−1)v>
0 k⊕v>

2 ∇kδv1(u1 ⊕ ∆k)δv0(u0)δv2(u2).

(15)

Similarly, the lower quasi-biDDT for Fk,∆k,∇k can be calculated according to Equation 8
as

B
Fk,∆1k,∇k

(v0,v1,v2),(u0,u1,u2) = (−1)v>
0 k⊕v>

1 ∆kδv2(u2 ⊕ ∇k)δv0(u0)δv1(u1) (16)
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Let Fm be the middle subcipher. In the related-key setting, Equation 13 becomes to

BF
ωr+1,ω1

=
∑

ω2,...,ωr

(
m−1∏
i=1

(−1)(ui
0)>ki⊕(ui

2)>∇ki

r∏
i=m

(−1)(ui
0)>ki⊕(ui

1)>∆ki

)
r∏

i=1
BGi

ωi+1,ωi
,

(17)
where ωi = (ui

0, ui
1, ui

2). The round key values and round key differences only affect the
sign of a quasi-BC’s correlation.

Suppose that we have known the differences of round keys as ((∆k1, ∇k1), . . . , (∆kr, ∇kr)),
the probability of a related-key BC (a1, . . . , am, am+1, . . . , ar+1) under the key differences
also equals the sum of correlations of quasi-BCs.

Corollary 2. Consider a key-alternating cipher F = Fr ◦ · · · ◦ Fm ◦ · · · ◦ F1, where
Fi = Fki, ◦ Gi and let Fm be the middle subcipher. The probability of a related-key BC
(a1, . . . , am, am+1, . . . , ar+1) under the round key differences ((∆k1, ∇k1), . . . , (∆kr, ∇kr))
is

Pr
BC

[a1, a2, . . . , ar+1]

=
∑

u2
0,...,ur

0
u2

2,...,um
2 ,um+1

1 ...,ur
1

(
m−1∏
i=1

(−1)(ui
0)>ki⊕(ui

2)>∇ki

r∏
i=m

(−1)(ui
0)>ki⊕(ui

1)>∆ki

)
r∏

i=1
BGi

ωi+1,ωi
,

(18)
where ωi = (ui

0, ai, ui
2) for 1 ≤ i ≤ m, and ωi = (ui

0, ui
1, ai) for m + 1 ≤ i ≤ r + 1, with

u1
0 = ur+1

0 = 0, ur+1
1 = 0, and u1

2 = 0.

Revisiting the quasi-differential case [BDG25]. In [BDG25], Boura, Derbez, and
Germon extended the quasi-differential framework to the related-key setting. Instead of
applying the change-of-basis operation for T F ⊗ T F, they consider T F ⊗ T G by defining
a new function G that reflects the difference in the round keys (or in the key schedule
functions). Their method works well for the related-key differential. However, we argue
that such a method might not be the best way to extend the quasi-differential to the
related-key setting. For example, to study the related-key quasi-d-differential, we need to
define d new functions.

In the following, we revisit the transition matrix of the key-XOR operation in the
related-key setting when assuming the round keys are independent. Instead of defining a
new function G, we regard the key-XOR function Fk,∆k as

Fk,∆k : (x, ∆) → (x ⊕ k, ∆ ⊕ ∆k).

Thus, applying the quasi-differential transition matrix (Equation 4) to Fk,∆k, we get

D
Fk,∆k

(v0,v1),(u0,u1) = 2−n
∑

x∈Fn
2 ,x⊕k⊕x⊕u1⊕k⊕∆k=v1

(−1)u>
0 x⊕v>

0 (x⊕k)

= (−1)v>
0 kδv1(u1 ⊕ ∆k)2−n

∑
x∈Fn

2

(−1)(u>
0 ⊕v>

0 )x

= (−1)v>
0 kδv1(u1 ⊕ ∆k)δv0(u0).

The same expression was obtained in [BDG25].
Difference between Boura’s and our perspectives. The underlying ideas are the
same. However, the authors of [BDG25] defined a new function G to make an asymmetric
pair of functions (F, G), and apply the quasi-differential framework to (F, G). Our view-
point is that G is naturally derived from F when regarding the differential attack as a
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second-order attack. Formally, there is an operator that generates a second-order F from
the original F as

F → F×2 where F×2(x, ∆) = (F(x), F(x) ⊕ F(x ⊕ ∆)).

Then we apply the geometric approach to F×2.
Let D∆F(x) := F(x) ⊕ F(x ⊕ ∆) be the derivative of F in direction ∆ evaluated on x.

When studying the d-differential attack, we can generate a (d + 1)-th order F as

F → F×(d+1) where F×(d+1)(x, ∆1, . . . , ∆d) = (F(x), D∆1F(x), . . . , D∆d
F(x)).

Then the quasi-differential framework as well as the related-key theorems can be extended
to the d-differential case, by applying the quasi-d-differential basis [WSW+24] to F×(d+1).

4 Applications to Boomerang Distinguishers

Automatic Search Model. According to Definition 6 and Definition 7, for F = Fr ◦
· · · ◦ Fm+1 ◦ Fm ◦ · · · ◦ F1, a BC is a sequence of differences like

(a1, . . . , am, am+1, . . . , ar+1),

while a quasi-BC is a sequence of triples like

(ω1, . . . , ωm, ωm+1, . . . , ωr+1),

where ωi = (ui
0, ui

1, ui
2), for 1 ≤ i ≤ r + 1 and u1

0 = u1
2 = ur+1

0 = ur+1
1 = 0. Replacing

the corresponding differences of the quasi-BC from the given BC, we can search for the
sequence of the remaining two masks in each triple, which is like

((0, a1, 0), . . . , (um
0 , am, um

2 ), (um+1
0 , um+1

1 , am+1), . . . , (0, 0, ar+1)).

According to Proposition 1, the sum of all correlations of such quasi-BCs is exactly the
probability of the above BC. The SMT solver Boolector 4 is used for searching for the
quasi-BCs.

A real boomerang distinguisher, like one differential including multiple DCs, usually
contains multiple BCs with the fixed input (resp. output) difference a1 (resp. ar+1). In
the related-key setting, these BCs work under the fixed difference of the key. Thus, the
searching process for a boomerang distinguisher can be in two phases (BC’s search and
quasi-BC’s search):

BC’s search: Set ui
0 = ui

2 = 0 (resp. ui
0 = ui

1 = 0) for 1 ≤ i ≤ m (resp. m+1 ≤ i ≤ r +1),
we can search for all BCs. Each BC is a difference sequence (a1, . . . , am, am+1, . . . , ar+1).
In this case, the probability of a BC following the round-independence assumption can be
calculated by (note a1 and ar+1 are fixed differences)

B(0,am,0),(0,0,am+1)

m∏
i=1

B(0,ai,0),(0,ai+1,0)

r+1∏
i=m+1

B(0,0,ai),(0,0,a),

indeed equals to Equation 11.

Quasi-BC’s search: We divide the quasi-BC’s searching phase into two steps to make the
search easier.

4https://boolector.github.io

https://boolector.github.io


Chengcheng Chang
 

 

, Hosein Hadipour
 

 

, Kai Hu
 

 

, Muzhou Li
 

 

and Meiqin Wang
 

 

19

1. Key dependencies detection: For each given BC, set the mask of round-keys as all-
zero values, i.e., ui

0 = 0 for 1 ≤ i ≤ r + 1. If there is no other solution for the model,
the BC is key-independent, i.e., all key masks must be zero. Otherwise, the BC is
key-dependent, and we detect key dependencies. The boomerang distinguisher is
key-independent when all BCs are key-independent.

2. Quasi-BC’s search: For each given BC, if the BC is key-independent, we set ui
0 = 0

for 1 ≤ i ≤ r + 1 to search for all quasi-BCs. Otherwise, we search for all quasi-BCs
for each solution of (u1

0, . . . , ur+1
0 ) by step 1.

After the above two phases, we obtain all quasi-BCs, which can be used to compute the
probability of a boomerang distinguisher and to derive the key conditions.
Derive key dependencies. From all quasi-BCs we searched corresponding to all BCs
of a boomerang distinguisher, we can derive the key conditions and analyze the impact of
the keys. Suppose the key difference sequence of the related-key boomerang distinguisher
is (∆k1, . . . , ∆km−1, ∇km, . . . , ∇kr). According to Equation 15 and Equation 16, each
quasi-BC can suggest one bit key condition. For example, from the ℓ-th quasi-BC, we can
get a bit of the key condition:

Kℓ =
r−1⊕
i=1

(u(ℓ)
i+1)>ki ⊕

m−1⊕
i=1

(v(ℓ)
i+1)>∇ki ⊕

r−1⊕
i=m

(w(ℓ)
i+1)>∆ki. (19)

Note that multiple BCs belonging to a boomerang distinguisher may be incompatible
in a fixed-key space, just like the case of multiple DCs in a differential pointed out by
Beyne and Rijmen in [BR22]. Following [BR22], we study the derivation of the key’s
subspaces and the compatibility among these BCs in a fixed-key subspace.

Suppose we have n quasi-BCs and the rank of these key conditions (excluding the all-
zero mask quasi-BC) is n′, then the key space can be divided into 2n′ subspaces. For each
subspace, we can compute the probability of the target BCs of a boomerang by summing
the correlations of all its quasi-BCs in this fixed-key subspace.

We apply these techniques to boomerang distinguishers of SKINNY-64 and GIFT-64 to
search for quasi-BCs, derive the key dependencies, and compute the probability in the
fixed-key model. In Subsection 4.1, we provide four examples of SKINNY-64. Following
the sandwich framework, in Subsection 4.2, we propose a divide-and-conquer approach
for boomerangs whose probabilities are too small to experiment and analyze. In this
framework, a boomerang distinguisher can be divided into three parts: F0, F1, and F2,
for each part, we can apply the same techniques. We provide 2/1 examples of SKINNY-
64/GIFT-64.

4.1 Applications to Full Boomerang Distinguishers
This subsection provides four examples of SKINNY-64, including two probability-1 and
two probability-2−4 boomerang distinguishers, which are generated by the method of
Hadipour, Bagheri, and Song’s paper [HBS21]. For each boomerang distinguisher, we
conduct the two search phases to obtain all quasi-BCs. After that, from these quasi-
BCs, we derive the key conditions and compute the probability in the fixed-key model.
The probabilities computed from the quasi-boomerang framework meet the experimental
probabilities well, which shows the correctness of our theory.
Specification of SKINNY. SKINNY is a tweakable block cipher proposed by Beierle et al.
[BJK+16], and has two versions by the block size n = 64, 128. Let t denote the tweakey size
and c denote the cell size, the SKINNY family, denoted as SKINNY-n-t, has six main versions:
for each n ∈ {64, 128}, the tweakey size has three versions t = n, t = 2n, and t = 3n.

https://orcid.org/0009-0006-8528-7179
https://orcid.org/0000-0002-3820-3765
https://orcid.org/0000-0003-3552-7200
https://orcid.org/0009-0000-0260-9512
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Figure 3: 11-round boomerang distinguisher for SKINNY-64-128 from the tool in [HBS21].

The round function contains five operations: SubCell, AddConstants, AddRoundTweakey,
ShiftRows, and MixColumns. The tweakey schedule is linear, containing cell shuffle and
two linear feedback shift registers. Let TKm[i] denotes the i-th bit of TKm, m ∈ {1, 2, 3}.

4.1.1 Probability-1 11-Round Boomerang Distinguisher of SKINNY-64-128

At FSE 2023, Hadipour et al. [HNE22] presented a deterministic boomerang distinguisher
for 11 rounds of SKINNY-64-128 (see Figure 3). This distinguisher was deliberately con-
structed using two differential trails that should be impossible according to the verification
tool in [PT22], due to the dependency issue within the individual underlying differential
trails. The goal was to demonstrate that the tool in [PT22] is limited to ordinary differen-
tial trails and cannot be used to verify boomerang distinguishers. However, the proposed
boomerang distinguisher by Hadipour et al. was only verified experimentally for a limited
number of random keys, and the authors posed the development of an analytical method
for verifying boomerang distinguishers as an open question. Here, we address this question
using our quasi-boomerang framework.

Figure 3 illustrates this 11-round boomerang distinguisher for SKINNY-64-128. The
squares marked by and indicate active cells within deterministic difference prop-
agation in the forward (upper) and backward (lower) trails, respectively. As shown in
Figure 3, there is no overlap between the upper and lower deterministic trails through the
S-box layers. Therefore, the probability of the boomerang distinguisher in Figure 3 is one,
due to the cell-wise switch (ladder switch). However, one differential characteristic inside
this boomerang has no right pairs according to the tools in [PT22].

To apply Proposition 1 to compute its probability, we select the S-box layer at the
6th round (i.e., the transformation X5 → Y5 in Figure 3) as the middle subcipher F1.
This allows the boomerang distinguisher to combine a 5-round upper differential with a
6-round lower differential, resulting in fewer active S-boxes.

Quasi-BC’s search. In the first phase, we search for BCs using the fixed input difference
0x0000000000000000, output difference 0x00002f0000000000, and the key differences of



Chengcheng Chang
 

 

, Hosein Hadipour
 

 

, Kai Hu
 

 

, Muzhou Li
 

 

and Meiqin Wang
 

 

21

the upper and lower differential

∆TK = ∆TK1||∆TK2 = 0x00000d0000000000||0x0000060000000000,

∇TK = ∇TK1||∇TK2 = 0x00000000e00000a0||0x0000000050000090,
(20)

and find 384 BCs. Among these, there are 128 BCs with probability 2−16 and 256 BCs
with probability 2−18.

In the second phase, for step 1, we find that all the 384 BCs are key-independent.
After step 2, the quasi-BCs we found are as follows: each of the 128 BCs with probability
2−16 has 256 quasi-BCs with correlation 2−16; each of the 256 BCs with probability 2−18

has 512 quasi-BCs with correlation 2−18.
Key derivation and probability Calculation. According to Equation 19, we derive
the conditions of the key difference from all 163840 quasi-BCs and get 8-bit conditions of
key difference are as follows

∇T K1[44] ⊕ ∇T K2[44] ⊕ ∇T K2[45] = C1,

∇T K1[45] ⊕ ∇T K2[45] ⊕ ∇T K2[46] = C2,

∇T K1[46] ⊕ ∇T K2[46] ⊕ ∇T K2[47] = C3,

∇T K1[47] ⊕ ∇T K2[44] = C4,

∇T K1[60] ⊕ ∇T K2[60] ⊕ ∇T K2[61] = C5,

∇T K1[61] ⊕ ∇T K2[61] ⊕ ∇T K2[62] = C6,

∇T K1[62] ⊕ ∇T K2[62] ⊕ ∇T K2[63] = C7,

∇T K1[63] ⊕ ∇T K2[60] = C8.
(21)

The conditions of the key difference should always be satisfied by the boomerang
distinguisher, i.e., (C1, . . . , C8) can be computed by the fixed key difference of the upper
and lower differential, i.e., ∆TK and ∇TK in Equation 20. Hence,

(C1, C2, C3, C4, C5, C6, C7, C8) = (0, 0, 0, 0, 0, 0, 0, 0). (22)

Thus, the probability of the 11-round boomerang distinguisher in the condition (Equa-
tion 22) is 1 (128 × 256 × 2−16 + 256 × 512 × 2−18 = 1), according to Proposition 1 and
Corollary 2. The experimental probability is indeed 1 among all keys we tried.

4.1.2 Probability-2−4 12-Round Boomerang Distinguisher of SKINNY-64-128

The 12-round boomerang distinguisher of SKINNY-64-128 in Figure 4 has a probability of
2−4. This probability can be derived either theoretically, using the BCT framework, or
empirically. To estimate it theoretically based on the sandwich and BCT frameworks, we
decompose the distinguisher as F2 ◦ F1 ◦ F0, where F0 corresponds to the initial rounds,
F1 covers the remaining 11 rounds, and F2 is the identity function. The probability of
the differential transition over F0 is p = DDT[0x4][0x2]/24 = 2−2. The boomerang switch
probability over F1 is r = 1, since there is no overlap between the two differential trails.
The differential probability over F2 is also 1, as F2 is the identity function, i.e., q = 1.
Therefore, the overall probability is given by p2q2r = 2−4. Note that this probability
assumes a uniform random key rather than a fixed key.

Now we compute the fixed-key probability using the quasi-boomerang framework. We
select the Sbox layer at the 7th round (i.e., the transformation X6 → Y6 in Figure 4) as
the middle subcipher F1, so that the 12-round boomerang distinguisher is combined with
a 6-round upper differential and a 6-round lower differential.

Quasi-BC’s search. In the first phase, we search for BCs using the fixed input difference
0x0000000000000800, output difference 0x000000b000000000, and key differences of the
upper and lower differentials are

∆TK = ∆TK1||∆TK2 = 0x000000000000000c||0x000000000000000e,

∇TK = ∇TK1||∇TK2 = 0x0000009000000000||0x000000c000000000.
(23)
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Figure 4: 12-Round boomerang distinguisher for SKINNY-64-128 from the tool in [HBS21].

We find 48 BCs, including 16 BCs with probability 2−14 and 32 BCs with probability
2−16.

In the second phase, we find that the 48 BCs are all key-independent in step 1. The
quasi-BCs we found in step 2 are as follows: each of the 16 BCs with probability 2−14

has 32 quasi-BCs with correlation 2−14; each of the 32 BCs with probability 2−16 has 64
quasi-BCs with correlation 2−16.

Key derivation and probability calculation. The 4-bit conditions of the key differ-
ence derived from all 2560 quasi-BCs are:

{
∇T K1[28] ⊕ ∇T K2[28] ⊕ ∇T K2[29] = C1,

∇T K1[29] ⊕ ∇T K2[29] ⊕ ∇T K2[30] = C2,

∇T K1[30] ⊕ ∇T K2[30] ⊕ ∇T K2[31] = C3,

∇T K1[31] ⊕ ∇T K2[28] = C4.
(24)

By Equation 23, we get (C1, C2, C3, C4) = (0, 0, 0, 0). Thus, in this fixed condition,
the probability of the 12-round boomerang distinguisher of SKINNY-64-128 is 2−4 (16 ×
32 × 2−14 + 32 × 64 × 2−16 = 2−4), which is consistent with the experimental probability.

4.1.3 Probability-1 15-Round Boomerang Distinguisher of SKINNY-64-192

For the 15-round boomerang distinguisher of SKINNY-64-192 in Figure 5, which has a
probability of 1 as the upper and lower differential trails have no overlaps, we select the
S-box layer at the 8th round (i.e., the transformation X7 → Y7 in Figure 5) as the middle
subcipher F1. Then this distinguisher with a 7-round upper differential and an 8-round
lower differential.

Quasi-BC’s search. In the first phase, we search for BCs using the fixed input difference
0x0000000000000000, output difference 0x0001000000010001, and the key differences of
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Figure 5: 15-Round boomerang distinguisher for SKINNY-64-192 from the tool in [HBS21].

the upper and lower differentials are

∆TK = ∆TK1||∆TK2||∆TK3
= 0x0100000000000000||0x0700000000000000||0x0c00000000000000,

∇TK = ∇TK1||∇TK2||∇TK3
= 0x0000000000000500||0x0000000000000800||0x0000000000000700.

(25)

We find 36 BCs, including 4 BCs with probability 2−8, 16 BCs with probability 2−10, and
16 BCs with probability 2−12.

In the second phase, for step 1, we find that all 36 BCs are independent of round-keys.
After step 2, the quasi-BCs we found are: each of the 4 BCs with probability 2−8 has 16
quasi-BCs with correlation 2−8; each of the 16 BCs with probability 2−10 has 32 quasi-
BCs with correlation 2−10; each of the 16 BCs with probability 2−12 has 64 quasi-BCs
with correlation 2−12.
Key derivation and probability calculation. We get 4-bit conditions of the key
difference derived from all 1600 quasi-BCs:

∇T K1[40] ⊕ ∇T K2[40] ⊕ ∇T K2[42] ⊕ ∇T K2[43] ⊕ ∇T K3[40] ⊕ ∇T K3[43] = C1,

∇T K1[41] ⊕ ∇T K2[40] ⊕ ∇T K2[41] ⊕ ∇T K3[40] ⊕ ∇T K3[41] ⊕ ∇T K3[43] = C2,

∇T K1[42] ⊕ ∇T K2[41] ⊕ ∇T K2[42] ⊕ ∇T K3[40] ⊕ ∇T K3[41] ⊕ ∇T K3[42] ⊕ ∇T K3[43] = C3,

∇T K1[43] ⊕ ∇T K2[42] ⊕ ∇T K2[43] ⊕ ∇T K3[40] ⊕ ∇T K3[41] ⊕ ∇T K3[42] = C4.
(26)
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Figure 6: 16-Round boomerang distinguisher for SKINNY-64-192 from the tool in [HBS21].

By Equation 25, we get that (C1, C2, C3, C4) = (0, 0, 0, 0). Thus, the probability of
the 15-round boomerang distinguisher of SKINNY-64-192 is 1 (4 × 16 × 2−8 + 16 × 32 ×
2−10 + 16 × 64 × 2−12 = 1) in the fixed condition. The experimental probability is indeed
1 among all keys we tried.

4.1.4 Probability-2−4 16-Round Boomerang Distinguisher of SKINNY-64-192

The 16-round boomerang distinguisher of SKINNY-64-192 in Figure 6 has a probability
of 2−4. This probability can be derived either theoretically, using the BCT framework,
or empirically. To estimate it theoretically with the BCT framework, we decompose the
distinguisher as F2 ◦F1 ◦F0, where F0 corresponds to the initial rounds, F1 (the boomerang
switch) includes the remaining 15 rounds, and F2 is the identity function. The probability
of the differential transition over F0 is p = DDT[0x8][0x2]/24 = 2−2. The boomerang
switch probability over F1 is r = 1, as there is no overlap between the two differential
trails. The differential probability over F2 is also q = 1, since F2 is the identity function.
Therefore, the overall probability, based on the sandwich and BCT frameworks, is given
by p2q2r = 2−4 by assuming the random key is uniform rather than fixed.

Now, to compute the probability in the fixed key with quasi-boomerang framework,
we select the S-box layer at the 9th round (i.e., the transformation X8 → Y8 in Figure 6)
as the middle subcipher F1, so that the 16-round boomerang is combined with an 8-round
upper differential and an 8-round lower differential.

Quasi-BC’s search. In the first phase, we search for BCs using the fixed input difference
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0x0000000000000800, output difference 0x000000b000000000, and the key differences of
the upper and lower differentials

∆TK = ∆TK1||∆TK2||∆TK3
= 0x0000000000000700||0x0000000000000600||0x0000000000000500,

∇TK = ∇TK1||∇TK2||∇TK3
= 0x0004000000000000||0x000a000000000000||0x0006000000000000.

(27)

We find 36 BCs, including 4 BCs with probability 2−12, 16 BCs with probability 2−14,
and 16 BCs with probability 2−16.

In the second phase, we find that the 36 BCs are all key-independent in step 1. The
quasi-BCs we found in step 2 are as follows: each of the 4 BCs with probability 2−12 has
16 quasi-BCs with correlation 2−12; each of the 16 BCs with probability 2−14 has 32 quasi-
BCs with correlation 2−14; each of the 16 BCs with probability 2−16 has 64 quasi-BCs
with correlation 2−16.
Key derivation and probability calculation. The 4-bit conditions of the key differ-
ence derived from all 1600 quasi-BCs are that

∇T K1[24] ⊕ ∇T K2[24] ⊕ ∇T K2[26] ⊕ ∇T K2[27] ⊕ ∇T K3[24] ⊕ ∇T K3[27] = C1,

∇T K1[25] ⊕ ∇T K2[24] ⊕ ∇T K2[25] ⊕ ∇T K3[24] ⊕ ∇T K3[25] ⊕ ∇T K3[27] = C2,

∇T K1[26] ⊕ ∇T K2[25] ⊕ ∇T K2[26] ⊕ ∇T K3[24] ⊕ ∇T K3[25] ⊕ ∇T K3[26] ⊕ ∇T K3[27] = C3,

∇T K1[27] ⊕ ∇T K2[26] ⊕ ∇T K2[27] ⊕ ∇T K3[24] ⊕ ∇T K3[25] ⊕ ∇T K3[26] = C4.
(28)

By Equation 27, we get (C1, C2, C3, C4) = (0, 0, 0, 0). Thus, according to the Propo-
sition 1 and Corollary 2, the probability of the 16-round boomerang distinguisher of
SKINNY-64-192 is 2−4 (4 × 16 × 2−12 + 16 × 32 × 2−14 + 16 × 64 × 2−16 = 2−4) in above
fixed condition, which is consistent with the experimental probability among all keys we
tried.

4.2 Applications to Joint Boomerang Distinguishers
If the boomerang (or more generally, sandwich) distinguisher is short enough or its prob-
ability is sufficiently large, we can verify it either experimentally or analytically using the
mix-basis geometric approach proposed in Section 3, which also derives the conditions on
the sub-keys required for the distinguisher to hold.

However, this verification may become computationally difficult when the overall prob-
ability is too small to be handled within our computational limits, especially when the
distinguisher spans many rounds. This is often the case for the best attacks in terms
of round count. To address this, we propose a divide-and-conquer heuristic approach to
analyze such sandwich distinguishers and derive supporting key conditions.

As shown in Figure 7, assume that, following the sandwich framework, we split the
block cipher into three parts: F0 (r0-round), F1 (r1-round), and F1 (r2-round), such
that Pr(∆i

F0⇌ ∆m) = p, Pr(∆m

F1⇌ ∇m) = r, and Pr(∇m

F2⇌ ∇o) = q, with the total
probability given by pt = pqr. While verifying the entire distinguisher analytically or
experimentally may be computationally challenging, verifying and deriving key conditions
for the individual components F0, F1, and F2 can be significantly easier, for example, when
pt is small, but its components p, r, and q are large enough.

Therefore, our idea is to analyze each component of the sandwich distinguisher sepa-
rately, derive the constraints on the sub-keys individually, and then combine these con-
straints to obtain necessary conditions on the keys for the entire distinguisher to hold. To
achieve this, we trade a bit of accuracy for higher efficiency by treating each component in-
dependently. In the quasi-boomerang framework, the independence is achieved by setting
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Figure 7: Satisfying keys for three differential transitions in a sandwich distinguisher.

ur0+1
0 = ur0+1

2 = ur0+r1+1
0 = ur0+r1+1

1 = 0. Note that although we handle the components
independently, we take into account all dependencies within each component, as well as
the dependencies between the two trails inside each part. Additionally, we consider the
key schedule when merging the constraints on the sub-keys from different components, in
order to translate them into conditions on the master key.

We begin with an overview of our approach, followed by several examples. Given a
boomerang distinguisher discovered by previous tools, such as the one in [HBS21], we fix
only the differences at the junction points of the three components, namely ∆i, ∆m, ∇m,
and ∇o (see Figure 7), and allow all intermediate differences to take arbitrary possible
values in order to capture the clustering effect.

Next, for each component, we compute all quasi-BCs with input difference ∆i (resp.
∆m, ∇m) and output difference ∆m (resp. ∇m, ∇o) of part F0 (resp. F1, F2), and extract
the constraints on the sub-keys induced by the boomerang transitions through F0 (resp.
F1, F2). As illustrated in Figure 7, let A, B and C denote the sets of keys that satisfy the
boomerang transitions over F0, F1 and F2, respectively.

Finally, we merge the constraints from each component to derive the overall key condi-
tions required for the full distinguisher to hold. As illustrated in Figure 7, the intersection
A ∩ B ∩ C represents the set of keys that satisfy the entire distinguisher.

We provide three examples of SKINNY-64 and GIFT-64 following this sandwich frame-
work in this subsection. Each example is divided into three parts: F0 (r0-round), F1
(r1-round), and F2 (r2-round). A BC is a difference sequence of F0 (resp. F1, F2) like

(a1, . . . , ar0+1)(resp. (ar0+1, . . . , am, am+1, . . . , ar0+r1+1), (ar0+r1+1, . . . , ar0+r1+r2+1)),

while quasi-BCs corresponding to the given BC sequence of parts F0, F1, and F2 are triple-
sequences as follows, respectively:

((0, a1, 0), (u2
0, a2, u2

2), . . . , (ur0
0 , ar0 , ur0

2 ), (0, ar0+1, 0)),
((0, ar0+1, 0), . . . , (um

0 , am, um
2 ), (um+1

0 , um+1
1 , am+1), (0, 0, ar0+r1+1)),

((0, 0, ar0+r1+1), (ur0+r1+2
0 , ur0+r1+2

1 , ar0+r1+2), . . . , (0, 0, ar0+r1+r2+1)).

For each part, we search for quasi-BCs in two phases and derive the sub-key conditions,
using the method at the beginning of Section 4. Next, from all quasi-BCs, we can get the
interaction between the conditions of the three parts by the key schedule and compute
the probability of the joint boomerang distinguisher in the fixed-key model. We also
implement the experiments for each example. The results of the analysis and experiment
are listed in Table 3.
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Table 3: Results of the joint boomerang distinguishers of SKINNY-64 and GIFT-64.
p/r/q and pe/re/qe denote the calculated probability and the experimental probability
of F0/F1/F2, respectively.

Algorithm Part Round ∆i → ∆m / ∆m → ∇m / ∇m → ∇o p/r/q #Key pe/re/qe

SKINNY-64-128
[LGS17, Table 12]

F0 7 0x1000000000000000 → 0x0010001000000010 2−10.42 2128 2−10.43

F1 2 0x0010001000000010 → 0x0300000003000000 2−2 2128 2−2.00

F2 8 0x0300000003000000 → 0xd0060000d0068006
0 2126 0

2−31 2126 2−30.79

2−33 2127 2−32.98

SKINNY-64-192
[LGS17, Table 14]

F0 10 0x0100100000010020 → 0x0040004000000040 2−26.67 2192 2−26.78

F1 2 0x0040004000000040 → 0x00b0000000000000 2−5.09 2192 2−5.10

F2 10 0x00b0000000000000 → 0x2020250000202022 2−22.03 2192 2−22.00

GIFT-64
[CWZ19, Table 5]

F0 9 0x000000a000006000 → 0x0100000001020200 2−28 2128 2−28.02

F1 2 0x0100000001020200 → 0x0a00000000000000 2−4.19 2128 2−3.43

F2 8 0x0a00000000000000 → 0x0800000000000010† 2−22 2128 2−21.94

† The output difference in [CWZ19] was written as 0x0800000000000000. However, we find it should be
0x0800000000000010. It should be a typo in [CWZ19].

4.2.1 17-Round Boomerang Distinguisher of SKINNY-64-128

In [LGS17, Table 12], Liu et al. proposed a 17-round boomerang distinguisher for SKINNY-
64-128, combining an 8-round upper DC with probability 2−12 and a 9-round lower DC
with probability 2−20. We regenerated this distinguisher within the sandwich framework
using the tool from [HBS21], with the 17 rounds decomposed as 7 + 2 + 8 (see Figure 8).
In Figure 8, the cells marked by and indicate the active cells in the propagation of
differences forward (upper trail) and backward (lower trail) through F0, F1 and F2. The
input/output difference and result for each part are listed in Table 3. The key differences
of the upper and the lower are:

∆TK = ∆TK1||∆TK2 = 0x0000000600000000||0x0000000900000000,

∇TK = ∇TK1||∇TK2 = 0xe00000000000c000||0x600000000000a000.
(29)

Search for quasi-BCs. In the BC’s search phase, we find 3 BCs with probability 2−12

of F0, 4 BCs with probability 2−36 of F2, and 64 BCs with probability 2−14 of F1. For
part F1, the Sbox layer at the 2nd round (the 9th round in the 17-round) is selected as
the connection point.

In the quasi-BC’s search phase, for step 1, we find 3 (resp. 64) BCs of F0 (resp. F1)
are all key-independent, and detect key dependencies for 4 BCs of F2 (2/2 of 4 BCs have
4/2 solutions of (ur0+r1+1

0 , . . . , ur0+r1+r2+1
0 ), respectively). After step 2, the quasi-BCs we

found are: each of the 3 (resp. 64) BCs of F0 (resp. F1) has 1 (resp. 64) quasi-BC(s) with
correlation 2−12 (resp. 2−14); each of the 2 (resp. 2) of the 4 BCs of F2 has 8 (resp. 4)
quasi-BCs with correlation 2−36 and 8 (resp. 4) quasi-BCs with correlation −2−36. That
is, the numbers of the quasi-BCs for F0, F1 and F2 are 3, 4096, and 40, respectively.
Derive key conditions. From all quasi-BCs for each part, we get 3-bit conditions of F1:{

∆TK1[56] ⊕ ∆TK2[56] ⊕ ∆TK2[58] ⊕ ∆TK2[59] = C1,

∆TK1[58] ⊕ ∆TK2[57] ⊕ ∆TK2[58] = C2, ∆TK1[59] ⊕ ∆TK2[58] ⊕ ∆TK2[59] = C3.

(30)
and 4-bit conditions of F2:

{
TK1[16] ⊕ TK2[17] ⊕ TK2[19] = C4,

TK1[18] ⊕ TK2[16] ⊕ TK2[17] = C5,

∇TK1[16] ⊕ ∇TK2[17] ⊕ ∇TK2[19] = C6,

∇TK1[18] ⊕ ∇TK2[16] ⊕ ∇TK2[17] = C7.

(31)
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Figure 8: 17-round boomerang distinguisher for SKINNY-64-128 from [LGS17], regenerated
by the tool from [HBS21].

By Equation 29, (C1, C2, C6, C7) = (0, 0, 0, 0). In this fixed condition, the probability of
F0 (resp. F1) is 2−10.42, i.e., 3 × 2−12 (resp. 2−2, i.e., 64 × 64 × 2−14). According to
Proposition 2, the probability of F2 is 0/2−31/2−33/2−33 when (C4, C5) = (0, 0)/(1, 0)/(0,
1)/(1, 1), respectively.

Experimental verification. Following the sandwich framework, we get the probabilities
p, q and r are 2−10.42, 2−2, and 0(for 1

4 keys)/2−31(for 1
4 keys)/2−33(for 1

2 keys), respec-
tively. Thus, the probability pqr of the 17-round boomerang distinguisher of SKINNY-64-
128 is zero for 1

4 keys, 2−43.42 for 1
4 keys, and 2−45.42 for 1

2 keys. We implement the
experiments to verify the probability of the three parts using the same master-key, the
results are listed in Table 3.

We also provide a comparison of the F1 part in Table 4. The probability of the F1 part
is 2−8.42 estimated by Liu et al. [LGS17], 2−2 by Cid et al. [CHP+18], and 2−2 by us.

4.2.2 22-Round Boomerang Distinguisher of SKINNY-64-192

Liu et al. proposed a 22-round boomerang distinguisher of SKINNY-64-192, combining an
11-round upper DC with probability 2−20 and an 11-round lower DC with probability
2−20 in [LGS17, Table 14]. We divide this 22-round boomerang distinguisher into F0 (10-
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Table 4: Comparison of the F1 (middle two round) part of boomerang distinguishers of
SKINNY-64 and GIFT-64.

+

Probabilities SKINNY-64-128 SKINNY-64-192 GIFT-64

(pq)2 including clustering effect 2−8.42 [LGS17] 2−16.30 [LGS17] -

Probability obtained by BCT 2−4 [CHP+18] 2−5† 1 [CWZ19]

Probability obtained by BCT and values 2−2 [CHP+18] 2−5.31 [CHP+18] -

Probability obtained by BDT - - 2−18 [JZZD20]

Our calculated probability 2−2 2−5.09 2−4.19

Our experimental probability 2−2.00 2−5.10 2−3.43

† The probability is calculated following [CHP+18].

round), F1 (2-round), and F2 (10-round), respectively. The input/output difference and
results for each part are listed in Table 3. The key differences of the upper and the lower
are:

∆TK = ∆TK1||∆TK2||∆TK3
= 0x00000000000000a0||0x0000000000000020||0x00000000000000d0,

∇TK = ∇TK1||∇TK2||∇TK3
= 0x00000a0000000000||0x0000070000000000||0x00000e0000000000.

(32)

Search for quasi-BCs. In the BC’s search phase, we find that 10 BCs (1/5/4 with
probability 2−28/2−30/2−32, respectively) of F0, 36 BCs (4/6/10/12/4 with probability
2−16/2−17/2−18/2−19/2−20, respectively) of F1, and 16 BCs (2/6/6/2 with probability
2−24/2−26/2−28/2−30, respectively) of F2. The F1 part selects the Sbox layer at the 2nd
round (the 12th round in the 22-round) as the connection point.

In the quasi-BC’s search phase, we find 10 (resp. 36, 16) BCs of F0 (resp. F1, F2)
are all key-independent in step 1. After step 2, we find that each of the 10 (resp.
16) BCs of F0 (resp. F2) only has one quasi-BC with all-zero masks and 7680 quasi-
BCs (512/768/2304/3072 with correlation 2−16/2−17/2−18/2−19/2−20, respectively) cor-
responding to the 36 BCs of F1.

Derive key conditions. From all quasi-BCs for each part, we get 3-bit conditions of
the key difference of F1:


∆TK1[16] ⊕ ∆TK2[17] ⊕ ∆TK2[19] ⊕ ∆TK3[16] ⊕ ∆TK3[17] ⊕ ∆TK3[19] = C1,

∆TK1[18] ⊕ ∆TK2[16] ⊕ ∆TK2[17] ⊕ ∆TK3[16] ⊕ ∆TK3[17] ⊕ ∆TK3[18] = C2,

∆TK1[19] ⊕ ∆TK2[17] ⊕ ∆TK2[18] ⊕ ∆TK3[17] ⊕ ∆TK3[8] ⊕ ∆TK3[19] = C3.
(33)

By Equation 32, (C1, C2, C3) = (0, 0, 0). Thus, the probability of F0 (resp. F1, F2) is
2−26.67 (resp. 2−5.09, 2−22.03) in this fixed condition.

Experimental verification. Following the sandwich framework, we get the probabilities
p, q and r are 2−26.67, 2−5.09, and 2−22.03, respectively. Thus, the probability pqr of the 22-
round boomerang distinguisher of SKINNY-64-192 is 2−53.79. In addition, the experiments
are conducted to verify the probability of the three parts using the same master-key, and
the results are listed in Table 3. The comparison of results of F1 is listed in Table 4.
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4.2.3 19-Round Boomerang Distinguisher of GIFT-64

Specification of GIFT. The block cipher GIFT, proposed by Banik et al. [BPP+17] at
CHES 2017, includes two variants: GIFT-64 and GIFT-128, both utilizing an SPN struc-
ture with a 128-bit key. The GIFT-64 processes 64-bit inputs while the GIFT-128 processes
128-bit inputs, corresponding to 28 and 40 rounds, respectively. Each round function
contains four operations: SubCells (4-bit S-box), PermBits, AddRoundConstants, and
AddRoundKey. Additionally, the key schedule initializes a 128-bit master key divided into
16-bit segments, extracting round keys differently for each version. Let kj

i denotes the
j-th bit of the i-th segment (0 ≤ i ≤ 7, 0 ≤ j ≤ 15) of the master key and RKi

r denotes
the i-th bit of the r-th round key (0 ≤ i ≤ 31 for GIFT-64 and 0 ≤ i ≤ 63 for GIFT-128).

Chen et al. presented a 23-round attack on GIFT-64 in [CWZ19] utilizing a 19-round
boomerang distinguisher [CWZ19, Table 5]. The probability of the middle two rounds
(round 10 to 11) is one according to the BCT. Zhao et al. [ZDM+20] proposed a 24-round
attack using the same 19-round distinguisher. In [JZZD20], Ji et al. pointed out that the
probability of the middle two rounds of the 19-round boomerang is only 2−18 calculated
by BDT [WP19], and considered the 23-round attack in [CWZ19] and the 24-round attack
in [ZDM+20] are invalid.

To re-estimate the probability, we divide this 19-round boomerang distinguisher into
F0 (9-round), F1 (2-round), and F2 (8-round), respectively. The input/output differences
and results are listed in Table 3. The key differences of the upper and lower are:

∆k = 0x00000000000000020000000001004000,

∇k = 0x00000008000000020000010000000000.
(34)

Search for quasi-BCs. In the BC’s search phase, we find 1 BC with probability 2−28 of
F0, 1 BC with probability 2−22 of F2. We find 576 BCs of F1 by selecting the Sbox layer at
the 2nd round (the 11th round in the 19-round) as the connection point, including 32 BCs
with probability 2−20, 128 BCs with probability 2−22, 32 BCs with probability 2−23, 128
BCs with probability 2−24, 128 BCs with probability 2−25, and 128 BCs with probability
2−27.

In the quasi-BC’s search phase, we find that these BCs are all key-independent in step
1. In step 2, each of the BCs of F0 and F2 only has one quasi-BC with all-zero masks, 576
BCs of F1 have 819200 quasi-BCs.
Derive key conditions. The 8-bit conditions of the key difference obtained from all
quasi-BCs of F1 are:

∆k0
2 = C1, ∆k1

2 = C2, ∆k3
2 = C3, ∆k9

2 = C4, ∆k0
3 = C5, ∆k1

3 = C6, ∆k3
3 = C7, ∆k9

3 = C8.
(35)

By Equation 34, we get

(C1, C2, C3, C4, C5, C6, C7, C8) = (0, 0, 0, 0, 0, 0, 0, 0). (36)

Thus, the probability of F0 (resp. F1, F2) is 2−28 (resp. 2−4.19, 2−22) in this fixed condition.
Experimental verification. The probabilities p, q and r are 2−28, 2−4.19, and 2−22,
respectively, according to the sandwich framework. Thus, the probability pqr of the 19-
round boomerang distinguisher of GIFT-64 is 2−54.19 < 2−64, which is indeed valid. The
experimental results of the three parts using the same master-key are listed in Table 3.

The comparison of results of F1 is listed in Table 4. In addition, from the perspective
of 3-differential, Wang et al. [WSW+24] searched for quasi-3-DCs corresponding to partial
(optimal) 3-DCs of F1 and claimed all optimal 3-DCs are impossible. Indeed, the sum
of the probabilities of all optimal 3-DCs is about 2−25.83, which has little impact on the
probability of F1.
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Figure 9: The key-alternating cipher.

5 Quasi-Boomerang Framework Considering Keyschedule

In Subsection 3.4, we studied the quasi-boomerang framework for key-alternating ciphers,
assuming that all round keys are independent variables. However, the quasi-boomerang
framework also works when taking the keyschedule into consideration. In this section,
we describe the theories of it. In addition, we revisit Boura, Derbez, and Germon’s
recent paper [BDG25] that extended the quasi-differential to the related-key differential
attacks. Interestingly, when applying similar ideas to the quasi-differential framework,
some formulas in [BDG25] can be obtained in an easier way.

5.1 Quasi-Boomerang Case

A key-alternating cipher consists of two kinds of operations; one is the public component,
including functions in the encryption and key schedule, and the other is the key-XOR, as
shown in Figure 9. In the following, we take the related-key setting as an instance; the
single-key setting case can be deduced by forcing the difference in the key schedule to be
zero. The public component is a function consisting of two parallel functions Fx and Fk,
i.e., F = Fx||Fk.

Suppose the quasi-boomerang transition matrices of Fx and Fk are BFx and BFk ,
respectively. According to Theorem 1(1), the quasi-boomerang transition matrix of F is
then

BF = BFx ⊗ BFk .

The coordinate of BF is

BF
(vx

0 ||vk
0 ,vx

1 ||vk
1 ,vx

2 ||vk
2 ),(ux

0 ||uk
0 ,ux

1 ||uk
1 ,ux

2 ||uk
2 ) = BFx

(vx
0 ,vx

1 ,vx
2 ),(ux

0 ,ux
1 ,ux

2 )B
Fk

(vk
0 ,vk

1 ,vk
2 ),(uk

0 ,uk
1 ,uk

2 ).

Hence, the upper and lower quasi-biDDTs and quasi-BCT of F can be constructed upon
those of Fx and Fk.

Suppose the size of the key schedule is also n (for other sizes, similar theories can be
obtained). The key-XOR component is a function F : Fn

2 × Fn
2 → Fn

2 × Fn
2 as

F : (x||k, ∆x
1 ||∆k

1 , ∆x
2 ||∆k

2) → (x ⊕ k||k, ∆x
1 ⊕ ∆k

1 ||∆k
1 , ∆x

2 ⊕ ∆k
2 ||∆k

2).
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Applying Equation 7 to this F, we get the upper quasi-biDDT of the key-XOR as

BF
(vx

0 ||vk
0 ,vx

1 ||vk
1 ,vx

2 ||vk
2 ),(ux

0 ||uk
0 ,ux

1 ||uk
1 ,ux

2 ||uk
2 )

= 1
24n

∑
x||k∈F2n

2 ,∆x
2 ||∆k

2 ∈F2n
2

∆x
1 ||∆k

1 =ux
1 ||uk

1
∆x

1 ⊕∆k
1 ||∆k

1 =vx
1 ||vk

1

(−1)(ux
0 ||uk

0 )>(x||k)⊕(ux
2 ||uk

2 )>(∆x
2 ||∆k

2 )⊕(vx
0 ||vk

0 )>(x⊕k||k)⊕(vx
2 ||vk

2 )>(∆x
2 ⊕∆k

2 ||∆k
2 )

= δvx
1
(ux

1 ⊕ uk
1)δvk

1
(uk

1)

 1
2n

∑
x∈Fn

2

(−1)(ux
0 ⊕vx

0 )>x

 1
2n
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k∈Fn

2

(−1)(uk
0 ⊕vx

0 ⊕vk
0 )>k

 · · ·

= δvx
1
(ux

1 ⊕ uk
1)δvk

1
(uk

1)δvx
0
(ux

0)δuk
0
(vx

0 ⊕ vk
0 )δvx

2
(ux

2)δuk
2
(vx

0 ⊕ vk
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(37)
In a similar way, we can get the lower quasi-biDDT expression for key-XOR, which is

omitted here.
Remark. Intuitively, Equation 37 states that the masks (resp. differences) change follow-
ing the propagation rules of masks (resp. differences) for BRANCH and XOR operations.

5.2 Revisit Quasi-Differential Case
We have revisited the quasi-differential framework for key-alternating ciphers when as-
suming the round keys are independent [BDG25] in Subsection 3.4. In the following,
we revisit [BDG25] to discuss the quasi-differential framework for key-alternating ciphers
considering the key schedule. Again, we use our perspective to do it, which provides an
alternative method to derive the theorems in [BDG25]. We take [BDG25, Proposition 1]
as an instance to show our idea.

Proposition 3 (Proposition 1 in [BDG25]). Consider the key-XOR function

G : Fn
2 × Fm

2 → Fn
2 × Fm

2 , (x||k) → (x ⊕ k||k).

The quasi-differential transition matrix of G has the coordinate

DG
(vx

0 ||vk
0 ,vx

1 ||vk
1 ),(ux

0 ||uk
0 ,ux

1 ||uk
1 ) = δvx

1
(ux

1 ⊕ uk
1)δvk

1
(uk

1)δvx
0
(ux

0)δvk
0
(ux

0 ⊕ uk
0).

Proof. (Alternative) The quasi-differential matrix of a function F is given in Equation 4.
Differential cryptanalysis is a 2nd-order attack, so G actually does the following thing

G : (x||k, ∆x||∆k) → (x ⊕ k||k, ∆x ⊕ ∆k||∆k)

Let F = G, v0 = vx
0 ||vk

0 , v1 = vx
1 ||vk

1 , u0 = ux
0 ||uk

0 , u1 = ux
1 ||uk

1 , and working it out, we
get
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6 Conclusion
In this paper, we proposed the quasi-boomerang framework, an extension of the quasi-
differential framework [BR22] to the boomerang distinguisher in both single-key and
related-key scenarios by the geometric approach. Following Hu et al.’s work [HZC+25], by
choosing a suitable pair of bases for the input and output spaces, the boomerang attack
can be described as a 3rd-order attack. Then the probability of the boomerang distin-
guisher can be calculated by the sum of quasi-boomerang characteristics’ correlations.
The analysis of the influence of the keys is similar to the quasi-differential framework,
which allows us to investigate the probability of the boomerang in the fixed-key model
more practically. After applying to SKINNY-64 and GIFT-64, we found several boomerang
distinguishers obtained by the tools proposed in [HBS21] having high probabilities and are
key-independent. We also proposed a divide-and-conquer approach following the sandwich
framework and utilized it to check three existing boomerang distinguishers and recalcu-
lated their probabilities. In addition, as an independent interest, we revisited Boura et
al.’s work [BDG25] in an easier way by regarding the key-XOR operation as a normal
cipher component.
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