
HiAE: A High-Throughput Authenticated
Encryption Algorithm for Cross-Platform

Efficiency
Han Chen1, Tao Huang1, Phuong Pham1 and Shuang Wu1

Huawei International Pte. Ltd., Singapore,
concyclics@gmail.com,{huangtao80,pham.phuong,Wu.Shuang}@huawei.com

Abstract. This paper addresses the critical challenges in designing cryptographic
algorithms that achieve both high performance and cross-platform efficiency on ARM
and x86 architectures, catering to the demanding requirements of next-generation
communication systems, such as 6G and GPU/NPU interconnections. We propose
HiAE, a high-throughput authenticated encryption algorithm optimized for perfor-
mance exceeding 100 Gbps and designed to meet the stringent security requirements
of future communication networks. HiAE leverages the stream cipher structure,
integrating the AES round function for non-linear diffusion.
Our design achieves exceptional efficiency, with benchmark results from software
implementations across various platforms showing over 340 Gbps on x86 processors
and 180 Gbps on ARM devices in AEAD mode, making it the fastest AEAD solution
on ARM chips and setting a new performance record on the latest x86 processors.
Keywords: High-throughput · Authenticated Encryption · 5G/6G · AES-NI

1 Introduction
The growing demand for high-performance and secure cryptographic algorithms is driven by
rapid advancements across various fields of modern communication and data transmission
technologies. As data transmission rates continue to rise, particularly with the anticipated
arrival of 6G, where speeds are expected to exceed 100 Gbps [LAL+19], the pressure on
cryptographic systems to balance both security and performance becomes increasingly
critical. This trend extends well beyond mobile communication networks, influencing
diverse sectors such as high-performance data centers, AI and machine learning, Ethernet
communication, software-defined networks (SDN), and Cloud Radio Access Networks
(Cloud RAN).

In high-performance computing (HPC) environments, such as data centers, the demand
for high-bandwidth communication between servers and storage devices is pushing the
limits of interconnects, with speeds reaching 100 Gbps to 400 Gbps or more for data center
backbone links. Similarly, in AI and machine learning, accelerators like Nvidia’s NVLink,
capable of transferring data at rates up to 1,800 GB/s, are driving the need for encryption
solutions that can keep pace with the high-speed interconnects used in distributed training
of large-language models [Corc]. Furthermore, with the growing deployment of 100GbE
and 400GbE Ethernet networks in data centers and enterprise environments, cryptographic
algorithms must perform efficiently at ultra-high throughput levels to ensure secure data
exchange without compromising performance.

In SDN and Cloud RAN, the demand for high-speed encryption is particularly pro-
nounced. These architectures rely on efficient data processing across distributed environ-
ments, where cryptographic algorithms are tasked with securing high-volume data flows.

mailto:concyclics@gmail.com, {huangtao80, pham.phuong, Wu.Shuang}@huawei.com

2 HiAE: A High-throughput Authenticated Encryption Algorithm

The encryption solutions must operate efficiently on general-purpose CPUs, including both
x86 and ARM platforms, which are the backbone of most computing infrastructures in
these domains.

Modern hardware advancements, particularly Single Instruction Multiple Data (SIMD)
instructions, have enabled significant performance gains in cryptographic algorithms. SIMD
allows parallel execution of operations like XOR and modular arithmetic, leveraging instruc-
tion sets such as Intel’s SSE/AVX/AVX2/AVX512 [Cor24b] and ARM’s NEON [Com24a].
Moreover, the widespread support for AES-NI [Cora] and NEON cryptographic extension
[BS12], optimized for AES round functions, has made it a cornerstone for high-performance
cryptographic primitives. However, while AES-based designs like AEGIS [WP14] and
Rocca [SLN+22] have demonstrated potential for 5G and early 6G requirements, they still
face challenges in achieving cross-platform efficiency, especially as ARM architecture has
been widely used for edge and mobile devices which require more on wireless communication
ability.

1.1 Motivation
Many recent cryptographic designs have utilized SIMD instructions to achieve high perfor-
mance, particularly on x86 platforms using AES-NI. AES-NI has become the foundation
for many recent high-speed (authenticated) encryption algorithms like AEGIS, SNOW-V
[EJMY18], and Rocca, which are tailored to take advantage of the parallelism and effi-
ciency offered by these instructions. However, these designs often neglect the architectural
differences between x86 and ARM, where SIMD instructions are implemented via NEON
rather than AES-NI. This oversight results in inconsistent performance when deploying
these algorithms on ARM-based devices, which dominate mobile and embedded systems.

The transition to 6G, with its demand for ultra-high data rates and reliance on SDN or
cloud RAN, further emphasizes the need for cryptographic algorithms optimized for diverse
platforms. While some existing designs achieve remarkable performance on x86—reaching
or exceeding 100 Gbps—these same algorithms often perform suboptimally on ARM
platforms due to differences in SIMD instruction sets and hardware support for AES round
functions. This gap highlights the pressing need for a unified approach that ensures high
and consistent performance across both architectures.

Addressing this challenge requires rethinking cryptographic design to leverage the
unique capabilities of each platform while maintaining compatibility and efficiency. This
motivates our work in developing a cross-platform cryptographic primitive that achieves
competitive performance on both x86 and ARM architectures, meeting the stringent
demands of 6G systems.

1.2 Contributions
This work addresses the challenges of designing cryptographic algorithms that achieve high
performance and cross-platform efficiency for both ARM and x86 architectures, ensuring
suitability for next-generation communication systems. The main contributions of this
paper are as follows:

Cross-Platform Pipeline Optimization Analysis. We conduct a thorough analysis of the
pipeline architectures of modern ARM and x86 processors, examining the nuances of their
SIMD instruction sets and cryptographic capabilities. Our investigation focuses on key
factors such as instruction throughput, latency, and execution unit utilization to identify
architectural differences that influence performance. Based on this analysis, we derive
the optimal ratio between AES round instructions and SIMD XOR instructions, ensuring
efficient pipeline utilization tailored to the distinct characteristics of each platform.

Han Chen, Tao Huang, Phuong Pham and Shuang Wu 3

A New Cross-Platform efficient AEAD Design. We design a new high-performance
authenticated encryption with associated data (AEAD) algorithm, utilizing an innova-
tive cross-platform structure as build block. We would like to highlight the following
contributions in our design:

• Cross-Platform High-Throughput Structure: We introduce a novel XAXX struc-
ture that optimizes performance across both x86 and ARM platforms. This structure
balances AES and XOR operations to achieve high instruction-level parallelism
and efficient pipeline usage, adapting to the architectural differences between the
platforms.

• Efficient Update Function: The update function efficiently integrates message
blocks and optimizes AES operations while ensuring robust security. Compared to
previous designs like Rocca, our design improves upon it by reducing the number of
AES instructions needed to process a 128-bit plaintext from 3 to 2, minimizing data
dependencies and carefully managing internal state updates. While the same level
of security is maintained, our design boosts performance, bringing it closer to the
maximum capabilities of available resources.

We also perform a comprehensive security analysis of our design, demonstrating its
robustness against a wide range of attacks, including differential, linear, forgery, state
recovery, and integral attacks.

Comprehensive Benchmarking Across Devices. We conducted extensive benchmarking
of the proposed cipher across a wide range of devices, including both mobile processors
and server-grade CPUs, to comprehensively evaluate its performance. Our experimental
setup covered the latest x86 platforms as well as ARM-based architectures to ensure a
robust and diverse evaluation.

The results of our benchmarks demonstrate that the proposed cipher achieves excep-
tional performance. Specifically, on the latest x86 CPUs, the cipher achieves a throughput
of 340 Gbps, marking the best performance reported to date. Similarly, on ARM CPUs, it
achieves an impressive 180 Gbps, outperforming all previous designs on ARM architectures.

These results highlight the efficiency of our design and its ability to leverage the
advanced instruction sets available in modern x86 and ARM processors. By achieving such
high performance, our cipher not only ensures robust security but also meets the demanding
throughput requirements of contemporary applications, making it a state-of-the-art solution
in its category.

1.3 Organization of the Paper
The organization of the rest of this paper is as follows:

Section 2 discusses the AES and SIMD instructions, providing a cross-platform analysis.
In Section 3, we present the detailed specification of HiAE. The design rationale behind
our approach is elaborated in Section 4. Section 5 covers the security analysis, ensuring
the robustness of our design. In Section 6, we evaluate the performance of the proposed
methods. Finally, the paper concludes in Section 7.

2 AES Instructions and SIMD Optimization: Cross-Platform
Analysis

AES is widely used for securing data confidentiality. To enhance the efficiency of AES
computations, most modern processors integrate AES-specific cryptographic instructions
into their SIMD instruction sets. This integration is especially notable in the two most
widely adopted processor architectures: Intel’s AES-NI (Advanced Encryption Standard

4 HiAE: A High-throughput Authenticated Encryption Algorithm

New Instructions) [Cora] on x86 and the NEON cryptographic extension [Com24a] on
ARM. By leveraging these AES instructions, processors can execute AES round functions
significantly faster than traditional software implementations.

2.1 The Implementation difference of AES Instructions between x86
and ARM architectures

The implementation of AES instructions varies between x86-64 and ARM processors. In
x86-64 processors, the AES-NI set set provides several instructions for the AES round
function, including both the internal rounds and the final round. These instructions
include:

aesenc(S, K) = (MixColumns ◦ ShiftRows ◦ SubBytes(S)) ⊕ K

aesenclast(S, K) = (ShiftRows ◦ SubBytes(S)) ⊕ K

Conversely, the ARM NEON cryptographic extension separates the MixColumns operation,
providing distinct instructions to handle this transformation to maintain the difference of
internal and final round:

aese(S, K) = (ShiftRows ◦ SubBytes(S ⊕ K))
aesmc(S) = MixColumns(S)

The differences between ARM NEON and Intel AES-NI mostly are:
• AES-NI performs the XOR operation at the end of each round, while NEON executes

the XOR operation at the beginning.
• AES-NI includes final round instructions that omit the MixColumns step, while

NEON provides separate instructions for the MixColumns operation.
Consequently, to simulate an x86’s AESENC instruction in ARM CPU, one more XOR
instruction would be needed.

2.2 Analysis of the Pipeline, Parallelization and SIMD Throughput
When a CPU core processes instructions, it first fetches and decodes the instructions in the
front-end, then routes them to different execution units in the back-end for computation.
Performance is constrained by both the front-end decoding and the execution units in
the back-end. Most modern processors feature a 4-wide or wider decode capability,
which surpasses their throughput for AESR and XOR operations, where we use AESR to
generalize the AES instructions in x86 and ARM platforms in a uniform way. Therefore,
our focus in this work is on the back-end performance.

According to [Corb] and recent work [BBL+24], on latest x86 platforms, there are
typically 3-4 execution units for different SIMD instructions, with usually 1-2 units
dedicated to processing AESR instructions. In contrast, lightweight ARM processors,
especially those designed for mobile devices, typically have only 2 SIMD units, with 1-2 of
these supporting cryptographic instructions. This results in a weaker pipeline parallelism
capability for XOR and AESR operations on ARM processors compared to their x86
counterparts. And for the high performance ARM processors for laptop and desktops, like
Apple Silicon’s Performance Core, there will be 4 SIMD units with fully support of AES.

To evaluate the performance of an instruction I, there are two main metrics:
• Latency: the number of clock cycles between the beginning to the return of its

result, we marked as Lat below.

Han Chen, Tao Huang, Phuong Pham and Shuang Wu 5

• Throughput: the number of instructions that can be processed in a given amount
of time, we marked as TP below.

Pipeline Specifications. We summarize most popular ARM and x86 architectures
and their AESR, XOR instructions latency and throughput as well as the pipeline unit
occupied in Table 1. For x86 devices, we only remain the relevant units from P0 −P6, while
for ARM devices, we category them to 2-SIMD, 3-SIMD, 4-SIMD and 6-SIMD platforms
and number the SIMD unit as V∗. For Apple Silicon’s Efficiency Cores, according to
Apple Silicon CPU Optimization Guide [Inc24], ASIMD/FP units in E-Core can do 1 AES
instructions per 2 cycles, so the throughput will be half of the number of execute units.

Conditions for Fully Utilizing the Pipeline. To fully utilize the pipeline, the ratio of
AESR and XOR instructions must align with the pipeline’s execution capacity. Let a
represent the number of execution units capable of processing AESR instructions, b the
total number of execution units, and x : y the ratio of AESR to XOR instructions. Let C
be a constant positive integer.

In order to fully utilize the pipeline, the following conditions must be satisfied:
• x + y = C · b: This condition ensures that the total workload of SIMD instructions

matches the pipeline’s available execution capacity.
• y : x ≥ (b − a) : a: This condition ensures that AESR instructions can run in parallel

with XOR instructions. While most units handle XOR, only some support AESR. By
substituting AESR with XOR, we maintain parallelism. However, too many AESR
instructions can create contention, leaving XOR-only units underutilized.

We define the a : b ratio as the AESR-SIMD ratio, which helps us better understand
how different processors manage the balance of AESR and XOR instructions to fully utilize
the SIMD pipeline.

2.3 Instruction Fusion on ARM Devices
Since some NEON instructions like aese and aesmc are often processed together, recent
ARM architectures can accelerate certain instruction pairs in an operation called fusion.
For example, instructions like aesmc(aese(a, b)) and eor(eor(a, b), c) can benefit
from this fusion to achieve higher IPC. These features should follow the optimization guide
of each specific architecture, from Cortex-A77 (see Section 4.13 "Instruction Fusion" in
[Com19b]) to later architectures.

3 The Specification of HiAE
Building on the analysis of AES instructions and SIMD optimization across x86 and ARM
platforms, we now turn to the specifications of the proposed authenticated encryption design.
This section outlines the structural and operational details of the cipher, highlighting how
the cross-platform optimizations discussed earlier are integrated into its design. In Section 4,
we will delve deeper into the rationale behind these design choices, focusing on how they
balance performance, security, and efficiency across diverse hardware architectures.

3.1 Notations
• AESL(x) = MixColumns ◦ SubBytes ◦ ShiftRows(x)

Note: This differs from AESR, which is the generalized notation for the AES
instruction applicable to both x86 and ARM platforms.

• x ⊕ y = XOR(x, y)

6 HiAE: A High-throughput Authenticated Encryption Algorithm

Table 1: Comparison Pipeline of Different Architectures[AR19, Com22b, Com16, Com22a,
Com23a, Com18, Com19a, Com19b, Com20, Com22c, Com23b, Com24b, Com21a,
Com21b, Com22d, Com23c, Com22e, Com24d, Com22f, Com22g, Com24e, Com24c, Inc24]

Architecture Instructions Lat TP execution units
x86 architecture processors P0 P1 P2 P3 P5

Intel Haswell AESENC 7 1 *
XOR 1 3 * * *

Intel Skylake/Cascade Lake AESENC 4 1 *
XOR 1 3 * * *

Intel Ice Lake AESENC 3 2 * *
XOR 1 3 * * *

Intel Alder Lake/Sapphire Rapids AESENC 3 2 * *
XOR 1 3 * * *

AMD Zen 1/2/3/4/5 AESENC 4 2 * *
XOR 1 4 * * * *

ARM architecture processors with 2 FP/SIMD units V0 V1

ARM Cortex-A55/A57 AESE/AESMC 3 1 *
XOR 3 2 * *

ARM Cortex-A510/A520 AESE/AESMC 3 2 * *
XOR 3 2 * *

ARM Cortex-A75 AESE/AESMC 2 1 *
XOR 3 2 * *

ARM Cortex-A76 AESE/AESMC 2 1 *
XOR 2 2 * *

ARM Cortex-A77/A78 AESE/AESMC 2 2 * *
XOR 2 2 * *

ARM Cortex-A715/A720/A725 AESE/AESMC 2 2 * *
XOR 2 2 * *

ARM Neoverse-N2/N3 AESE/AESMC 2 2 * *
XOR 2 2 * *

HiSilicon Taishan V110 AESE/AESMC 3 1 *
XOR 2 2 * *

ARM architecture processors with 3 FP/SIMD units V0 V1 V2

Apple M1/M2 Generation E-Core AESE/AESMC 5 1 * *
XOR 2 2 * *

Apple M3/M3 Pro E-Core AESE/AESMC 5 1 * *
XOR 2 2 * *

Apple M3 Max E-Core AESE/AESMC 5 1.5 * * *
XOR 2 3 * * *

ARM architecture processors with 4 FP/SIMD units V0 V1 V2 V3

ARM Cortex-X1/X2/X3 AESE/AESMC 2 2 * *
XOR 2 4 * * * *

ARM Cortex-X4 AESE/AESMC 2 4 * * * *
XOR 2 4 * * * *

ARM Neoverse-V1/V2/V3 AESE/AESMC 2 4 * * * *
XOR 2 4 * * * *

Apple M1/M2/M3 Generation P-Core AESE/AESMC 3 4 * * * *
XOR 2 4 * * * *

HiSilicon Taishan V120 AESE/AESMC 2 2 * *
XOR 2 4 * * * *

ARM architecture processors with 6 FP/SIMD units V0 V1 V2 V3 V4 V5

ARM Cortex-X925 AESE/AESMC 2 4 * * * *
XOR 2 6 * * * * * *

Han Chen, Tao Huang, Phuong Pham and Shuang Wu 7

• S: The state of HiAE, which is composed of 16 blocks, i.e. S = (S[0], S[1], ..., S[15]),
where S[i](0 ≤ i ≤ 15) are blocks and S[0] is the first block. The i-th state block at
round r is defined as Sr[i].

• N : A 128-bit nonce
• ADi: A 128-bit associated data block
• Mi: A 128-bit message block
• Ci: A 128-bit ciphertext
• const0: A 128-bit constant, represented in hexadecimal as:

0x3243f6a8885a308d313198a2e0370734

• const1: A 128-bit constant, represented in hexadecimal as:

0x4a4093822299f31d0082efa98ec4e6c8

Remark: These two constants are derived from π in base 16.
• X||0∗: a 128-bit string of the concatenation of X and the complement of zeros.
• |M | or len(M): the length in bit of the string M.

3.2 The Shift State Update Function
The update function of HiAE operates on the 16-block state S and a 128-bit data block X,
producing a new state SNew = UpdateFunction(S, X) according to the following process:

SNew[15] = AESL(S[0] ⊕ S[1]) ⊕ AESL(S[13]) ⊕ X

SNew[14] = S[15]
SNew[13] = S[14]
SNew[12] = S[13] ⊕ X

SNew[11] = S[12]
SNew[10] = S[11]
SNew[9] = S[10]
SNew[8] = S[9]
SNew[7] = S[8]
SNew[6] = S[7]
SNew[5] = S[6]
SNew[4] = S[5]
SNew[3] = S[4]
SNew[2] = S[3] ⊕ X

SNew[1] = S[2]
SNew[0] = S[1]

3.3 Specification of HiAE
HiAE is an authenticated encryption scheme with associated data specifically designed
for ARM architecture, structured into four phases: initialization, processing of associated
data, encryption, and finalization. It takes as input a 256-bit key K = K0||K1, Ki ∈ F 128

2 ,

8 HiAE: A High-throughput Authenticated Encryption Algorithm

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

AESL

AESL M

S12 S13 S15S14

Keystream

Figure 1: Overall schematic of HiAE

a 128-bit nonce N ∈ F 128
2 , the associated data AD, and the message M . The output

includes the ciphertext C where |C| = |M | and a 128-bit tag T . Initially, the associated
data AD and the message M are padded with 0 to ensure their lengths are multiples of
128, i.e, AD||0∗ = AD0||...AD|AD|/128−1 and M ||0∗ = M0||...M|M |/128−1, where ADi and
Mi are 128-bit blocks. We describe the encryption and authentication process below, as
illustrated in Figure 2 and Algorithm 1.
Initialization. The initialization of HiAE involves loading the key K0||K1 and the nonce
N into the state, then executing 32 steps of the UpdateFunction with a constant used as
the message, i.e., S = UpdateFunction(S, const0). Initially, the state is loaded as follow:

S−32[0] = const0, S−32[1] = K1, S−32[2] = N, S−32[3] = const0,

S−32[4] = 0, S−32[5] = N ⊕ K0, S−32[6] = 0, S−32[7] = const1,

S−32[8] = N ⊕ K1, S−32[9] = 0, S−32[10] = K1, S−32[11] = const0,

S−32[12] = const1, S−32[13] = K1, S−32[14] = 0, S−32[15] = const0 ⊕ const1.

After 32 update rounds, two 128-bit keys are XORed with the state once more:

S0[9] = S0[9] ⊕ K0,

S0[13] = S0[13] ⊕ K1.

Processing the associated data. Following initialization, the associated data AD is
used to update the state.
For i = 0 to |AD|/128 − 1:

S = UpdateFunction(S, ADi)

This phase is skipped if the associated data is empty.
Encryption. After processing the associated data, at each step of the encryption, a
128-bit message block is used to update the state, and Mi is then encrypted to produce Ci.
The last block of ciphertext is then truncated so that the length of the ciphertext is equal
to the length of the message. The encryption phase is skipped if the message is empty.
For i = 0 to |M |/128 − 1 :

Ci = AESL(S[0] ⊕ S[1]) ⊕ S[9] ⊕ Mi

Han Chen, Tao Huang, Phuong Pham and Shuang Wu 9

S = UpdateFunction(S, Mi)

Finalization. After encrypting all the message blocks, the authentication tag is generated
through 32 update rounds. The lengths of the associated data and the message are used
to update the state as:

S = UpdateFunction(S, len(AD)||len(M))

and the tag is computed as:

T =
15⊕

i=0
S[i].

32
Steps

1 Step
per block

1 Step
per block

32
Steps

N
K0
K1
C0
C1

Ai Mj
Alen||Mlen

XOR
all

states
T

K 128

Initialization AD processing Encryption Finalization + Tag Generation

⊕

Cj

Figure 2: General process of HiAE.

3.4 Security Goal
HiAE is a nonce-based authenticated encryption scheme, whose security relies on the
nonce-respecting setting. Specifically, each key and IV pair must be used to secure only
one message. If verification fails, the scheme should not output the decrypted ciphertext
or a new authentication tag.

We limit the maximum message length to less than 264 bits, which aligns with modern
cryptographic standards (e.g., NIST LWC [oSN25] 250 −1 bytes, NIST SP 800-38D [oSN07],
264 −1 bits) and design practices, such as those used in AEGIS (which also uses a maximum
of 264 bits). Additionally, a single key may be used to protect at most 264 messages. These
upper bounds are a precautionary measure designed to ensure the scheme remains secure
against practical attacks and are not an absolute security requirement.

The design targets 256-bit security against key recovery and state recovery attacks,
along with 128-bit security for integrity against forgery attempts. It is important to
note that the encryption security assumes the attacker cannot successfully forge messages
through repeated trials. The rationale for this design choice is referred to Section 4.5.

While attacks that exploit keystream bias may have a time complexity ranging between
2150 and 2256, their practical impact on overall security is minimal. Furthermore, these
attacks are not accelerated by quantum computing, and their complexity makes them
infeasible in real-world scenarios (see Section 5.6 for a more detailed discussion). Conse-
quently, we have not set the security goal for resisting such attacks at 2256, reflecting a
focus on balancing efficiency with robust security.

Finally, to address the threat posed by quantum computing, HiAE targets a security
strength of 128 bits against key recovery attacks and forgery attacks in quantum setting.

10 HiAE: A High-throughput Authenticated Encryption Algorithm

Algorithm 1 The specification of HiAE
1: procedure HiAE_Encrypt(K0, K1, N, AD, M)
2: S ← Initialization(N, K0, K1)
3: if |AD| > 0 then
4: S ← ProcessAD(S, AD)
5: end if
6: if |M | > 0 then
7: S ← Encryption(S, M, C)
8: Truncate C
9: end if

10: T ← Finalization(S, len(AD), len(M))
11: return (C, T)
12: end procedure
13: procedure HiAE_Decrypt(K0, K1, N, AD, C, T)
14: S ← Initialization(N, K0, K1)
15: if |AD| > 0 then
16: S ← ProcessAD(S, AD)
17: end if
18: if |C| > 0 then
19: S ← Decryption(S, C, M)
20: Truncate M
21: end if
22: if T = Finalization(S, len(AD), len(M)) then
23: return M
24: else
25: return ⊥
26: end if
27: end procedure
28: procedure Initialization(N, K0, K1)
29: (S[0], S[1], S[2], S[3])← (const0, K1, N, const0)
30: (S[4], S[5], S[6], S[7])← (0, N ⊕K0, 0, const1)
31: (S[8], S[9], S[10], S[11])← (N ⊕K1, 0, K1, const0)
32: (S[12], S[13], S[14], S[15])← (const1, K1, 0, const0 ⊕ const1)
33: for i = 0 to 31 do
34: S ← UpdateF unction(S, const0)
35: end for
36: (S[9], S[13])← (S[9]⊕K0, S[13]⊕K1)
37: return S
38: end procedure
39: procedure ProcessAD(S, AD)
40: d← |AD|
41: for i = 0 to d− 1 do
42: S ← UpdateF unction(S, ADi)
43: end for
44: return S
45: end procedure
46: procedure Encryption(S, M, C)
47: m← |M |
48: for i = 0 to m− 1 do
49: Ci ← AESL(S[0]⊕ S[1])⊕ S[9]⊕Mi

50: S ← UpdateF unction(S, Mi)
51: end for
52: return S
53: end procedure
54: procedure Decryption(S, M, C)
55: c← |C|
56: for i = 0 to c− 1 do
57: Mi ← AESL(S[0]⊕ S[1])⊕ S[9]⊕ Ci

58: S ← UpdateF unction(S, Mi)
59: end for
60: return S
61: end procedure
62: procedure Finalization(S, len(AD), len(M))
63: for i = 0 to 31 do
64: S ← UpdateF unction(S, (len(AD)||len(M))
65: end for
66: T ← 0
67: for i = 0 to 15 do
68: T ← T ⊕ S[i]
69: end for
70: return T
71: end procedure

Han Chen, Tao Huang, Phuong Pham and Shuang Wu 11

We do not claim security against online superposition queries to the cryptographic oracle
attacks, as such attacks are highly impractical in real-world applications. The details of
the security analysis, including the evaluation of key-committing attacks, are discussed in
Section 5.

4 Design Rationale
4.1 Cross-Platform Efficient Structure
As introduced in Section 2, SIMD instructions exhibit different implementations and
performance across processors. Recent AES-based cipher designs usually focus on x86
architecture, particularly using the aesenc instruction, differs significantly on ARM, where
achieving the same single-round functionality typically requires three instructions instead
of two. Conversely, implementing an ARM-based single-round function on x86 also involves
one additional XOR instruction. For example:

aesenc(x, y) = xor(aesmc(aese(x, 0)), y),

aesmc(aese(x, y)) = aesenc(xor(x, y), 0).

Both approaches incur an additional XOR operation, which increases the latency and
decreases overall efficiency (We provided the Rocca initialization assembly code on ARM
and x86 in Figure B5, which demonstrates the inefficiency of Rocca and other x86-based
ciphers using the aesenc instruction with conversion from x86 to ARM architectures. The
ARM’s implementation cost much more instructions than x86).

We initially attempt to avoid wasting XOR operations across architectures by using
a structure with XOR operation both before and after the AES round function, like
F (a, b, c) = AESL(a ⊕ b) ⊕ c. However, this structure results in a ratio of aesenc:xor
= 1:1 on x86 and aese/aesmc:xor = 2:1 on ARM, which limits pipeline utilization for
many processors with limited ratio of AES SIMD units. As discussed in Section 2, most
x86 processors have an AESR-SIMD ratio of 1:3 and 2:3, while most ARM processors have
an AESR-SIMD ratio of 1:2 and 1:1. Hence, this structure does not offer optimal ratios
for 1:3 x86 and 1:2 ARM platforms.

To find a better structure, we begin with the optimal ratio for 1:3 x86 and 1:2 ARM
platforms, which is aesenc:xor = 1:2 on x86 and aese/aesmc:xor = 1:1 on ARM,
typically 1 AES round with 2 additional XOR. We test the initial idea of AES round as
well as 2 additional XOR combinations below to evaluate the structure’s efficiency across
platforms. The results of the IPC (Instructions Per Cycle) and cycle per operation are
shown in Table 2 where the structures are:

XAX(a, b, c) = AESL(a ⊕ b) ⊕ c

XAXX(a, b, c, d) = AESL(a ⊕ b) ⊕ c ⊕ d

XXAX(a, b, c, d) = AESL(a ⊕ b ⊕ c) ⊕ d

The test results show that for devices with a 2:3 ratio, the ’XAX’ structure already
fulfills the pipeline, as the cycle cost aligns with the instruction count and the IPC can
reach the full capacity of the available SIMD units. However, for 1:3 devices, the bottleneck
is the single AES unit while the other units—capable only of processing XOR—remain idle.
In this scenario, the additional XOR operations do not increase the cycle cost and instead
better utilize the pipeline, making the ’XAXX’ and ’XXAX’ structures equivalent in cycle
cost. The most notable difference is observed on ARM devices. As discussed in Section 2.3,
the ’XAXX’ structure better exploits ARM’s AES and XOR fusion, which unlocks much
higher IPC and reduces cost compared to ’XAX’. Based on these observations, we propose

12 HiAE: A High-throughput Authenticated Encryption Algorithm

Table 2: Different Structure’s IPC and cycle/op across architecture. As introduced in
Section 2.3, some ARM processors feature ’instruction fusion,’ which can process certain
instruction pairs faster, such as aese+aesmc or two eor operations acting as a 3-operand
XOR.)

Architecture and SIMD configs Metrics Structure
XAX XAXX XXAX

x86, Sapphire Rapids, 2:3 IPC 3.00 2.95 2.99
cycle/op 0.67 1.02 1.01

x86, Cascade Lake, 1:3 IPC 1.97 2.86 2.88
cycle/op 1.02 1.04 1.03

ARM, Taishan V110, 1:2 IPC 2.08 3.00 2.22
cycle/op 1.46 1.33 1.81

ARM, Taishan V120, 2:4 IPC 3.03 4.49 2.98
cycle/op 0.99 0.88 1.34

that the optimal cross-platform efficient structure is ’XAXX’, which can be implemented
as Figure 3 illustrated:

x86: XAXX(a, b, c, d) = xor(aesenc((xor(a, b), c), d))
ARM: XAXX(a, b, c, d) = xor(xor(aesmc(aese(a, b)), c), d).

XOR

SubBytes

ShiftRow

MixColumn

XOR

XOR

AESE

AESMC

EOR

EOR

AESENC

VPXOR

VPXOR

XAXX
StructureARM NEON

Implementation
x86 AES-NI

Implementation

SIMD Fusion

SIMD Fusion

AES:SIMD=1:3AES:SIMD=1:2

Figure 3: The implementation of XAXX cross ARM and x86

Han Chen, Tao Huang, Phuong Pham and Shuang Wu 13

4.2 On the Design of Update Function
After initially designing our structure with the lowest possible rate, a higher block count,
and an optimal two AES rounds per encryption, we need to select several parameters of
the structure to meet the security requirements outlined in Section 3.4. These include the
number of inserted message blocks, the positions for injecting messages into the state, and
the format of the keystream. As analyzed by Jean and Nikolic in [JN16], the most efficient
structure has a rate between the number of AESR and number of inserted messages of 2
with 12 state blocks, 4 aesenc, and 2 inserted messages. However, reducing the number of
AES rounds to optimize compatibility with ARM architecture is one of our strategies. To
achieve this, we develop the search strategies according to the following approach.

• Extend the candidate pool by increasing the number of state blocks from 13 to 16,
while Jean and Nikolic limited their model to a maximum of 12 internal blocks.
This approach introduces minimal overhead (or even no additional cost) on ARM
architecture, thanks to its ample register capacity of up to 32.

• Limit the number of aesenc/(aese+aesmc)s in encryption to fewer than 4 and
process only one message per encryption to maintain a rate of AESL per processed
message of at least 2. To enhance security while preserving efficiency, the message is
XORed with multiple internal blocks to introduce more differences in the forgery
attack model.

To align with the cross-platform structure outlined in Sect. 4.1, we constrain the structure
of the new leftmost state block to the form AESL(S[0] ⊕ S[i]) ⊕ M ⊕ d, where d can be
either Sj or AESL(Sj). Additionally, after updating, the structure of certain middle state
blocks takes the form c ⊕ M , where c may be Sm or AESL(Sm), while keeping the total
of AES in used is lower than 4.

Table 3: Parameters and candidates of round functions. # IM is the number of state
blocks to insert message.

Round function # aesenc aesenc at # blocks # IM # candidates #searched candidates
Candidates-1 2 d 13-16 2 5389 all
Candidates-2 2 d 13-16 3 34401 all
Candidates-3 2 c 13-16 2 5389 all
Candidates-4 2 c 13-16 3 68802 all

After modeling the structure of our target design with the parameters in Table 3
using MILP, we found that only the pool of Candidates-2 meets the security requirement,
ensuring at least 22 active S-boxes in the differential trails against forgery attacks. Also,
updating the leftmost state block with XORing of two AESR instructions’ output can let
the 2 AESR instruction parallel without data dependency on 2 AESR instructions, which
usually have long latency. Therefore, we chose our HiAE design with a 16-block internal
state, which offers highest balancing between performance for keystream generation and
security, achieving at least 26 active S-boxes, and implemented the UpdateFunction as
illustrated in Fig 1.

4.3 On the Loading of Nonce and Key
To avoid the cost of building a new circuit for processing the initialization states, we utilize
the update function to diffuse the initial state. The nonce and the key are injected into
five initial state blocks in the forms K0, K1, N, N ⊕ K0, and N ⊕ K1, while the remaining
blocks are set to zero or constants. To ensure the security of the initialization phase against
differential attacks, we generate a Mixed-Integer Linear Programming (MILP) model to

14 HiAE: A High-throughput Authenticated Encryption Algorithm

determine the optimal block positions for K0, K1, N, N ⊕ K0, and N ⊕ K1. This ensures
that the number of active S-boxes in the differential characteristic after 22 update function
rounds exceeds 43. In our design, the initial state is arranged as follows:

S−32[0] = const0, S−32[1] = K1, S−32[2] = N, S−32[3] = const0,

S−32[4] = 0, S−32[5] = N ⊕ K0, S−32[6] = 0, S−32[7] = const1,

S−32[8] = N ⊕ K1, S−32[9] = 0, S−32[10] = K1, S−32[11] = const0,

S−32[12] = const1, S−32[13] = K1, S−32[14] = 0, S−32[15] = const0 ⊕ const1.

Next, the initial state is updated through 32 rounds of the shift-state update function,
using S = UpdateFunction(S, const0). Finally, two states S0[9] and S0[13], which are
involved in the first step of the decryption, are XORed with the key to harden key recovery
attacks from state recovery. This method of protection has been used in MORUS [HT16],
Ascon [DEMS21], and analyzed for Rocca in [HII+22], stated as follows:

S0[9] = S0[9] ⊕ K0,

S0[13] = S0[13] ⊕ K1.

After 16 update rounds, the nonce becomes integrated into the expressions of all state
blocks, thereby increasing the difficulty of key-recovery attacks on the round-reduced
initialization in [HII+22]. To provide evidence that all internal states are well diffused,
meaning that all state blocks are expressed in terms of the nonce and the key after the
initialization phase, we present the simplified expressions of the first eight state blocks
after 18 rounds, ignoring any constants:

S−14[0] = A(A(K1 ⊕ N))
S−14[1] = A(N ⊕ K0) ⊕ A(A(N))
S−14[2] = A(N ⊕ K0) ⊕ A(A(A(N ⊕ K1)))
S−14[3] = A(A(N ⊕ K0) ⊕ A(A(N)))
S−14[4] = A(N ⊕ K1) ⊕ A(A(N ⊕ K0) ⊕ A(A(K1 ⊕ N)))
S−14[5] = A(N ⊕ K1) ⊕ A(A(A(N ⊕ K0) ⊕ A(A(N))))
S−14[6] = A(K1) ⊕ A(A(N ⊕ K1) ⊕ A(A(N ⊕ K0) ⊕ A(A(A(K1 ⊕ N)))))
S−14[7] = A(K1) ⊕ A(A(N ⊕ K1) ⊕ A(A(N ⊕ K0) ⊕ A(A(N))))).

The remaining 8 states are even more complex in terms of both the key and nonce.

4.4 On the Design of Keystream Generation and Intermediate Value
Sharing from State Update Function

As our target to achieve high throughput, we try to reuse the intermediate value in the
state update function to reduce the cost of the AES instruction. Among the candidates
that remain after security filtering, we proceed to identify the positions for selecting S[k]
to form the keystream in the format AESL(S[0] ⊕ S[i]) ⊕ S[k] with balancing efficiency of
performance and security, where AESL(S[0] ⊕ S[i]) an is shared from the state update
function as discussed in Section 4.2. Among the candidates, 8 ≤ k ≤ 12 providing enough
security. We notice that in decryption phase, the S[j] which inject with message in
update function is close to S[k] candidate and the message block should be calculated
by keystream, which might cause a data dependency and hurt the pipeline parallel. We

Han Chen, Tao Huang, Phuong Pham and Shuang Wu 15

evaluated decryption performance on the Kunpeng-920 ARM chip and the Intel Cascade
Lake x86 chip. As shown in Table 4, setting k = 9 ensures sufficient parallelism when
j = 13, resulting in j − k = 4 rounds of dependency-free parallelism during decryption.
Therefore, we select state 9 for keystream generation.

Table 4: IPC for different S[k] position on Keystream cross architectures on decryption

k = 8 9 10 11 12
ARM (Taishan V110) 2.30 2.32 2.32 2.28 1.89
x86 (Cascade Lake) 2.88 2.89 2.74 2.55 1.42

As the structure above, we can share intermediate value between Keystream generation
and state update function to reduce one AES instruction and one XOR instruction costs
in both encryption phase and decryption phase and only use 2 AESL instructions each
round. For encryption:

SNew[15] =AESL(S[0] ⊕ S[1]) ⊕ M ⊕ AESL(S[13])
C =AESL(S[0] ⊕ S[1]) ⊕ M ⊕ S[9]

Shared Value :AESL(S[0] ⊕ S[1]) ⊕ M

For decryption:

SNew[15] =C ⊕ S[9] ⊕ AESL(S[13])
M =C ⊕ S[9] ⊕ AESL(S[0] ⊕ S[1])

Shared Value :C ⊕ S[9]

By leveraging value sharing, the one-round encryption instruction cost becomes
aesenc:xor = 2:4 on x86 and aese/aesmc:xor = 4:5 on ARM, while maintaining a
high throughput ratio. For a clearer comparison, we summarize recent work on AES-based
ciphers and their corresponding ratios in Table 5, and benchmark these ciphers on 16KB
for both ARM and x86 with perf-tools to compare the cycle and instruction cost cross-
platform in Table 6. As discussed in Section 2, the HiAE’s AESR-SIMD ratio on x86
devices is 1:3, which enables efficient pipeline utilization. The 4:5 ratio, with an additional
XOR that can be fused as described in Section 2.3, also achieves high throughput on
modern ARM devices. The Table 6 also demonstrates the cross-platform efficiency as
Section 2.1 discussed that recent AES-based ciphers approximately double the instruction
cost on ARM than x86 for the aesenc convert, while HiAE cost much fewer instructions
on ARM.

Table 5: Comparison of AESR-SIMD ratio on different Ciphers (per 128-bit block)

Architecture x86 ARM
Cipher aesenc xor/and ratio aese/aesmc xor/and ratio

HiAE(this work) 2 4 1:3.00 4 5 1:2.25
Rocca 3 3.5 1:2.16 6 6.5 1:2.08

Rocca-S 4 2.5 1:1.62 8 6.5 1:1.81
AEGIS-128L 4 5 1:2.25 8 9 1:2.12

4.5 Design Rationale for Using a 128-bit Tag
The choice of a 128-bit tag combined with 256-bit encryption security—adopted in the
designs of AEGIS [WP14] and MORUS [HT16]—reflects a well-considered trade-off between

16 HiAE: A High-throughput Authenticated Encryption Algorithm

Table 6: IPC Benchmark for AES-based Ciphers on 16KB data Encryption

Architecture x86, Sapphire Rapids ARM, Taishan V120
Cipher cycle/byte ins/byte IPC cycle/byte ins/byte IPC

HiAE(this work) 0.133 0.522 3.92 0.260 0.884 3.41
Rocca 0.187 0.704 3.73 0.413 1.383 3.35

Rocca-S 0.196 0.704 3.60 0.466 1.480 3.17
AEGIS-128L 0.212 0.788 3.73 0.479 1.810 3.77

strong security and practical efficiency. While Rocca-S [ABC+24] employs a 256-bit tag,
our design deliberately opts for a 128-bit tag to balance robust authentication security with
reduced communication and storage overhead, aligning with the demands of real-world
deployment scenarios. This decision stems from a thorough evaluation of cryptographic
requirements and system-level constraints.

Importantly, we emphasize that attacks on encryption and authentication differ funda-
mentally. Encryption can be attacked offline using massive parallelism, precomputation,
or time-memory trade-offs, which justifies the use of a 256-bit key to ensure long-term
confidentiality. In contrast, authentication tag forgery is inherently an online process, re-
quiring interaction with the system for each forgery attempt. Therefore, it is inappropriate
to directly compare the bit-length of encryption keys and authentication tags as if they
provide equivalent security guarantees under the same adversarial model.

Although longer tags can theoretically enhance resistance to forgery, they impose non-
trivial overheads in communication and storage—critical concerns for resource-constrained
or high-throughput applications. We argue that a 128-bit tag remains highly secure based
on the following considerations:

• Online forgery attacks are inherently sequential. Unlike offline attacks,
which can benefit from parallelism, precomputation, and time-memory trade-offs,
online forgery requires one query per forgery attempt. This sequential bottleneck
significantly reduces the rate of viable attack attempts. Even in edge cases involving
shared keys across users, where query parallelism is possible, system-level defenses
such as rate-limiting or denial-of-service mitigation further constrain attack feasibility.

• 128-bit authentication provides high practical security margins. The
expected time to succeed in a brute-force forgery for a 128-bit tag is approximately
1.08 × 1022 years, assuming a forgery attempt every nanosecond. This effectively
places such attacks beyond the reach of any realistic adversary.

• Online attacks remain impractical, even under extreme computational
capabilities. Even with computational resources capable of 2250 operations, an at-
tacker must still perform sequential online queries for each forgery attempt, rendering
large-scale forgery and key recovery attacks infeasible.

In summary, while we recognize the theoretical possibility of exploiting decryption
oracles, the use of a 128-bit tag renders such approaches impractical. The high cost
of online forgeries ensures that the authentication mechanism remains secure in real-
world adversarial settings. Our design thus achieves a practical balance between strong
cryptographic guarantees and system-level efficiency.

5 Security Analysis

Security has always been a primary concern for newly designed stream ciphers. In this
section, we assess the resistance of HiAE to various cryptanalysis attacks.

Han Chen, Tao Huang, Phuong Pham and Shuang Wu 17

5.1 Differential Attack on Initialization
In the initialization phase, the primary concern lies with the differential attack, which
differences are injected in key. The security bound of this attack can be estimated bases
on the minimum number of active S-boxes during initialization. To mitigate risks, it’s
crucial to determine the number of update rounds and strategically select state positions
for injecting the nonce and key to ensure that a minimum of 43 active S-boxes, leading to
a differential characteristic of at least 2−6×43 = 2−258, are generated after the initialization
phase.

Table 7: The lower bound for the number of active S-boxes in the initialization phase where
Ssk and Srk mean active S-boxes in the single-key and related-key setting, respectively.

Rounds 12 13 14 15 16 17 18 19 20 21 22 23 24
No. of Ssk 27 28 28 28 28 28 29 29 30 35 35 40 52
No. of Srk 14 18 18 22 22 22 23 23 24 29 29 34 46

5.2 Forgery Attack
5.2.1 Forgery Attack from Internal State

In a forgery attack, the goal is to identify a differential trail that allows attackers to
arbitrarily choose differences in the associated data or message, with the expectation that
these differences will lead to a collision in the internal state after several rounds. Therefore,
these data or messages with the same length will lead to the same tag value after the
finalization phase. The resistance to this type of attack can be effectively assessed using
an automated approach with modellizing the cryptographic operators by MILP language
[MWGP11]. Since HiAE is built upon the AES round function, demonstrating that the
differential trail includes more than 22 active S-boxes is sufficient, given the tag length
of 128 bits. With a MILP-based method, a minimum of 26 active S-boxes is determined,
ensuring that HiAE offers 128-bit security against forgery attacks. More specify, the
lower bound for number of active S-boxes of HiAE by injecting the difference up to these
corresponding rounds are listed in Table 8.

Table 8: The lower bound for the number of active S-boxes to build forgery attack

Rounds 17 18 25 30 35 45
No. of S-boxes 48 32 30 26 26 26

5.2.2 Forgery Attack from Reduced Round Finalization

This attack explore the strength of finalization phase to agaisnt the forgery attack raised
by the difference in associated data and message length when using the same associated
data and message value but with different length. This due to using zero-padding to
complete the block, i.e AD and AD′ = AD||0∗, as well as M and M ′ = M ||0∗ will result
in identical states ater processing the associated data and the encryption steps when
AD, AD′ and M, M ′ occupy the same number of blocks, but |AD||||M | and |AD′||||M ′|
will have difference. We introduce a low Hamming weight difference to ∆|AD| or ∆|M |
(e.g., 0x00000000000000010000000000000000) and propagate it through as many rounds
as possible until the probability of the differential trail drops below 2−128. By modeling
this attack using MILP, we find that after 10 rounds, the number of active S-boxes exceeds
22. Thus, we conclude that 32 rounds in the finalization phase provide sufficient security
against this attack.

18 HiAE: A High-throughput Authenticated Encryption Algorithm

5.3 State-recovery Attack
In a state-recovery attack, the attacker can query message-ciphertext pairs to gather
information about the sequence of keystreams, aiming to eventually recover the internal
state. Since each keystream contains 128 bits of information, the attacker would need at
least 16 consecutive rounds of message queries to fully reconstruct the 16-block internal
state. By assuming all messages are zero, the attacker gains knowledge of the subsequent
sequence of keystreams:

C0 = A(S[0] ⊕ S[1]) ⊕ S[9]
C1 = A(S[1] ⊕ S[2]) ⊕ S[10]
C2 = A(S[2] ⊕ S[3]) ⊕ S[11]
C3 = A(S[3] ⊕ S[4]) ⊕ S[12]
C4 = A(S[4] ⊕ S[5]) ⊕ S[13]
C5 = A(S[5] ⊕ S[6]) ⊕ S[14]
C6 = A(S[6] ⊕ S[7]) ⊕ S[15]
C7 = A(S[7] ⊕ S[8]) ⊕ A(S[0] ⊕ S[1]) ⊕ A(S[13])
C8 = A(S[8] ⊕ S[9]) ⊕ A(S[1] ⊕ S[2]) ⊕ A(S[14])
C9 = A(S[9] ⊕ S[10]) ⊕ A(S[2] ⊕ S[3]) ⊕ A(S[15])
C10 = A(S[10] ⊕ S[11]) ⊕ A(S[3] ⊕ S[4]) ⊕ A(A(S[0] ⊕ S[1]) ⊕ A(S[13]))
C11 = A(S[11] ⊕ S[12]) ⊕ A(S[4] ⊕ S[5]) ⊕ A(A(S[1] ⊕ S[2]) ⊕ A(S[14]))
C12 = A(S[12] ⊕ S[13]) ⊕ A(S[5] ⊕ S[6]) ⊕ A(A(S[2] ⊕ S[3]) ⊕ A(S[15]))
C13 = A(S[13] ⊕ S[14]) ⊕ A(S[6] ⊕ S[7]) ⊕ A(A(S[3] ⊕ S[4]) ⊕ A(A(S[0] ⊕ S[1]) ⊕ A(S[13])))
C14 = A(S[14] ⊕ S[15]) ⊕ A(S[7] ⊕ S[8]) ⊕ A(A(S[4] ⊕ S[5]) ⊕ A(A(S[1] ⊕ S[2]) ⊕ A(S[14])))
C15 = A(S[15] ⊕ A(S[0] ⊕ S[1]) ⊕ A(S[13])) ⊕ A(S[8] ⊕ S[9])

⊕ A(A(S[5] ⊕ S[6]) ⊕ A(A(S[2] ⊕ S[3]) ⊕ A(S[15])))
In the above system of equations, Ci values are known to the attacker, while Si

represents the original internal block states that need to be uncovered. However, we will
show that by using the guess-and-determine method, the system of equations can not be
solved after 2256 time complexity.

To avoid passing the time complexity of 2256, attackers should not fully guess two
state blocks. If the attacker guess a fully block of Si, for i is one of the index in
{9, 10, 11, 12, 13, 14, 15}, the information of Sj ⊕ Sj+1, for respective j is one of number in
{0, 1, 2, 3, 4, 5, 6} is revealed by calculating the inversion of AES round value. However,
from C7 to C15, at least five state blocks contribute to the keystream computations. As
a result, having access to at most 256 bits of information is insufficient to uncover the
remaining state blocks without also guessing the entirety of another state block. Therefore,
we estimate that the time complexity of the guess-and-determine attack cannot be reduced
below 2256.

5.4 Integral Attack
Integral attacks are among the most effective methods for targeting round-reduced AES
since the integral distinguisher for 4-round is first analyzed in [LIMS21]. To assess the
security of our design, evaluating its resistance to integral attacks is crucial. Following
the approach in [LIMS21], we begin by expressing the internal state in terms of the initial
state, allowing for an analysis of these expressions. For clarity, let Sr[i] represent the
ith-block state at the r iterations of the round function during the initialization phase.
Additionally, we simplify the notation by omitting constants and using A(S) to denote
that S undergoes one AES round, where the constant is ignored and A(S) could represent
A(X ⊕ c) with c as a 128-bit constant. Using this approach, the internal state of first 11
rounds can be represented as follows:

Han Chen, Tao Huang, Phuong Pham and Shuang Wu 19

S0[2] = N, S0[5] = N, S0[8] = N,

S1[1] = N, S1[4] = N, S1[7] = N,

S2[0] = N, S2[3] = N, S2[6] = N, S2[15] = A(N),
S3[2] = N, S3[5] = N, S3[14] = A(N), S3[15] = A(N),
S4[1] = N, S4[4] = N, S4[13] = A(N), S4[14] = A(N),
S5[0] = N, S5[3] = N, S5[12] = A(N), S5[13] = A(N), S5[15] = A(N) ⊕ A(A(N)),
S6[2] = N, S6[11] = A(N), S6[12] = A(N), S6[14] = A(N) ⊕ A(A(N)), S6[15] = A(N) ⊕ A(A(N)),
S7[1] = N, S7[10] = A(N), S7[11] = A(N), S7[13] = A(N) ⊕ A(A(N)), S7[14] = A(N) ⊕ A(A(N)),
S8[0] = N, S8[9] = A(N), S8[10] = A(N), S8[12] = A(N) ⊕ A(A(N)), S8[13] = A(N) ⊕ A(A(N)),
S8[15] = A(N) ⊕ A(A(N) ⊕ A(A(N))),
S9[8] = A(N), S9[9] = A(N), S9[11] = A(N) ⊕ A(A(N)), S9[12] = A(N) ⊕ A(A(N)),
S9[14] = A(N) ⊕ A(A(N) ⊕ A(A(N)), S9[15] = A(N) ⊕ A(A(N) ⊕ A(A(N) ⊕ A(A(N)))),
S10[7] = A(N), S10[8] = A(N), S10[10] = A(N) ⊕ A(A(N)), S10[11] = A(N) ⊕ A(A(N)),
S10[13] = A(N) ⊕ A(A(N) ⊕ A(A(N)), S10[14] = A(N) ⊕ A(A(N) ⊕ A(A(N) ⊕ A(A(N)))),
S11[15] = A(A(N) ⊕ A(A(N) ⊕ A(A(N)))),
S14[15] = A(A(A(N) ⊕ A(A(N) ⊕ A(A(N))))).
It is essential to consider the scenario where the nonce N takes on all possible 2128

values while using the same 256-bit key to guarantee the 256-bit security of our design.
The most efficient integral attack result for round-reduced AES indicates that no integral
distinguisher exists for 5 or more AES rounds [SLR+15]. Based on our analysis, after
14 rounds, the nonce N goes through at least 5 AES rounds in S14[15], thus preventing
integral attacks. In summary, 32 initialization rounds for HiAE are secure against integral
attacks.

5.5 Key Committing Attacks
In this section, we present an initial analysis suggesting that our approach of XORing a
message or data into multiple states during each iteration may offer better resistance to key-
committing attacks. While defending against key-committing attacks is not our primary
focus—since implementing the necessary countermeasures could introduce significant
performance trade-offs—we have prioritized security features that address the most common
threats without compromising overall system performance. However, our preliminary
analysis indicates that the current structure of HiAE demonstrates stronger resistance to
these attacks compared to previous designs such as AEGIS and Rocca. We provide an
initial comparison of the FROB and CMT-1/2 security of HiAE, using the same methods
for analyzing the key-committing security of AEGIS, Rocca, and Tiaoxin as described in
[DFI+24, TTI24]. In [DFI+24], AEGIS and Rocca-S were compromised in practical time
within the FROB and CMT-1/2 models, and later, in [TTI24], Rocca was also shown to
be vulnerable in both models.

The key-committing attacks aim to find a ciphertext-tag pair that can be decrypted
using two different sets of key and nonce. Specifically, we focus on identifying (K1, N1, AD)
and (K2, N2, AD∗) pairs, where K1 ̸= K2, that produce identical ciphertext-tags. The
FROB attack is a special case of CMT-1/2 attacks where N1 = N2. HiAE follows the
generalized state updating process as described in Fig.1. Initially, two keys, K1 and K2,
along with an initialization vector N or two vectors N1 and N2, are chosen. Consider that
encrypting associated data AD and plaintext P1 using K1 and N1 results in ciphertext-tag
C||T . Let H = H[0]||H[1]||...||H[14]||H[15] represent the internal state after processing the
AD. Let S = S[0]||S[1]||S[2]||...||S[14]||S[15] represent the internal state after processing
K2 and N , and before processing the associated data. We aim to find a suitable associated
data AD∗ such that AD∗ transforms S into H. If such an AD∗ exists and has the same
length as AD, the pair (K1, N1, AD, P1) and (K2, N2, AD∗, P1) will produce the same

20 HiAE: A High-throughput Authenticated Encryption Algorithm

ciphertext-tag pair C||T , enabling the attacker to perform key-committing attacks.
We first follow the method of presenting the internal states by the system of equations

of the starting states presented in [DFI+24]. At iteration i, only one block of data, AD∗i , is
processed and XORed with three states S[2], S[12], and S[15], resulting in at least a 128-bit
constraint: Hnew[2] ⊕ Hold[3] = Hnew[12] ⊕ Hold[13] = AD∗i . As a result, we need at least
16 blocks of associated data to provide sufficient degrees of freedom for transforming from
S = H0 to H = H15. After 16 steps, the state H is derived from S as follows:

H[0] =A(S[0] ⊕ S[1]) ⊕ A(S[13]) ⊕ AD∗0 ⊕ AD∗2 ⊕ AD∗12

H[1] =A(S[1] ⊕ S[2]) ⊕ A(S[14]) ⊕ AD∗1 ⊕ AD∗3 ⊕ AD∗13

H[2] =A(S[2] ⊕ S[3] ⊕ AD∗0) ⊕ A(S[15]) ⊕ AD∗2 ⊕ AD∗4 ⊕ AD∗15

H[3] =A(S[3] ⊕ AD∗0 ⊕ S[4] ⊕ AD∗1) ⊕ A(A(S[0] ⊕ S[1]) ⊕ A(S[13]) ⊕ AD∗0) ⊕ AD∗3 ⊕ AD∗5

H[4] =A(S[4] ⊕ AD∗1 ⊕ S[5] ⊕ AD∗2) ⊕ A(A(S[1] ⊕ S[2]) ⊕ A(S[14]) ⊕ AD∗1) ⊕ AD∗4 ⊕ AD∗6

H[5] =A(S[5] ⊕ AD∗2 ⊕ S[6] ⊕ AD∗3) ⊕ A(A(S[2] ⊕ S[3] ⊕ AD∗0) ⊕ A(S[15]) ⊕ AD∗2) ⊕ AD∗5 ⊕ AD∗7

H[6] =A(S[6] ⊕ AD∗3 ⊕ S[7] ⊕ AD∗4) ⊕ A(A(S[3] ⊕ AD∗0 ⊕ S[4] ⊕ AD∗1) ⊕ A(A(S[0] ⊕ S[1]) ⊕ A(S[13]) ⊕ AD∗0) ⊕ AD∗3)
⊕ AD∗6 ⊕ AD∗8

H[7] =A(S[7] ⊕ AD∗4 ⊕ S[8] ⊕ AD∗5) ⊕ A(A(S[4] ⊕ AD∗1 ⊕ S[5] ⊕ AD∗2) ⊕ A(A(S[1] ⊕ S[2]) ⊕ A(S[14]) ⊕ AD∗1) ⊕ AD∗4)
⊕ AD∗7 ⊕ AD∗9

H[8] =A(S[8] ⊕ AD∗5 ⊕ S[9] ⊕ AD∗6) ⊕ A(A(S[5] ⊕ AD∗2 ⊕ S[6] ⊕ AD∗3) ⊕ A(A(S[2] ⊕ S[3] ⊕ AD∗0 ⊕ A(S[15]) ⊕ AD∗2) ⊕ AD∗5)
⊕ AD∗8 ⊕ AD∗10

H[9] =A(S[9] ⊕ AD∗6 ⊕ S[10] ⊕ AD∗7) ⊕ A(A(S[6] ⊕ AD∗3 ⊕ S[7] ⊕ AD∗4) ⊕ A(A(S[3] ⊕ AD∗0 ⊕ S[4] ⊕ AD∗1

⊕ A(A(S[0] ⊕ S[1]) ⊕ A(S[13]) ⊕ AD∗0) ⊕ AD∗3) ⊕ AD∗6) ⊕ AD∗9 ⊕ AD∗11

H[10] =A(S[10] ⊕ AD∗7 ⊕ S[11] ⊕ AD∗8) ⊕ A(A(S[7] ⊕ AD∗4 ⊕ S[8] ⊕ AD∗5) ⊕ A(A(S[4] ⊕ AD∗1 ⊕ S[5] ⊕ AD∗2

⊕ A(A(S[1] ⊕ S[2] ⊕ A(S[14]) ⊕ AD∗1) ⊕ AD∗4) ⊕ AD∗7) ⊕ AD∗10 ⊕ AD∗12

H[11] =A(S[11] ⊕ AD∗8 ⊕ S[12] ⊕ AD∗9) ⊕ A(A(S[8] ⊕ AD∗5 ⊕ S[9] ⊕ AD∗6) ⊕ A(A(S[5] ⊕ AD∗2 ⊕ S[6] ⊕ AD∗3

⊕ A(A(S[2] ⊕ S[3] ⊕ A(S[15]) ⊕ AD∗2) ⊕ AD∗5) ⊕ AD∗8) ⊕ AD∗11 ⊕ AD∗13

H[12] =A(S[12] ⊕ AD∗9 ⊕ S[13] ⊕ AD∗0 ⊕ AD∗10) ⊕ A(A(S[9] ⊕ AD∗6 ⊕ S[10] ⊕ AD∗7) ⊕ A(A(S[6] ⊕ AD∗3 ⊕ S[7] ⊕ AD∗4

⊕ A(A(S[3] ⊕ S[4] ⊕ A(A(S[0] ⊕ S[1]) ⊕ A(S[13]) ⊕ AD∗0) ⊕ AD∗3) ⊕ AD∗6) ⊕ AD∗9) ⊕ AD∗12 ⊕ AD∗14

H[13] =A(S[13] ⊕ AD∗0 ⊕ AD∗10 ⊕ S[14] ⊕ AD∗1 ⊕ AD∗11) ⊕ A(A(S[10] ⊕ AD∗7 ⊕ S[11] ⊕ AD∗8) ⊕ A(A(S[7] ⊕ AD∗4 ⊕ S[8] ⊕ AD∗5

⊕ A(A(S[4] ⊕ S[5] ⊕ A(A(S[1] ⊕ S[2]) ⊕ A(S[14]) ⊕ AD∗1) ⊕ AD∗4) ⊕ AD∗7) ⊕ AD∗10) ⊕ AD∗13 ⊕ AD∗15

H[14] =A(S[14] ⊕ AD∗1 ⊕ AD∗11 ⊕ S[15] ⊕ AD∗2 ⊕ AD∗12) ⊕ A(A(S[11] ⊕ AD∗8 ⊕ S[12] ⊕ AD∗9) ⊕ A(A(S[8] ⊕ AD∗5 ⊕ S[9] ⊕ AD∗6

⊕ A(A(S[5] ⊕ S[6] ⊕ A(A(S[2] ⊕ S[3]) ⊕ A(S[15]) ⊕ AD∗2) ⊕ AD∗5) ⊕ AD∗8) ⊕ AD∗11) ⊕ AD∗14

H[15] =A(S[15] ⊕ AD∗3 ⊕ AD∗12 ⊕ A(S[0] ⊕ S[1]) ⊕ A(S[13]) ⊕ AD∗3 ⊕ AD∗13 ⊕ A(A(S[12] ⊕ AD∗9 ⊕ S[13] ⊕ AD∗10)
⊕ A(A(S[9] ⊕ AD∗6 ⊕ S[10] ⊕ AD∗7 ⊕ A(A(S[6] ⊕ S[7] ⊕ A(A(S[3] ⊕ S[4]) ⊕ A(A(S[0] ⊕ S[1]) ⊕ A(S[13]) ⊕ AD∗0) ⊕ AD∗3)
⊕ AD∗6) ⊕ AD∗9) ⊕ AD∗12) ⊕ AD∗15.

From the system of equations above, given the information of H and S, no block AD∗i
can be retrieved for free. Thus, guessing at least one 128-bit block is necessary to solve
the system, which counters the time complexity of a generic attack.

The second method using differential technique which breaks the security of Rocca
in the CMT-1/2 and FROB models as described in [TTI24], however, does not trivially
apply to HiAE. After processing the initial state with different keys and nonces, the states
S become fully distinct due to the diffusion in the initialization phase. By exploiting
differences in the associated data (AD), which can be freely chosen by the attacker, [TTI24]
successfully eliminated all differences in the internal state. The reason for this is that in
Rocca, Rocca-S, and AEGIS, XORing one or two message blocks to only one or two states
in each iteration weakens the constraint between messages and internal states. This issue,
however, is avoided in HiAE. In HiAE, each iteration involves XORing a block of message
(data) into three blocks of the state S2, S12, and S15. Attempting to cancel out one block
state using the difference from a block of message introduces new differences into other
block states. Moreover, canceling multiple block states is equivalent to finding a collision
for the 128-bit block, which is no lower than 264. Therefore, we believe that a differential
attack on HiAE would have a complexity no less than 264. An example of this is shown in
Fig. 4, where AD0 to AD9 are used to cancel the differences in S12 to S3, and AD10 is
used for S15 but this results in new differences in S2 and S12. We also used MILP model
to validated our observation.

Our design employs a 128-bit tag, and the generic attack follows the birthday paradox

Han Chen, Tao Huang, Phuong Pham and Shuang Wu 21

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S15S14

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S15S14

A A

AD0

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S15S14

A A

AD9

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S15S14

A A

AD10

Figure 4: Example of using the differences of associated data to cancel the differences in
the states

algorithm, with a forgery time complexity bound of 264. Based on our analysis above, we
believe that it is unlikely to find key-committing attacks with a complexity lower than
that of the generic attack.

However, our design is not resistant to the CMT-3 attack, where everything is committed,
and the attacker can use the same key and nonce for both queries. While this attack is a
potential vulnerability, we consider this scenario unlikely in most real-world applications, as
the majority of applications only require key-committing properties, as noted in [ADG+22,
GLR17].

5.6 The Linear Bias on Keystream
To analyze the strength of our construction against a potential statistical attack, we also
used the simplified truncated model referenced in [ENP19]. By examining 16 consecutive
rounds, we found that at least 19 active S-boxes appears in the linear trail, which corre-
sponds to a distinguishing attack with a time complexity of no less than 2114. Although
aiming for 22 active S-boxes would be preferable, it might need to compromise the perfor-
mance, and we believe that 19 active S-boxes offer adequate protection against such attacks
due to the significant disparity between the truncated and bitwise models highlighted in
[ENP19]. Additionally, to determine if there exists a compatible linear trail aligning with
the truncated model’s best solution, we implemented the bitwise model, which removes
additional constraints on S-box input and output masks, aside from trivial infeasibilities
caused by zero input or output masks. Most bitwise transitions in the SubByte operator
involve multiple active bits, rather than achieving the optimal square correlation transition
of 2−6, which occurs when only one bit is active in both the input and output masks.
However, efforts to validate these transitions quickly lead to invalid linear characteristics
of less than 25 active S-boxes. This observation which is more discussed in Appendix A
suggests that the optimal square correlation of HiAE is significantly weaker than the value
of 2−150.

From a practical application perspective, we consider a square correlation of 2−150 to
be an acceptable threshold for information leakage. In fact, for an attacker to extract

22 HiAE: A High-throughput Authenticated Encryption Algorithm

even a single bit of information from a message, they would need to encrypt at least
2150 identical message blocks with independent key and nonce pairs, a scenario that is
infeasible in real-world attacks. The same amount of data and computational complexity
would be required to launch a distinguishing attack on the keystream using this linear
approximation. Given these requirements, such an attack is also negligible in practical
applications. Also, due to the large internal state size of 2048 bits, it is infeasible to adapt
the classical linear bias attack on an LFSR stream cipher into a quantum linear bias
attack with a lower complexity than the key-recovery attack achievable through Grover’s
algorithm, as analyzed in [Hos24].

6 Performance Evaluation

6.1 Test Environment and Configuration

The benchmark contains 14 representative processors, including 7 ARM-based and 7
x86-based architectures (detailed in Table 9), spanning server, desktop, laptop, mobile and
router platforms. The experimental configurations are as follows:

• x86 Servers: Ubuntu 22.04 with GCC 11.4
• Desktop Platform: Windows 11 with WSL2 (Ubuntu 22.04) and GCC 11.4
• Kunpeng Server Platform: openEuler 22.03 with GCC 10.3
• Apple Devices: MacBook Air 13" (2020, M1), MacBook Pro 14" (2023, M2 Max),

MacBook Pro 14" (2023, M3 Pro) with GNU/GCC 14
• Mobile Devices: Huawei Mate 50/60 smartphones with ArkCompiler 3.0.0.5
• Router: RK3568 development board with openWRT 22.03 OS and openWRT GCC

11.2.0
To ensure measurement consistency and cross-platform comparability, we implement

the following unified configurations:
• Maximum optimization level (-O3) enabled for all cryptographic implementations
• Mobile device tests conducted in performance mode with CPU affinity binding to

prime cores

Table 9: Processor Specifications1

Chip Microarchitecture Platform ISA Support Launch

ARM

HiSilicon Kunpeng 920 TaiShan V110 Server ARMv8.2-A 2019-Q1
HiSilicon Kunpeng 920X TaiShan V120 Server ARMv9.2-A N/A

HiSilicon Kirin 9000S TaiShan V120 Mobile ARMv9.2-A 2023-Q3
Qualcomm Snapdragon 8+ Gen1 Cortex-X2 Mobile ARMv9-A 2022-Q2

Apple M3 Pro Everest/Sawtooth Laptop ARMv8.6-A 2023-Q4
Apple M2 Max Avalanche/Blizzard Laptop ARMv8.5-A 2023-Q1

Rockchip RK3568 Cortex-A55 Router ARMv8.2-A 2020-Q4

x86

Intel Xeon W9-3495X Sapphire Rapids Workstation AVX-512, VAES 2023-Q1
AMD EPYC 9334 Zen4 Server AVX-512, VAES 2022-Q4

AMD Ryzen 9 7950X Zen4 Desktop AVX-512, VAES 2022-Q3
Intel Xeon Gold 6326 Ice Lake Server AVX-512, VAES 2021-Q2
Intel Core i7-11700 Rocket Lake Desktop AVX-512, VAES 2021-Q1

Intel Xeon Gold 6242R Cascade Lake Server AVX-512, AES-NI 2020-Q1
Intel Xeon E5-2620 v3 Haswell Server AES-NI 2014-Q3

1Details of the benchmark can refer to https://github.com/Concyclics/HiAE

https://github.com/Concyclics/HiAE

Han Chen, Tao Huang, Phuong Pham and Shuang Wu 23

6.2 Contrastive Ciphers Software Implementation
We conduct a comprehensive performance comparison among state-of-the-art AES-based
authenticated encryption with only encryption and associated data (AEAD) schemes,
including SNOW-V [EJMY18], AEGIS [WP14], Rocca [SLN+22], and Rocca-S [ABC+24].
For AEGIS, we only select AEGIS-128, the optimal branch of the AEGIS family for
comparison. For SNOW-V, the AEAD mode is SNOW-V-GCM. During the AEAD mode
tests, the associated data (AD) length is set to 48 bytes. We also measure the performance
of AES-256-CTR and AES-256-GCM for encryption and AEAD modes as baseline.

We use official open-source implementations of Rocca, Rocca-S, AEGIS, and SNOW-V
on x86 devices, which are provided in the papers or on the authors’ websites. These open-
source implementations for x86 are then converted to ARM using SSE2NEON [DLT17].
Specifically, _mm_aesenc_si128(x, y) is replaced with veorq_u8(vaesmcq_u8(vaeseq_u8(x,
0), y)), and _mm_xor_si128 is replaced with veorq_u8.

For AES-256-CTR and AES-256-GCM, we use the OpenSSL (3.0) implementation for
both x86 and ARM servers, desktops, laptops and workstations. For mobile phones, we
implement AES-256 manually.

6.3 HiAE Software Implementation
For HiAE implementation, we note the shift-state structure involve overhead to compute
the state index. To mitigate latency induced by the shift-state structure’s dynamic indexing,
we employ loop unrolling techniques: 16 rounds of state updates are unrolled to eliminate
shift-state branching overhead, while both the 32-round initialization and finalization
phases undergo full unrolling. A detailed analysis of these optimizations appears in
Appendix B. On x86 devices with AES-NI, we use the _mm_aesenc_si128 intrinsic for
AESR operations and _mm_xor_si128 for XOR. On ARM NEON with the cryptographic
extension, we utilize vaesmcq_u8 and vaeseq_u8 for AESR, and veorq_u8 for XOR.

6.4 Evaluation and Result Analysis
We assess the performance of HiAE, with results presented in Table 10. HiAE achieves
AEAD encryption speeds exceeding 340 Gbps on x86 devices and 180 Gbps on ARM
devices when processing long messages. It outperforms all comparison algorithms across
various ARM devices, including router, mobile, laptop, and server chips. On x86 platforms,
HiAE delivers the best performance on the latest architectures (since 2021). However, it
falls slightly behind Rocca on older Xeon Gold 6242R and E5-2620 v3 processors, which
do not support VAES.

Intel’s optimization manual [Cor24a] states that on Cascade Lake architecture (released
in 2019) and earlier, the aesenc instruction is restricted to the lower 16 128-bit registers
(xmm0 to xmm15). This limitation prevents HiAE from storing all states within registers,
resulting in a performance penalty. In contrast, more recent processors, such as Intel
Ice Lake (2021) and AMD Zen 4 (2022), introduce support for the vaesenc instruction,
which allows utilizing the lower 128 bits of all 32 AVX-512 registers (xmm0 to xmm31).
Similarly, ARM architectures provide access to all 32 vector registers for AES instructions.
These advancements enable HiAE to maintain all states within registers, with memory I/O
required only for message and ciphertext processing—same as other ciphers with fewer
states. Consequently, HiAE achieves superior performance on devices supporting AES
instructions across 32 vector registers, a feature now widely available in both ARM and
x86 architectures.

These evaluations confirm that HiAE consistently outperforms existing solutions on
the latest and increasingly popular processors across both x86 and ARM architectures.

24 HiAE: A High-throughput Authenticated Encryption Algorithm

Table 10: Performance Benchmark (Gbps)
Encryption Only AEAD

Input Size (bytes) 16384 8192 4096 2048 1024 256 64 Input Size (bytes) 16384 8192 4096 2048 1024 256 64
Intel Xeon W9-3495X

HiAE (this work) 177.25 174.08 167.96 157.55 138.71 82.16 16.75 HiAE (this work) 171.46 163.09 148.79 127.72 98.63 41.20 9.38
Rocca 125.25 116.43 103.13 83.95 62.89 30.55 10.80 Rocca 117.38 103.30 83.93 59.73 38.54 14.59 4.00
Rocca-S 120.24 109.75 93.77 73.20 56.58 24.81 9.64 Rocca-S 111.15 95.57 75.99 52.70 33.53 12.45 3.45
AEGIS-128L 111.90 110.65 106.66 100.02 88.74 52.72 22.21 AEGIS-128L 109.76 107.04 101.55 92.15 77.29 39.10 13.30
SNOW-V 36.27 35.18 33.22 29.93 25.20 12.45 4.20 SNOW-V-GCM 13.04 13.00 12.91 12.73 12.41 10.73 6.96
AES-256-CTR 47.17 46.75 46.88 45.81 43.98 35.59 17.87 AES-256-GCM 36.49 35.68 35.35 34.01 32.87 23.89 12.57

AMD Ryzen 9 7950X
HiAE (this work) 352.73 351.79 335.89 319.93 269.01 140.86 23.39 HiAE (this work) 340.02 313.88 278.01 222.32 155.26 60.11 12.12
Rocca 259.14 252.71 235.92 207.67 166.71 76.68 27.39 Rocca 250.16 233.89 204.45 163.43 116.56 42.48 12.08
Rocca-S 219.27 212.45 198.38 175.87 142.47 65.19 23.44 Rocca-S 212.16 198.70 174.36 140.24 102.19 37.68 11.00
AEGIS-128L 189.23 188.19 182.16 171.55 153.00 92.17 35.90 AEGIS-128L 187.87 183.78 173.67 157.17 131.58 66.35 21.81
SNOW-V 45.09 43.82 41.45 37.34 31.14 15.66 5.21 SNOW-V-GCM 19.92 19.89 19.75 19.48 18.89 15.86 9.72
AES-256-CTR 95.71 94.77 93.32 90.08 84.09 63.41 29.98 AES-256-GCM 51.90 51.43 50.94 48.79 46.12 35.75 18.35

AMD EPYC 9334
HiAE (this work) 265.99 261.61 249.26 237.01 199.33 104.47 17.41 HiAE (this work) 253.19 233.47 206.56 166.96 115.85 44.44 8.98
Rocca 192.49 186.96 174.06 152.89 122.91 56.44 19.94 Rocca 186.04 172.72 150.88 120.47 85.90 31.35 8.88
Rocca-S 162.56 156.30 145.69 128.76 104.50 47.69 17.05 Rocca-S 157.06 146.18 128.49 103.01 74.99 27.68 8.08
AEGIS-128L 139.69 138.47 134.33 126.03 112.39 67.36 26.26 AEGIS-128L 138.89 135.39 128.01 115.62 96.74 48.74 16.09
SNOW-V 33.68 32.70 30.86 27.78 23.15 11.57 3.59 SNOW-V-GCM 14.67 14.62 14.49 14.25 13.82 11.66 7.17
AES-256-CTR 70.20 69.50 68.07 66.34 62.32 47.26 22.24 AES-256-GCM 38.80 38.44 37.91 36.58 34.41 26.84 14.04

Intel Xeon Gold 6326
HiAE (this work) 202.45 198.04 190.39 187.29 162.41 90.03 17.57 HiAE (this work) 195.02 184.60 167.03 149.58 113.11 45.61 10.42
Rocca 160.22 154.14 146.02 128.32 103.62 49.28 15.59 Rocca 155.25 145.18 128.13 106.09 77.67 29.78 8.55
Rocca-S 145.31 140.54 133.09 118.17 95.08 47.62 15.43 Rocca-S 140.90 132.55 118.85 98.64 73.46 29.27 8.65
AEGIS-128L 117.98 115.25 111.48 105.33 93.18 55.22 21.09 AEGIS-128L 116.85 113.10 107.31 95.74 80.39 39.96 13.33
SNOW-V 44.24 42.89 40.40 37.15 30.96 14.81 4.80 SNOW-V-GCM 14.63 14.57 14.46 14.24 13.80 11.69 7.25
AES-256-CTR 61.96 61.28 60.34 58.98 55.71 41.16 20.74 AES-256-GCM 43.85 43.29 41.75 39.82 36.27 26.98 12.51

Intel Core i7-11700
HiAE (this work) 257.94 254.91 240.15 244.98 212.81 123.95 21.94 HiAE (this work) 245.72 231.54 209.94 190.57 146.43 57.31 13.31
Rocca 199.43 190.65 176.69 150.67 116.75 49.31 17.30 Rocca 191.12 177.05 148.89 115.16 79.22 27.41 7.49
Rocca-S 183.33 175.53 166.78 145.24 115.91 51.70 18.22 Rocca-S 176.87 163.87 140.07 106.64 73.19 25.09 6.75
AEGIS-128L 151.48 150.25 145.59 138.21 125.77 76.91 28.62 AEGIS-128L 148.86 145.18 139.41 128.22 110.11 56.24 18.41
SNOW-V 43.71 42.96 41.09 38.33 32.46 17.10 5.88 SNOW-V-GCM 18.66 19.29 19.26 19.11 18.58 15.69 9.69
AES-256-CTR 71.50 70.35 70.24 66.66 62.18 46.60 20.22 AES-256-GCM 114.07 106.55 97.25 79.60 62.33 41.78 21.50

Intel Xeon Gold 6242R
HiAE (this work) 138.29 138.77 134.47 136.33 116.44 58.22 15.52 HiAE (this work) 133.19 129.58 120.79 112.39 86.14 35.59 8.38
Rocca 162.05 154.87 142.84 124.27 103.79 35.41 8.91 Rocca 156.60 144.58 127.09 104.80 76.07 28.50 8.23
Rocca-S 122.63 118.74 110.93 98.88 81.20 30.60 7.44 Rocca-S 119.07 111.52 99.29 81.69 60.09 23.21 6.76
AEGIS-128L 124.31 121.56 115.16 105.52 89.82 47.17 16.51 AEGIS-128L 123.20 118.78 110.11 97.74 76.13 36.07 11.28
SNOW-V 38.34 37.56 35.49 33.06 27.99 14.51 4.36 SNOW-V-GCM 17.03 16.96 16.81 16.54 16.01 13.36 8.01
AES-256-CTR 36.24 36.05 35.89 35.32 34.31 28.90 17.14 AES-256-GCM 35.84 35.36 34.42 32.52 29.59 19.29 10.68

Intel Xeon E5-2620 v3
HiAE (this work) 66.00 69.29 67.13 65.20 57.10 31.70 7.42 HiAE (this work) 63.90 64.80 59.38 52.25 39.84 16.17 4.00
Rocca 78.74 75.90 70.66 61.79 50.14 22.76 7.17 Rocca 75.97 70.71 62.23 49.97 36.13 13.42 3.82
Rocca-S 54.73 52.98 49.88 44.43 35.94 17.33 5.50 Rocca-S 52.64 49.33 43.82 35.65 26.02 10.06 3.01
AEGIS-128L 59.46 58.09 55.43 50.06 44.04 24.12 8.63 AEGIS-128L 58.91 56.68 52.75 46.31 37.39 17.37 5.52
SNOW-V 22.02 21.63 20.53 18.59 15.47 7.77 2.58 SNOW-V-GCM 8.38 8.38 8.35 8.22 7.95 6.63 3.96
AES-256-CTR 21.26 21.25 21.13 20.70 19.92 16.14 8.01 AES-256-GCM 14.47 14.26 14.06 13.34 12.52 9.26 4.95

Qualcomm Snapdragon 8+ Gen1
HiAE (this work) 120.85 115.01 104.50 88.67 66.17 27.27 6.87 HiAE (this work) 115.32 106.56 92.80 74.06 52.88 19.20 4.68
Rocca 103.85 101.29 95.58 86.65 72.99 37.53 13.16 Rocca 99.72 99.37 94.50 82.35 67.57 32.14 10.41
Rocca-S 79.86 80.18 77.32 68.79 58.30 30.34 10.56 Rocca-S 83.45 79.96 73.97 66.30 54.04 26.08 8.44
AEGIS-128L 71.12 69.45 66.36 61.79 54.07 31.05 11.49 AEGIS-128L 68.41 66.77 62.30 56.52 46.88 23.05 8.04
SNOW-V 18.94 18.65 18.13 17.97 11.09 5.45 1.36 SNOW-V-GCM 5.55 5.54 5.50 5.43 5.29 4.60 3.02
AES-256-CTR 35.48 34.55 32.99 30.15 26.23 14.41 4.71 AES-256-GCM 7.51 7.36 7.36 7.21 6.96 5.72 3.17

Hisilicon Kirin 9000S
HiAE (this work) 102.24 98.02 89.01 75.30 57.51 23.89 5.67 HiAE (this work) 97.67 89.7 78.07 61.31 42.86 15.30 3.99
Rocca 71.32 69.32 65.43 59.07 46.88 15.46 1.81 Rocca 70.82 68.26 63.77 56.25 45.53 21.24 6.80
Rocca-S 58.37 55.38 53.52 48.71 39.40 13.18 3.45 Rocca-S 58.49 55.65 52.26 44.37 36.79 17.01 5.39
AEGIS-128L 48.08 47.20 45.37 42.15 36.83 21.02 3.52 AEGIS-128L 47.57 46.09 43.34 29.62 31.97 15.62 2.23
SNOW-V 18.94 18.65 18.13 17.97 11.09 5.45 1.36 SNOW-V-GCM 5.55 5.54 5.50 5.43 5.29 4.60 3.02
AES-256-CTR 29.47 28.84 11.77 9.63 7.86 4.75 2.00 AES-256-GCM 6.50 6.39 6.09 6.40 6.19 5.16 3.10

HiSilicon Kunpeng 920
HiAE (this work) 56.14 55.06 52.20 47.10 39.47 20.13 5.55 HiAE (this work) 53.72 50.80 45.45 37.63 27.95 10.99 2.92
Rocca 42.81 41.31 38.92 34.66 28.47 13.74 4.47 Rocca 41.17 38.28 33.85 27.42 19.79 7.44 2.13
Rocca-S 34.27 33.23 32.24 29.15 24.72 12.57 4.25 Rocca-S 33.64 31.70 28.37 23.43 17.46 6.83 1.99
AEGIS-128L 23.38 23.02 22.41 21.20 19.14 12.16 4.99 AEGIS-128L 23.11 22.51 21.44 19.55 16.78 8.95 3.08
SNOW-V 14.34 14.09 13.49 12.61 10.95 6.30 2.32 SNOW-V-GCM 4.92 4.90 4.86 4.78 4.63 3.89 2.38
AES-256-CTR 21.54 21.43 21.21 20.92 19.94 16.10 9.09 AES-256-GCM 14.66 14.60 14.41 14.45 14.10 12.15 7.52

HiSilicon Kunpeng 920X
HiAE (this work) 81.28 76.62 74.85 65.73 56.78 28.89 8.37 HiAE (this work) 75.08 71.10 63.09 52.33 38.69 15.08 3.81
Rocca 48.59 47.19 44.48 39.87 33.06 16.31 5.39 Rocca 46.90 44.06 39.25 32.21 23.72 9.18 2.66
Rocca-S 43.00 41.76 39.38 35.34 29.33 14.51 4.81 Rocca-S 41.54 39.02 34.76 28.56 21.03 8.15 2.36
AEGIS-128L 41.81 41.07 39.49 36.72 32.21 18.55 6.86 AEGIS-128L 41.32 40.06 37.71 33.74 27.88 13.65 4.49
SNOW-V 18.70 18.17 17.26 15.64 13.17 6.77 2.30 SNOW-V-GCM 6.15 6.13 6.09 6.01 5.86 5.10 3.38
AES-256-CTR 39.16 39.21 38.61 37.52 36.72 28.91 17.88 AES-256-GCM 29.54 29.28 28.85 27.94 26.31 16.65 11.34

Apple M2 Max
HiAE (this work) 177.59 173.76 165.20 150.94 128.08 68.24 16.63 HiAE (this work) 173.32 164.63 149.99 127.37 97.59 41.54 9.81
Rocca 153.49 148.44 138.97 127.04 105.38 51.14 16.20 Rocca 148.47 138.26 124.58 104.04 75.75 28.83 8.29
Rocca-S 135.70 131.46 123.62 111.23 92.20 45.53 14.72 Rocca-S 131.10 121.86 109.78 90.65 66.85 26.05 7.60
AEGIS-128L 115.05 112.35 106.87 98.99 89.40 51.95 22.03 AEGIS-128L 113.60 110.10 103.68 93.50 77.69 38.69 12.88
SNOW-V 27.18 26.55 25.29 23.02 19.62 10.76 3.75 SNOW-V-GCM 8.69 8.68 8.67 8.65 8.59 8.27 7.27
AES-256-CTR 84.79 84.21 82.42 81.05 76.10 56.28 29.49 AES-256-GCM 53.68 52.50 50.91 47.86 42.98 36.24 22.74

Apple M3 Pro
HiAE (this work) 194.13 189.00 180.06 164.26 139.46 76.88 18.89 HiAE (this work) 189.19 179.78 162.85 139.08 106.39 45.42 9.72
Rocca 182.04 175.51 163.97 144.04 118.05 56.63 18.50 Rocca 175.64 163.85 144.62 115.02 83.79 31.78 9.40
Rocca-S 158.87 153.85 144.15 127.50 105.58 51.73 19.43 Rocca-S 153.46 144.21 128.10 101.12 74.59 29.14 8.59
AEGIS-128L 132.75 130.21 125.18 112.88 100.16 59.18 26.17 AEGIS-128L 131.17 127.28 119.63 105.86 88.33 44.02 14.57
SNOW-V 36.46 35.42 33.84 30.76 26.16 13.94 4.72 SNOW-V-GCM 11.76 11.71 11.64 11.50 11.32 10.52 8.47
AES-256-CTR 104.42 103.59 101.15 99.84 93.39 69.67 36.12 AES-256-GCM 70.95 70.57 69.80 68.13 64.14 43.21 28.05

Rockchip RK3568
HiAE (this work) 15.40 14.97 14.88 14.20 12.81 8.04 2.11 HiAE (this work) 14.70 14.62 13.64 12.01 9.63 4.42 1.13
Rocca 11.15 11.14 10.60 9.67 8.24 4.32 1.49 Rocca 10.83 10.55 9.58 8.11 6.19 2.56 0.74
Rocca-S 11.46 11.39 10.86 9.86 8.38 4.34 1.49 Rocca-S 11.09 10.81 9.79 8.28 6.30 2.58 0.74
AEGIS-128L 8.98 8.90 8.79 8.34 7.56 4.89 2.01 AEGIS-128L 8.88 8.83 8.50 7.87 6.82 3.80 1.37
SNOW-V 4.65 4.58 4.33 3.92 3.29 1.67 0.57 SNOW-V-GCM 2.00 1.99 1.99 1.97 1.93 1.71 1.19
AES-256-CTR 8.32 8.28 8.15 7.97 7.49 5.62 2.89 AES-256-GCM 5.63 5.63 5.55 5.50 5.26 4.20 2.41

Han Chen, Tao Huang, Phuong Pham and Shuang Wu 25

7 Conclusion
In this work, we addressed the challenges of designing cryptographic algorithms that achieve
both high performance and cross-platform efficiency on ARM and x86 architectures. With
the growing demands of next-generation data transmission systems, particularly in 6G
networks, we introduced HiAE — an advanced high-throughput authenticated encryption
algorithm that balances performance and security across diverse computational platforms.

Compared to prior AEAD designs aimed at high-throughput, such as SNOW-V, Rocca,
and AEGIS, HiAE stands out with its 2048-bit internal state, utilizing 16 128-bit registers,
while minimizing the number of AES instructions required. This design aligns well with
the architectural capabilities of next-generation ARM and x86 processors, which support
up to 32 128-bit registers.

Benchmark results from software implementations across various platforms demonstrate
HiAE’s exceptional efficiency. The algorithm achieved over 340 Gbps on x86 processors
and 180 Gbps on ARM devices in AEAD mode, making it the fastest AEAD solution on
ARM chips and setting a new performance record on the latest x86 processors.

References
[ABC+24] Ravi Anand, Subhadeep Banik, Andrea Caforio, Kazuhide Fukushima,

Takanori Isobe, Shisaku Kiyomoto, Fukang Liu, Yuto Nakano, Kosei Sakamoto,
and Nobuyuki Takeuchi. An ultra-high throughput aes-based authenticated
encryption scheme for 6g: Design and implementation. In Gene Tsudik, Mauro
Conti, Kaitai Liang, and Georgios Smaragdakis, editors, Computer Security –
ESORICS 2023, pages 229–248, Cham, 2024. Springer Nature Switzerland.

[ADG+22] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and
Sophie Schmieg. How to abuse and fix authenticated encryption without
key commitment. In Kevin R. B. Butler and Kurt Thomas, editors, 31st
USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA,
August 10-12, 2022, pages 3291–3308. USENIX Association, 2022.

[AR19] Andreas Abel and Jan Reineke. uops. info: Characterizing latency, throughput,
and port usage of instructions on intel microarchitectures. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 673–686, 2019.

[BBL+24] Augustin Bariant, Jules Baudrin, Gaëtan Leurent, Clara Pernot, Léo Perrin,
and Thomas Peyrin. Fast aes-based universal hash functions and macs:
Featuring lemac and petitmac. IACR Transactions on Symmetric Cryptology,
2024(2):35–67, 2024.

[BS12] Daniel J Bernstein and Peter Schwabe. Neon crypto. In Cryptographic
Hardware and Embedded Systems–CHES 2012: 14th International Work-
shop, Leuven, Belgium, September 9-12, 2012. Proceedings 14, pages 320–339.
Springer, 2012.

[Com16] ARM Community. Arm® cortex®-a57 software optimization guide, issue b,
2016.

[Com18] ARM Community. Arm® cortex®-a75 software optimization guide, verion 2.0,
2018.

[Com19a] ARM Community. Arm® cortex®-a76 software optimization guide, verion
10.0, 2019.

26 HiAE: A High-throughput Authenticated Encryption Algorithm

[Com19b] ARM Community. Arm® cortex®-a77 software optimization guide, issue 3.0,
2019.

[Com20] ARM Community. Arm® cortex®-a78 core software optimization guide, issue
3.0, 2020.

[Com21a] ARM Community. Arm® cortex®-x1 core software optimization guide, issue
4.0, 2021.

[Com21b] ARM Community. Arm® cortex®-x2 core software optimization guide, issue
5.0, 2021.

[Com22a] ARM Community. Arm® cortex®-a510 software optimization guide, issue 6.0,
2022.

[Com22b] ARM Community. Arm® cortex®-a55 software optimization guide, issue 4.0,
2022.

[Com22c] ARM Community. Arm® cortex®-a715 core software optimization guide, issue
4.0, 2022.

[Com22d] ARM Community. Arm® cortex®-x3 core software optimization guide, issue
4.0, 2022.

[Com22e] ARM Community. Arm® neoverse™ n2 software optimization guide, issue
5.0, 2022.

[Com22f] ARM Community. Arm® neoverse™ v1 software optimization guide, issue
6.0, 2022.

[Com22g] ARM Community. Arm® neoverse™ v2 core software optimization guide,
issue 2.0, 2022.

[Com23a] ARM Community. Arm® cortex®-a520 core software optimization guide, issue
1.2, 2023.

[Com23b] ARM Community. Arm® cortex®-a720 core software optimization guide, issue
7.0, 2023.

[Com23c] ARM Community. Arm® cortex®-x4 core software optimization guide, issue
3.0, 2023.

[Com24a] ARM Community. Arm neon programming quick reference. https://
community.arm.com/arm-community-blogs/b/operating-systems-blog/
posts/arm-neon-programming-quick-reference, 2024. Accessed: 2024-07-
18.

[Com24b] ARM Community. Arm® cortex®-a720 core software optimization guide, issue
3.0, 2024.

[Com24c] ARM Community. Arm® cortex®-x925 core software optimization guide, issue
3.0, 2024.

[Com24d] ARM Community. Arm® neoverse™ n3 core software optimization guide,
issue 2.0, 2024.

[Com24e] ARM Community. Arm® neoverse™ v3 core software optimization guide,
issue 2.0, 2024.

https://community.arm.com/arm-community-blogs/b/operating-systems-blog/posts/arm-neon-programming-quick-reference
https://community.arm.com/arm-community-blogs/b/operating-systems-blog/posts/arm-neon-programming-quick-reference
https://community.arm.com/arm-community-blogs/b/operating-systems-blog/posts/arm-neon-programming-quick-reference

Han Chen, Tao Huang, Phuong Pham and Shuang Wu 27

[Cora] Intel Corporation. Advanced encryption standard instructions (aes-ni).
https://www.intel.com/content/www/us/en/developer/articles/
technical/advanced-encryption-standard-instructions-aes-ni.
html?wapkw=AES-NI. Accessed: 2024-07-17.

[Corb] Intel Corporation. Optimizing earlier generations of intel® 64 and ia-32
processor architectures, throughput, and latency. Accessed: 2024-07-25.

[Corc] NVIDIA Corporation. Nvidia nvlink: High-speed gpu interconnect. https:
//www.nvidia.com/en-sg/data-center/nvlink/. Accessed: 2024-11-21.

[Cor24a] Intel Corporation. Intel® 64 and ia-32 architec-
tures optimization reference manual. https://www.
intel.com/content/www/us/en/content-details/814198/
intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.
html, 2024.

[Cor24b] Intel Corporation. Intel® intrinsics guide. https://www.intel.com/content/
www/us/en/docs/intrinsics-guide/index.html, 2024. Accessed: 2024-07-
18.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight authenticated encryption and hashing. J. Cryptol.,
34(3):33, 2021.

[DFI+24] Patrick Derbez, Pierre-Alain Fouque, Takanori Isobe, Mostafizar Rahman,
and André Schrottenloher. Key committing attacks against aes-based AEAD
schemes. IACR Trans. Symmetric Cryptol., 2024(1):135–157, 2024.

[DLT17] DLTcollab. sse2neon: A c/c++ header file for translating intel sse intrinsics
into arm neon intrinsics. https://github.com/DLTcollab/sse2neon, 2017.
Accessed: 2024-11-21.

[EJMY18] Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang. A
new snow stream cipher called snow-v. Cryptology ePrint Archive, 2018.

[ENP19] Maria Eichlseder, Marcel Nageler, and Robert Primas. Analyzing the linear
keystream biases in AEGIS. IACR Trans. Symmetric Cryptol., 2019(4):348–
368, 2019.

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via com-
mitting authenticated encryption. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Pro-
ceedings, Part III, volume 10403 of Lecture Notes in Computer Science, pages
66–97. Springer, 2017.

[HII+22] Akinori Hosoyamada, Akiko Inoue, Ryoma Ito, Tetsu Iwata, Kazuhiko Mine-
matsu, Ferdinand Sibleyras, and Yosuke Todo. Cryptanalysis of rocca and
feasibility of its security claim. IACR Trans. Symmetric Cryptol., 2022(3):123–
151, 2022.

[Hos24] Akinori Hosoyamada. Quantum algorithms for fast correlation attacks on
lfsr-based stream ciphers. IACR Cryptol. ePrint Arch., page 894, 2024.

[HT16] Wu Hongjun and Huang Tao. The authenticated cipher morus (v2). 2016.

https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html?wapkw=AES-NI
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html?wapkw=AES-NI
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html?wapkw=AES-NI
https://www.nvidia.com/en-sg/data-center/nvlink/
https://www.nvidia.com/en-sg/data-center/nvlink/
https://www.intel.com/content/www/us/en/content-details/814198/intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html
https://www.intel.com/content/www/us/en/content-details/814198/intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html
https://www.intel.com/content/www/us/en/content-details/814198/intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html
https://www.intel.com/content/www/us/en/content-details/814198/intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://github.com/DLTcollab/sse2neon

28 HiAE: A High-throughput Authenticated Encryption Algorithm

[Inc24] Apple Inc. Apple silicon cpu optimization guide: 3.0, 2024. Accessed: 2025-
01-07.

[JN16] Jérémy Jean and Ivica Nikolic. Efficient design strategies based on the AES
round function. In Thomas Peyrin, editor, Fast Software Encryption - 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, volume 9783 of Lecture Notes in Computer Science,
pages 334–353. Springer, 2016.

[LAL+19] Matti Latva-Aho, Kari Leppänen, et al. Key drivers and research challenges
for 6g ubiquitous wireless intelligence. 2019.

[LIMS21] Fukang Liu, Takanori Isobe, Willi Meier, and Kosei Sakamoto. Weak keys in
reduced AEGIS and tiaoxin. IACR Trans. Symmetric Cryptol., 2021(2):104–
139, 2021.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Chuankun Wu,
Moti Yung, and Dongdai Lin, editors, Information Security and Cryptology -
7th International Conference, Inscrypt 2011, Beijing, China, November 30 -
December 3, 2011. Revised Selected Papers, volume 7537 of Lecture Notes in
Computer Science, pages 57–76. Springer, 2011.

[oSN07] National Institute of Standards and Technology (NIST). Recommendation
for block cipher modes of operation: Galois/counter mode (gcm) and gmac,
2007. Accessed: 2025-01-06.

[oSN25] National Institute of Standards and Technology (NIST). Nist lightweight
cryptography (lwc), 2025. Accessed: 2025-01-06.

[SLN+22] Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and Takanori
Isobe. Rocca: An efficient AES-based encryption scheme for beyond 5G (full
version). Cryptology ePrint Archive, Paper 2022/116, 2022.

[SLR+15] Bing Sun, Zhiqiang Liu, Vincent Rijmen, Ruilin Li, Lei Cheng, Qingju Wang,
Hoda Alkhzaimi, and Chao Li. Links among impossible differential, integral
and zero correlation linear cryptanalysis. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Pro-
ceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages
95–115. Springer, 2015.

[TTI24] Ryunouchi Takeuchi, Yosuke Todo, and Tetsu Iwata. Key recovery, universal
forgery, and committing attacks against revised rocca: How finalization affects
security. IACR Trans. Symmetric Cryptol., 2024(2):85–117, 2024.

[WP14] Hongjun Wu and Bart Preneel. Aegis: A fast authenticated encryption
algorithm. In Selected Areas in Cryptography–SAC 2013: 20th International
Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected
Papers 20, pages 185–201. Springer, 2014.

Han Chen, Tao Huang, Phuong Pham and Shuang Wu 29

A On the Linear Bias Keystream Attack
We have adapted the bitwise model proposed in [ENP19] for AEGIS to HiAE in order to
identify the accurate linear differential characteristics from truncated linear differential
trails. In our modified model, we focus on searching for valid bitwise trails, ensuring
that all S-box linear transitions with non-zero probabilities are considered. After running
the SMT model on all 11420 truncated trails listed in Table A1, no bitwise differential
characteristics were found. This suggests that the square correlation of HiAE is not greater
than 2−150. Based on this, we conclude that HiAE has a security level of 150 bits against
linear bias keystream attack.

Table A1: The list of truncated linear differential trails

No. of active S-boxes 19 20 21 22 23 24
No. of trails 369 0 1116 424 7922 1589

B Optimization Strategies for Efficient Implementation
HiAE uses a shift-state update function. A naive implementation involves using an
additional temporary variable to store the updated state, then shifting the 15 states and
applying the updated state back from the temporary variable. However, this approach is
clearly not optimal for the state update. For HiAE, only 3 states change each round, but
with shift state, each round need to update all 16 states.

A more efficient approach is to keep most of the state registers unchanged and only
update the state by computing index offset for each round. This approach is our initial
implementation, which reduce HiAE’s duplicate operations a lot, but still facing an overhead
for computing offset.

To achieve the highest throughput as we expect, we need to remove all the overhead
and remain only the computing for state update and encryption. Therefore, for the
HiAE implementation, we unrolled both the initialization and finalization loops. This
transformation entirely eliminate the offset overhead. Unrolling the loops also reduces the
overhead from loop iterations and counter increments.

Our experiments show that this optimization leads to a significant performance im-
provement for short-length messages in HiAE. However, similar optimizations do not yield
a noticeable performance boost for other ciphers like Rocca or AEGIS. This is because, in
these ciphers, most of the state gets updated by the state update computing and do not
involve any index overhead, and the impact of this optimization is minimal.

The experimental setup follows the same conditions described in Section 6, with
results shown in Table B2. As illustrated, by eliminating the offset and extra memory
communication costs, HiAE achieves a significant performance gain, especially for short
messages. In these cases, initialization and finalization account for a larger portion of
the total execution time compared to encryption. Additionally, on x86 devices, the offset
overhead consumes a larger proportion of instructions, further amplifying the benefit of this
optimization. For other cipher designs, which do not face the same issue, the performance
remains largely unaffected. As a result, we retain the original implementation without
unrolling for these ciphers, as detailed in Section 6.

30 HiAE: A High-throughput Authenticated Encryption Algorithm

Table B2: AEAD Performance difference with (*) and without unroll (Gbps)

Input Size (bytes) 16384 8192 4096 2048 1024 256 64
Hisilicon Kunpeng 920 (Taishan V110, launched in 2019)

HiAE* 53.72 50.80 45.45 37.63 27.95 10.99 2.92
HiAE 53.47 50.54 44.45 35.6 25.52 9.47 2.48
∆ +0.25 +0.26 +1.00 +2.03 +2.43 +1.52 +0.44
∆% +0.47% +0.51% +2.25% +5.70% +9.52% +16.05% +17.74%
Rocca* 41.26 38.52 34.14 27.86 20.37 7.78 2.24
Rocca 41.17 38.28 33.85 27.42 19.79 7.44 2.13
∆ +0.09 +0.24 +0.29 +0.44 +0.58 +0.34 +0.11
∆% +0.22% +0.63% +0.86% +1.60% +2.93% +4.57% +5.16%

Intel Xeon W9 3495X (Sapphire Rapids, launched in 2023)
HiAE* 171.46 163.09 148.79 127.72 98.63 41.20 9.38
HiAE 163.40 149.28 123.20 96.04 66.61 22.93 5.38
∆ +8.06 +13.81 +25.59 +31.68 +32.02 +18.27 +4.00
∆% +4.93% +9.25% +20.77% +32.99% +48.07% +79.68% +74.35%
Rocca* 116.02 101.97 81.45 59.01 37.95 14.30 3.90
Rocca 117.38 103.30 83.93 59.73 38.54 14.59 4.00
∆ -1.36 -1.33 -2.48 -0.72 -0.59 -0.29 -0.10
∆% -1.16% -1.29% -2.95% -1.20% -1.53% -1.99% -2.50%

1 .L8:
2 vmovdqa %xmm6 , %xmm4
3 vmovdqa %xmm7 , %xmm5
4 decq %rax
5 vpxor %xmm7 , %xmm1 , %xmm6
6 vaesenc %xmm2 , %xmm8 , %xmm7
7 vaesenc %xmm3 , %xmm2 , %xmm8
8 vpxor %xmm10 , %xmm3 , %xmm2
9 vaesenc %xmm0 , %xmm9 , %xmm3

10 vpxor %xmm5 , %xmm0 , %xmm9
11 vaesenc %xmm4 , %xmm1 , %xmm0
12 vpxor %xmm11 , %xmm4 , %xmm1
13 jne .L8
14

15

16

17

18

19

20

21

22 ...

1 .L2:
2 mov v2.16b , v5.16b
3 subs x2 , x2 , #1
4 mov v4.16b , v5.16b
5 aese v1.16b , v5.16b
6 aesmc v1.16b , v1.16b
7 aese v6.16b , v5.16b
8 aesmc v6.16b , v6.16b
9 aese v2.16b , v16.16b

10 aesmc v2.16b , v2.16b
11 aese v4.16b , v18.16b
12 aesmc v4.16b , v4.16b
13 eor v21.16b , v1.16b , v16.16b
14 eor v23.16b , v6.16b , v7.16b
15 eor v20.16b , v19.16b , v18.16b
16 eor v3.16b , v19.16b , v7.16b
17 eor v2.16b , v2.16b , v17.16b
18 eor v22.16b , v17.16b , v26.16b
19 eor v4.16b , v4.16b , v0.16b
20 eor v24.16b , v0.16b , v25.16b
21 ...
22 bne .L2

Figure B5: Rocca initialization Assembly Code on x86 (Left) and ARM (right)

Han Chen, Tao Huang, Phuong Pham and Shuang Wu 31

1 .L5:
2 vmovdqa (% rcx), %xmm0
3 movq %r8 , %rax
4 .L3:
5 leaq 1(% rax), %r8
6 leaq 13(% rax), %rdx
7 movq %rax , %rsi
8 addq $3 , %rax
9 movq %r8 , %rcx

10 andl $15 , %edx
11 andl $15 , %eax
12 andl $15 , %esi
13 andl $15 , %ecx
14 salq $4 , %rdx
15 salq $4 , %rax
16 salq $4 , %rsi
17 salq $4 , %rcx
18 addq %rdi , %rdx
19 addq %rdi , %rax
20 addq %rdi , %rcx
21 vmovdqa (% rdx), %xmm6
22 vpxor (% rcx), %xmm0 , %xmm0
23 vaesenc %xmm1 , %xmm0 , %xmm0
24 vaesenc %xmm0 , %xmm6 , %xmm0
25 vmovdqa %xmm0 , (%rdi ,% rsi)
26 vpxor (% rax), %xmm1 , %xmm0
27 vmovdqa %xmm0 , (% rax)
28 vpxor (% rdx), %xmm1 , %xmm0
29 vmovdqa %xmm0 , (% rdx)
30 cmpq $32 , %r8
31 jne .L5

1 .L5:
2 ldr q0 , [x0 , x5]
3 .L3:
4 add x4 , x2 , 1
5 add x1 , x2 , 13
6 add x3 , x2 , 3
7 ubfiz x5 , x4 , 4, 4
8 ubfiz x6 , x2 , 4, 4
9 ubfiz x1 , x1 , 4, 4

10 ubfiz x3 , x3 , 4, 4
11 mov x2 , x4
12 ldr q3 , [x0 , x5]
13 ldr q1 , [x0 , x1]
14 aese v0.16b , v3.16b
15 aesmc v0.16b , v0.16b
16 aese v1.16b , v4.16b
17 aesmc v1.16b , v1.16b
18 eor v0.16b , v0.16b , v1.16b
19 eor v0.16b , v0.16b , v2.16b
20 str q0 , [x0 , x6]
21 ldr q0 , [x0 , x3]
22 eor v0.16b , v0.16b , v2.16b
23 str q0 , [x0 , x3]
24 ldr q0 , [x0 , x1]
25 eor v0.16b , v0.16b , v2.16b
26 str q0 , [x0 , x1]
27 cmp x4 , 32
28 bne .L5
29

30

31 ...

Figure B6: HiAE initialization Assembly Code on x86 (Left) and ARM (right), offset
overhead instructions are marked in red.

	Introduction
	Motivation
	Contributions
	Organization of the Paper

	AES Instructions and SIMD Optimization: Cross-Platform Analysis
	The Implementation difference of AES Instructions between x86 and ARM architectures
	Analysis of the Pipeline, Parallelization and SIMD Throughput
	Instruction Fusion on ARM Devices

	The Specification of HiAE
	Notations
	The Shift State Update Function
	Specification of HiAE
	Security Goal

	Design Rationale
	Cross-Platform Efficient Structure
	On the Design of Update Function
	On the Loading of Nonce and Key
	On the Design of Keystream Generation and Intermediate Value Sharing from State Update Function
	Design Rationale for Using a 128-bit Tag

	Security Analysis
	Differential Attack on Initialization
	Forgery Attack
	State-recovery Attack
	Integral Attack
	Key Committing Attacks
	The Linear Bias on Keystream

	Performance Evaluation
	Test Environment and Configuration
	Contrastive Ciphers Software Implementation
	HiAE Software Implementation
	Evaluation and Result Analysis

	Conclusion
	On the Linear Bias Keystream Attack
	Optimization Strategies for Efficient Implementation

