
How to Share an NP Statement
or

Combiners for Zero-Knowledge Proofs*

Benny Applebaum† Eliran Kachlon†

June 3, 2025

Abstract

In Crypto’19, Goyal, Jain, and Sahai (GJS) introduced the elegant notion of secret-sharing of
an NP statement (NPSS). Roughly speaking, a t-out-of-n secret sharing of an NP statement is a
reduction that maps an instance-witness pair to n instance-witness pairs such that any subset
of (t − 1) reveals no information about the original witness, while any subset of t allows full
recovery of the original witness. Although the notion was formulated for general t ≤ n, the
only existing construction (due to GJS) applies solely to the case where t = n and provides
only computational privacy. In this paper, we further explore NPSS and present the following
contributions.

Definition. We revisit the notion of NPSS by formulating a new definition of information-
theoretically secure NPSS. This notion serves as a cryptographic analogue of standard NP-
reductions and can be compiled into the GJS definition using any one-way function.

Construction. We construct information-theoretic t-out-of-n NPSS for any values of t ≤ n with
complexity polynomial in n. Along the way, we present a new notion of secure multiparty
computation that may be of independent interest.

Applications. Our NPSS framework enables the non-interactive combination of n instances of
zero-knowledge proofs, where only ts of them are sound and only tz are zero-knowledge,
provided that ts + tz > n. Our combiner preserves various desirable properties, such as the
succinctness of the proof. Building on this, we establish the following results under the mini-
mal assumption of one-way functions: 1. Standard NIZK implies NIZK in the Multi-String
Model (Groth and Ostrovsky, J. Cryptology, 2014), where security holds as long as a majority
of the n common reference strings were honestly generated. Previously, such a transformation
was only known in the common random string model, where the reference string is uniformly
distributed. 2. A Designated-Prover NIZK in the Multi-String Model, achieving a strong
form of two-round Multi-Verifier Zero-Knowledge in the honest-majority setting. 3. A three-
round secure multiparty computation protocol for general functions in the honest-majority
setting. The round complexity of this protocol is optimal, resolving a line of research that pre-
viously relied on stronger assumptions (Asharov et al., Eurocrypt’12; Gordon et al., Crypto’15;
Ananth et al., Crypto’18; Badrinarayanan et al., Asiacrypt’20; Applebaum et al., TCC’22).

*This is the full version of a paper that will appear in the proceedings of Crypto’25 conference.
†Tel-Aviv University, Israel bennyap@post.tau.ac.il, elirn.chalon@gmail.com. Supported by ISF grant

no. 2805/21 and by the European Union (ERC-2022-ADG) under grant agreement no.101097959 NFITSC.

1

Contents

1 Introduction 4
1.1 How to Define NPSS? . 4
1.2 Main Results . 6

1.2.1 Multi-String Non-Interactive Zero-knowledge Proofs 6
1.2.2 NIZK combiners . 8
1.2.3 Two-Round Distributed Zero-Knowledge and Three-Round MPC 9

1.3 Technical Overview of the Main Theorem . 10
1.4 NPSS and Other Related Models . 13

2 Secure Multiparty Computation 15
2.1 Basic Definitions . 15

2.1.1 Clients, Servers and Protocols . 16
2.1.2 Security Definition . 17
2.1.3 Protocol Assignment Mapping . 19

2.2 Server-Substitution Generators . 19
2.2.1 The ∨-Generator . 20
2.2.2 The ∧-Generator . 22

2.3 From Formulas to MPC . 24

3 Secret Sharing for NP Statements 25
3.1 Basic Definitions . 26
3.2 From MPC to NPSS . 27

4 Application: Multi-String NIZK 30
4.1 Basic Definitions . 30

4.1.1 Non-Interactive Commitments in the MS-model 33
4.2 From NIZK to Multi-String NIZK . 35

4.2.1 Proof of Theorem 4.8 . 38
4.3 Extensions . 40

4.3.1 Proof of Knowledge . 40
4.3.2 Statistical Zero Knowledge . 41

5 Application: Designated-Prover NIZK and Round-Optimal Honest-Majority MPC in
Minicrypt 41
5.1 Designated-Prover NIZK . 42

5.1.1 DP-NIZK with Perfect Zero Knowledge . 43
5.1.2 DP-NIZK with Statistical Proof of Knowledge 46

5.2 Single Input Functionality . 47
5.2.1 Public Single Input Functionality . 48
5.2.2 Single Input Functionality . 52

5.3 Secure Multiparty Computation . 53

2

A Missing Proofs: MPC 63
A.1 Proof of Claim 2.5 . 63
A.2 Proof of Claim 2.9 . 63

B Proof of Lemma 2.6 64
B.1 Proof of Lemma B.1 . 65

B.1.1 Correctness . 65
B.1.2 Privacy . 66

B.2 Proof of Lemma B.2 . 67

C Proof of Lemma 2.7 69
C.1 Proof of Lemma C.1 . 69

C.1.1 Correctness . 69
C.1.2 Privacy . 70

C.2 Proof of Lemma C.2 . 73

D Missing proofs: MS-NIZK 75

E Missing proofs: DP-NIZK and Round-Optimal MPC 76
E.1 Proof of Theorem 5.6 . 76
E.2 The SIF Construction and Proof of Theorem 5.8 . 78

F Additional Background 80
F.1 The Hidden-Bits Model and the FLS protocol . 80
F.2 UC Security . 82

3

1 Introduction

Threshold secret sharing [Sha79, Bla79] allows to distribute a data item into n shares, requiring a
minimum number of t participants to combine their shares to reconstruct the secret, while smaller
groups cannot access it. In Crypto’19, Goyal, Jain, and Sahai [GJS19] introduced an elegant ex-
tension of this central concept to the case where one wants to share an NP statement. Roughly
speaking, a t-out-of-n secret sharing of an NP statement (NPSS) is a reduction that maps an in-
stance/witness pair into n instance/witness pairs such that any set of (t − 1) of them reveals
no information on the original witness and any t out of them allow to fully recover the original
witness.

From a complexity theory perspective, NPSS can be viewed as a natural cryptographic ana-
log of standard NP-reduction. From a cryptographic point of view, NPSS allows us to non-
interactively combine multiple zero-knowledge protocols in such a way that, even if some instances
are “flawed,” the final outcome remains secure. As we will later see, this kind of “combiner”
proves to be highly effective, offering a clean and straightforward solution to several existing
problems in the literature.

Goyal et al. [GJS19] considered computationally-private NPSS in which privacy holds only
against polynomial-time adversaries and correctness/recovery may be violated with negligible
probability. They presented an n-out-of-n NPSS and a “gap-construction” with a privacy thresh-
old of tp < n/3 and recovery threshold of tc > 2n/3 based on non-interactive commitments.
However, until now, it was unknown whether this notion could be realized beyond these concrete
values, and whether any meaningful notion of information-theoretic NPSS could be achieved at
all.

In this paper, we introduce new refined definitions of information-theoretic secure NPSS,
present the first efficient constructions of NPSS for any values of t ≤ n, and describe new applica-
tions in the domain of zero-knowledge proofs and secure multiparty computation. We continue
with a detailed account of our results.1

1.1 How to Define NPSS?

While the notion of NPSS is intuitively clear, the formal definition requires some care. Unlike the
original definition of [GJS19] which is inherently limited to computational security, we define an
information-theoretic notion of NPSS and show that our variant can be compiled into the [GJS19]
variant based on any one-way function. (See Section 1.4 for more details.) Jumping ahead, work-
ing with the “right” definition turns to be crucial both for deriving efficient NPSS constructions
and for employing it in different applications.

Syntactically, our NPSS definition is composed of four efficient algorithms: a deterministic
instance mapper R, a randomized assignment mapper W , a randomized simulator Sim and a
deterministic decoder Dec. Given a circuit-SAT instance f , the instance mapper deterministically

1NPSS were originally introduced as a tool for amplifying the security of non-interactive zero-knowledge proofs
(NIZK) where the goal is to simultaneously reduce the soundness and zero-knowledge errors. Unfortunately, this use
of NPSS for NIZK amplification [GJS19] turns to be flawed (as noted by the authors, see [Jai24, BG24]). Our paper
shows that NPSS is sufficiently strong for the task of combining many NIZK instances out of which some are faulty.
Roughly speaking, the main difference between the two scenarios is that the “bad event” in which the security of a
weak-NIZK fails may depend on the input (i.e., the statement and its witness). In a companion paper [AK25b], we
introduce and construct a stronger variant of Leakage-Resilient NPSS, and show how to use it as an amplifier for NIZK.
These results employ a different set of techniques that are not addressed here.

4

maps f into n circuit-SAT instances F = (f1, ..., fn) over a common set of variables such that the
followings hold:

• Correctness and (t−1)-privacy: Given a satisfying assignment x for f , the randomized assign-
ment mapper W samples n partial assignments (y1, . . . , yn) that consistently satisfy (f1, ..., fn)
in the sense that yi satisfies fi and there exists some global assignment y that agrees with all
the partial assignments. Furthermore, the marginal distribution of every collection of t − 1
partial assignments (yi1 , . . . , yit−1) leaks no information about the witness x, i.e., the joint
distribution can be efficiently sampled based on f via the simulator Sim(f, {i1, . . . , it−1}).

• t-recovery: Given any collection of t partial assignments yi1 , . . . , yit that consistently satisfy
fi1 , . . . , fit , the decoder Dec efficiently recovers an assignment x that satisfies f . This implies
a strong soundness property: if f is unsatisfiable, it is impossible to consistently satisfy more
than t− 1 of the instances in F .

To get a better understanding of this notion, it is useful to consider two unsuccessful naive
implementations and see why they fail (assuming that P ̸= NP). Let us first take fi and yi to be
a copy of f and x, respectively. This construction satisfies the correctness and recovery require-
ments, but fails to satisfy the privacy condition for every t > 1. (Indeed, if privacy holds then
whenever f is satisfiable one can efficiently recover a satisfying assignment by using the simula-
tor.) Alternatively, one can try to secret-share the witness x into (y1, . . . , yn) via t-out-of-n secret
sharing (e.g., Shamir’s scheme [Sha79]). In this case the privacy requirement holds, but it is in-
feasible to define a sequence of instance (fi)i∈[n] that satisfy both the correctness and the recovery
property. Intuitively, each predicate fi has only local view of yi and so it is hard to correlate their
global behavior. Formally, if f is satisifiable then every predicate fi must accept the “zero share”
0 (otherwise, correctness is violated with some probability), but if f is unsatisfiable then, by re-
covery/soundness, some fi must locally reject 0. Therefore, given an efficient mapping from f to
F we can efficiently decide the satisfiability of f by checking if the all-zero string satisfies all the
predicates fi, putting NP in P.

Generalizing the above discussion, privacy and recovery induce two conflicting requirements.
On one hand, the partial assignments should not overlap by too much (some entropy on the global
assignment y should be left even after seeing t − 1 of them), and, on the other hand, every pair
of partial assignments must share some common variables (otherwise local satisfiability implies
global satisfiability as in the second example). Overall, the NP instances and their witnesses
should be correlated in a non-trivial way that globally reflects the satisfiability of f but locally
hides it.

Remark 1.1 (The use of partial assignments). Each circuit fi depends only on a subset Si of the set of
common variables y, and, accordingly, the partial assignment yi will keep the variables outside Si unas-
signed. Interestingly, in our constructions, the assignment mapper also keeps some of the Si variables
unassigned in yi, and choose these variables “dynamically” based on the randomness of the witness map-
ping procedure W . (We conjecture that this is inherent to every construction of threshold NPSS.) This
means that the circuit fi should be well defined over partial assignments yi ∈ {0, 1, ∗}k. For this, we
extend Boolean circuit logic in the following natural way: if any gate input is ∗, the output defaults to ∗,
except in simple cases like ∧(0, ∗) = ∧(∗, 0) = 0 and ∨(1, ∗) = ∨(∗, 1) = 1. As usual, yi satsifies fi if
fi(yi) = 1.

5

Remark 1.2 (An alternative perspective). It is instructive to think about the NPSS formulation as a
multi-verifier zero-knowledge oracle-based proof system where a prover wishes to prove to n verifiers
that a public circuit f is satisfiable. The prover publishes a proof y on a public board and hides each bit of y
under a card. To convince the verifiers that f is satisfiable, the prover reveals the bits of yi to the ith verifier,
who announces whether yi satisfies fi or not. In the latter case, the verifier certifies his claim by revealing
the bits of the false witness to the other verifiers. The verifiers reject the proof if some verifier revealed
an un-satisfied instance, and accept it otherwise. The privacy property of the NPSS guarantees perfect
zero-knowledge against every set of t − 1 verifiers, whereas the recovery property guarantees perfect
soundness against any coalition that contains a cheating prover together with n− t cheating verifiers. In
the special case where n = 2t− 1, we get both perfect soundness and perfect zero-knowledge at the presence
of honest majority among the verifiers.

This somewhat resembles the notion of zero-knowledge probabilistic-checkable-proofs (ZK-
PCP) [KPT97, DFK+92]. Indeed, these two primitives can be described under the same frame-
work with the difference that NPSS optimizes one set of parameters and standard constructions
of ZK-PCP’s optimize a different set of parameters. We further mention that, despite the simi-
larity in names, NPSS is completely unrelated to the notion of Secret-Sharing for NP access struc-
tures [KNY14]. (See Section 1.4 for a detailed comparison between NPSS and these notions.)

1.2 Main Results

Our main result is an unconditional construction of NPSS for arbitrary threshold.

Informal Theorem 1.1 (NPSS exist). There is a t-out-of-n NPSS for arbitrary choices of t and n. In par-
ticular, there are universal NPSS algorithms that take t and n as auxiliary inputs, and in time poly(n, |f |)
generate instances fi of size poly(n) · |f |, where |f | is the size of the given circuit-SAT instance f .

The theorem yields NPSS with perfect correctness and perfect recovery (zero error) as well as
perfect privacy (the simulated distribution is identical to the real distribution). See Section 3 for
formal details. We will elaborate on the proof of this theorem in Section 1.3, but for now, let us
turn to a discussion of its applications. (Some of the readers may choose to switch the order and
read first the technical overview of the NPSS construction in Section 1.3.)

1.2.1 Multi-String Non-Interactive Zero-knowledge Proofs

A Zero-Knowledge proof system [GMR89] is considered non-interactive if the prover can gener-
ate a proof without any interaction with the verifier [BFM88]. Specifically, given a public NP
statement and a witness, the prover generates a proof π and sends it to the verifier, who then de-
cides whether to accept it. The absence of interaction makes this approach extremely powerful,
with numerous important applications, ranging from CCA security [NY90, DDN91] and signa-
tures [BMW03, BKM06], to cryptocurrencies [SCG+14].

To make this concept feasible, both the prover and the verifier have access to a public key,
typically referred to as a common reference string (CRS), which is assumed to be generated by a
trusted party. This trust assumption is crucial: if the CRS is generated maliciously, the soundness
of the system is compromised, allowing for fake proofs of false statements to be generated using
the simulator. In some NIZKs, this may also lead to attacks on the zero-knowledge property. These

6

vulnerabilities may even arise if the CRS is sampled honestly but the private coins used during
the sampling procedure are kept as a trapdoor.

The standard solution to this problem is to distribute the trust among multiple “authorities” by
sampling the CRS through the use of a secure multiparty computation (MPC) protocol. If a major-
ity of the authorities are honest, we can ensure a “good CRS,” for which the NIZK remains secure.
However, this solution is highly interactive and can be quite costly in terms of communication
and computation, particularly when the CRS-sampling procedure is complex.

In [GO14], Groth and Ostrovsky proposed an elegant solution to this problem that allows the
trust to be “split” among several authorities in a non-interactive way. Formally, they introduce
the Multi-String (MS) model, where instead of relying on a single CRS, we have a sequence of
CRSs (crs1, . . . , crsn), each sampled locally by a different authority and published once and for
all. The prover and verifier access these strings during proof generation and verification, and
security holds as long as a majority of the CRSs are generated honestly. This means that even if a
minority of the CRSs were generated maliciously, in collaboration with the prover or the verifier,
the soundness and zero-knowledge guarantees still hold.2 Conveniently, the authorities do not
need to communicate with one another or even be aware of each other’s existence.

Groth and Ostrovsky [GO14] constructed MS-NIZK either based on specific algebraic in-
tractability assumptions related to groups with a bilinear map or from any NIZK in the com-
mon random string model where the CRS is sampled uniformly. However, constructing MS-
NIZK from general NIZK systems where the CRS is structured remains an open problem. This
question is motivated by both theoretical and practical concerns since several existing con-
structions of NIZKs [PS19, CCH+19, BKM20, LPWW20], including some of the most practical
ones [PHGR16, BCG+13, DFGK14], rely on highly-structured CRSs for which the MPC-based so-
lution tends to be expensive.3 We resolve this problem via the aid of NPSS.

Informal Theorem 1.2 (MS-NIZK from NIZK). Assuming the existence of one-way functions, any
NIZK for NP can be efficiently converted into an MS-NIZK for NP.

See the full version [AK25a] for a formal statement.It is not hard to show that MS-NIZK im-
plies NIZK. Therefore, assuming one-way functions, the theorem shows that the two notions are
essentially equivalent.4

Proof sketch. We sketch the proof and leave the full details to Section 4. Given the MS-CRS
crs = (crs1, . . . , crsn), a circuit-SAT instance f and a witness x, the prover uses t-out-of-n NPSS
with t = ⌈(n+ 1)/2⌉ to generate the statements f1, . . . , fn and to sample the partial assignments
y1, . . . , yn that are all consistent with some assignment y ∈ {0, 1}m. The prover uses a statistically-
binding bit-commitment scheme to generate a commitment (Y [i])i∈[m] to each bit of the assign-
ment (y[i])i∈[m], and generates a sequence of proofs π = (π1, . . . , πn) where πi is generated by
running the NIZK’s prover with crsi for the statement

2More generally, [GO14] consider a refined version of the definition in which the threshold (number of honestly
generated CRS) that is needed for zero-knowledge may be different from the soundness threshold as long the sum of
the threshold is strictly larger than n. Our results extend to this setting as well (See Section 4).

3Assuming the existence of one-way functions, NIZK in the uniform CRS model are equivalent to so-called
Zaps [DN07] whereas structured-CRS NIZKs can be currently based on a wider family of assumptions while achieving
additional features [PS19, CCH+19, BKM20, LPWW20].

4In fact, the one-way assumption can be replaced with the assumption that NP is non-trivial in the sense that it
cannot be emulated by polynomial-size circuits for infinitely often input lengths. Since the latter assumption, together
with NIZK for NP, implies the existence of one-way functions [HN24].

7

(fi, Y): “there exists a partial assignment that satisfies fi which is consistent with the
committed string Y ”

whose witness is yi and the openings of the corresponding commitments. The proof consists of π
and Y . (The prover verifies that each of the proofs pass verification and if this is not the case, she
replaces the flawed proof πi with the witness yi). The verification is performed in the natural way.
Given (f, crs, π, Y), use the NPSS to compute f1, . . . , fn and, for each i, verify that the statement
(fi, Y) is accepted by the NIZK’s verifier with respect to the string crsi.

Completeness is immediate. For soundness, note that if the proof is accepted then it is also
accepted with respect to n − (t − 1) ≥ t honestly-generated CRS’s and so, by the soundness of
the NIZK and the binding property of the commitment, there exist at least t partial assignments
that consistently satisfy t of the fi’s, which by the recovery property of the NPSS implies that f
is satisfiable. Intuitively, zero-knowledge relies on the privacy of the NPSS: even if t − 1 of the
CRS’s are corrupted and the corresponding witnesses are leaked, the original witness x remains
hidden. This intuition can be translated to an efficient simulator whose security relies on the
hiding property of the commitments. Finally, we realize the commitments based on one-way
functions by adopting Naor’s commitments [Nao89] to MS-CRS setting.

Apart of the use of commitments, the above transformation is information-theoretic, and so
even advanced properties of NIZK are essentially preserved assuming that an appropriate type
of commitments is being used. For example, we can lift a standard non-interactive statistical
zero-knowledge argument-of-knowledge to the multi-string setting by instantiating the trans-
formation with statistically-hiding commitments that can be based on collision-resistance hash
functions [DPP98a, HM96a]. Under the same assumption, we also get a communication-efficient
reduction: the new proof consists of n proofs of circuit-SAT instances whose size is larger than
f by a poly(n, κ) factor where κ is the security parameter. In particular, if the original proof sys-
tem is somewhat succinct (resp., succinct), i.e., the length of a proof for S-size circuit is Sϵ for some
ϵ < 1 (resp., poly(log(S), κ)), then so is the new system (assuming that n = poly(κ) and that f is
sufficiently large compared to κ). (See Section 4 for more details and for additional extensions.)

In contrast, the transformation proposed in [GO14] (for a uniformly chosen CRS) inherently
results in computational zero-knowledge, even if the original NIZK possesses statistical zero-
knowledge properties. It also fails to maintain any level of succinctness, even when the num-
ber of CRS instances is constant. Indeed, this construction applies the NIZK-to-Zaps transform
of [DN07] that, in order to maintain the same soundness error, has to blow-up the proof size by a
factor that is at least linear in the instance size.

1.2.2 NIZK combiners

A “downgraded” version of Theorem 1.2 allows us to prove the following basic result about NIZK
combiners.

Informal Theorem 1.3 (non-interactive combiners). Assuming the existence of one-way functions, it
is possible to take n NIZK candidates for NP and in time poly(n, κ), generate a new NIZK for NP whose
security holds as long as a majority of the candidates are secure (sound and zero-knowledge) regardless of
the (in)security properties of the other candidates. Moreover, assuming collision resistance hash functions,
the transformation preserves succinctness.

8

The theorem generalizes to the case where ts of the candidates are sound and tz of the can-
didates are zero-knowledge as long as ts + tz > n, i.e., at least one candidate is both sound and
zero-knowledge. (See Theorem 4.9.) To the best of our knowledge, this is the first NIZK combiner
whose complexity is poly(n, κ). Alternative constructions of NIZK combiners were suggested by
a concurrent work of [CMVX25] and are implicit in works on NIZK amplifications [GJS19, BG24].
However, the complexity of these combiners is super-polynomial in n.5 We further mention that
the combiners of [GJS19, BG24] do not preserve succinctness, whereas the combiner of [CMVX25]
preserves succinctness for constant values of n. Interestingly, this is achieved without relying
on collision-resistance hash functions and while making a non-black-box use of the underlying
NIZKs.

1.2.3 Two-Round Distributed Zero-Knowledge and Three-Round MPC

We move on to the case of zero-knowledge proofs in distributed settings where a single prover
interacts with multiple verifiers – a model that was extensively studied in the past decade with
several useful applications (see [AKP22b] for references). In the simplest variant, known as multi-
verifier zero-knowledge proofs (MVZK) [BD91], the prover tries to prove a public NP statement to n
verifiers such that zero-knowledge (resp., soundness) should hold even if the adversary corrupts
up to t of the verifiers (resp., the prover and up to t− 1 of the verifiers).

Since no trusted setup is assumed, non-trivial languages (outside BPP) do not admit single-
round MVZK protocols even for t = 1, nor do they admit two-round MVZK protocols with
a dishonest majority [GO94] (see the discussion in [AKP22b]). Still, in the presence of hon-
est majority one can hope for two-round protocols, or even for an offline/online MVZK in
which the first offline round is independent of the statement that is chosen adaptively at the
beginning of the second online round. Indeed, as noted by [ACGJ18], MS-NIZK give rise to
such online/offline honest-majority MVZK for NP. By Theorem 1.2, we can base MS-NIZK
on NIZK. However, the mere existence of NIZK currently relies on public-key assumptions
(e.g., [BFM88, FLS90, GOS12, SW14, PS19, CCH+19]) or on private-key primitives with non-
standard properties [KRR17, CCRR18, HL18, BKM20] such as correlation intractability [CGH04].

The question of basing two-round honest-majority MVZK on one-way functions, the minimal
cryptographic assumption, was studied by [AKP22b]. They partially resolved the question with
two main caveats: They had to rely on injective one-way function with sub-exponential hardness and
the complexity of their protocol grows exponentially with the number of parties. By using NPSS,
we overcome these caveats and construct an MVZK. Along the way, we derive stronger efficiency
properties, and significantly simplify the construction.

Informal Theorem 1.4. Assuming one-way functions, there exists online/offline honest-majority MVZK
for NP whose complexity grows polynomially in the number of parties and the instance size.

Furthermore, the protocols follow a simple Verifiers/Prover communication pattern: In the first round,
the verifiers broadcast public messages and send private information to the prover, while the prover remains
silent. In the second round, the verifiers remain silent, and the prover publishes a proof. Verification is based
solely on the prover’s message and the public messages from the verifiers.

5In fact, the complexity is exponential in [CMVX25] and, at best, sub-exponential in [GJS19, BG24]. Indeed, the
latter constructions use an iterative approach that alternates between zero-knowledge amplification and soundness
amplification for a constant number of levels. It can be shown that this approach implicitly realizes majority by a
constant-depth circuit with AND/OR gates with unbounded-fan-in, which is known to require sub-exponential size
(see, e.g., [FSS84, OW07]).

9

See Theorem 5.7 in Section 5 for a formal statement. Unlike the constructions in [AKP22b] the
verifiers do not have to communicate with each other, and in fact, they can become “inactive” after
the first round. Viewing the offline broadcast message of each verifier as a CRS, we note that the
communication pattern of our NVZK is very similar to the one obtained by MS-NIZK. The main
difference is that the public CRS is accompanied by a secret message (“private key”) that is sent
from each verifier to the prover. In the setting of a single authority, such a protocol is also known as
designated-prover NIZK (dp-NIZK) for adaptively chosen single theorem [SMP87, BGT20]. Accord-
ingly, Theorem 1.4 provides a dp-NIZK in the MS setting. To prove the theorem, we first construct
a (single-theorem) dp-NIZK in the CRS model based on one-way functions, and then use NPSS
to lift it to the MS model. We further show that one-way functions suffice for dp-NIZKs with
either perfect-soundness and computational-ZK or for perfect-ZK and computational soundness.
Previous constructions of dp-NIZK relied on stronger assumptions such as statistically-hiding
commitments or sub-exponential hard one-way functions [BGT20, AKP22b], and failed to achieve
perfect zero-knowledge. (See Remark 5.5.)

The construction of MVZKs enables solutions to several additional problems where prior ap-
proaches relied on stronger assumptions or encountered the caveats mentioned earlier. Most no-
tably, building on [AKP22b, AKP22a], we construct an optimal, 3-round secure multiparty com-
putation (MPC) protocol for general functions. This protocol achieves full security —– including
guaranteed output delivery —– even in the presence of an actively corrupted minority. Our con-
struction relies on one-way functions, concluding a line of research that previously depended on
stronger assumptions for such protocols [AJL+12, GLS15, BJMS20, ACGJ18, AKP22a].

Additionally, if the parties have access to a collision-resistant hash function, we can achieve sta-
tistical everlasting security for any NC1 functionality. This means that the protocol remains secure
against adversaries who are computationally bounded during execution but become computa-
tionally unbounded afterward. (See discussion in [AKP22b].) This extension builds on a statistical
zero-knowledge version of Theorem 1.4. (See Section 5 for details.)

1.3 Technical Overview of the Main Theorem

AND-NPSS. We start with the simplest case of 2-out-of-2 NPSS, hereafter referred to as AND-
NPSS. Roughly, our goal is to map f into two statements f1 and f2 over a joint set of variables
such that each single statement fi is independently satisfiable, but the two are simultaneously
satisfiable if and only if f is satisfiable. More accurately, f should be mapped to a pair of distribu-
tions (Y1, Y2) over partial assignments such that any assignment x that satisfies f can be randomly
mapped to a pair of consistent assignments (y1, y2) such that yi satisfies fi and its marginal distri-
bution is identical to Yi.

We rely on the MPC-in-the-head paradigm of Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS09]
with a minor, yet important, tweak. Let π = πf be a 2-party protocol that given an input x1 for P1

and x2 for P2 returns the value f(x1 ⊕ x2) to both parties. Given an assignment x that satisfies f ,
secret-share x into x1 and x2 via additive secret sharing, and sample a full transcript y for π(x1, x2).
That is, sample random tapes r1 and r2 for P1 and P2, generate all the messages mi that Pi sends
to the other party, and define

y := (x1, r1, x2, r2,m1,m2).

The function fi checks that the partial view of Pi that is defined by y leads to an output of 1.
That is, f1(x1, r1,m1,m2) runs the protocol π on (x1, r1) sets the incoming messages according

10

to m2 and computes the outgoing messages and the final output, if the outgoing messages are
consistent with m1 and the final output is 1, the function accepts its input. The predicate f2 is
defined similarly. Crucially, the function depends only on inputs that are revealed to Pi during
π, and so if the protocol is 1-private (i.e., the view of every single party that plays honestly can
be perfectly simulated) then the NPSS is also private. The 2-recovery and perfect correctness
properties of the NPSS hold assuming that the protocol π is perfectly correct in the sense that for
every input (x1, x2) and every pair of random tapes (r1, r2) the outcome π((x1, r1), (x2, r2)) equals
to f(x1 ⊕ x2).

Coping with OT-messages. It is known that non-trivial functions cannot be computed with per-
fect correctness and 1-privacy in the “plain-model” [CK89]. However, the celebrated GMW the-
orem [GMW87] provides such a protocol for every function in the oblivious-transfer (OT) hybrid
model. In this model, P1 and P2 share an OT channel that operates as follows: the sender sends a
pair of bits (z0, z1) the receiver chooses a bit s and receives the message zs. The sender learns no
information on the selection bit, and the receiver learns nothing on the message z1−s. For simplic-
ity, assume that the protocol π involves a single OT-channel call, with P1 as the sender and P2 as
the receiver. The NPSS witness y is extended with the OT-triple (z0, z1, s). The verification f1 of
the sender’s view consists of checking that (z0, z1) are indeed the OT-messages that are being sent
given input (x1, r1) and the incoming messages m2. Accordingly, f1 depends on P1’s view that
includes (z0, z1) in addition to the input, randomness and standard messages.

The situation for the receiver P2 is more subtle. In order to check that the partial view of
P2 is consistent, the function f2 needs the value of zs as an input, where s is the selection bit
that is computed by f2 based on (x2, r2,m1). Since s is determined by the inputs to f2, it im-
plies that f2 syntactically depend on both z0 and z1. However, we cannot simulate a satisfying
assignment for f2 that assigns values to both variables. (Indeed, if the message z1−s is leaked
in π privacy completely fails, since otherwise we get a protocol in the plain model!) The key
insight is to use a partial assignment. This allows us to assign only the necessary inputs for f2
while keeping other inputs unassigned in order to preserve privacy. Specifically, we generate a
view for P2 that includes (x2, r2,m1, s, zs), leaving z1−s as unassigned (represented by ∗). The
function f2(x2, r2,m1, s, z1, z2) takes this partial assignment and checks consistency while ignor-
ing the value of z1−s. Using the extended logic defined in Remark 1.1, we can define a circuit
f2(x2, r2,m1, s, z1, z2) that computes the desired functionality (tests if a given view is valid and
leads to 1) even when z1−s is set to ∗. In particular, one can retrieve the value zs via the sub-
formula (s ∧ z1) ∨ (¬s ∧ z0). This relaxation of Boolean logic allows us to perfectly realize the
AND-NPSS gadget.

Comparison to [GJS19]. It is instructive to compare the above construction to the NPSS solu-
tion of [GJS19]. Unlike our approach, [GJS19] uses cryptographic commitments to encapsulate
the extended transcript y based on the original MPC-in-the-head template. In their construction,
the commitment string Y is hard-wired to the statements f1 and f2, making it part of their spec-
ification. The inputs of f1, f2 are the “openings” of the commitments to the relevant parts of the
view (e.g., f2 gets opening for x2, r2,m1,m2, s, zs). Since the commited assignment is fixed as part
of the function’s description, this approach circumvents partial assignments: The function fi de-

11

pends on k inputs, with the simulator generating a complete assignment for these inputs.6 On the
downside, the construction is only computationally-secure. Moreover, the number of inputs in fi
is polynomially larger than the number of variables in f . In contrast, since the GMW compiler
has constant computational overhead, our approach increases the number of variables only by a
constant factor — a property that will later prove crucial. (Less importantly, the use of commit-
ments requires from [GJS19] to define the NPSS syntax in a slightly more liberal way as discussed
in Section 1.4.)

Generalized NPSS. Our next goal is to construct t-out-of-n NPSS. In fact, it will be convenient
to generalize the notion of NPSS and define its properties with respect to a monotone predicate
χ : 2[n] → {0, 1} for which χ(A) ≤ χ(B) whenever A ⊆ B. A χ-NPSS is defined similarly to t-out-
of-n NPSS, except that for every subset S ⊆ [n] of statements, privacy holds if χ(S) = 0, meaning
that S is unauthorized, and recovery holds if χ(S) = 1 meaning that S is authorized. The notion of
t-out-of-n NPSS corresponds to the case where χ is taken to be the t-out-of-n threshold function.

Following the traditional secret-sharing literature (see [BL88, Bei11]), it is natural to construct
χ-NPSS recursively by scanning a monotone formula for χ in a gate-by-gate manner starting from
the output gate. For instance, in order to realize n-out-of-n NPSS use an AND-tree, share f in
the root into f1, f2 and continue recursively with each statement separately. Unfortunately, this
approach fails to satisfy the recovery/soundness condition due to the use of partial assignments.
For example, suppose that f is AND-shared into (g, h) and then g is AND-shared into (g1, g2) and
h is AND-shared into (h1, h2). One would like to argue that (g1, g2, h1, h2) form a 4AND-sahring
of f . However, the first two instances (g1, g2) share no common variables with the (h1, h2) and
so no consistency is enforced between the gi’s and the hi’s. As a result, even if f is not satisfi-
able, it is possible to generate partial assignments (y1, y2, y3, y4) that consistently satisfy the tuple
(g1, g2, h1, h2). (Use the simulator to sample a pair of inconsistent assignments (a, b) that separately
satisfy (g, h), and apply the assignment mapper on a and b seperately to generate (y1, y2) and
(y3, y4).) This problem can be avoided if we use the commitment-based construction of [GJS19].
However, the commitment-based approach suffers from a polynomial blow-up in the number of
variables, and therefore it can only be used for constant-depth formulas that are too weak to com-
pute non-trivial threshold functions where t is a constant fraction of n. (See, e.g., [FSS84, OW07]).

Back to MPC. The key idea is to apply recursion at the “MPC-level” and then move to NPSS via
the MPC-in-the-head transform. Since MPC is an interactive object, the meaning of recursion is
somewhat subtle. Moreover, to make this work, we will have to carefully define a non-standard
notion of NPSS-compatible MPC. Details follow.

Generalizing the previous AND-NPSS construction, we introduce the following notion of χ-
secure protocols for computing a public-output function f . In such a protocol, the following prop-
erties hold for every subset S ⊂ [n]:

1. (Perfect passive privacy for zero-sets): If χ(S) = 0, the joint view of coalition S can be
perfectly simulated.

2. (Perfect correctness with abort against an active adversary): If χ(S) = 1, the output of
parties in S is “correct” even if an unbounded adversary actively corrupts all other parties.

6We note that in all of our applications, the partial assignments in our NPSS will be eventually wrapped by commit-
ments as well. However, as we will see, it is beneficial to “postpone” the use of commitments as much as possible.

12

Specifically, the adversary may cause the honest parties to abort, but if the honest parties
agree on an output z, there exists some input xS̄ for the corrupted parties that, together with
the honest parties’ input xS , produces z under f . This correctness must hold with probability
1, meaning that even with full knowledge of the honest parties’ information, the adversary
cannot force an incorrect output z /∈ Image(f(xS , ·)) ∪ {⊥}.

Unlike standard notions of MPC where privacy and correctness should hold against the same col-
lection of adversarial coalitions, here each of these properties is defined with respect to a different
collection of coalitions. Just like in the case of secret-sharing, this notion has an all-or-nothing
flavor: Every coalition either (passively) learn noting about the output, or has enough informa-
tion to avoid an an incorrect output even in the presence of an active adversary that corrupts all
other parties. The latter correctness property is tailored to the NPSS setting; it ensures that if the
views of an authorized set S are self-consistent and yield an output of 1, then f must be satisfi-
able. Notably, the GMW protocol satisfies these properties for the AND-predicate. In this case,
the correctness property simplifies to standard perfect correctness, as the only authorized set is
the set containing all parties. Another simple example is the OR-predicate, for which the privacy
condition is trivial, since any non-empty subset S ⊂ [2] satisfies the OR predicate. OR-MPC can
be realized via a “replication protocol,” where each party is given the entire input x and outputs
f(x).

The combination of these two protocols turns out to be sufficient for realizing an arbitrary
monotone predicate χ. To see this, express χ as a monotone circuit using AND and OR gates,
and construct the protocol recursively, layer by layer, through party virtualization (see, e.g.,
[HM00, CDI+13]). For instance, let χd be an AND-tree with depth d, and assume we have a
χd-secure protocol πd for f . We can construct a χd+1-secure protocol πd+1 by replacing each party
P in πd with a pair of parties (P1, P2) that securely emulate P in πd using a 2-party AND-secure
protocol. Since πd employs an OT channel, P1 and P2 must also emulate P ’s OT communication,
but this is manageable. Since our basic AND/OR protocols incur only constant computational
overhead, we achieve efficient χ-secure protocols as long as χ is computable by a monotone cir-
cuit of logarithmic depth. Since threshold functions admit such explicit circuits (e.g., based on
optimal sorting networks [AKS83]), we get efficient t-out-of-n NPSS for arbitrary parameters t, n.

1.4 NPSS and Other Related Models

Our NPSS vs. the NPSS definition of [GJS19]. Recall that in our NPSS definition, the instance f
is mapped into (fi)i∈[n] via a (deterministic) instance mapper R, and the assignment x is mapped
to to the partial assignments (yi)i∈[n] by the randomized assignment mapper W . In [GJS19] these
two algorithm are combined into a single randomized sharing algorithm M that given an in-
stance/witness pair (f, x) and some public parameters (generated by a setup algorithm), outputs
n instance/witness pairs (fi, yi)i∈[n]. This algorithm is accompanied by a verification algorithm
V and by a recovery algorithm, where the former verifies that the instances (fi)i∈[n] are “valid”
with respect to f (and the public parameters), and the latter provides t-recovery, conditioned on
successful verification. The simulator should be able to sample all the instance (fi)i∈[n] jointly with
any subset of t − 1 assignments. Note that the above syntax can be derived from our syntax via
simple manipulations (by letting M = (R,W) and by letting V accept (fi)i∈[n] if they are consistent
with R(f)). The important difference is that [GJS19] define the instances (fi, yi)i∈[n] on disjoint sets
of variables and so, unlike our setting, every yi is a fully defined assignment and no consistency

13

property is required between the assignment. Instead, consistency is enforced by the verification
algorithm based on the instances (fi)i∈[n].

It is not hard to show that this syntax cannot be realized with information-theoretic secu-
rity, unless the polynomial-hierarchy collapses. Indeed, such an information-theoretic scheme
allows to reduce a circuit-SAT statement f to the SZK-complete statistical-distance problem [SV97]
as follows. Given an NP statement f , consider the circuit Cf,S(r) that, for a (t − 1)-subset
S ⊂ [n] invokes the NPSS-simulator Sim(f, S; r) with r as its random tape, and given the an-
swer (F = (fi)i∈[n], (yi)i∈S), it outputs the F -part if yi satisfies fi for every i ∈ S and (f1, . . . , fn)
pass verification; otherwise, the circuit Cf,S(r) outputs S. Fix some two distinct (t − 1)-subsets
S0 ̸= S1, and let Db denote the distribution sampled by the circuit Cf,Sb

(r) on a randomly chosen
input r. If f is satisfiable then the distributions are statistically close (assuming that the NPSS is
statistically-private), and if f is unsatisfiable then the distributions must be disjoint. Indeed, if
F is in the support of both distributions then (fi)i∈S0∪S1 are all satisfiable and (f1, . . . , fn) pass
verification, so (by the t-recovery property) the function f must be satisfiable as well.

Moving on with the comparison between the two notions, we note that any NPSS that is
aligned with our definition can be compiled into an NPSS that satisfies the above notion via the
use of non-interactive commitments. In fact, this can be based on CRS-based commitments whose
existence follows from any one-way function [Nao91]. The new sharing algorithm uses R(f) and
W (x) to generate the instances (fi)i∈[n] and partial assignments (y1, . . . , yn), that are all consistent
with some global assignment y. The algorithm then commits to every bit y (denote the commit-
ments by C), and outputs (g1, ..., gn) and (z1, ..., zn) defined in the following way: gi takes a subset
of openings to C, opens the corresponding commitments (all the commitments are hard-wired
to gi), and verifies that the partial assignment defined by the opened commitments satisfies fi.
The assignment zi is the subset of openings corresponding to the partial assignment yi. The ver-
ification algorithm simply verifies that g1, ..., gn are well defined with respect to the same set of
commitments C. It is not hard to see that if the verification succeeds, then the underlying partial
assignments are consistent, unless the adversary violated the binding property of the commitment
scheme.

Overall, our definition encapsulates the information-theoretic core of the computational NPSS
of [GJS19]. This can be viewed as part of a general endeavor in separating information-
theoretic components from cryptographic compilers (see [Ish20]). Indeed, as we saw, the use of
information-theoretic abstraction is beneficial both for the construction and for the applications
(e.g., by allowing modular usage of different types of commitments).

NPSS vs. ZK-PCP. Roughly speaking, in ZK-PCP a prover who claims that x satisfies f , ran-
domly maps x to a longer proof y ∈ {0, 1}m such that a verifier can be convinced that the witness
x is valid by reading a subset I ⊂ [m] of the bits of y and applying predicate to y[I]. The set I
is sampled according to some predefined distribution. The honest-ZK property asserts that if I
is sampled properly the bits y[I] can be efficiently simulated, possibly with some statistical error,
even without holding the witness x.

Every t-out-of-n NPSS implies such an honest-verifier ZK-PCP where the prover samples y as
the proof, and the verifier samples t−1 tests (f1, . . . , ft−1) out of F and asks to see the correspond-
ing partial assignments.7 This transformation achieves perfect zero-knowledge against an honest

7Strictly speaking, due to the use of partial assignments, we have to let the prover decide which locations Ii of y to
reveal in order to convince that fi is satisfied. Alternatively, we could let the verifier read the locations adaptively since

14

verifier, perfect completeness, and a soundness error of 1/
(

n
t−1

)
which is optimal given the zero-

knowledge property. In fact, any ZK-PCP with the above properties is an NPSS. On the downside,
the resulting ZK-PCP is non-local (each test may query polynomially many bits of the proof) and
zero-knowledge may completely break down if the verifier is malicious. In contrast, in the context
of ZK-PCP [KPT97, DFK+92] one typically tries to minimize the query complexity of the honest
verifier (e.g., to a constant) and try to obtain zero-knowledge against a malicious verifier that is
allowed to make polynomially-many queries. The exact errors in soundness and zero-knowledge
are typically not important. Hence, NPSS and ZK-PCP attempt to optimize different parameters
and we currently do not know how to move from one setting to the other.

NPSS vs. secret-sharing for NP access structure. The notion of NPSS may superficially resem-
ble the problem of Secret-Sharing for NP access structures [KNY14], though these two notions are
actually very far from each other. In short, given a monotone function f in NP, the latter no-
tion allows to share a secret s among n parties such that a coalition can recover the secret if and
only if it is accepted by f . That is, the secret can be arbitrary and the role of the monotone NP
function f is to determine which parties are authorized to recover s. In contrast, in our case the
“secret” must be a satisfying assignment for the (possibly non-monotone) NP function and the
set of “authorized” shares is determined by a simple threshold function. Moreover, we present
information-theoretic constructions for NPSS that are unlikely to exist in the case of secret-sharing
for NP-access structure unless the polynomial-hierarchy collapse [Nao06] .

Acknowledgment

We thank Nir Bitansky, Nathan Geier, Oded Goldreich, Yuval Ishai, Abhishek Jain, and Omer
Paneth for useful discussions. We thank the authors of [CMVX25] for bringing [CMVX25] to our
attention.

2 Secure Multiparty Computation

In this section we construct MPC protocols that will be used as building blocks in the construction
of NPSS in Section 3. In Section 2.1 we formally define the notion of a protocol, and also provide
security definitions. In Section 2.2 we present our server-substitution generators, that are the main
building blocks of our construction, and in Section 2.3 we present our MPC protocols. Throughout
this section we measure computational complexity in the unit-cost RAM model.

2.1 Basic Definitions

In the following section, we define MPC in the client-server model and present our non-standard
security definitions. Since we will later manipulate protocols (via different forms of compositions),
we will have to carefully define the syntax of a “protocol”. This can be done in multiple ways, and
our concrete formalization follows the framework of Hirt and Maurer [HM00].

one can define an order (j1, . . . , jk) over the entries of Ii such that each index jℓ can be computed based on the content
of y[j1], . . . , y[jℓ−1].

15

2.1.1 Clients, Servers and Protocols

Client and servers. We consider two types of parties: clients and servers. Every party, either a
client or a server, can communicate with all other parties and perform computations. The only
difference between the clients and the servers is that only clients are allowed to receive inputs and
provide outputs, while the servers have no inputs and outputs.

Functionality. An n-client (deterministic) functionality F is a function that takes n inputs
x1, . . . ,xn and provides n outputs y1, . . . ,yn. We think of xi as the input of the i-th client, and
of yi as the output of the i-th client.

Variable space, view and abort flag. We assume that the parties communicate over private
point-to-point channels and use a broadcast channel to announce an “abort”. For concreteness,
we formalize the syntax of a protocol via the framework of [HM00, CDI+13]. We assume a global
variable space X . A variable x ∈ X can take values from the binary field F2. Every value generated
during a protocol execution, including inputs, local data and outputs, is assigned to a variable. We
assume that every variable is assigned a value exactly once, and can’t be re-written. In addition,
every variable belongs only to a single party, and we let the view of a party p, denoted view(p), be
the values of all the variables that belong to p. For a variable x ∈ X , we denote the value assigned
to x by val(x).

We also assume the existence of a public abort flag, denoted flag, that all the parties can access.
The value of the flag is set to zero at the beginning of the execution, and at any time each party
can raise the flag (i.e., set its value to 1). Once the value of the abort flag is set to 1, it cannot be
changed. Jumping ahead, at the end of the protocol the clients output “abort” if and only if the
flag is turned on.8

Protocols. A protocol π among a set P = C ∪ S of clients C and servers S over the variable space
X is a sequence d1, . . . , dL of statements. There are several types of statements:

• An input statement input(c, i, x) instructs the client c ∈ C to read the i-th bit from its input
tape and to assign the value to the variable x ∈ X that belongs to c.

• An output statement output(c, i, x) instructs the client c ∈ C to set its i-th output bit to be val(x)
where x belongs to c. However, if the public abort flag is raised, i.e., flag = 1, then the output
is set to be ⊥.

• A transmit statement transmit(p1, p2, x1, x2) instructs a party p1 ∈ P to send the value of the
variable x1 that belongs to p1 to a party p2 ∈ P , and it instructs p2 to assign the received
value to the variable x2.

• A computation statement comp(p, op, X, x) instructs a party p ∈ P to perform the atomic op-
eration op on the tuple of variables X ⊆ X that are in its view and to assign the result to
the variable x ∈ X . For concreteness, we assume that op ∈ {+,×, rand} where {+,×} are
addition and multiplication over F2 (in which case X contains exactly two variables), and
rand is an instruction to assign a random value to x (in which case X = ∅).

8One could emulate such a flag using a broadcast channel. However, for technical reasons it will be convenient to
use the flag mechanism and avoid the use of a broadcast channel.

16

• An abort statement abort(p, x) instructs a party p ∈ P to raise the abort flag flag if the value of
the variable x in the view of p is 1.

Let G be a 2-party functionality, that takes an input α ∈ {0, 1}ℓ1 from the first party, an input
β ∈ {0, 1}ℓ2 from the second party, computes γ = G(α, β), where γ ∈ {0, 1}ℓ3 , and returns γ only
to the second party (the first party has no output). A protocol π in the G-hybrid model gives every
pair of parties access to the functionality G, and allows the following statement:

• A G-statement func(G, p1, p2, X1, X2, X3) for parties p1, p2 ∈ P , a tuple X1 = (x11, . . . , x
1
ℓ1
) of

variables that belong to p1, a tuple X2 = (x21, . . . , x
2
ℓ2
) of variables that belong to p2, and

a tuple X3 = (x31, . . . , x
3
ℓ3
) of variables that belong to p2, instructs the parties to use the

functionality G in the following way. Party p1 inputs α ∈ {0, 1}ℓ1 defined by the values of
the variables in X1, and p2 inputs β ∈ {0, 1}ℓ2 defined by the values of the variables in X2.
The output from the functionality γ = G(α, β) ∈ {0, 1}ℓ3 is then given by the functionality to
p2 that assigns γ to the variables in X3.

Throughout, we only consider protocols π that are well defined, i.e., variables are only accessed
after they were defined, and the protocol does not attempt to re-write a variable. In addition we
assume that all the input statement appear first as a prefix of the protocol, and that every input
bit is read at most once; we assume that all the output statements appear at the end as a suffix
of π, and that every output bit is written at most once; and we assume that those are the only
input/output statements in the protocol. Finally, we assume that for every choice of inputs to the
parties, in an honest execution of π the abort flag is never raised.

2.1.2 Security Definition

From now on, let F be an n-client functionality, let π be a protocol over the set of parties P = C ∪S
that includes n clients C and m servers S.

Our security definition is parameterized by a monotone predicate χ : 2P → {0, 1} referred to
as an access structure. Here monotonicity means that χ(A) ≤ χ(B) for every A,B ⊆ P that satisfy
A ⊆ B. Our security definition consists of two parts. The first part requires standard perfect
privacy and perfect correctness against a passive adversary that corrupts subsets Z for which
χ(Z) = 0. (Intuitively, as in the case of secret sharing these coalitions correspond to “unauthorized
coalitions”.)

Definition 2.1 (χ-passive security). We say that π computes F with χ-passive security if there exists
a simulator Sim such that for all inputs (x1, . . . , xn) to the clients the following holds:

• (Perfect Correctness) With probability 1, the output of the i-th clients in an execution of π is yi,
where (y1, . . . , yn) = F(x1, . . . , xn).

• (Perfect Privacy) For any set Z ⊆ P of corrupt parties that satisfies χ(Z) = 0 it holds that

(view(p))p∈Z ≡ Sim(Z, (xi)ci∈Z∩C , (yi)ci∈Z∩C)

where (y1, . . . , yn) = F(x1, . . . , xn). In addition, the running time of Sim is polynomial in n and
the number of statements in π.

17

The second part of the definition guarantees perfect correctness for authorized coalitions S for
which χ(S) = 1, even in the presence of an active adversary corrupts all other parties Z := P \ S.
That is, the honest parties in S will never generate an erroneous output but the adversary may
force them to output an “abort” symbol. This means that in every execution of π in the presence
of the active adversary, where the clients hold inputs x = (x1, . . . , xn), either the abort flag is
raised, or the outputs of the honest clients are consistent with F(x′1, . . . , x′n) for some assignment
x′ = (x′1, . . . , x

′
n) that is consistent with x with respect to the honest clients (i.e., x′i = xi if the i-th

client is honest). In fact, we even require the existence of an efficient extractor so that whenever
the honest clients do not abort, the assignment (x′1, . . . , x

′
n) can be extracted from the views of the

honest parties. Before formalizing this non-standard notion, let us formally define the notion of
active adversary in our concrete syntactic framework.

Active adversarial behavior. As usual, an active adversary that corrupts a set Z of parties is
an adversary that can make the corrupted parties in Z deviate from the protocol. Since our
non-standard notion of correctness should hold with probability 1 (against computationally-
unbounded adversaries), it is enough to require that it holds with respect to degenerate active
adversaries, that specify before the execution of π what messages the corrupt parties send to the
honest parties. Indeed, an active adversary that violates correctness with positive probability can
be transformed into a degenerate active adversary that violates correctness with positive proba-
bility. Since correctness is satisfied when the abort flag is raised, we may also assume that the
adversary never raises the abort flag. Finally, we mention that we allow the active adversary more
power: for every G-statement where the first party is corrupt and the second party that receives
the output is honest, we let the adversary choose the output of the functionality G.

Formally, let π = (d1, . . . , dL) be a protocol over P . An active adversarial behavior with respect
to a set Z of corrupt parties, is a protocol π̃ = (d̃1, . . . , d̃L) such that for every i ∈ [L], (1) if the i-th
statement is a transmit statement transmit(p1, p2, x1, x2) where p1 ∈ Z and p2 is honest, then the
statement is marked by a message m, so that in an execution of π̃ party p1 ignores the original state-
ment and instead sends m to p2, (2) if the i-th statement is a G-statement func(G, p1, p2, X1, X2, X3)
where p1 is corrupt and p2 is honest, then the statement is marked by an output γ, so that in an
execution of π̃ the output of G is always γ, (3) if the i-th statement is abort(p, x) for p ∈ Z, then the
statement is ignored, and (4) otherwise, d̃i = di is executed honestly.

Definition 2.2 (χ-perfect active correctness with abort). We say that π computes F with χ-perfect
active correctness with abort, if there exists a deterministic extractor Ext such that for every set of S ⊆ P
of honest parties that satisfies χ(S) = 1, all active adversarial behaviors π̃ with respect to the corrupt parties
Z := P \ S, all inputs (x1, . . . , xn) to the clients, and every execution of π̃, one of the following holds:

• The output of all honest clients is ⊥.

• There exists a vector of inputs x∗ = (x∗1, . . . , x
∗
n) such that (1) x∗i = xi for all honest clients ci ∈

C ∩ S, (2) the outputs of the honest clients are consistent with F(x∗), and (3) Ext, given the set Z
and the view of all honest parties, outputs x∗.

In addition, the running time of Ext is polynomial in n and the number of statements in π.

Our default notion of security, denoted by χ-dual security, requires privacy against unautho-
rized sets and correctness for authorized sets.

18

Definition 2.3 (χ-dual security). We say that π computes F with χ-dual security, if π provides both
χ-passive security and χ-perfect active correctness with abort.

Remark 2.4 (Comparison to “standard” MPC). Unlike traditional definitions of MPC, here correctness
and privacy hold with respect to different coalitions. Indeed, dual security provides a refined trade-off
between perfect active correctness and perfect passive privacy. As a result, just like in secret sharing,
different monotone functions lead to incomparable notions of security. This is in contrast to traditional
notions of t-privacy or t-security that become strictly stronger when t grows. Finally, let us mention that
perfect active correctness-with-abort is typically not achieved by protocols with active security against t-size
coalitions in the regime of n/3 ≤ t < n. In fact, to the best of our knowledge, all existing protocols allow
the adversary to violate correctness with some non-zero probability.

2.1.3 Protocol Assignment Mapping

Let P = C ∪ S be a set of parties. A protocol assignment mapping σ of P is function σ : S → C.
For a protocol π among P , we define the mapped protocol σ(π) to be the same protocol, where in
each statement all involved servers are replaced with the mapped clients. We note that σ(π) is a
protocol among the set of clients C, and without any server.

For a subset of clients Z ⊆ C we define the inverse mapping

σ−1(Z) = {s ∈ S : σ(s) ∈ Z} .

For a monotone predicate χ : 2P → {0, 1}, we define the mapped predicate χσ : 2C → {0, 1} to be

χσ(Z) := χ(Z ∪ σ−1(Z)),

for every Z ⊆ C. The following claim, proved in Appendix A.1, will be useful later on.

Claim 2.5 (Replacing servers with clients). Let σ be a protocol assignment mapping, let F be an n-
client functionality, and let π be a protocol among P = C ∪ S that computes F with χ-dual security.
Then π′ = σ(π) is a protocol among P ′ = C that computes F with χσ-dual security. In addition, the
simulator Sim′ and extractor Ext′ of π′ can be computed efficiently given σ (say, represented as an array),
the simulator Sim and the extractor Ext for π. The number of statements in π′ is |π|, and the running time
of Sim′ and Ext′ is O(n · tSim) and O(n · tExt), respectively, where tSim is the running time of Sim, and tExt
is the running time of Ext.

2.2 Server-Substitution Generators

A P ′-server substitution generator G takes as an input a protocol π among a set P = C ∪ S of clients
and servers, together with the identity of some server τ ∈ S, and returns a new protocol π′ among
a set (P \ {τ}) ∪ P ′ of clients and servers. We will always assume that P ′ is a set of servers that is
disjoint of P and if this is not the case, we simply rename the servers in P ′.

In the following sections we present two server-substitution generators in the (bit) OLE-hybrid
model, that will be used as a basic building block in the construction of our MPC protocols. Recall
that the OLE functionality takes from the first party two bits (a, b) and from the second party a bit
x and returns the bit (a · x)⊕ b to the second party.9

9The use of the OLE-hybrid model instead of the OT-hybrid model is just for convenience, since the two models are
equivalent (an OT call can be emulated by an OLE call and vice versa.)

19

2.2.1 The ∨-Generator

Let π be a protocol amongP that computes a functionalityF with χ-dual security. The∨-generator
G∨ takes the protocol π and a server τ ∈ P , and generates a new protocol π′ where τ is replaced
with two new servers: A and B. At a high level, both A and B take the role of τ and hold a copy
of its view: Every message sent to τ is now sent both to A and B, and every message sent from
τ is sent by both A and B. Throughout, we make consistency checks for incoming and outgoing
messages of A and B, and abort if some inconsistency is found.

For passive security, we note that if the view of either A or B is leaked, then it is equivalent to
the leakage of the view of τ in π. This means that the new protocol is passively-secure against a
set Z ⊆ P ′ if either (1) A,B /∈ Z, and the original protocol is secure against Z, or (2) if (A ∈ Z or
B ∈ Z), and π is passively-secure against (Z \ {A,B}) ∪ {τ}.

As for perfect active correctness with abort, we note that as long as one of A or B is honest,
then this party guarantees an honest emulation of τ . This means that we obtain perfect correctness
with abort against Z ⊆ P ′ if either (1) A,B ∈ Z and π has perfect active security with abort against
(Z \ {A,B}) ∪ {τ}, or (2) either A or B is not in Z, and the original protocol is secure against
Z \ {A,B}.

We present G∨ in Figure 1.

• Inputs: A protocol π over the set of parties P = C ∪ S, and a server τ ∈ S.

• Procedure: The generator generates a protocol π′ over the set of parties (P \ {τ}) ∪ {A,B}, where A
and B are servers that do not belong to P . The protocol π′ follows the statements of the protocol π,
where the servers A and B each hold a copy of the local view of τ . That is, we keep the invariant that
for every variable x that belongs to τ , A and B hold corresponding variables xA and xB , respectively,
with the same value.
Formally, for every i = 1, . . . , |π| + 1, the i-th statement di in π is replaced with the following set of
statements in π′:

– If the statement di is transmit(p, τ, x1, x2), then in π′ the party p sends v := val(x1), both to A and to
B. Denote by vA the value that A received and by vB the value that B received. We let A assign vA

to xA
2 , and B assigns vB to xB

2 .
In addition, A sends vA to B and B verifies that vA = vB . If the verification fails, B raises the abort
flag flag.

– If the statement di is transmit(τ, p, x1, x2) then let xA
1 and xB

1 be the corresponding variables that A
and B hold, with values vA and vB , respectively. A and B send vA and vB , respectively, to p, and p
assigns vA to x2.
In addition, p verifies that vA = vB . If the verification fails then p raises the abort flag flag.

– If the statement is comp(τ, ∗, (x1, x2), x) and ∗ ∈ {+,×} then A assigns to the variable xA the value
(vA1 ∗ vA2) and B assigns to the variable xB the value (vB1 ∗ vB2), where vA1 , v

A
2 , v

B
1 , vB2 are the values

of the variables xA
1 , x

A
2 , x

B
1 , x

B
2 , respectively.

– If the statement is comp(τ, rand, ∅, x) then A samples a random bit r ← {0, 1}, and assigns r to xA.
In addition, A sends r to B, and B assigns r to xB .

Generator G∨

20

– If the statement di is func(OLE, τ, p, (x1, x2), (x3), (x4)) then we execute two instances of OLE. In the
first instance A inputs vA1 , vA2 and p inputs v3, where vA1 , v

A
2 and v3 are the values of xA

1 , x
A
2 and x3,

respectively. In the second instance B inputs vB1 , vB2 and p inputs v3, where vB1 , vB2 and v3 are the
values of xB

1 , x
B
2 and x3, respectively. Let yA (resp., yB) be the value of the output that p received

from the first (resp., second) instance of OLE, and let p assign yA to x4.
In addition, p verifies that yA = yB . If the verification fails then p raises the abort flag flag.

– If the statement di is func(OLE, p, τ, (x1, x2), (x3), (x4)) then we execute two instances of OLE. In the
first instance p inputs v1, v2 and A inputs vA3 , where v1, v2 and vA3 are the values of x1, x2 and xA

3 ,
respectively. In the second instance p inputs v1, v2 and B inputs vB3 , where v1, v2 and vB3 are the
values of x1, x2 and xB

3 , respectively. Let yA (resp., yB) be the value of the output that A (resp., B)
received from the first (resp., second) instance of OLE, and let A assign yA to xA

4 , and B assign yB

to xB
4 .

In addition, A sends yA to B and B verifies that yA = yB . If the verification fails, B raises the abort
flag flag.

– If the statement di is abort(τ, x) then A executes abort(A, xA) and B executes abort(B, xB).

– For any other statement di, the statement remains the same in π.

• Outputs: The generator outputs the protocol π′ over the set of parties (P \ {τ}) ∪ {A,B}.

Figure 1: Generator G∨

Complexity and parallel applications. We note that a single application of G∨ incurs a constant
overhead in the number of instructions, as each instruction in π is compiled into a constant number
c of instructions in π′. In fact, even if we repeatedly apply G∨ on any subset of original servers
{s1, . . . , sk} ⊆ S, i.e., we compute πi := G∨(πi−1, si) for all i = 1, . . . , k where π0 = π, the overhead
per instruction is still constant. Indeed, every original instruction refers to at most two servers, say
si and sj for i < j, so it will be compiled into a constant number of c instructions in πi, and then
each of these new instruction will be compiled into a constant number of c instructions in πj . In
addition, these instructions will not be affected by any compilation πℓ for ℓ /∈ {i, j}, and therefore
the total overhead per instruction is at most c2 = O(1). We think of such an application of G∨ as
parallel application as it does not involve the substitution of servers that are generated throughout
these applications.

Lemma 2.6. Let π be a protocol among P = C ∪ S that computes a functionality F with χ-dual security,
and let τ ∈ S be a server. Then π′ := G∨(π, τ) is a protocol among the set of partiesP ′ = (P\{τ})∪{A,B}
that computes π with χ∨-dual security, where

χ∨(S) =

{
χ(S), if A,B /∈ S

χ((S \ {A,B}) ∪ {τ}), otherwise,

for every set S ⊆ P ′.
Moreover, there is a constant C and an efficient algorithm comp∨ that takes as an input (1) a protocol π

over P = C ∪S together with its simulator Sim and extractor Ext, and (2) a list of servers (s1, . . . , sk) from
S; The algorithm outputs a protocol π′ together with its simulator Sim′ and extractor Ext′ such that the
following holds: (1) π′ = πk, where π0 = π and πi = G∨(πi−1, si) for all i = 1, . . . , k, (2) if the number of
instructions in π is L then the number of instructions in π′ is at most C · L, and (3) if the running time of
Sim and Ext is bounded by T , then the running time of Sim′ and Ext′ is bounded by C · T .

21

We prove Lemma 2.6 in Appendix B.

2.2.2 The ∧-Generator

Let π be a protocol amongP that computes a functionalityF with χ-dual security. The∧-generator
G∧ takes the protocol π and a server τ ∈ P , and generates a new protocol π′ where τ is replaced
with two new servers: A and B. At a high level, the view of τ is secret shared among A and B, and
every local computation of τ is performed by a secure computation of A and B in the OLE-hybrid
model, in a similar way to the GMW protocol [GMW87]. Every message sent to τ is secret shared
among A and B, and every message m sent from τ is emulated by letting A and B send their
shares of m.

For passive security, we note that if the view of at most one of {A,B} is leaked then the view
of τ remains secure. However, if both views are leaked, then the view of τ can be recovered from
the secret sharing. This means that the new protocol is passively-secure against a set Z ⊆ P ′ if
either (1) A,B ∈ Z, and π is passively-secure against (Z \ {A,B}) ∪ {τ}, or (2) if A /∈ Z or B /∈ Z,
and the original protocol is secure against Z \ {A,B}.

As for perfect active correctness with abort, we note that as long both A and B are honest, then
π is emulated honestly. This means that we obtain perfect correctness with abort against Z ⊆ P ′ if
either (1) A ∈ Z or B ∈ Z and π is perfect active security with abort against (Z \ {A,B}) ∪ {τ}, or
(2) both A and B are not in Z, and the original protocol is secure against Z.

We present G∧ in Figure 2.

• Inputs: A protocol π over the set of parties P = C ∪ S, and a server τ ∈ S.

• Procedure: The generator generates a protocol π′ over the set of parties (P \ {τ}) ∪ {A,B}, where A
and B are servers that do not belong to P . The protocol π′ follows the statements of the protocol π,
where the view of τ is secret shared among the servers A and B. That is, we keep the invariant that
for every variable x that belongs to τ , the new servers A and B hold corresponding variables xA and
xB whose values form a 2-out-of-2 secret sharing of the value of x.
Formally, for every i = 1, . . . , |π| + 1, the i-th statement di in π is replaced with the following set of
statements in π′:

– If the statement di is transmit(p, τ, x1, x2), then in π′ the party p takes the value v ∈ {0, 1} of x1, and
samples a 2-out-of-2 secret sharing of v, denoted (vA, vB). Then p sends vA to A and vB to B. We
let A assign vA to xA

2 , and B assigns vB to xB
2 .

– If the statement di is transmit(τ, p, x1, x2) then let xA
1 and xB

1 be the corresponding shares that A and
B hold, with values vA and vB , respectively. A samples a random bit r ← {0, 1} and sends r to B.
A and B send yA := vA ⊕ r and yB := vB ⊕ r, respectively, to p, and p assigns the value yA ⊕ yB to
the variable x2.a

– If the statement is comp(τ,+, (x1, x2), x) then A assigns to the variable xA the value vA1 ⊕ vA2 and B
assigns to the variable xB the value vB1 ⊕ vB2 , where vA1 , v

A
2 , v

B
1 , vB2 are the values of the variables

xA
1 , x

A
2 , x

B
1 , x

B
2 .

– If the statement is comp(τ,×, (x1, x2), x) then the parties execute two instances of OLE in the fol-
lowing way. Let vA1 , vA2 , vB1 , vB2 be the values of the variables xA

1 , x
A
2 , x

B
1 , x

B
2 . We let A sample two

Generator G∧

22

random bits vA3 ← {0, 1} and r ← {0, 1}. In the first OLE execution A inputs (vA1 , vA1 · vA2 ⊕ vA3 ⊕ r),
B inputs vB2 and receives the output y1. In the second OLE execution A inputs (vA2 , r), B inputs vB1
and receives the output y2. Finally, A assigns vA3 to xA

3 , and B assigns y1 ⊕ y2 ⊕ vB1 · vB2 to xB
3 .

– If the statement is comp(τ, rand, ∅, x) then A samples a random bit vA ← {0, 1}, and assigns vA to
xA. Similarly, B samples a random bit vB ← {0, 1}, and assigns vB to xB .

– If the statement di is func(OLE, τ, p, (x1, x2), (x3), (x4)) then we let A sample a random bit r ← {0, 1}
and send r to B. We execute two instances of OLE. In the first instance A inputs (vA1 , v

A
2 ⊕ r)

and p inputs v3, where vA1 , v
A
2 and v3 are the values of xA

1 , x
A
2 and x3, respectively. In the second

instance B inputs (vB1 , vB2 ⊕ r) and p inputs v3, where vB1 , vB2 and v3 are the values of xB
1 , x

B
2 and

x3, respectively. Let yA (resp., yB) be the value of the output that p received from the first (resp.,
second) instance of OLE, and let p assign yA ⊕ yB to x4.

– If the statement di is func(OLE, p, τ, (x1, x2), (x3), (x4)) then we let p sample a random bit r ← {0, 1},
and we execute two instances of OLE. In the first instance p inputs (v1, v2 ⊕ r) and A inputs vA3 ,
where v1, v2 and vA3 are the values of x1, x2 and xA

3 , respectively. In the second instance p inputs
(v1, r) and B inputs vB3 , where v1, v2 and vB3 are the values of x1, x2 and xB

3 , respectively. Let yA

(resp., yB) be the value of the output that A (resp., B) received from the first (resp., second) instance
of OLE, and let A assign yA to xA

4 , and B assign yB to xB
4 .

– If the statement di is abort(τ, x) then let vA (resp., vB) be the value of the variable xA (resp., xB).
We let A send vA to B, and then B recovers v = vA ⊕ vB and raises the abort flag if v = 1.

– For any other statement di, the statement remains the same in π.

• Outputs: The generator outputs the protocol π′ over the set of parties (P \ {τ}) ∪ {A,B}.
aIn the compilation of this statement we let A and B re-randomize the shares vA and vB . The goal of this re-

randomization is just to simplify the description of the simulator in the proof of Lemma 2.7.

Figure 2: Generator G∧

The following lemma captures the security of G∧. The “Moreover” part shows that when the
transformation is applied on parallel to a set of servers, the overhead per instruction is constant,
just like in the case of G∨.

Lemma 2.7. Let π be a protocol among P = C ∪ S that computes a functionality F with χ-dual security,
and let τ ∈ S be a server. Then π′ := G∧(π, τ) is a protocol among the set of partiesP ′ = (P\{τ})∪{A,B}
that computes π with with χ∧-dual security, where

χ∧(S) =

{
χ((S \ {A,B}) ∪ {τ}), if A,B ∈ S

χ(S \ {A,B}), otherwise,

for every set S ⊆ P ′.
Moreover, there is a constant C and an efficient algorithm comp∧ that takes as an input (1) a protocol π

over P = C ∪S together with its simulator Sim and extractor Ext, and (2) a list of servers (s1, . . . , sk) from
S; The algorithm outputs a protocol π′ together with its simulator Sim′ and extractor Ext′ such that the
following holds: (1) π′ = πk, where π0 = π and πi = G∧(πi−1, si) for all i = 1, . . . , k, (2) if the number of
instructions in π is L then the number of instructions in π′ is at most C · L, and (3) if the running time of
Sim and Ext is bounded by T , then the running time of Sim′ and Ext′ is bounded by C · T .

We prove Lemma 2.7 in Appendix C.

23

2.3 From Formulas to MPC

The following theorem shows that if we iteratively apply server substitution generators according
to a monotone formula χ, the resulting protocol will achieve χ-dual security. Analogous state-
ments were proven for other notions of security (see, e.g., [CDI+13, Lemma 9.1]) and our proof
follows a similar argument with adaptations to our notion of security.

Theorem 2.8. There is a deterministic compiler C that takes as an input (1) a depth-d monotone formula χ
on n inputs and a single output bit, that uses only AND and OR gates with fan-in 2, and uses no constants,
and (2) an n-client functionality F , represented as a Boolean circuit. The compiler outputs a protocol π over
n clients C and no servers in the OLE-hybrid model, that computes the functionalityF with χ-dual security.
The compiler also outputs the description of the corresponding simulator Sim and the extractor Ext. The
running time of C is poly(|F| ·n ·2d), and the running time of Sim and Ext and the number of instructions
in π is bounded by |F| · poly(n · 2d), where |F| is the circuit size of F measured by the number of wires.10

We emphasize that while the running time of the compiler C is poly(|F| ·n ·2d), the complexity
of π,Sim and Ext depends only linearly on F , i.e., it is |F| · poly(n · 2d). We continue with a proof
of the theorem.

Proof. Let C = {c1, . . . , cn} be a set of n clients, and assume that the formula χ has s gates. We
begin with the description of the protocol π, and then explain how to efficiently generate π,Sim,
and Ext. Given F we compute a sequence of protocols π0, π1, . . . , πs, πs+1 and π is set to be πs+1.
Each protocol πi involves the clients C, may include additional servers Si, and is secure with
respect to some specific monotone function χi. We note that the compiler outputs πs+1 that only
involves the n clients C and computes F with χ-dual security.

Let g1, . . . , gs be some reverse topological ordering of the gates of χ, and let us assume that for
every i ∈ {0, . . . , d− 1} the gates at depth i appear before all the gates in depth i + 1 (here, the
depth is the distance from the output gate). We associate each wire of χ with a server. For a wire
w, we abuse notation and use w to denote both the wire and the associated server. It will be clear
from the context whether we think of w as a wire or as the associated processor.

Let χ′i be the sub-formula defined by the gates g1, . . . , gi, and letWi be the set of input wires of
χ′i, where we define χ′0 to be the sub-formula that includes only a single wire (the output wire of
χ). We let mi = |Wi| be the number of input wires and we think of χ′i as a formula on mi inputs in
the natural way. For every i ∈ {0, . . . , s}, the protocol πi will involve the set of parties Pi := C∪Wi,
i.e., the original set of clients C together with the servers inWi. We will prove that πi is secure with
respect to the predicate χi : 2

Pi → {0, 1} that given a set of clients and servers, S ⊂ Pi, outputs
1 if and only if the set of servers S ∩ Wi (or, more precisely, its characteristic vector) satisfies the
formula χ′i. (Put differently, χi : 2

Pi → {0, 1} extends χ′i : 2
Wi → {0, 1} in a trivial way.)

Building blocks. Our main building blocks are the server-substitution generators G∨ and G∧ be
the generators from Figure 1 and Figure 2, respectively.

10By using standard balancing theorems for monotone formulas [Spi71, Weg83], it is possible to efficiently transform
any S-size monotone formula into an equivalent formula of size poly(S) and depth O(logS). Therefore, the restriction
to depth-d formulas can be replaced with size-S at the expense of replacing the quantity 2d with poly(S). We further
mention that the restriction to formulas that do not employ constants can be waived since any non-constant monotone
formula over the standard AND/OR basis that employs constants can be easily transformed into an equivalent formula
that does not employ constants.

24

The protocol π0. The protocol π0 over the set of n clients C and a single server w is the “ideal
world” protocol. That is, (1) each client ci reads its input xi, (2) the clients send their inputs to w,
(3) w computes (y1, . . . , yn) = F(x1, . . . , xn) and sends yi to ci, (4) ci outputs yi. We note that π0
indeed computes F with χ0-dual security, where χ0(S) = χ′0(S ∩ {w}) is equal to 0 if and only if
w /∈ S. In addition, there is a trivial simulator Sim0 and extractor Ext0.

The protocol πi. For i = 1, . . . , s, let πi−1 be the protocol among Pi−1 = C ∪Wi−1 that computes
F with χi−1-dual security, where χi−1(S) = χ′i−1(S ∩Wi−1). We construct πi recursively, based on
πi−1. Let w be the output wire of gi, and let wA, wB be the input wires of gi. We define πi in the
following way: If gi is an AND gate, then πi = G∧(πi−1, w); Otherwise, if gi is an OR gate, then
πi = G∨(πi−1, w). Observe that πi is a protocol among Pi = Pi−1 \ {w} ∪ {A,B}, and we rename
A with wA and B with wB . The following claim is proved in Appendix A.2.

Claim 2.9. It holds that πi computes F with χi-dual security, where χi(S) = χ′i(S ∩Wi).

The protocol πs+1. Observe that the protocol πs is defined with respect to the set of clients C and
the set of servers Ws. We will assign servers to clients as follows. Let us associate the ith input
variable of χ with the ith client in C, and let σ :Ws → C be the mapping the takes the ith input wire
to its corresponding input variable. (Different input wires can belong to the same formal variable.)
Thinking of σ as a protocol assignment mapping, we let πs+1 = σ(πs). By Claim 2.5 we conclude
that πs+1 computesF with (χs)σ-dual security. It therefore remains to prove that (χs)σ = χ, which
follows immediately from the fact that χs(S) = χ′s(S ∩Ws) for all S ⊆ Ps.

Running time. First, we observe that the complexity of π0,Sim0 and Ext0 is O(|F| ·n). Recall that
for every i ∈ [d] the gates at depth i appear before all the gates in depth i+1, and let i0 = 1 < i1 <
. . . < id = s be indices such that gij is the last gate at depth j. That is, the gates at depth 0 < j ≤ d
are gij−1+1, . . . , gij , and the gate at depth 0 is g1. Assume without loss of generality that in every
depth all AND gates appear before all OR gates.11 Define i−1 := 0 and consider the sequence of
protocols πi−1 , πi0 , . . . , πid , that is a subset of the original sequence π0, . . . , πs. Let us denote by
Li the number of statements in πi. We also denote by Simi and Exti the simulator and extractor,
respectively, of πi, and by Ti an upper bound on the running time of Simi and Exti.

We observe that for every j ∈ {1, . . . , d}, πij is obtained by parallel applications of G∨ and then
G∧ on πij−1 . Therefore, by Lemma 2.6 and Lemma 2.7 there is a constant C such that Lij ≤ C ·Lij−1

and Tij ≤ C · Tij−1 , and πij , Simij and Extij can be efficiently computed given πij−1 , Simij−1 and
Extij−1 . We can therefore generate πs,Sims and Exts in time poly(n · 2d · |F|), and the number of
statements in πs, as well as the running time of Sims and Exts, is bounded by |F| · poly(n · 2d).
Finally, by Claim 2.5 we obtain that π,Sim and Ext can be efficiently computed from πs,Sims and
Exts, and their complexity is |F| · poly(n · 2d). This concludes the proof of the theorem.

3 Secret Sharing for NP Statements

In this section we present our NPSS construction. We begin with a formal definition of NPSS in
Section 3.1, and present the construction in Section 3.2.

11We mention that the final protocol πs+1 is independent of the order of the gates. However, this assumption will
help us simplify the analysis.

25

3.1 Basic Definitions

Before presenting the definition of NPSS, we need the following definitions for access structures
and partial assignments

Definition 3.1 (Access structure). An n-party access structure is a monotone subset A ⊆ 2[n]. A set
S ⊆ [n] is called authorized if S ∈ A , and otherwise it is called unauthorized.

In some cases we will abuse notation and identify an access structure A ⊆ 2[n] with its
characteristic (monotone) function χA : {0, 1}n → {0, 1}. Similarly, for a monotone function
χ : 2[n] → {0, 1}, we define the access structure Aχ in the natural way:

Aχ = {S ⊆ [n] : χ(1S) = 1} ,

where 1S is the indicator vector of the set S.

Definition 3.2 (Partial assignments for Boolean circuits.). Let C be a Boolean circuit on n variables.
A partial assignment for C is a string y ∈ {0, 1, ∗}n, where ∗ is a special symbol. The evaluation of C on
y, denoted C(y), is a value in {0, 1, ∗} that is defined by evaluating the circuit from the input gates to the
output gate in the natural way according to the following rule: If at least one of the input of a gate g is ∗
then the output is also ∗ except for the following cases: 0 ∧ ∗ = ∗ ∧ 0 = 0 and 1 ∨ ∗ = ∗ ∨ 1 = 1.

Definition 3.3 (Secret sharing for an NP statement.). Let A be an n-party access structure. An n-
party A -secret sharing for an NP statement is a tuple of algorithms (R,W,Sim,Dec) with the following
syntax:

• The instance mapper R is a deterministic algorithm that given a circuit-SAT instance f outputs n
circuit-SAT instances (f1, . . . , fn) over a common set of variables z = (z1, . . . , zm).

• The assignment mapper W is a randomized algorithm that given a circuit-SAT instance f and an
assignment x to f , outputs a global assignment y ∈ {0, 1}m together with partial assignments
y1, . . . ,yn ∈ {0, 1, ∗}m.

• The simulator Sim is a randomized algorithm that given a circuit-SAT instance f and an unautho-
rized set Z /∈ A outputs partial assignments (yi)i∈Z .

• The decoder Dec is a deterministic algorithm that given a circuit-SAT instance f and an authorized
set S together with partial assignments (yi)i∈S , outputs an assignment x for f .

The algorithms satisfy the following properties.

• (Correctness) If an assignment x satisfies f then the following holds with probability 1: W (f,x)
outputs (y,y1, . . . ,yn) such that each partial assignment yi is consistent with y on all Boolean
values, and yi satisfies fi.

• (Privacy) If x satisfies f then for every unauthorized set Z /∈ A , the distribution of (yi)i∈Z sampled
by W (f,x) is identical to the distribution of Sim(f, Z).

• (Recovery) For any authorized set S ∈ A , and for any partial assignments (yi)i∈S that are pairwise
consistent on Boolean values, it holds that if every yi satisfies fi then Dec(f, S, (yi)i∈S) outputs an
assignment x that satisfies f .

We say that an n-party NPSS is a t-out-of-n NPSS if the access structure A ⊆ 2[n] contains all
subsets of [n] of size at least t, and no subset of [n] of size less than t.

26

3.2 From MPC to NPSS

We continue with the NPSS construction.

Theorem 3.4. There is a deterministic compiler that takes as an input an access structure that is represented
by a depth-d monotone formula χ that uses only AND and OR gates with fan-in 2, and uses no constants.
The compiler runs in time poly(n · 2d) and outputs the description of an n-party Aχ-secret sharing for an
NP statement (R,W,Sim,Dec). The running time of the algorithms (R,W,Sim,Dec) is poly(|f | · 2d · n)
where f is the circuit-SAT instance that the algorithms take as an input, and |f | is the circuit-size of f
measured by the number of wires. In addition, on input f the algorithm R outputs circuits (f1, . . . , fn),
each of size |f | · poly(2d · n).

As explained in Footnote 10, the formula-depth restriction can be replaced with a formula-size
restriction and the constant-free requirement can be waived.

Proof. We begin by presenting some notation.

Notation. For a circuit-SAT instance f on ℓ input bits, we define Ff to be the n-client functional-
ity that (1) takes an input xi ∈ {0, 1}ℓ from the i-th client, (2) computes x = x1⊕. . .⊕xn, (3) returns
f(x) to all the clients. We let C be the compiler promised by Theorem 2.8, and we denote by Cχ

the compiler C when the input-formula (acsess structure) is fixed to be χ, so Cχ only takes as an
input a functionality.

We assume without loss of generality that every protocol π generated by Cχ satisfies the fol-
lowing syntactic property. Before any OLE instruction the sender locally computes the two possi-
ble outcomes of the OLE. Formally, if the sender ci holds the inputs (α, β) ∈ {0, 1}2 and the receiver
cj holds a selection bit γ ∈ {0, 1}, the sender ci first locally computes the values z0 := α · 0+ β and
z1 := α · 1+ β, and only then executes the OLE instance with cj . We call (z0, z1) the possible outputs
of the OLE instance, and we call zγ the chosen output of the OLE. We emphasize that z0, z1 are
variables that are owned by the sender ci. In addition, for every transmit(ci, cj , x1, x2) statement
we call x1 the transmitted message and x2 the received message.

Given a vector of values y for all the variables of the protocol, the extended view of a party
ci consists of all the variables that belong to ci and, in addition, all the “transmitted messages”
that are directed to ci and all the “chosen outputs” of each OLE instruction in which ci plays the
receiver. (Note that the transmitted messages and the chosen outputs are not owned by ci.)

Construction overview. Given a circuit-SAT instance f , we use Cχ to generate a protocol π′

that computes Ff with χ-dual security, together with the corresponding simulator Sim′ and the
extractor Ext′. The global assignment y consists of all the variables X in an honest execution
of π′. The i-th circuit fi takes as an input a partial assignment yi that contains the extended
view of the ith client ci and verifies that it is a valid accepting transcript. That is, fi checks that
the messages transmitted to the i-th client are consistent with the received messages, that the
chosen outputs of the OLE calls that are directed to ci are consistent with the OLE outputs, and
that the local computations performed by ci are consistent with π′ and that the final output is 1.
To sample a global assignment y, we invoke the protocol π′ on random inputs (xi)i∈[n] for which
x1 + . . .+ xn = x.

Privacy is guaranteed since π′ is χ-passively secure, so the views of every unauthorized set
Z /∈ Aχ (equivalently, χ(Z) = 0) can be simulated by Sim′. In addition, in an honest execution of

27

π′ all transmitted messages are equal to the received messages, and for every OLE instance, the
value of the chosen output is always equal to the value of the actual output, and the receiver also
knows that the location γ of the chosen output zγ among the possible outputs (z0, z1) of the sender.
Therefore, those values can be extracted from the simulated views.

As for recovery, we note that for every authorized set S ∈ Aχ it holds that χ(S) = 1. In
addition, the use of extended views guarantees that (1) the private channels between every pair
of parties in S work correctly, and (2) the OLE channels worked correctly for every pair of parties
in S. Therefore, we can use the extractor Ext′ to extract the inputs x1, . . . ,xn of all the clients, and
compute the satisfying assignment x = x1 ⊕ . . . ⊕ xn. We continue with a formal description of
the construction.

The construction. The algorithms (R,W,Sim,Dec) are defined as follows:

• Instance mapper. The algorithm R takes as an input an instance of circuit-SAT f , and com-
putes (π′, Sim′,Ext′) = Cχ(Ff) over the variable space X . It outputs n circuits f1, . . . , fn,
where fi is defined as follows.

– (Inputs) It takes as an input a partial assignment yi that is parsed as the values of the
variables in X , and we denote by yi[x] ∈ {0, 1, ∗} the value of the variable x ∈ X
according to yi.

– (Computation) For two bits a, b ∈ {0, 1}, let eq(a, b) be a sub-circuit that returns 1 if a = b,
and 0 otherwise, i.e., eq(a, b) = (a ∧ b) ∨ (¬a ∧ ¬b). Observe that eq(a, ∗) = eq(∗, a) = ∗
for every a ∈ {0, 1, ∗}. The circuit verifies that yi corresponds to a valid extended view
of the client ci, by performing the following local computations:

1. For every variables x in the view of ci, it verifies that yi[x] ̸= ∗ by computing
eq(yi[x], 0) ∨ eq(yi[x], 1).

2. For every comp(ci, op, (x1, x2), x) statement with op ∈ {+,×}, it veri-
fies that the statement was computed correctly in the view, by computing
eq(op(yi[x1],yi[x2]),yi[x]).

3. For every abort statement abort(ci, x) it verifies that ci did not raise the abort flag,
i.e., it computes eq(yi[x], 0).

4. For every transmit(cj , ci, x1, x2) it verifies that the transmitted message is equal to
the received message by computing eq(yi[x1],yi[x2]).

5. For every func(OLE, cj , ci, (x1, x2), x3, x4) it verifies that the actual output (i.e., the
value of x4) is equal to the value of the chosen output of the OLE instance. That is,
we denote by (z0, z1) the possible outputs of the OLE, and the circuit performs the
following computation

[(1⊕ yi[x3]) ∧ eq(yi[x4],yi[z0])] ∨ [yi[x3] ∧ eq(yi[x4],yi[z1])].

(Here we slightly abuse notation and refer to (z0, z1) as the variables corresponding
to the possible outputs of the OLE, instead of the values of those variables.)

6. Since Ff returns f(x) to all the clients, the protocol π′ contains a single output
instruction of the form output(pi, 1, x). The circuit verifies that yi[x] = 1, i.e., it
computes eq(1,yi[x]).

28

– (Output) The output is the AND over all the local computations.

• Assignment mapper. The algorithm W takes as an input a circuit-SAT instance f and an
assignment x to f . It computes (π′, Sim′,Ext′) = Cχ(Ff) over the variable space X . It then
samples an n-out-of-n secret sharing of x, denoted x1, . . . ,xn, and computes an honest exe-
cution of π′ where the i-th client holds xi as an input. The global assignment y is set to be
the values of all the variables in X . The i-th partial assignment yi is equal to y for every
variable x in the extended view of ci, and in all other variables it is equal to ∗. The algorithm
outputs (y,y1, . . . ,yn).

• Simulator. The algorithm Sim takes as an input a circuit-SAT instance f , and an unautho-
rized set Z /∈ Aχ. It computes (π′, Sim′,Ext′) = Cχ(Ff) over the variable space X . It executes
(viewi)ci∈Z ← Sim′(Z, (xi)ci∈Z , (yi)ci∈Z) where for every ci ∈ Z the string xi is a random
binary string of length ℓ, and yi = 1. Then, for every ci ∈ Z the algorithm Sim extends
viewi into the extended view view′i by (1) setting the transmitted message to be equal to the
received message for every transmit(pj , pi, x1, x2) statement, and (2) for every OLE instance
in which pi acts as the receiver with input γ and output δ, setting the chosen output zγ to be
δ. The extended views (view′i)ci∈Z are then used to create the partial assignments (yi)ci∈Z ,
where for every x in the extended view of ci, yi[x] is equal to the value of x according to
view′i, and otherwise yi[x] is set to be ∗. The simulator outputs (yi)ci∈Z .

• Decoder. The algorithm Dec takes as an input a circuit-SAT instance f and an authorized
set S ∈ AF together with partial assignments (yi)i∈S . For every i ∈ S the decoder parses
yi as the extended view of ci, and sets viewi to be the view of ci. The decoder Dec computes
(π′, Sim′,Ext′) = Cχ(Ff) and Z = [n] \ S, and (xi)i∈[n] = Ext′(Z, (viewi)i∈S), and outputs
x = x1 ⊕ . . .⊕ xn.

Fix any circuit-SAT instance f , let R(f) = (f1, . . . , fn), and let (π′, Sim′,Ext′) = Cχ(Ff). It is not
hard to verify that since the number of statements in π′ is |f | · poly(n · 2d) (see Theorem 2.8), then
the size of each circuit fi is also |f | · poly(n · 2d). We continue with an analysis.

Correctness. Let x be a satisfying assignment of f . The global assignment y generated by
W (f,x) corresponds to an honest execution of π′ in which the outputs of all the clients is 1, and ev-
ery yi corresponds to the extended view of the i-th client. Therefore yi satisfies fi. This concludes
the correctness analysis.

Privacy. Let x be a satisfying assignment of f and fix any unauthorized set Z /∈ Aχ, i.e., χ(Z) = 0.
Observe that in an honest execution of π′ by W (f,x) the inputs of the clients in Z are uniformly
distributed, and that the output of every client is 1. Since π′ provides χ-passive security, the
distribution of (viewi)ci∈Z ← Sim′(Z, (xi)ci∈Z , (yi)ci∈Z) is the same as the distribution of the views
of the clients in Z in the execution of π′ by W (f,x). Fix those views and observe that the extended
views can be computed from the views by the same procedure that Sim performs to extend the
views. This concludes the privacy analysis.

Recovery. Fix any authorized set S ∈ Aχ, and any partial assignments (yi)i∈S that are pairwise
consistent on Boolean values, and assume that yi satisfies fi for all i ∈ S. This implies that (1) for

29

every variable x in the view of ci it holds that yi[x] ∈ {0, 1}, (2) the view defined by yi corresponds
to an honest execution of π′ by ci, (3) the private channels and the OLE channel worked correctly
between every pair of parties in S, and (4) the outputs of all the parties in S is 1, and no party raised
the abort flag. Let (viewi)i∈S correspond to the views of the parties in S according to (yi)i∈S .

We note that there exists an active adversarial behavior π̃′ that can result in (viewi)i∈S . Indeed,
for every statement transmit(ci, cj , x1, x2) where i /∈ S and j ∈ S, mark the statement by the value
yj [x2], and for every statement func(OLE, pi, pj , (x1, x2), x3, x4) where i /∈ S and j ∈ S, mark the
statement by the value yj [x4]. Now, if the parties in S execute π̃′ with the same randomness as
in (viewi)i∈S then they obtain the same views. In addition, since S ∈ Aχ then χ(S) = 1, and let
Z = [n] \ S. This implies that Dec(f, S, (viewi)i∈S) = Ext′(Z, (viewi)i∈S) outputs (x1, . . . ,xn) such
that Ff (x1, . . . ,xn) = 1, i.e., f(x) = 1, where x = x1 ⊕ . . . ⊕ xn. This concludes the recovery
analysis and the proof of the theorem.

Constructing k-out-of-n NPSS. For 1 ≤ k ≤ n, let Thnk be the threshold formula that takes
n input bits, outputs 1 if the Hamming weight of the input is at least k, and outputs 0 oth-
erwise. To construct k-out-of-n NPSS, it only remains to show that Thnk applies a logarithmic-
depth formula that uses no constants. An explicit construction of such a formula follows from
the classical constructions of logarithmic-depth sorting networks [AKS83, Pat90, Sei09]. At a high
level, sorting networks are Boolean circuits with comparators as gates, where each comparator
takes two bits and outputs them in sorted order, i.e., comp(x, y) = (min(x, y),max(x, y)). Since
every comparator can be implemented by a constant-size monotone circuit that uses no con-
stants comp(x, y) = ((x ∧ y), (x ∨ y)), each output bit of the sorting network can be described
as a logarithmic-depth monotone circuit that uses no constants. We can now take Thnk to be the
(n− k + 1)-output bit of the network. The following corollary follows.

Corollary 3.5 (Theorem 1.1 restated). There is a deterministic compiler CTh that takes as an input two
integers k and n, runs in time poly(n) and outputs the description of a k-out-of-n NPSS (R,W,Sim,Dec).
The running time of all algorithms in (R,W,Sim,Dec) is poly(n · |f |) where f is the circuit-SAT instance
that the algorithms take as an input, and |f | is the circuit-size of f measured by the number of wires.

4 Application: Multi-String NIZK

In this section we present our results regarding multi-string NIZK. In Section 4.1 we present the
basic definitions of multi-string NIZK, in Section 4.2 we formally prove Theorem 1.2, and in Sec-
tion 4.3 we present some extensions to the theorem.

4.1 Basic Definitions

Syntactically, non-interactive proof system (NIP) Π for an NP-relation R consists of three PPT al-
gorithms (Gen,P,V) that receive a security parameter 1κ as their first input. The algorithm Gen
samples a CRS, the algorithm P is a prover algorithm that takes an instance/witness pair (f,x)
and a CRS crs and generates a proof π, and the algorithm V is a verification algorithm that decides
whether to accept a proof π with respect to an instance f and a CRS crs. By default, we assume
that the NP-relation is taken to be circuit-SAT and so f is a circuit and x is a satisfying assignment.

We begin with the definition of multi-string NIZK [GO14]. (As we will later see the standard
NIZK definitions can be derived as a degenerate version of the multi-string model.) At a high

30

level, a NIP (Gen,P,V) satisfies tc-completeness if completeness is satisfied as long as tc out of the
n strings are honestly generated, while the rest of the strings can be chosen by the adversary. The
definition of soundness and zero-knowledge is similar, with respect to thresholds ts and tz . (Note
that unlike the case of MPC/secret-sharing definitions here the thresholds indicate the number of
honest entities.) For ease of reading, we follow the formalization of [GO14], and treat the thresholds
tc, tz, ts and the number of CRS n as constants that do not grow with the security parameter. This
setting is already well-motivated and non-trivial to achieve. We mention, however, that our results
hold even when these parameters grow polynomially with the security parameter. In particular,
the complexity of our constructions is polynomial in the number of strings n.

Following [GO14], we consider a strong adversarial model where the adversary is allowed to
adaptively choose the corrupted strings and their location based on the honestly generated strings.
This is formalized in the following definition.

Definition 4.1 ((t, n) adversaries). A (t, n)-adversary with query complexity p > t is a circuit A that
given a sequence of p CRS crs = (crs1, . . . , crsp) outputs a vector crs′ = (crs′1, . . . , crs

′
n) and possibly

auxiliary information z such that at least t of the entries of crs′ are taken from crs. That is,

∃I ⊆ [p], |I| ≥ t, ∀i ∈ I, ∃!j ∈ [n], crsi = crs′j ,

where ∃! stands for the unique existential quantifier. Jumping ahead, the input strings crs will always be
sampled independently at random by using the (honest) CRS-sampler Gen(1κ). We refer to I as the set of
honestly generated CRS and to its complement [n] \ I as the set of corrupted CRS. We also consider a non-
adaptive (t, n)-adversary that, for some predefined subset I ⊂ [n] of size at least t and for some predefined
sequence of strings (crs′i)i/∈I , takes as in input a vector of (honestly generated) CRS (crsi)i∈[n] and outputs
(crs′i)i∈[n] where crs′i = crsi,∀i ∈ I . Note that, by definition, the query complexity p is always smaller than
the size of the circuit and so polynomial-sized circuits always have polynomial query complexity.

We can now define completeness, soundness and zero-knowledge. Throughout this section ef-
ficient adversaries are modeled by a family of non-uniform circuits of size polynomial in the security
parameter κ.

Definition 4.2 (Completeness). A triple of PPT algorithms (Gen,P,V) is (tc, n)-complete if for every
efficient (tc, n)-adversaryA = {Aκ}κ∈N with query complexity p(κ) ≥ tc, there exists a negligible function
µ, so that for all sufficiently large κ it holds that

Pr
∀i∈[p(κ)]: crsi←Gen(1κ)

((crs′i)i∈[n],f,x)←Aκ((crsi)i∈[p(κ)])

π←P(1κ,(crs′i)i∈[n],f,x)

[
f(x) = 1

∧
V(1κ, (crs′i)i∈[n], f, π) = 0

]
≤ µ(κ).

We obtain strong completeness if the above holds for any choice of crsi ← Gen(1κ), ((crs′i)i∈[n], f,x) ←
Aκ((crsi)i∈[p(κ)]) and the error probability is taken only over the coins of the prover and verifier. Complete-
ness is perfect if µ(κ) = 0.

Definition 4.3 (Soundness). A triple of PPT algorithms (Gen,P,V) is (ts, n)-sound if for every efficient
(ts, n)-adversary A = {Aκ}κ∈N with query complexity p(κ) ≥ ts, there exists a negligible function µ, so
that for all sufficiently large κ it holds that

Pr
∀i∈[p(κ)]: crsi←Gen(1κ)

((crs′i)i∈[n],f,π)←Aκ((crsi)i∈[p(κ)])

[
f is not satisfiable

∧
V(1κ, (crs′i)i∈[n], f, π) = 1

]
≤ µ(κ).

31

The triple satisfies statistical soundness, if soundness is satisfied even with respect to circuit families of
unbounded size A whose output-length and query complexity are polynomially bounded.

We continue with the definition of zero knowledge. Recall that in standard NIZK one typically
distinguishes between non-adaptive zero-knowledge and adaptive zero-knowledge (See [Gol01,
Chapter 4.10.3]). Roughly, in the former case the instance/witness pair (f, x) are selected inde-
pendently of the CRS and in the latter case the pair may depend on the CRS. (Technically, this
means that the simulator operates in two phases where the CRS is sampled in the first phase, and
the proof is sampled in the second phase.) We consider both variants but for non-adaptive zero-
knowledge assume that the (tz, n)-adversary that samples the CRS is also non-adaptive. (This
alignment between the CRS adversary and the instance adversary simplifies things.)

Definition 4.4 (Non-adaptive zero knowledge). A triple of PPT algorithms (Gen,P,V) is (tz, n) non-
adaptive zero-knowledge if there exists a PPT simulator Sim, such that for every efficient non-adaptive
(tz, n)-adversary given by

{
Iκ, (crsκ,i)i∈[n]\Iκ

}
κ∈N where Iκ ⊆ [n] is of size at least tz , and every sequence

of polynomially-bounded valid instance/witness pairs {(fκ,xκ)}κ∈N,12 and every efficient distinguisher
D = {Dκ}κ∈N, there exists a negligible function µ, so that for all sufficiently large κ it holds that∣∣∣∣∣∣∣∣∣∣

Pr
∀i∈Iκ: crsi←Gen(1κ)
∀i∈[n]\Iκ: crsi:=crsκ,i

π←P(1κ,(crs1,...,crsn),f,x)

[Dκ((crsi)i∈[n], π) = 1]− Pr[Dκ(Sim(1κ, fκ, Iκ, (crsκ,i)i∈[n]\Iκ)) = 1]

∣∣∣∣∣∣∣∣∣∣
≤ µ(κ).

The triple satisfies statistical zero knowledge if zero knowledge is satisfied with respect to circuit families D
of unbounded size.

Definition 4.5 (Adaptive zero-knowledge). A triple of PPT algorithms (Gen,P,V) is (tz, n)-adaptive
zero-knowledge if there exist efficient simulators (Sim1,Sim2), such that

• (CRS indistinguishability) For every efficient distinguisher D = {Dκ}κ∈N there exists a negligible
function µ(κ) such that for all sufficiently large κ,∣∣∣∣ Pr

crs←Gen(1κ)
[Dκ(crs) = 1]− Pr

(crs,τ)←Sim1(1κ)
[Dκ(crs) = 1]

∣∣∣∣ ≤ µ(κ).

• (Simulation indistinguishability) For every efficient (tz, n)-adversary A = {Aκ}κ∈N with query
complexity p(κ) ≥ ts and every efficient distinguisher {Bκ}κ∈N, there exists a negligible function µ,
so that for all sufficiently large κ it holds that∣∣∣ Pr

∀i∈[p(κ)]: (crsi,τi)←Sim1(1κ)
((crs′i,τ

′
i)i∈[n],f,x,st)←Aκ((crsi,τi)i∈[p(κ)])

π←P(1κ,(crs′i)i∈[n],f,x)

[Bκ(st, π) = 1]

− Pr
∀i∈[p(κ)]: (crsi,τi)←Sim1(1κ)

((crs′i,τ
′
i)i∈[n],f,x,st)←Aκ((crsi,τi)i∈[p(κ)])

π←Sim2(1κ,(crs′i,τ
′
i)i∈[n],f)

[Bκ(st, π) = 1]
∣∣∣ ≤ µ(κ),

12That is, for every κ, the assignment xκ satisfies fκ and the length |fκ| + |xκ| is at most p(κ) for some polynomial
p(·).

32

where we assume that Aκ always outputs x that satisfies f , and sets the trapdoor τ ′i of the corrupted
CRS’s to ⊥.

The triple satisfies statistical adaptive zero-knowledge if the above holds even when D and A are circuit
families of arbitrary (unbounded) size.

Finally, a triple of PPT algorithms Π = (Gen,P,V) is (tc, ts, tz, n)-NIZK if it satisfies (tc, n)-
completeness, (ts, n)-soundness and (tz, n)-adaptive zero-knowledge. If the zero-knowledge
property is relaxed to (tz, n) non-adaptive zero-knowledge then Π is referred to as (tc, ts, tz, n)-
NIZK with non-adaptive ZK. We refer to the special case of (1, 1, 1, 1)-NIZK as NIZK (with adap-
tive completeness, adaptive soundness and adaptive zero-knowledge). Similarly, we refer to
(1, 1, 1, 1)-NIZK with non-adaptive zero-knowledge as NIZK with non-adaptive ZK.13

4.1.1 Non-Interactive Commitments in the MS-model

We will need the following non-standard notion of non-interactive commitments in the Multi-
String model where there are n CRS and where hiding holds even if all the CRS are adversarially
chosen and binding holds as long as one CRS is sampled honestly. (In fact, weaker notions suffice
for our applications, and we chose this strong formulation for simplicity and due to the fact that we
can achieve it based on weak assumptions.) We denote the NICOM CRS by (ppi)i∈[n] to distinguish
them from the CRS of the NIZK. We will assume that honestly generated CRS pp is sampled
uniformly from {0, 1}κ since all our constructions satisfy this property anyway.

Definition 4.6 (Non-interactive commitment). A Multi-String non-interactive commitment (MS-
NICOM in short) is a pair of probabilistic algorithms (commit, open) that take as a common input a vector
of public parameters (ppi) each of length κ. The scheme should satisfy the following requirements:

• Syntax: The algorithm commit takes as an input a bit x ∈ {0, 1} and random string r and outputs a
commitment/opening pair (C, o). The algorithm open takes as an input a commitment/opening pair
(C, o) and outputs a message x′ ∈ {0, 1} ∪ {⊥}.

• Perfect correctness: For every security parameter κ, integer n, vector of public parameters pp =
(ppi)i∈[n], bit x, and random string r, it holds that openpp(commitpp(x; r)) = x.

• Binding against (1, n)-adversaries: For every polynomial n(κ) and every efficient (1, n(κ))-
adversary A = {Aκ} with query complexity p(κ) > 1, there exists a negligible function µ such
that for every security parameter κ,

Pr
∀i∈[p(κ)]: ppi←{0,1}κ

(pp′=(pp′i)i∈[n],(C,o,o′))←Aκ((ppi)i∈[p(κ)])

[
openpp′(C, o) = 0

∧
openpp′(C, o

′) = 1
]

is upper-bounded by µ(κ). Recall that being (1, n(κ))-adversary A must select some i and j such
that pp′i = ppj and can set all the other entries of pp′ arbitrarily. The scheme is statistically binding,
if the above holds even for inefficient adversaries with polynomial query complexity, and perfectly
binding if, in addition, µ = 0.

13It is not hard to show that these definitions are indeed equivalent to the standard definitions of NIZK. One minor
syntactic difference is the ability of a (1, 1)-adversary to sample polynomially-many CRS’s and select the preferred one,
however, if such an adversary can violate completeness (resp., soundness, zero-knowledge) with inverse polynomial
probability then a standard adversary that gets a single honestly generated CRS can apply the same attack with an
inverse polynomial probability of success.

33

• Hiding against (0, n)-adversaries: For every polynomial n = n(κ), every (adversarially chosen)
vector of CRS pp = (ppi)i∈[n] ∈ ({0, 1}κ)n, and every efficient distinguisherA = {Aκ}, there exists
a negligible function µ, such that for every security parameter κ, it holds that∣∣ Pr

(C,o)←commitpp(0)
[Aκ(pp, C) = 1]− Pr

(C,o)←commitpp(1)
[Aκ(pp, C) = 1]

∣∣ ≤ µ(κ)

The scheme is statistically hiding if the above holds even for inefficient adversaries.

For ease of reading, we typically omit the the public parameters from the algorithms. By default, the length
of these parameters is set according to the global security parameter that is being used by the system. We
also mention that the definition naturally generalizes to larger message domains.

Lemma 4.7 (MS-NICOM from OWF/CRH). Assuming one-way functions (resp., collision-resistance
hash functions), there exists MS-NICOM with computational hiding and statistical binding (resp., compu-
tational binding and statistical hiding).

Proof sketch. We begin with a non-interactive commitment that employs a single (uniform) CRS.
We require perfect correctness and computational-hiding (resp., statistical-hiding) for every CRS
pp, and statistical-binding (resp., computational binding) holds except with negligible probability
over a uniform choice of the CRS pp. (Put differently, such a scheme satisfies Definition 4.6 for n =
1.) Such a scheme can be constructed based on one-way functions using Naor’s scheme [Nao91]
(resp., based on collision-resistance hash functions via the construction of [DPP98b, HM96b]).

By using simple repetition we can lift both variants to the Multi-String model. That is, to
commit to a bit b we duplicate the bit n times and commit to the ith copy independently with
respect to ppi, and to open the commitment we send all the corresponding openings, and verify
that the opening algorithm accept the ith opening with respect to ppi and b. Perfect correctness
and hiding follow immediately (since they hold for every choice of the CRS pp).

To prove binding against (1, n)-adversaries, assume, towards a contradiction, that an adver-
sary A violates binding with non-negligible probability µ(κ) and polynomial query complexity
p(κ). We translate this adversary into an adversary against the binding of the original scheme as
follow. Given pp← {0, 1}κ we generate a vector of public parameters (ppj)j∈[p(κ)] by placing pp in
a randomly chosen location i ∈ [p(κ)] and by sampling all other entries uniformly at random from
{0, 1}κ. We feed the adversary A with the vector of public parameters, and get back the tuples
(pp′j)j∈[n] and (Cj , oj , o

′
j)j∈[n]. If there exists an i′ such that pp′i′ = ppi we output (Ci′ , oi′ , o

′
i′). It

is not hard to show that this attack succeeds with probability µ(κ)/p(κ), in contradiction to the
binding of the original scheme.

Succinct NICOM with local opening. We say that an MS-NICOM is succinct (commit, open) if
supports messages x of arbitrary length ℓ, and generates commitments whose length grows lin-
early with the security parameter and number of CRS’s, but is independent of ℓ. (Of course, com-
putational hiding/binding are required only for messages of length polynomial in the security
parameter.) We say that an MS-NICOM provides local opening if the opening/decommitment in-
formation o generated by commitpp(x) is composed of ℓ local commitments (oi)i∈[ℓ] each of length
O(nκ log(ℓ)). Correctness should hold separately for each bit, i.e., openpp(oi) = x[i], and the open-
ing algorithm should run in time npoly(κ) · log(ℓ). Hiding should hold even when some of the bits

34

were “opened”. Formally, for every polynomials n = n(κ), ℓ = ℓ(κ), every vector of public param-
eters pp ∈ ({0, 1}κ)n, every set I ⊂ [ℓ] and every messages x0, x1 ∈ {0, 1}ℓ for which x0[I] = x1[I],
it holds that

(pp, C0, (o0i)i∈I) ≈ (pp, C1, (o1i)i∈I)

where (Cb, (obj)j∈[ℓ]) = commitpp(xb) for b ∈ {0, 1}. The above requirement can be stated for
statistically-hiding commitments by replacing computational indistinguishability with statistical
indistinguishability. (In contrast, note that succinct commitments can only be computationally
binding.)

We note that the construction of [DPP98b, HM96b]) and its MS-extension (Lemma 4.7) yield
succinct NICOM. The additional local-opening property can then be achieved by using the stan-
dard Tree-construction where the message bits appear on the leafs, each node is associated with a
commitment to its children, and the root serves as the final commitment. (The same public param-
eters are used in all the calls to the base commitment.) Overall, we get computationally-binding
statistically-hiding succinct MS-NICOM with local openning based on collision-resistance hash
functions.

4.2 From NIZK to Multi-String NIZK

We transform NIZK to MS-NIZK in Figure 3.

Given parameters n, tz , let (R,W,SimNPSS,DecNPSS) be the (n− tz +1)-out-of-n NPSS promised in Corol-
lary 3.5. Let (commit, open) be a statistically-binding MS-NICOM. Let Π′ = (Gen′,P ′,V ′) be a NIZK (in
the standard single-CRS model). We define an MS-NIZK Π = (Gen,P,V) as follows.

• CRS generator. Gen(1κ) takes as an input the security parameter 1κ, samples crs ← Gen′(1κ) and pp
for the NICOM, and outputs (crs, pp).

• Prover. The prover P(1κ, (crsi, ppi)i∈[n], f,x) takes as an input the security parameter 1κ, n strings
(crsi, ppi)i∈[n], a circuit f and an assignment x. The prover generates a proof π as follows.

– The prover generates n circuit-SAT instances (f1, . . . , fn) by calling R(f), and samples a global
assignment y together with n partial assignments (y1, . . . ,yn) by calling W (f,x). The prover com-
mits to the bits of y ∈ {0, 1}m by sampling (Ci, oi) ← commit(y[i]).a She sets C := (Ci)i∈[m] and
O := (oi)i∈[m].

– Based on the commitments C and the commitments CRS’s, we define, for every i ∈ [n], a circuit
f̂i that takes as an input a subset Ji ⊆ [m] and openings (oj)j∈Ji

, and outputs 1 if the following
conditions hold: (1) for every j ∈ Ji, the decommitted value wj := open(Cj , oj) is not equal to
⊥; (2) the partial assignment (wj)j∈Ji (whose-non Ji entries are taken to be ∗) satisfies fi. For
every i ∈ [n], the prover computes the circuit f̂i and the assignment ŷi = (Ji, (oj)j∈Ji), where
Ji := {j ∈ [m] : yi[j] ̸= ∗}.

– For every i ∈ [n] the prover samples πi ← P ′(1κ, crsi, f̂i, ŷi), and outputs π = (C, π1, . . . , πn).

• Verifier. The verifier V(1κ, (crsi, ppi)i∈[n], f, π) takes as an input the security parameter 1κ, n strings
(crsi, ppi)i∈[n], a circuit f , and a proof π = (C, π1, . . . , πn). She generates the circuit-SAT instances
(fi)i∈[n] = R(f), and transforms them into the instances (f̂i)i∈[n] based on C and (ppi)i∈[n]. The

The transform C

35

verifier accepts the proof if all the proofs πi are accepted, i.e., if V ′(1κ, crsi, f̂i, πi) = 1 for every i ∈ [n].
If at least one of the proofs is rejected the verifier rejects.

a(Here and throughout this section we omit the commitments CRS’s and write commit(·) and open(·) instead of
commit(ppi)i∈[n]

and open(ppi)i∈[n]
.)

Figure 3: The transform C

In Section 4.2.1 we prove the following theorem.

Theorem 4.8 (Theorem 1.2 restated). Consider the transform C defined in Figure 3 instantiated with
an integer n, threshold tz and some MS-NICOM with computational hiding and statistical binding. Then,
C maps a NIP Π′ into a NIP Π such that: (1) if Π′ is strongly-complete (resp., perfectly complete) then
Π is (0, n) strongly-complete (resp., (0, n) perfectly-complete); (2) if Π′ is computationally-sound (resp.,
statistically-sound) then Π is (ts, n) computationally-sound (resp., statistically-sound) for any ts > n− tz ;
(3) if Π′ is non-adaptive zero-knowledge (resp., adaptive zero-knowledge) then Π is (tz, n) non-adaptive
zero-knowledge (resp., adaptive zero-knowledge); (4) if the CRS generator of Π′ samples uniform strings of
length p(κ) then the CRS generator of Π samples uniform strings of length p′(κ) = p(κ) + κ. Moreover,
the running time of the transform is poly(n, κ).

Some comments are in place:

• (Underlying assumption): Recall that MS-NICOM with computational hiding and statisti-
cal binding can be based on one-way functions (Lemma 4.7), and so the theorem implies
Theorem 1.2.

• (Tightness): It is shown in [GO14, Theorem 5] that, unless circuit-SAT is in BPP, MS-NIZK
exists only if ts + tz > n. Hence the parameters in the theorem are tight. (The original proof
of [GO14, Theorem 5] is stated for the case of adaptive zero-knowledge but the argument
holds for non-adaptive zero-knowledge as well.)

• (Imperfect completeness): The theorem assumes that the completeness property of the un-
derlying NIZK is either perfect or strong14 but does not apply to NIZK with general im-
perfect completeness. Nevertheless, we show, in Claim D.1 (Section D), that every NIZK
with imperfect completeness can be efficiently transformed into a NIZK with strong com-
pleteness. Also, as observed by [GO14], whenever the verifier is deterministic (like in most
standard NIZKs), an even simpler transformation yields perfect completeness as well.

• (Succinctness): Instead of using bit commitments, it is possible to use succinct NICOM with
local opening. In this case, the new proof contains the commitment string C whose is length
is O(n, κ) and n proofs under Π′ of circuit-SAT instances each of size is at most |f | · log(|f |) ·
poly(n, κ). Indeed, fi is larger than f by a factor of p(n) for some fixed polynomial p(·) and
the verification of the opened commitments (per each bit of fi) adds an additional factor of
poly(n, κ) · log(|y|) where |y| ≤ n ·p(n)|f |. Suppose that the original proof system is somewhat
succinct (resp., succinct), i.e., the length of a proof for S-size circuit is Sϵ for some ϵ < 1 (resp.,
poly(log(S), κ)). Then assuming that n is polynomial in κ and that the size of f is sufficiently
large compared to κ, the new system is also somewhat succinct (resp., succinct).

14Recall that this essentially means that for every crs and every instance/witness pair (f,x) a completeness error
happens with at most negligible probability over the randomness of the verifier and prover.

36

• (Online dependency on n): Note that the CRS-sampler of Π is independent of n and the given
thresholds. Consequently, an authority can sample and publish a CRS without knowing how
many authorities will eventually participate. In fact, assuming that N CRS were published
the prover can decide which subset to use and how to set the threshold in an online manner
while generating the proof itself.

• (Extensions): Theorem 4.8 extends in several ways. In particular, it also preserves proof of
knowledge (see Section 4.3.1) and with the aid of statistically-hiding MS-NICOM (that can
be based on collision-resistance hash functions) can also preserve statistical zero-knowledge
(see Section 4.3). We mention (without a proof) that by simple modifications of the trans-
formation we can also preserve additional useful properties, such as simulation-soundness,
whenever ts ≤ tz (see [GO14] for formal definitions).

It is possible to use the above theorem to derive a combiner for NIZK.

Theorem 4.9. Assuming the existence of one-way functions, there exists a transformation that takes n
NIZK candidates Πi = (Geni,Pi,Vi), i ∈ [n] and integer tz ≤ n and defines a NIP Π∗ such that if (1)
all the candidate are perfectly complete and (2) at least tz of the candidates satisfy the zero-knowledge prop-
erty/adaptive zero-knowledge and (3) at least ts > n− tz are computationally/statistically sound, then Π∗

is NIZK with zero-knowledge property/adaptive zero-knowledge and computational/statistical soundness.
Moreover, if majority of the instances are NIZK (possibly with imperfect correctness) then the transforma-
tion works even if the other instances are not complete.

As before, if we use succinct MS-NICOM with local opening (based on collision resistance hash
functions), we can preserve succinctness.

Proof. We show how to reduce the theorem to the statement in the MS-model (though a direct
proof is also quite straightforward). The transformation is identical to the one described in
Figure 3 with the following modifications. For every i ∈ [n], the CRS-generator Gen∗ samples
crsi ← Geni(1

κ) and CRS ppi ← {0, 1}κ for the computationally-hiding statistically-binding MS-
NICOM (Lemma 4.7). Set pp = (ppi)i∈[n].15 The prover and verifier, P∗ and V∗ of Π∗ are defined
like in Figure 3 except that the generation and verification of the ith sub-proof πi are obtained by
calling Pi and Vi, respectively.

Analysis. We reduce the security to the security in the MS-model as follows. For a set S ⊂ [n],
consider the NIP Π′S = (Gen′S ,P ′,V ′) defined by a CRS-generator Gen′ who samples i ← S and
crsi ← Geni(1

κ) and outputs the pair (i, crsi), a prover P ′(1κ, (i, crsi), ·) that calls Pi(1κ, crsi, ·) and
a verifier V ′(1κ, (i, crsi), ·) that calls Vi(1κ, crsi, ·). (Note that the prover/verifier are well defined
even for i /∈ S.)

First, let us take S to be the set of candidates that satisfies computational soundness (resp., sta-
tistical soundness). Then, Π′S is a NIP that satisfies perfect completeness and soundness. Now con-
sider a (ts, n) adversaryAS against Π′S that given nκ CRS samples outputs a CRS vector (i, crs′i)i∈[n]
where entries i ∈ S are taken from its input and for i /∈ S the string crs′i is sampled from Geni(1

κ).
(With all but negligible probability the vector of inputs contains entries of the form (i, crs′i)i∈[n]).
Then, under the attack AS , the scheme Π = C(Π′) from Figure 3 behaves identically to our con-
struction Π∗. (The same CRS distribution and an identical input/output behavior of the prover

15In fact, a single CRS for NICOM suffices, however the use of multiple CRS will allow us to reduce the current
theorem to Theorem 1.2.

37

and verifier.) By Theorem 4.8, it follows that Π∗ is perfectly complete and computationally (resp.,
statistically) sound.

Next, to establish non-adaptive/adaptive zero-knowledge take S to be the set of candidates
that satisfies zero-knowledge (resp., adaptive zero-knowledge), and consider again the (tz, n) ad-
versary AS . Again, the system Π′ satisfies zero-knowledge (resp., adaptive zero-knowledge) and,
under the attack AS , the scheme Π = C(Π′) from Figure 3 behaves identically to our construction
Π∗, and, by Theorem 4.8, it satisfies zero-knowledge (resp., adaptive zero-knowledge).

To prove the “Moreover” part, first apply Claim D.1 to each candidate and transform all the
instances to instances with strong completeness without violating the zero-knowledge and sound-
ness properties of the good instances. Then, apply the transformation with ts = tz = ⌈(n+ 1)/2⌉
and use the above analysis.

4.2.1 Proof of Theorem 4.8

Soundness. We show that statistical/computational soundness is preserved. Consider a (ts, n)
adversary P∗ given by a (possibly inefficient) non-uniform circuit family {P∗κ}κ∈N and let q denote
its output length and p(κ) ≥ ts denote its query complexity. Suppose that P∗ violates (ts, n)-
soundness with inverse polynomial probability of α(κ). We construct an adversaryAwith similar
complexity that violates the soundness of Π′ with inverse polynomial probability as follows.

Given a random crs← Gen(1κ), sample j ∈ [p(κ)], set crsj = crs and sample crsi ← Gen(1κ) for
every i ̸= j. In addition, sample, for each i ∈ [p(κ)], honest CRS ppi ← {0, 1}κ for the NICOM. Call
the adversary P∗κ((crsi, ppi)i∈[p(κ)]) and denote its output by ((crs′i, pp

′
i)i∈[n], f, π). Let I ⊆ [p(κ)]

and I ′ ⊂ [n] be sets of size at least ts such that for all i ∈ I there is i′ ∈ I ′ such that crsi = crs′i′ and
ppi = pp′i′ . If j ∈ I , parse π = (C, π1, . . . , πn), compute the circuit f̂j′ (based on f,C, (pp′i)) and
output (f̂j′ , πj′). Otherwise, abort.

Let us condition on the event that P∗ succeeds which happens with probability α(κ). This
means that f is unsatisfiable but every proof πi is accepted with respect to f̂i and crs′i. We claim
that, except with negligible probability, at least one statement f̂ℓ, ℓ ∈ I ′ is not satisfiable. Indeed,
if this is not the case, there exists, for every i ∈ I ′, an assignment ŷi that satisfies f̂i. Let yi

be the partial assignment defined by ŷi. Since f̂i(ŷi) = 1 we conclude that yi is well defined
and fi(yi) = 1. Assuming that the statistical binding property of the commitment holds (which
happens except with negligible probability), the assignments (yi)i∈I′ are pairwise consistent on
Boolean values. Since ts > n − tz , the perfect recovery of the NPSS scheme implies that (yi)i∈I′

fully define an assignment x such that f(x) = 1, in contradiction to our hypothesis.
We complete the argument by noting that from the point of view of the adversary the location

j of the input CRS is distributed uniformly at random and so the event j ∈ I happens with inverse
polynomial probability of 1/p(κ). Let us condition on this event as well, and denote by j′ ∈ [n] the
location for which crs′j′ = crsj . The probability that f̂j′ is a false statement is at least 1/n (actually
1/ts) and so the new adversary violates soundness with inverse polynomial probability. Since the
complexity of the new adversary is polynomial in the complexity of the original one, we preserve
soundness both in the statistical and computational setting.

Zero knowledge. We begin with the case of non-adaptive ZK. Let Sim′ be the simulator of Π′.
The simulator Sim(1κ, f, I, (crsi, ppi)i∈[n]\I) takes as an input a security parameter 1κ, a circuit f ,
a set I ⊆ [n] of size at least tz that indicates the location of honestly generated CRS’s (hereafter

38

referred to as “good”) and a vector of “bad” CRS’s (crsi, ppi)i∈Ī where Ī = [n] \ I is the set of
corrupted CRS’s (hereafter referred to as “bad”). The simulator does as follows.

1. For every “good” index i ∈ I the simulator samples ppi. Therefore the simulator holds
pp1, . . . , ppn that fully defines the commitments scheme.

2. The simulator computes (f1, . . . , fn) ← R(f) and samples witnesses for the “bad indices”
(yi)i∈Ī ← SimNPSS(1

κ, f, Ī), where we observe that
∣∣Ī∣∣ ≤ n− tz .

3. The simulator computes the assignment y ∈ {0, 1}m in the following way: for every i ∈ [m]
for which there exists j ∈ Ī such that yj [i] ̸= ∗, the simulator sets y[i] := yj [i] and otherwise
the simulator sets y[i] := 0. For every i ∈ [m] the simulator samples (Ci, oi) ← commit(y[i])
and sets C′ = (Ci)i∈[n] and O′ = (oi)i∈[n]. This fully defines f̂1, . . . , f̂n and (ŷi)i∈Ī .

4. For every “bad” index i ∈ Ī the simulator computes π′i ← P ′(1κ, crsi, f̂i, ŷi). For every
“good” index i ∈ I the simulator samples (crs′i, π

′
i)← Sim′(1κ, f̂i).

5. For “bad” index i ∈ Ī we denote crs′i := crsi, and for i ∈ [n] we denote pp′i := ppi. The
simulator outputs ((crs′i, pp

′
i, π
′
i)i∈[n],C

′).

We continue with an analysis. Let us fix fκ,xκ, a set Iκ and strings (crsi, ppi)i∈Īκ . Observe that
the simulated random variables pp′1, . . . , pp

′
n have the same distribution as in a real execution and

fix them. It remains to compare the real-world random variables (C, (crsi, πi)i∈[n]) to the simulated
random variables (C′, (crs′i, π

′
i)i∈[n]).

Since
∣∣Īκ∣∣ ≤ n− tz , the privacy of the NPSS implies that (yi)i∈Īκ have the same distribution as

in a real execution and we fix them as well. Let us denote by J ⊆ [m] the set of indices i ∈ [m]
such that there exists j ∈ Īκ with yi[j] ̸= ∗. Let us denote CJ = (Ci)i∈J and OJ = (oi)i∈J and we
observe that these real-world random variables have the same distribution as the corresponding
simulated random variables, and we fix them as well. By the privacy of the NIZK,

(C[n]\J , (crsi, πi)i∈Iκ) ≈ (C[n]\J , (Sim
′(1κ, f̂i))i∈Iκ),

where ≈ stands for computational indistinguishability, the LHS corresponds to a real-world exe-
cution, and where we note that f̂1, . . . , f̂n are fully defined given C[n]\J . By the hiding property of
the commitment scheme (that holds for every fixing of pp1, . . . , ppn),

(C[n]\J , (Sim
′(1κ, f̂i))i∈Iκ) ≈ (C′[n]\J , (Sim(1κ, f̂i))i∈Iκ),

where on the LHS (f̂i)i∈Iκ are defined with respect to C[n]\J and on the RHS (f̂i)i∈Iκ are defined
with respect to C′[n]\J . We therefore conclude that

(C[n]\J , (crsi, πi)i∈I) ≈ (C′[n]\J , (Sim
′(1κ, f̂i))i∈I) = (C′[n]\J , (crs

′
i, π
′
i)i∈I).

Finally, the proofs (π)i∈Ī can be obtained from the LHS and the RHS by the same efficient random-
ized procedure. We conclude that ((crsi, ppi, πi)i∈[n],C) ≈ ((crs′i, pp

′
i, π
′
i)i∈[n],C

′).
We sketch the proof for the case of adaptive Zero-Knowledge. Denoting by (Sim′1, Sim

′
2)

the simulators of the NIZK, we define a CRS-simulator Sim1(1
κ) as follows: Sample

(crs, τ) ← Sim′1(1
κ) and pp ← {0, 1}κ, and output ((crs, pp), τ). The second “proof-simulator”

Sim2(1
κ, (crsi, ppi, τi)i∈[n], f) sets I ⊆ [n] to be the set of all i ∈ [n] with τi ̸= ⊥, computes

39

(f1, . . . , fn) ← R(f), samples (yi)i∈Ī ← SimNPSS(f, Ī), and computes the assignment y ∈ {0, 1}m,
the commitments C′ = (Ci)i∈[n] and the openings O′ = (oi)i∈[n] like in the original simulator in
the non-adaptive simulator defined above. This fully defines f̂1, . . . , f̂n and (ŷi)i∈Ī . For every
i ∈ Ī the simulator computes π′i ← P ′(1κ, crsi, f̂i, ŷi), and for every i ∈ I the simulator sam-
ples πi ← Sim′2(1

κ, (crsi, τi), f̂i). The simulator outputs ((crsi, ppi, πi)i∈[n],C
′). The analysis of the

simulators is similar to the analysis of the above non-adaptive case.
This concludes the proof of the theorem.

4.3 Extensions

In this section we present extensions of Theorem 4.8 to the setting of proof of knowledge and to
the case of statistical zero-knowledge.

4.3.1 Proof of Knowledge

We extend the standard definition of proof-of-knowledge to the MS-setting.

Definition 4.10 (Proof of Knowledge). A triple of PPT algorithms (Gen,P,V) is (ts, n)-proof of knowl-
edge (PoK) if there exist a PPT algorithm Gen′ and an efficient deterministic algorithm Ext that satisfy the
following properties:

• (CRS indistinguishability) Gen′(1κ) takes a security parameter 1κ and outputs (crs′, s′) such that
crs′ has the same distribution as crs← Gen(1κ).

• (Extraction) For every efficient (ts, n)-adversary A = {Aκ}κ∈N with query complexity p(κ) ≥ ts,
there exists a negligible function µ, so that for all sufficiently large κ it holds that

Pr
∀i∈[p(κ)]: (crsi,si)←Gen′(1κ)

((crs′i)i∈[n],f,π)←Aκ((crsi)i∈[p(κ)])

[
V(1κ, (crs′1, . . . , crs′n), f, π) = 1 and

Ext(1κ, I, (crsi, si)i∈I , (crs
′
i)i∈[n], f, π) = x but f(x) = 0

]
≤ µ(κ),

where I ⊆ [p(κ)] is the set of honestly generated CRS (i.e., |I| ≥ ts, ∀i ∈ I, ∃j ∈ [n], crsi = crs′j).

The special case of (1, 1)-PoK corresponds to the standard definition of NIZK-POK.

It is not hard to see that (ts, n)-PoK implies (ts, n)-Soundness. The following lemma shows
that every NIZK that satisfies proof of knowledge implies an MS-NIZK with proof of knowledge.

Lemma 4.11. The transformation described in Figure 3 preserves proof of knowledge. That is, if Π′ is NIZK-
PoK then Π is (0, ts, tz, n)-NIZK-PoK. Moreover, this holds even if the transformation is instantiated with
MS-NICOM whose binding property is only computational.

Proof sketch. Denote by (Gen′′,Ext′) the CRS-generator and the extractor of the underlying NIZK.
We define the CRS-generator and extractor (G̃en, Ẽxt) of the MS-NIZK in the following way. The
CRS generator G̃en(1κ) samples (crs, s) ← Gen′′(1κ), samples public parameters pp and outputs
((crs, pp), s). The extractor Ẽxt(1κ, I, (crsi, ppi, si)i∈I , (crs

′
i, pp

′
i)i∈[n], f, (C, (πi)i∈[n])) first computes

a mapping ϕ : I → [n] mapping each index i ∈ I to the index j ∈ [n] such that crsi = crs′j . The ex-
tractor also computes f̂1, . . . , f̂n, and for every i ∈ I computes ŷϕ(i) = Ext′(1κ, (crsi, si), f̂ϕ(i), πϕ(i)).
Given ŷϕ(i) the extractor computes the corresponding partial assignment yϕ(i) and applies the

40

NPSS decoder DecNPSS(f, (yϕ(i))i∈I) to obtain the assignment x. The extractor outputs x. To an-
alyze the extractor, assume that the proof is accepted and so all the sub-proofs pass verification.
If the partial assignments (yϕ(i))i∈I are pair-wise consistent on Boolean values then the recov-
ery property of the NPSS guarantees that x satisfies f (since ts > n − tz). If the partial assign-
ments (yϕ(i))i∈I are not pair-wise consistent, then we violate the computational binding of the
MS-NICOM as we obtain two different valid openings for the same commitment.

4.3.2 Statistical Zero Knowledge

We show that if the original NIZK has statistical zero knowledge and proof of knowledge, then
we can obtain an MS-NIZK with statistical zero-knowledge and proof of knowledge. This is done
by instantiating our transformation with MS-NICOM with computational binding and statistical
hiding whose existence follows from the existence of collision-resistance hash functions as shown
in Lemma 4.7.

Theorem 4.12. Consider the transform C defined in Figure 3 instantiated with an integer n, threshold tz
and with computationally-binding statistically-hiding MS-NICOM. Then, C maps a NIP Π′ into a NIP
Π such that: (1) if Π′ is strongly-complete (resp., perfectly complete) then Π is (0, n) strongly-complete
(resp., (0, n) perfectly-complete); (2) if Π′ is PoK then Π is (ts, n) PoK for any ts > n − tz ; (3) if Π′ is
non-adaptive statistical zero-knowledge (resp., adaptive statistical zero-knowledge) then Π is (tz, n) non-
adaptive statistical zero-knowledge (resp., adaptive statistical zero-knowledge); (4) if the CRS generator of
Π′ samples uniform strings of length p(κ) then the CRS generator of Π samples uniform strings of length
p′(κ) = p(κ) + κ. Moreover, the running time of the transform is poly(n, κ).

Proof sketch. Proof of knowledge follows from Lemma 4.11, and statistical adaptive/non-adaptive
zero-knowledge follows in a similar way to the original proof of Theorem 4.8, by replacing com-
putational indistinguishability with statistical indistinguishability.

5 Application: Designated-Prover NIZK and Round-Optimal Honest-
Majority MPC in Minicrypt

In this section we present our applications for designated-prover NIZK and MPC. In Section 5.1
we present the notion of designated-prover NIZK (DP-NIZK) together with two constructions:
the first construction (Section 5.1.1) achieves perfect zero knowledge, and the second construction
(Section 5.1.1) achieves statistical-soundness, and both constructions we only require the minimal
assumption of one-way functions. In Section 5.2 we use DP-NIZK to construct an honest majority
protocols with one offline round and one online round for MVZK. In fact, we consider general-
izations of MVZK called single input functionalities, i.e., functionalities that take an input from a
single party and return the output to all the parties. We note that MVZK can be reduced to the
single input functionality that takes from the prover the statement f and witness x and returns
(f, f(x)) to all the parties. Finally, in Section 5.3 we present our 3-round honest-majority protocol
for general MPC.

41

5.1 Designated-Prover NIZK

Designated-prover NIZK (DP-NIZK) is a proof system similar to NIZK with a small modification:
In addition to generating the CRS, the trusted party also generates a secret key that is given to the
prover. The secret key is then used by the prover to compute the proof, and has to remain secret
to maintain zero knowledge. We continue with a formal definition, given with respect to circuit-
SAT, and modified from [BGT20]. All our definitions apply to adaptive adversaries (that depend
on the CRS) but are limited to a single-theorem setting (this suffices for our MPC applications).
We note that, unlike the standard NIZK setting, the only known transform from single-theorem
DP-NIZK to the multiple-theorem setting requires strong assumptions like leveled homomorphic
encryption [BGT20].

Definition 5.1. A designated prover non-interactive zero-knowledge (DP-NIZK) proof Π is a tuple
of PPT algorithms (Gen,P,V) with the following syntax:

• (crs, sk) ← Gen(1κ): Given the instance length κ, the randomized set-up algorithm Gen outputs a
CRS crs and a secret key for the prover skP .

• π ← P(1κ, crs, skP , f,x): Given the instance length κ, a CRS crs, a secret key skP , a circuit-SAT
instance f with description of length at most κ, and an assignment x, the randomized prover outputs
a proof π.

• b = V(1κ, crs, f, π) Given the instance length κ, a CRS crs, a circuit-SAT instance f with description
of length at most κ, and a proof π, the deterministic verifier returns a bit b, representing accept or
reject.

The algorithms satisfy the following properties:

Perfect completeness. For every κ ∈ N, for every circuit-SAT instance f with description of length κ,
and for every satisfying assignment x, it holds that

Pr
(crs,skP)←Gen(1κ)

π←P(1κ,crs,skP ,f,x)

[V(1κ, crs, f, π) = 1] = 1.

Adaptive Proof of knowledge. There exist a PPT algorithm Gen′ and an efficient deterministic algo-
rithm Ext that satisfy the following properties:

• (CRS indistinguishability) Gen′(1κ) takes as an input the instance length 1κ and outputs
(crs′, sk′P , τ

′) such that (crs′, sk′P) has the same distribution as (crs, skP)← Gen(1κ).

• (Extraction) For every polynomially-bounded non-uniform family of malicious provers P∗ =
{P∗κ}κ∈N there is a negligible function µ(κ) such that for all sufficiently large κ it holds that

Pr
(crs,skP ,τ)←Gen′(1κ)
(f,π)←P∗

κ(crs,skP)

[Ext(1κ, crs, τ, f, π) = x ∧ f(x) = 0 ∧ V(1κ, crs, f, π) = 1] ≤ µ(κ),

where P∗κ outputs a circuit-SAT instance f of size at most κ.

When extraction holds with respect to unbounded families of malicious provers, we say that we have statis-
tical proof of knowledge.

42

Adaptive Zero knowledge. There exist PPT algorithms (Sim1,Sim2) such that for every polynomially-
bounded non-uniform family of circuits {Aκ,Bκ}κ∈N there exists a negligible function µ such that for all
sufficiently large κ it holds that∣∣∣∣∣∣∣∣∣ Pr

(crs,skP)←Gen(1κ)
(f,x)←Aκ(crs)

π←P(1κ,crs,skP ,f,x)

[Bκ(crs, π) = 1]− Pr
(crs,τ)←Sim1(1κ)
(f,x)←Aκ(crs)

π←Sim2(1κ,crs,τ,f)

[Bκ(crs, π) = 1]

∣∣∣∣∣∣∣∣∣ ≤ µ(κ),

whereAκ always outputs a circuit f with description of length κ and a satisfying assignment x. When zero
knowledge holds with respect to unbounded non-uniform families of circuits, we say that we have statistical
zero knowledge. If, in addition, µ(κ) = 0 then we say that we have perfect zero knowledge.

In the following sections we provide two constructions of DP-NIZK: The first construction pro-
vides perfect zero knowledge (Section 5.1.1), and the second construction provides statistical proof of
knowledge (Section 5.1.2), and both constructions only assume the existence of one-way functions.

5.1.1 DP-NIZK with Perfect Zero Knowledge

We begin with a construction of DP-NIZK that provides perfect zero knowledge from one-way
functions. Before presenting an overview of our construction, we recall the notion of private
simultaneous messages protocol (PSM) [FKN94] also known as fully-decomposable randomized
encoding [IK00, AIK04].

Building block: PSM. Let f be a circuit with k inputs and ℓ outputs, and recall that in a PSM for
f there are k honest senders Q1, . . . , Qk and a single receiver R. Each Qi holds a single input bit
xi ∈ {0, 1} of an assignment x = (x1, . . . , xk) for f , and the senders also share a random string ρ
that is not known to R. The protocol allows each Qi to send to R a single message mi := psmi(xi; ρ)
that depends only on its private input bit xi and shared randomness ρ, such that the messages
(m1, . . . ,mk) reveal the output f(x), but no other information about the assignment x.

Definition 5.2 (PSM Protocols). Let X1, . . . , Xℓ, Z be finite sets, and let X = X1× . . .×Xℓ. An ℓ-party
PSM protocol psm, computing a ℓ-argument function f : X → Z consists of:

• A message computation function psmi : Xi × R → Mi, for every party i ∈ {1, . . . , ℓ}, where R is a
finite set of common random inputs and Mi is a finite message domain.

• A reconstruction function rec : M1 × . . .×Mℓ → Z that will be computed by the receiver.

The protocol psm =
(
psm1, . . . , psmℓ, rec

)
should satisfy the following properties.

1. (Correctness) For every (x1, . . . , xℓ) ∈ X and r ∈ R, rec(psm1(x1; r), . . . , psmm(xℓ; r)) =
f(x1, . . . , xℓ).

2. (Privacy) There exists a simulator Simpsm, such that for every (x1, . . . , xℓ) ∈ X ,

Simpsm

(
f(x1, . . . , xℓ)

)
≡ (psm1(x1; r), . . . , psmm(xℓ; r)),

for r ← R.

43

Note that PSM security addresses only the case where the parties Q1, . . . , Qℓ are honest.

Lemma 5.3 (Polynomial-time PSM Protocols [IK02]). For every ℓ-argument functionality f that admits
a Boolean NC1 circuit of size s, there exists a PSM protocol with complexity of poly(s). In particular, if
s = poly(ℓ), then there exists a PSM protocol with complexity poly(ℓ).

Moving to 3SAT. It will be convenient to replace circuit-SAT with an NP-hard problem whose
NP relation can be evaluated in NC1. For example, we can use 3SAT, the language of satisfiable
3CNF formulas. Assuming that the 3CNF φ is represented via the natural representation16 and the
witness w is an assignment, the evaluation φ(w) can be computed by an NC1 universal evaluator
circuit U(φ,w). (Here we abuse notation and do not distinguish between φ to its representation.)
Further note that circuit-SAT can be efficiently reduced to 3SAT via a witness-preserving reduction
and so DP-NIZK for the latter implies DP-NIZK for the former up to some polynomial loss in
efficiency. (The overhead of the reduction can be minimized by using a generalized notion of
3SAT where each constraint is replaced with a general degree-2 equation of the form xy − z = 0;
circuit-SAT can easily reduced to this language by augmenting the witness with the values of
intermediate wires and by adding a consistency constraint for each gate.)

Construction overview. The construction relies on information-theoretic PSM protocol and a
digital signature scheme whose existence follows from any one-way function [Lam79, GMR84,
Gol87, NY89, Rom90]. (See [Gol04] for a formal definition.) Let κ denote the length of φ. By
padding the assignment, we can assume that it is of length κ as well. Let F : {0, 1}κ × {0, 1}κ →
{0, 1}κ × {0, 1} be an extension of the universal evaluator that given (φ,w) outputs the instance φ
and the bit φ(w) indicating whether w satisfies φ. Since the universal evaluator is in NC1 so is F .
Let psm be a PSM protocol for F .

Roughly, the trusted party samples a signing/verification keys for the signature and publishes
the verification key as the CRS. In addition, she samples PSM randomness r, computes the PSM
messages for all possible inputs, and privately sends a signed version of these messages to the
prover. Given an instance φ and a witness w, the prover releases the corresponding PSM mes-
sages, and the verifier checks that the signature is valid and that the PSM recovery algorithm
outputs (φ, 1). We proceed with a formal description.

• Primitives.

– A perfectly-secure PSM psm = (psm1, . . . , psm2κ, rec) for F , as promised in Lemma 5.3.

– A digital signature scheme (Keygen,Sign,Verify).

• Set-up algorithm Gen(1κ). On input 1κ the algorithm Gen does as follows.

1. Samples randomness r for psm, signature keys (sk, vk)← Keygen(1κ), and sets crs := vk.

DP-NIZK Πpzk

16Take φ to be a vector of clauses where each clause contains three literals, represented by the indices and the “polar-
ity” bits of the corresponding variables.

44

2. For every i ∈ [κ] and b ∈ {0, 1} computes

φ̂i,b := psmi(b; r), ŵi,b := psmκ+i(b; r), αi,b ← Signsk((i, φ̂i,b)), and βi,b ← Signsk((i, ŵi,b)). (1)

3. Sets skP := (r, (αi,b, βi,b)i∈[κ],b∈{0,1}) and outputs (crs, skP).

• Prover P(1κ, crs, skP , φ,w). The prover on input 1κ, CRS crs = vk, secret key skP :=
(r, (αi,b, βi,b)i∈[κ],b∈{0,1}), a 3CNF instance φ = (φi)i∈[κ] with description of length κ, and a satisfy-
ing assignment w = (wi)i∈[κ] does as follows.

1. The prover computes, for every i ∈ [κ], the PSM messages φ̂i,b := psmi(φi; r), ŵi,b := psmκ+i(wi; r)
and outputs

π := ((φ̂i, αi), (ŵi, βi))i∈[κ]. (2)

• Verifier V(1κ, crs, φ, π). The verifier on input 1κ, CRS crs = vk, 3CNF instance φ with description of
size κ, and a proof π parses π according to Eq. (2) and verifies that (a) the PSM messages evaluates to
1 and are consistent with φ, i.e.,

rec((φ̂i)i∈[κ], (ŵi)i∈[κ]) = (φ, 1)

and (b) that all the signatures pass verification; That is, for every i ∈ [κ] it holds that
Verifyvk((i, φ̂i), αi) = 1 and Verifyvk((i, ŵi), βi) = 1. If all these conditions hold, the verifier accepts
the proof and outputs 1. Otherwise, the verifier rejects the proof and outputs 0.

Figure 4: DP-NIZK Πpzk

Theorem 5.4. Assuming the existence of one-way functions, Πpzk is a DP-NIZK with perfect zero knowl-
edge.

Proof sketch. Completeness follows from the perfect correctness of the digital signature scheme,
and the perfect correctness of the PSM. We continue with proof of knowledge and perfect zero
knowledge.

Proof of knowledge. On an input 1κ the algorithm Gen′(1κ) samples (crs, skP) ← Gen(1κ), sets
τ := skP and outputs (crs, skP , τ). The knowledge extractor Ext takes as an input the security
parameter 1κ, a CRS crs = vk, a trapdoor τ = (r, (αi,b, βi,b)i∈[κ],b∈{0,1}), a 3CNF φ whose description
length is κ and a proof π = ((φ̂i, αi), (ŵi, βi))i∈[κ]. The extractor outputs an assignment x =
(xi)i∈[κ] defined as follows: For every i ∈ [κ], the extractor computes the PSM messages ŵi,0, ŵi,1

as in Eq. (1) and sets the bit xi such that ŵi = ŵi,xi . If ŵi is not one of ŵi,0, ŵi,1 the extractor fails.
Analysis: CRS indistinguishability is straightforward. In addition, it is not hard to verify that

the extraction property is violated only if the adversary forges a signature, and therefore only with
negligible probability. This concludes the analysis of proof of knowledge.

Perfect zero knowledge. We define the simulators in the following way. The simulator Sim1 on
input 1κ does as follows: It samples (sk, vk) ← Keygen(1κ), sets crs := vk and τ := sk, and out-
puts (crs, τ). The simulator Sim2 on input 1κ, a CRS crs = vk, a trapdoor τ = sk, and a 3CNF
φ does as follows: It executes the PSM simulator Simpsm on (φ, 1) to obtain the PSM messages
(φ̂i)i∈[κ], (ŵi)i∈[κ], and signs each message with αi ← Signsk((i, φ̂i)), and βi ← Signsk((i, ŵi)). Fi-
nally, the simulator outputs π := ((φ̂i, αi), (ŵi, βi))i∈[κ].

45

We observe that the simulation is perfect. Indeed, fix any unbounded non-uniform family
of circuits {Aκ,Bκ}κ∈N. Observe that the simulated (sk, vk) have the same distribution as the
corresponding random variables generated by Gen(1κ), and fix those random variables. Then
crs = sk is fixed, and so the tuple (f,x) that Aκ(crs) outputs is fixed. The PSM simulator Simpsm

perfectly simulates the messages (φ̂i)i∈[κ], (ŵi)i∈[κ], in the proof, and let us fix those messages as
well. Finally, since τ = sk, the signatures of those messages in the simulation are sampled in
the same way they are sampled by the trusted party Gen(1κ). This concludes the analysis of zero
knowledge and the proof of the theorem.

Remark 5.5 (Comparison to previous constructions). Previous works [BGT20, AKP22b] have used
closely-related constructions, except that instead of using signatures the trusted party published commit-
ments to the PSM messages. This commitment-based variant does not seem to achieve adaptive zero-
knowledge due to a selective-opening issue, i.e., the set of opened commitments depends on the statement that
is chosen after the commitments are published. This issue can be solved either by using statistically-hiding
commitments or by complexity leveraging. The signature-based solution avoids this problem.

5.1.2 DP-NIZK with Statistical Proof of Knowledge

We continue with a construction of DP-NIZK ΠstatPoK that provides statistical proof of knowledge,
assuming the existence of one-way functions. The construction is based on NIZK in the hidden-
bits model [FLS90]. This approach is mentioned in [BGT20, Remark 1.1] without a proof and
is attributed to anonymous referee. We continue with an overview of NIZK in the hidden-bits
model.

NIZK in the hidden-bits model. In the hidden-bits model, the prover is first given access to a
random string r of length m. The prover sends to the verifier a certificate π together with a subset
I ⊆ [m]. The verifier is then given access only to the sub-string rI , and has to decide whether to
accept or reject based on (I, rI , π). See Section F.1 for a formal definition of the hidden-bit model,
and some special properties that the construction of [FLS90] satisfies.

Construction overview. At a high level, we instantiate the hidden-bits model using non-
interactive commitments. That is, we let the trusted party sample the CRS string r = (r1, . . . , rm)
for the NIZK in the hidden-bits model, and commit to every bit ri with a commitment Ci, using
the statistically-binding commitments of Naor [Nao89], where we also let the trusted party gen-
erate the public parameters pp of the commitment scheme. The CRS is set to be (pp, C1, . . . , Cm),
and the openings (o1, . . . , om) are the secret-key of the prover. To prove that f is satisfiable, the
prover samples the proof (I, π) of the prover in the hidden-bits model, and appends the openings
that correspond to indices in I , i.e., it sets its own proof to be (I, π, (oi)i∈I). Finally, the verifier
simply verifies that the openings are valid, and that the hidden-bits verifier is accepting the proof.
We continue with a formal description of the protocol.

• Primitives.

DP-NIZK ΠstatPoK

46

– A statistically-binding non-interactive commitment scheme (commit, open).

– Let ΠhidBits = (GenhidBits,PhidBits,VhidBits) be the NIZK protocol in the hidden-bits model of [FLS90]
(see Section F.1).

• Set-up algorithm Gen(1κ). On input 1κ the algorithm Gen does as follows.

1. Samples pp for the non-interactive commitment scheme.

2. Samples a random string r← GenhidBits(1
κ). We denote r = (r1, . . . , rm).

3. For every i ∈ [m] commits (Ci, oi)← commit(ri).

4. Sets crs := (pp, C1, . . . , Cm) and skP := (o1, . . . , om).

5. Outputs (crs, skP).

• Prover P(1κ, crs, skP , f,x). The prover on input 1κ, CRS crs = (pp, C1, . . . , Cm), secret ket skP =
(o1, . . . , om), a circuit-SAT instance f with description of length κ, and a satisfying assignment x does
as follows.

1. The prover computes ri := open(Ci, oi) for every i ∈ [m], and sets r := (r1, . . . , rm).

2. The prover samples (I, πhidBits)← PhidBits(f,x, r).

3. The prover outputs π := (I, πhidBits, (oi)i∈I).

• Verifier V(1κ, crs, f, π). The verifier on input 1κ, CRS crs = (pp, C1, . . . , Cm), a circuit-SAT instance f
with description of length κ, and a proof π = (I, πhidBits, (o

′
i)i∈I) does as follows.

1. For every i ∈ I , the verifiers computes r′i := open(Ci, o
′
i), and verifies that r′i ̸= ⊥. If the verification

fails then the verifier outputs 0. Otherwise, the verifier sets r′I := (r′i)i∈I .

2. The verifier computes the bit b := VhidBits(f, I, r′I , πhidBits) and outputs b.

Figure 5: DP-NIZK ΠstatPoK

Theorem 5.6. Assuming the existence of one-way functions, ΠstatPoK is a DP-NIZK with statistical zero
knowledge.

The proof follows the same lines as the transformation from the construction of [FLS90] in the
hidden-bits model to adaptive-NIZK, as described in [Gol01, Chapter 4.10.3.2] (see also [Gol04,
Chapter C.4.3]). A full proof appears in Section E.1.

5.2 Single Input Functionality

In Section 5.2 and Section 5.3, the distinction between clients and servers will not be useful, and
therefore we simply use “parties”. In addition, we use the standard security notions of MPC, in-
stead of the definitions from Section 2 that were tailored for the construction of NPSS. In more
details, we consider secure computation with n parties, denoted P1, . . . , Pn, and assume that the
adversary corrupts a minority t of the parties, i.e., n ≥ 2t + 1. We denote by C the set of corrupt
parties, and by H the set of honest parties. Throughout, we assume that the parties can communi-
cate via secure point-to-point channels, and that they also have access to a broadcast channel. We
consider a static, active rushing adversary and require full security, including guaranteed output
delivery. In fact, all the results in this section are proved to be UC-secure in the plain model, i.e.,
they require no trusted setup. We also mention that some of our protocols achieve a strong no-
tion of security called everlasting security [MU10] where the protocol is secure against an adversary

47

that is computationally bounded during the execution, but becomes computationally unbounded
afterward. For more information about the framework of universal composability, and about ev-
erlasting security, the reader is referred to Section F.2. We also refer the reader to [AKP22b] for
further discussion about everlasting security in our context.

A single input functionality (SIF) is a functionality that takes an input from a single party, and
returns the outputs to all the parties. In Section 5.2.1 we present a 2-round offline/online con-
struction of public SIF, where the same output is given to all the parties. As we have noted at
the beginning of Section 5, MVZK can reduced to the public SIF that takes from the prover the
statement f and witness x and returns (f, f(x)) to all the parties. Then, in Section 5.2.2 we explain
how to transform public SIF into general SIF.

5.2.1 Public Single Input Functionality

A public single input functionality is a single input functionality where all the parties receive the
same output. This is formalized in the following functionality.

There is a distinguished party D. The functionality is parameterized by a circuit f on k input bits and ℓ
output bits.

• Inputs. The dealer inputs x ∈ {0, 1}k.

• Outputs. The functionality computes y := f(x) and returns y to all the parties.

Functionality Fpsif

Figure 6: Functionality Fpsif

Throughout, we assume that D is one of the n parties P1, . . . , Pn, say D = P1. Our goal is to
construct a 2-round offline/online protocol for Fpsif . We begin with a description of a simple
3-round protocol.

Basic protocol. The main idea is to let D use a (t + 1)-out-of-n NPSS (R,W,Sim,Ext) to share
the NP statement “There is x such that f(x) = y” among the parties, and let the i-th party verify
that the i-th share is valid. Formally, we define the function hy(x) that returns 1 if f(x) = y and 0
otherwise. We let D broadcast y, and sample a global assignment z as well as partial assignments
z1, . . . , zn from W (hy,x). D now commits to z and sends to the i-th party Pi openings to the
partial assignment zi. In the second round, every Pi can locally compute (ĥ1, . . . , ĥn) = R(hy) and
verifies that the committed partial assignment zi satisfies ĥi. If the verification fails then Pi raises
a public complaint. Finally, in the third round D opens the commitments that correspond to the
shares zi of every complaining party Pi so that the parties could verify that ĥ(zi) = 1. The parties
accept y only if the verification succeeds for every Pi that raised a complaint.

We observe that an honest Pi always accepts the shares of an honest D, and therefore it pro-
vides both completeness and privacy for the partial assignment zi. In addition, it provides soundness
for a corrupt D, i.e., we are guaranteed that ĥi(zi) = 1. We also notice that completeness is guaran-
teed even when Pi is corrupt, as an honest D always opens the correct shares for every complaint.

48

Two-round protocol. To reduce the number of rounds, we note that instead of letting every
Pi verify the i-th statement, we can simply let every Pi act as the trusted party in a DP-NIZK
instance where D proves that the committed zi satisfies ĥi. For an honest Pi the protocol provides
completeness, soundness and privacy, just like in the basic protocol. To make sure that the protocol
provides completeness even when Pi is corrupted by the adversary, we simply let D verify that
the i-th proof will be accepted, and publicly send the openings to the witness zi if not. The perfect
completeness of the DP-NIZK now guarantees that zi will be publicly revealed only if Pi is corrupt.
In this sense, our protocol can be seen as a transformation from DP-NIZK into “multi-string DP-
NIZK”, similar to the NIZK–to–MS-NIZK transformation in Theorem 4.8.

When we instantiate the protocol with statistically-binding commitments (that can be based
on one-way functions), and with ΠstatPoK, we obtain a protocol with statistical soundness.17 If
we instantiate the protocol with statistically-hiding commitments (that can be based on collision-
resistance hash functions) and with Πpzk, we obtain a protocol with everlasting security. In both
cases, the protocol has perfect completeness, i.e., when the dealer plays honestly with input x the
output is f(x) with probability 1. We continue with a formal description of the protocol.

There is a distinguished party D. The functionality is parameterized by a circuit f on k input bits and ℓ
output bits. We denote the security parameter by κ.

• Primitives.

– An MS-NICOM (commit, open) (see further details in Section 4.1.1).

– A (t+ 1)-out-of-n NPSS (R,W,Sim,Dec) from Corollary 3.5.

– For every y ∈ {0, 1}ℓ we define a circuit hy that takes x ∈ {0, 1}k and returns 1 if f(x) = y.

– For a circuit ĥ on m input bits and a single output bit, for public parameters pp and for a set of
commitments C = (Ci)i∈[m], we define by Gĥ,pp,C the circuit that takes as an input a set S ⊆ [m]

and openings (oi)i∈S , and does as follows. For every i ∈ S the circuit Gĥ,pp,C computes αi =

openpp(Ci, oi) and for every i /∈ S the circuit sets αi = ∗. The circuit outputs a bit b that is set to 1 if
both (1) αi ̸= ⊥ for every i ∈ S, and (2) the partial assignment (α1, . . . , αm) satisfies ĥ. Otherwise,
b is set to be 0.
In the protocol, pp will be the public parameters generated by the non-interactive initialization of
the commitment scheme, and the function ĥ will be one of the functions (ĥ1, . . . , ĥn) = R(hy) for
some y ∈ {0, 1}ℓ. We denote by B an upper bound on the length of the binary representation of
Gĥ,pp,C and the number of inputs m. We observe that B is polynomial in the number of parties
n, the circuit size of f , and the security parameter κ, and can be computed efficiently given n, the
circuit size of f and the complexity of R.

– A DP-NIZK Π = (Gen,P,V).
– We set κ′ := max(κ,B), and we assume that all cryptographic primitives are executed with security

parameter κ′.

• Offline round. In the offline round, every Pi samples (crsi, ski) ← Gen(1κ
′
) and CRS ppi ← {0, 1}κ

Protocol psif

17That is, even when the dealer is computationally unbounded, with all but negligible probability the output of the
protocol is in the image of f .

49

for the NICOM, broadcasts (crsi, ppi) and sends ski to D. We let pp = (ppi)i∈[n] and write commit =
commitpp and open = openpp.

• Inputs. D receives the input x ∈ {0, 1}k.

• Online round. D does as follows.

1. Computes y := f(x) and broadcasts y.

2. Computes (ĥ1, . . . , ĥn) = R(hy).

3. Samples (z, z1, . . . , zn) ← W (hy,x). Let us denote z = (α1, . . . , αm). In addition, for every i ∈ [n]
we denote by Si the set of all indices j ∈ [m] such that zi[j] ̸= ∗.

4. Samples (Ci, oi)← commit(αi) for every i ∈ [m] and broadcasts C := (Ci)i∈[m].

5. For every i ∈ [n], the dealer samples πi ← P(1κ
′
, crsi, ski, Gĥi,pp,C

, (Si, (oj)j∈Si
)). The dealer verifies

that V(1κ′
, crsi, Gĥi,pp,C

, πi) = 1. If the verification succeeds the dealer broadcasts πi, and otherwise
the dealer broadcasts (fail, Si, (oj)j∈Si).

• Local computation. Given the broadcasts y and C of D, every party P computes (ĥ1, . . . , ĥn) = R(hy),
and the functions Gĥi,pp,C

. For every i ∈ [n], if D broadcasts (fail, Si, (oj)j∈Si
) then P verifies that

Gĥi,pp,C
(Si, (oj)j∈Si

) = 1, and if D broadcast πi then P verifies that V(1κ′
, crsi, Gĥi,pp,C

, πi) = 1. If the
verification succeeds for every i ∈ [n] then P outputs y, and otherwise P outputs f(0, . . . , 0).

Figure 7: Protocol psif

Theorem 5.7. Let κ be a security parameter, let n be the number of parties, and let t < n/2 be the number
of corrupt parties. We obtain the following results:

• (Statistical soundness from OWFs) Assuming the existence of one-way functions, protocol psif,
when instantiated with statistically-binding MS-NICOM (that are implied by one-way functions)
and Π = ΠstatPoK (Protocol 5), is a UC-secure implementation of Fpsif , against a static, active,
rushing adversary that corrupts at most t of the parties. In addition, the protocol provides perfect
completeness and statistical soundness.

• (Everlasting security from CRH) Assuming the existence of collision-resistant hash functions, pro-
tocol psif, when statistically-hiding commitments (that are implied by collision-resistance hash func-
tions) and Π = Πpzk (Protocol 4) is a UC-secure implementation with everlasting security of Fpsif ,
against a static, active, rushing adversary that corrupts at most t of the parties. In addition, the
protocol provides perfect completeness.

In all cases, the complexity of the protocol is poly(κ, n, s), where s is the circuit size of f . In addition, in the
offline phase every party communicates by sending a private message to D and sending a public broadcast
message, and in the online phase only D communicates by sending a public broadcast message, and the
decision whether to accept or reject depends only on the broadcast messages.

Proof sketch. The proof follows the same lines as the proof of Theorem 4.8 and its extensions, and
we therefore only provide a proof sketch. Denote by (Sim1,Sim2) the simulators of Π, and by
(Gen′,Ext) the set-up generator and extractor promised by the proof of knowledge of Π. Recall
that Sim and Dec are the simulator and decoder of the NPSS. We split into cases.

50

Honest D. In the offline phase, the simulator performs the non-interactive initialization, by sam-
pling public parameters ppi on behalf of each honest Pi and broadcasting ppi. In addition, for
every honest Pi, the simulator samples (crsi, τi) ← Sim1(1

κ′
), and broadcasts crsi on behalf of Pi.

At this stage the simulator receives the broadcast messages (ppi, crsi) and the private message ski
of every corrupt Pi. This concludes the simulation of the offline round.

In the online round the simulator receives the output y. The simulator computes (ĥ1, . . . , ĥn) =
R(hy) and also executes the NPSS simulator SimNPSS on hy and C to obtain the (at most t) partial
assignments (zi)i∈C. For every i ∈ C the simulator computes the set Si to be the set of all indices
j ∈ [m] such that zi[j] ̸= ∗. In addition, for every j ∈ [m], if there is some i ∈ C such that
j ∈ Si, the simulator commits to (Ci, oi)← commit(zi[j]), and otherwise the simulator commits to
(Ci, oi)← commit(0). The simulator broadcasts y and C := (C1, . . . , Cm) on behalf of D.

In addition, for every i ∈ C, the simulator samples π ← P(1κ′
, crsi, ski, Gĥi,pp,C

, (Si, (oj)j∈Si)).
If V(1κ′

, crsi, Gĥi,pp,C
, πi) = 0 then the simulator broadcasts (fail, Si, (oj)j∈Si) on behalf of D. Oth-

erwise, the simulator broadcasts πi on behalf of D. Finally, for every i ∈ H the simulator samples
πi ← Sim2(1

κ′
, crsi, τi, Gĥi,pp,C

) and broadcasts πi on behalf of D. This concludes the simulation.
It is not hard to verify that the real-world output is y with probability 1. In addition, a stan-

dard argument shows that the simulation is statistically-close to the real world if the underlying
commitment scheme is statistically-hiding and Π = Πpzk, and the simulation is computationally-
indistinguishable from the real world if the underlying commitment scheme is computationally
hiding and Π = ΠstatPoK.

Corrupt D. In the offline phase, the simulator performs the non-interactive initialization, by
sampling public parameters ppi on behalf of each honest Pi and broadcasting ppi. In addition, for
every honest Pi, the simulator samples (crsi, ski, τi) ← Gen′(1κ

′
), broadcasts crsi and sends ski to

D on behalf of Pi. The simulator then receives the messages of the corrupt parties in the offline
round, and the messages of the corrupt dealer in the online round. Therefore, the offline-round
messages and the online round messages have the same distribution as in a real-world execution
of the protocol. It remains to explain how to extract the input of the corrupt dealer.

In the online phase the simulator receives the broadcasts of the corrupt dealer: y, C :=
(C1, . . . , Cm), and for every i ∈ [n] either πi or (fail, Si, (oj)j∈Si). The simulator computes
(ĥ1, . . . , ĥn) = R(hy). For every i ∈ [n], if the dealer broadcasts (fail, Si, (oj)j∈Si) then the sim-
ulator verifies that Gĥi,pp,C

(Si, (oj)j∈Si) = 1, and if the dealer broadcasts πi then the simulator
verifies that V(1κ′

, crsi, Gĥi,pp,C
, πi) = 1. If the verification fails the simulator inputs (0, . . . , 0) to

Fpsif and terminates.
Otherwise, for every i ∈ H the simulator defines the partial assignment zi in the following

way: (1) if the dealer broadcasts (fail, Si, (oj)j∈Si) then for every j ∈ Si the simulator sets zi[j] :=
open(Cj , oj), and for every j /∈ Si the simulator sets zi[j] := ∗, and (2) if the dealer broadcasts πi,
the simulator computes (Si, (oj)j∈Si) = Ext(1κ

′
, crsi, τi, Gĥi,pp,C

, πi), and defines zi like in the first
case. The simulator executes the NPSS decoder Dec on hy, the set H, and the partial shares (zi)i∈H
to obtain an assignment x, and inputs x to Fpsif . This concludes the simulation.

We continue with a short analysis. Assume that the local verification of the parties succeeds
and the output is set to be y. Observe that if the adversary does not violate the binding property of
the commitment scheme, and the extraction of the DP-NIZK, then the partial assignments of the
t+1 honest parties (zi)i∈H are pairwise consistent on Boolean values, and zi satisfies ĥi. Therefore,
the soundness of the NPSS scheme guarantees that hy(x) = 1 for x = Dec(hy,H, (zi)i∈H), i.e.,

51

h(x) = y. Furthermore, if the underlying commitment scheme is statistically-binding, and Π =
ΠstatPoK then we obtain soundness even when D is computationally unbounded. This concludes
the proof sketch.

5.2.2 Single Input Functionality

First, we give a formal definition of single input functionalities.

There is a distinguished party D. The functionality is parameterized by n circuits f1, . . . , fn, where fi has
k input bits and ℓi output bits. The functionality receives the set of corrupt parties C.

• Inputs. The dealer D inputs x ∈ {0, 1}k.

• Outputs. The functionality computes yi := fi(x) for every i ∈ [n] and returns yi to Pi.

Functionality Fsif

Figure 8: Functionality Fsif

From public SIF to SIF. The work of [AKP22b] presented a round-preserving transformation
from public SIF to SIF, based only on non-interactive commitments. However, for non-interactive
commitments that require public parameters (such as Naor’s commitments or CRH-based com-
mitments), their construction required a trusted set-up: a CRS that picks the public parameters.
The reason their protocol requires a CRS is that it uses the commitment scheme already in the first
(offline) round, so the public parameters need to be available at the beginning of the protocol. We
show that a simple modification of their protocol allows us to obtain a protocol in the plain model,
without any trusted set-up, from any non-interactive commitment scheme.

To do so, we first present a simplification of their protocol, where we still assume that the
public parameters are part of the CRS. In the offline round, let each each party Pi broadcast a
public commitment Ci to a one-time pad ri, and send the corresponding opening oi to D. In the
online phase, let D compute the public single input functionality, that takes as input x, as well
as all the commitments and openings. For every Pi the functionality recovers ri = open(Ci, oi),
computes the output yi := fi(x) and publicly outputs (Ci,yi + ri). If the opening of Ci fails,
then the functionality publicly outputs (Ci,yi, fail). The parties verify that D used the correct
commitments, and therefore the binding property of the commitments implies that a corrupt D
cannot violate the soundness. In addition, for an honest D the outputs of all honest parties are
encrypted with a one-time pad, and therefore the adversary learns no information about them.
It is not hard to verify that when the underlying commitment scheme is statistically hiding the
transformation preserves everlasting security, and when the underlying commitment scheme is
statistically binding the transformation preserves statistical soundness.18

To get rid of the trusted set-up, we observe that we only care that a corrupt D cannot violate the
binding property of the commitments that belong to honest parties.19 Therefore, we can simply

18That is, even when the dealer is computationally unbounded, with all but negligible probability there exists some
input x such that the output of the honest parties is consistent with x, i.e., yi = fi(x) for all i ∈ H.

19More formally, we need a weak binding property: an external party who is given an honestly-generated commitment
and its opening, should not be able to de-commit to a different value.

52

let Pi pick the public parameters that are used for the commitment Ci of ri. This guarantees that
for every honest Pi the binding property holds. Full details of our protocol sif are postponed to
Section E.2. We conclude with the following theorem, whose proof also appears in Section E.2.

Theorem 5.8. Let κ be a security parameter, let n be the number of parties, and let t < n/2 be the number
of corrupt parties. We obtain the following results:

• (Statistical soundness from OWFs) Assuming the existence of one-way functions, there exists a
2-round offline/online protocol sif that is a UC-secure implementation of Fsif , against a static, active,
rushing adversary that corrupts at most t of the parties. In addition, the protocol provides perfect
completeness and statistical soundness.

• (Everlasting security from CRH) Assuming the existence of collision-resistant hash functions,
there exists a 2-round offline/online protocol sif that is a UC-secure implementation with everlast-
ing security of Fsif , against a static, active, rushing adversary that corrupts at most t of the parties.
In addition, the protocol provides perfect completeness.

In all cases, the complexity of the protocol is poly(κ, n, s1, . . . , sn), where si is the circuit size of fi. In
addition, in the offline phase every party communicates by sending a private message to D and sending
a public broadcast message, and in the online phase only D communicates by sending a public broadcast
message.

5.3 Secure Multiparty Computation

We continue with our results for round-optimal honest-majority general computation. We con-
sider a functionality F(x1, . . . ,xn) that takes an input xi from each Pi, computes the outputs
(y1, . . . ,yn) and returns yi to Pi. Our starting point is the transformation of [AKP22a] from a
2-round offline/online SIF protocol to a 3-round general computation protocol. Like in the trans-
formation of [AKP22b] from public SIF to SIF, the transformation of [AKP22a] requires a CRS that
picks the public parameters of the non-interactive commitment scheme, due to the use of commit-
ments in the first round of the protocol. In fact, just like in [AKP22a], the first-round commitments
that an honest Pi generates are only used to guarantee that other parties will not violate the bind-
ing property, while for a corrupt Pi we have no requirements.20 Therefore, the public parameters
for Pi’s commitments can be picked by Pi, and the CRS is eliminated in the same way as in Sec-
tion 5.2.2.

We mention that when the transformation is instantiated with statistically-binding commit-
ments, and when the underlying SIF protocol provides statistical soundness, then the general
MPC protocol provides statistical correctness, i.e., for every inputs (xi)i∈H to the honest parties, and
for every computationally-unbounded adversary that corrupts a minority of the parties, with all
but negligible probability the output is F(x′1, . . . ,x′n) where x′i = xi for all i ∈ H. Similarly, when
the transformation is instantiated with statistically-hiding commitments, and when the underly-
ing SIF protocol provides everlasting security, then the general MPC protocol provides everlasting
security. We omit the full details of the transformation from this version of the paper, and conclude
with the following theorem.

20In the current description of the protocol of [AKP22a], in the first round every Pi also commits to its private ran-
domness, and in the second round Pi proves in zero-knowledge (using the SIF protocol) that its behavior is consistent
with the committed randomness. Since those commitments are only used in the second round, and only by Pi, we can
postpone their generation to the second round.

53

Theorem 5.9. Let κ be a security parameter, let n be the number of parties, and let t < n/2 be the number
of corrupt parties. Let F be an n-party functionality. We obtain the following results:

• (Statistical correctness from OWFs) Assuming the existence of one-way functions, there exists a
3-round protocol mpc that is a UC-secure implementation of F , against a static, active, rushing ad-
versary that corrupts at most t of the parties. In addition, the protocol provides statistical correctness.

• (Everlasting security from CRH) Assuming the existence of collision-resistant hash functions, and
assuming that F is in NC1, there exists a 3-round protocol mpc that is a UC-secure implementation
with everlasting security of F , against a static, active, rushing adversary that corrupts at most t of
the parties.

In all cases, the complexity of the protocol is poly(κ, n, s), where s is the circuit size of F .

54

References

[ACGJ18] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Round-
optimal secure multiparty computation with honest majority. In Hovav Shacham and
Alexandra Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Pro-
ceedings, Part II, volume 10992 of Lecture Notes in Computer Science, pages 395–424.
Springer, 2018.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In 45th
Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome,
Italy, Proceedings, pages 166–175, 2004.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, pages 483–501, 2012.

[AK25a] Benny Applebaum and Eliran Kachlon. How to share an NP statement or combiners
for zero-knowledge proofs. Electron. Colloquium Comput. Complex., TR25-023, 2025.

[AK25b] Benny Applebaum and Eliran Kachlon. NIZK amplification via leakage-resilient se-
cure computation. Cryptology ePrint Archive, Paper 2025/995, 2025. To appear in
Crypto 2025.

[AKP22a] Benny Applebaum, Eliran Kachlon, and Arpita Patra. Round-optimal honest-majority
MPC in minicrypt and with everlasting security - (extended abstract). In Eike Kiltz
and Vinod Vaikuntanathan, editors, Theory of Cryptography - 20th International Con-
ference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, Proceedings, Part II, volume
13748 of Lecture Notes in Computer Science, pages 103–120. Springer, 2022.

[AKP22b] Benny Applebaum, Eliran Kachlon, and Arpita Patra. Verifiable relation sharing and
multi-verifier zero-knowledge in two rounds: Trading nizks with honest majority -
(extended abstract). In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in
Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO
2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part IV, volume 13510
of Lecture Notes in Computer Science, pages 33–56. Springer, 2022.

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n) sorting network. In
Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages 1–9,
1983.

[AL17] Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly
secure multiparty computation. J. Cryptology, 30(1):58–151, 2017.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
Snarks for C: verifying program executions succinctly and in zero knowledge. In
Ran Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd

55

Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II, volume 8043 of Lecture Notes in Computer Science, pages 90–108. Springer, 2013.

[BD91] Mike Burmester and Yvo Desmedt. Broadcast interactive proofs (extended abstract).
In Advances in Cryptology - EUROCRYPT ’91, Workshop on the Theory and Application
of of Cryptographic Techniques, Brighton, UK, April 8-11, 1991, Proceedings, pages 81–95,
1991.

[Bei11] Amos Beimel. Secret-sharing schemes: A survey. In Yeow Meng Chee, Zhenbo Guo,
San Ling, Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and Chaoping Xing, edi-
tors, Coding and Cryptology - Third International Workshop, IWCC 2011, volume 6639 of
Lecture Notes in Computer Science, pages 11–46. Springer, 2011.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications. In Proceedings of the twentieth annual ACM symposium on Theory of
computing, pages 103–112, 1988.

[BG24] Nir Bitansky and Nathan Geier. Amplification of non-interactive zero knowledge,
revisited. In Leonid Reyzin and Douglas Stebila, editors, Advances in Cryptology -
CRYPTO 2024 - 44th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2024, Proceedings, Part IX, volume 14928 of Lecture Notes in Com-
puter Science, pages 361–390. Springer, 2024.

[BGT20] Zvika Brakerski, Sanjam Garg, and Rotem Tsabary. FHE-based bootstrapping of
designated-prover NIZK. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of
Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November 16-
19, 2020, Proceedings, Part I, volume 12550 of Lecture Notes in Computer Science, pages
657–683. Springer, 2020.

[BJMS20] Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Secure
MPC: laziness leads to GOD. In Shiho Moriai and Huaxiong Wang, editors, Advances
in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020,
Proceedings, Part III, volume 12493 of Lecture Notes in Computer Science, pages 120–150.
Springer, 2020.

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger def-
initions, and constructions without random oracles. In Theory of Cryptography: Third
Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Pro-
ceedings 3, pages 60–79. Springer, 2006.

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and trapdoor
hash via correlation intractability for approximable relations. IACR Cryptol. ePrint
Arch., page 258, 2020.

[BL88] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone
functions. In Shafi Goldwasser, editor, Advances in Cryptology – CRYPTO ’88, 8th An-
nual International Cryptology Conference, volume 403 of Lecture Notes in Computer Sci-
ence, pages 27–35. Springer, 1988.

56

[Bla79] G. R. Blakley. Safeguarding cryptographic keys. In 1979 International Workshop on
Managing Requirements Knowledge, MARK 1979, New York, NY, USA, June 4-7, 1979,
pages 313–318. IEEE, 1979.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group sig-
natures: Formal definitions, simplified requirements, and a construction based on
general assumptions. In Advances in Cryptology—EUROCRYPT 2003: International
Conference on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland,
May 4–8, 2003 Proceedings 22, pages 614–629. Springer, 2003.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001,
14-17 October 2001, Las Vegas, Nevada, USA, pages 136–145. IEEE Computer Society,
2001.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1082–1090.
ACM, 2019.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D Rothblum. Fiat-shamir and cor-
relation intractability from strong kdm-secure encryption. In Advances in Cryptology–
EUROCRYPT 2018: 37th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tel Aviv, Israel, April 29-May 3, 2018 Proceedings, Part I 37,
pages 91–122. Springer, 2018.

[CDI+13] Gil Cohen, Ivan Bjerre Damgård, Yuval Ishai, Jonas Kölker, Peter Bro Miltersen, Ran
Raz, and Ron D. Rothblum. Efficient multiparty protocols via log-depth threshold
formulae - (extended abstract). In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 185–202. Springer, 2013.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004.

[CK89] B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. In Proceedings of the
Twenty-First Annual ACM Symposium on Theory of Computing, STOC ’89, page 62–72,
New York, NY, USA, 1989. Association for Computing Machinery.

[CMVX25] Michele Ciampi, Lorenzo Magliocco, Daniele Venturi, and Yu Xia. Robust non-
interactive zero-knowledge combiners. Cryptology ePrint Archive, Paper 2025/240,
2025.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In Pro-
ceedings of the twenty-third annual ACM symposium on Theory of computing, pages 542–
552, 1991.

57

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span
programs with applications to succinct NIZK arguments. In Palash Sarkar and Tetsu
Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference
on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in Com-
puter Science, pages 532–550. Springer, 2014.

[DFK+92] Cynthia Dwork, Uri Feige, Joe Kilian, Moni Naor, and Muli Safra. Low communica-
tion 2-prover zero-knowledge proofs for np: Preliminary version. In Annual Interna-
tional Cryptology Conference, pages 215–227. Springer, 1992.

[DN07] Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM J. Comput.,
36(6):1513–1543, 2007.

[DPP98a] Ivan Damgård, Torben P. Pedersen, and Birgit Pfitzmann. Statistical secrecy and
multibit commitments. IEEE Trans. Inf. Theory, 44(3):1143–1151, 1998.

[DPP98b] Ivan Damgård, Torben P. Pedersen, and Birgit Pfitzmann. Statistical secrecy and
multibit commitments. IEEE Trans. Inf. Theory, 44(3):1143–1151, 1998.

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation (ex-
tended abstract). In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory
of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 554–563, 1994.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string. In Proceedings [1990] 31st Annual Symposium
on Foundations of Computer Science, pages 308–317. IEEE, 1990.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Math. Syst. Theory, 17(1):13–27, 1984.

[GJS19] Vipul Goyal, Aayush Jain, and Amit Sahai. Simultaneous amplification: The case of
non-interactive zero-knowledge. In Alexandra Boldyreva and Daniele Micciancio, ed-
itors, Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II, volume 11693
of Lecture Notes in Computer Science, pages 608–637. Springer, 2019. Crypto talk ava-
ialable in https://www.youtube.com/watch?v=DLK079q6aWM&ab_channel=
IACR.

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and
guarantee of output delivery. In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II,
pages 63–82, 2015.

[GMR84] S Goldwasser, S Micali, and RL Rivest. A ”paradoxical” solution to the signature
problem. In 25th Annual Symposium onFoundations of Computer Science, 1984., pages
441–448. IEEE, 1984.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

58

https://www.youtube.com/watch?v=DLK079q6aWM&ab_channel=IACR
https://www.youtube.com/watch?v=DLK079q6aWM&ab_channel=IACR

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA, pages
218–229, 1987.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1–32, 1994.

[GO14] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. J. Cryptol.,
27(3):506–543, 2014.

[Gol87] Oded Goldreich. Two remarks concerning the goldwasser-micali-rivest signature
scheme. In Proceedings on Advances in cryptology—CRYPTO’86, pages 104–110, 1987.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques. Cam-
bridge University Press, 2001.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cam-
bridge University Press, 2004.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive
zero-knowledge. J. ACM, 59(3):11:1–11:35, 2012.

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way
functions (or: One-way product functions and their applications). In 2018 IEEE 59th
annual symposium on Foundations of Computer Science (FOCS), pages 850–858. IEEE,
2018.

[HM96a] Shai Halevi and Silvio Micali. Practical and provably-secure commitment schemes
from collision-free hashing. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer Science, pages
201–215. Springer, 1996.

[HM96b] Shai Halevi and Silvio Micali. Practical and provably-secure commitment schemes
from collision-free hashing. In Advances in Cryptology - CRYPTO ’96, 16th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996,
Proceedings, pages 201–215, 1996.

[HM00] Martin Hirt and Ueli M. Maurer. Player simulation and general adversary structures
in perfect multiparty computation. J. Cryptol., 13(1):31–60, 2000.

[HN24] Shuichi Hirahara and Mikito Nanashima. One-way functions and zero knowledge.
In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors, Proceedings of the 56th
Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada,
June 24-28, 2024, pages 1731–1738. ACM, 2024.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st Annual Symposium
on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach,
California, USA, pages 294–304, 2000.

59

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via per-
fect randomizing polynomials. In Automata, Languages and Programming, 29th Interna-
tional Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings, pages 244–
256, 2002.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
proofs from secure multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009.

[Ish20] Yuval Ishai. Zero-knowledge proofs from information-theoretic proof systems,
2020. See also the Simons talk https://simons.berkeley.edu/talks/
efficient-zero-knowledge-proofs-modular-approach.

[Jai24] Aayush Jain. Aayush jain’s website, 2024. https://sites.google.com/view/
aayushjain/home.

[KNY14] Ilan Komargodski, Moni Naor, and Eylon Yogev. Secret-sharing for np. In International
Conference on the Theory and Application of Cryptology and Information Security, pages
254–273. Springer, 2014.

[KPT97] Joe Kilian, Erez Petrank, and Gábor Tardos. Probabilistically checkable proofs with
zero knowledge. In Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing, pages 496–505, 1997.

[KRR17] Yael Tauman Kalai, Guy N Rothblum, and Ron D Rothblum. From obfuscation to
the security of fiat-shamir for proofs. In Advances in Cryptology–CRYPTO 2017: 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20–24, 2017,
Proceedings, Part II 37, pages 224–251. Springer, 2017.

[Lam79] Leslie Lamport. Constructing digital signatures from a one way function. 1979.

[LPWW20] Benoı̂t Libert, Alain Passelègue, Hoeteck Wee, and David J. Wu. New constructions
of statistical nizks: Dual-mode dv-nizks and more. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10-14, 2020, Proceedings, Part III, volume 12107 of Lecture Notes in Computer Science,
pages 410–441. Springer, 2020.

[MU10] Jörn Müller-Quade and Dominique Unruh. Long-term security and universal com-
posability. J. Cryptol., 23(4):594–671, 2010.

[Nao89] Moni Naor. Bit commitment using pseudo-randomness. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of Lecture
Notes in Computer Science, pages 128–136. Springer, 1989.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158,
1991.

[Nao06] Moni Naor. Secret sharing for access structures beyond P, 2006. Slides: http://www.
wisdom.weizmann.ac.il/˜naor/PAPERS/minicrypt.html.

60

https://simons.berkeley.edu/talks/efficient-zero-knowledge-proofs-modular-approach
https://simons.berkeley.edu/talks/efficient-zero-knowledge-proofs-modular-approach
https://sites.google.com/view/aayushjain/home
https://sites.google.com/view/aayushjain/home
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/minicrypt.html
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/minicrypt.html

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the twenty-first annual ACM symposium on Theory of com-
puting, pages 33–43, 1989.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 427–437, 1990.

[OW07] Ryan O’Donnell and Karl Wimmer. Approximation by DNF: examples and counterex-
amples. In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, ed-
itors, Automata, Languages and Programming, 34th International Colloquium, ICALP 2007,
Wroclaw, Poland, July 9-13, 2007, Proceedings, volume 4596 of Lecture Notes in Computer
Science, pages 195–206. Springer, 2007.

[Pat90] Michael S Paterson. Improved sorting networks with O(logN) depth. Algorithmica,
5(1):75–92, 1990.

[PHGR16] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: nearly
practical verifiable computation. Commun. ACM, 59(2):103–112, 2016.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, Ad-
vances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I, volume 11692 of Lecture
Notes in Computer Science, pages 89–114. Springer, 2019.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages
387–394, 1990.

[SCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from
bitcoin. In 2014 IEEE symposium on security and privacy, pages 459–474. IEEE, 2014.

[Sei09] Joel Seiferas. Sorting networks of logarithmic depth, further simplified. Algorithmica,
53:374–384, 2009.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[SMP87] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-
knowledge proof systems. In Carl Pomerance, editor, Advances in Cryptology -
CRYPTO ’87, A Conference on the Theory and Applications of Cryptographic Techniques,
Santa Barbara, California, USA, August 16-20, 1987, Proceedings, volume 293 of Lecture
Notes in Computer Science, pages 52–72. Springer, 1987.

[Spi71] Philip Spira. On time-hardware complexity tradeoffs for boolean functions. In Pro-
ceedings of the 4th Hawaii Symposium on System Sciences, 1971, pages 525–527, 1971.

61

[SV97] Amit Sahai and Salil P. Vadhan. A complete promise problem for statistical zero-
knowledge. In 38th Annual Symposium on Foundations of Computer Science, FOCS ’97,
Miami Beach, Florida, USA, October 19-22, 1997, pages 448–457. IEEE Computer Society,
1997.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In Proceedings of the forty-sixth annual ACM symposium on Theory
of computing, pages 475–484, 2014.

[Weg83] Ingo Wegener. Relating monotone formula size and monotone depth of boolean func-
tions. Inf. Process. Lett., 16(1):41–42, 1983.

62

A Missing Proofs: MPC

A.1 Proof of Claim 2.5

Passive security. We begin by proving that σ(π) computes F with χσ-passive security. Perfect
correctness follows immediately from the perfect correctness of π. For perfect privacy, we note
that for every set Z ′ ⊆ C that satisfies χσ(Z

′) = 0, and for every choice of inputs, the view of Z ′ in
an execution of π′ is the same as the view of Z := Z ′ ∪ σ−1(Z ′) in an execution of π, with the same
inputs to the clients. Since 0 = χσ(Z

′) = χ(Z ′ ∪ σ−1(Z ′)) = χ(Z), we can simulate the views by
executing Sim on Z together with the inputs and outputs of the clients in Z ′.

Perfect active correctness with abort. We continue by proving that σ(π) computes F with χ-
perfect active correctness with abort. Fix any set S′ ⊆ C that satisfies χσ(S

′) = 1, and let Z ′ := C\S′.
Let S := S′ ∪ σ−1(S′) and Z := Z ′ ∪ σ−1(Z ′), and observe that χ(S) = 1 and that Z = P \ S. We
note that for every active adversarial behavior π̃′ against π′ with respect to Z ′ there is an active
adversarial behavior π̃ against π with respect to the set of parties Z, such that the distribution of
the variables the belong to honest parties in π̃′ is the same as the distribution of the variables the
belong to honest parties in π̃. Indeed, in π̃ every transmit or func statement where the sender is
corrupt and the receiver is honest is marked in the same way as in π̃′. Therefore, given Z ′ and the
views of the honest parties in π̃′, denoted (view′(p))p∈S′ , we can locally compute the corresponding
views (view(p))p∈S of the honest parties in π̃ and execute Ext on Z and (view(p))p∈S to extract the
inputs of all the clients. This concludes the proof of the claim.

A.2 Proof of Claim 2.9

We split into case.

Case 1. Assume that gi is an OR gate. Then for every set S ⊆ C ∪Wi,

χi(S) =

{
χi−1(S) if wA, wB /∈ S,
χi−1((S \ {wA, wB}) ∪ {w}), otherwise,

=

{
χ′i−1(S ∩Wi−1) if wA, wB /∈ S,
χ′i−1(((S \ {wA, wB}) ∪ {w}) ∩Wi−1), otherwise,

=

{
χ′i−1(S ∩Wi−1) if wA, wB /∈ S,
χ′i−1((S ∩Wi−1) ∪ {w}), otherwise,

= χ′i(S ∩Wi),

where the first equality follows from Lemma 2.6, and the second equality follows by the induction
hypothesis. The last equality follows since the gate gi is an OR gate, so the value of the wire w
is 1 if and only if the value of wA is 1 or the value of wB is one (or both). In other words, for
every S′ ⊆ Wi it holds that χ′i(S

′) = χ′i−1(S
′) = χ′i−1(S ∩ Wi−1) if wA, wB /∈ S′, and χ′i(S

′) =
χ′i−1((S

′ \ {wA, wB}) ∪ {w}) = χ′i−1((S ∩Wi−1) ∪ {w}) otherwise. This concludes the analysis of
the first case.

63

Case 2. Assume that gi is an AND gate. Then for every set S ⊆ C ∪Wi,

χi(S) =

{
χi−1((S \ {wA, wB}) ∪ {w}) if wA, wB ∈ S,
χi−1(S \ {wA, wB}), otherwise,

=

{
χ′i−1(((S \ {wA, wB}) ∪ {w}) ∩Wi−1) if wA, wB ∈ S,
χ′i−1((S \ {wA, wB}) ∩Wi−1), otherwise,

=

{
χ′i−1((S ∩Wi−1) ∪ {w}) if wA, wB ∈ S,
χ′i−1(S ∩Wi−1), otherwise,

= χ′i(S ∩Wi),

where the first equality follows from Lemma 2.7, and the second equality follows by the induction
hypothesis. The last equality follows since the gate gi is an AND gate, so the value of the wire w is
1 if and only if the value of wA is 1 and the value of wB is one. In other words, for every S′ ⊆ Wi

it holds that χ′i(S
′) = χ′i−1((S

′ \ {wA, wB}) ∪ {w}) = χ′i−1((S
′ ∩ Wi−1) ∪ {w}) if wA, wB ∈ S′,

and χ′i(S
′) = χ′i−1(S

′ \ {wA, wB}) = χ′i−1(S ∩Wi−1) otherwise. This concludes the analysis of the
second case, and the proof of the lemma.

B Proof of Lemma 2.6

Let F be an n-party functionality, let π = (d1, . . . , dL) be an n-client m-server protocol among
P = C ∪ S and over X that computes F with χ-dual security, and let τ ∈ S be a server. Consider
the protocol π′ = G∨(π, τ) among P ′ = (P \ {τ}) ∪ {A,B} and over a variable space X ′. Our goal
is to prove that π′ computes F with χ∨-dual security, where

χ∨(S) =

{
χ(S), if A,B /∈ S

χ((S \ {A,B}) ∪ {τ}), otherwise,

for every set S ⊆ P ′. We begin with the following two lemmas, that prove the first part of
Lemma 2.6.

Lemma B.1. Protocol π′ computes F with χ∨-passive security.

Lemma B.2. Protocol π′ computes F with χ∨-perfect active correctness with abort.

We prove Lemma B.1 in Section B.1 and Lemma B.2 in Section B.2. For the “moreover” part
of Lemma 2.6 we first make the following observations. First, we note that in a single server
substitution π′ = G∨(π, τ), if a statement di of π does not involve τ then it remains unchanged,
while if it involves τ then it is replaced with a constant number of statements. Second, we also
note that the simulator Sim′ that corresponds to π′ (see Section B.1 for full details) is local in the
following sense. The simulator generates the view V ′ of the corrupt parties by first executing the
original simulator Sim to obtain a view V , and then iterates over the original instructions d1, . . . , dL,
and for every instruction di,

• If di does not involve τ then it remains unchanged in π′ and the variables that are updated
in di are assigned the same value in V ′ as in V .

64

• If di involves τ then di is replaced with a constant number of statements in π′. To simulate the
execution of those statements, Sim′ performs a constant number of operations that depend
only on di and the values assigned to variables in di according to V .

Parallel applications. Moving to the case of parallel applications, fix a list (s1, . . . , sk) of servers
in S, and denote π0 = π, πi = G∨(πi−1, si) for i = 1, . . . , k, and π′′ = πk. We note that the simulator
Sim′′ that corresponds to π′′ can be described in the following way. The simulator generates the
view V ′′ of the corrupt parties by first executing the original simulator Sim to obtain a view V , and
then iterating over the original instructions d1, . . . , dL, and for every instruction di,

• If di involves at most a single party sj from the list, then Sim′′ performs the same operations
that Sim′ would perform to update the view.

• Otherwise di involves two parties sj and sℓ from the list, where j < ℓ. Let us denote by
(e1, . . . , eq) the statements obtained from the compilation of di in πj , and let use denote by
(ei,1, . . . , ei,vi) the statements obtained from the compilation of ei in πℓ.

The the simulator Sim′′ first performs the same operations that Sim′ would perform when di
is transformed into (e1, . . . , eq) to obtain the simulated view of those operations. Given the
simulated views of those operations, Sim′′ executes Sim′ again, with respect to the compila-
tion of the statements (e1, . . . , eq) into (e1,1, . . . , eq,vq) to obtain the simulated view of those
operations, and updates the view V ′′ accordingly. Since q and v1, . . . , vq are constants, the
simulator performs only a constant number of steps.

We conclude that Sim′′ performs a constant number of steps for each step of Sim. A similar
argument shows that the same is true for the extractor. This concludes the proof of Lemma 2.6.

B.1 Proof of Lemma B.1

We first prove correctness and then privacy.

B.1.1 Correctness

Fix inputs (x1, . . . , xn) to the clients. Our goal is to prove that in every execution of π′ with inputs
(x1, . . . , xn), the outputs of the clients is according to F(x1, . . . , xn). Fix any execution E′ of π′

with the inputs x1, . . . , xn to the clients.

Claim B.3. For every i = 0, . . . , L it holds that after the execution of the compilation of the i-th statement
of π in π′, there exists an execution E of π on the same inputs such that (1) for every variable x ∈ X that
does not belong to τ , the value of x in E is the same as the value of x ∈ X ′ in E′, and (2) for every variable
x ∈ X that belongs to τ , the value of x is the same as the values of xA and xB in E′.

The claim follows by an inductive argument, using a simple case analysis according to the i-th
statement. We omit the proof of Claim B.3. The claim now implies that the abort flag is never
raised in E′, and correctness follows because every statement output(c, i, x) in π′ remains the same
in π and the value of x in both cases is the same.

65

B.1.2 Privacy

We define the simulator Sim′ for π′. Let Sim be the simulator of π, let us denote P =
C ∪ S = {p1, . . . , pn+m−1, τ}, and let us assume that the i-th client is pi, for i ∈ [n]. Let
(Z ′, (xi)pi∈Z′∩C , (yi)pi∈Z′∩C) be the inputs of Sim′, where χ∨(Z

′) = 0. We split into cases.

Case 1. Assume that A ∈ Z ′ or B ∈ Z ′ (or both). Then 0 = χ∨(Z
′) = χ((Z ′ \ {A,B}) ∪ {τ}), and

we define Z := (Z ′ \ {A,B}) ∪ {τ}. In this case, we let the simulator Sim′ simulate the views of
the parties in Z ′ ∪ {A,B}, even if A or B are not in Z ′ (note that we can always ignore the views
of non-corrupted parties). To do so, Sim′ first execute Sim(Z, (xi)pi∈Z′∩C , (yi)pi∈Z′∩C) to sample the
views V := (view(τ)) ∪ (view(pi))pi∈Z\{τ}.

Let use denote the view of a party p in π′ by view′(p). For every i = 1, . . . , L, and for the i-th
statement di of π, the simulator Sim′ updates the views V ′ := (view′(p))p∈Z′ ∪ (view′(A), view′(B))
in the following way.

• If di does not involve τ , then Sim′ assigns the variables that are updated in di the same values
as in V . If di is an abort statement, then Sim′ ignores it.

• If di is transmit(p, τ, x1, x2) then Sim′ holds v = val(x1) = val(x2). The simulator updates the
views of A and B by setting the values of xA2 and xB2 to v. In addition, the simulator simulates
the message v that A sends to B, as well as the local computation of B, and updates the view
of B accordingly.

• If di is func(OLE, p, τ, (x1, x2), (x3), (x4)) then Sim′ holds v = val(x4). The simulator updates
the views of A and B by setting the values of xA4 and xB4 to v. In addition, the simulator
simulates the message v that A sends to B, as well as the local computation of B, and updates
the view of B accordingly.

• If di is transmit(τ, p, x1, x2) (resp., func(OLE, τ, p, (x1, x2), (x3), (x4))) and p is corrupt, then
Sim′ holds v = val(x2) (resp., v = val(x4)). The simulator updates the message that p receives
from A and B (resp., the output of p in the OLE with A and the OLE with B) to be v, and in
addition simulates the local computation of p, and updates the view of p accordingly.

• If di is a computation statement comp(τ, op, (x1, x2), x) and op ∈ {+,×}, then Sim′ holds
v = val(x) and assigns xA and xB the value v, and updates the views of A and B accordingly.

• If di is a computation statement comp(τ, rand, ∅, x) then Sim′ computes v = val(x) and assigns
xA and xB the value v, and updates the views of A and B accordingly.

Case 2. Assume that A,B /∈ Z ′, so χ∨(Z
′) = χ(Z ′) = 0. We define set Z := Z ′. In this case

the simulator Sim′ simulates the views of the parties in Z ′. To do so, we first let Sim′ execute
Sim(Z, (xi)pi∈Z′∩C , (yi)pi∈Z′∩C) to sample the views V := (view(pi))pi∈Z .

Let use denote the view of a party p in π′ by view′(p). For every i = 1, . . . , L, and for the i-th
statement di of π, the simulator Sim′ updates the views V ′ := (view′(p))p∈Z′ in the following way.

• If di does not involve τ , then Sim′ assigns the variables that are updated in di the same values
as in V . If di is an abort statement, then Sim′ ignores it.

66

• If di is transmit(τ, p, x1, x2) (resp., func(OLE, τ, p, (x1, x2), (x3), (x4))) and p is corrupt, then
Sim′ holds v = val(x2) (resp., v = val(x4)). The simulator updates the message that p receives
from A and B (resp., the output of p in the OLE with A and the OLE with B) to be v, and in
addition simulates the local computation of p, and updates the view of p accordingly.

At the end, the simulator outputs V ′. This concludes the description of Sim′. Privacy now
follows from the following claim.

Claim B.4. For all inputs (x1, . . . , xn) to the clients, and for every Z ′ ⊆ P ′ such that χ∨(Z ′) = 0, it holds
that

(view′(p))p∈Z′ ≡ Sim′(Z ′, (xi)pi∈Z′∩C , (yi)pi∈Z′∩C),

where (y1, . . . , yn) = F(x1, . . . , xn).

To prove the claim, we note that the simulated views V ′ are generated by applying the update
procedure of Sim′ on the simulated views V that Sim generates. We also note that if we apply the
same update procedure on the real-world views VReal in an execution of π, then we obtain the
same distribution as the real-world views V ′Real in an execution of π′. Privacy now follows from
the privacy of π, as V has the same distribution as VReal, since both in Case 1 and in Case 2 it holds
that χ(Z) = 0. We omit a full proof of the claim. This concludes the proof of Lemma B.1.

B.2 Proof of Lemma B.2

We begin with the definition of the extractor Ext′. Let us denote P = C ∪ S = {p1, . . . , pn+m−1, τ},
and let us assume that the i-th client is pi, for i ∈ [n]. Fix a set S′ ⊆ P ′ such that χ∨(S′) = 1,
and let Z ′ := P ′ \ S′. The extractor takes as input Z ′ and views V ′ = (view′(p))p∈S′ of parties
from an execution of an active adversarial behavior π̃′ with respect to Z ′, where the abort flag was
not raised. The extractor Ext′ generates a set S ⊆ P with χ(S) = 1, a set Z := P \ S and views
V = (view(p))p∈S , and applies Ext on (Z,V) to obtain the inputs x∗. We split into cases.

Case 1. Assume that A ∈ S′ or B ∈ S′ (or both). Define S := (S′ \ {A,B}) ∪ {τ} and Z := P \ S,
and observe that 1 = χ∨(S

′) = χ((S′\{A,B})∪{τ}) = χ(S). We assume without loss of generality
that A ∈ S′ and therefore A /∈ Z ′ (the case where B ∈ S′ is symmetric). The extractor generates
views V := (view(p))p∈S that correspond to an execution of an active adversarial behavior against
π. (We note that V includes the view of τ .) To do so, for every i = 1, . . . , L, and for the i-th
statement di of π, the extractor Ext′ updates the views V in the following way.

• If di is transmit(p, τ, x1, x2) let vA2 be the value of xA2 according to the view of A in the execu-
tion of π̃′. Update V by assigning vA2 to x2 in the view of τ .

• If di is transmit(τ, p, x1, x2) for p /∈ Z, let vA be the message that A sent p according to the
view of p in the execution of π̃′. Update V by assigning vA to x2 in the view of p.

• If di is transmit(p1, p2, x1, x2) for p2 /∈ Z, let v2 be the value of x2 according to the view of p2
in the execution of π̃′. Update V by assigning v2 to x2 in the view of p2.

• If di is func(OLE, p, τ, (x1, x2), (x3), (x4)) let vA4 be the value of xA4 according to the view of A
in the execution of π̃′. Update V by assigning vA4 to x4 in the view of τ .

67

• If di is func(OLE, τ, p, (x1, x2), (x3), (x4)) for p /∈ Z, let vA4 be the output of the OLE instance
that corresponds to A, according to the view of p in the execution of π̃′. Update V by assign-
ing vA4 to x4 in the view of p.

• If di is func(OLE, p1, p2, (x1, x2), (x3), (x4)) for p2 /∈ Z, let v4 be the value of x4 according to
the view of p2 in the execution of π̃′. Update V by assigning v4 to x4 in the view of p2.

• If di is comp(τ, op, X, x) for op ∈ {+,×, rand}, then let vA be the value of xA according to the
view of A in the execution of π̃′. Update V by assigning vA to x in the view of τ .

• If di is comp(p, op, X, x) for p /∈ Z and op ∈ {+,×, rand} then let v be the value of x according
to the view of p in the execution of π̃′. Update V by assigning v to x in the view of p.

• di is an input statement input(c, i, x) for c /∈ Z, then let v be the value of x according to the
view of c in the execution of π̃′. Update V by assigning v to x in the view of c.

• Otherwise, do nothing.

Case 2. Otherwise, assume that A,B /∈ S′. Define S := S′ and Z := P\S, and observe that τ ∈ Z,
and that 1 = χ∨(S

′) = χ(S). The extractor generates views V := (view(p))p∈S that correspond to
an execution of an adversarial behaviour in π. To do so, for every i = 1, . . . , L, and for the i-th
statement di of π, the extractor Ext′ updates the views V in the following way.

• If di is transmit(τ, p, x1, x2) for p /∈ Z, let vA be the message that A sends to p according to the
view of p in the execution of π̃′. Update V by assigning vA to x2 in the view of p.

• If di is transmit(p1, p2, x1, x2) for p2 /∈ Z, let v be the message that p1 sends to p2 according to
the view of p2 in the execution of π̃′. Update V by assigning v to x2 in the view of p2.

• If di is func(OLE, τ, p, (x1, x2), (x3), (x4)) for p /∈ Z, let vA be the output of the OLE instance
of p with A according to the view of p in the execution of π̃′. Update V by assigning vA to x4
in the view of p.

• If di is func(OLE, p1, p2, (x1, x2), (x3), (x4)) for p2 /∈ Z, let v be the value of x4 according to the
view of p2 in the execution of π̃′. Update V by assigning v to x4 in the view of p2.

• If di is comp(p, op, X, x) for p /∈ Z and op ∈ {+,×, rand} then let v be the value of x according
to the view of p in the execution of π̃′. Update V by assigning v to x in the view of p.

• di is an input statement input(c, i, x) for c /∈ Z, then let v be the value of x according to the
view of c in the execution of π̃′. Update V by assigning v to x in the view of c.

• Otherwise, do nothing.

At the end, Ext′ computes x∗ = Ext(Z,V) and outputs x∗. This concludes the description of
Ext′. Perfect correctness with abort now follows from the following claim.

Claim B.5. For all inputs (x1, . . . , xn) to the clients, for every S′ ⊆ P ′ that satisfies χ∨(S
′) = 1, for

Z ′ := P ′ \ S′, for every active adversarial behavior π̃′ of π′ with respect to Z ′, and for every execution of
π̃′ in which the abort flag is not raised and the honest parties have view V ′ the following holds. There is
an input x∗ = (x∗1, . . . , x

∗
n) such that (1) x∗i = xi for all honest clients pi ∈ C \ Z ′, (2) the outputs of the

honest clients is consistent with F(x∗), and (3) Ext′(Z ′,V ′) = x∗.

68

To prove the claim, we note that the views V are generated by applying the update procedure
of Ext′ on the views V ′ from the execution of π̃′, and that the clients have the same outputs in V as
in V ′. In addition we note that there is a natural adversarial behavior π̃ against π with respect to
the set Z, where the views V are in the support. Correctness now follows from the correctness of
Ext, since both in Case 1 and in Case 2 it holds that χ(S) = 1. We omit a full proof of the claim.
This concludes the proof of Lemma B.2.

C Proof of Lemma 2.7

Let F be an n-party functionality, let π = (d1, . . . , dL) be an n-client m-server protocol among
P = C ∪ S and over X that computes F with χ-dual security, and let τ ∈ S be a server. Consider
the protocol π′ = G∧(π, τ) among P ′ = (P \ {τ}) ∪ {A,B} and over a variable space X ′. Our goal
is to prove that π′ computes F with χ∧-dual security, where

χ∧(S) =

{
χ((S \ {A,B}) ∪ {τ}), if A,B ∈ S

χ(S \ {A,B}), otherwise,

We first prove the following two lemmas.

Lemma C.1. Protocol π′ computes F with χ∧-passive security.

Lemma C.2. Protocol π′ computes F with χ∧-perfect active correctness with abort.

The proof of Lemma C.1 appears in Section C.1, and the proof of Lemma C.2 appears in Sec-
tion C.2. The “moreover” part of the lemma follows in the same way as in the proof of Lemma 2.6
(see Section B). This concludes the proof of Lemma 2.7.

C.1 Proof of Lemma C.1

We first prove correctness and then privacy.

C.1.1 Correctness

Fix inputs (x1, . . . , xn) to the clients. Our goal is to prove that in every execution of π′ with inputs
(x1, . . . , xn), the outputs of the clients is according to F(x1, . . . , xn). Fix any execution E′ of π′

with the inputs x1, . . . , xn to the clients.

Claim C.3. For every i = 0, . . . , L it holds that after the execution of the compilation of the i-th statement
of π in π′, there exists an execution E of π with the same inputs such that (1) for every variable x ∈ X that
does not belong to τ , the value of x in E is the same as the value of x ∈ X ′ in E′, and (2) for every variable
x ∈ X that belongs to τ , it holds that val(x) = val(xA)⊕ val(xB).

The claim follows by an inductive argument, using a simple case analysis according to the i-th
statement. We omit the proof of Claim B.3. The claim now implies that the abort flag is never
raised in E′, and correctness follows because every statement output(c, i, x) in π′ remains the same
in π and the value of x in both cases is the same.

69

C.1.2 Privacy

We define the simulator Sim′ for π′. Let Sim be the simulator of π, let us denote P =
C ∪ S = {p1, . . . , pn+m−1, τ}, and let us assume that the i-th client is pi, for i ∈ [n]. let
(Z ′, (xi)pi∈Z′∩C , (yi)pi∈Z′∩C) be the inputs of Sim′. We split into cases.

Case 1. First, assume that A,B ∈ Z ′ and therefore χ∧(Z
′) = χ((Z ′ \ {A,B}) ∪ {τ}) = 0. Let

Z := (Z ′ \ {A,B}) ∪ {τ}. We first let Sim′ execute Sim(Z, (xi)pi∈Z′∩C , (yi)pi∈Z′∩C) to sample the
views V := (view(τ)) ∪ (view(pi))pi∈Z\{τ}. Let use denote the view of a party p in π′ by view′(p).
For every i = 1, . . . , L, and for the i-th statement di of π, the simulator Sim′ updates the views
V ′ := (view′(p))p∈Z′ in the following way.

• If di does not involve τ , then Sim′ assigns the variables that are updated in di the same values
as in V .

• If di is transmit(p, τ, x1, x2) then Sim′ holds v = val(x1) = val(x2). The simulator samples
a secret sharing of v on behalf of p, by sampling a random bit vA ← {0, 1} and setting
vB := v⊕ vA. If p ∈ Z ′ then the simulator updates the view of p accordingly. In addition, the
simulator assigns vA to xA2 and vB to xB2 , and updates the views of A and B accordingly.

• If di is func(OLE, p, τ, (x1, x2), (x3), (x4)) then the simulator holds v4 = val(x4). We split
into cases. If p ∈ Z ′ then the simulator also holds vi := val(xi) for all i ∈ [4], as well as
vA3 := val(xA3) and vB3 := val(xB3). In this case the simulator updates the views of p,A and
B according to the compilation of di. In more details, it takes the role of p and samples
r ← {0, 1}, inputs (v1, v2⊕ r) to the first OLE instance and (v1, r) to the second OLE instance.
On behalf of A it inputs vA3 to the first OLE instance and sets the output to be v1 · vA3 ⊕ v2⊕ r.
Similarly, on behalf of B it inputs vB3 to the second OLE instance and sets the output to be
v1 · vB3 ⊕ r. The simulator updates the views of p, A and B accordingly.

Otherwise, p /∈ Z ′. In this case, the simulator samples r ← {0, 1}, sets the value of xA4 to be r
and the value of xB4 to be r ⊕ v4. The simulator updates the views of A and B accordingly.

• If di is transmit(τ, p, x1, x2), then the simulator holds vA1 , v
B
1 , that are the values of xA1 and

xB1 , respectively. The simulator samples r ← {0, 1} on behalf of A and sends r to B. The
simulator then sends yA := vA1 ⊕ r to p on behalf of A, and yB := vB1 ⊕ r on behalf of B. It
also computes yA ⊕ yB on behalf of p and assigns it to x2. The simulator updates the views
of the corrupt parties in {p,A,B} ∩ Z ′ accordingly.

• If di is func(OLE, τ, p, (x1, x2), (x3), (x4)), the Sim holds vA1 := val(xA1), v
A
2 := val(xA2) and

vB1 := val(xB1), v
B
2 := val(xB2). We split into cases. If p ∈ Z ′, then Sim′ also holds v3 = val(x3).

In this case the simulator updates the views of p,A and B according to the compilation of di.
In more details, it takes the role of A and B, samples r ← {0, 1} on behalf of A and sends r
to B. It inputs (vA1 , v

A
2 ⊕ r) on behalf of A to the first OLE instance, and (vB1 , v

B
2 ⊕ r) on behalf

of B to the second OLE instance. In addition it inputs v3 on behalf of p. The outputs of the
OLE instances are set to be yA := vA1 · v3 ⊕ vA2 ⊕ r and yB := vB1 · v3 ⊕ vA3 ⊕ r, respectively.
Finally it computes v4 = yA ⊕ yB and assigns v4 to x4. The simulator updates the view of p,
A and B according to the above simulation.

70

If p /∈ Z ′ then the simulator samples r ← {0, 1} on behalf of A and sends r to B. It computes
the inputs (vA1 , v

A
2 ⊕ r) on behalf of A and (vB1 , v

B
2 ⊕ r) on behalf of B, and updates the views

of A and B accordingly.

• If di is a computation statement comp(τ,+, {x1, x2} , x) then the simulator updates the views
of A and B according to the compilation of di. In more details, it sets the value of xA

to be vA1 ⊕ vA2 and the value of xB to be vB1 ⊕ vB2 , where vA1 , v
A
2 , v

B
1 , v

B
2 are the values of

xA1 , x
A
2 , x

B
1 , x

B
2 , respectively.

• If di is a computation statement comp(τ,×, (x1, x2), x), then Sim′ computes vA1 =
val(xA1), v

A
2 = val(xA2) and vB1 = val(xB1), v

B
2 = val(xB2). It then updates the views of A and B

according to the compilation of di. In more details, it samples two random bits vA3 ← {0, 1}
and r ← {0, 1} on behalf of A. In the first OLE execution A inputs (vA1 , v

A
1 · vA2 ⊕ vA3 ⊕ r), B

inputs vB2 and receives the output y1. In the second OLE execution A inputs (vA2 , r), B inputs
vB1 and receives the output y2. Finally, A assigns vA3 to xA3 , and B assigns y1 ⊕ y2 ⊕ vB1 · vB2 to
xB3 . The simulator updates the views of A and B according to the above simulation.

• If di is a computation statement comp(τ, rand, ∅, x) then Sim′ holds v = val(x), samples
r ← {0, 1}, assigns r to xA and v ⊕ r to xB . The simulator updates the views of A and
B accordingly.

• If di is an abort statement abort(τ, x), then the simulator updates the views of A and B
according to the compilation of di. In more details, it takes the roles of A and B, sends
vA := val(xA) from A to B, and recovers v = vA ⊕ vB on behalf of B. The simulator updates
the views of A and B accordingly.

Case 2. Assume that A /∈ Z ′ or B /∈ Z ′ (or both), and therefore χ∧(Z
′) = χ(Z ′ \ {A,B}) = 0.

Let Z := Z ′ \ {A,B}. We first let Sim′ execute Sim(Z, (xi)pi∈Z′∩C , (yi)pi∈Z′∩C) to sample the views
V := (view(p))p∈Z . Let use denote the view of a party p in π′ by view′(p). For every i = 1, . . . , L,
and for the i-th statement di of π, the simulator Sim′ updates the views V ′ := (view′(p))p∈Z′ in the
following way.

• If di does not involve τ , then Sim′ assigns the variables that are updated in di the same values
as in V .

• If di is transmit(p, τ, x1, x2) and p ∈ Z ′, then Sim′ holds v = val(x1) = val(x2). The simulator
updates the views of the corrupt parties according to the compilation of di. That is, the
simulator samples a secret sharing of v on behalf of p, by sampling a random bit vA ← {0, 1}
and setting vB := v⊕vA, and then sending vA to A And vB to B on behalf of p. The simulator
updates the view of the corrupt parties in {p,A,B} ∩ Z ′ accordingly.

• If di is transmit(p, τ, x1, x2) and p /∈ Z ′, but {A,B} ∩ Z ′ ̸= ∅, then the simulator samples
r ← {0, 1}, and if A ∈ Z ′ the simulator assigns r to xA, and if B ∈ Z ′ the simulator assigns r
to xB .

• If di is func(OLE, p, τ, (x1, x2), (x3), (x4)) and p ∈ Z ′ then the simulator holds vi := val(xi)
for i ∈ [2]. In this case the simulator updates the views of the corrupt parties according to
the compilation of di. In more details, it takes the role of p and samples r ← {0, 1}, inputs

71

(v1, v2 ⊕ r) to the first OLE instance and (v1, r) to the second OLE instance. If A ∈ Z ′ then
the simulator inputs vA3 := val(xA3) to the first OLE instance and outputs v1 · vA3 ⊕ v2 ⊕ r to
A. Similarly, if B ∈ Z ′ then the simulator inputs vB3 := val(xB3) to the second OLE instance
and outputs v1 · vB3 ⊕ r to A. The simulator updates the views of the corrupt parties in
{p,A,B} ∩ Z ′ accordingly.

• If di is func(OLE, p, τ, (x1, x2), (x3), (x4)) and p /∈ Z ′, but {A,B} ∩ Z ′ ̸= ∅, then the simulator
samples r ← {0, 1}, and if A ∈ Z ′ the simulator assigns r to xA4 , and if B ∈ Z ′ the simulator
assigns r to xB4 .

• If di is transmit(τ, p, x1, x2) then we split into cases. First, assume that p ∈ Z ′, so the simulator
holds v1 = v2 = val(x2).

– If A is corrupt then the simulator holds vA1 = val(xA1). The simulator samples r ← {0, 1}
on behalf of A and sends it to B. The simulator sends vA1 ⊕ r to p on behalf of A, and
v2 ⊕ vA1 ⊕ r to p on behalf of B.

– If B is corrupt then the simulator holds vB1 = val(xB1). The simulator samples r ← {0, 1}
on behalf of A and sends it to B. The simulator sends v2 ⊕ vB1 ⊕ r to p on behalf of A,
and vB1 ⊕ r to p on behalf of B.

– Otherwise, both A and B are honest. In this case the simulator samples r ← {0, 1}, and
sets the message from A to p to be r, and the message from B to p to be v2 ⊕ r.

The simulator updates the views of the corrupt parties in {p,A,B} ∩ Z ′ accordingly.

Otherwise, assume that p /∈ Z ′. In this case, if A is corrupt then we let the simulator sample
a random bit r ← {0, 1} on behalf of A, and compute vA1 ⊕ r. If B is corrupt, then we let the
simulator receive a random bit r ← {0, 1} on behalf of B and compute vB1 ⊕ r. The simulator
updates the views of the corrupt parties accordingly.

• If di is func(OLE, τ, p, (x1, x2), (x3), (x4)) then we split into cases. First, assume that p ∈ Z ′,
so the simulator holds v3 = val(x3) and v4 = val(x4).

– If A is corrupt then the simulator holds vA1 = val(xA1) and vA2 = val(xA2). The simulator
samples r ← {0, 1} on behalf of A, sends r to B and inputs (vA1 , v

A
2 ⊕ r) to the first OLE

instance. The output of the first OLE instance is set to be vA1 · v3 ⊕ vA2 ⊕ r. The output of
the second OLE instance is set to be v4 ⊕ vA1 · v3 ⊕ vA2 ⊕ r.

– If B is corrupt then the simulator holds vB1 = val(xB1) and vB2 = val(xB2). The simulator
samples r ← {0, 1} on behalf of A, sends r to B and inputs (vB1 , v

B
2 ⊕ r) to the second

OLE instance. The output of the first OLE instance is set to be v4 ⊕ vB1 · v3 ⊕ vB2 ⊕ r. The
output of the second OLE instance is set to be vB1 · v3 ⊕ vB2 ⊕ r.

– Otherwise, both A and B are honest. The simulator samples r ← {0, 1}, sets the output
of the first OLE instance to r and the output of the second OLE instance to r ⊕ v4.

The simulator updates the views of the corrupt parties in {p,A,B} ∩ Z ′ accordingly.

Otherwise, assume that p /∈ Z ′. In this case, if A is corrupt then we let the simulator sample
a random bit r ← {0, 1} on behalf of A, and compute vA2 ⊕ r. If B is corrupt, then we let the
simulator receive a random bit r ← {0, 1} on behalf of B and compute vB2 ⊕ r. The simulator
updates the views of the corrupt parties accordingly.

72

• If di is a computation statement comp(τ,+, {x1, x2} , x) then the simulator updates the views
of the corrupt parties among {A,B} according to the compilation of di. In more details, if
A (resp., B) is corrupt then it sets the value of xA (resp., xB) to be vA1 ⊕ vA2 (resp., vB1 ⊕ vB2)
where vAi = val(xAi) (resp., vBi = val(xBi)).

• If di is a computation statement comp(τ,×, {x1, x2} , x), then we split into cases. If A ∈ Z ′

then the simulator takes the role of A, samples random bits vA3 and r, and inputs (vA1 , v
A
1 ·

vA2 ⊕ vA3 ⊕ r) to the first OLE instance, and (vA2 , r) to the second OLE instance, where vA1 and
vA2 are the values of xA1 and xA2 , respectively. It updates the view of A accordingly, including
assigning vA3 to xA3 .

Otherwise, B is corrupt. In this case the simulator takes the role of B in the following way.
It inputs vB2 to the first OLE instance and vB1 to the second OLE instance, where vB1 and vB2
are the values of xB1 and xB2 , respectively. It sets the outputs of the two OLE instances to be
random bits y1 ← {0, 1} and y2 ← {0, 1}, respectively. Finally, it assigns y1 ⊕ y2 ⊕ vB1 · vB2 to
xB3 . It updates the view of B accordingly.

• If di is a computation statement comp(τ, rand, ∅, x) then Sim′ samples a random bit r ← {0, 1}.
If A is corrupt then it assigns r to xA, and if B is corrupt then it assigns r to xB .

• If di is an abort statement abort(τ, x), then we split into cases. If A is corrupt then the simu-
lator does nothing. If B is corrupt then the simulator computes vB := val(xB), sets vA := vB ,
and sets vA to be the message from A to B. Now, on behalf of B, it recovers v = vA⊕ vB = 0.
The simulator updates the view of B accordingly.

At the end, the simulator outputs V ′. This concludes the description of Sim′. Privacy now
follows from the following claim.

Claim C.4. For all inputs (x1, . . . , xn) to the clients, and for every Z ′ ⊆ P ′ that satisfies χ∧(Z ′) = 0 it
holds that

(view′(p))p∈Z′ ≡ Sim′(Z ′, (xi)pi∈Z′∩C , (yi)pi∈Z′∩C),

where (y1, . . . , yn) = F(x1, . . . , xn).

To prove the claim, we note that the simulated views V ′ are generated by applying the update
procedure of Sim′ on the simulated views V that Sim generates. We also note that if we apply the
same update procedure on the real-world views VReal in an execution of π, then we obtain the
same distribution as the real-world views V ′Real in an execution of π′. Privacy now follows from
the privacy of π, as V has the same distribution as VReal, since both in Case 1 and in Case 2 it holds
that χ(Z) = 0. We omit a full proof of the claim.

C.2 Proof of Lemma C.2

We begin with the definition of the extractor Ext′. Let us denote P = C ∪ S = {p1, . . . , pn+m−1, τ},
and let us assume that the i-th client is pi, for i ∈ [n]. Let S′ ⊆ P ′ be a set that satisfies χ∧(S′) = 1,
and let Z ′ := P ′ \ S′. The extractor takes as input Z ′ and views V ′ = (view′(p))p∈S′ of parties from
an execution of an active adversarial behavior π̃′ with respect to Z ′, where the abort flag was not
raised. The extractor Ext′ generates a set S ⊆ P that satisfies χ(S) = 1, sets Z := P \ S, generates
views V = (view(p))p∈S , and applies Ext on (Z,V) to obtain the inputs x∗. We split into cases.

73

Case 1. Assume that A,B ∈ S′ so A,B /∈ Z ′. Let S := (S′ \ {A,B}) ∪ {τ} and observe that
1 = χ∧(S

′) = χ(S). Let Z := P \ S = Z ′. The extractor generates views V := (view(p))p∈S that
correspond to an execution of an adversarial behavior in π. (We note that V includes the view of
τ .) To do so, for every i = 1, . . . , L, and for the i-th statement di of π, the extractor Ext′ updates the
views V in the following way.

• If di is transmit(p, τ, x1, x2), let vA2 (resp., vB2) be the value of xA2 (resp., xB2), according to the
view of A (resp., B) in the execution of π̃′. Update V by assigning vA2 ⊕ vB2 to x2 in the view
of τ .

• If di is transmit(τ, p, x1, x2) for p /∈ Z, let v = val(x2) according to the view of p in the execu-
tion of π̃′. Update V by assigning v to x2 in the view of p.

• If di is transmit(p1, p2, x1, x2) for p2 /∈ Z, let v2 be the value of x2 according to the view of p2
in the execution of π̃′. Update V by assigning v to x2 in the view of p2.

• If di is func(OLE, p, τ, (x1, x2), (x3), (x4)), let vA4 (resp., vB4) be the value of xA4 (resp., xB4),
according to the view of A (resp., B) in the execution of π̃′. Update V by assigning vA4 ⊕ vB4
to x4 in the view of τ .

• If di is func(OLE, τ, p, (x1, x2), (x3), (x4)), let v be the value of x4 according to the view of p in
the execution of π̃′. Update V by assigning v to x4 in the view of p.

• If di is func(OLE, p1, p2, (x1, x2), (x3), (x4)) for p2 /∈ Z, let v be the value of x4 according to the
view of p2 in the execution of π̃′. Update V by assigning v to x4 in the view of p2.

• If di is comp(τ, op, X, x) for op ∈ {+,×, rand}, then let vA (resp., vB) be the value of xA (resp.,
vB) according to the view of A (res., B) in the execution of π̃′. Update V by assigning vA⊕vB

to x in the view of τ .

• If di is comp(p, op, X, x) for p /∈ Z and op ∈ {+,×, rand} then let v be the value of x according
to the view of p in the execution of π̃′. Update V by assigning v to x in the view of p.

• di is an input statement input(c, i, x) for c /∈ Z, then let v be the value of x according to the
view of c in the execution of π̃′. Update V by assigning v to x in the view of c.

• Otherwise, do nothing.

Case 2. Otherwise, A /∈ S′ or B /∈ S′. Let S := S′ \ {A,B}, and observe that 1 = χ∧(S
′) = χ(S).

Let Z := P \ S and observe that τ ∈ Z. The extractor generates views V := (view(p))p∈S that
correspond to an execution of an adversarial behavior in π. To do so, for every i = 1, . . . , L, and
for the i-th statement di of π, the extractor Ext′ updates the views V in the following way.

• If di is transmit(τ, p, x1, x2) for p /∈ Z, let v be the value of x2 according to the view of p in the
execution of π̃′. Update V by assigning v to x2 in the view of p.

• If di is transmit(p1, p2, x1, x2) for p2 /∈ Z, let v2 be the value of x2 according to the view of p2
in the execution of π̃′. Update V by assigning v to x2 in the view of p2.

• If di is func(OLE, τ, p, (x1, x2), (x3), (x4)), let v be the value of x4 according to the view of p in
the execution of π̃′. Update V by assigning v to x4 in the view of p.

74

• If di is func(OLE, p1, p2, (x1, x2), (x3), (x4)) for p2 /∈ Z, let v be the value of x4 according to the
view of p2 in the execution of π̃′. Update V by assigning v to x4 in the view of p2.

• If di is comp(p, op, X, x) for p /∈ Z and op ∈ {+,×, rand} then let v be the value of x according
to the view of p in the execution of π̃′. Update V by assigning v to x in the view of p.

• di is an input statement input(c, i, x) for c /∈ Z, then let v be the value of x according to the
view of c in the execution of π̃′. Update V by assigning v to x in the view of c.

• Otherwise, do nothing.

At the end, Ext′ computes x∗ = Ext(Z,V) and outputs x∗. This concludes the description of
Ext′. Perfect correctness now follows from the following claim.

Claim C.5. For all inputs (x1, . . . , xn) to the clients, for every S ⊆ P ′ that satisfies χ∧(S
′) = 1, for

Z ′ := P \ S′, for every adversarial behavior π̃′ of π′ with respect to Z ′, and for every execution of π̃′ in
which the abort flag is not raised and the honest parties have view V ′ the following holds. There is an input
x∗ = (x∗1, . . . , x

∗
n) such that (1) x∗i = xi for all honest clients pi ∈ S′, (2) the outputs of the honest clients

is consistent with F(x∗), and (3) Ext′(Z ′,V ′) = x∗.

To prove the claim, we note that the views V are generated by applying the update procedure
of Ext′ on the views V ′ from the execution of π̃′, and that the clients have the same outputs in V as
in V ′. In addition we note that there is a natural adversarial behavior π̃ against π with respect to
the set Z, where the views V are in the support. Correctness now follows from the correctness of
Ext, since both in Case 1 and in Case 2 it holds that χ(S) = 1. We omit a full proof of the claim.

D Missing proofs: MS-NIZK

We prove the following simple claim.

Claim D.1. There exists a transformation that maps any (single-CRS) NIP into a (single-CRS) NIP with
strong completeness. Furthermore, computational/statistical soundness and computational adaptive/non-
adaptive zero-knowledge are preserved. If in the original scheme completeness holds against inefficient
adversaries then the transformation preserves statistical adaptive/non-adaptive zero-knowledge.

Sketch. First consider the case where the verifier is deterministic. In this case, we let the prover
check that the generated proof passes verification. If the verification fails, the prover sends the
witness (together with a special symbol). The verifier acts like the original verifier except that
whenever a witness is given, she verifies that the witness is valid and accept the proof if this is
indeed the case. It is not hard to see that the modified NIZK has perfect completeness (which im-
plies strong completeness) and that soundness is not affected. Zero-knowledge is violated when-
ever the original prover generates an erroneous proof. However, since this event happens with
negligible probability this increases the zero-knowledge deviation by a negligible quantity. This
argument holds both for adaptive and non-adaptive zero-knowledge, and it extends to statisti-
cal adaptive/non-adaptive zero-knowledge assuming that completeness holds against inefficient
adversaries.

If the verifier is randomized, we let the prover approximate the acceptance probability of the
verifier with an additive error of, say, 0.1 with confidence error that is negligible in κ. (This can be

75

done by sampling κ many random tapes and computing the empirical error.) If the approximated
acceptance probability is smaller than, say, 0.9, the prover replaces the proof with its witness. We
also modify the verifier by letting her approximate the acceptance probability of the original ver-
ifier (with similar confidence and additive error) and accept the proof if either the approximation
is at least, say, 0.7, or if the proof contains a satisfying witness. A completeness error occurs only if
the prover’s approximation is larger than 0.9 but the verifier’s approximation is smaller than 0.7,
which happens only with negligible probability. Soundness is not affected and the adaptive/non-
adaptive zero-knowledge error grows additively by α — the probability that a completeness error
occurs in the original scheme plus the probability that the approximation fails — which is negligi-
ble by assumption.

E Missing proofs: DP-NIZK and Round-Optimal MPC

In this section we provide formal security proofs for the protocols we present in Section 5. In all
proof of security in the UC framework, we assume without loss of generality that the environment
Env is deterministic, and we denote by view the view of Env, that consists of the messages that
the corrupt parties sent and received, the inputs of the honest parties (which are picked by the
environment), and the outputs of the honest parties. We always assume that the adversary is
the dummy adversary (see Section F.2 for more information about the framework of universal
composability).

E.1 Proof of Theorem 5.6

Completeness follows from the perfect completeness of the NIZK in the hidden-bits model. We
therefore continue with the analysis of proof of knowledge and zero knowledge.

Proof of knowledge. Let us denote by ExthidBits the extractor of ΠhidBits. We begin with the defi-
nition of Gen′ and Ext.

Gen′(1n). On input 1n the algorithm samples (crs, skP) ← Gen(1n), sets τ := skP and outputs
(crs, skP , τ).

Ext(1n, crs, τ, f, π). On input 1n, crs = (pp, C1, . . . , Cm), trapdoor τ = (o1, . . . , om), a circuit-SAT
instance f with description of length n, and a proof π = (I, πhidBits, (o

′
i)i∈I). The extractor com-

putes ri := open(Ci, oi), sets r := (r1, . . . , rm), computes x := ExthidBits(f, I, r, πhidBits) and outputs
x.

Since the NIZK in the hidden-bits model has perfect proof of knowledge, every computationally-
unbounded non-uniform family of malicious provers P∗ = {P∗n}n∈N violates proof of knowl-
edge only if it successfully violates the binding property of the NICOM. Since the NICOM is
statistically-binding, this happens only with negligible probability.

Zero knowledge. Let Sim be the simulator of ΠhidBits. We continue with the definition of
(Sim1, Sim2).

Sim1(1
n). On input 1n the simulator samples pp and commits (Ci, oi) ← commit(0) for every i ∈

[m]. The simulator sets crs = (pp, C1, . . . , Cm) and τ = (o1, . . . , om). The simulator outputs (crs, τ).

76

Sim2(1
n, crs, τ, f). On input 1n, CRS crs = (pp, C1, . . . , Cm), trapdoor τ = (o1, . . . , om), and

circuit-SAT instance f , the simulator samples (I, rI , πhidBits) ← Sim(f) and outputs π :=
(I, πhidBits, (oi)i∈I).

Assume towards contradiction that there is a polynomially-bounded non-uniform family of cir-
cuits {An,Bn}n∈N and a polynomial q(n), such that for infinitely many n’s it holds that∣∣∣∣∣∣∣∣∣ Pr

(crs,skP)←Gen(1n)
(f,x)←An(crs)

π←P(1n,crs,skP ,f,x)

[Bn(crs, π) = 1]− Pr
(crs,τ)←Sim1(1n)
(f,x)←An(crs)

π←Sim2(1n,crs,τ,f)

[Bn(crs, π) = 1]

∣∣∣∣∣∣∣∣∣ > 1/q(n), (3)

where An always outputs a circuit f with description of length n and a satisfying assignment
x. We define the real-world experiment by sampling (crs, skP) ← Gen(1n), (f,x) ← An(crs)
π ← P(1n, crs, skP , f,x) and b ← B(crs, π), and outputting b, and we observe that the left term in
Equation (3) corresponds to the real-world experiment. Similarly, we define the simulation exper-
iment by sampling (crs, τ)← Sim1(1

n), (f,x)← An(crs), π ← Sim2(1
n, crs, τ, f) and b← B(crs, π),

and outputting b, and we observe that the the right term in Equation (3) corresponds to the simu-
lation experiment.

Recall that there is some integer k = k(n) such that with probability 1 the CRS of ΠhidBits con-
tains exactly k ones, and the remaining m−k entries are zero. (See a discussion regarding the spe-
cial properties of ΠhidBits in F.1). We show that there exists a polynomially-bounded non-uniform
family of circuits D = {Dn}n∈N that distinguishes k commitments of 0 from k commitments of 1
with non-negligible advantage. This contradicts the hiding property of the non-interactive com-
mitment scheme.

We define the distinguisherDn in the following way. The distinguisher takes as an input public
parameters pp, and k(n) commitments C1, . . . , Ck. The distinguisher samples r ← GenhidBits(1

n)
where r = (r1, . . . , rm) ∈ {0, 1}m, and sets J ⊆ [m] to be the set of all indices i ∈ [m] such
that ri = 1. Observe that |J | = k and let us denote J = {i1, . . . , ik}. For every i ∈ [m] the
adversary defines C ′i in the following way: if i = ij ∈ J the distinguisher sets C ′i := Cj , and
otherwise the distinguisher samples (Ci, oi) ← commit(0), and sets C ′i := Ci. The distinguisher
sets crs := (pp, C ′1, . . . , C

′
m), and executes (f,x)← An(crs) and (I, πhidBits)← PhidBits(f,x, r). Since

the prover in ΠhidBits opens only zeros in the CRS with probability 1 (see Section F.1), it holds
that I ∩ J = ∅ and therefore the distinguisher holds an opening oi for every i ∈ I . Finally, the
distinguisher sets π := (I, πhidBits, (oi)i∈I), computes b← Bn(crs, π) and outputs the bit b.

It is not hard to see that when C1, . . . , Ck are commitments of ones, we obtain the same distri-
bution as in the real-world experiment, i.e.,

Pr
pp

∀i∈[k], (Ci,oi)←commitpp(1)

[Dn(pp, C1, . . . , Ck) = 1] = Pr
(crs,skP)←Gen(1n)
(f,x)←An(crs)

π←P(1n,crs,skP ,f,x)

[Bn(crs, π) = 1].

The following claim shows that when C1, . . . , Ck are commitments of zeros, we obtain the same
distribution as in the simulation experiment.

Claim E.1. It holds that

Pr
pp

∀i∈[k], (Ci,oi)←commitpp(0)

[Dn(pp, C1, . . . , Ck) = 1] = Pr
(crs,τ)←Sim1(1n)
(f,x)←An(crs)

π←Sim2(1n,crs,τ,f)

[Bn(crs, π) = 1].

77

Given the claim, we conclude that for infinitely many n’s, the distinguisher Dn distinguishes
k(n) commitments of ones from k(n) commitments of zeros with advantage 1/q(n), in contra-
diction to the hiding property of the commitment scheme, which concludes the analysis of the
zero-knowledge property. We continue with the proof of Claim E.1.

Proof of Claim E.1. Consider the random variables (crs, f,x, I, πhidBits, (oi)i∈I , b) that are generated
in the simulation experiment, and in an execution of Dn with commitments of zeros. Since all the
commitments are commitments of zero, the random variable crs in both experiments has the same
distribution, and we fix it. Moreover, in both experiments An chooses (f,x) in the same way,
and let use fix them as well. In addition, since all the committed values are zeros, the random
variable crs is independent of the choice of r by Dn. Therefore, the perfect zero knowledge of
ΠhidBits implies that (I, πhidBits) have the same distribution in both cases, and let us fix them as
well. Finally, the openings (oi)i∈I have the same distribution in both experiments, as they are
generated by sampling commitments of zeros, and let us fix them as well. We therefore conclude
that the output b of Bn has the same distribution in both experiments. This concludes the proof of
the claim.

This concludes the proof of Theorem 5.6.

E.2 The SIF Construction and Proof of Theorem 5.8

We begin with a formal definition of the protocol sif.

There is a distinguished party D. The functionality is parameterized by circuits f1, . . . , fn, where fi has k
input bits and ℓi output bits. We denote the security parameter by κ, and assume that all cryptographic
primitives are executed with security parameter κ.

• Primitives.

– A non-interactive commitment scheme (commit, open). In the following we will slightly abuse no-
tation, and use the bit-commitment to commit to a bit-string, by simply committing to each bit of
the string independently.

– A public single input functionality G that (1) Takes from the dealer an input an assignment x ∈
{0, 1}k, public parameters pp1, . . . , ppn, commitments C1, . . . , Cn and openings o1, . . . , on, where
Ci is a commitment on ℓi bits, (2) Computes yi := fi(x) and ri := openppi(Ci, oi) for every i ∈ [n],
(3) For every i ∈ [n], if ri = ⊥ (i.e., the opening failed), it sets outputi := (fail,yi); otherwise, if
ri ∈ {0, 1}ℓi , it sets outputi := yi ⊕ ri, (4) It outputs (pp1, . . . , ppn, C1, . . . , Cn, output1, . . . , outputn).

– A 2-round offline/online protocol psif for the secure computation of G.

• Offline round. In the offline round the parties executes the offline round of psif with D as the dealer.
In addition, every Pi does as follows.

1. Samples ri ← {0, 1}ℓi and public parameters ppi for the non-interactive commitment scheme.

2. Commits (Ci, oi)← commitppi(ri).

3. Broadcasts (ppi, Ci) and sends oi to D.

Protocol sif

78

• Inputs. D receives the input x ∈ {0, 1}k.

• Online round. The parties execute the online round of psif, where D inputs the tuple
(x, pp1, . . . , ppn, C1, . . . , Cn, o1, . . . , on)

• Local computation. Every party Pi does as follows. Let (pp′1, . . . , pp′n, C ′
1, . . . , C

′
n, output1, . . . , outputn)

be the output of psif, and let (ppj , Cj) be the broadcast of Pj in the offline round. If there exists
j ∈ [n] such that (ppj , Cj) ̸= (pp′j , C

′
j) then Pi outputs fi(0, . . . , 0) and terminates. Otherwise, if

outputi = (fail,yi) then Pi outputs yi and terminates. Otherwise outputi = zi ∈ {0, 1}ℓi , and Pi

computes yi := zi ⊕ ri, outputs yi and terminates.

Figure 9: Protocol sif

Theorem E.2 (Theorem 5.8 restated.). Let κ be a security parameter, let n be the number of parties, and
let t < n/2 be the number of corrupt parties. We obtain the following results:

• (Statistical soundness from OWFs) Assuming the existence of one-way functions, protocol sif,
when instantiated with statistically-binding commitments (that are implied by one-way functions)
and when psif is the statistically-sound protocol promised in Theorem 5.7, is a UC-secure implemen-
tation of Fsif , against a static, active, rushing adversary that corrupts at most t of the parties. In
addition, the protocol provides statistical soundness against a corrupt dealer D.

• (Everlasting security from CRH) Assuming the existence of collision-resistant hash functions, pro-
tocol sif, when statistically-hiding commitments (that are implied by collision-resistance hash func-
tions) and when psif is the protocol with everlasting security promised in Theorem 5.7, is a UC-secure
implementation with everlasting security of Fsif , against a static, active, rushing adversary that cor-
rupts at most t of the parties.

In all cases, the complexity of the protocol is poly(κ, n, s1, . . . , sn), where si is the circuit size of fi. In
addition, in the offline phase every party communicates by sending a private message to D and sending
a public broadcast message, and in the online phase only D communicates by sending a public broadcast
message.

Proof sketch. We prove security in the Fpsif-hybrid model. We split into cases.

Honest D. In theFpsif-hybrid model, the offline round consists only of the broadcast messages of
the parties. On behalf of every honest Pi, the simulator samples ppi and (Ci, oi) ← commitppi(0

ℓi)
and broadcasts (ppi, Ci). At the end of the round, the simulator receives the broadcast (ppi, Ci) of
every corrupt Pi, as well as the opening oi that Pi sends to D.

In the online phase the simulator receives the output yi ∈ {0, 1}ℓi for every corrupt Pi.
The online phase consists only of the output of Fpsif . The simulator sets the output to be
(pp1, . . . , ppn, C1, . . . , Cn, output1, . . . , outputn), where outputi is defined in the following way:

• If Pi is honest, then the simulator samples outputi ← {0, 1}ℓi .

• If Pi is corrupt, then the simulator computes ri = openppi(Ci, oi). If ri = ⊥ then the simulator
sets outputi := (fail,yi). Otherwise, if ri ∈ {0, 1}ℓi , the simulator sets outputi := yi ⊕ ri.

79

This concludes the simulation. We observe that in a real-world execution in the Fpsif-hybrid
model, the output of every honest Pi is yi = fi(x) with probability 1. In addition, a stan-
dard argument shows that the simulation is statistically-close to the real world if the underly-
ing commitment scheme is statistically-hiding, and otherwise, if the commitment scheme is only
computationally-hiding, the simulation is only computationally-close to the real world.

Corrupt D. When D is corrupt, the simulator simply takes the role of the honest parties,
and initiates an execution of sif. That is, in the offline phase, on behalf of each honest Pi

the simulator samples ppi, ri ← {0, 1}ℓi and (Ci, oi) ← commitppi(ri), broadcasts (ppi, Ci)
on behalf of Pi, and sends oi to the corrupt dealer. At this stage the simulator receives
the broadcast messages (ppi, Ci) of every corrupt Pi. In the online phase the simulator re-
ceives the inputs (x, pp′1, . . . , pp

′
n, C

′
1, . . . , C

′
n, o
′
1, . . . , o

′
n) of D to Fpsif , computes the output

(pp′1, . . . , pp
′
n, C

′
1, . . . , C

′
n, output1, . . . , outputn) of Fpsif and sets it to be the output of Fpsif . In addi-

tion, the simulator verifies that for every i ∈ [n] it holds that (ppi, Ci) = (pp′i, C
′
i). If the verification

fails the simulator sets x′ := (0, . . . , 0) and otherwise the simulator sets x′ := x. The simulator in-
puts x′ to Fsif and terminates. This concludes the simulation.

Observe that the view of the corrupt parties in the simulation has the same distribution as
in the real world. It therefore remains to analyze the outputs of the honest parties. We observe
that the simulation corresponds to an execution of sif in the Fpsif-hybrid model. It is not hard
to verify that in every such execution, the outputs of the honest parties in the real world differ
from the outputs in the ideal world only if the adversary violates the binding property of the
commitment scheme, which occurs only with negligible probability. In fact, if the commitment
scheme is statistically-binding, and psif provides statistically soundness, then sif also provides
statistical soundness. This concludes the proof of the theorem.

F Additional Background

F.1 The Hidden-Bits Model and the FLS protocol

In this section we present a formal definition of the hidden-bits model, due to [FLS90]. Our defi-
nition is tailored for our use of the hidden-bits model in the applications, and therefore it slightly
deviates from that of [FLS90]. In particular, instead of requiring the CRS to be uniformly dis-
tributed, we allow it to be sampled by a randomized efficient generator Gen. As a consequence,
we can obtain a NIZK in the hidden-bits model, that satisfies slightly stronger properties than the
standard definition.

Definition F.1. A non-interactive zero-knowledge scheme in the hidden-bits model is a triple
(Gen,P,V) of PPT algorithms with the following syntax:

• The randomized generator Gen takes as an input 1n and outputs a binary string r of polynomially-
bounded length m = m(n) = poly(n).

• The randomized prover P takes as an input a circuit-SAT instance f with a description of length n,
an assignment x and a string r ∈ {0, 1}m, and outputs a pair (I, π) where I ⊆ [m] and π is called
the certificate.

80

• The deterministic verifier V takes as an input a circuit-SAT instance f , a subset I ⊆ [m], a sub-string
rI of r restricted to I , and a certificate π. The verifier outputs a bit b representing accept or reject.

The algorithms satisfy the following properties.

• (Perfect completeness) For every n ∈ N, every circuit-SAT instance f with a description of length
n, and every satisfying assignment x, it holds that

Pr
r←Gen(1n)

(I,π)←P(f,x,r)

[V(f, I, rI , π) = 1] = 1.

• (Perfect proof of knowledge) There exists an efficient deterministic algorithm Ext such that for
every n ∈ N, and every computationally-unbounded non-uniform family of malicious provers P∗ =
{P∗n}n∈N,

Pr
r←Gen(1n)

(f,I,π)←P∗
n(r)

[Ext(f, I, r, π) = x ∧ f(x) = 0 ∧ V(f, I, rI , π) = 1] = 0,

where P∗n outputs a circuit f with a description of length n.

• (Perfect zero knowledge) There exist an efficient simulator Sim, such that for every n ∈ N, every
circuit f with a description of length n, every satisfying assignment x, and every computationally-
unbounded non-uniform family of circuits {Dn}n∈N,∣∣∣∣∣∣∣ Pr

r←Gen(1n)
(I,π)←P(f,x,r)

[Bn(f, I, rI , π) = 1]− Pr
(I,rI ,π)←Sim(f)

[Bn(f, I, rI , π) = 1]

∣∣∣∣∣∣∣ = 0,

where An(r) outputs a circuit f with a description of length n, and a satisfying assignment x.

The Feige-Lapidot-Shamir construction. The first construction of NIZK in the hidden-bits
model was presented in the celebrated work of [FLS90] (FLS), and we observe that their con-
struction, with some simple modifications, satisfies our (slightly stronger) definition.

We recall that in the FLS construction the CRS r consisted of many block r1, . . . , rℓ, where each
block can be either useful or not useful. The existence of a single useful block in the CRS guaranteed
perfect soundness (and, in fact, proof of knowledge), and since each block was useful with some
inverse polynomial probability, a polynomial number of blocks ℓ was sampled, to guarantee that
with probability at least (say) 2/3 there is at least one useful block. Since we allow r to be gen-
erated by an efficient generator Gen, we simply assume that the generator samples only a single
block that is good with probability 1.21 In addition, as observed by [Gol01, Chapter 4.10.3.2] (see
also [Gol04, Chapter C.4.3]), the original protocol satisfies adaptive soundness (and, in fact, proof of
knowledge), as well as our notion of zero knowledge. We therefore obtain the following theorem.

Theorem F.2 ([FLS90]). There exists a hidden-bits proof system.
21We also recall that the original construction used uniformly random bits to simulate biased bits, that were required

to guarantee that a block is useful with noticeable probability. We ignore this technicality, as our generator can sample
a useful block with probability 1.

81

Special properties of FLS. We observe that, under the simplifications we’ve presented, the FLS
scheme satisfies the following special properties, that will be important for the applications. First,
there is some integer k = k(n) such that with probability 1 the CRS r contains exactly k ones
and the remaining m − k entries are zero. In addition, with probability 1 the prover P(f,x, r)
generates a set I ⊆ [m] such that rI is the all-zero string. Finally, the simulator Sim(f) has the
following structure: It sets r to be the all-zero string, samples I, π from some distribution that
depends only in f and outputs (I, rI , π).

F.2 UC Security

The following is taken, with changes, from [AKP22b]. In this section we give a high-level descrip-
tion of the UC-framework, due to [Can01]. For more details, the reader is referred to [Can01]. We
begin with a short description of the standard model, and then explain how the UC-framework
augments it. At a high level, in the standard model, security of a protocol is argued by comparing
the real-world execution to an ideal-world execution. In an ideal-world execution, the inputs of
the parties are transferred to a trusted party F (called the ideal functionality) over a perfectly secure
channel, the trusted party computes the function based on these inputs and sends to each party its
respective output. Informally, a protocol π securely implements F if for any real-world adversary
A, there exists an ideal-world adversary Sim (called the simulator), that controls the same parties as
A, so that the global output of an execution of π with A (consisting of the honest parties’ outputs
and the output ofA), is indistinguishable from the global output of the ideal-world execution with
F and Sim (consisting of the honest parties’ outputs and the output of Sim).

The UC-framework augments the standard model by adding an additional entity, called the
environment Env. In the real-world, Env arbitrarily interacts with the adversaryA, and, in addition,
Env generates the inputs of the honest parties at the beginning of the execution, and receives
their outputs at the end of the execution. In the ideal world, the same environment Env arbitrarily
interacts with the simulator Sim, and, in addition, Env communicates with dummy parties, that
receive the honest parties’ inputs from Env and immediately transfer them to F , and later receive
the honest parties’ outputs from F and immediately transfer them to Env. In both worlds, at the
end of the execution the environment Env outputs a single bit.

For a security parameter κ and input ζ to Env, we denote the distribution of the output bit
of Env(ζ) in a real-world execution of π with adversary A by REALπ,Env(ζ),A(κ). We denote the
distribution of the output bit of Env(ζ) in an ideal-world execution with ideal-functionality F ,
simulator Sim by IDEALF ,Env(ζ),Sim(κ). Intuitively, we say that a protocol π UC-emulates an ideal-
functionality F if for every real-world polynomial-time adversary A there exists an ideal-world
polynomial-time simulator Sim, so that for any environment Env and any input ζ to Env, it holds
that

{
REALπ,Env(ζ),A(κ)

}
κ

is computationally indistinguishable from
{

IDEALF ,Env(ζ),Sim(κ)
}
κ
.

The dummy-adversary. Since the above definition quantifies over all environments, we can
merge the adversary A with the environment Env. That is, it is enough to require that the sim-
ulator Sim will be able to simulate, for any environment Env, the dummy adversary that simply
delivers messages from Env to the protocol machines. For more information, see [Can01].

The hybrid model. The UC-framework is appealing because it has strong composability prop-
erties. Consider a protocol ρ that securely implements an ideal functionality G in the F-hybrid

82

model (which means that the parties in ρ have access to an ideal functionality F), and let π be a
protocol that securely implements F . The composition theorem guarantees that if we replace in ρ
each call to F with an execution of π we obtain a secure protocol. This means that it is enough to
prove the security of a protocol in the hybrid model, where the analysis is much simpler.

Corruption-aware functionalities. Throughout, we assume that our functionalities are
corruption-aware, which means that they might depend on the identities of the corrupt parties
C. The notion of corruption aware functionalities was first introduced by [Can01], and the reader
is referred to [Can01] for more information (see also [AL17, Section 6.2]).

Reactive functionalities. In this work, we consider both single-phase functionalities and reac-
tive (or multi-phase) functionalities. A single-phase functionality maps the inputs of the parties
to the outputs in a single phase of computation. A multi-phase functionality consists of multiple
phases of computation, where each phase depends on the internal state of the functionality. In
each phase the functionality receives the inputs of the parties, computes the outputs based on the
inputs and the internal state, and updates the internal state based on the inputs. We only con-
sider functionalities with a single phase, or with two phases. For more information about reactive
functionalities, see, e.g., [Gol04, Chapter 7.7.1.3].

Everlasting security. We also consider a hybrid version of statistical and computational security.
Intuitively, everlasting security requires that an environment which is polynomially-bounded dur-
ing the execution and is allowed to be unbounded after the execution, cannot distinguish the real-
world from the ideal-world. Observe that this security notion lies between computational-security
(where we consider only environments that are always polynomially-bounded) and statistical-
security (where we also consider environments that are unbounded during the execution of the
protocol).

The notion of everlasting security was formalized in the UC-framework by [MU10]. In a nut-
shell, instead of considering environments that are unbounded after the execution, it is enough
to consider only environments that are always polynomially-bounded, but are not limited to a
single bit output. In particular, such environments can output their whole view. Using the same
notation as before, REALπ,Env(ζ),A(κ) and IDEALF ,Env(ζ),Sim(κ), to denote the output distribution
of Env in the real-world and in the ideal-world (where now the output may contain more than
one bit), we say that a protocol π UC-emulates an ideal functionality F with everlasting security,
if for every polynomial-time real-world adversary A there exists an ideal-world polynomial-time
simulator Sim such that for any polynomial-time environment Env and any input ζ to Env, the ran-
dom variables

{
REALπ,Env(ζ),A(κ)

}
κ
, and

{
IDEALF ,Env(ζ),Sim(κ)

}
κ

are statistically indistinguishable.
Therefore, in general, in order to prove security it is enough to show that the view of the environ-
ment in the real-world is statistically-close to the view of the environment in the ideal-world.

We mention that the composition theorems of UC-security hold for protocols with everlasting
security (i.e., the composition of two protocols with everlasting security results in a protocol with
everlasting security). For a formal definition and statement of the composition theorem, the reader
is referred to [MU10].

83

	Introduction
	How to Define NPSS?
	Main Results
	Multi-String Non-Interactive Zero-knowledge Proofs
	NIZK combiners
	Two-Round Distributed Zero-Knowledge and Three-Round MPC

	Technical Overview of the Main Theorem
	NPSS and Other Related Models

	Secure Multiparty Computation
	Basic Definitions
	Clients, Servers and Protocols
	Security Definition
	Protocol Assignment Mapping

	Server-Substitution Generators
	The -Generator
	The -Generator

	From Formulas to MPC

	Secret Sharing for NP Statements
	Basic Definitions
	From MPC to NPSS

	Application: Multi-String NIZK
	Basic Definitions
	Non-Interactive Commitments in the MS-model

	From NIZK to Multi-String NIZK
	Proof of Theorem 4.8

	Extensions
	Proof of Knowledge
	Statistical Zero Knowledge

	Application: Designated-Prover NIZK and Round-Optimal Honest-Majority MPC in Minicrypt
	Designated-Prover NIZK
	DP-NIZK with Perfect Zero Knowledge
	DP-NIZK with Statistical Proof of Knowledge

	Single Input Functionality
	Public Single Input Functionality
	Single Input Functionality

	Secure Multiparty Computation

	Missing Proofs: MPC
	Proof of Claim 2.5
	Proof of Claim 2.9

	Proof of Lemma 2.6
	Proof of Lemma B.1
	Correctness
	Privacy

	Proof of Lemma B.2

	Proof of Lemma 2.7
	Proof of Lemma C.1
	Correctness
	Privacy

	Proof of Lemma C.2

	Missing proofs: MS-NIZK
	Missing proofs: DP-NIZK and Round-Optimal MPC
	Proof of Theorem 5.6
	The SIF Construction and Proof of Theorem 5.8

	Additional Background
	The Hidden-Bits Model and the FLS protocol
	UC Security

