
Finding and Protecting the Weakest Link
On Side-Channel Attacks on y in Masked ML-DSA

Julius Hermelink1, Kai-Chun Ning1, and Richard Petri1

Max Planck Institute for Security and Privacy, Bochum, Germany,
firstname.lastname@mpi-sp.org

Abstract. NIST standardized ML-KEM and ML-DSA as post-quantum
key exchanges and digital signatures. Both schemes have already seen
analysis with respect to side-channels, and first fully masked implemen-
tations of ML-DSA have been published. Previous attacks focused on
unprotected implementations or assumed only hiding countermeasures
to be in-place. Thus, in contrast to ML-KEM, the threat of side-channel
attacks for protected ML-DSA implementations is mostly unclear.
In this work, we analyze the side-channel vulnerability of masked ML-
DSA implementations. We first systematically assess the vulnerability
of several potential points of attacks in different leakage models using
information theory. Then, we explain how an adversary could launch first,
second, and higher-order attacks using a recently presented framework
for side-channel information in lattice-based schemes. In this context,
we propose a filtering technique that allows the framework to solve for
the secret key from a large number of hints; this had previously been
prevented by numerical instabilities. We simulate the presented attacks
and discuss the relation to the information-theoretic analysis.
Finally, we carry out relevant attacks on physical devices, discuss recent
masked implementations, and instantiate a countermeasure against the
most threatening attacks. The countermeasure mitigates the attacks with
the highest noise-tolerance while having very little overhead. The results
on the physical devices validate our simulations.

Keywords: Dilithium · ML-DSA · SCA · Countermeasures · Belief Propagation

1 Introduction

In anticipation of the advent of sufficiently powerful quantum computers which
threaten existing asymmetric cryptography, the National Institute of Standards
and Technology (NIST) launched a standardization process of Post-Quantum
Cryptography in 2016, with the goal of soliciting, evaluating, and eventually
standardizing cryptographic schemes resistant to both classic and quantum at-
tacks [42]. As this standardization process advanced to the next stage in 2022,
NIST selected 2 lattice-based schemes Kyber [6] and Dilithium [19] as the first
quantum-resistant standards of key encapsulation mechanism (KEM) and digi-
tal signatures, and renamed them to Module-Lattice-based Key-Encapsulation

2 Julius Hermelink, Kai-Chun Ning, and Richard Petri

Mechanism (ML-KEM) [45] and Module-Lattice-based Digital Signature Algo-
rithm (ML-DSA) [44], respectively.

Because of their computational efficiency, ML-KEM and ML-DSA are partic-
ularly suitable to be deployed onto embedded systems, where computing power
and resources are often restricted. Since embedded systems are more likely to be
used in environments where an attacker has physical access to the device, NIST
specifically listed resistance to side channel attacks as one of the evaluation cri-
teria of the standardization process [42]. In light of this, side channel analysis of
their implementation has become an even more prominent area of research [53].

Several previous attacks on ML-DSA and ML-KEM targeted the secret key in
Number Theoretic Transform (NTT) domain [50,47,11,24]. In general, targeting
the NTT in lattice-based schemes has two main advantages: the structure of the
NTT may be exploited using Belief Propagation (BP) [50,47,24], and it allows
recovering the full key from very few recovered coefficients using lattice reduction
(see, e.g., [2,24,51]). The coefficients of y have been another valuable target as
shown in, e.g., [57,8,52], which gives information on s1 as the equation z = y+cs1
for public z, c holds.

Bronchain et al. [8] give a BP instantiation that allows recovering the secret
key from various types of leakages or fault attacks on y and x = cs1. In contrast
to previous works, their approach is generic and aims at exploiting all available
information under high noise levels. The authors also show how hiding coun-
termeasures can be circumvented. Another recent approach that seems to be
relatively noise tolerant has been presented in [52]. Instead of using soft-analytic
techniques [58], the authors show that the small range of y under the knowledge
of z makes identifying noise-free equations from side-channel information prac-
tical. Thereby, they overcome some challenges posed by using BP. However, it
is unclear whether these approaches apply to masked implementations.

Previous attacks on y do not yet target masked implementations and the re-
lation of previous solvers that could apply is not yet clear. Also, the main study
in this area [8] has not been validated on a physical device. Further, previous
solvers have either been observed to either fail to solve from a large number of
equations [52,29], which is required to target a masked implementation under
realistic noise conditions, or it is unclear whether they apply to masked im-
plementations in the first place. In addition, y is different for every signature;
an adversary can therefore not target y over multiple traces to, e.g., fully re-
cover its coefficients. Moreover, in current masked implementations, y is sampled
in Boolean masking, converted to arithmetic masking, and then added to cs1.
Therefore, y may be targeted at several locations in different representations,
and it is unclear which is favorable for an adversary. In short: The question of
how to target a masked ML-DSA implementation and whether attacks on y can
even be carried out in such a setting is still open.

Our contribution. In this work, we aim at answering the question of how vulnera-
ble ML-DSA is to leakage that arises in masked implementations when targeting
y. First, we investigate previous attempts to dealing with leakage in ML-DSA
and provide a conceptual comparison. This includes reproducing the closed-

Finding and Protecting the Weakest Link 3

source work of [8]1 using the solver of [29]. We also assess whether previous
approaches could also apply to masked implementations.

Secondly, we systematically study different types of leakages of y. We dis-
cuss possible types of leakage on y that can occur in a first-order masked im-
plementation of ML-DSA based on the example of the proposals of [14,12]. This
includes first and second-order leakage. First-order leakage should not occur in a
first-order masked implementation and is not considered by, e.g., the t-probing
model. Unfortunately, implementation mistakes and changes introduced during
compilation may cause shares to be recombined. We therefore argue that assess-
ing first-order leakage in different types of masking – in addition to second-order
leakage – is relevant. Then, we provide an information theoretic analysis that ex-
amines several leakage models in the worst case. For low to moderate noise levels,
our analysis shows that y is particularly vulnerable when processed as Boolean
sharing; this is in-line with the information-theoretic analysis of [39] for masking
in symmetric schemes. In this setting, (strong) first-order leakage is more likely,
and second-order leakage provides far more information. In contrast, targeting
an arithmetically shared y allows for recovering much less information and has
lower chances of accidental leakages that can be exploited efficiently. For higher
noise levels, the leaked amount of information does not differ as much between
masking types (c.f., [39]), but arithmetic representation still leak less informa-
tion, and our attacks require far more computational resources to exploit leakage
from arithmetic masking. Further, we discuss the effects of canonical and central
reductions, i.e., reducing to signed or unsigned integers; while our results do not
contradict [56], we show that using a central reduction for y leaks only very little
extra information.

Thirdly, we show how an adversary may deal with leakage in a higher-order
attack on several shares of y. We show how the solver of [29] may be instantiated
to target a masked implementation. Further, as already noted in [52] and [29],
BP quickly becomes numerically instable if it has to handle too many equa-
tions. We present a filtering technique that may mitigate these problems and
allows obtaining and processing useful information for very high noise levels.
This technique applies more generally to the solver of [29]. Further, we discuss
several other techniques applicable to BP that did not yield improvements in
our specific case but could improve different attacks.

We evaluate our attacks against a first-order masked implementation by sim-
ulation in various leakage models, and discuss the relation to our information-
theoretic analysis; our results show that for a noise standard deviation of σ = 1.0
(SNR 4.5) in the noisy Hamming weight (HW) model, roughly 500 traces allow
for full recovery of s1 in a second order attack against Boolean masking; for
σ = 2.0 and σ = 3.0 (SNR 1.11 and SNR 0.50) we recovered the secret key with
40002 and 5000 traces, respectively. If individual bits of y leak with a success
rate of just 2 percentage points better than guessing, an adversary can fully
recover the secret from about 400 traces.

1 To the best of our knowledge their implementation is not publicly available.
2 Fewer traces might already allow for recovery.

4 Julius Hermelink, Kai-Chun Ning, and Richard Petri

Finally, we carry out our attack against physical devices and instantiate a
countermeasure that mitigates the most devastating attacks on y. We target the
masked implementation of [14,12] on two different microcontrollers to validate
our results on physical devices; we recover the secret key from first-order HW
leakage, first-order bit leakage, and second-order HW leakage. The first-order
attack requires about 300 to 400 traces to recover the secret; the second-order
attack requires about 700 traces. We note that in case of Boolean masking,
targeting the 8 Least Significant Bits (LSBs) is sufficient to fully recover the
secret key, greatly reducing the required computational resources.

A higher Boolean masking order (compared to the arithmetic one) has al-
ready been briefly mentioned in [3] in the context that [39] shows that arithmetic
masking to be more resilient to low-noise leakage. In the case of masked ML-
DSA, our work suggests that such a countermeasure is effective for higher noise
levels. Our evaluations show that doubling the Boolean masking order has an
overhead of only 33% in the implementation of [12]. We also provide the first
performance evaluations of the implementation of [14,12] on a microcontroller.

In summary: Our work provides a systematic analysis of the vulnerability
of masked ML-DSA implementations with a focus on leakage on y. We explain
how and where an adversary may target ML-DSA, and evaluate how well such
leakage may be exploited based on information theory, simulations, and attacks
on physical devices. All our resources are open-source3. To the best of our knowl-
edge, we provide the first attacks against masked ML-DSA implementations on
a physical device.

Acknowledgements This work was in part supported by the German Federal Min-
istry of Education and Research BMBF (grant 16KISK038, project 6GEM). We
would like to thank the anonymous reviewers for their helpful and constructive
feedback that improved this work.

2 Preliminaries

We first give an overview over the used notation, Dilithium/ML-DSA, and pre-
vious attacks on them. Then, we reiterate the solver of [29], which we employ to
recover the secret key from side-channel information. Finally, we give some basic
information-theoretic definitions, which are relevant for our analysis in Section 3.

Throughout the paper, y, z, s1, and c denote the respective intermediate
Dilithium/ML-DSA variables as defined in Section 2.1. By x we denote cs1
and y, z, x denote coefficients of components of the respective vector of poly-
nomials. In general, vectors are denoted by bold letters. To reduce the number
of notations we introduce, we do not use any notation to distinguish between
an (unknown) value and the associated random variable whenever the meaning
can be clearly inferred from context; otherwise, random variables are denoted
by uppercase letters.

3 Available under https://github.com/juliusjh/mmldsa_attack.

https://github.com/juliusjh/mmldsa_attack

Finding and Protecting the Weakest Link 5

For q, r ∈ Z, we denote the central reduction of r modulo q as r mod±q,
which is the unique integer r′ in the range − q

2 < r′ ≤ q
2 for an even q (and

− q−1
2 ≤ r′ ≤ q−1

2 for an odd q) such that r′ ≡ r mod q. Similarly, we denote
the canonical reduction of r modulo q as r mod+q, which is the unique integer
r′ in the range 0 ≤ r′ < q such that r′ ≡ r mod q. Let Rq be the polynomial
ring Zq[X]/(Xn + 1); we denote as Sη the set of small polynomials in Rq which
only have coefficients whose absolute value is smaller than or equal to η after
central reduction. In other words: Sη := {w = c0 + c1X + · · ·+ cn−1X

n−1 | 0 ≤
i < n, |ci mod±q| ≤ η}.

By L, we denote noise-free leakage in a certain representation. For example,
Lcan. denotes the HW leakage on a canonically reduced value, while Lcen. denotes
the HW leakage on a centrally reduced value. If L is applied to a vector, i.e., to
multiple shares, we mean pointwise application. We call an attack t-order if its
feasibility depends on targeting t intermediates, even if we evaluate under the
assumption that the adversary targets multiple intermediates/coefficients in a
single trace (but only t shares/values for each unshared coefficient).

2.1 ML-DSA

ML-DSA is a signature scheme based on two hard problems: Module Learning
with Errors (MLWE) and Module Short Integer Solution (MSIS) [20,33]. The
scheme operates with matrices and vectors with polynomial entries in Rq =
Zq[X]/(Xn+1), where n = 256 and q = 223−213+1. With security parameters
(d, τ, γ1, k, l, η) set, the signer generates a key pair by first randomly sampling a
k × l matrix A and 2 vectors s1 ∈ S l

η and s2 ∈ Sk
η . s1 and s2 are short vectors

whose entries are polynomials with coefficients uniformly random in [−η, η].
Subsequently, t = A·s1+s2 ∈ Rk

q is computed and split into 2 polynomials t0 and
t1 by depositing the lower and higher bits of each coefficient of the polynomials
in t into t0 and t1, respectively (see function Power2Round in [20]). The public
key is then (A, t1) and the secret key (s1, s2, t0). Note that while t0 is part of
the secret key and is not published, the security reduction of ML-DSA assumes
that it is public [20], and a recent work demonstrates that an attacker can in
fact recover t0 from less than 500 000 signatures with a desktop computer [46].

The signing algorithm of ML-DSA, see Algorithm 1, is based on the "Fiat-
Shamir with Aborts" paradigm [38], where signatures are repeatedly generated
and rejected until one signature satisfies a set of conditions. To sign a message, a
masking4 vector y ∈ Rl

q whose entries are polynomials with coefficients uniformly
random in (−γ1, γ1] is sampled. The signer then computes w = A ·y and split it
into w1 and w0 (see functions Decompose, HighBits and LowBits in [20]). The
message and w1 are then passed to a hash function H to produce the challenge c,
which is interpreted as a polynomial in Rq. By design, c has exactly τ coefficients
that are ±1, and all of its remaining coefficients are zero. The signature candidate
z is then computed as z = y + cs1. To avoid a dependency of z on the secret
4 In the sense that it masks the sensitive cs1, and has nothing to do with masking the

implementation.

6 Julius Hermelink, Kai-Chun Ning, and Richard Petri

Algorithm 1 Simplified ML-DSA Signing Algorithm
1: procedure Sign(s1 ∈ S l

η, s2 ∈ Sk
η , m)

2: z←⊥
3: while z =⊥ do
4: y

R← S l
γ1−1

5: w← Ay
6: w1,w0 ← Decompose(w, 2γ2)
7: c← H(m ∥ w1)
8: z← y + cs1
9: r← w0 − cs2

10: if RejectionSamplingCheck(z, r, γ1, γ2, β) then
11: z←⊥
12: end if
13: end while
14: return signature← (z, c)
15: end procedure

key, z is checked against 2 conditions to ensure it does not leak any information
about s1 and s2. If any condition fails, the signature candidate is discarded and
a new signing attempt starts. The parameters of ML-DSA are chosen such that
the expected number of signing iterations is between 3.85 and 5.1 [44].

The masking vector y must not be used to sign more than one message,
and must have sufficient entropy. To avoid flaws in the RNG, the "hedged"
sampling of y, which uses both the fresh randomness from RNG, and randomness
derived pseudo-randomly from the message being signed, is the default. The
fresh randomness can help mitigate SCA while the randomness derived from the
message protects against scenarios where the RNG is compromised. The ML-
DSA standard also allows an optional deterministic sampling, which only utilizes
the randomness derived from the message being signed, for platforms where
SCA is not a concern. Nevertheless, as we will see in the physical experiments
described in Section 5, even with the hedged sampling, care must be taken in
order to prevent leakage on y. In this work, we follow the ML-DSA standard and
focus on the hedged approach. The hedged approach is also the main difference
between ML-DSA and Dilithium [20], which ML-DSA is based upon; Dilithium
offers only a fully randomized sampling of y, or deterministic generation of y
based on the randomness derived from the message. Note that Algorithm 1
does not show key generation and verification; for a full description, we refer
to [20,21,43].

2.2 Previous relevant attacks on ML-DSA

The attack surface of ML-DSA consists of the key generation and signing as
verification only makes use of public information. In this work, we focus on
attacks targeting y in masked implementations. We first provide an overview
over previous attacks against unmasked implementations and previous solutions
for recovering s1 from information on y that could apply in a masked setting.

Finding and Protecting the Weakest Link 7

Targeting the NTT. The NTT has been targeted in several previous attacks.
In attacks against ML-KEM, BP has proven to be valuable tool [50,47,24]; these
attacks can be expected to apply in a similar fashion but with reduced noise
tolerance due to the larger modulus. The authors of [25] use a neural network
to target the NTT in Diltihium and recover s1. In contrast to previous attacks,
they only target the input, i.e., s1 in normal domain.

Targeting the NTT secret has several advantages: The computation of an
NTT offers many intermediate values that an adversary can target. These inter-
mediates are all arithmetically related, which can be exploited using, e.g., BP.
Moreover, the secret has small coefficients and the NTT is linear; this makes
recovering the full secret from partial information a lattice problem. This was
first noted in [2], and the authors of [24] recover the full key from a partially
recovered key in NTT domain using lattice reduction. The work of [37] provides
further insights, and [56] proposes to exploit this technique in combination with
their Correlation Power Analysis (CPA).

Targeting (zero) coefficients of y. Another valuable target is y; it is directly
connected to s1 as z = y+ cs1 holds and c, z are known for released signatures.

The work of [57] shows that an adversary may identify zero coefficients of y
using a Side Channel Attack (SCA). Thereby, the adversary obtains a (poten-
tially noisy) linear equation on s1. They propose a template attack [10] using
a neural network that targets the unpacking of y and uses Integer Linear Pro-
gramming (ILP) to recover s1; to recover the secret key they require more than
700k signatures. It should be noted that BP has empirically given better results
than ILP in similar problems in ML-KEM [48,28]5.

An advanced approach based on a similar idea has been proposed in [52]:
The authors propose to identify noise-free equations in the set of all equations
derived from physical traces. Each equation is in the form of cis1 = x + δ,
where ci is the i-th row of the rotation matrix derived from the challenge c, x is
the noise-free value, and δ the noise term. Their proposal, called COBRA, aims
at minimizing the squared residual; they assume that the equations with the
highest residuals are noisy and discard them, eventually arriving at a noise-free
system of equations. Their method can identify the noise-free equations, even
when the ratio of the noise-free equations is as low as 5%, and only roughly 200
noise-free equations are required to recover a polynomial of 256 coefficients in
s1. Note that however that their method will not work when high noise levels
lead to noise-free equations occurring only extremely rarely.

The framework of [8]. The authors of [8] propose using BP to deal with any
kind of leakage that relates to z = y+cs1. This approach can be seen as related to
the BP instantiations used to decode Low-Density Parity Check (LDPC) codes
and the graph used in [28] and the later work of [29]. Every secret key coefficient

5 Note that these employ BP to information obtained from fault attacks that also
arises in SCA.

8 Julius Hermelink, Kai-Chun Ning, and Richard Petri

is modeled by a variable node; factor nodes model a noisy equation – i.e., one of
the equations of the coefficients of z = y+cs1. A factor node is connected to the
τ key coefficients with non-zero indices in c, i.e., to all coefficients that appear
in the equation. Thereby, the factor graph models these relations as relations
between random variables, and BP allows approximating the marginals of the
joint distribution. This graph may be used very generically for both side-channel
and fault attacks on various variables both with and without the knowledge of z
and c. The authors provide simulations for various attacks and consider hiding
(but no masking) countermeasures.

2.3 Masked Dilithium/ML-DSA.

Masking is a class of countermeasures, introduced in [9], that splits secrets into
t + 1 shares; thereby, each share is independent of the secret and can be pro-
cessed separately. Several masked ML-DSA proposals exist [41,3,14,12]. The lat-
est works in this direction are [14] and [12]. We focus on these latest proposals
and note that other implementations follow similar principles for sampling y.

The work of [14] presents gadgets for a fully masked Dilithium implementa-
tion. With their proposed gadgets, they protect the previously identified valuable
targets by masking the sampling of y (Line 4 of Algorithm Algorithm 1), de-
composition of w (Line 6 of Algorithm 1), computation of z and r (Line 8 and
9 of Algorithm 1, resp.), and the rejection sampling in its entirety. A crucial
gadget for securing the sampling of y is their new Boolean to arithmetic mask-
ing conversion gadget, which uses the multi-bit Boolean to arithmetic masking
conversion gadget proposed in [5]. The masked generation of y is performed by
sampling in Boolean masking: the authors propose to sample t+ 1 shares, with
the result of XOR’ing them as a coefficient of a polynomial in y. This is possible
as the coefficients of y are sampled uniformly random with support 2γ1. Sub-
sequently, y is transformed to arithmetic masking with their conversion gadget.
Arithmetic masking allows carrying out the remaining arithmetic computation
of z = y + cs1.

In their subsequent work [12], they further improved the efficiency of the
masked sampling of y and the rejection sampling by replacing their internal
gadgets with more efficient ones. They also extended their proposal to cover
ML-DSA, by protecting the hedged sampling of y which combines randomness
derived from the message being signed using a PRNG and from the RNG. To
protect the hedged sampling, they proposed to utilize masked Keccak [13]as
PRNG to extract randomness from the message. Besides this additional source
of randomness in the case of ML-DSA, the masked signing procedure remains
essentially the same, and still depends on the same masking conversion gadget
proposed in [5]. For both of their proposals, shown in Algorithm 2, the authors
prove its security in the t-probing model [32]; Algorithm 2 shows Boolean mask-
ing of y in yellow and arithmetic masking of y in red.

While their gadgets and the associated implementation supports higher mask-
ing orders, the implementation is not yet highly optimized. Ignoring the storage
requirement for the public and masked secret key, the masked signing procedure

Finding and Protecting the Weakest Link 9

Algorithm 2 Simplified Masked ML-DSA Signing Algorithm [14]
1: procedure MaskedSign(ms1 = (s1,i)i∈{0,··· ,t} ∈ (Rl

q)
t,ms2 = (s2,i)i∈{0,··· ,t} ∈

(Rk
q)

t, m)
2: z←⊥
3: while z =⊥ do
4: for i = 0 to t do yi

R← Rl
2γ1

end for ▷ y in Boolean masking
5: (yi)i∈{0,··· ,t} ← BtoAqExact((yi)i∈{0,··· ,t}) ▷ y in arithmetic masking
6: y0 ← y0 − (γ1 − 1) ▷ subtract from each coefficient of y0

7: for i = 0 to t do wi ← Ayi end for
8: w1, (w0,i)i∈{0,··· ,t} ← SecDecompose((wi)i∈{0,··· ,t}, 2γ2)
9: c← H(m ∥ w1)

10: for i = 0 to t do zi ← yi + cs1,i end for
11: for i = 0 to t do ri ← w0,i − cs2,i end for
12: if SecRejectionSamplingCheck((zi)i∈{0,··· ,t}, (ri)i∈{0,··· ,t}, γ1, γ2, β) then
13: z←⊥
14: else
15: (zi)i∈{0,··· ,t} ← RefreshMasks((zi)i∈{0,··· ,t})
16: z← Unmask((zi)i∈{0,··· ,t})
17: end if
18: end while
19: return signature← (z, c)
20: end procedure

of ML-DSA with parameters k = 4, l = 4 (ML-DSA-44) alone requires 73.5KiB
of memory for masking order 1, 93.7KiB for order 2, and 113.8KiB for order 3
already. Consequently, in this work we focus on masking order 1.

Raccon Raccoon [17,49] shares several similarities with ML-DSA but aims at
being easier to mask. In particular, the uniform distribution for y is replaced by
a sum of uniforms. Thereby, Raccoon avoids the difficulties that arise in masking
y described in the introduction and the next section. Several new techniques
relating to probing security have been presented on the xample of Raccoon [4].
The work of [34] assesses the impact of first-order leakages on the equivalent
of y in Raccoon and finds several favorable properties. In our work, we assess
both first and second-order leakage on first-order masked implementations of
ML-DSA.

2.4 The Framework of [15]

The authors of [15] show how to generically deal with side information, e.g.,
from a side-channel, in lattice-based schemes. They define several types of hints
that can be integrated into the Distorted Bounded Distance Decoding Problem
(DBDD) instance posed by the public key equation of the scheme; this results in
a computationally easier problem. These hints are defined on values and are often
not well suited to directly deal with HW leakage. An approach that is similar

10 Julius Hermelink, Kai-Chun Ning, and Richard Petri

to the integration of approximate hints may be used. However, this requires
computing the distribution of the secret conditioned on the hints; i.e., computing
(an approximating to) the marginals of the joint distribution given the hints.
This can be achieved using the framework of [29], reiterated in the next section.
Several extensions and more efficient solutions for specific situations exist: The
framework has been extended to decryption failure inequalities in [16], May
and Nowakowski [40] show that in some cases computations can be done more
efficiently, and [26] can be seen as a special case when combining with BP. Note
that the public key in ML-DSA does not contain the full t = As1 + s2 but only
the higher bits. This essentially results in a much larger noise term.

2.5 The Framework of [29]

Recently, a generic framework for side-channel information has been presented
in [29]. The authors provide a BP instantiation that allows recovering the se-
cret key from generic side-channel hints in several types of schemes with a focus
on lattice-based schemes. They define distribution hints as a tuple H = (v,D)
where v is a real vector of the same dimension as the secret and D is a (dis-
crete) probability distribution on R. The hint H represents the information that
⟨v, s⟩ ∼ D, that is, that the inner product of v and the secret s follows the
distribution D. Distribution hints generalize the information obtained in sev-
eral previous attacks as well as the definition of hints given in [15], and may
be solved by either a BP-based solver or a solver that makes use of a greedy
strategy. While [29] focuses its evaluations on lattice-based schemes in which the
public key equation is available, their work applies more generally: no knowl-
edge of the public key equation is required, and the scheme does not need to be
lattice-based; the former allows us to apply the solver to Dilithium/ML-DSA as
shown in Section 4.2.

2.6 Information Theory

Information theory quantifies the uncertainty of random variables. Central defi-
nitions are the entropy of a discrete random variable and the Mutual Information
(MI) between two discrete random variables, both first introduced in [55]6. Let
X,Y be random variables with density functions (with respect to the counting
measure) pX , pY . The entropy H(X) is defined as expected information content,
i.e., as E[− log2(pX(x))] = −

∑
x p(x) log(pX(x)).

The mutual information I(X;Y) between X and Y measures how much
information observing X or Y gives on Y or X, respectively. It is defined as
I(X;Y) = H(X) − H(X|Y) and fulfills 0 ≤ I(X;Y) ≤ min(H(X), H(Y)). MI
has been used in side-channel analysis before, in particular, as a distinguisher,
e.g, in Differential Power Analysis (DPA) [22], but has also been proposed to as-
sess the security of masking schemes [18]. In [39], the authors use MI on simulated
data to assess the impact of prime field versus Boolean masking in symmetric
6 Shannon defines the channel capacity as supremum of MI.

Finding and Protecting the Weakest Link 11

ciphers for varying noise levels. In this work, we use MI (non-simulated) to eval-
uate the maximum information that an adversary may obtain from different
intermediate variables in varying leakage models, and simulate attacks to obtain
the exploitable information for varying noise levels.

The Kullback-Leibler (KL) divergence [36] is a statistical distance between
two distributions, which is closely related to MI. It is defined as DKL(X||Y) =∑

x,pX(x)>0 pX(x) log2(pX(x)/py(x)), which is infinite if there exists x such that
pX(x) > 0 and pY (x) = 0. MI can be defined using KL: MI is the KL divergence
of the joint distribution (X,Y) to the random variable that corresponds to the
pointwise product of pX · pY .

A commonly used metric in SCAs is the signal-to-noise ratio (SNR). Defined
as variance of the signal, i.e., the variance of the means for different groups of
values or HWs, divided by the noise, i.e., the variance within a group, it relates
the targeted information to the noise level. Note that it does not capture the
amount of information that a variable holds and is, e.g., not invariant under
scaling a random variable. If we assume the noisy HW model (c.f., [10]) for a
uniformly random variable, i.e., that an implementation leaks the HW with an
additive Gaussian error with standard deviation σ, the SNR is given by b

4σ where
b is the bitsize of the variable.

3 Information-Theoretic Analysis

To assess potential targets for side-channel attacks on masked ML-DSA imple-
mentations, we first analyze how much information an adversary may obtain
on the secret in different leakage models and locations. All our leakage models
assume the (noisy) HW model, i.e., an attacker obtains a (noisy) version of the
HW of an intermediate, which has been shown to model the physical reality quite
well. In this section, we assume noise-free HW leakage to assess the maximum
amount of information an adversary may obtain in a certain representation and
masking type; in Section 4 we simulate attacks under the assumption of a Gaus-
sian error. We do not assume a specific implementation, but we assume a similar
structure to the state-of-the-art masked ML-DSA implementation of [14,12].

3.1 Leakage Models and Locations

The proposals for masked implementations of [14,12] sample a coefficient y of y
by uniformly randomly sampling its Boolean shares over {0, . . . , 2γ1 − 1}; i.e., by
sampling mi, i ∈ {0, . . . , t} and (implicitly) setting y =

⊕t
i=0 mi. Subsequently,

the shares are converted to arithmetic masking using the Boolean-to-Arithmetic
(B2A) conversion of [5], and then shifted by −γ1 + 17.

To the best of our knowledge, there is no known securely masking method to
sample y in arithmetic masking (both [41,3] use this approach as well). There-
fore, we assume y to be processed as both arithmetic and Boolean shares. An
7 We however discovered a bug in the masked implementations [14,12]; the shares are

shifted by −γ1 instead.

12 Julius Hermelink, Kai-Chun Ning, and Richard Petri

adversary may target Boolean shares of y during sampling and B2A conversion
or arithmetic shares in the addition of y with cs1; these locations are highlighted
in Algorithm 2.

HW leakage. A common assumption in SCA is that the adversary may obtain a
noisy version of the HW of a processed intermediate value instead of the value
itself (see, e.g., [1]). Even though more fine-grained leakage models exist (see,
e.g., [7]), this assumption has been proven to model real-world attacks reasonably
well. If an implementation extracts single bits of an intermediate, the adversary
may obtain a noisy version of those. If a targeted value has a very small range, an
adversary may obtain its value directly from the HW; however, this is prevented
by masking. Thus, in this section, we assume noise-free HW leakage to assess the
maximum amount of information an adversary may obtain in different locations,
representations, and masking types.

Masking ranges. Boolean masking as proposed in [14,12] uses log2(2γ1) = 18
bit shares (20 for higher security levels). On the other hand, arithmetic masking
is carried out over Fq, where log2(q) is close to 23. Under the knowledge of z,
the coefficients of y (with positive probability) have only about 8 bit entropy.
However, as explained in the next paragraph, obtaining the HW of y directly is
less likely in arithmetic masking. Thus, the small range of y under the knowledge
of z only helps an adversary in the case of Boolean masking. It is therefore
reasonable to assume that the larger range in the case of arithmetic masking
does cause less information to leak – this is confirmed by the results in Table 1.

Share recombining. Implementation mistakes, changes introduced by the com-
piler, and unexpected micro-architectural effects may cause first-order leakage.
Ideally, this should not occur, but avoiding these mistakes can be challenging,
and high-profile protected real-world implementations have in the past not even
achieved constant-time [54]. Thus, we believe it is relevant to understand the
implications of accidental share recombination. In the case of Boolean masking,
there is no conceptual difference to targeting the HW of y in an unmasked imple-
mentation; however, we can expect the noise to be larger. The case of arithmetic
masking is slightly more complicated: Assume y to be arithmetically shared;
then, for mi ∈ Fq, share recombination leaks HW(

⊕t
i=0 mi) where y ≡

∑t
i=0 mi

(mod q) instead of the HW of y. Clearly, this does give valuable information as
well; however, much less than directly obtaining the HW of y.

Bit leakage. In some cases, bits of Boolean shares may leak individually. In par-
ticular, if some signal amplification is caused by, e.g., extracting or multiplying
single bits by a larger integer (see, e.g., [27]). This is much less likely in arith-
metic masking: while some bits of the unshared value can be computed from the
bits of individual shares (e.g., the LSB), carries amplify the noise.

Leakage on the HW of both shares. If no first-order leakage or bit-leakage is
present, the adversary has to resort to targeting the HW of both shares indi-
vidually. The larger range of the arithmetic shares should make a second-order

Finding and Protecting the Weakest Link 13

−1 · 105 0 1 · 105
0

1

2

z

M
I

(a) Shifted Boolean

−1 · 105 0 1 · 105
0

1

2

z

(b) Canonical Arithmetic

−1 · 105 0 1 · 105
0

1

2

z

(c) Centered Arithmetic

Fig. 1: I(x;L(m) | z = z′) for every 100-th point.

Table 1: Mutual Information I(x;L(m) | z).
Variant MI Norm. MI H(x;L(m)) H(L(m)) H(x)

Arithmetic cen. (t = 2) 0.01363 0.00263 12.72599 7.54986

5.1908

Arithmetic can. (t = 2) 0.01317 0.00254 11.74504 6.56844
Boolean shifted (t = 2) 1.01949 0.19644 10.40409 6.23381
Boolean shifted (t = 1) 2.16538 0.41740 5.189762 2.16538
Arithmetic cen. (t = 1) 0.17219 0.03317 8.214697 3.19713
Arithmetic can. (t = 1) 0.16708 0.03219 8.155458 3.13278

attack much more expensive and less noise-tolerant than against Boolean mask-
ing – again, Table 1 does confirm this.

3.2 Leaked Information

In ML-DSA, we obtain leakage on y, but we are interested in information on
x = cs1, where the relation x = z − y holds. We compute the amount of in-
formation that may maximally be leaked in the noisy HW model for Boolean
and arithmetic masking on the unmasked and first-order masked y, i.e., in the
noise-free case. This allows us to compare different leakage models in the worst
case. For noisy HW leakage, we evaluate the MI in Figure 2 and simulate the
attacks in Section 4.3.

We may compute I(x;L(m) | z), where m is a sharing of y and L denotes HW
leakage on the respective representation of the shares, by using that z is uniform
over a support of µ = 2(γ1− τη); thus I(x;L(m) | z) = 1

µ

∑
z=z′ I(x;L(m) | z =

z′). Figure 1 shows MI I(x;L(m) | z = z′) plotting every 100-th point. Table 1
shows the results for I(x;L(m) | z) for several leakage types represented by L;
here, we computed I(x;L(m) | z = z′) for all possible z′ (i.e., for µ values). The
parameter t denotes the attack order; t = 2 means that we target both shares,
t = 1 means that we consider first-order leakage that arises from accidental share
recombining. In both Table 1 and Figure 1, normalized MI is normalized with
respect to H(x).

Central versus canonical reduction. It might seem surprising and contradictory
to [56] that using the central representation does not lead to a great increase

14 Julius Hermelink, Kai-Chun Ning, and Richard Petri

in leaked information. This is because we are interested in information on x =
cs1 = z− y instead of the HW of y: Recall that

I(x;L(m) | z) = H(L(m) | z)−H(L(m) | x, z) (1)
= H(x | z) +H(L(m) | z)−H(x, L(m) | z). (2)

As Lcen.(y) often immediately leaks the sign of y, one could expect that

I(x;Lcen.(m) | z) > I(x;Lcan.(m) | z), (3)

by a much larger amount than shown in Table 1 where the normalized MI is
almost the same. In fact, for z = 0, I(x, L(m)) is much smaller for L = Lcan.
than for L = Lcen. (0.12 and 0.40). However, if we (negate and) shift x by z,
y is a variable with relatively small range centered around z ̸= 0. Additionally,
the entropy of H(L(m) | z, x) is dominated by the values close to z as these are
the ones with the largest probability due to the distribution of x (i.e., a sum of
uniform distributions). Depending on z, the reduced entropy of the distribution
of HWs for L = Lcan. may actually lead to a reduced MI because of the reduced
H(x, Lcan.(m) | z). Thus, our evaluations are actually in-line with [56] but show
a more complex scenario. We may interpret MI in the case of noise-free leakage
on a shared variable as follows:

Proposition 1. Let L : M → L be a function modeling leakage on a variable
from share domain to some leakage domain, m = (mi)i∈{0,...,t} ∈ M t+1 be a
sharing of order t of a secret value x. Assume that m0 is uniquely determined
by y and (mi)i≥1, and that y, (mi)i≥1 are independent. Then, it holds that

I(y;L(m)) = H(L(m0) | (L(mi))i≥1). (4)

Proof. As the secret y determines one share, we get that P (m | y) =
∏n

i=1 P (mi)
and thus H(m | y) =

∑n
i=1 H(mi), and we may compute I(y, L(m)) as

I(y;L(m)) = H(L(m))−H(L(m) | y) (5)

= H(L(m0) |(L(mi)){i≥1}) +

n∑
i=1

H(L(mi))−
n∑

i=1

H(L(mi)) (6)

= H(L(m0) |(L(mi)){i≥1}). (7)

For two shares, this gives us the following intuition: The distribution of m0

conditioned on m1 is a shifted distribution of the secret’s distribution (as the
secret and m1 uniquely determine m0). Therefore, m0 conditioned on L(m1) =
l is the mixture distribution of the secret’s distribution around all m′

1 with
L(m′

1) = l. Now to get L(m0) conditioned on L(m1), we may apply L to the
support of the previous distribution, summing up the probabilities for values
with the same image under L. Thus, the MI depends on L evaluated on the
range that m0 still admits after knowing the value of L at m1.

By using a central reduction, the number of possible HWs for share 0 given a
HW for share 1 is greatly reduced if both shares have to sum up to a small range

Finding and Protecting the Weakest Link 15

around 0: As already noted in [56], to, e.g. arrive at 0, it is much more likely to
observe one large and one small HW, i.e., one negative and one positive value,
than two HWs corresponding to two positive or two negative values. However,
if we shift the distribution of the value that m0, m1 are a sharing of by some
random value z, this relation is mostly lost.

Relation to I(s1, L(m)) and successful attacks. The MI of x and L(m), as com-
puted above, is the same as I(s1, L(m)). This follows simply from x being
fully determined by s1 and the leakage being dependent only on x; we have
H(L(m) | s1) = H(L(m) | x) and, therefore,

I(s1, L(m)) = H(L(m))−H(L(m) | s1) = I(x, L(m)). (8)

In most cases, unless the adversary can fix the randomness, they will obtain
“incomplete” information on several cs1 for varying c. They may target 256 co-
efficients of y per component of s1, but the information obtained for the same
c is not independent. Thus, comparing the first column of Table 1 normalized
by the entropy of s1 only gives a rough estimate on the information we have on
s1. In addition, the amount of information on s1 that a solver can extract from
incomplete information on x varies greatly depending on the leakage model. In
the case of arithmetic masking and leakage on coefficients of y, we can recover
s1 with approximately three times the information indicated in Table 1. How-
ever, for Boolean masking, while still requiring much less information than for
arithmetic masking, the overhead is much larger at a factor of about 150. In case
of bit leakage, learning the LSB gives more information (1 bit) than the Most
Significant Bit (MSB), which gives less than 1 bit because in some cases it is bi-
ased under the knowledge of z (without side information). Nevertheless, solving
from the LSB8 is fruitless even for very high numbers of traces/signatures, while
solving from the MSB requires just about 5 signatures.

Simulated mutual information. We may approximate the MI using the hint dis-
tributions in the simulation (see Section 4). Figure 2 shows the MI per noise level
σ averaged over 5 signatures. We observe similar results as [39]: for moderate
and higher noise levels, the difference between Boolean and arithmetic masking
is much smaller than for low noise levels. However, even for moderate to high
noise levels, Boolean masking still leaks much more information.

4 Targeting Masked Implementations

We may now explain how to target y in a protected implementation. Several
solvers have previously been published [29,8]. We first compare the different
approaches and then explain how to adapt the solver of [29] to a setting where
each hint holds a very small amount of information. Finally, we apply the solver
to several types of leakage discussed and analyzed in the previous section.
8 Note the similarity to LPN if noise is present.

16 Julius Hermelink, Kai-Chun Ning, and Richard Petri

10−1 100 101
10−6

10−3

100

σ

N
or

m
.M

I

(a) Boolean shifted.

10−1 100 101
10−6

10−3

100

σ

(b) Canonical arithmetic.

10−1 100 101
10−6

10−3

100

σ

(c) Centered arithmetic.

Fig. 2: MI for noisy HW leakage averaged over 5 simulated signatures.

Notation and terminology. We make use of the notation of [29]: a hint is defined
as tuple (v,D) and represents the information that ⟨v, s1⟩ follows the distri-
bution D. When applying the solvers of [29] (but not the subsequent lattice
reduction), a coefficient is correct if it is equal to the respective key coefficient.
We assume that the adversary orders the coefficients by the entropy of the re-
spective variable node or the score of the actions involving that coefficients for
the BP and greedy solver, respectively. We call coefficients recovered if it is cor-
rect and all smaller – in that ordering – coefficients are correct. Now, L̃ is a
random variable modeling noisy leakage on intermediate variables. For example,
L̃ could model HW leakage with Gaussian noise on an element of Fq represented
canonically, i.e., in {0, . . . , q − 1} and L̃ = Lcan. +N (0, σ).

Knowledge of t0. In [29], the authors assume that the adversary has access to the
LWE problem posed by the public key equation in ML-KEM, i.e., t = As1 + s2.
This allows the authors to apply the techniques of [26] to obtain a lattice problem
to solve for the secret key from partially recovered information. In ML-DSA,
however, the public key contains only the higher bits of t. While t0 may be
recovered [46], we do not assume that this is feasible for the adversary in the
targeted use case of ML-DSA. Further, as s2 is not assumed to be targeted or
known, the adversary has less information than in the evaluations of [29]. Thus,
in this section, we assume that the adversary only applies the solvers of [29]
but not the lattice reduction of [26]. Our results are stated in terms of recovered
coefficients and Euclidean distance to the secret key; those two variables directly
influence the hardness of the resulting lattice problem if t0 is available and the
remaining brute-force effort otherwise.

4.1 Comparison of Previous Solvers

Several solvers have previously been proposed: The solvers of [29] which deals
with generic hints on lattice-based schemes, the method of [8], and the approach
of [52]. In this work, we rely on [29], which can be instantiated to be equivalent
(or at least very similar) to [8].

Finding and Protecting the Weakest Link 17

The method of [52]. The COBRA approach presented in [52] (see Section 2.2)
relies on solving a noisy system of equations on x or y by identifying noise-free
equations (i.e., with a zero noise term), which means this approach will not
work when the number of noise-free equations is below a threshold. The authors
of [52] observed that roughly 200 noise-free equations are required to recover a
polynomial of 256 coefficients in s1.

As y is not under the adversary’s control, unless the adversary is able to fix
randomness by, e.g., fault injection, the adversary can only extract information
about coefficients of y from a single trace. When targeting unprotected imple-
mentations in a low-noise setting, the small range of coefficients of y (given the
knowledge of z) allows an adversary to recover relatively many correct coeffi-
cients of y from just the HW already, hence the applicability of their approach.

For masked implementations however, there is only a negligible chance of
recovering noise-free coefficients of y from a single trace. Even when the adver-
sary obtains leakages on the HW of two shares of an arithmetic masked y, the
adversary is extremely unlikely to recover the unshared value with just the HWs
since both shares have a range of log2(8380417) ≈ 23.00 bits.

In addition, the results in [52] indicate that more equations are needed for
the COBRA approach in comparison to BP-based solvers. For example, when
we simulate leakages on y and x at a single Point of Interest (PoI) with a σ = 20
in the noisy HW model (correspond to an SNR of 0.33 and 0.12 for centered and
canonical reduction respectively), our BP solver can recover s1 with 20 and 30
traces, respectively. In contrast, [52] reports that 36 traces are required with an
SNR of 1 using 20 PoIs.

The authors [52] note that their attempts of using BP “temporarily failed
to complete the solution when the number of equations is excessive”. We con-
firm their observation and provide a method to work around this issue, thereby
allowing belief-propagation based solvers to accept more hints in Section 4.2.

Belief propagation instantiations. The solvers presented in [29] and [8] rely
on BP9, and their graphs look very similar. In fact, both approaches model
exactly the same computation if we instantiate the BP solver of [29] as follows:
When targeting y with published z and c, we may make use of x = cs1 =
z− y. This gives l separate equations for each component of s1. Information on
coefficients of a component of y translates to a hint on s1 with the coefficients
being the rows of the matrix representing multiplication with c, i.e., the rotation
matrix of c, denoted by rot(c). Thus, if we obtain information on a coefficient of a
component of y, we first negate and then shift the distribution by the respective
coefficients of the component of z; then we instantiate a distribution hint for
the respective component of s1 with that distribution and the row of rot(c) that
corresponds to the coefficient of y and z.

Given a distribution hint with coefficients (c̃i)i and distribution D, the re-
spective factor node of [29] computes the distribution of sj =

∑
i ̸=j c̃ixi for all

j ∈ {0, . . . , 255}. The xi are assumed to be distributed according to the messages
9 But [29] also presents a greedy solver.

18 Julius Hermelink, Kai-Chun Ning, and Richard Petri

coming from the variable nodes – initialized as uniform. The hint distribution
D is a distribution on c̃s1 =

∑255
i=0 c̃is1,i and the updated distribution for xj can

be computed from

c̃jxj =

255∑
i=0

c̃is1i −
∑
i ̸=j

c̃ixi. (9)

The solver of [29] computes all sj in the Fourier domain using a forward-
backward pass approach. The BP instantiation of [8] represents the computation
of sj as a BP subgraph, and propagates it separately. As the subgraph is acyclic
and scheduled independently, this part of the BP computation is exact, giving
the same results as [29].

A factor node of [29] has complexity O(n log n) while the subgraph of [8] has
complexity O(n2). In the setting of targeting Dilithium, the graph is relatively
sparse, which greatly reduces the runtime: running both solvers of [29] for 50
iterations rarely takes more than a few seconds, and [8] reports similar runtimes.

Given the similarity of these solvers, it is not surprising that we find very
comparable performance with respect to the number of required signatures to
fully recover the secret key. We compared our instantiation of [29] to [8], and it
achieves very similar results in the case of leakage on y and cs1. In fact, we get
slightly better results, which may be for various reasons10 and is not substantial.

4.2 Applying [29] to a Masked Implementation

We rely on the solvers of [29] as these are open source and seem to offer slightly
improved performance over [8], and [52] does not fit our leakage model. First we
explain how we compute distribution hints from leakage on several shares. Then,
we show how to deal with decreasing information per hint; this is relevant when
targeting shared values as hints in this case hold much less information.

Computing distribution hints. A distribution hint consists of a vector – the
hint coefficients – and a distribution. As previously discussed, given c, z, and
leakage on y, the hint coefficients are simply the rows of the rotation matrix of c
as x = cs1 = z−y holds. The distribution models the leakage that is obtained on
an intermediate value. Note that each y gives a hint on one of the l components
of s1, depending on which component of y the coefficient belongs to.

For unshared values, the computation of the distributions on x, i.e., of D,
is very similar to [8]. However, [8] evaluates their solver for leakage on x and
y, where the largest part of information comes from leakage on x, which has a
much smaller entropy when targeting the HW as it is centered around 0.

For a masked implementation, we cannot assume leakage on an unmasked x,
and in Section 4.3, we evaluate leakage on an unshared y as it could occur, e.g.,
due to accidental share recombining. In this case, D is computed as

P (x = x′ | z, L̃(y)) ∝ P (L̃(y) | x = x′, z)P (x = x′) = P (L̃(z − x′))P (x = x′),
(10)

10 For example, more BP iterations.

Finding and Protecting the Weakest Link 19

using y = z− x, which is similar to the computations of [8].
In case of leakage on shares m = (mi)i∈{0,...,n} of y, we may compute D by

using P (x = x′ | z, L̃(m)) ∝ P (x = x′)P (L̃(m) | z, x = x′) where the last factor,
P (L̃(m) | z, x = x′), is∑

(mj)j≥1=(m′
j)j≥1

P ((mj)j≥1 = (m′
j)j≥1)P (L̃(m) | z, x = x′, (mj)j≥1 = (m′

j)j≥1)

(11)

=
∑

(mj)j≥1=(m′
j)j≥1

P (L̃(m′
0))

n∏
i=1

P ((mj)j≥1 = (m′
j)j≥1) (12)

where m′
0 is the unique value such that (m′

i)j∈{0,...,n} is a sharing of z−x′. Note
that the term P (x = x′) is not factored into D as it is implicitly considered due
to the structure of the factor nodes and the messages sent by the variable nodes.

For n = 1 and HW leakage, we may efficiently compute this by looping over all
values m′

1 with HW h1 with positive probability p1 and computing probability
of x as P (HW(m0))p1, where m0 is the unique value such that m0,m1 are a
sharing of z − x in the respective representation. In our implementation, we
instead compute the leakage on y and then negate and shift the distribution for
easier debugging.

Filtering equations. With increased noise, many hints we obtain from a side-
channel hold little to no information about the secret. The convergence of a
solver that handles arbitrary precision would not be impacted by such hints –
uniform messages simply do not update variables – but the performance would
decrease. But, as already mentioned in [29], in practice, these do affect both per-
formance and convergence. In fact, using the solver of [29] with a large number
of distribution hints with distribution that is close to uniform leads to worsened
convergence and oscillations between a state of almost no information gain and
some level of information gain. The multiplication of many messages that rep-
resent a distribution that is close to uniform causes numerical instabilities that
lead to impossible states. These lead to messages that are all zero, which repre-
sents that there is no possible solution to an equation. Instead of aborting, the
implementation of [29] chooses to reset such messages to a uniform distribution,
which leads to oscillation between a state where some information about the key
coefficients is recovered and a state where many coefficients have been (re-)set
to uniform because of conflicting information. Thereby, the noise level that [29]
can handle is limited in practice.

A naïve approach to circumvent this limitation would be to only use mea-
surements that give a certain amount of information, i.e., where we are in edge
cases. For example, if we assume HW leakage, we may only consider those HWs
which are right at the mean of one group. For bit leakage, one could only consider
those bits where a bit is recovered with high probability as, e.g., done in [27].
However, this ad-hoc approach ignores, e.g., the knowledge on the range of y
given z.

20 Julius Hermelink, Kai-Chun Ning, and Richard Petri

Filtering equations by entropy of the hint distribution. We propose filtering dis-
tribution hints by the entropy of D. Given hints Hi = ⟨x,vi⟩ ∼ Di computed
from leakage on y, we compute the entropies hi of Di, i.e., hi = H(Di). We then
discard the f hints with the highest entropy for some filter setting f ∈ [0, 1];
i.e., if we obtained m signatures, we obtain m · n = m · 256 hints for each of the
l polynomials of s1, we instantiate the BP with the f · n ·m distribution hints
with the lowest entropy.

When applying the solver of [29] to masked implementations of Dilithium/ML-
DSA, the majority of the computation time is spent during the computation of
the hint distributions. This cannot be avoided by filtering as the distributions
are required for filtering in the first place. An adversary could potentially com-
bine filtering on distribution level with the approach described above, but as
these computations can be parallelized with little effort, we did not explore such
strategies. In addition, once a certain number of hints has been computed, sev-
eral filter levels can be applied until an f that allows for recovering a subkey has
been found. An adversary may also choose to filter with respect to the entropy
of a uniform distribution (which maximizes the entropy).

The optimal filter level is difficult to predict and varies for different sets of
hints. A strict filter may result in too little information to recover the key, a loose
filter may cause numerical instabilities. In practice, we found filter levels that
retain hints corresponding to between 50 − 200 signatures to be a reasonable
setting, but the exact level varies; our simulations and physical attacks show
that it depends on the type of leakage, noise level, and number of hints.

As the BP is computationally inexpensive compared to the computation of
the hint distributions, we run the solvers for several filter levels. Figure 3 shows
the (maximum) number of recovered coefficients and minimum Euclidean dis-
tance to the secret key for several filter levels for noisy HW leakage on first-order
Boolean shared y with a standard deviation of σ = 2.0 (SNR 1.125) and 4000
equations. Figure 3a shows the results as sum over all l = 4 subkeys, i.e., the
components of s1; Figure 3b shows the results for individual subkeys. It can be
seen that the number of recovered coefficients varies between subkeys for a given
filter level, but the distance is relatively consistent. We only used a single set of
signatures to save computational resources; Section 5.1 includes evaluations for
filtering for the attack on physical devices.

In the following, we will express filter levels as the number of signatures that
they correspond to; i.e., for 2 signatures and f = 0.5 it is 1 even though we filter
on hint level. This allows for an easier interpretation in relation to the number
of signatures.

Filtering based on KL divergence. As shown in (9), the solver of [29] updates key
coefficients based the current distribution modeled by the state of the variable
nodes and the hint distributions of the factor nodes. In the first step, the variable
nodes model the prior of x = cs1. Even though the prior at each variable node,
modeling a coefficient of s1, is uniform, the implicit prior on x is not uniform
but the sum of τ uniform random variables.

Finding and Protecting the Weakest Link 21

0

512

1,024

C
oe

ffc
ie

nt
s

[#
]

1 0.5 0.1 0.01
0

200

400

600

800

1,000

Filter

D
is

ta
nc

e

(a) Sum of L subkeys.

0

128

256

C
oe

ffc
ie

nt
s

[#
]

1 0.5 0.1 0.01
0

100

200

300

400

Filter

D
is

ta
nc

e

(b) A single subkey.

Fig. 3: Maximum number of recovered coefficients and distance to the key for
several filter levels for HW leakage on 2 Boolean shares with σ = 2.0 with 4000
signatures. In Figure 3a, the results are shown as sum over the results of the
subkeys; Figure 3b shows the individual results for each of the l = 4 subkeys.

The KL divergence expresses difference in information between two distribu-
tions, is closely related to MI, and it has previously been used in BP to adapt
to countermeasures [30]. Thus, it might seem reasonable to filter hints by their
“update potential”, e.g., the KL divergence or the statistical distance to the prior
of x. However, this takes only the initial state into account, and we did not find
a way to make the updating step dependent on the KL divergence from hints to
the distribution of the current state of variable nodes.

In our experiments, we observed filtering by KL divergence with respect to
the prior to perform worse than filtering by entropy of the D. Intuitively, by
filtering by entropy of D, we keep those hints which may – irrespective of the
current state – reduce the entropy of the variable nodes the most. On the other
hand, the KL filtering has a dependency on the prior distribution of x. We
suspect that this dependency is less relevant in later iterations and therefore
leads to this type of filter being less effective.

Note that our entropy filter also increases the KL divergence. We believe
that similar techniques could improve the solver [29]; however, as our technique
proves to be highly efficient already, this is out of scope for our work, and we
leave further improvements as future work.

4.3 Simulation

We implemented the aforementioned methods and simulated leakage in various
models targeting ML-DSA-44. We assume template attacks [10], i.e., the ad-
versary learns the leakage distribution from training traces and subsequently
matches PoI(s) in attack traces against the templates. To simulate leakage, we
built a Python simulator based on modified PQClean [35] library and a multi-
threading Rust module which handles all computationally intensive tasks.

Almost all results are obtained using 50 iterations and filter levels f , such
that f · m ∈ {50, 100, . . . , 300} where m is the number of signatures. The ex-
ception is leakage on two Boolean shares of y, where we use many more filters
– f · m ∈ {100, 110, . . . , 400}. For first-order leakage, we ran 5 experiments,

22 Julius Hermelink, Kai-Chun Ning, and Richard Petri

for second-order leakage we only ran a single one; in both cases, we use fresh
randomness (i.e., independent sets of traces, signatures, and leakage) for every
number of signatures. The figures in this section then show the average (over all
experiments) of the maximum (over all iterations) number of recovered coeffi-
cients (as sum of l = 4 subkeys, each with 256 coefficients) and the minimum
distance to the secret key. While the chosen filter levels are not necessarily op-
timal, we expect no drastic improvements for other settings, and the required
computational power and time for our evaluations was already rather high.

Noisy HW model. In Section 3, we analyzed the maximum information that an
adversary can obtain, i.e., we assumed noise-free leakage. For our simulations,
we assume the noisy HW model (on different representations) and noisy bit
leakage. This means that we assume the implementation to leak h+N (0, σ) or
bi +N (0, σ), where h is the HW of the intermediates, N (0, σ) denotes a normal
distribution around 0 with variance σ2, and bi are the bits of the intermediate.
We assume a template attack, i.e., the adversary knows the density functions ph
for each HW or bit h and assigns a HW or bit h′ the probability ph(h

′)∑
h′′ ph′′ (h′) .

Performance. The BP itself usually finishes within minutes for all l targeted
components of s1. However, the computational resources we require to compute
the hint distributions in case of noisy HW leakage are comparably high: for
example, computing the distributions for Boolean masking for σ = 5.0 with 2000
signatures required over 200 GB of memory11 and took over 2 hours with 500
threads. For arithmetic masking, the runtime is greatly increased, often taking
several days with 500 threads even for noise levels below 1.0.

The performance depends greatly on the magnitude of the noise: for higher
noise levels, we have to consider many more HWs. However, even for σ = 0.5,
our implementation takes about 3 minutes per signature with 128 cores when
targeting second-order arithmetic masking (around 800 signatures are required
for key recovery), i.e., for 4 ·256 hints. This can be tackled using multithreading,
and it only affects the offline phase; thus, it is unlikely to prevent a determined
attacker from carrying out an attack. Further, when we target Boolean shares, we
may only consider the HW of the 8 LSBs of the coefficients of y. This drastically
reduces the runtime; in this section, we provide simulations targeting the full
HW as otherwise the results are hardly comparable due to the switching noise
caused by the remaining bits. In Section 5, we target the lower 8 bits.

Evaluation metrics. The work of [8] uses SNR to quantify their measurement
noise. We express the noise in standard deviation σ of the normally distributed
noise. The SNR considers both signal and noise, where the former is greatly
dependent on the targeted location while the latter is also dependent on the
(simulated) measurement setup. Thus, to give a clear picture of which location
is more valuable for an adversary, we compare similar noise levels for values
with different signal qualities. In a sense, in our specific case, the SNR hides
11 However, further memory optimizations may be possible.

Finding and Protecting the Weakest Link 23

information that we would like to express, while σ only quantifies the noise; the
SNR can be computed from σ. Note that [29] also expresses the noise level in
terms of the standard deviation.

Further, we do not rely on the median recovered coefficients. Instead, we use
the definition of recovered coefficients as given in [29], as well as the Euclidean
distance of the best key guess to the true key. Together, recovered coefficients
and Euclidean distance fully capture the hardness of the CVP from which the
full key can be recovered when applying [26]. However, as the adversary might
not have access to t0, we do not assess the hardness itself. If t0 is not available,
those two variables influence the brute-force complexity.

Leakage on unshared variables. Implementation mistakes or unexpected
microarchitectural effects might cause the unshared value of a secret variable to
leak. Some scenarios that are more likely in the case of masked implementations
have previously not been evaluated. In this section, we fill this gap and simulate
several types of leakage.

Targeting y or both x and y. Leakage on unshared coefficients of y, might happen
due, e.g., accidental share recombining caused by implementation mistakes or
unintended changes introduced by the compiler. Whereas these are out-of-scope
in formal models, these could much occur in practice; even protected real-world
implementations still suffer from timing leakage [54]. To give a comparison, we
evaluate HW leakage on y and on both x and y. The former is shown in Figure 4
and the latter in Figure 5. It can be clearly seen that targeting x provides a
great amount of additional information. For example, for σ = 5.0 and central
reductions, targeting y requires about 200 signatures, and if we additionally have
leakage on x, it is less than 10.

The evaluations of [8] focus on targeting y and x = cs1 simultaneously. This
is a realistic assumption for an unmasked implementation, but not for a masked
implementation, from which an adversary is less to be able to obtain leakage on
unshared x and y. In addition, targeting cs1 in an unmasked implementation
gives far more information than y due to its reduced range. The improved results
when targeting x are not surprising. After all, x is the variable we want to recover
in the first place and its HW has a much smaller entropy than the one of x (even
under the knowledge of z). However, in a masked implementation, we are less
likely to encounter first-order leakage on the coefficients of both y and x.

Targeting single bits of y. An adversary may also obtain leakage on bits of
coefficients of y. This may lead to reasonably strong leakage if bits are processed
individually, in particular, when they are multiplied by larger values (see e.g.,
[27]). Figure 6 show our evaluations for leakage on individual bits as it may
occur during the B2A conversion. Note how a very small bias learned from a
SCA already allows recovering s1 from a few hundred traces.

Second-order attacks. If no first-order leakage is present, the adversary may
instead target the individual shares and compute the hints as described in Sec-

24 Julius Hermelink, Kai-Chun Ning, and Richard Petri

100 101 102 103 104 105
0

512

1,024

Signatures [#]

R
ec

ov
er

ed
[#

]
cen. σ = 0.001
cen. σ = 5.0
cen. σ = 10.0
can. σ = 0.001
can. σ = 5.0
can. σ = 10.0

(a) Rec. y.

100 101 102 103
0

2,500

5,000

7,500

Signatures [#]

D
is

ta
nc

e

cen. σ = 0.001
cen. σ = 5.0
cen. σ = 20.0
can. σ = 0.001
can. σ = 5.0
can. σ = 20.0

(b) Dist. y.

Fig. 4: Targeting the HW of y in the HW model with standard deviation σ for
the Gaussian noise.

100 101 102 103
0

512

1,024

Signatures [#]

R
ec

ov
er

ed
[#

]

cen. σ = 0.001
cen. σ = 5.0
cen. σ = 20.0
can. σ = 0.001
can. σ = 5.0
can. σ = 20.0

(a) Rec. y and x.

100 101 102
0

2,500

5,000

Signatures [#]

D
is

ta
nc

e cen. σ = 0.001
cen. σ = 5.0
cen. σ = 20.0
can. σ = 0.001
can. σ = 5.0
can. σ = 20.0

(b) Dist. y and x.

Fig. 5: Targeting the HW of and both y and x in the noisy HW model with
standard deviation σ for the Gaussian noise.

tion 4.2. As shown in Figure 8, second-order attacks are still far from infeasible
even for moderately high noise levels when targeting the first-order Boolean
masked y. For arithmetic masking, see Figure 7, more signatures are required
and the necessary computational resources to process one signature are greatly
increased. Note that Figure 7 and Figure 8 show evaluations targeting l = 4
separate polynomials using new randomness for each number of signatures. In
Section 5, we only target the 8 LSBs, which drastically increases the perfor-
mance, and an evaluation using 5 different sets of traces for each noise level is
shown in Figure 11. This approach does not apply in the case of masking.

5 Physical Attack and Countermeasure

We verify our results by targeting physical devices, and then present a simple –
yet effective – countermeasure. Our simulations suggest that an adversary can
obtain the most information about the secret key from bit leakage of higher
bits. Thus, we first assess whether we can target single bits during the B2A
conversion used in the implementation of [12]. We consider two scenarios: on a
ChipWhisperer Lite [31], which is known to exhibit very little noise, and using
a Teledyne Lecroy WaveRunner 9254M oscilloscope – which shows a scenario

Finding and Protecting the Weakest Link 25

100 101 102 103 104
0

512

1,024

Signatures [#]

R
ec

ov
er

ed
[#

]
σ = 1.0
σ = 5.0
σ = 8.0

(a) Rec. bits

100 101 102 103
0

2,500

5,000

Signatures [#]

D
is

ta
nc

e σ = 1.0
σ = 5.0
σ = 8.0

(b) Dist. bits

Fig. 6: Targeting the 8 least significant bits of y with a normally distributed error;
σ = 1.0, 5.0, 8.0 correspond to success rates of 0.69, 0.54, and 0.52, respectively.

102 103 104
0

512

1,024

Signatures [#]

R
ec

ov
er

ed
[#

]

cen. σ = 0.001
cen. σ = 0.5
can. σ = 0.001
can. σ = 0.5

(a) Rec. arithmetic.

102 102.5 103
0

2,500

5,000

Signatures [#]

D
is

ta
nc

e cen. σ = 0.001
cen. σ = 0.5
can. σ = 0.001
can. σ = 0.5

(b) Dist. arithmetic.

Fig. 7: Targeting the HW of two shares of y in arithmetic masking.

that is closer to a real-world adversary. We then carry out several of the attacks
simulated in the previous section in the latter measurement setup. In the course
of our attack, we also provide some further evaluation on our filtering technique.

Both the information-theoretic analysis and the simulations suggest that the
Boolean masked y is more vulnerable. Therefore, we suggest using a higher
masking order during sampling and the B2A conversion of y. The relative com-
putational cost of sampling and conversion are low, thus, this countermeasure
has very little overhead. Further, the formal proofs of [12] still hold, and only very
minor adaptations to the code base are necessary to implement it in practice.
We evaluate the countermeasure in Section 5.2.

5.1 Attacking a State-of-the-Art Masked Implementation

In order to verify our results from simulation in the real world, we utilized
our observation from Section 3.2 and attacked the latest masked ML-DSA-44
implementation [12]. In particular, since Boolean masking is expected to leak
more information on the unshared secret, we target coefficients of y when they
are still in the Boolean masking format.

We target the implementation of [12] in first-order masking; due to the rela-
tively limited performance on a microcontroller, we did not target higher-order

26 Julius Hermelink, Kai-Chun Ning, and Richard Petri

102 103 104 105
0

512

1,024

Signatures [#]

R
ec

ov
er

ed
[#

]
σ = 0.001
σ = 0.5
σ = 1.0
σ = 3.0

(a) Rec. Boolean.

102 103 104
0

2,500

5,000

Signatures [#]

D
is

ta
nc

e σ = 0.001
σ = 0.5
σ = 1.0
σ = 3.0

(b) Dist. Boolean.

Fig. 8: Targeting the HW of two shares of y in Boolean masking.

masking. While different proposals exist, [12] is the latest; it is publicly available.
First-order leakage serves as a validation of our simulations and an example of
how potential leakage could arise in a real-world implementation as well unless
care is taken to avoid share recombination. Note that the targeted implemen-
tation is not advertised as production-ready, and the occurrence of first-order
leakage does not show a weakness of the proposed gadgets. Second-order leak-
age on the other hand will almost certainly be presented in a first-order masked
implementation; this scenario is thus realistic.

Measurement setups. We ported the order-1 masked ML-DSA-44 implemen-
tation to STM32F303R8T6 (Cortex-M3) and STM32F415RGT6 (Cortex-M4) Mi-
crocontroller Unit (MCU) boards (compiled with -O3 and -Os flag resp.) For
the STM32F415RGT6 MCU, we use a ChipWhisperer UFO Board as the target
device and a 10MHz crystal oscillator as the clock source. To collect power
traces we sample at 100MHz with a Teledyne Lecroy WaveRunner 9254M os-
cilloscope, connected to the SMA connector of the integrated shunt resistor of
the STM32F415RGT6 target board. As it exhibits a significant amount of high-
frequency noise, we employ a cascade of one 50MHz and two 25MHz low-pass
filters, and a low-noise amplifier. To ease measurements in our laboratory setting,
we made small modifications to the implementation. To synchronize measure-
ments, we placed trigger outputs for the oscilloscope around the B2A conversion
within the functions gen_y and its fast variant gen_y_fast that sample coef-
ficients of y. Furthermore, we added control logic to the RNG used by both
functions to ensure that signature generation only requires a single iteration. To
be specific, we first run an identical implementation on a faster machine with
a random RNG seed, retain the state of the RNG before the successful signing
iteration, and use that state to generate a signature on the target device.

We employ template attacks since an attacker must extract information on
y in a single trace. For profiling, we measure NL executions of gen_y (resp.
gen_y_fast). To attack, we generate NS signatures for random 32B messages,
and use the segmented measurement functionality of the oscilloscope to cap-
ture all 4 · 256 calls to gen_y (resp. gen_y_fast). We then create templates for
intermediate values based on the profiling traces, using Test Vector Leakage As-

Finding and Protecting the Weakest Link 27

sessment (TVLA) or Normalized Interclass Variance (NICV) to identify suitable
PoI. Subsequently we derive probability distributions for each coefficient of each
component of y for each signature.

For the STM32F303R8T6 MCU, we use a ChipWhisperer Lite, its on-board
clock source, no filters, and 4x sampling clock. Due to the limited SRAM, it is
not possible to perform a full signing operation with the masked ML-DSA-44
implementation [12]. Thus, we offload computations that we do not target to an
x64 laptop.

Targeting individual bits. As the attacks on both MCUs show, the Boolean
to arithmetic conversion gadget [5] that the authors rely on for gen_y and
gen_y_fast, which are the main contribution of their proposals [14,12], may
leak individual bits of the unshared secret if not implemented carefully.

The accuracy of recovering individual bits in a coefficient of y is listed in
Table 2: To obtain these results, we used 1 million traces to build the templates
from 20 PoIs for both STM32F303R8T6 and STM32F415RGT6; still, the success
probability for all bits stays below 59.10% for STM32F303R8T6 and 54.97% for
STM32F415RGT6. The noise levels and SNR at the best PoI for each bit are also
listed, which explain the marginal success probabilities. Note that the remaining
bits are noise. Thus, the SNR is comparably low. Nevertheless, this is sufficient to
fully recover s1 from on average 27.6 and 247.0 signatures for the STM32F303R8T6
and STM32F415RGT6 setups, respectively. In Figure 9 we show the distance and
number of recovered coefficients per number of signatures and filtering level
averaged over 5 randomly selected sets of traces.

We can clearly see that distance begins to increase only very slowly with
too-high filter levels, and is much less sensitive to suboptimal filter levels. This
suggests that a potential subsequent lattice reduction may help to reduce the
number of filter levels that an adversary has to try out. However, t0 will often
not be available to an adversary and running with various filter levels is in fact
computationally very inexpensive.

A note on applying templates correctly: A naïve approach to bit leakage
would be to first compute a success probability for each bit, then selecting the
more likely one in each equation, and then building hints by using the overall
success probability. This works very well for low noise levels, but loses informa-
tion in the process. The correct approach is to compute the probability to be 0
or 1 for each individual bit from the given measurement and the template.

Targeting the HW. We target the HW of the 8 LSB of coefficients of y
(first-order leakage) and the (lower 8-bit) HW of both shares of coefficients of y
(second-order attack). The former corresponds to our simulated results in Fig-
ure 4, while the latter corresponds to the Boolean masking in Figure 8. Fig-
ure 10 and Figure 11 depicts the results for first-order and second-order leakage
per number of equations and filter levels as average over 5 runs. For first-order
leakage we observe a mean SNR of 0.20 and require about 300 signatures for full
recovery of s1; for second-order leakage it is 2.07 for the first share and 1.64 for

28 Julius Hermelink, Kai-Chun Ning, and Richard Petri

Table 2: Accuracy targeting individual bits of y.
Bit Index 0 1 2 3 4 5 6 7

STM32F415RGT6, NL = 1M

σ 38.79 11.72 11.89 11.65 12.84 13.40 12.78 13.06
SNRmax 0.000166 0.001818 0.001767 0.001839 0.001514 0.001390 0.001528 0.001465
Accuracy (%) 49.98 50.64 53.80 54.73 54.21 54.39 54.97 54.19

STM32F303R8T6, NL = 1M

σ 2.37 2.84 2.66 2.46 2.51 2.47 2.52 2.40
SNRmax 0.044281 0.030956 0.035102 0.041014 0.039497 0.040864 0.039298 0.043089
Accuracy (%) 59.10 57.62 58.05 58.84 58.34 58.21 58.12 58.61

101

102

50100
150

200
250

300
0

512

1,024

Signatures [#]
Filter [#]

R
ec

ov
er

ed
[#

]

(a) Recovered.

101

101.5
102

102.5

100

200

300

0

2,000

4,000

Signatures [#]

Filter [#]

D
is

ta
nc

e

(b) Distance.

Fig. 9: Recovered coefficients and distance when targeting individual bits of y
per number of signatures and filtering levels.

the second share, and we require about 700 signatures to fully recovery s1. Note
that the lower noise level for the second-order attack leads to a more stable BP.

5.2 Countermeasures

Because Boolean masking leaks more information on the unshared secret, one ap-
proach to protect it is to use different masking order for Boolean and arithmetic
masking. This countermeasure has already been mentioned in [3] as prime-field
masking has been shown to be more resistant to attacks that exploit low-noise
leakage [39]. Our work suggests that this is relevant even for increased noise
levels. In fact, to be effective, a moderate noise-level is required in the first place
(see results of [39]). We evaluate raising the Boolean masking order by a factor
of 2. To understand the overhead of the countermeasure, we implemented it on
top of the masked ML-DSA-44 implementation of [12]. We measured the cycle
counts of signing a 32B message on an STM32F405RGT6 board, which has an
ARM Cortex-M4 processor running at 168MHz and 192KiB SRAM, and repeat
the experiments 15000 times.Since the implementation [12] is not constant-time
and its cycle count fluctuates drastically, we could not measure the cycles di-
rectly. To benchmark the overhead as precisely as possible, we fixed the PRNG
of this implementation, and we modified the rejection loop of the signing pro-

Finding and Protecting the Weakest Link 29

101

102

50100
150

200
250

300
0

512

1,024

Signatures [#]
Filter [#]

R
ec

ov
er

ed
[#

]

(a) Recovered.

101

101.5
102

102.5

100

200

300

0

2,000

4,000

Signatures [#]

Filter [#]

R
ec

ov
er

ed
[#

]

(b) Distance.

Fig. 10: Recovered coefficients and distance when targeting the HW of y per
number of signatures and filtering levels.

0

512

1,024

C
oe

ffc
ie

nt
s

[#
]

100 200 300 400 500 600 700
0

2,500

5,000

Signatures [#]

E
uc

lid
ea

n
di

st
an

ce

Fig. 11: Recovered coefficients and distance when targeting the HW of both
Boolean shares of y per number of signatures using no filter and one that keeps
300 signatures. Note that this figure does not use logarithmic axes.

cedure such that a signature can be generated by sampling exactly one vector
y, i.e., we do not reject signatures. While signatures generated in this manner
may or may not be valid, it is sufficient for benchmarking since all the necessary
computations for generating one signature were performed. We can thus com-
pute the percentage of the computation affected by our countermeasure and its
overhead. The results can be found in Table 3. As we can see, the cycle count
of masked_sample_y increases by a factor of 3.23, and accounts for 34% of the
total cycle count. In the hedged version of ML-DSA, which is the default per
ML-DSA standard, both fresh randomness and randomness derived from the
message being signed are used. The proposed masked implementation of [12]
uses masked Keccak [13] to derive a random seed from the message, which is
subsequently fed into a PRNG. While increasing by a factor of 4, this part of
the computation only makes up 1.35% (see seed_y in Table 3) of the total cycle
counts. In total, the cycle count is increased by only a factor of 1.33.

6 Conclusion

In this work, we systematically analyze the security of masked ML-DSA im-
plementation: we assessed potential targets information theoretically, compared

30 Julius Hermelink, Kai-Chun Ning, and Richard Petri

Table 3: Overhead of the countermeasure in cycles.
Total signing masked_sample_y seed_y

Original 39118662.27 5488094 (14.02%) 175083 (0.44%)
With Countermeasure 52031577.69 17779727 (34.17%) 701690 (1.35%)

previous solvers, and proposed new techniques to apply BP to a masked ML-DSA
implementation.

We draw several conclusions from our results: We find further evidence that
targeting y allows for highly noise-tolerant attacks. Targeting only the HW of the
LSBs with our filtering technique, this statement extends to Boolean masked y:
a second-order attack targeting the HW of both shares is still comparably noise-
tolerant and small biases on single bits can in many cases be exploited efficiently
by an adversary. The arithmetically shared y leaks far less information, especially
for low-to-moderate noise levels (c.f., [39]). For higher noise levels, exploiting
the information requires much more computational resources in our attacks.
The difference between centrally and canonically reduced sharings of y is very
small; our results do not contradict [56] but show a more complex scenario.
Central reductions, i.e., using signed integers, are more favorable with respect
to performance, and our results show that side-channel attacks are likely not
a factor of high importance in this case. We evaluated the performance costs
of raising the Boolean masking order in comparison to the arithmetic order.
However, for low noise levels, Boolean masking seems to be less effective even
for increased masking orders [39]. It should be noted that Raccoon [17,49] avoids
Boolean masking altogether.

Our evaluations also show the need for optimized protected ML-DSA imple-
mentations for embedded devices. The works of [3,14,12] propose gadgets and
prove their security. However, our results suggest that the latest implementations
of [14,12] do not achieve performance sufficient for most real-world applications
on a microcontroller. Furthermore, a thorough comparison of masked implemen-
tations of ML-DSA including the amount of required randomness is still missing.
Comparing the table-based approaches [14,12] to the bitsliced implementations
of [3] is also interesting – in terms of performance and leaked information. The
work of [23] introduces the Local Random Probing Model (LRPM) and explains
how to model Soft Analytical Side-Channel Attack (SASCA). The LRPM allows
for a near-worst-case analysis [23] of masked implementations and other coun-
termeasures. Leveraging it to reason about our attacks and masked ML-DSA
implementations could enable us to understand how they scale with the mask-
ing order, bound the leaked information, and compare different approaches.

Finding and Protecting the Weakest Link 31

References

1. Akkar, M.L., Bevan, R., Dischamp, P., Moyart, D.: Power analysis, what is
now possible... In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
489–502. Springer, Berlin, Heidelberg (Dec 2000). https://doi.org/10.1007/
3-540-44448-3_38

2. Albrecht, M.R., Deo, A., Paterson, K.G.: Cold boot attacks on ring and module
LWE keys under the NTT. IACR TCHES 2018(3), 173–213 (2018). https://
doi.org/10.13154/tches.v2018.i3.173-213, https://tches.iacr.org/index.
php/TCHES/article/view/7273

3. Azouaoui, M., Bronchain, O., Cassiers, G., Hoffmann, C., Kuzovkova, Y., Renes,
J., Schneider, T., Schönauer, M., Standaert, F.X., van Vredendaal, C.: Protecting
Dilithium against leakage revisited sensitivity analysis and improved implementa-
tions. IACR TCHES 2023(4), 58–79 (2023). https://doi.org/10.46586/tches.
v2023.i4.58-79

4. Belaïd, S., Rivain, M., Rossi, M.: New techniques for random probing security
and application to raccoon signature scheme. Cryptology ePrint Archive, Report
2025/278 (2025), https://eprint.iacr.org/2025/278

5. Bettale, L., Coron, J.S., Zeitoun, R.: Improved high-order conversion from Boolean
to arithmetic masking. IACR TCHES 2018(2), 22–45 (2018). https://doi.org/
10.13154/tches.v2018.i2.22-45, https://tches.iacr.org/index.php/TCHES/
article/view/873

6. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - kyber: A cca-secure module-
lattice-based KEM. In: 2018 IEEE European Symposium on Security and Pri-
vacy, EuroS&P 2018, London, United Kingdom, April 24-26, 2018. pp. 353–367.
IEEE (2018). https://doi.org/10.1109/EUROSP.2018.00032, https://doi.org/
10.1109/EuroSP.2018.00032

7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage
model. In: Joye, M., Quisquater, J.J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 16–29. Springer, Berlin, Heidelberg (Aug 2004). https://doi.org/10.1007/
978-3-540-28632-5_2

8. Bronchain, O., Azouaoui, M., ElGhamrawy, M., Renes, J., Schneider, T.: Ex-
ploiting small-norm polynomial multiplication with physical attacks application
to CRYSTALS-Dilithium. IACR TCHES 2024(2), 359–383 (2024). https://doi.
org/10.46586/tches.v2024.i2.359-383

9. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666,
pp. 398–412. Springer, Berlin, Heidelberg (Aug 1999). https://doi.org/10.1007/
3-540-48405-1_26

10. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, Jr., B.S., Koç,
Çetin Kaya., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer,
Berlin, Heidelberg (Aug 2003). https://doi.org/10.1007/3-540-36400-5_3

11. Chen, Z., Karabulut, E., Aysu, A., Ma, Y., Jing, J.: An efficient non-profiled
side-channel attack on the crystals-dilithium post-quantum signature. In: 39th
IEEE International Conference on Computer Design, ICCD 2021, Storrs, CT,
USA, October 24-27, 2021. pp. 583–590. IEEE (2021). https://doi.org/10.1109/
ICCD53106.2021.00094, https://doi.org/10.1109/ICCD53106.2021.00094

12. Coron, J.S., Gérard, F., Lepoint, T., Trannoy, M., Zeitoun, R.: Improved high-
order masked generation of masking vector and rejection sampling in dilithium.

https://doi.org/10.1007/3-540-44448-3_38
https://doi.org/10.1007/3-540-44448-3_38
https://doi.org/10.1007/3-540-44448-3_38
https://doi.org/10.1007/3-540-44448-3_38
https://doi.org/10.13154/tches.v2018.i3.173-213
https://doi.org/10.13154/tches.v2018.i3.173-213
https://doi.org/10.13154/tches.v2018.i3.173-213
https://doi.org/10.13154/tches.v2018.i3.173-213
https://tches.iacr.org/index.php/TCHES/article/view/7273
https://tches.iacr.org/index.php/TCHES/article/view/7273
https://doi.org/10.46586/tches.v2023.i4.58-79
https://doi.org/10.46586/tches.v2023.i4.58-79
https://doi.org/10.46586/tches.v2023.i4.58-79
https://doi.org/10.46586/tches.v2023.i4.58-79
https://eprint.iacr.org/2025/278
https://doi.org/10.13154/tches.v2018.i2.22-45
https://doi.org/10.13154/tches.v2018.i2.22-45
https://doi.org/10.13154/tches.v2018.i2.22-45
https://doi.org/10.13154/tches.v2018.i2.22-45
https://tches.iacr.org/index.php/TCHES/article/view/873
https://tches.iacr.org/index.php/TCHES/article/view/873
https://doi.org/10.1109/EUROSP.2018.00032
https://doi.org/10.1109/EUROSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.46586/tches.v2024.i2.359-383
https://doi.org/10.46586/tches.v2024.i2.359-383
https://doi.org/10.46586/tches.v2024.i2.359-383
https://doi.org/10.46586/tches.v2024.i2.359-383
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1109/ICCD53106.2021.00094
https://doi.org/10.1109/ICCD53106.2021.00094
https://doi.org/10.1109/ICCD53106.2021.00094
https://doi.org/10.1109/ICCD53106.2021.00094
https://doi.org/10.1109/ICCD53106.2021.00094

32 Julius Hermelink, Kai-Chun Ning, and Richard Petri

Cryptology ePrint Archive, Report 2024/1149 (2024), https://eprint.iacr.org/
2024/1149

13. Coron, J.S., Gérard, F., Montoya, S., Zeitoun, R.: High-order table-based con-
version algorithms and masking lattice-based encryption. IACR TCHES 2022(2),
1–40 (2022). https://doi.org/10.46586/tches.v2022.i2.1-40

14. Coron, J.S., Gérard, F., Trannoy, M., Zeitoun, R.: Improved gadgets for the high-
order masking of Dilithium. IACR TCHES 2023(4), 110–145 (2023). https://
doi.org/10.46586/tches.v2023.i4.110-145

15. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
Attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 329–358. Springer, Cham (Aug
2020). https://doi.org/10.1007/978-3-030-56880-1_12

16. Dachman-Soled, D., Gong, H., Hanson, T., Kippen, H.: Revisiting security es-
timation for LWE with hints from a geometric perspective. In: Handschuh, H.,
Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS, vol. 14085, pp. 748–781.
Springer, Cham (Aug 2023). https://doi.org/10.1007/978-3-031-38554-4_24

17. del Pino, R., Espitau, T., Katsumata, S., Maller, M., Mouhartem, F., Prest, T.,
Rossi, M., Saarinen, M.: Raccoon. Tech. rep., National Institute of Standards and
Technology (2023), available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures

18. Duc, A., Faust, S., Standaert, F.X.: Making masking security proofs concrete
(or how to evaluate the security of any leaking device), extended version. Jour-
nal of Cryptology 32(4), 1263–1297 (Oct 2019). https://doi.org/10.1007/
s00145-018-9277-0

19. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: Crystals-dilithium: A lattice-based digital signature scheme. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018). https://doi.org/10.
13154/TCHES.V2018.I1.238-268, https://doi.org/10.13154/tches.v2018.i1.
238-268

20. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR TCHES
2018(1), 238–268 (2018). https://doi.org/10.13154/tches.v2018.i1.238-268,
https://tches.iacr.org/index.php/TCHES/article/view/839

21. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G.,
Stehlé, D.: CRYSTALS-DILITHIUM. Tech. rep., National Institute of Stan-
dards and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

22. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Berlin, Heidelberg (Aug 2008). https://doi.org/10.1007/978-3-540-85053-3_
27

23. Guo, Q., Grosso, V., Standaert, F.X., Bronchain, O.: Modeling soft analytical
side-channel attacks from a coding theory viewpoint. IACR TCHES 2020(4),
209–238 (2020). https://doi.org/10.13154/tches.v2020.i4.209-238, https:
//tches.iacr.org/index.php/TCHES/article/view/8682

24. Hamburg, M., Hermelink, J., Primas, R., Samardjiska, S., Schamberger,
T., Streit, S., Strieder, E., van Vredendaal, C.: Chosen ciphertext k-trace
attacks on masked CCA2 secure Kyber. IACR TCHES 2021(4), 88–113
(2021). https://doi.org/10.46586/tches.v2021.i4.88-113, https://tches.
iacr.org/index.php/TCHES/article/view/9061

https://eprint.iacr.org/2024/1149
https://eprint.iacr.org/2024/1149
https://doi.org/10.46586/tches.v2022.i2.1-40
https://doi.org/10.46586/tches.v2022.i2.1-40
https://doi.org/10.46586/tches.v2023.i4.110-145
https://doi.org/10.46586/tches.v2023.i4.110-145
https://doi.org/10.46586/tches.v2023.i4.110-145
https://doi.org/10.46586/tches.v2023.i4.110-145
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-031-38554-4_24
https://doi.org/10.1007/978-3-031-38554-4_24
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1007/s00145-018-9277-0
https://doi.org/10.1007/s00145-018-9277-0
https://doi.org/10.1007/s00145-018-9277-0
https://doi.org/10.1007/s00145-018-9277-0
https://doi.org/10.13154/TCHES.V2018.I1.238-268
https://doi.org/10.13154/TCHES.V2018.I1.238-268
https://doi.org/10.13154/TCHES.V2018.I1.238-268
https://doi.org/10.13154/TCHES.V2018.I1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.13154/tches.v2020.i4.209-238
https://doi.org/10.13154/tches.v2020.i4.209-238
https://tches.iacr.org/index.php/TCHES/article/view/8682
https://tches.iacr.org/index.php/TCHES/article/view/8682
https://doi.org/10.46586/tches.v2021.i4.88-113
https://doi.org/10.46586/tches.v2021.i4.88-113
https://tches.iacr.org/index.php/TCHES/article/view/9061
https://tches.iacr.org/index.php/TCHES/article/view/9061

Finding and Protecting the Weakest Link 33

25. Han, J., Lee, T., Kwon, J., Lee, J., Kim, I., Cho, J., Han, D., Sim, B.: Single-trace
attack on NIST round 3 candidate dilithium using machine learning-based profiling.
IEEE Access 9, 166283–166292 (2021). https://doi.org/10.1109/ACCESS.2021.
3135600, https://doi.org/10.1109/ACCESS.2021.3135600

26. Hermelink, J., Mårtensson, E., Samardjiska, S., Pessl, P., Rodosek, G.D.: Belief
propagation meets lattice reduction: Security estimates for error-tolerant key re-
covery from decryption errors. IACR TCHES 2023(4), 287–317 (2023). https:
//doi.org/10.46586/tches.v2023.i4.287-317

27. Hermelink, J., Ning, K.C., Petri, R., Strieder, E.: The insecurity of masked
comparisons: SCAs on ML-KEM’s FO-transform. In: Luo, B., Liao, X., Xu, J.,
Kirda, E., Lie, D. (eds.) ACM CCS 2024. pp. 2430–2444. ACM Press (Oct 2024).
https://doi.org/10.1145/3658644.3690339

28. Hermelink, J., Pessl, P., Pöppelmann, T.: Fault-enabled chosen-ciphertext attacks
on kyber. In: Adhikari, A., Küsters, R., Preneel, B. (eds.) INDOCRYPT 2021.
LNCS, vol. 13143, pp. 311–334. Springer, Cham (Dec 2021). https://doi.org/
10.1007/978-3-030-92518-5_15

29. Hermelink, J., Streit, S., Mårtensson, E., Petri, R.: A generic framework for side-
channel attacks against LWE-based cryptosystems. In: Fehr, S., Fouque, P.A. (eds.)
EUROCRYPT 2025, Part VIII. LNCS, vol. 15608, pp. 3–32. Springer, Cham (May
2025). https://doi.org/10.1007/978-3-031-91101-9_1

30. Hermelink, J., Streit, S., Strieder, E., Thieme, K.: Adapting belief propagation to
counter shuffling of NTTs. IACR TCHES 2023(1), 60–88 (2023). https://doi.
org/10.46586/tches.v2023.i1.60-88

31. Inc., N.T.: Cw1173: Chipwhisperer-lite (2018), https://media.newae.com/
datasheets/NAE-CW1173_datasheet.pdf

32. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463–481. Springer, Berlin, Heidelberg (Aug 2003). https://doi.org/10.1007/
978-3-540-45146-4_27

33. Jackson, K.A., Miller, C.A., Wang, D.: Evaluating the security of CRYSTALS-
dilithium in the quantum random oracle model. In: Joye, M., Leander, G. (eds.)
EUROCRYPT 2024, Part VI. LNCS, vol. 14656, pp. 418–446. Springer, Cham
(May 2024). https://doi.org/10.1007/978-3-031-58751-1_15

34. Kamel, D., Standaert, F.X., Bronchain, O.: Information theoretic evaluation of
raccoon’s side-channel leakage. CiC 1(3), 44 (2024). https://doi.org/10.62056/
abkp2c3w9p

35. Kannwischer, M.J., Schwabe, P., Stebila, D., Wiggers, T.: Improving software qual-
ity in cryptography standardization projects. In: IEEE European Symposium on
Security and Privacy, EuroS&P 2022 - Workshops, Genoa, Italy, June 6-10, 2022.
pp. 19–30. IEEE Computer Society, Los Alamitos, CA, USA (2022). https://doi.
org/10.1109/EuroSPW55150.2022.00010, https://eprint.iacr.org/2022/337

36. Kullback, S., Leibler, R.A.: On Information and Sufficiency. The Annals of
Mathematical Statistics 22(1), 79–86 (1951). https://doi.org/10.1214/aoms/
1177729694, https://doi.org/10.1214/aoms/1177729694

37. Kuo, Y., Takayasu, A.: A lattice attack on crystals-kyber with correlation power
analysis. In: Seo, H., Kim, S. (eds.) Information Security and Cryptology - ICISC
2023 - 26th International Conference on Information Security and Cryptology,
ICISC 2023, Seoul, South Korea, November 29 - December 1, 2023, Revised Se-
lected Papers, Part I. Lecture Notes in Computer Science, vol. 14561, pp. 202–
220. Springer (2023). https://doi.org/10.1007/978-981-97-1235-9_11, https:
//doi.org/10.1007/978-981-97-1235-9_11

https://doi.org/10.1109/ACCESS.2021.3135600
https://doi.org/10.1109/ACCESS.2021.3135600
https://doi.org/10.1109/ACCESS.2021.3135600
https://doi.org/10.1109/ACCESS.2021.3135600
https://doi.org/10.1109/ACCESS.2021.3135600
https://doi.org/10.46586/tches.v2023.i4.287-317
https://doi.org/10.46586/tches.v2023.i4.287-317
https://doi.org/10.46586/tches.v2023.i4.287-317
https://doi.org/10.46586/tches.v2023.i4.287-317
https://doi.org/10.1145/3658644.3690339
https://doi.org/10.1145/3658644.3690339
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-031-91101-9_1
https://doi.org/10.1007/978-3-031-91101-9_1
https://doi.org/10.46586/tches.v2023.i1.60-88
https://doi.org/10.46586/tches.v2023.i1.60-88
https://doi.org/10.46586/tches.v2023.i1.60-88
https://doi.org/10.46586/tches.v2023.i1.60-88
https://media.newae.com/datasheets/NAE-CW1173_datasheet.pdf
https://media.newae.com/datasheets/NAE-CW1173_datasheet.pdf
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-031-58751-1_15
https://doi.org/10.1007/978-3-031-58751-1_15
https://doi.org/10.62056/abkp2c3w9p
https://doi.org/10.62056/abkp2c3w9p
https://doi.org/10.62056/abkp2c3w9p
https://doi.org/10.62056/abkp2c3w9p
https://doi.org/10.1109/EuroSPW55150.2022.00010
https://doi.org/10.1109/EuroSPW55150.2022.00010
https://doi.org/10.1109/EuroSPW55150.2022.00010
https://doi.org/10.1109/EuroSPW55150.2022.00010
https://eprint.iacr.org/2022/337
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1007/978-981-97-1235-9_11
https://doi.org/10.1007/978-981-97-1235-9_11
https://doi.org/10.1007/978-981-97-1235-9_11
https://doi.org/10.1007/978-981-97-1235-9_11

34 Julius Hermelink, Kai-Chun Ning, and Richard Petri

38. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Berlin, Heidelberg (Dec 2009). https://doi.org/10.1007/
978-3-642-10366-7_35

39. Masure, L., Méaux, P., Moos, T., Standaert, F.X.: Effective and efficient masking
with low noise using small-mersenne-prime ciphers. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part IV. LNCS, vol. 14007, pp. 596–627. Springer, Cham
(Apr 2023). https://doi.org/10.1007/978-3-031-30634-1_20

40. May, A., Nowakowski, J.: Too many hints - when LLL breaks LWE. In: Guo, J.,
Steinfeld, R. (eds.) ASIACRYPT 2023, Part IV. LNCS, vol. 14441, pp. 106–137.
Springer, Singapore (Dec 2023). https://doi.org/10.1007/978-981-99-8730-6_
4

41. Migliore, V., Gérard, B., Tibouchi, M., Fouque, P.A.: Masking Dilithium - efficient
implementation and side-channel evaluation. In: Deng, R.H., Gauthier-Umaña, V.,
Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 344–362. Springer,
Cham (Jun 2019). https://doi.org/10.1007/978-3-030-21568-2_17

42. National Institute of Standards and Technology: Submission requirements and eval-
uation criteria for the post-quantum cryptography standardization process (2016),
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/call-for-proposals-final-dec-2016.pdf

43. National Institute of Standards and Technology: Module-lattice-based digital sig-
nature standard. Tech. rep., Department of Commerce, Washington, D.C. (2023),
federal Information Processing Standards Publication (FIPS) NIST FIPS 204 ipd.
https://doi.org/10.6028/NIST.FIPS.204.ipd

44. National Institute of Standards and Technology: Module-lattice-based digital sig-
nature standard (2024), https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
204.pdf

45. National Institute of Standards and Technology: Module-lattice-based key-
encapsulation mechanism standard (2024), https://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.203.pdf

46. Oliveira, P.A., Viera, A.C., Cogliati, B., Goubin, L.: Uncompressing dilithium’s
public key. IACR Cryptol. ePrint Arch. p. 1373 (2024), https://eprint.iacr.
org/2024/1373

47. Pessl, P., Primas, R.: More practical single-trace attacks on the number theo-
retic transform. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS,
vol. 11774, pp. 130–149. Springer, Cham (Oct 2019). https://doi.org/10.1007/
978-3-030-30530-7_7

48. Pessl, P., Prokop, L.: Fault attacks on CCA-secure lattice KEMs. IACR
TCHES 2021(2), 37–60 (2021). https://doi.org/10.46586/tches.v2021.i2.
37-60, https://tches.iacr.org/index.php/TCHES/article/view/8787

49. del Pino, R., Katsumata, S., Prest, T., Rossi, M.: Raccoon: A masking-friendly
signature proven in the probing model. In: Reyzin, L., Stebila, D. (eds.)
CRYPTO 2024, Part I. LNCS, vol. 14920, pp. 409–444. Springer, Cham (Aug
2024). https://doi.org/10.1007/978-3-031-68376-3_13

50. Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked
lattice-based encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 513–533. Springer, Cham (Sep 2017). https://doi.org/10.1007/
978-3-319-66787-4_25

51. Qiao, Z., Liu, Y., Zhou, Y., Shao, M., Sun, S.: When NTT meets SIS: Efficient
side-channel attacks on dilithium and kyber. Cryptology ePrint Archive, Report
2023/1866 (2023), https://eprint.iacr.org/2023/1866

https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-031-30634-1_20
https://doi.org/10.1007/978-3-031-30634-1_20
https://doi.org/10.1007/978-981-99-8730-6_4
https://doi.org/10.1007/978-981-99-8730-6_4
https://doi.org/10.1007/978-981-99-8730-6_4
https://doi.org/10.1007/978-981-99-8730-6_4
https://doi.org/10.1007/978-3-030-21568-2_17
https://doi.org/10.1007/978-3-030-21568-2_17
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf
https://eprint.iacr.org/2024/1373
https://eprint.iacr.org/2024/1373
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.46586/tches.v2021.i2.37-60
https://tches.iacr.org/index.php/TCHES/article/view/8787
https://doi.org/10.1007/978-3-031-68376-3_13
https://doi.org/10.1007/978-3-031-68376-3_13
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://eprint.iacr.org/2023/1866

Finding and Protecting the Weakest Link 35

52. Qiao, Z., Liu, Y., Zhou, Y., Zhao, Y., Chen, S.: Single trace is all it takes: Effi-
cient side-channel attack on dilithium. Cryptology ePrint Archive, Report 2024/512
(2024), https://eprint.iacr.org/2024/512

53. Ravi, P., Chattopadhyay, A., D’Anvers, J., Baksi, A.: Side-channel and fault-
injection attacks over lattice-based post-quantum schemes (kyber, dilithium): Sur-
vey and new results. ACM Trans. Embed. Comput. Syst. 23(2), 35:1–35:54 (2024).
https://doi.org/10.1145/3603170, https://doi.org/10.1145/3603170

54. Roche, T.: EUCLEAK. Cryptology ePrint Archive, Report 2024/1380 (2024),
https://eprint.iacr.org/2024/1380

55. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J.
27(3), 379–423 (1948). https://doi.org/10.1002/J.1538-7305.1948.TB01338.
X, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

56. Tosun, T., Moradi, A., Savas, E.: Exploiting the central reduction in lattice-based
cryptography. IEEE Access 12, 166814–166833 (2024). https://doi.org/10.
1109/ACCESS.2024.3494593, https://doi.org/10.1109/ACCESS.2024.3494593

57. Ulitzsch, V.Q., Marzougui, S., Tibouchi, M., Seifert, J.P.: Profiling side-channel
attacks on dilithium - A small bit-fiddling leak breaks it all. In: Smith, B., Wu,
H. (eds.) SAC 2022. LNCS, vol. 13742, pp. 3–32. Springer, Cham (Aug 2024).
https://doi.org/10.1007/978-3-031-58411-4_1

58. Veyrat-Charvillon, N., Gérard, B., Standaert, F.X.: Soft analytical side-channel
attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873,
pp. 282–296. Springer, Berlin, Heidelberg (Dec 2014). https://doi.org/10.1007/
978-3-662-45611-8_15

https://eprint.iacr.org/2024/512
https://doi.org/10.1145/3603170
https://doi.org/10.1145/3603170
https://doi.org/10.1145/3603170
https://eprint.iacr.org/2024/1380
https://doi.org/10.1002/J.1538-7305.1948.TB01338.X
https://doi.org/10.1002/J.1538-7305.1948.TB01338.X
https://doi.org/10.1002/J.1538-7305.1948.TB01338.X
https://doi.org/10.1002/J.1538-7305.1948.TB01338.X
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/ACCESS.2024.3494593
https://doi.org/10.1109/ACCESS.2024.3494593
https://doi.org/10.1109/ACCESS.2024.3494593
https://doi.org/10.1109/ACCESS.2024.3494593
https://doi.org/10.1109/ACCESS.2024.3494593
https://doi.org/10.1007/978-3-031-58411-4_1
https://doi.org/10.1007/978-3-031-58411-4_1
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15

	Finding and Protecting the Weakest Link

