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Abstract. Masking is a widely used countermeasure against side-channel
attacks, encoding secrets into multiple shares—each potentially subject
to leakage. A central question is under what leakage conditions, and to
what extent, increasing the number of shares improves security. While
this has been studied extensively in low-SNR regimes, scenarios where
the adversary gains significant information—such as on low-noise hard-
ware or via static power analysis—remain less understood.
We address this gap by deriving necessary and sufficient noise conditions
for the security of masked encodings and linear gadgets. Our approach
introduces a decomposition technique that reduces leakage analysis over
extended fields to binary subproblems involving bit-level projections.
This enables the derivation of tight bounds in binary subfields, which
are then lifted back to the full field.
Beyond binary settings, we present a general framework for analyzing
masking in other structures, including prime fields. As an application,
we prove a conjecture by Dziembowski et al. (TCC 2016), showing that
for an additive group G with largest subgroup H, any δ-noisy leakage
satisfying δ < 1− |H|

|G| ensures that masking enhances security.

1 Introduction

Masking to Mitigate Side-Channel Threats. Side-channel information refers to
unintended leakages that an adversary can extract from the physical implemen-
tation of a cryptographic algorithm. A leakage model provides an abstraction
for characterizing such leakages. One widely studied model is the noisy leakage
model, introduced by Prouff and Rivain [29] and subsequently explored in several
works [9, 10, 12, 13, 28]. In this model, for each intermediate value X ∈ Fq in a
computation, the adversary observes a function L(X), such as a noisy Hamming
weight.

A primary countermeasure against side-channel leakage is masking. In this
approach, a secret value X is split into random shares X1, . . . , Xn ∈ Fq such
that X = X1+ · · ·+Xn. Instead of manipulating X directly, the implementation
operates on the individual shares, and the adversary can only observe the leakage
L(Xi) from each one. In a standalone encoding, a single secret is encoded, and the
only intermediates are the shares themselves. In contrast, a protected circuit may
involve multiple secrets and many intermediates. The effectiveness of masking



is typically evaluated by how a chosen security metric—such as the adversary’s
success rate—degrades as the number of shares n increases. Since the seminal
work of Chari et al. [7], this methodology has been central to the evaluation of
side-channel countermeasures, in both standalone encodings and full protected
circuits.

Open Challenge. If L(X) reveals X entirely, masking provides no benefit. There-
fore, the leakage must inherently include some noise. Determining the minimal
noise level required for masking to be effective—and understanding how the se-
curity scales with the number of shares n in borderline cases—remains an open
problem. This paper addresses these challenges.

Practical Relevance. Low-noise (high-SNR) conditions arise when L(X) reveals
a substantial amount of information about X. Such scenarios have been reported
in various contexts. For instance, low-noise processors—particularly small em-
bedded devices such as the ARM Cortex-M0—exhibit inherently lower noise
levels in their power consumption [6]. Likewise, static power analysis, unlike dy-
namic power analysis, measures a stable leakage signal over an extended period,
resulting in highly precise side-channel observations [26]. Lastly, averaging or
horizontal attacks can combine multiple leakage samples corresponding to the
same or related intermediates to produce a clearer, aggregated leakage trace [3].

Security Metrics. Several metrics have been proposed to evaluate the effective-
ness of masking:

– Success rate (SR): the probability that an adversary correctly identifies X
given L(X) [32];

– Statistical distance (SD): the distance δ between the prior and posterior
distributions of X given L(X);

– Mutual information (MI): the information shared between X and L(X), i.e.,
MI(X ; L(X)) ∈ [0, log q].

These metrics are interrelated—for instance, Pinsker’s inequality links MI and
SD [15], and SR is also related to SD (see Lemma 1)—but their relationships
are often not tight in practice.

In this work, we focus on the success rate metric. It is intuitive and directly
reflects the number of traces needed for an attack to succeed. In some practical
divide-and-conquer attacks where secrets are split into many chunks, the ad-
versary must guess each chunk correctly in one attempt, making SR the most
relevant metric.

1.1 Evaluating the Security of Single Encodings

Building on the reduction proposed by Duc et al. [9], further work [10] established
that qδ < 1 suffices for masking to be effective. Dziembowski et al. [13] improved
this bound, proving that for binary extended fields (q = 2u), the threshold δ < 1

2
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is optimal. However, their analysis does not address the borderline case where
δ ≥ 1

2 .

More recently, using mutual information as a metric, Ito et al. [21] suggested
a threshold of MI(X ; L(X)) < 0.72 for all shares. Béguinot et al. [4] relaxed
this to ≤ 1 for some shares, assuming that different shares may leak differently.
Despite these efforts, the precise characterization of when masking is effective
for a given leakage function remains unresolved.

Our Contribution to the Problem. We address this gap by relaxing noise
requirements and establishing that masking improves security if and only if L(X)
does not fully determine any nontrivial bitwise combination of X. Specifically,
for a u-bit variable X, masking is effective only if

MI
(
⟨X,h⟩ ; L(X)

)
< 1,

for every nonzero h ∈ {1, . . . , 2u − 1}, where

⟨X,h⟩ =
u−1⊕
j=0

xjhj

denotes the binary inner product of X and h.

Our first result provides a tight security bound for binary fields. We then
extend the analysis to larger values of u and arbitrary sharing order n, deriving
tight lower and upper bounds on the normalized success rate (SR) metric in
terms of ⟨X,h⟩ projections.

To demonstrate the practical relevance of this approach, we conduct an ex-
perimental evaluation of MI(⟨X,h⟩ ; L(X)) across all h, and show how this
refined metric:

– Improves accuracy in leakage certification;

– Identifies the required masking order needed to meet a target security level.

When MI(⟨X,h⟩ ; L(X)) = 1 for some h, masking over characteristic-two
fields offers no security benefit. To address this limitation, we introduce a general
framework based on the SR metric for broader algebraic settings, including prime
fields and additive groups. Within this framework, we:

– Show that inner product-based metric is effective for estimating adversary’s
success rate even in prime fields;

– Prove a conjecture of Dziembowski et al. [13], establishing that for an addi-
tive group G with largest subgroup H, masking is effective if

δ < 1− |H|
|G|

.
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1.2 Evaluating the Security of Protected Circuits

Security guarantees for individual shares in a standalone encoding do not di-
rectly extend to protected circuits. Prouff and Rivain [29] initiated the study of
noisy leakage in masked circuits, which was later refined by Masure and Stan-
daert [25]. Still, circuit-level analysis remains challenging and often depends on
strong assumptions—such as the presence of leak-free refresh gadgets.

To address these challenges, Duc et al. [9] proposed a reduction from the noisy
leakage model to the random probing model (RPM), enabling the transfer of
security guarantees between the two frameworks. While subsequent works [12,27,
28] improved the tightness of the reduction parameters, its applicability degrades
in low-noise regimes, where L(X) may nearly reveal X entirely.

Our Contributions for Circuit-Level Security. We show that our bitwise
decomposition strategy enables a tighter reduction from the noisy leakage model
to the RPM—even in low-noise conditions. We apply this new approach to both
mask encodings and linear masked gadgets.

This direction is further supported by recent work of Jahandideh et al. [22],
which demonstrates that analyses based on linear circuits can yield meaningful
side-channel security margins—even when the circuit includes certain non-linear
components.

1.3 Related Work

A key technical perspective in our work is the analysis of information contained in
bitwise combinations of a random variable X, given access to a leakage function
L(X). This recalls the classical result of Goldreich and Levin [17], who introduced
the notion of a hardcore predicate for one-way functions. Their result states that
if it is computationally hard to recover a u-bit string X from an input length-
preserving function f(X), then there exists a bitmask r ∈ {0, 1}u such that
the inner product ⟨X, r⟩ cannot be predicted significantly better than random
guessing—even given both f(X) and r.

We adopt a similar viewpoint in the context of side-channel leakage: when
L(X) reveals only partial information about X, we study which bitwise pro-
jections ⟨X, r⟩ remain hidden from the adversary. This characterization serves
as a foundation for determining when masking continues to offer meaningful
protection.

1.4 Outline

Section 2 introduces the security metrics and their relationships for single vari-
ables. Section 3 develops our masking analysis using a decomposition-based ap-
proach. Section 4 extends this analysis to masking over additive groups. Finally,
Section 5 applies the decomposition framework to linear circuits.
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2 Side-Channel Security of a Single Variable

This section formalizes the noisy leakage model and introduces the adversary’s
advantage, a normalized version of the success rate. We relate this metric to
the statistical distance δ in Lemma 1. Subsection 2.2 presents the reduction to
the random probing model, and Lemma 2 proves its tightness in binary fields.
Finally, Lemma 3 derives a bound on the advantage using this reduction.

2.1 Preliminaries

Let X be uniformly distributed over Fq, representing an intermediate value in a
cryptographic implementation. Side-channel leakage is modeled by a probabilis-
tic function L(X) ∈ Rm, and the adversary’s goal is to guess X from L(X). The
optimal strategy is maximum a posteriori (MAP) estimation [20]:

X̂ ←$
{
argmax
α∈Fq

Pr(X = α | l)
}
, where l← L(X).

The MAP success probability varies with the leakage value. For instance, if
L(X) = HW(X), then observing l = 0 reveals X completely.

Define the average success probability:

Pc ≜ E
l
[Pr(X̂ = X | l)] =

∑
l

Pr(L(X) = l) · Pr(X̂ = X | l),

and the advantage over random guessing as:

AdvX ≜ Pc −
1

q
.

Statistical Distance and δ-Noisy Leakage. The statistical distance between
X and its posterior X | L(X) measures leakage informativeness [29]. It is defined
as:

SD(X ; X | L(X)) ≜
∑
l

Pr(L(X) = l) · TV(X ; X | l),

where the total variation distance is:

TV(X ; X | l) ≜ 1

2

∑
α∈Fq

∣∣∣∣Pr(X = α | l)− 1

q

∣∣∣∣ = ∑
Pr(X=α|l)> 1

q

(
Pr(X = α | l)− 1

q

)
.

We say L(X) is δ-noisy if SD(X ; X | L(X)) = δ. By definition, δ ∈ [0, 1− 1
q ].

Relation Between δ and AdvX . A lower δ corresponds to higher noise and
thus lower advantage. The following lemma formalizes this relationship.
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Lemma 1. Let X ∈ Fq and let L(X) be δ-noisy. Then:

δ

q − 1
≤ AdvX ≤ δ.

In the binary case (q = 2), we have AdvX = δ.

Proof. For each l, we have maxα Pr(X = α | l) − 1
q ≤ TV(X ; X | l). Hence,

averaging over l proves the upper bound. The lower bound follows by noting
that at most q − 1 values can exceed 1

q . ⊓⊔

2.2 Leakage Simulation

The erasure channel [8,19] is a probabilistic mapping ϕϵ : Fq → {⊥,Fq} defined
as:

ϕϵ(X) =

{
X with probability ϵ,

⊥ otherwise.

Duc et al. [9] showed that for sufficiently noisy leakage L(X), one can construct a
function L′ such that for anyX, the leakages L′(ϕϵ(X)) and L(X) are statistically
indistinguishable:

∀α ∈ Fq, TV (L′(ϕϵ(α)) ; L(α)) = 0.

This holds if ϵ ≥ ϵmin, where

ϵmin ≜ 1−
∑
l

min
α∈Fq

Pr(l | X = α) ≤(I) qδ. (1)

This value, known as the Doeblin coefficient [5], lies in [0, 1]: ϵmin = 0 means
L(X) is independent of X, while ϵmin = 1 implies that the noise of leakage is too
low, and the technique is not applicable.

The right-hand side of inequality (I) was proved in [9]. We now show that in
the binary case, equality holds.

Lemma 2. Let (X, L(X)) be a joint distribution with SD(X ; X | L(X)) = δ
and X uniform over F2. Then:

ϵmin = 2δ.

Proof.

ϵmin = 1−
∑
l

min
α∈{0,1}

Pr(l | X = α)

=
∑
l

Pr(L(X) = l)
[
1− 2min

α
Pr(X = α | l)

]
=

∑
l

Pr(l)
[
max

α
Pr(X = α | l)−min

α
Pr(X = α | l)

]
=

∑
l

Pr(l)
[∣∣Pr(X = 1 | l)− 1

2

∣∣+ ∣∣Pr(X = 0 | l)− 1
2

∣∣] = 2δ. ⊓⊔
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Since δ ≤ 1
2 for binary X, we have ϵmin < 1 unless L(X) fully reveals X.

Thus, in the binary case, the residual uncertainty about X is precisely reflected
in ϵmin.

Example 1. Let X ∈ F2u and consider L(X) = x0 ⊕ e, where x0 is the least
significant bit of X and Pr(e = 1) = e ≤ 1

2 . Then L(X) leaks noisy information
about the LSB only. The posterior of X satisfies:

Pr(X = α | l) =

{
1−e
2u−1 if α ∈ {0, 1}u−1||l,
e

2u−1 otherwise.

Hence:

AdvX =
1− 2e

2u
, SD(X ; X | L(X)) =

1

2
− e, ϵmin = 1− 2e. ⊓⊔

A Security Reduction. Since (X, L(X)) and (X, L′(ϕϵ(X))) are identically
distributed, the adversary’s advantage remains unchanged:

AdvX [L(X)] = AdvX [L′(ϕϵ(X))].

We use AdvX [·] to specify the leakage source explicitly.
The informativeness of the random variables (RVs) ϕϵ(X), L′(ϕϵmin(X)), and

L(X) about X can be expressed with the following chain:

X → ϕϵ(X)→ ϕϵmin(X)→ L′(ϕϵmin(X))→ L(X),

with ϵ ≥ ϵmin. As we move right along the chain, we obtain progressively de-
graded views of X, so any leakage evaluation metric (e.g., success probability)
must decrease:

AdvX [L(X)] ≤ AdvX [ϕϵ(X)], SD(X ; X | L(X)) ≤ SD(X ; X | ϕϵ(X)). (2)

Thus, to prove security under leakage L(X), it suffices to prove it under
ϕϵmin(X). This reduction from δ-noisy to ϵ-random probing leakage was intro-
duced in [9]. The following lemma is a concrete application.

Lemma 3 ( [5], Proposition 1). Let X ∈ Fq, and let L(X) be a leakage with
Doeblin coefficient ϵmin. Then:

AdvX ≤
q − 1

q
· ϵmin.

ϵmin Is Not Always Tight. While the reduction form δ-noisy to the ϵ-random
probing is powerful, it is not always tight. For instance, when L(X) = HW(X),
equation (1) gives ϵmin = 1, even though the Hamming weight does not fully
determine X. In this case, the reduction becomes ineffective.
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One might attribute this to HW(X) being highly informative. However, con-
sider a simpler leakage function ZV(X), inspired by the zero-value model [23],
defined as:

ZV(X) =

{
νa if X = 0,

νb ̸= νa otherwise.
(3)

This function merely indicates whether X = 0, revealing only one bit of infor-
mation. Yet, it still results in ϵmin = 1.

Our refined reduction approach, introduced in the next section, addresses
this limitation by enabling a more fine-grained analysis for such cases.

3 Security of Mask Encoding

3.1 Mask Encoding

A standard method for protecting a sensitive variable X is masking, where X is
split into a random tuple of n shares X = (X1, . . . , Xn) such that

X =

n∑
i=1

Xi.

The adversary then observes the leakage vector

L(X) =
[
L1(X1), . . . , Ln(Xn)

]
.

We assume for simplicity that all leakage functions are identical, i.e., Li = L, and
independent. A key question is how the adversary’s advantage AdvX [l← L(X)]
depends on the number of shares n and the structure of the field Fq.

Intractability of Exact Metrics. The space of possible leakage vectors L(X)
grows exponentially with the sharing order n, rendering the exact evaluation of
security metrics computationally infeasible. A common workaround—adopted
also in this work—is to approximate these metrics based on the distribution of
L(X), albeit at the cost of potential inaccuracies.

A Loose Bound. Duc et al. [10] applied the δ-noisy to ϵ-random probing reduc-
tion, in which each share is revealed with probability ϵ ≤ qδ. In the random
probing model, the adversary learns each share independently with probability
ϵ, so the probability of learning all n shares is at most (qδ)n. The corresponding
leakage vector in this model is:

ϕϵ(X) =
[
ϕϵ(X1), . . . , ϕ

ϵ(Xn)
]
.

Generalizing from (2), the statistical distance satisfies:

∆ = SD(X ; X | L(X)) ≤ SD(X ; X | ϕϵ(X)).

If at least one share is not revealed, the posterior distribution of X is uniform,
yielding zero statistical distance. Only when all shares are leaked does the dis-
tance reach its maximum value of 1− 1

q . Therefore, we obtain the bound:

∆ ≤
(
1− 1

q

)
qnδn. (4)
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A Tighter Bound. The bound in (4) increases rapidly with q, yet empirical
results in [10] showed no such dependency. This led to the conjecture that the
q-factor may be a proof artifact. A tighter bound, removing this dependency,
was later proven by Masure et al. [24]:

Lemma 4 ( [24], Proposition 4). Let X = (X1, . . . , Xn) be a masking of
X ∈ Fq, and suppose SD(X ; X | L(X)) = δ. Then

∆ = SD(X ; X | L(X)) ≤ 2n−1δn.

This result confirms an observation of Dziembowski et al. [13]: when δ < 1
2 ,

the posterior distribution of X becomes increasingly uniform as n increases. In
this setting, the adversary’s best guess converges to 1

q , and applying Lemma 1
yields:

AdvX [l← L(X)] ≤ 2n−1δn.

Case of q = 2. We prove that for binary fields the given bound is tight.

Lemma 5. In the setting of Lemma 4, if the underlying field is F2, then

AdvX [l← L(X)] = 2n−1δn.

Proof. We extend a technique by Wyner [33], originally developed for wiretap
channels.

To recover X = X1 ⊕ · · · ⊕Xn from the leakage vector L(X), the adversary
estimates each Xi individually. Let X̂i denote the estimate of Xi based on L(Xi),
and let ei = Pr(X̂i ̸= Xi) be the average error probability, taken over both the
uniform choice of Xi ∈ {0, 1} and the leakage randomness:

ei = EXi, l←L(Xi)

[
Pr(X̂i ̸= Xi | l)

]
.

Assume ei ≤ 1
2 (the case ei >

1
2 is similar). The corresponding advantage is then

AdvXi = (1− ei)− 1
2 = 1

2 − ei.

By Lemma 1, we have AdvXi = δ, implying ei = 1
2 − δ. Let e = 1

2 − δ for
simplicity.

The adversary computes X̂ = X̂1 ⊕ · · · ⊕ X̂n. This estimate equals the true
value X if an even number of errors occur. Thus, the success probability is:

Pr(X̂ = X) =

⌊n/2⌋∑
j=0

(
n

2j

)
e2j(1− e)n−2j

=
1

2

[
n∑

i=0

(
n

i

)
ei(1− e)n−i +

n∑
i=0

(
n

i

)
(−e)i(1− e)n−i

]

=(I)
1

2
[(e+ 1− e)n + (−e+ 1− e)n]

=
1

2
[1n + (1− 2e)n] =

1

2
+ 2n−1δn,
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where step (I) uses the binomial expansion:

(±e+ (1− e))n =

n∑
i=0

(
n

i

)
(±e)i(1− e)n−i.

Subtracting the baseline guessing probability 1
2 , we get:

AdvX [l← L(X)] = Pr(X̂ = X)− 1
2 = 2n−1δn. ⊓⊔

The binary case forms the basis for our reasoning over extended fields. Before
proceeding, we highlight an important observation.

Optimality of the Reduction at q = 2. Lemma 2 establishes that the δ-noisy to
ϵ-random reduction is tight for q = 2, with ϵmin = 2δ. Substituting this into (4),
we obtain:

∆ ≤ SD(X ; X | ϕϵmin(X)) =
(
1− 1

2

)
· 2nδn = 2n−1δn.

On the other hand, Lemma 5 gives ∆ = 2n−1δn, implying that

∆ = SD(X ; X | ϕϵmin(X)).

This equality shows that the reduction is tight not only for a single variable, but
also in the context of mask encoding.1

Furthermore, when the leakage functions differ across shares—each with cor-
responding parameter δi—the bound generalizes to:

∆ = 2n−1
n∏

i=1

δi.

For q > 2, the Bound in Lemma 4 is Loose We now present a concrete
example for q = 4, illustrating that the bound in Lemma 4 is not tight in general.

Example 2. Let X ∈ F22 , and define the leakage function as

L(X) = (x1 ⊕ e1) ∥ (x0 ⊕ e0),

where x0, x1 are the bits of X, and e0, e1 are independent Bernoulli variables
with Pr(ei = 1) = e < 1

2 . A direct computation yields:

δ = SD(X ; X | L(X)) =
(
1
2 − e

) (
3
2 − e

)
. (5)

This leakage is effectively the concatenation of two independent binary leakages.
From previous results, we know that under such a leakage model, a masked bit
is recovered with error probability:

en = 1
2 [1− (1− 2e)n] .

1 That is, for the metrics ∆ and AdvX . The tightness may not extend to other metrics,
such as the mutual information between L(X) and X.
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Using this, we define an equivalent leakage function:

L′(X) = (x1 ⊕ e′1) ∥ (x0 ⊕ e′0),

where e′i ∼ Ber(en). Then, by applying the same structure as in (5), we get:

∆ = SD(X ; X | L(X)) = SD(X ; X | L′(X))

=
(
1
2 − en

) (
3
2 − en

)
= 2n−1

(
1
2 − e

)n (
1 + 1

2 (1− 2e)n
)
.

In contrast, Lemma 4 gives the bound:

∆ ≤ 2n−1δn,

which is looser than our exact computation:

∆ = 2n−1
(
1
2 − e

)n (
1 + 1

2 (1− 2e)n
)

<(I) 2
n−1 ( 1

2 − e
)n (

1 + 1
2 (1− 2e)

)n
= 2n−1δn−1,

where step (I) uses the inequality:

(1 + 1
2 t

n) < (1 + 1
2 t)

n for 0 < t < 1, n > 1. ⊓⊔

Need for More Fine-Tuned Analysis. Our findings thus far indicate that for
q = 2u with u > 1, the standard δ-noisy to ϵ-random probing reduction—such
as in the case of L(X) = ZV(X)—and indirect metric estimates (as illustrated
in Example 2) introduce a non-negligible gap. The central contribution of this
paper is to close this gap via a new decomposition-based approach.

3.2 Decomposition into Binary Subfields

The observation that exact metrics are tractable and the reduction is tight in
binary fields motivates a decomposition strategy: we reduce computations in F2u

to binary relations, where metrics can be efficiently analyzed, and then lift the
results back. We begin by outlining the foundational concepts.

Consider two u-bit integers, A and B, and define their bitwise inner product
as:

⟨A,B⟩ =
u−1⊕
i=0

aibi,

where ai and bi are the ith bits of A and B, respectively.
LetX ∈ F2u be a random variable with a masked encodingX = (X1, . . . , Xn).

For any integer h ∈ {1, . . . , 2u − 1}—interpreted via its u-bit binary representa-
tion—we can project the equality X = X1 ⊕ · · · ⊕ Xn into the binary domain
as:

⟨X,h⟩ = ⟨X1, h⟩ ⊕ · · · ⊕ ⟨Xn, h⟩.
We will later formalize the validity of this mapping in the context of Boolean

systems. For now, to illustrate its practical utility, Lemma 6 will show that if
the adversary fails to recover any of the 2u − 1 binary projections ⟨X,h⟩ from
the leakage L(X), then they cannot infer X with meaningful advantage.
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Lemma 6. Given the leakage L(X) for X ∈ F2u , the adversary’s advantage in
recovering X satisfies:

1

2u−1
max
h

Adv⟨X,h⟩ ≤ AdvX ≤
1

2u−1

2u−1∑
h=1

Adv⟨X,h⟩ < 2max
h

Adv⟨X,h⟩.

Here, Adv⟨X,h⟩ denotes the adversary’s advantage in recovering the binary inner
product ⟨X,h⟩.

Proof. Let us denote µh = Adv⟨X,h⟩. Given the set {µ1, . . . , µ2u−1}, we aim to
bound AdvX from above and below.

Let {p0, p1, . . . , p2u−1} denote the posterior distribution of X given the leak-
age realization l. For any h, the advantage µh can be written as:

µh = E
l

[
max

α∈{0,1}
Pr(⟨X,h⟩ = α | l)

]
− 1

2

= E
l

 max
α∈{0,1}

∑
i∈[0,2u−1],⟨i,h⟩=α

pi

− 1

2

= E
l

 max
α∈{0,1}

 ∑
⟨i,h⟩=α

pi −
1

2


=(I)

1

2
El

∣∣∣∣∣∣
∑
⟨i,h⟩=0

pi −
∑
⟨i,h⟩=1

pi

∣∣∣∣∣∣


=
1

2
El

[∣∣∣∣∣
2u−1∑
i=0

pi(−1)⟨i,h⟩
∣∣∣∣∣
]
.

In step (I), we used the fact that a+ b = 1⇒ |a− b| = 2(max{a, b}− 1
2 ). Let

us now define the following quantity:

θh ≜
2u−1∑
i=0

pi(−1)⟨i,h⟩,

so that El[|θh|] = 2µh.
Now, by the inverse Walsh-Hadamard transform, we can express pi as:

pi =
1

2u

2u−1∑
h=0

θh(−1)⟨i,h⟩ =
1

2u

(
θ0 +

2u−1∑
h=1

θh(−1)⟨i,h⟩
)
,

and since θ0 =
∑

i pi = 1, we have:

pi −
1

2u
=

1

2u

2u−1∑
h=1

θh(−1)⟨i,h⟩. (6)
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For derivation of upper bounds in the lemma, we can write:

AdvX = E
l

[
max

i
pi −

1

2u

]
=

1

2u
E
l

[
max

i
[

2u−1∑
h=1

θh(−1)⟨i,h⟩]

]

≤ 1

2u
E
l

[
max

i

∣∣∣∣∣
2u−1∑
h=1

θh(−1)⟨i,h⟩
∣∣∣∣∣
]
≤ 1

2u
E
l

[
2u−1∑
h=1

|θh|

]

=
1

2u

2u−1∑
h=1

2µh =
1

2u−1

2u−1∑
h=1

µh < 2max
h

µh.

To derive the lower bound, let h∗ = argmaxh µh, and define the random
index J ∈ {0, . . . , 2u − 1} uniformly sampled from:

{J ∈ [0, 2u − 1] | (−1)⟨J,h
∗⟩ = sign(θh∗)}.

We have:

AdvX =
1

2u
E
l

[
max

i

2u−1∑
h=1

θh(−1)⟨i,h⟩
]

≥ 1

2u
E
l

[
E
J

[
2u−1∑
h=1

θh(−1)⟨J,h⟩
]]

=
1

2u
E
l

[
2u−1∑
h=1

θh E
J
[(−1)⟨J,h⟩]

]
.

The inner expectation simplifies because: - For h = h∗, we have EJ [(−1)⟨J,h
∗⟩] =

sign(θh∗); - For h ̸= h∗, since ⟨J, h⟩ is independent of ⟨J, h∗⟩, we get EJ [(−1)⟨J,h⟩] =
0.
Therefore:

AdvX ≥
1

2u
E
l
[θh∗ · sign(θh∗)] =

1

2u
E
l
[|θh∗ |] = 1

2u
· 2µh∗ =

µh∗

2u−1
.

This completes the proof. ⊓⊔

3.3 Tightness of the Decomposition

We continue with the convention from the previous proof and denote Adv⟨X,h⟩
by µh. The decomposition-based approach bounds the adversary’s advantage by:

AdvX ≤
1

2u−1

∑
h̸=0

µh.

Our goal in this subsection is twofold: first, we show that this upper bound
is tight (i.e., achievable); second, we demonstrate that for any δ-noisy leakage
function, the quantity 1

2u−1

∑
h̸=0 µh remains strictly below δ.

13



Achievability. Consider the trivial case where the leakage function fully reveals
the variable, i.e., L(X) = X. Then, for every nonzero h, the adversary perfectly
learns the binary variable ⟨X,h⟩, and thus µh = 1

2 .
Substituting into the decomposition bound gives:

AdvX ≤
1

2u−1
·
(
(2u − 1) · 1

2

)
= 1− 1

2u
.

On the other hand, since the adversary recovers X exactly, we have:

AdvX = Pr(X̂ = X)− 1

2u
= 1− 1

2u
.

Hence, the bound is tight in this case.

Lemma 7. Let X ∈ F2u be a uniform variable with leakage function L(X) such
that SD(X ; X | L(X)) = δ. Then:

1

2u−1

2u−1∑
h=1

µh < δ.

Proof. Let {p0, p1, . . . , p2u−1} denote the posterior distribution of X given a
leakage instance l. Since ⟨X,h⟩ is a binary random variable, we can express µh

as:

µh =
1

2
E
l

∣∣∣∣∣∣
∑
⟨i,h⟩=0

pi −
1

2

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
⟨i,h⟩=1

pi −
1

2

∣∣∣∣∣∣
 . (7)

Let us define:

qi ≜ pi −
1

2u
, so that

∑
i

qi = 0.

Then, the definitions of δ and µh become:

δ =
1

2
E
l

[∑
i

|qi|

]
, µh =

1

2
E
l

∣∣∣∣∣∣
∑
⟨i,h⟩=0

qi

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
⟨i,h⟩=1

qi

∣∣∣∣∣∣
 . (8)

While the triangle inequality immediately gives µh ≤ δ, we aim to show that the
average over all nonzero h is smaller than 1

2δ. This requires a refined argument.

Partitioning Strategy. We begin by partitioning each qβ > 0 into non-negative
components:

qβ =

2u−1∑
α=0

aβ,α, where aβ,α ≥ 0.

These components are then redistributed to offset the negative entries, by defin-
ing:

qα = −
∑
β

aβ,α, for all qα ≤ 0.
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q3 q4 q5 q6 q7

q0 a0,3 a0,4 a0,5 a0,6 a0,7
q1 a1,3 a1,4 a1,5 a1,6 a1,7
q2 a2,3 a2,4 a2,5 a2,6 a2,7

We illustrate this partitioning strategy with a simple example. Let u = 3, and
suppose that q0, q1, q2 are positive while q3 through q7 are negative. The parti-
tioning can be visualized as the following table:

For brevity, we omit the details of how this partitioning is constructed.
Now consider the effect on absolute value terms such as |qβ + qα + c|, where

qβ > 0, qα ≤ 0, and c is the sum of the remaining terms. We can show that
|qβ + qα| ≤ |qβ |+ |qα| − 2aβ,α, and we derive:

|qβ + qα + c| ≤ |qβ + qα|+ |c| ≤ |qβ |+ |qα| − 2aβ,α + |c|.

Loss Factor from Pairwise Cancellation. Applying this to all sums in µh, we
observe that each pair (qβ > 0, qα < 0) appears in the same half of the partition
(either 0 or 1 side) for half of the nonzero h’s. Hence, each such pair contributes
a “loss” of at least:

2u − 1

2
· 2aβ,α.

Summing over all such pairs yields a total loss of:

(2u − 1)
∑
β,α

aβ,α = (2u − 1)
∑

α,qα<0

(−qα),

where we used
∑

β aβ,α = −qα. Since
∑

i qi = 0, the total positive mass equals
the total negative mass:∑

α,qα<0

(−qα) =
∑

β,qβ>0

qβ =
1

2

∑
i

|qi|.

Final Bound. Combining everything:

2u−1∑
h=1

µh ≤
2u − 1

2
E
l

[∑
i

|qi|

]
− 2u − 1

2
· 1
2
E
l

[∑
i

|qi|

]

=
2u − 1

4
E
l

[∑
i

|qi|

]
=

2u − 1

2
δ.

Dividing both sides by 2u−1, we get:

1

2u−1

2u−1∑
h=1

µh ≤
2u − 1

2u
δ < δ,

which concludes the proof. ⊓⊔
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3.4 Application of Decomposition to Mask Encodings

Lemma 6 expresses the side-channel security of a variable X ∈ F2u in terms
of the security of its binary projections ⟨X,h⟩. This decomposition reduces the
complex task of estimating AdvX [l ← L(X)] to the simpler computation of the
binary advantages µh = Adv⟨X,h⟩[l ← L(X)]. The strength of this approach
becomes especially apparent when applied to masked encodings.

Consider the setting of masked encoding, where a secret X is shared as
X = (X1, . . . , Xn), and the adversary observes L(X) = (L(X1), . . . , L(Xn)).
For each nonzero h ∈ {1, . . . , 2u − 1}, the inner product satisfies the binary
relation:

⟨X,h⟩ = ⟨X1, h⟩ ⊕ · · · ⊕ ⟨Xn, h⟩.

That is, ⟨X,h⟩ is itself masked by the shares ⟨Xi, h⟩, making it a binary secret
with a standard masked encoding.

Applying Lemma 5, the advantage of the adversary in recovering ⟨X,h⟩ from
the masked leakage is given by:

Adv⟨X,h⟩[l← L(X)] = 2n−1
(
Adv⟨X,h⟩[l← L(X)]

)n
= 2n−1 (µh)

n
,

where µh = Adv⟨Xi,h⟩[l← L(Xi)] is the advantage from a single share.
Combining this with the upper bound from Lemma 6, we obtain:

AdvX [l← L(X)] ≤ 1

2u−1

2u−1∑
h=1

2n−1µn
h =

1

2u

2u−1∑
h=1

(2µh)
n <(I) ∆ ≤(II) 2

n−1δn,

where:

– ∆ = SD(X ; X | L(X));
– (I) follows from Lemma 7, applied to the masked case;
– (II) follows from Lemma 4.

For clarity, we restate the result as a theorem.

Theorem 1. Let µh denote the adversary’s advantage in predicting ⟨X,h⟩ from
the leakage L(X), for h ∈ {1, . . . , 2u−1}. Then, in a masked encoding with share
leakage L(X), the adversary’s advantage satisfies:

1

2u
max
h

(2µh)
n ≤ AdvX [l← L(X)] ≤ 1

2u

2u−1∑
h=1

(2µh)
n < max

h
(2µh)

n.

Interpretation in Terms of Mutual Information Theorem 1 shows that
if 2µh < 1 for all h, then the adversary’s advantage AdvX decays exponentially
with the number of shares n. In this subsection, we connect the condition µh < 1

2
to the mutual information between the binary projection ⟨X,h⟩ and the leakage
L(X). Specifically, we show that:

MI
(
⟨X,h⟩ ; L(X)

)
< 1 =⇒ µh < 1

2 .
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By definition of mutual information for a binary variable [8], we have:

MI
(
⟨X,h⟩; L(X)

)
= 1 − H

(
1
2 ± µh

)
, (9)

where H(·) denotes the binary entropy function.2

The mutual information reaches its maximum value of 1 only when H( 12 ±
µh) = 0, i.e., when µh = 1

2 . This implies that the leakage L(X) fully determines
⟨X,h⟩. Therefore, whenever

MI
(
⟨X,h⟩; L(X)

)
< 1,

the corresponding advantage µh must satisfy µh < 1
2 , ensuring that masking

offers meaningful security for the binary component ⟨X,h⟩.

Revisiting Previous Examples

Example 3. We revisit Example 2 to highlight the strength of the decomposition
approach. For X ∈ F22 with leakage L(X) = (x1⊕ e1) ∥ (x0⊕ e0), where Pr(e0 =
1) = Pr(e1 = 1) = e, we had:

δ = SD(X ; X | L(X)) =
(
1
2 − e

) (
3
2 − e

)
.

Under mask encoding, we previously derived:

∆ = SD(X ; X | L(X)) = 2n−1
(
1
2 − e

)n (
1 + 1

2 (1− 2e)n
)
.

For this leakage, Example 1 (with u = 1) yields:

µ1 = µ2 = 1
2 − e,

corresponding to the adversary’s advantage in predicting x0 and x1, respectively.
Similarly, for µ3, which corresponds to predicting x0 ⊕ x1, we compute:

µ3 = 1
2 − 2e(1− e).

By Lemma 6, the decomposition-based bound for unmasked X becomes:

AdvX [l← L(X)] ≤ 1
2 (µ1 + µ2 + µ3) =

(
1
2 − e

) (
3
2 − e

)
= δ.

For masked encoding, Theorem 1 gives:

AdvX [l← L(X)] ≤ 2n−2 (µn
1 + µn

2 + µn
3 ) = ∆.

2 The mutual information of a Binary Symmetric Channel (BSC) between A and B is

MI(A;B) = H(A)− H(A | B) = 1− H(Pe),

where Pe is the probability of incorrectly estimating A given B. In our setting,
µh = |Pe − 1

2
|, so Pe = 1

2
± µh.
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This confirms the tightness of our bound. For instance, setting e = 0.1, we get
δ = 0.56. Since δ > 1

2 , Lemma 4 cannot guarantee masking security. Meanwhile,
mutual information each share is MI(Xi; L(Xi)) = 1.06, which exceeds the 0.72
threshold required by Ito et al. [21] for masking to be secure (see Subsection 1.1).
Thus, neither criterion provides a conclusive answer—while our method confirms
that masking is indeed secure in this case. ⊓⊔

Example 4. Recall the leakage function ZV(X), previously introduced as:

ZV(X) =

{
νa if X = 0,

νb ̸= νa otherwise.

For this model, (1) yields ϵmin = 1, rendering the δ-noisy to ϵ-random probing
reduction inapplicable for analyzing masking security.

In contrast, applying our decomposition approach, we compute each µh = 1
2u

using relation (7). Then, by Theorem 1, the adversary’s advantage under masking
satisfies:

AdvX [l← L(X)] ≤ 2n−u
2u−1∑
h=1

µn
h = (2u − 1) 2n−u−nu,

which decreases exponentially with n, provided u > 1. Thus, even though the
standard reduction fails, our approach confirms that masking remains effective
in this setting. ⊓⊔

Application to Leakage Certification. Leakage certification laboratories
evaluate cryptographic implementations on physical devices to assess their re-
sistance against side-channel attacks (see [11, 30]). These evaluations often rely
on estimating metrics such as MI(X ; L(X)) and SD(X ; X | L(X)). Estimating
these quantities requires knowledge of the joint distribution (X, L(X)), which
can be derived either through parametric models (e.g., Gaussian with estimated
parameters) or non-parametric methods (e.g., histogram-based) [2, 16].

Our work introduces an additional criterion for leakage assessment. Specifi-
cally, for a u-bit variable X, we propose verifying the condition:

MI
(
⟨X,h⟩ ; L(X)

)
< 1 for all h ∈ [1, 2u − 1].

Masking provides meaningful side-channel protection if and only if this condition
holds for every nontrivial bitwise projection ⟨X,h⟩.

Using Equation (9), we can express the bounds from Theorem 1 in terms of
mutual information:

1

2u

(
2max

h

∣∣ 1
2 − H−1

(
Ih

)∣∣)n

≤ AdvX [l← L(X)] <

(
2max

h

∣∣ 1
2 − H−1

(
Ih
)∣∣)n

,

where Ih = 1−MI
(
⟨X,h⟩ ; L(X)

)
, and H−1 is the inverse of the binary entropy

function.
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3.5 Experimental Results and Determining Masking Order

We perform our experiments on a ChipWhisperer CW308 board hosting an
STM32F303 UFO processor,3 running an unprotected 8-bit software implemen-
tation of AES (included in the ChipWhisperer package). Power traces are cap-
tured using a ChipWhisperer-Lite, synchronized at a sampling rate four times
the target’s clock frequency.

The targeted intermediate value is the output of the first S-box in the first
round:

X = S-box(P [0]⊕K[0]).

A correlation power analysis (CPA) using only 20 traces successfully recovers
the secret byte, indicating a low noise level and motivating the need to assess
the feasibility and necessary order of masking.

To this end, we estimate the bias parameters µh through profiling. Specif-
ically, we train a deep neural network to predict X from power traces. The
network processes one-dimensional input traces and has the following architec-
ture:

– A 1D convolutional layer with 32 filters of size 3, followed by ReLU activa-
tion.

– A max-pooling layer with pool size 2.
– A second 1D convolutional layer with 64 filters of size 3, followed by ReLU

activation.
– Another max-pooling layer with pool size 2.
– A flattening layer, followed by a dense layer with 128 ReLU-activated neu-

rons.
– A final dense output layer with 256 neurons (corresponding to all possible

S-box output values), followed by softmax activation.

We trained this model on 10,000 labeled traces with ground truth X =
S-box(P [0]⊕K[0]). In the attack phase, the model’s output corresponds to the
posterior distribution of X given the leakage in a trace.

Using this posterior, we estimate the binary error probability Pe for com-
puting the bitwise projection ⟨X,h⟩ =

⊕7
i=0 xihi for each h ∈ {1, . . . , 255}. The

neural network demonstrates high accuracy in estimating these projections.
Figure 1 shows the estimated Pe for all values of h, based on 1,000 attack

traces. The minimum error occurs at h = 255, which corresponds tomod(HW(X), 2).
The corresponding (maximum) bias is:

µh = (1− Pe)− 1
2 = 0.32.

Substituting this value into the bound from Theorem 1, we obtain the fol-
lowing security bounds for masking in this setting:

1

256
· (0.64)n ≤ AdvX [l← L(X)] < (0.64)n.

These bounds illustrate that while the adversary retains a noticeable advan-
tage for small n, increasing the masking order rapidly improves security.

3 https://github.com/newaetech/chipwhisperer

19

https://github.com/newaetech/chipwhisperer


32 64 96 128 160 192 224 255
0.15

0.25

0.35

h

P
e

Fig. 1: Binary error probability Pe in estimating ⟨X,h⟩.

4 Masking in Odd Prime Fields

Grassi et al. [18], building on earlier results by Dziembowski et al. [13], showed
that masking becomes ineffective in the presence of highly informative leakage
functions—such as L(X) = HW(X)—unless the masking is performed over an
odd prime field. This insight has sparked further investigation into the security
properties of masking in prime fields [14].

In this section, we contribute to this line of work with the following findings:

– In Subsection 4.1, we observe that the adversary’s advantage AdvX decays
more rapidly in prime fields.

– In Subsection 4.2, we establish a general condition under which masking
guarantees a strict reduction in AdvX .

– In Subsection 4.3, we show that in prime fields, AdvX decreases exponen-
tially with n as long as minh MI(⟨X,h⟩; L(X)) < 1. This condition implies
that there exists at least one projection not fully leaked to the adversary—a
substantially more relaxed requirement compared to the case of binary ex-
tension fields.

– In Subsection 4.4, we prove a conjecture posed by Dziembowski et al. [13]
concerning masking in additive groups such as Zm, where m is neither a
prime nor a power of two.

4.1 AdvX Decays Faster in Prime Fields

We define a leakage class as symmetric if, for a uniform X ∈ Fq, observing
an instance l of the leakage transforms the posterior distribution X | l into

(pe0 , pe1 , . . . , peq−1
), where

∑q−1
i=0 pei = 1 and pei denotes the probability mass

on the value X + i.4 In this notation, pe0 represents the probability of a correct
estimation, and the adversary’s advantage is:

AdvX = pe0 −
1

q
.

4 We refer to this as a symmetric leakage class because it generalizes the binary sym-
metric channel.
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Consider a masked encoding with n = 2, where X1 and X2 are the shares of
X such that X = X1 + X2. Upon observing the leakages, the adversary forms
estimates X̂1 and X̂2, and reconstructs X via X̂1 + X̂2. The reconstruction is
correct if either both estimates are correct or the errors in X̂1 and X̂2 cancel out
(i.e., are i and q − i). Hence, the updated success probability becomes:

p′e0 = (pe0)
2 +

q−1∑
i=1

peipeq−i
. (10)

Lemma 8. For the defined symmetric leakage class, when the field order q is
prime, AdvX decays faster with increasing n.

Proof. In a prime field, the elements i and q− i are distinct for all 1 ≤ i ≤ q−1
2 ,

so we can rewrite Equation (10) as:

p′e0 = (pe0)
2 + 2

q−1
2∑

i=1

peipeq−i .

In contrast, when q = 2u, we have q − i = i, so the equation simplifies to:

p′e0 = (pe0)
2 +

q−1∑
i=1

p2ei .

By applying the inequality 2ab ≤ a2 + b2, we obtain:

(pe0)
2 + 2

q−1
2∑

i=1

peipeq−i ≤ (pe0)
2 +

q−1∑
i=1

p2ei .

This shows that p′e0 , and hence the adversary’s success probability and ad-
vantage, are lower in prime fields than in binary extension fields. ⊓⊔

4.2 When Does AdvX Decrease with Masking?

For a masked encoding of the secret X, we show that if there is no hole in the
posterior distribution of the shares after observing the leakage vector, then AdvX
strictly decreases.

Definitions. For later reference, we define a leakage instance l as dummy if it
induces no change in the distribution of X | l.5 Under dummy leakage, the peak
point of the posterior distribution is 1

q . A hole in a distribution is an element of
its domain with zero probability mass. The support of a random variable refers to
the number of domain elements with non-zero probability mass, and we denote
the support size of X by |X|.
5 We refer to it as dummy because any random variable that is independent of X has
a similar effect.
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Problem Statement. Let X1 and X2 be shares of X in Fq, and suppose the adver-
sary observes leakage instances l1 ← L(X1) and l2 ← L(X2). The resulting pos-
terior distributions are denoted by P1 = (p10, . . . , p

1
q−1) and P2 = (p20, . . . , p

2
q−1),

respectively. Let p1i∗ and p2j∗ denote the peak probabilities in these distributions.

To estimate the value of X, a maximum a posteriori (MAP) adversary
computes the distribution of the sum (X1 | l1) + (X2 | l2), denoted by P =
(p0, . . . , pq−1). The adversary outputs the index of the peak point of P as X̂,
and the corresponding advantage is denoted AdvX [l1, l2 ← L(X1), L(X2)]. Our
goal is to identify conditions ensuring:

AdvX [l1, l2 ← L(X1), L(X2)] < AdvXi
[li ← L(Xi)],

which implies that masking strictly improves the side-channel security of X.

Lemma 9. If, for at least one non-dummy leakage instance, the posterior dis-
tributions P1 and P2 have no holes—that is, minP1 > 0 and minP2 > 0—then
the adversary’s advantage strictly decreases.

Proof. For 0 ≤ i < q, define ζi =
p1
i

p1
i∗

and ξi =
p2
i

p2
j∗
. Since p1i∗ and p2j∗ are the

maximum values, we have ζi ≤ 1 and ξi ≤ 1. From the normalization
∑

i p
1
i = 1,

we obtain:

p1i∗ =
1∑
i ζi

, p2j∗ =
1∑
i ξi

.

Let k∗ be the index of the peak of P. We show that pk∗ ≤ min{p1i∗ , p2j∗}.
Without loss of generality, assume min = p1i∗ . Then:

pk∗ =
∑
i

p1k∗−i p
2
i = p1i∗p

2
j∗

∑
i

ζk∗−i ξi ≤ p1i∗ ,

because p1i∗ > 0 and each ζk∗−i ≤ 1. The inequality holds since:∑
i

ζk∗−i ξi ≤
∑
i

ξi.

Equality would require:

∀i, ζk∗−i = 1, (11)

which implies p1i = p1i∗ for all i, hence a uniform distribution: p1i∗ = 1
q . This

contradicts the assumption that the leakage is non-dummy. Thus, the strict
inequality pk∗ < min{p1i∗ , p2j∗} must hold for at least one instance.

Therefore, taking expectations over all leakage instances, we obtain:

El[pk∗ ] < El[p
1
i∗ ] = El[p

2
j∗ ] ⇒ AdvX [l← L(X)] < AdvX [l← L(X)]. ⊓⊔
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Reaching a Hole-Free Posterior Distribution. When the leakage function is less
noisy—e.g., L(X) = HW(X)—the posterior distribution of Xi | L(Xi) typically
contains holes, preventing the application of Lemma 9. However, increasing the
number of shares can eliminate such holes, as we now explain.

Although Lemma 9 applies directly to the case n = 2, the result general-
izes naturally to higher n. Let X1, . . . , X2n be shares of X, with corresponding
leakages L(X1), . . . , L(X2n). The task of estimating X from its leakage vector
can be decomposed into two stages: first, estimating S1 = X1 + · · · + Xn and
S2 = Xn+1 + · · ·+X2n, and then estimating X = S1 + S2.

If, beyond a certain threshold n0, the distribution of S1 | L(X1), . . . , L(Xn)
has no holes, then Lemma 9 implies that AdvX will decrease with n, indicating
security improvement through masking.

Because the shares and leakages are independent, the distribution of S1 |
(L(X1), . . . , L(Xn)) equals the convolution X1 | l1 + · · · +Xn | ln. At any leak-
age instance, each Xi | li is a distribution, and our goal is to determine when
the support of the sum reaches the full domain Fq, which ensures a hole-free
distribution.

Lemma 10 (Generalized Cauchy-Davenport Theorem). Let Z1, . . . , Zt

be independent random variables with supports |Z1|, . . . , |Zt| over a prime field
Fq. Then:

|Z1 + · · ·+ Zt| ≥ min {|Z1|+ · · ·+ |Zt| − t+ 1, q} .

Proof. This is a direct generalization of the classical Cauchy-Davenport theorem,
which states the result for t = 2. The case t = 2 was previously used in the side-
channel literature by Dziembowski et al. [13]. ⊓⊔

Using this lemma, we conclude that if each Xi | li has support size greater
than 1 (i.e., |Xi | li| > 1), then there exists some n ≥ n0 for which the convolution
X1 | l1+ · · ·+Xn | ln is hole-free. Consequently, AdvX decreases with increasing
n.

4.3 Advantage in Terms of ⟨X,h⟩ Projections

In the case of fields with characteristic two (q = 2u), we previously reduced
the security of masking to the security of binary projections ⟨X,h⟩. In this
subsection, we explore the implications of these projections for the security of
masking in prime fields. To this end, we rely on the following result derived from
a bound by Dziembowski et al. [13].

Lemma 11 ( [13], Theorem 1). Let Fq be a prime field, and suppose the
leakage is δ-noisy. That is, SD(X ; X | L(X)) = δ < 1− 1

q . Then:

∆ ≤ 1

q
· 2−nθ4

2 ,

where ∆ = SD(X ; X | L(X)) and θ = (1− 1
q )− δ.
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A straightforward corollary (using Lemma 1) yields:

AdvX [l← L(X)] ≤ 1

q
· 2−nθ4

2 . (12)

Now, suppose there exists h such that the leakage L(X) does not fully deter-
mine ⟨X,h⟩. That is, the bias µh of this bit is bounded by 0 ≤ µh < 1

2 . In the
borderline case where µh → 1

2 , we can approximate the statistical distance as
follows:6

SD(X ; X | L(X)) ⪅
1

2
+ µh −

1

q
.

Substituting into the bound (12), we obtain:

AdvX [l← L(X)] ≤ 1

q
· 2−

n(1/2−µh)4

2 , (13)

which indicates that the adversary’s advantage decreases exponentially in n as
long as µh < 1

2 .

We emphasize that the restriction to a single projection is made solely for
illustrative purposes; the bound provided by Lemma 11 remains tighter and more
general.

4.4 General Requirement for Secure Masking

For a general additive group G, Dziembowski et al. [13] showed that there exists

a leakage function with noise parameter δ0 = 1 − |H||G| that renders masking

entirely ineffective. Here, H denotes the largest proper (non-trivial) subgroup of
G. They further conjectured that for any leakage with higher noise—i.e., any δ-
noisy leakage with δ < δ0—masking should become effective. In this subsection,
we prove their conjecture for the case where G is an abelian group and derive
an upper bound on the adversary’s advantage.

Lemma 12. Let X be uniformly distributed over an abelian group G with largest
proper subgroup H. If the leakage satisfies

δ = SD(X ; X | L(X)) < 1− |H||G| ,

then:

AdvX [l← L(X)] ≤ 1

α
· 2−nθ4

2 ,

where α = [G : H] = |G|/|H| is the index of H in G, and θ = 1− |H||G| − δ.

6 This approximation assumes a worst-case scenario where the only uncertainty re-
maining about X after observing L(X) lies in the value of ⟨X,h⟩, which takes values
in {0, 1} with probabilities 1

2
± µh.
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Proof. We base our proof on the structure of the quotient group K := G/H. Since
H is the largest proper subgroup of G, the quotient group K has prime order [31],
and is therefore a cyclic group isomorphic to Zp for some prime p = |K|. In this
setting, instead of analyzing the security of the full secret X ∈ G, we study its
image under the natural projection:

[X] := X +H ∈ K,

which identifies the coset of X modulo H.
We now consider the adversary’s advantage in guessing the correct coset

[X] given the leakage. Since the leakage on X induces leakage on [X], we can
apply Lemma 11 to the group K. Rewriting the noise threshold in terms of
|K| = α = |G|/|H|, the condition becomes:

δ < 1− 1

|K|
.

Thus, Lemma 11 yields the following bound on the adversary’s advantage for
the coset:

Adv[X][l← L(X)] ≤ 1

|K| · 2
−nθ4

2 ,

where θ = 1− 1
|K| − δ = 1− |H||G| − δ, as claimed.

It remains to show that:

AdvX [l← L(X)] ≤ Adv[X][l← L(X)].

This inequality holds by the data-processing inequality : since [X] is a determinis-
tic function of X, the adversary’s advantage in guessing the full secret X cannot
exceed the advantage in guessing the coarser value [X].

Hence, we conclude:

AdvX [l← L(X)] ≤ 1

α
· 2−nθ4

2 . ⊓⊔

5 Security of Linear Gadgets

Our analysis so far has focused on standalone secrets and their masked encodings.
We now extend this to more complex structures, specifically linear gadgets. Our
goal is to demonstrate the applicability of the proposed decomposition technique
for evaluating security in such settings.

Gates and Gadgets. A gadget is a family of circuits (one per order n) that
securely implements a masked version of a gate. Let G : (F2u)

t → F2u be a gate
with fan-in t. For example, XOR and AND have t = 2. The corresponding gadget,
denoted SG : (Fn

2u)
t → Fn

2u , takes masked inputs and returns masked outputs.
A refresh gadget has fan-in and fan-out 1. It re-randomizes the encoding

of a value X while preserving its underlying secret, i.e.,
⊕

i Xi =
⊕

i X
′
i. A

well-known example is the SR-SNI gadget [1], shown in Algorithm 1.
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Algorithm 1 SR-SNI
Input X = (X1, . . . , Xn)
Output X ′ = (X ′

1, . . . , X
′
n)

1: for i = 1 to n do
2: for j = i+ 1 to n do

3: r
$← F2u

4: Xi = Xi ⊕ r
5: Xj = Xj ⊕ r

6: return X ′ = X

5.1 Problem Statement

Let Σn = {V1, . . . , VT(n)} be the set of intermediate variables in an F2-linear
gadget processing secret X ∈ F2u . Besides the shares of X, Σn may include
random values whose leakage could help an adversary estimate X.

The linearity assumption implies the existence of a matrix P n ∈ FP(n)×(T(n)+1)
2

such that:
P n · [X,V1, . . . , VT(n)]

† = 0. (14)

This system describes all parity constraints among the variables, and any addi-
tional relations are linear combinations of these rows. The adversary is assumed
to know P n (or any equivalent form).

Side-channel measurements yield:

Ln = [L(V1), . . . , L(VT(n))],

and the adversary’s goal is to estimate X from Ln and P n. We denote their
advantage as AdvX [ln ← Ln].

MAP Adversary and Exact Advantage. Let Sn be the set of all solutions
to (14). Each S ∈ Sn is a vector of length T(n)+1, with S(0) denoting the value
of X. The MAP adversary outputs:

X̂ = argmax
α∈F2u

∑
S∈Sn
S(0)=α

Pr(S | ln).

The corresponding advantage is:

AdvX [ln ← Ln] = Eln

[
Pr(X̂ = X | ln)

]
− 1

2u
.

A Non-Tight Upper Bound. To obtain a computable upper bound, we apply
the reduction from δ-noisy leakage to ϵ-random probing. We replace each leakage
L(Vi) with its erasure version ϕϵ(Vi), where ϵ ≥ ϵmin and ϵmin is derived from L
(cf. (1)). This yields:

AdvX [ln ← Ln] ≤ AdvX [l1, . . . , lT(n) ← ϕϵ(V1), . . . , ϕ
ϵ(VT(n))].
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We denote this bound by Adv(q, n, ϵ), where q = 2u. Since smaller ϵ yields
less information, we have:

AdvX [ln ← Ln] ≤ Adv(q, n, ϵmin) ≤ Adv(q, n, ϵ). (15)

Jahandideh et al. [22] estimated Adv(q, n, ϵ) for various gadgets. For the
SR-SNI gadget with n < 30 and ϵ < 0.15, they showed:

Adv(q, n, ϵ) ≤ q − 1

q
· ϵ0.6n. (16)

However, for some leakage functions—e.g., L(X) = ZV(X)—the reduction
gives ϵmin = 1, leading to a trivial bound:

AdvX [ln ← Ln] ≤ 1− 1

q
.

In the next subsection, we show how our decomposition approach avoids this
issue and yields tighter bounds in F2u settings.

5.2 Decomposition into Binary Systems

In an F2-linear system such as

P n · [X,V1, . . . , VT(n)]
† = 0,

the projections ⟨X,h⟩ and ⟨Vi, h⟩ also satisfy the same linear structure. More
precisely:

Lemma 13. Let h ∈ {1, . . . , 2u−1}. Then the system P n·[X,V1, . . . , VT(n)]
† = 0

implies:
P n · [⟨X,h⟩, ⟨V1, h⟩, . . . , ⟨VT(n), h⟩]† = 0.

Proof. Using the linearity of the binary inner product:

⟨V1 ⊕ V2, h⟩ = ⟨V1, h⟩ ⊕ ⟨V2, h⟩, ⟨bV, h⟩ = b · ⟨V, h⟩

for b ∈ F2, the result follows by applying these identities to each row of P n. ⊓⊔

A Tighter Upper Bound for AdvX [ln ← Ln]. The adversary also obtains
side-channel leakage from each intermediate variable. From Lemma 6, we derive
the following bound for the secret X:

AdvX [ln ← Ln] ≤
1

2u−1

2u−1∑
h=1

Adv⟨X,h⟩[ln ← Ln], (17)

where each term Adv⟨X,h⟩[ln ← Ln] corresponds to the adversary’s advantage in
estimating a single binary projection ⟨X,h⟩ under δ-noisy leakage.
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Applying the reduction from δ-noisy leakage to ϵ-random probing, we obtain:

Adv⟨X,h⟩[ln ← Ln] ≤ Adv(2, n, ϵhmin),

where ϵhmin depends on both the projection index h and the leakage function
L(V ). Importantly, while the systems for X and ⟨X,h⟩ are structurally the same,
the field size is reduced to F2.

For binary variables, we previously established that:

ϵhmin = 2µh, (18)

where µh denotes the bias in estimating ⟨V, h⟩. One way to compute µh is via
mutual information. As discussed in Section 3.4, it can be expressed as:

µh =

∣∣∣∣12 − H−1
[
1−MI

(
⟨V, h⟩ ; L(V )

)]∣∣∣∣ ,
where H−1 is the inverse of the binary entropy function.

Putting all of this together, we obtain:

AdvX [ln ← Ln] ≤
1

2u−1

2u−1∑
h=1

Adv(2, n, ϵhmin) ≤ 2 ·max
h

Adv(2, n, ϵhmin). (19)

This shows that the decomposition approach enables a tighter reduction from
the δ-noisy to the ϵ-random probing model for F2u -valued linear circuits.

Example 5. To illustrate the usefulness of the upper bound in (19), consider the
leakage function ZV(V ) and the SR-SNI gadget. As discussed in Example 4, for
ZV(V ), we have µh = 1

2u , implying:

ϵhmin = 2µh =
1

2u−1
.

Applying the bound from (16), we obtain:

AdvX [ln ← Ln] ≤ Adv(2, n, 2µh) ≤
1

2

(
1

2u−2

)0.6n

,

which holds as long as 4µh < 0.15, i.e., u ≥ 5.
Without the decomposition approach introduced in this work, the minimum

erasure rate would be ϵmin = 1, yielding a trivial upper bound of AdvX [ln ←
Ln] ≤ 1. ⊓⊔

6 Conclusion

This work establishes necessary and sufficient noise conditions for the security of
masked encodings over binary extension fields. We prove that security requires
the leakage to conceal all linear combinations of an intermediate’s bits—resolving
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a longstanding open question about the minimal noise needed for secure masking.
This insight is particularly important in high-SNR regimes, where existing noise
assumptions are overly conservative.

We also demonstrated how the proposed decomposition approach applies to
the analysis of masked circuits, with a focus on linear gadgets. By reducing the
problem to binary subfields, we enabled efficient estimation of security metrics
and more accurate determination of the noise thresholds required for protection.

While our analysis focused on linear structures, extending this framework to
non-linear gadgets and complete circuits remains an open challenge. We leave
this as promising future work toward advancing noise-based countermeasures in
side-channel security.
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