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Abstract. In block ciphers, the attacker should not be able to distinguish a block cipher
from a random permutation; therefore the existence of a distinguisher is important.
Cryptanalysis of the reduced-round variants of block ciphers is also important in
cryptographic design. AES is the most widely used block cipher, and currently,
the best-known distinguisher for 5-round AES has a data and time complexity of
229.95 with a success probability of 55%. In this paper, we propose the massive
exchanged boomerang and multiple exchanged boomerang distinguishers for 5-round
AES. The massive exchanged boomerang distinguisher utilizes the probability that
the truncated difference for the returned plaintext pairs is such that, in each of its
diagonals, the 4 bytes are either all active, or all inactive. Although this probability
is very high for a random permutation, we significantly reduce it using the friend
pairs technique, while keeping the boomerang probability unchanged. This enables
us to distinguish a block cipher from a random permutation. The massive exchanged
boomerang distinguisher for 5-round AES has a data and time complexity of 231 with
a success probability of 70%. The multiple exchanged boomerang distinguisher is
constructed by clustering four trails that have the same input and output truncated
differences, enabling it to distinguish a block cipher from a random permutation with
lower complexity and higher success probability. The multiple exchanged boomerang
distinguisher for 5-round AES has a data and time complexity of 227.1 and a success
probability of 79.6%, which represents a new best-known result for the secret-key
distinguisher on 5-round AES.
Keywords: AES · Distinguisher · Boomerang · Exchanged Boomerang · Yoyo

1 Introduction
A block cipher is a cryptographic algorithm that encrypts data in fixed-size units using a
secret key. A block cipher is typically designed by repeating a round function multiple
times. While using many rounds ensures security, it also reduces efficiency. Therefore,
to design a block cipher that is both secure and efficient, it is important to calculate the
number of rounds that are secure against various attacks through security analysis of
reduced-round variants. Then designer determines the appropriate number of rounds by
adding margin rounds.

The security of a block cipher is generally evaluated by demonstrating its resistance
against various known attacks, which fall into two categories: distinguishing attacks and
key recovery attacks. A distinguishing attack aims to distinguish a block cipher from a
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random permutation, and is referred to as a distinguisher. In particular, the secret-key
distinguisher allows for the evaluation of the cipher’s randomness for any given key.

Well-known attacks on block ciphers include differential cryptanalysis (DC) [BS91] and
linear cryptanalysis (LC) [Mat94]. These cryptanalysis techniques were initially introduced
for the Data Encryption Standard (DES) and have since led to various variants. As these
analysis techniques evolved and computing power increased, the National Institute of
Standards and Technology (NIST) initiated a competition to develop a new block cipher
standard.

DC has been utilized and extended in various attacks, including truncated differen-
tials [Knu95], impossible differential cryptanalysis [Knu98], high-order differentials [Knu95],
boomerang attacks [Wag99], differential-linear attacks [LH94], integral [FKL+01], meet-
in-the-middle [DFJ13] and others. Most recently, variations of DC have been proposed,
such as the subspace trail [GRR16], the yoyo trick [RBH17, MRSA23], the multiple-of-
8 property [GRR17], mixture-differential cryptanalysis [Gra18, BDK+18], the exchange
attacks [BR19], and the fixed property [SKK+23].

In particular, we focus on the boomerang attack [Wag99] introduced at FSE 1999. The
boomerang attack, proposed by Wagner, is a technique that combines two high-probability
short differentials to achieve a higher overall probability boomerang trail in the adaptively
chosen ciphertexts setting. A boomerang trail consisting of an upper-part differential with
probability p and a lower-part differential with probability q has an overall probability of
p2q2. If p2q2 < 2−n (where n is the block size), it can be used as a distinguisher.

The boomerang attack has been extended into various variants. Plaintext-only variants,
the amplified boomerang [KKS01] and the rectangle attacks [BDK01], were presented
shortly after. To further study the dependence and the connectivity of upper and lower dif-
ferentials in the boomerang attack, Dunkelman et al. proposed the sandwich attack [DKS10].
Murphy showed that some boomerang characteristics were in fact impossible [Mur11]. Cid
et al. used the boomerang connectivity table (BCT) [CHP+18] to analyze the case where
the middle round is a single s-box layer. In [DDV20, SQH19, WP19], researchers studied
the case where the middle round is composed of several rounds. Yang et al. introduced
the double boomerang connectivity table (DBCT) [YSS+22] and showed that the relation
between neighboring rounds cannot be ignored. The truncated boomerang attack which
utilizes truncated differentials with boomerang is presented in EUROCRYPT 2023 [BL23].
The exchanged boomerang attack is an attack that utilizes the mixing technique (exchange
property [BR19]) from the retracing boomerang attack [DKRS20, BDK+24], and it has
also been utilized in the re-boomerang and boomerang chain distinguishers [YTXQ24].

The Advanced Encryption Standard (AES) [AES01] is the most widely used block cipher
and has demonstrated its security over the past 25 years. AES is designed by Daemen and
Rijmen in 1997 and standardized by the NIST in 2001. Due to its security, several block
ciphers with structures similar to AES have been proposed, such as SKINNY [BJK+16] and
MIDORI [BBI+15]. Additionally, many tweakable block ciphers, like KIASU-BC [JNP14]
and DEOXYS-BC [JNPS21], reuse the round function of AES in their designs and some
block cipher use reduced-round AES as a core component, such as Hound [FKKM16] and
WEM [CCD+17], which use 5-round AES, and TNT-AES [BGGS20], which uses 6-round
AES. Therefore, analyzing reduced-round variants of AES is particularly important.

The first secret-key distinguisher for 5-round AES, known as the multiple-of-8 distin-
guisher, was first presented by Grassi et al. at EUROCRYPT 2017 [GRR17]. In [RBH17],
the 5-round and 6-round yoyo distinguishers in an adaptively chosen plaintexts and cipher-
texts setting were presented by Rønjom et al. at ASIACRYPT 2017. However, there was
an error in the complexity calculation in [RBH17], and it was recomputed in [MRSA23].
In ASIACRYPT 2019, Bardeh et al. presented 5-round and 6-round distinguishers, known
as exchange attacks [BR19]. The current secret-key distinguishers for 5- and 6-round AES
are shown in Table 1.
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Our Contributions
In this work, we propose two new distinguishers for 5-round AES based on the exchanged
boomerang technique. The first is the massive exchanged boomerang distinguisher, which
uses the probability that the truncated difference of the returned plaintext pair is such
that, in each of its diagonals, the four bytes are either all active, or all inactive. The
second is the multiple exchanged boomerang distinguisher, which clusters four boomerang
trails that share the same input and output truncated differences. Both distinguishers are
experimentally verified. The main results are summarized in Table 1.

• We propose the massive exchanged boomerang distinguisher. It uses plaintext pairs
with one active diagonal and checks whether the truncated difference of the returned
plaintext pair is such that, in each of its diagonals, the four bytes are either all active,
or all inactive. The right pairs following the massive exchanged boomerang trail have
at most one active byte per column after the first round MC, which ensures that
the truncated difference of the returned pair is such that, in each of its diagonals,
the four bytes are either all active, or all inactive. Although this probability is very
high for a random permutation, we significantly reduce it using the friend pairs
technique [BLT20] and exchange active inverse diagonal technique, while keeping the
boomerang probability unchanged. The massive exchanged boomerang distinguisher
on 5-round AES has the data and time complexities of 231 with a success probability
of 70%. Although the fully active distinguisher does not provide better results than
the existing distinguishers, it is significant because it introduces a new approach for
constructing boomerang distinguishers based on fully active pairs.

• We propose the multiple exchanged boomerang distinguisher. It uses plaintext pairs
with one active diagonal and checks whether the returned plaintext pair is inactive
in one inverse diagonal. It is constructed by clustering four trails that have the same
input and output truncated differences, enabling it to distinguish a block cipher from
a random permutation with lower complexity and higher success probability. The
multiple exchanged boomerang distinguisher for 5-round AES has the data and time
complexities of 227.1 with a success probability of 79.6%. The multiple exchanged
boomerang distinguisher is, to the best of our knowledge, the best distinguisher for
5-round AES.

Organization
The remainder of the paper is organized as follows. Section 2 provides a brief introduction
to AES and explains the exchanged boomerang attack. In Section 3, we introduce the
exchanged boomerang attack, which serves as the basis for the distinguishers we propose,
and presents previously proposed examples. Section 4 introduces the massive exchanged
boomerang distinguisher for 5-round AES. In Section 5, we introduce the massive exchanged
boomerang distinguisher for 5-round AES. Finally, Section 6 concludes the paper. The
source code for the experiments in this paper is available online.1

2 Preliminaries
2.1 Description of the AES
AES [AES01] was designed by Daemen and Rijmen in 1997. It is a Substitution-Permutation
Network (SPN) block cipher with a block size of 128 bits. It supports key sizes of 128, 192,

1We have submitted the source code as Supplementary Material. After the anonymous review, we will
upload and make it publicly available on GitHub.
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Table 1: Summary of secret-key distinguishers for 5- and 6-round AES. Data complexity
is measured in chosen plaintexts (CP), adaptively chosen ciphertexts (ACC), or adaptively
chosen plaintexts and ciphertexts (ACPC). Time complexity is measured in the number of
equivalent 5-round AES encryptions (E) or memory accesses (M).

Property Rounds Data Time Succ. Ref.

Multiple-of-8 5 232 CP 235.6 M 99% [GRR17]
Exchange 5 230 CP 230 E 63% [BR19]

Yoyo 5 229.95 ACPC 229.95 M 55% [MRSA23]
Yoyo 5 230.65 ACPC 229.95 M 81% [MRSA23]

Massive ex. boom. 5 231 ACC 231 M 70% Sect. 4
Multiple ex. boom. 5 227.1 ACC 227.1 M 80% Sect. 5

Truncated Differential 6 289.4 CP 296.5 M 95% [BGL20]
Exchange Attack 6 288.2 CP 288.2 E 73% [BR19]

Truncated Boomerang 6 287 ACC 287 E 84% [BL23]
Exchange Attack 6 284 ACC 283 E 63% [Bar19]
Re-boomerang 6 282.33 ACPC 282.33 E 64% [YTXQ24]

Triple Boomerangs 6 277.82 ACPC 277.82 E 66% [YTXQ24]
Boomerang Chain 6 276.57 ACPC 276.57 E 60% [YTXQ24]

and 256 bits, and employs 10, 12, and 14 rounds for each respective key size. The internal
state of AES is represented as a 4× 4 array of bytes, with indexing done column-wise. The
round function of AES consists of four operations performed in the following order and
can be seen in Figure 1.

• SubBytes (SB) : The S-box operation is applied to each byte of the internal state.

• ShiftRows (SR) : The second, third, and fourth rows are rotated to the left by 1,
2, and 3 bytes, respectively.

• MixColumns (MC) : Each column is multiplied by a 4×4 MDS (Maximum Distance
Separable) matrix.

• AddRoundKey (AK) : The state is XORed with a 128-bit round key.

Round function R

AK SB

S

x
x
x
x

SR

C ←M× C

x
x

x
x

MC

Figure 1: Round function of AES [Jea16]

Before the first round, an additional AK is applied and in the final round the MC is
omitted. For the reduced-round AES, the MC in the final round is omitted. The round
are indexed from 1 to 14, with the initial whitening key AK as 0th round. The description
of the key schedule is omitted in this paper because it is not utilized.
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The bytes of each state of AES are numbered 0, 1, ..., 15, where for 0 ≤ i, j ≤ 3, the
j-th byte in the i-th row is numbered i + 4j. We define the notions of column, diagonal,
and inverse diagonal with respect to the state of AES. We define each column as the set of
bytes {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}, and {12, 13, 14, 15}, respectively. Each diagonal
is defined as the set of bytes {0, 5, 10, 15}, {1, 6, 11, 12}, {2, 7, 8, 13}, and {3, 4, 9, 14},
respectively. Each inverse diagonal is defined as the set of bytes {3, 6, 9, 12}, {2, 5, 8, 15},
{1, 4, 11, 14}, and {0, 7, 10, 13}, respectively.

2.2 Differential and Truncated Differential Cryptanalysis
Differential cryptanalysis (DC) [BS91] is a well-known and powerful cryptanalysis technique
for block ciphers. DC is a statistical attack on block ciphers that studies the propagation of
differences between two encrypted plaintexts through the encryption process. A differential
is defined by an input difference ∆in ∈ {0, 1}n and output difference ∆out ∈ {0, 1}n, where
n is the block size. We use the notation ∆in

E−→ ∆out with p when a differential exists
with probability p, where the probability is defined over a random plaintext P :

p = Pr[∆in
E−→ ∆out] = Pr[E(P )⊕ E(P ⊕∆in) = ∆out].

Since E is a permutation, we have Pr[∆in
E−→ ∆out] = Pr[∆out

E−1

−→ ∆in].
A truncated differential [Knu95] is defined by a set of input differences Din and a set

of output differences Dout. We use the notation Din
E−→ Dout to denote the existence of a

truncated differential with probability →p , defined as (with Avg denoting the average):
→
p = Pr[Din

E−→ Dout] = Avg∆in∈Din Pr[E(P )⊕ E(P ⊕∆in) ∈ Dout].

We also define the probability of the reverse truncated differential as

←
p = Pr[Dout

E−1

−→ Din] = Avg∆out∈Dout Pr[E−1(C)⊕ E−1(C ⊕∆out) ∈ Din],

where C is a random ciphertext. In general, Pr(Din
E−→ Dout) and Pr(Dout

E−1

−→ Din) are
different, and related as follows:

Pr(Din
E−→ Dout)

|Dout|
= Pr(Dout

E−1

−→ Din)
|Din|

.

2.3 Boomerang Attacks
In 1999, Wagner introduced the boomerang attack [Wag99], which combines two differential
trails to construct a boomerang trail that uses longer rounds in the adaptive chosen
ciphertext setting. In the boomerang attack, the encryption function E is divided into two
parts, E = E1 ◦E0. For upper part E0, there exists a differential trail ∆in

E0−→ ∆out with
probability p, and for the lower part E1, there exists a differential trail ∇in

E1−→ ∇out with
probability q. Wagner proposed to use these two differentials by constructing a quartet
(P1, P2, P3, P4) of the following form:

(P1, P1 ⊕∆in, E−1(E(P1)⊕∇out), E−1(E(P1 ⊕∆in)⊕∇out)).

To simplify the explanation and the corresponding Figure 2, we write Ci = E(Pi), and
E0(Pi) = Xi = E−1

1 (Ci) for i ∈ {1, 2, 3, 4}. The boomerang process is as follows.

1. Choose plaintext pairs (P1, P2) such that P1⊕P2 = ∆in, and ask for the corresponding
ciphertext pairs (C1, C2).
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2. Generate C3 = C1 ⊕ ∇out and C4 = C2 ⊕ ∇out, and ask for the corresponding
plaintext pairs (P3, P4).

3. Check if P3 ⊕ P4 = ∆in.

P1 P2

X1 X2

E0 E0

E1 E1

C1 C2

P3 P4

X3 X4

E0 E0

E1 E1

C3 C4

∆in

∆in

∇out ∇out

∆out

∆out

∇in ∇in

E

E0

E1

Figure 2: The Boomerang Distinguisher [Jea16]

Wagner remarked that, under the assumption that E0 and E1 are independent, the
boomerang probability pb that a quartet (P1, P2, P3, P4) holds P3⊕P4 = ∆in is p2q2. It can
be used as a distinguisher when p2q2 is significantly greater than 2−n, which is the expected
probability that a randomly constructed quartet (P1, P2, P3, P4) holds the boomerang
property for a random permutation. Given P1 ⊕P2 = ∆in and C1 ⊕C3 = C2 ⊕C4 = ∇out,
the probability pb is calculated as follows:

pb = Pr[P3 ⊕ P4 = ∆in]
≥ Pr[P3 ⊕ P4 = ∆in | X3 ⊕X4 = ∆out] · Pr[X3 ⊕X4 = ∆out]
≥ p · Pr[X3 ⊕X4 = ∆out | X1 ⊕X2 = ∆out] · Pr[X1 ⊕X2 = ∆out]
≥ p · Pr[X1 ⊕X2 = X3 ⊕X4] · p
≥ p2 · Pr[X1 ⊕X3 = X2 ⊕X4]
≥ p2 · Pr[X1 ⊕X3 = ∇in] · Pr[X2 ⊕X4 = ∇in]
≥ p2q2.
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2.4 Truncated Boomerang Attack
In EUROCRYPT 2023, Bariant et al. replaced all differential trails in boomerang attaks
by truncated differential trails to propose the truncated boomerang attacks [BL23]. The
truncated boomerang attacks use structures on both plaintext and ciphertext sides, which
can reduce the complexity effectively. For the upper part E0, there exist truncated
differential trails D0

in
E0−→ D0

out with probability →p and D0
out

E−1
0−→ D0

in with probability ←p .
Similarly, for the lower part E1, there are truncated differential trails D1

in
E1−→ D1

out with

probability →q and D1
out

E−1
1−→ D1

in with probability ←q . The truncated boomerang attack
proceeds as follows:

1. Choose a plaintext pair (P1, P2) such that P1⊕P2 ∈ D0
in, and ask for the corresponding

ciphertext pairs (C1, C2).

2. Generate (C3, C4) such that C1 ⊕ C3 ∈ D1
out and C2 ⊕ C4 ∈ D1

out, and ask for the
corresponding plaintext pairs (P3, P4).

3. Check if P3 ⊕ P4 ∈ D0
in.

Bariant et al. remarked that, under the assumption that E0 and E1 are independent, the
boomerang probability pb that a quartet (P1, P2, P3, P4) holds P3⊕P4 ∈ D0

in is →p ·←p ·←q
2
·r,

where

r = Pr[X3 ⊕X4 ∈ D0
out | (X1 ⊕X2 ∈ D0

out) ∧ (X1 ⊕X3 ∈ D1
in) ∧ (X2 ⊕X4 ∈ D1

in)].

It can be used as a distinguisher when →p · ←p · ←q
2
· r is significantly greater than 2−n,

which is the expected probability that a randomly constructed quartet (P1, P2, P3, P4)
holds the boomerang property for a random permutation. Given P1 ⊕ P2 ∈ D0

in and
C1 ⊕ C3, C2 ⊕ C4 ∈ D1

out, the boomerang probability pb can be computed as follows,
similarly to the case of using differential trails:

pb = Pr[P3 ⊕ P4 ∈ D0
in]

≥Pr[P3 ⊕ P4 ∈ D0
in | X3 ⊕X4 ∈ D0

out] · Pr[X3 ⊕X4 ∈ D0
out]

≥←p · Pr[X3 ⊕X4 ∈ D0
out | (X1 ⊕X2 ∈ D0

out) ∧ (X1 ⊕X3 ∈ D1
in) ∧ (X2 ⊕X4 ∈ D1

in)]
· Pr[(X1 ⊕X2 ∈ D0

out) ∧ (X1 ⊕X3 ∈ D1
in) ∧ (X2 ⊕X4 ∈ D1

in)]
≥←p · r · Pr[X1 ⊕X2 ∈ D0

out] · Pr[X1 ⊕X3 ∈ D1
in] · Pr[X2 ⊕X4 ∈ D1

in]

≥→p ·←p ·←q
2
· r.

3 Exchanged Boomerang Attack on 5-round AES
3.1 Overview of Exchanged Boomerang Attack on 5-round AES
The authors of [RBH17, DKRS20, YTXQ24] utilized the exchange technique to construct a
new boomerang attack on reduced-round AES. We call it the exchanged boomerang attack.
The exchanged boomerang is equivalent to performing the yoyo game from [RBH17] once,
and is also similar to the mixing retracing boomerang described in [DKRS20]. The authors
of [DKRS20] presented a key-recovery attack on 5-round AES using the mixing retracing
boomerang, while the authors of [YTXQ24] proposed a distinguisher for 6-round AES
based on the boomerang chain constructed from the exchange boomerang.
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The exchange boomerang attacks use truncated differential trails in the forward
characteristic, and differential trail in the backward characteristic. Thus it can use
structures on plaintext side, but can not use structures on ciphertext side. The main
idea of the exchanged boomerang on AES is to define ∇out active on diagonals, such
that the pairs (C1, C1 ⊕∇out) and (C2, C2 ⊕∇out) have the same pair of values on the
active inverse diagonal: i.e. either C1 = C2 or C1 = C2 ⊕ ∇out on the active inverse
diagonal. The exchanged boomerang chooses ∇out active on an inverse diagonal, such that
∇out = C1 ⊕ C2 on that inverse diagonal. This leads to C1 = C4 and C2 = C3 on the
inverse diagonal.

We consider only 5-round AES and decompose it into two parts, E1 ◦ E0, where

E0 = SR ◦ SB ◦AK ◦MC ◦ SR ◦ SB ◦AK ◦MC ◦ SR ◦ SB ◦AK

is the upper 2.5 rounds before MC of the third round, and

E1 = AK ◦ SR ◦ SB ◦AK ◦MC ◦ SR ◦ SB ◦AK ◦MC

is the final 2 rounds. Let (P1, P2) be a pair of plaintexts and (C1, C2) be the corresponding
pair of ciphertexts. The exchanged boomerang generates the new ciphertext pair (C3, C4)
by exchanging the active inverse diagonal. For each inverse diagonal 1 ≤ j ≤ 4, let the
ciphertext pair generated by exchanging the j-th inverse diagonal be denoted as (Cj

3 , Cj
4).

Denote the intermediate value after E0 as X. We decompose E1 as E1 = E1,1 ◦E1,0, where

E1,0 = AK ◦MC

and
E1,1 = AK ◦ SR ◦ SB ◦AK ◦MC ◦ SR ◦ SB.

Denote the intermediate value after E1,0 as Y . (Cj
3 , Cj

4) is obtained by exchanging the
active inverse diagonal of (C1, C2). Since E1,1 can be computed in 32-bit super box
units, (Y j

3 , Y j
4 ) is obtained by exchanging the active diagonal of (Y1, Y2). Futhermore,

as E1,0 = AK ◦MC, (Xj
3 , Xj

4) and (X1, X2) have the same zero difference pattern with
probability 1. It can be used to construct an efficient boomerang trail.

This implies that in the boomerang probability pb = →
p · ←p · ←q

2
· r, both ←q and r

are equal to 1. Therefore, for 5-round AES, when a plaintext structure is constructed
with activity only in a single diagonal and the exchanged boomerang uses a difference
∇out = C1⊕C2 on a specific inverse diagonal, the resulting boomerang probability is →p ·←p .

3.2 Example of Exchanged Boomerang Attack on 5-round AES
We introduce, as an example, a key-recovery attack on 5-round AES that is based on
performing the yoyo game once, as described in [RBH17]. They used a plaintext structure
with one active diagonal and chose a difference ∇out such that ∇out = C1⊕C2 on a specific
inverse diagonal.

They also utilized the fact that if P1 and P2 are inactive in the l-th byte after the
first round MC, then the returned pair (P3, P4), obtained by decrypting (C3, C4) =
(C1 ⊕ ∇out, C2 ⊕ ∇out), is inactive in the l-th diagonal after the first round MC with
probability 1. By exploiting this property with multiple plaintext pairs, keys for which the
l-th diagonal is not inactive after the first round MC are discarded, and only the correct
key remains. The key-recovery attack on 5-round AES using the exchanged boomerang
proceeds as follows:

1. Choose a plaintext pair (P1, P2) from a plaintext structure where only the 0th
diagonal is active and ask for the corresponding (C1, C2).
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Forward characteristic (P1, P2)

P1 ̸= P2

P1 = P2

AK

SB SR MC

→
2−6

AK

SB SR MC

AK

SB SR MC

AK

SB SR MC

AK

SB SR

AK

SB

Backward characteristic (P3, P4)

P3 ̸= P4

P3 = P4

AK

SB SR MC

AK

SB SR MC

AK

SB SR MC

←
1

MC

AK

SB SR MC

AK

SB SR

AK

SB

P3 ̸= P4, P1 = P4, P2 = P3

P3 ̸= P4, P1 = P3, P2 = P4

Figure 3: Example of Exchanged Boomerang Trail

2. Generate four pairs (Cj
3 , Cj

4) by exchanging each of the four inverse diagonals, and
ask for the corresponding plaintext pairs (P j

3 , P j
4 ) for j ∈ {0, 1, 2, 3}.

3. Recover the key that makes the l-th byte inactive after the first round MC for
(P1, P2), and the l-th diagonal inactive after the first round MC for (P j

3 , P j
4 ), for

each l ∈ {0, 1, 2, 3}.

A right forward pair, which has one inactive byte after the first round MC, exists with
probability 2−6. In 5-round AES, since ←q = 1,r = 1, →p = 2−6 and ←p = 1, the exchanged
boomerang trail in this example has a probability of 2−6, as illustrated in Figure 3. Each
right forward pair yields exactly one correct key, while a wrong pair produces on average
232−40 = 2−8 key candidates. Therefore, the correct key can be recovered.

The previously introduced example of the exchange boomerang has been used for
key-recovery attacks, but our goal is to construct a distinguisher by analyzing the pattern
of the returned plaintext pairs. Since the exchange boomerang enables the construction of
the best-known key-recovery attack on 5-round AES, we believe that it can also be used
to construct the best-known distinguisher for 5-round AES. Furthermore, as the exchange
boomerang has ←q = 1 and r = 1, we focus on the boomerang probability pb = →p ·←p , and
propose two distinguishers based on this observation.
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4 Massive Exchanged Boomerang Distinguisher
In this section, we propose the massive exchanged boomerang distinguisher, which dis-
tinguishes by checking whether the returned plaintext pair through the boomerang is
fully active or inactive in each diagonal. To be fully active means that all four bytes in
the column have non-zero differences. Although the probability that each diagonal is
randomly either fully active or inactive is very high, we significantly reduce this random
probability by using the friend pairs technique and by exploiting the fact that multiple
inverse diagonals can be exchanged in the ciphertext. If the random probability becomes
significantly lower than the boomerang probability, it can be used as a distinguisher. The
massive exchanged boomerang distinguisher is named as such because it utilizes the friend
pairs technique to throw a large (massive) number of pairs through the boomerang.

The massive exchanged boomerang distinguisher for 5-round AES has a complexity of
231 with a success probability of 70%. We first present the massive exchanged boomerang
distinguisher algorithm, followed by an analysis of the distinguisher’s complexity and
success probability. Then, we provide experimentally verified data.

The idea of the massive exchanged boomerang distinguisher is that if each column of
returned pair has at most one active byte after the first round MC, then the plaintext pair
must be either fully active or inactive because the MC and MC−1 use an MDS matrix.
Constructing a distinguisher using fully active pairs has been previously used in [BFL+23].
When using the exchanged boomerang on 5-round AES, if (P1, P2) is inactive in three
bytes after the first round MC, then the returned plaintext pair (P j

3 , P j
4 ) will be inactive

in the corresponding three diagonals after the first round MC. Since the three diagonals of
(P j

3 , P j
4 ) are inactive after the first round MC, each column contains either three inactive

bytes or all four bytes inactive. If each column of the returned plaintext pair (P j
3 , P j

4 )
has three inactive bytes after the first round MC, the corresponding column of (P j

3 , P j
4 )

after the first round SR will be fully active due to the MDS property of MC−1. If all four
bytes are inactive after the first round MC, the corresponding column of (P j

3 , P j
4 ) after

the first round SR will remain inactive. Therefore, each column of the returned plaintext
pair (P j

3 , P j
4 ) is either fully active or inactive. The fully active boomerang trail requires

that (P1, P2) be inactive in three bytes after the first round MC, resulting in a boomerang
probability of 4 · 2−24 = 2−22.

The probability that a returned plaintext pair is either fully active or inactive on each
diagonal at random is very high, but we can reduce it using the friend pairs technique.
Additionally, by using a backward trail with probability 1 in the exchanged boomerang trail,
we ensure that all pairs obtained by exchanging each inverse diagonal in the ciphertext pair
of a right pair also become right pairs, further reducing the random probability. We utilize
these two techniques to reduce the random probability to be lower than the boomerang
probability, thereby constructing the fully active boomerang distinguisher.

We introduce the massive exchanged boomerang trail. For the upper part E0, the
input truncated difference Din is active only in the 0th diagonal, the output truncated
difference Dout is active only in one inverse diagonal, and the truncated difference for
returned plaintext pairs D′in is such that, in each of its diagonals, the 4 bytes are either all
active, or all inactive. Since Din

E0−→ Dout is equivalent to the condition where only one
byte is active after the first round MC, the probability of Din

E0−→ Dout is

Pr[Din
E0−→ Dout] = →p = 4 · 2−24 = 2−22.

Dout
E−1

0−→ D′in holds with probability

Pr[Dout
E−1

0−→ D′in] = ←p = 1.
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Figure 4: Massive exchanged boomerang trail

In the backward characteristic, not all bytes in the corresponding column may be active
before the second round MC. Any byte that is inactive before the second round MC
will result in the entire column being inactive after the first round MC. Consequently,
each inactive byte before the second round MC corresponds to an inactive diagonal in the
returned plaintext pair (P3, P4). Therefore, if there are n inactive bytes before the second
round MC, there will be n inactive diagonals in the plaintext pair.

For the lower part E1, one of the inverse diagonals of (C1, C2) is exchanged to obtain
ciphertext pairs (Cj

3 , Cj
4) for j ∈ {0, 1, 2, 3}. (Cj

3 , Cj
4) is generated as (C1⊕∇out, C2⊕∇out),

where ∇out = C1 ⊕ C2 on the j-th inverse diagonal and zero on all other diagonals. Given
that ∇out = C1 ⊕ C2 on the j-th inverse diagonal and zero on all other diagonals, the
probability that Xj

3 ⊕Xj
4 ∈ Dout is

Pr[Xj
3 ⊕Xj

4 ∈ Dout] = 1

by the exchange boomerang. Therefore, the probability of satisfying the massive exchanged
boomerang trail is 2−22. The massive exchanged boomerang trail can be seen in Figure 4.
In the figure, white boxes represent inactive bytes, gray boxes represent active bytes, and
hatched boxes represent exchanged bytes.

Since the probability of a single byte being active is 1 − 2−8, the probability of
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one diagonal being active is (1 − 2−8)4. Since the probability of one diagonal being
inactive is 2−32, the probability that one diagonal being either fully active or inactive is
(1− 2−8)4 + 2−32. Therefore, the probability that one returned plaintext pair is randomly
either fully active or inactive in each diagonal is

((1− 2−8)4 + 2−32)4 ≈ 2−0.09.

We aim to make this random probability lower than the boomerang probability of 2−22,
allowing us to distinguish the block cipher from a random permutation. We first focus on
the fact that, starting from (C1, C2), we can generate four ciphertext pairs (Cj

3 , Cj
4) by

exchanging each of the four inverse diagonals. If (P1, P2) is a right forward pair, meaning
that it is inactive in three bytes after the first round MC, then each returned plaintext pair
(P j

3 , P j
4 ), corresponding to the four exchanged ciphertext pairs (Cj

3 , Cj
4), will be inactive in

the same three diagonals after the first round MC. As a result, all returned pairs (P j
3 , P j

4 )
are either fully active or inactive in each diagonal simultaneously. Therefore, while the
boomerang probability remains the same at 2−22, the probability that all four returned
plaintext pairs are randomly either fully active or inactive in each diagonal is

(((1− 2−8)4 + 2−32)4)4 ≈ 2−0.36,

which reduces the random probability from 2−0.09 to 2−0.36. However, this probability is
still too high to distinguish the block cipher from a random permutation.

Second, we further reduce this random probability by applying the previously proposed
friend pairs technique [BLT20]. Friend pairs are pairs (P1, P2) and (P ′1, P ′2) that have the
same values in the active diagonal and different constant values in the inactive diagonals.
If (P1, P2) is a right pair, meaning that three bytes are inactive after the first round MC,
then the friend pair (P ′1, P ′2) also has the same values in the active diagonal and therefore
has three inactive bytes after the first round MC. As a result, (P ′1, P ′2) is always a right
pair with probability 1. For a right pair, all of its friend pairs also produce returned
plaintext pairs that are either fully active or inactive in each diagonal, with the same
boomerang probability of 2−22. However, the probability that all of these returned pairs
are randomly either fully active or inactive in each diagonal decreases exponentially. If 26

friend pairs are used, then the probability that all returned pairs are simultaneously either
fully active or inactive in each diagonal becomes

((((1− 2−8)4 + 2−32)4)4)26
≈ 2−23.1 < 2−22.

Therefore, since the massive exchanged boomerang probability is bigger than the random
probability, a distinguisher can be constructed.

We need 222 plaintext pairs to obtain one right pair on average. Using a plaintext
structure of size 211.5, where only the 0th diagonal can take values and the remaining
bytes are any constants, we can obtain 222 plaintext pairs. For each of the 222 plaintext
pairs, we generate 26 friend pairs. Since a right pair and all of its friend pairs follow the
massive exchanged boomerang trail, all of their returned pairs are either fully active or
inactive in each diagonal. On the other hand, all returned pairs of a wrong pair and its
friend pairs are randomly either fully active or inactive in each diagonal with a probability
of 2−23.1. Therefore, for all returned pairs of a pair and its friend pairs that are either
fully active or inactive in each diagonal, on average,

1 + 222 · 2−23.1 = 1 + 2−1.1 ≈ 1.46 > 1

such pairs exist for 5-round AES, while for a random permutation, on average,

222 · 2−23.1 = 2−1.1 ≈ 0.46 < 1
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such pairs exist.
Therefore, if there exists a plaintext pair and its friend pairs such that all generated

returned plaintext pairs are either fully active or inactive in each diagonal, we output
5-round AES; otherwise, we output a random permutation. This allows us to distinguish
5-round AES from a random permutation. The massive exchanged boomerang distinguisher
for 5-round AES is as follows, and the pseudocode is given in Algorithm 1.

1. Choose a plaintext structure of size 211.5 in which the four bytes in the 0th diagonal
can take values and the remaining bytes are any constants.

2. For each plaintext pair (P1, P2), generate friend pairs (P ′1, P ′2) where the 0th diagonal
is the same, but the constants are different and ask for the corresponding ciphertexts.

3. For each j ∈ {0, 1, 2, 3}, exchange the j-th active inverse diagonal of ciphertext pair
(C1, C2) to obtain (Cj

3 , Cj
4) and ask for the decryption of (Cj

3 , Cj
4) to obtain (P j

3 , P j
4 ).

4. If there exists at least one pair (P1, P2) such that all returned pair (P j
3 , P j

4 ) of a
pair and its friend pairs that are either fully active or inactive in each diagonal, the
distinguishing result is 5-round AES, otherwise it is a random permutation.

Algorithm 1 Massive exchanged boomerang distinguisher for 5-round AES
1: Ask for the encryption of a plaintext structure of size 211.5 in which the four bytes in

the 0th diagonal can take values and the remaining bytes are any constants
2: for each plaintext pair do
3: Ask for the encryption of the pair and its 26 friend pairs, where the 0th diagonal is

the same, and the other diagonals have different constants
4: for each ciphertext pair do
5: Exchange the j-th active inverse diagonal of (C1, C2) to obtain four pairs

(C3, C4) for j ∈ {0, 1, 2, 3}
6: Ask for the decryption of four pairs (C3, C4) to obtain four pairs (P3, P4)
7: end for
8: if all returned pair are either inactive or have all bytes of the diagonal active for

all diagonals then
9: return 5-round AES

10: end if
11: end for
12: return random permutation

Complexity
In step 1, we need 211.5 chosen plaintexts. In step 2, we generate 222 · 26 = 228 plaintext
pairs, so 228 · 2 = 229 chosen plaintexts are required. In step 3, we generate 228 · 4 = 230

ciphertext pairs, so 230 · 2 = 231 adaptive chosen ciphertexts are required. Therefore, the
data complexity of a distinguishing process is 231 ACC, and the time complexity is 231

memory accesses.

• Data Complexity: 231 adaptive chosen ciphertexts

• Time Complexity: 231 memory accesses
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Table 2: Experimental results of the number of detected pairs in the massive exchanged
boomerang distinguisher for 5-round AES

Number of Blackbox Experimental Theoretical

experiments Primitive number of pairs number of pairs

1000 5-round AES 1.464 1.46

1000 Rand. Perm. 0.433 0.46

Success Probability
The success probability of the massive exchanged boomerang distinguisher is given by the
average of the probability that the distinguisher outputs 5-round AES when the black box
is a 5-round AES and the probability that the distinguisher outputs a random permutation
when the black box is a random permutation. Each probability can be calculated using the
Poisson distribution. When the black box is 5-round AES, it follows a Poisson distribution
with λ = 1.46, and when the black box is a random permutation, it follows a Poisson
distribution with λ = 0.46. The probability of having 1 or more occurrences in a Poisson
distribution with λ = 1.46 is approximately

Pr[X ≥ 1] ≈ 0.77

and for a Poisson distribution with λ = 0.46, the probability of 0 occurrences is approxi-
mately

Pr[X = 0] ≈ 0.63.

Therefore, the distinguisher succeeds with a probability of

0.77 + 0.63
2 = 0.7

on average.
If more pairs are used, the number of returned plaintext pairs in which each diagonal

is either fully active or inactive increases rapidly for 5-round AES, while it increases more
slowly for a random permutation. As a result, the corresponding Poisson distributions
change for each case, and the success probability is determined by how many such pairs
exist and where the distinguishing threshold is set. However, since the number of such
pairs eventually increases in both 5-round AES and a random permutation, if we aim for a
success probability close to 1, it is more efficient to simply run the proposed the massive
exchanged boomerang distinguisher twice, rather than increasing the complexity further.

Experimental Verification
To verify the massive exchanged boomerang distinguisher, we first count the number of
pairs (P1, P2) such that all returned pairs (P j

3 , P j
4 ) of the pair and its friend pairs are

either fully active or inactive in each diagonal. We conducted 1000 experiments for each
case and verified that, for 5-round AES, there is an average of 1.464 pairs, while for the
random permutation (10-round AES), there is an average of 0.433 pairs, which is close to
the theoretical expectation. The experimental results for this are shown in Table 2.

Additionally, to experimentally verify the success probability of the distinguisher, we
counted the number of cases where the distinguisher outputs 5-round AES when the
black box is 5-round AES, and the number of cases where the distinguisher outputs a
random permutation when the black box is a random permutation. As in the previous
experiment, we conducted 1000 times each for 5-round AES and the random permutation
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Table 3: Experimental results of a success probability of the massive exchanged boomerang
distinguisher for 5-round AES

Number of Blackbox Returned as Returned as Experimental

experiments Primitive 5-round AES Rand. Perm. Success Probability

1000 5-round AES 780 220 0.780+0.652
2 = 0.716

1000 Rand. Perm. 348 652

(10-round AES). The results showed that when the black box was 5-round AES, the
distinguisher outputted 5-round AES 780 times, and when the black box was a random
permutation, the distinguisher outputted a random permutation 652 times. Therefore,
the experimental success probability is (0.780 + 0.652)/2 = 0.716, which is similar to the
theoretical probability. The experimental results for this are shown in Table 3.

5 Multiple Exchanged Boomerang Distinguisher
In this section, we propose the multiple exchanged boomerang distinguisher by using
multiple exchanged boomerang trails which have the same input truncated differences.
It distinguishes the block cipher from a random permutation by checking whether the
returned plaintext pair is inactive in one diagonal. We cluster four exchanged boomerang
trails to increase the overall boomerang probability.

The multiple exchanged boomerang distinguisher for 5-round AES has a complexity
of 227.1 with a success probability 79.6%. This is, to the best of our knowledge, the best-
known distinguisher for 5-round AES. We first present the multiple exchanged boomerang
distinguisher algorithm, followed by an analysis of the distinguisher’s complexity and
success probability. Then, we provide experimentally verified data.

The idea of the multiple exchanged boomerang distinguisher is to utilize multiple
exchanged boomerang trails that use the same input truncated differences, Din and D′in.
We have found four exchanged boomerang trails with probabilities 2−28, 2−27.4, 2−28, and
2−30, respectively. By clustering these trails, the boomerang probability can be significantly
increased to

2−28 + 2−27.4 + 2−28 + 2−30 = 2−26.1.

Since the probability that a returned plaintext pair is randomly inactive in one diagonal is
4 · 2−32 = 2−30 < 2−26.1, that is, the boomerang probability is higher than the random
probability, we can construct a multiple exchanged boomerang distinguisher.

We introduce the multiple exchanged boomerang trails. The multiple exchanged
boomerang distinguisher uses four exchanged boomerang trails which have the same Din
and D′in. The input truncated difference Din is active only in the 0th diagonal, same as in
the massive exchanged boomerang trail, and the truncated difference for returned plaintext
pairs D′in is inactive in one diagonal. We define the truncated differences for the four
exchanged boomerang trails as D1

out, D2
out, D3

out, and D4
out.

The truncated difference D1
out for the upper part E0 of the first exchanged boomerang

trail is active only in a one inverse diagonal. The probability of Din
E0−→ D1

out is

Pr[Din
E0−→ D1

out] = →p = 4 · 2−24 = 2−22

and the probability of D1
out

E−1
0−→ D′in is

Pr[D1
out

E−1
0−→ D′in] = ←p = 2−8 · 4 = 2−6.
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Figure 5: First exchanged boomerang trail

Therefore, the probability of the first exchanged boomerang trail is
→
p ·←p = 2−22 · 2−6 = 2−28.

The first trail can be seen in Figure 5.
The truncated difference D2

out for the upper part E0 of the second exchanged boomerang
trail is active in two inverse diagonals. The probability of Din

E0−→ D2
out is

Pr[Din
E0−→ D2

out] = →p = 6 · 2−16 = 2−13.4

and the probability of D2
out

E−1
0−→ D′in is

Pr[D2
out

E−1
0−→ D′in] = ←p = 4 · 2−16 = 2−14.

Therefore, the probability of the second exchanged boomerang trail is
→
p ·←p = 2−13.4 · 2−14 = 2−27.4.

The second trail can be seen in Figure 6.
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Figure 6: Second exchanged boomerang trail

The truncated difference D3
out for the upper part E0 of the third exchanged boomerang

trail is active in three inverse diagonals. The probability of Din
E0−→ D3

out is

Pr[Din
E0−→ D3

out] = →p = 4 · 2−8 = 2−6

and the probability of D3
out

E−1
0−→ D′in is

Pr[D3
out

E−1
0−→ D′in] = ←p = 4 · 2−24 = 2−22.

Therefore, the probability of the third exchanged boomerang trail is
→
p ·←p = 2−6 · 2−22 = 2−28.

The third trail can be seen in Figure 7.
The truncated difference D4

out for the upper part E0 of the fourth exchanged boomerang
trail is active in four inverse diagonals. The probability of Din

E0−→ D4
out is

Pr[Din
E0−→ D4

out] = →p = 1
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Figure 7: Third exchanged boomerang trail

and the probability of D4
out

E−1
0−→ D′in is

Pr[D4
out

E−1
0−→ D′in] = ←p = 4 · 2−32 = 2−30.

Therefore, the probability of the third exchanged boomerang trail is
→
p ·←p = 1 · 2−30 = 2−30.

The fourth trail can be seen in Figure 8.
By clustering four exchanged boomerang trails with the same Din and D′in, the proba-

bility of the multiple exchanged boomerang is

2−28 + 2−27.4 + 2−28 + 2−30 = 2−26.1.

The probability that the returned plaintext pair is randomly inactive in one diagonal is
4 · 2−32 = 2−30. Therefore, since the multiple exchanged boomerang probability is better
than the random probability, a distinguisher can be constructed.

We need 226.1 pairs to obtain one right pair on average. Since we can generate four
additional ciphertext pairs by exchanging the active inverse diagonal in the ciphertext
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Figure 8: Fourth exchanged boomerang trail

pairs, 224.1 plaintext pairs are required. Using a plaintext structure of size 212.55, where
only the 0th diagonal can take values and the remaining bytes are any constants, we can
obtain 224.1 plaintext pairs.

Since a right pair follows the multiple exchanged boomerang with probability 1, the
returned plaintext pair of a right pair is inactive in one diagonal. On the other hand,
the returned plaintext pair of a wrong pair is randomly inactive in one diagonal with
a probability of 2−30. Therefore, for returned pair that is inactive in one diagonal, on
average,

1 + 2−26.1 · 230 = 1 + 2−3.9 ≈ 1.066 > 1
such pairs exist for 5-round AES, while for a random permutation, on average,

2−26.1 · 230 = 2−3.9 ≈ 0.066 < 1

such pairs exist.
Therefore, if there exists a plaintext pair such that returned plaintext pair is inactive

in one diagonal, we output 5-round AES; otherwise, we output a random permutation.
This allows us to distinguish 5-round AES from a random permutation. The multiple
exchanged boomerang distinguisher for 5-round AES is as follows, and the pseudocode is
given in Algorithm 2.
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1. Choose a plaintext structure of size 212.55 in which the four bytes in the 0th diag-
onal can take values and the remaining bytes are any constants, and ask for the
corresponding ciphertexts.

2. For each j ∈ {0, 1, 2, 3}, exchange the j-th active inverse diagonal of ciphertext pair
(C1, C2) to obtain (C3, C4) and ask for the decryption of (C3, C4) to obtain (P3, P4).

3. If there exists a pair (P3, P4) that is inactive in one diagoal, the distinguishing result
is 5-round AES, otherwise it is a random permutation.

Algorithm 2 Multiple exchanged boomerang distinguisher for 5-round AES
1: Ask for the encryption of a plaintext structure of size 212.58 in which the four bytes in

the 0th diagonal can take values and the remaining bytes are any constants
2: for each ciphertext pair do
3: Exchange the j− th active inverse diagonal of (C1, C2) to obtain four pairs (C3, C4)

for j ∈ {0, 1, 2, 3}
4: Ask for the decryption of four pairs (C3, C4) to obtain four pairs (P3, P4)
5: if returned pair is inactive in one diagonal then
6: return 5-round AES
7: end if
8: end for
9: return random permutation

Complexity
In step 1, we need 212.55 chosen plaintexts. In step 2, we generate 224.1 ·4 = 226.1 ciphertext
pairs, so 226.1 · 2 = 227.1 adaptive chosen ciphertexts are required. Therefore, the data
complexity of a distinguishing process is 227.1 ACC, and the time complexity is 227.1

memory accesses.

• Data Complexity: 227.1 adaptive chosen ciphertexts

• Time Complexity: 231 memory accesses

Success Probability
The success probability of the multiple exchanged boomerang distinguisher is given by the
average of the probability that the distinguisher outputs 5-round AES when the black box
is a 5-round AES and the probability that the distinguisher outputs a random permutation
when the black box is a random permutation. Each probability can be calculated using the
Poisson distribution. When the black box is 5-round AES, it follows a Poisson distribution
with λ = 1.066, and when the black box is a random permutation, it follows a Poisson
distribution with λ = 0.066. The probability of having 1 or more occurrences in a Poisson
distribution with λ = 1.066 is approximately

Pr[X ≥ 1] ≈ 0.656

and for a Poisson distribution with λ = 0.066, the probability of 0 occurrences is approxi-
mately

Pr[X = 0] ≈ 0.936.

Therefore, the distinguisher succeeds with a probability of
0.656 + 0.936

2 = 0.796
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Table 4: Experimental results of the number of detected pairs in the multiple exchanged
boomerang distinguisher for 5-round AES

Number of Blackbox Experimental Theoretical

experiments Primitive number of pairs number of pairs

1000 5-round AES 1.017 1.066

1000 Rand. Perm. 0.058 0.066

Table 5: Experimental results of a success probability of the multiple exchanged boomerang
distinguisher for 5-round AES

Number of Blackbox Returned as Returned as Experimental

experiments Primitive 5-round AES Rand. Perm. Success Probability

1000 5-round AES 637 363 0.613+0.932
2 = 0.7725

1000 Rand. Perm. 68 932

on average.
In the multiple exchanged boomerang distinguisher, as with the massive exchanged

boomerang distinguisher, using more pairs leads to a rapid increase in the number of
returned plaintext pairs with one inactive diagonal for 5-round AES, while the increase is
slower for a random permutation. As a result, the corresponding Poisson distributions
change for each case, and the success probability depends on how many such pairs exist
and where the distinguishing threshold is set. However, since the number of such returned
pairs increases in both 5-round AES and a random permutation, if a distinguishing success
probability close to 1 is desired, it is more efficient to simply run the proposed multiple
exchanged boomerang distinguisher twice at the given complexity.

Experimental Verification

To verify the multiple exchanged boomerang distinguisher, we first count the number of
returned pairs (P3, P4) that are inactive in one diagonal. We conducted 1000 experiments
for each case and verified that, for 5-round AES, there is an average of 1.017 pairs, while
for the random permutation (10-round AES), there is an average of 0.058 pairs, which is
close to the theoretical expectation. The experimental results for this are shown in Table
4.

Additionally, to experimentally verify the success probability of the distinguisher, we
counted the number of cases where the distinguisher outputs 5-round AES when the
black box is 5-round AES, and the number of cases where the distinguisher outputs a
random permutation when the black box is a random permutation. As in the previous
experiment, we conducted 1000 times each for 5-round AES and the random permutation
(10-round AES). The results showed that when the black box was 5-round AES, the
distinguisher outputted 5-round AES 637 times, and when the black box was a random
permutation, the distinguisher outputted a random permutation 932 times. Therefore,
the experimental success probability is (0.637 + 0.932)/2 = 0.7845, which is similar to the
theoretical probability. The experimental results for this are shown in Table 5.
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6 Conclusion
In this paper, we proposed the massive exchanged boomerang and multiple exchanged
boomerang distinguishers for 5-round AES by utilizing the friend pairs technique and
multiple trails, respectively. The massive exchanged boomerang distinguisher for 5-
round AES has the data and time complexities 231 and success probability 70%. The
multiple exchanged boomerang distinguisher for 5-round AES has the data and time
complexities 227.1 and success probability 80%. To the best of our knowledge, the multiple
exchanged boomerang distinguisher is the best-known distinguisher for 5-round AES.
We experimentally verified both distinguishers. The massive exchanged boomerang and
multiple exchanged boomerang distinguishers can also be applied to other AES-like block
ciphers.

The two distinguishers we propose have good complexity in terms of distinguishing,
but they have limitations when applied to key-recovery attacks. For 5-round key-recovery
attacks, using the exchanged boomerang trail from the retracing boomerang attack in
[DKRS20] is more effective. For 6-round key-recovery attacks as well, the exchanged
boomerang trails from [BDK+24] are more suitable. Moreover, when considering 6-round
distinguishers, the exchanged boomerang trail used in the boomerang chain distinguisher
from [YTXQ24] is also more effective. However, our focus was on constructing the best
distinguisher for 5-round AES, and by considering these two distinguishers, we were able
to achieve that goal.
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