
Private Signaling Secure Against Actively
Corrupted Servers

Haotian Chu1, Xiao Wang1, and Yanxue Jia2

1 Northwestern University
{haotian.chu@,wangxiao@}northwestern.edu

2 Purdue University
jia168@purdue.edu

Abstract. Private signaling allows servers to identify a recipient’s mes-
sages on a public bulletin board without knowing the recipient’s meta-
data. It is a central tool for systems like privacy-preserving blockchains
and anonymous messaging. However, unless with TEE, current construc-
tions all assume that the servers are only passively corrupted, which
significantly limits their practical relevance. In this work, we present a
TEE-free simulation-secure private signaling protocol assuming two non-
colluding servers, either of which can be actively corrupted.
Crucially, we convert signal retrieval into a problem similar to private set
intersection and use custom-built zero-knowledge proofs to ensure con-
sistency with the public bulletin board. As a result, our protocol achieves
lower server-to-server communication overhead and a much smaller di-
gest compared to state-of-the-art semi-honest protocol. For example, for
a board size of 219 messages, the resulting digest size is only 33.57KB.
Our protocol is also computationally efficient: retrieving private signals
only takes about 2 minutes, using 16 threads and a LAN network.

1 Introduction

While protecting communication content has been well studied, communication
metadata protection—hiding who and when sends or receives which messages—is
still challenging and desirable. Private signaling was first introduced by Madathil
et al. [20] to protect the metadata privacy of recipients. In this problem, senders
and recipients communicate via a public bulletin board where messages are pub-
lished, and each message corresponds to a location. After posting a message on
the public bulletin board, the sender also generates a clue that will be collected
by server(s). Then, the server(s) leverages the clue to assist the intended recipi-
ent in learning the location of the message (say, signal). During this process, the
metadata of the recipient is protected.

Private signaling plays a key role in many applications. Specifically, it can
be used to protect the metadata of resource-constrained recipients in privacy-
preserving cryptocurrencies, such as Zcash [3] and Monero [22]. By using private
signaling, the recipients do not need to download the whole blockchain (i.e.,
the public board) and find the pertinent transactions through linear scan. In

addition, as discussed by Madathil et al. [20], private signaling can also be used
to design anonymous messaging applications (e.g., [7, 27]) where the messages
could be collected by service server(s), rather than the public board.

Almost at the same time, Liu and Tromer [17] defined the same problem
as Oblivious Message Detection (OMD), and extended it to Oblivious Message
Retrieval (OMR), where the recipient can directly obtain the pertinent messages
instead of just their locations. Since, after obtaining the locations, the recipient
can use existing techniques such as Private Information Retrieval (PIR) [5, 11]
to retrieve the corresponding messages without revealing metadata, we focus on
private signaling (i.e., OMD) in this work.

While private signaling has been extensively studied, existing works all as-
sume semi-honest server(s), unless relying on trusted execution environments
(TEEs). However, given that these applications inherently lack trusted enti-
ties, active security is important. Specifically, cryptocurrencies are in an open
and untrusted environment where anyone can join without any permissions. In
addition, as summarized by Sasy and Goldberg [26], anonymous messaging ap-
plications are always used to proactively resist mass surveillance and protect
whistleblowers who expose misconduct by governments or employers. Therefore,
it is difficult to rely on government credibility or social reputation to prevent
malicious behavior.

Next, we categorize the existing approaches into three types and explain why
achieving active security is challenging for them.

1. TEE-based Solutions. The seminal work by Madathil et al. [20] leveraged a
TEE to achieve a highly efficient 1-server solution, which was further improved
to achieve even better scalability by Jakkamsetti et al. [13]. Their key idea
is to require the server to maintain a table whose each row corresponds to
a recipient and records the pertinent locations for the recipient. When a
recipient requests a retrieval, the server responds with the corresponding row.
To protect the metadata privacy for the recipient, the table is maintained in a
TEE. While using a TEE enables the assumption of a malicious server, TEEs
are known to suffer from side-channel attacks [6,10] and memory limitations
[8]. Therefore, Madathil et al. [20] also proposed a 2-server design to avoid
relying on TEEs, a direction followed by all subsequent works, as described
below.

2. 2PC-based Solutions. To avoid relying on a TEE, Madathil et al. [20]
leveraged garbled circuits run by two servers to maintain the table. However,
the significant overhead makes it impractical for real-world adoption, let alone
achieving active security. Recently, Jia et al. [14] used a completely novel
approach to achieve a 2-server solution called HomeRun, whose efficiency is
comparable to TEE-based designs. However, extending HomeRun to support
active security is challenging. In addition to handling malicious behavior from
one of the servers, it is also necessary to address the collusion between the
malicious server and a subset of senders and recipients.

3. FHE-based Solutions. Another research line leverages fully/leveled ho-
momorphic encryption to achieve 1-server solutions. The previous works

2

[16, 17, 18] in this line share the same design framework: Each clue includes
ℓ ciphertexts, each encrypting a bit 1 under the public key of the intended
recipient, and only using the corresponding secret key can decrypt all the
ℓ ciphertexts to 1. With the assistance of the server, the recipients can de-
crypt to detect the pertinent clues positioned exactly where the corresponding
messages reside. To protect the metadata of the recipient, all computations
are performed under fully/leveled homomorphic encryption. Therefore, their
schemes lack efficiency, especially when a large number of messages are pub-
lished on the public board. Obviously, achieving active security directly based
on the semi-honest designs would further degrade performance.

For all non-TEE-based constructions, designing a practical protocol secure
against malicious servers is highly challenging. A malicious server can misbehave
at any point during the retrieval process, which means that authentication must
cover the entire flow — from the bulletin board to the final message sent to
the receiver (namely, digest). Moreover, we need to guarantee that the receiver’s
cost is significantly lower than that of directly searching from the entire bulletin
board. Otherwise, the system loses its intended value.

1.1 Our Contribution

In this work, we propose Two-Face, an actively secure private signaling pro-
tocol assuming two non-colluding servers while overcoming the above usability
challenges and guaranteeing practical efficiency.

Achieving Full Active Security. To achieve full active security, Two-Face
integrates tailored zero-knowledge proofs to ensure server-side inputs remain
consistent with the public board, and adopts the dual-execution mechanism that
enables the receiver to efficiently detect any malicious behavior with minimal
overhead. Moreover, we prove the security via the simulation paradigm, which
means that our approach is secure against any active attacks.

Overcoming Usability Challenges. Prior works either (1) incur communica-
tion overhead for the recipient that grows linearly with the number of messages
on the public board, or (2) impose restrictions on the number of messages the
recipient can retrieve. Two-Face addresses both challenges by performing a shuf-
fling process on the server side. Moreover, the shuffling process itself is also
utilized to achieve the aforementioned active security guarantee, and thus does
not incur additional overhead on the servers.

Practical Efficiency through End-to-End Benchmarking. Finally, we
demonstrate the practical efficiency of our approach through end-to-end bench-
marking. Specifically, Two-Face achieves lower server communication than all
prior work, and produces a digest of 33.57 KB for 50 pertinent signals — only
5× larger than that of the most compact semi-honest protocol. It also processes
one million messages in just 4 minutes using 16 threads on moderate hardware.

3

2 Technical Overview

2.1 Recap HomeRun

HomeRun [14] is the state-of-the-art two-server private signaling protocol in the
semi-honest setting. We first provide an overview of their protocol to illustrate
the challenges in designing an active private signaling protocol; then, we discuss
the intuition of our protocol and how it can achieve active security efficiently.

How HomeRun Works. In HomeRun, two servers, namely Sa, Sb, publish
their public keys, namely pka and pkb. The address of a receiver is their public
key, namely pkR. A sender who wants to send a message to the address pkR would
put two ciphertexts on the bulletin board for private signaling: Encpka(La) and
Encpkb(Lb) such that La + Lb = pkR. Then, the two servers can obtain La and
Lb, respectively, from the bulletin board.

A receiver with public key pkR has secret key skR such that pkR = gskR . To
retrieve messages designated to it, the receiver sends secret shares of its public
key pkR = L∗

a + L∗
b to two servers. The two servers, holding secret shares of the

destination public key for each message, can compute the shares of difference
between the destination public key for each message and pkR. Now, two servers
hold either secret shares of 0, meaning that the destination public key is pkR,
or a non-zero value, meaning it is for other receivers. Two servers then run a
two-party private equality check to obtain secret shares of 0 or 1, indicating such
facts, and send these bits back to the receiver, who can reconstruct the private
signals, i.e., the indices of 1.

Finally, to prevent an adversary from retrieving other receivers’ mes-
sages/signals, HomeRun requires all receivers to perform proof of knowledge
of the secret values. In particular, the receiver needs to prove in zero-knowledge
(ZK) that it knows the discrete log of L∗

a to one server and the discrete log of L∗
b

to the other server. In this way, a corrupted receiver cannot retrieve messages
for an address without knowing the secret key.

Challenges in Designing Actively Secure Private Signaling. Although
HomeRun is highly efficient, there are several drawbacks, e.g., the client-server
communication is linear to the size of the entire board. Furthermore, it is very
difficult to be made actively secure. Indeed, none of the existing private signaling
protocols can tolerate malicious adversaries without relying on TEE. Below, we
outline some key challenges in achieving active security.

– Prevent Server-Receiver Colluding. In HomeRun, ZKPoK of discrete log
from the receiver to each server is needed to prevent any party without skR
to retrieve the signals for address pkR. However, if an adversary corrupts a
server and the receiver, they can still retrieve the signals from any public-key
address. In more detail, an adversary corrupting the receiver and Sa can send
a group element L∗

b , with known discrete log and prove it to the uncorrupted
server Sb. To fetch signals designated to an address pk, the corrupted server Sa

would use L∗
a = pk−L∗

b , which would eventually allow the corrupted receiver

4

to obtain the signals for pk. This is very difficult to prevent as the server
behaves honestly except that it uses a different input and skips a ZKPoK,
which is not observable from the honest server.

– Prevent Deviation from the Bulletin Board. A corrupted server can
introduce false negatives by deviating from the bulletin board. In HomeRun,
this kind of deviation is hard to detect because the equality test input is
not directly linked to the ciphertexts posted on the board. The server must
first decrypt the ciphertext using its own secret key before performing the
equality test. This procedure makes it difficult to verify that the input indeed
corresponds to the public ciphertext, giving a malicious server the opportunity
to cheat and drop potentially pertinent signals.

– Lack of Output Verification. Moreover, false negatives can also arise due
to the lack of verification on the output. Specifically, a malicious server may
manipulate the result of the private equality test by flipping its output bit,
causing a valid signal to be dropped. Even if authentication is provided for the
output of this test, verifying it would be costly for the client, as the output is
already linear to the board size.

2.2 Our Approach

Basic Setup of Our Protocol. The first issue that we focus on is the receiver-
server collusion to fetch messages designated to other addresses without their
private keys. To solve this, we use a very different setup. Two servers no longer
hold any private information, such as server private keys. Instead, to send a
message to address pk, one would compute a clue as an ElGamal encryption of
1 using the address public key. For example, the clue to a message designated
to address pkR would be (gr, pkrR) for some r. Since the server has no private
information, a receiver colluding with the server cannot help as in HomeRun.

Note that this setup is somewhat similar to FHE-based private signaling
protocols, but we argue that in the two-server setting, it could still work without
the need for FHE. For a party with address pkR and secret key skR = DLog(pkR)
to retrieve messages, it would send secret shares of skR to the two servers, namely
ska and skb such that ska + skb = skR. For a message designated to address pk
with the clue c = (gr, pkr), two servers can distributively decrypt it by computing
ha = 1/c[1]ska and hb = c[2]/c[1]skb respectively. We can see that ha · hb =
c[2]/c[1]skR = (pk/pkR)

r. This means that this message is designated to the
receiver if and only if ha = h−1

b .

Now, two servers have a list of values, and whether they are equal indicates
if the corresponding indices are signals designated to this receiver. In particular,
assuming that there are totally N messages on the public board. By the above
method, two servers can each locally compute a set of values such that the indices
where their respective values are equal should be the signals sent to the receiver.
Namely, Sa holds vector A ∈ GN and Sb holds B ∈ GN and the receiver should
obtain {i|A[i] = B[i]}. Of course, one could use private equality test protocols
to obtain shares of the output, but making this idea maliciously secure would be

5

hard, and the protocol would still require linear communication between servers
and the receiver.

Retrieving Signals Privately under Semi-honest Security. To make the
above protocol scale and eventually actively secure, we adopt a very different
approach without using private equality test protocols. The task now is some-
what similar to private-set intersection (PSI), and thus our protocol is adapted
from [9], which was originally designed for private set intersection-cardinality
(PSI-CA). Roughly speaking, we ask server Sa to encrypt its list and send the
encrypted list, namely {Enc(A[i])}i∈[N] to Sb (we ignore the public key for en-
cryption for clarity); then Sb homomorphically applies a list of mask M [i] and
then permutes the list based on a permutation σ, namely Sb sends to Sa the list
{Enc(A[σ(i)] + M [σ(i)])}i∈[N]. Sb also masks, permutes, and applies random
oracle on its own list, and sends it to Sa, namely {H(B[σ(i)] +M [σ(i)])}i∈[N].
Now Sa locally decrypts the first list, applies the random oracle and computes
the indices of elements in the intersection of the two lists. These indices look
uniform to Sa because it is permuted by σ known only to Sb. The receiver can
get the signal by getting the (permuted) intersection from Sa and σ from Sb.
Although this protocol is not actively secure yet, it already allows for a small
digest from the servers to the receiver since the digest size is linear to the number
of relevant signals, not the board size.

Strengthening the Protocol to Active Security. There are multiple ways
for a corrupted server to cheat. Our next key idea is to adopt the “dual execution”
methods [12, 21] and run the above protocol twice, once with Sb providing the
permutation and Sa getting the permuted result as above, and once with their
roles swapped. Now, the receiver would obtain two copies of the result and
accept only if they are the same. Intuitively, if one of the servers cheats, it can
try to introduce false positives or false negatives. However, any cheating behavior
after receiving the permuted and masked list requires guessing some information
about the permutation, which could be caught with some probability if guessed
incorrectly. Given this, we are left with two main challenges to solve:

– How to ensure the first message in each execution (i.e., the encrypted list) is
consistent with the clues in the bulletin board. In particular, we would like
to prevent Sa from corrupting the encrypted list before Sb permutes it in the
first execution and, at the same time, corrupting the encrypted list from Sb

in a consistent way in the second execution. This would potentially allow a
corrupted Sa to drop a relevant signal.

– How to ensure that any cheating can be detected with overwhelming proba-
bility. Although cheating may be caught with some probability, we want to
ensure that the chance of undetected cheating is negligible.

Generically, the first problem can be solved by using a ZKP protocol to prove
that the encryptions are correctly performed: ciphertext are well formed and the
message is consistent with the decryption from the bulletin board. The second
problem can be solved by injecting public elements into the two servers’ lists so
that they are expected to appear in the output; the receiver now reconstructs

6

the set and also needs to check if all public elements are in the result. However,
this may not lead to a practical solution since we now need to use ZKP to prove
correct encryption.

Making Everything Concrete Efficient. Our last ingredient is to make the
above idea concrete by simplifying the semi-honest protocol so that our ZKP
only needs to prove a simple relationship that can be done efficiently.

First of all, we replace the encryption in the scheme to a single blind. For
example, server Sa now would compute and send {(RiA[i])ξ} where Ri is a
public uniform group element and ξ is a global uniformly distributed exponent
as a blind. Note that the list is indistinguishable from uniform group elements
under DDH [4]; thus, it can serve the purpose of encryption. Sb could mask the
list using a single blind ω for the same reason. Now Sb would send to Sa lists
{(Rσ(i)A[σ(i)])ξω} and {H((Rσ(i)B[σ(i)])ω)} instead. Sa could still eliminate
the ξ and compute the indices of relevant signals after permutation. The second
execution would be changed similarly.

Now, let us look at the details of the ZKP protocol. Assuming the list of
clues are c1, . . . , cN , where each is a tuple of two group elements. In this case,
Sa sends to Sb, for each i, (RiA[i])ξ, where A[i] = ci[1]

ska ; thus we can write the

group element Sa sends as U [i] := Rξ
i ci[1]

skaξ. Since Ri and ci[1] are public, we
essentially want to prove in ZK a variation of the discrete logarithm: the prover
has a witness consisting of two exponents, namely x = ξ and y = skaξ, and the
prover wants to prove that the publicly claimed values U [i] = Rξ

i · ci[1]skaξ holds
for all i. It turns out that this can be proven efficiently using a variation of the
Schnorr’s protocol.

As a result, our protocol is highly efficient even in the malicious setting. The
servers exchange 458 bytes with each other for each message on the board, and
send 33.57 KB to the client when retrieving 50 pertinent signals.

3 Preliminaries

3.1 Notation

Let κ be the computational security parameter and λ be the statistical security
parameter. For an ElGamal ciphertext c := (gr, pkr · m), we denote the first
component gr as c[1], and the second component pkr ·m as c[2]. Decryption with

the secret key sk is written as Decsk(c) = c[2]/c[1]sk. We use x
$←− S to denote

sampling x uniformly from a set S. We use [N] to denote the set {1, 2, . . . , N}.
We use bold upper-case letters like A to denote a vector and A[i] to denote the
i-th component of A. If the vector A is of size N , we use Aξ to denote the set
{A[1]ξ, . . . ,A[N]ξ}. Given a permutation σ of size N , we use σ(A) to denote
the set {A[σ(1)], . . . ,A[σ(N)]}.

3.2 Ideal Functionality Fretrieve

We define the functionality Fretrieve in Figure 1. Given a list of signals in the form
of distinct ElGamal ciphertexts (by saying “distinct”, that both components of

7

Functionality Fretrieve

Participants: Two servers Sa, Sb, and a recipient R.

Retrieving signals: Given N distinct ElGamal ciphertexts (c1, . . . , cN) obtained
from the ledger, the functionality receives (Retrieve, skR) from a recipient R, and
calculates the set P := {i |DecskR(ci) = 1}. It then sends (Retrieve, P) to R and
(Retrieve, |P|) to the adversary and servers.

Fig. 1. The ideal functionality for retrieval.

the two ElGamal ciphertexts differ), a recipient R can query Fretrieve to help
retrieve the pertinent signals for them. The recipient sends their own secret key
to Fretrieve, and the functionality will then collect all the indices i for which
the i-th ciphertext decrypts to 1, and return the list to the recipient. Also,
the functionality will notify the adversary that a private list of signals has been
accessed, including the size of the list |P|. Revealing |P| is the result of a trade-off
between security and efficiency. The similar trade-offs also exist in the previous
works. Specifically, to improve the efficiency, the works [16, 17, 18, 20] limit the
number of pertinent messages for a receiver (e.g., up to 50), which allows a
malicious sender to easily send a large number of messages to launch a DoS
attack 3. Jia et al. [14] pointed out and eliminated this limitation, but at the
cost of O(N) server-client communication cost (i.e., digest size). Our work retains
all the merits of Jia et al. [14], and chooses to reveal |P| to avoid the O(N) cost.
Note that the servers in our design cannot link different requests from the same
receiver 4, and thus cannot deduce the receiver-message linkability based on the
difference in the numbers of messages retrieved across requests.

In addition, our solution can be lightly modified to hide |P| but with O(N)
server-client communication cost. We present our volume-hiding protocol in Ap-
pendix A, with only one-step difference with our main protocol. With board size
N = 219, the total server-client communication for this active protocol is 48MB
(which is still smaller than FHE-based construction with the detection key of
size 140MB) and the overhead on the reconstruction time (the time for the client
to learn the pertinent indices) is only 10ms, comparing to our main protocol.

Private Signaling in One Step. Given the functionality Fretrieve, private sig-
naling can be accomplished in a single step under the DDH assumption. In this
system, each client generates an ElGamal key pair and publishes their public
key for potential contactors. To send a message, the sender encrypts the value 1

3 Liu and Tromer [17] discussed that to address the overflow issue, the receiver can
(1) repeatedly request retrieval with a larger upper bound or (2) request the number
of pertinent messages with a server and then retrieve the messages with another
server. These methods degrade the performance and lead to information leakage, as
discussed in their paper.

4 We do not consider the network-level leakage as in the previous works [16,17,18,20],
which is beyond the scope of our paper.

8

Functionality FLedger

This functionality is globally available to all participants.

Parameter:

– state: initialized as ϵ;
– Validate(ctx, id, state): verify if a transaction is valid;

Functionality:

– Submit: Upon receiving (SUBMIT, ctx, id):
1. If Validate(ctx, id, state)=1, then state = state ∪ (ctx, id);
2. Send (SUBMIT, ctx, id) to A;

– Read: Upon receiving READ from a party Pi, send state to Pi and A.

Fig. 2. Ledger functionality.

using the recipient’s public key and posts the ciphertext on a public ledger. The
recipient can then retrieve relevant messages by either decrypting all ciphertexts
on the board or by providing their secret key to Fretrieve.

3.3 Threat Model

We assume at least one of the server is honest and can not be colluded. Further-
more, we allow any collusion between recipients and one of the servers and prove
that we achieve correctness and privacy against malicious adversaries. Correct-
ness means that a recipient R should learn all signals that are intended for them,
and be able to abort with overwhelming probabilities if the signals are not cor-
rect. Privacy means that by looking at the messages exchanged in the protocol
no one except R and the senders of the signals should distinguish which signals
are directed to R. Furthermore, we want to capture the inherent leakage that a
protocol participant can learn that a certain recipient is trying to retrieve their
own signals, as well as the number of signals being retrieved.

3.4 Ledger

A bulletin board can be abstracted as a global ledger, which can be achieved by
blockchain techniques. Any party can submit messages to the ledger and read
the state of the ledger. The underlying consensus protocols can guarantee that
all the parties can read the same state. We adopt the global ledger definition
in [15], and we give an abridged version in Figure 2.

9

Protocol ΠprivSignal

Public inputs: Two random oracles H and H’.

Participants: Two servers Sa and Sb, multiple clients that can act as senders or
recipients.

Setup: To register in the system, the client R samples skR
$←− Zp, and calculates

pkR := gskR , which will be sent to parties from which R is willing to receive
messages.

Send: To inform a new message with id msg id to a recipient R, the sender obtains
the public key of R, generates the clue c := (gr, pkrR) with randomness r, and sends
(SUBMIT, c,msg id) to FLedger.

Retrieve (Semi-Honest): Given (c1, c2, . . . , cN) as the clue vector containing N
distinct ElGamal ciphertexts, to perform a signal retrieval:

1. The recipient R samples seed
$←− {0, 1}λ, and calculates (skb, σ)← H(seed), and

ska = skR − skb. R sends ska to Sa, and seed to Sb;

2. Sa samples ξ
$←− Zp, calculates and sends M := (H(c1[1]

ska)ξ, . . . ,H(cN [1]ska)ξ)
to Sb;

3. Sb computes (skb, σ) ← H(seed) and samples ω
$←− Zp. It then computes P :=

σ(Mω) and P ′ := σ(H′(H(c1[2]/c1[1]
skb)ω), . . . , H′(H(cN [2]/cN [1]skb)ω)) and

sends to Sa;

4. Sa computes E := {i |H′(P [i]ξ
−1

) = P ′[i]}, and sends to R;
5. R recovers the pertinent set P := σ−1(E).

Fig. 3. Our semi-honest protocol for private signaling.

4 One-Face: Semi-Honest 2-Server Private Signaling

We break our semi-honest protocol for private signaling (Figure 3) into three
parts: (1) Setup: how clients initialize; (2) Send: how a sender sends a signal; (3)
Retrieve: how a recipient obliviously retrieves signals.

4.1 Setup

In our protocol, there are two servers and multiple clients that can act as senders
or recipients. In the setup phase, clients generate ElGamal key pairs to join the
system at any time. To register in the system, the client R uniformly samples skR
from Zp, and then calculates its public key as pkR := gskR . To receive messages,
R must share its public key pkR with the prospective sender.

4.2 Sending Messages

To inform R of a new message of id msg id, the sender should first obtain the
public key of R, and use it to construct a valid ElGamal encryption of value 1.

10

Namely, the sender samples r
$←− Zp and calculates c := (gr, pkrR) as the clue of

this signal. Then the sender publishes the clue on the bulletin board, which will
be further read and processed by two servers for retrieval.

4.3 Retrieval

Assuming two servers are semi-honest, we now describe how a recipient R, who
holds the secret key skR, retrieves the pertinent indices. As previously defined, a
valid clue c that is pertinent to R must be an ElGamal encryption of the value
1 under R’s public key, i.e. c[1]skR = c[2]. Given (ska, skb) as the additive shares
of R’s secret key, we have

c[1]ska = c[2]/c[1]skb .

To compute the pertinent indices, two servers first distributively decrypt all the
clues, such that Sa holds ci[1]

ska and Sb holds ci[2]/ci[1]
skb . Then two servers

jointly compute the permuted indices satisfying ci[1]
ska = ci[2]/ci[1]

skb . Since
the result corresponds to the permutation chosen by R, R can easily reconstruct
the original pertinent set.

Request a Retrieval. To request a retrieval, R should privately send to Sa: ska
- one share of its own secret key, and to Sb: skb - another share of the secret key,
and σ - the permutation to mask the pertinent indices. (skb, σ) can be derived
using a seed and a random oracle H.

Response to a Retrieval Request. Given (c1, c2, . . . , cN) as the clue vector
obtained from FLedger, the goal for two servers is to inform the recipient all the
indices i satisfying

ci[1]
ska = ci[2]/ci[1]

skb .

Holding ska or skb, each server can calculate one side of the equation. Therefore,
to obliviously return the index, two servers should perform a private equality
check.

To mask the input, each server would sample a random exponent: Sa samples

ξ
$←− Zp, and Sb samples ω

$←− Zp. First, Sa calculates a masked vector

M := (H(c1[1]
ska)ξ, . . . ,H(cN [1]ska)ξ),

and sends to Sb. Sb then permutes and blinds both M and its own in-
puts using ω, resulting the following two vectors P := σ(Mω), and P ′ :=
σ(H′(H(c1[2]/c1[1]

skb)ω), . . . ,H′(H(cN [2]/cN [1]skb)ω)). P and P ′ are returned to
Sa, who can remove its own blinding exponent and output the equality set
E := {i |H′(P [i]ξ

−1

) = P ′[i]} to R.
Assuming the existence of random oracle, and the randomness of ξ, M is

computationally indistinguishable from a random vector under the DDH as-
sumption. Therefore, Sb learns nothing from the vector M . Likewise, assuming
the randomness of σ, Sa gains no information from P and P ′, other than the
number of pertinent indices.

11

Functionality FBatchPOE

On public inputs (A,B,C) ∈ G3N , and (x, y) ∈ Z2
P from the prover P, return to

both parties whether C[i] = A[i]xB[i]y for all i ∈ [N].

Fig. 4. The ideal functionality for batch proof of exponent.

Reconstruct the Pertinent Set. To reconstruct the pertinent indices P, R
simply computes σ−1(E). We argue that assuming two servers act honestly,
σ−1(E) is exactly the pertinent set P.

Lemma 1. (Correctness) Given (c1, . . . , cN) as the clue vector obtained from
FLedger, a recipient R participating ΠprivSignal.Retrieve(Figure 3) learns the set of
pertinent signals P = {i |DecskR(ci) = 1} in the random oracle model, assuming
two servers behave honestly.

Proof. If DecskR(ci) = 1, given skR = ska + skb, we have H′(P [σ(i)]ξ
−1

) =

H′(H(ci[1]
ska)ξω·ξ−1

) = H′(H(ci[2]/ci[1]
skb)ω) = P ′[σ(i)]. According to the pro-

tocol, σ(i) will be added to E, and thus P ⊆ σ−1(E).

Similarly, for any σ(i) ∈ E, we have H′(P [σ(i)]ξ
−1

) = H′(H(ci[1]
ska)ξω·ξ−1

) =
H′(H(ci[2]/ci[1]

skb)ω) = P ′[σ(i)], which means that ci[1]
ska = ci[2]/ci[1]

skb . Given
skR = ska + skb, we have DecskR(ci) = 1, and thus σ−1(E) ⊆ P.

Theorem 1. ΠprivSignal.Retrieve in Figure 3 securely realizes FRetrieve in the ran-
dom oracle model in the semi-honest setting, assuming the hardness of DDH.

The proof of Theorem 1 can be found in Appendix B.

5 Two-Face: Malicious 2-Server Private Signaling

In this section, we present our malicious protocol for signal retrieval (Figure 6).
Assuming the server may act maliciously, the correctness guarantees of the semi-
honest protocol no longer hold since: (1) the malicious server may switch inputs
that are not consistent with the bulletin board, and (2) after computing the
intersection, Sa may maliciously drop certain indices when sending to R.

We address the first problem using a customized Batch Proof of Exponent,
and to tackle the second problem, we let two servers perform a dual execution,
allowing the recipient to efficiently check consistency.

5.1 Batch Proof of Exponent for Input Authentication

Recall that in the semi-honest protocol, Sa blinds its input with a hash function
and a random ξa:

M := (H(c1[1]
ska)ξa , . . . ,H(cN [1]ska)ξa).

12

Protocol ΠBatchPOE

Public inputs: (A,B,C) ∈ G3N , and a random oracle H.

Private inputs: x, y ∈ Z2
P from the prover P.

Prove:

1. Calculate Ã, B̃ ← H(A,B,C), where (Ã, B̃) ∈ G2;
2. Compute C̃ := ÃxB̃y;
3. Calculate q ← H(A,B,C, Ã, B̃, C̃) where q ∈ ZN+1

p , and compute

A := Ãq[N+1] ·
∏

i∈[N]

A[i]q[i],

B := B̃q[N+1] ·
∏

i∈[N]

B[i]q[i],

C := C̃q[N+1] ·
∏

i∈[N]

C[i]q[i];

4. Choose blinding factors k1, k2
$←− Zp and compute t = Ak1Bk2 ;

5. Calculate a random challenge e← H(A,B,C, Ã, B̃, C̃, q, t) where e ∈ Zp;
6. Compute z1 = k1 + xe, and z2 = k2 + ye and send proof π := (C̃, t, z1, z2).

Verify: The verifier V parses π as (C̃, t, z1, z2):

1. Calculate Ã, B̃ ← H(A,B,C), q ← H(A,B,C, Ã, B̃, C̃), and

A := Ãq[N+1] ·
∏

i∈[N]

A[i]q[i],

B := B̃q[N+1] ·
∏

i∈[N]

B[i]q[i],

C := C̃q[N+1] ·
∏

i∈[N]

C[i]q[i];

2. Compute e← H(A,B,C, Ã, B̃, C̃, q, t);
3. Check whether Az1Bz2 = t · Ce.

Fig. 5. Our protocol for batch proof of exponent.

To prove that the input does not deviate from the clues (c1, . . . , cN), Sa should
demonstrate that each element of M is calculated correctly. However, since the
proof of hash function is generally considered expensive [2], we apply another
method to blind Sa’s input:

M := (Rξa
1 (c1[1]

ska)ξa , . . . , Rξa
N (cN [1]ska)ξa).

13

Assuming the randomness of (R1, . . . , RN), M is computationally indistinguish-
able from a random vector under the DDH assumption. To prevent a malicious
server from tampering with the randomness, the recipient provides a random
seed used to generate (R1, . . . , RN).

The honest construction of M can now be verified using a batch proof of
exponent, of which the functionality FBatchPOE is presented in Figure 4. Using
a batch proof of exponent, given three vectors (A,B,C) as public input, the
prover can convince the verifier that each element in the vector C is computed
from the corresponding element in vector A and B using same exponents x and
y, i.e. C[i] = A[i]xB[i]y, without revealing the value of either x or y.

We present our implementation for this functionality in Figure 5, based on
the protocol in [25]. The original protocol is secure in RSA group, but is not
sound in a prime group if the prover previously knows the discrete logarithms
of all public inputs. We fix this issue by challenging the prover at random group
elements Ã and B̃, based on the verifier’s choice.

Lemma 2. The protocol ΠBatchPOE securely realizes FBatchPOE with soundness
error |G|−1 in the random oracle model, assuming the hardness of the discrete
logarithm problem.

The proof for Lemma 2 can be found in Appendix C.
To convince Sb that the vector is honestly constructed from

(R1, . . . , RN , c1, . . . , cN), Sa sends ξa and skaξa to ΠBatchPOE, which will

return to Sb whether M [i] = Rξa
i ci[1]

skaξa for i ∈ [N]. To ensure that Sa is
using the exact ska and ξa that R provides, R will public (ga, ha, g

ξa
a hskaξa

a),
which will also be sent to ΠBatchPOE, serving as a proving gadget.

To ensure correctness, the construction of P ′ changes consequently: P ′ :=
σ(H(Rω

1 (c1[2]/c1[1]
skb)ω), . . . ,H(Rω

N (cN [2]/cN [1]skb)ω)). After receiving P and

P ′ from Sb, Sa computes E := {i |H(P [i]ξ
−1

) = P ′[i]}.

5.2 Dual Execution for Mutual Integrity Checking

Instead of authenticating vector P and P ′ (which will involve proof of permu-
tation relative to the size of the bulletin board), we let two servers perform a
dual execution, such that the recipient can later compare the results from two
servers and check their consistency. In the remainder of this paper, we use Ma

to denote a vector generated by Sa, and Mb to denote a vector generated by Sb.
Recall that in the semi-honest protocol, in order to filter out all the indices

i such that
ci[1]

ska = ci[2]/ci[1]
skb ,

Sa calculates the LHS of the equation for i ∈ [N], blinds the vector using a
random exponent ξa, and sends to Sb (denoted as Ma). Both servers then call
FBatchPOE to authenticate the honest construction of the vector Ma. After re-
ceiving Pb and P ′

b , Sa computes Ea := {i |H(Pb[i]
ξ−1
a) = P ′

b [i]} and sends to the
recipient R.

14

To perform a dual execution, two servers switch roles to filter out all the
indices i such that

ci[1]
skb = ci[2]/ci[1]

ska .

In this dual execution, Sb will calculate the LHS of the equation for i ∈ [N],
blind it using another random exponent ξb, and send to Sa:

Mb := (Rξb
1 c1[1]

skbξb , . . . , Rξb
N cN [1]skbξb).

Similarly, both servers call FBatchPOE to authenticate the honest construction of

the vector Mb. After receiving Pa and P ′
a, Sb computes Eb := {i |H(Pa[i]

ξ−1
b) =

P ′
a[i]} and sends to R. R can then reverse the permutation and check whether

two results are consistent.
Although both servers can cheat when providing P∗ and P ′

∗, it is hard for one
server to ensure the consistency between Ea and Eb. Without loss of generality,
assume that Sa maliciously calculates Pa and P ′

a to change a certain index in
Eb, denoted as i. When providing Ea to R, Sa has to guess σb(i) without the
knowledge of the permutation, otherwise R will abort due to the incosistency of
two results.

Repetition and Padding to Mitigate False Negatives. To increase the
difficulty to maintain the output consistency, each server applies the permutation
independently k times and the other server would output k corresponding results.
Additionally, R will pre-pad p values to help detect any malicious behavior by
the servers.

More specifically, before retrieving signals, R informs both servers of the
padding values (γ1, . . . , γp), which are also generated using a public seed. During
retrieval, Sa calculates and sends

Ma := (Rξa
1 c1[1]

skaξa , . . . , Rξa
N cN [1]skaξa , γξa

1 , . . . , γξa
p).

After verifying the construction of Ma, Sb applies k different permutations
and blinding factors on Ma as well as its own inputs, resulting in 2k vec-

tors: For i ∈ [k], Sb samples ωb,i
$←− Zp, and calculates Pb,i := σb,i(M

ωb,i
a),

and P ′
b,i := σb,i(H(R

ωb,i

1 (c1[2]/c1[1]
skb)ωb,i), . . . ,H(R

ωb,i

N (cN [2]/cN [1]skb)ωb,i),

H(γ
ωb,i

1), . . . ,H(γ
ωb,i
p)). Then Sb sends all the 2k vectors to Sa, who can remove

blinding exponent ξa and output k results {Ea,i}i∈[k].
To reconstruct the pertinent indices, R applies the inverse of each permu-

tation to verify consistency and ensure that the padding values are within the
set. That is, R checks whether for all i, j ∈ [k] st. [N + 1, N + p] ⊂ σ−1

b,i (Ea,i) =

σ−1
a,j(Eb,j). If the equation holds, we argue that σ−1

b,1 (Ea,1) is the set of pertinent
indices with overwhelming probabilities.

Lemma 3. (False negative probability) Given (c1, . . . , cN) as the clue vector ob-
tained from FLedger, an honest recipient R participating ΠprivSignal.Retrieve (Fig-
ure 6) either learns the set of pertinent signals P = {i |DecskR(ci) = 1} or the
protocol aborts with probability greater than 1 − 1

(p+|P|)k in the random oracle

model, assuming the hardness of DDH and p > N
N

N−1 −N .

15

Protocol ΠprivSignal

Setup & Send: Same as the semi-honest version (Figure 3).

Retrieve (Malicious): Given (c1, c2, . . . , cN) as the clue vector containing N
distinct ElGamal ciphertexts, H as a random oracle, to perform a signal retrieval:

1. R samples seed, seeda, seedb
$←− {0, 1}λ, and calculates (ga, gb, ha, hb) ←

H(seed), (ska, ξa)← H(seeda), ξb ← H(seedb), and skb = skR − ska;

2. R sends (seed, gξaa , g
ξb
b , hskaξa

a , h
skbξb
b) to two servers, (seeda) to Sa, and

(skb, seedb) to Sb. Two servers compare H(seed, gξaa , g
ξb
b , hskaξa

a , h
skbξb
b) and abort

if not consistent;
3. Both servers compute (ga, gb, ha, hb, R1, . . . , RN , γ1, . . . , γp) ← H(seed). Sa

computes (ska, ξa, {σa,i}i∈[k])← H(seeda), and Sb computes (ξb, {σb,i}i∈[k])←
H(seedb);

4. Two servers proceed as follows to calculate all the indices i ∈ [N] satisfying
ci[1]

ska = ci[2]/ci[1]
skb :

– Sa calculates and sendsMa := (Rξa
1 c1[1]

skaξa , . . . , Rξa
N cN [1]skaξa , γξa

1 , . . . , γξa
p)

to Sb;
– Given public value (R1, . . . , RN , ga, c1, . . . , cN , ha,Ma, g

ξa
a hskaξa

a), Sa invokes
FBatchPOE with private input ξa and skaξa to prove that for i ∈ [N], Ma[i] =
Rξa

i ci[1]
skaξa . Sb aborts if check fails;

– Given public value (γ1, . . . , γp, ga,Ma, g
ξa
a), Sa invokes FBatchPOE with private

input ξa to prove that for i ∈ [p], Ma[N + i] = γξa
i . Sb aborts if check fails;

– For i ∈ [k]:

• Sb samples ωb,i
$←− Zp, and sends Pb,i := σb,i(M

ωb,i
a) and

P ′
b,i := σb,i(H(R

ωb,i

1 (c1[2]/c1[1]
skb)ωb,i), . . . ,H(R

ωb,i

N (cN [2]/cN [1]skb)ωb,i),

H(γ
ωb,i

1), . . . ,H(γ
ωb,i
p)) to Sa;

• Sa aborts if there are repeated elements in Pb,i. Otherwise, compute

Ea,i := {j |H(Pb,i[j]
ξ−1
a) = P ′

b,i[j]};
5. Two servers switch the roles to calculate all the indices i ∈ [N] satisfying

ci[1]
skb = ci[2]/ci[1]

ska :
– Sb calculates and sends Mb := (R

ξb
1 c1[1]

skbξb , . . . , R
ξb
N cN [1]skbξb , γ

ξb
1 , . . . , γ

ξb
p)

to Sa;
– Given public value (R1, . . . , RN , gb, c1, . . . , cN , hb,Mb, g

ξb
b h

skbξb
b), Sb invokes

FBatchPOE with private input ξb and skbξb. Sa aborts if check fails;
– Given public value (γ1, . . . , γp, gb,Mb, g

ξb
b), Sb invokes FBatchPOE with private

input ξb. Sa aborts if check fails;
– For i ∈ [k]:

• Sa samples ωa,i
$←− Zp, and sends Pa,i := σa,i(M

ωa,i

b) and
P ′

a,i := σa,i(H(R
ωa,i

1 (c1[2]/c1[1]
ska)ωa,i), . . . ,H(R

ωa,i

N (cN [2]/cN [1]ska)ωa,i),
H(γ

ωa,i

1), . . . ,H(γ
ωa,i
p)) to Sb;

• Sb aborts if there are repeated elements in Pa,i. Otherwise, compute

Eb,i := {j |H(Pa,i[j]
ξ−1
b) = P ′

a,i[j]};
6. Sa sends {Ea,i}i∈[k] to R, and Sb sends {Eb,i}i∈[k] to R;
7. R aborts unless for all i, j ∈ [k] s.t. [N + 1, N + p] ⊂ σ−1

b,i (Ea,i) = σ−1
a,j(Eb,j).

Fig. 6. Our malicious protocol for private signaling.

16

Proof. Full proof is included in Appendix D and we provide a proof sketch below.
A malicious Sa can alter certain indices when sending Ea,i to R. Denote the

set that a malicious Sa drops in Ea,i as ϕi, and {ϕi}i∈[k] should satisfy that:

1. σ−1
b,i (ϕi) ̸⊂ [N + 1, N + p]: without the knowledge of σb,i (two servers are

non-collude), ϕi should not touch the values padded by the recipient R;
2. σ−1

b,i (ϕi) = σ−1
b,j (ϕj) for i, j ∈ [k]: each ϕi should be consistent after reversing

the permutation;
3. Sa should correctly guess φ = σ−1

b,i (ϕi) and modify these entries when con-
structing Pa,i and P ′

a,i, so that entries in φ will not appear in Eb,i.

The problem can be modeled as a combinatorial problem in which the adversary
can succeed in cheating only with probability less than 1

(p+|P|)k . The detailed

proof is presented in Appendix D.

Assuming |P| → 0, the probability that an honest recipient gets the pertinent
set is sufficiently large as long as pk exceeds 2λ.

Theorem 2. ΠprivSignal.Retrieve in Figure 6 securely realizes FRetrieve in the
FBatchPOE-hybrid and random oracle model in the active security setting, assum-
ing the hardness of DDH.

Proof. Since our protocol is strictly symmetric, we can assume that Sa is the
adversary. Additionally, we consider a worst-case scenario in which the adversary
colludes with the sender and has complete knowledge of the randomness used
in all ciphertexts posted on the bulletin board. This captures a realistic threat
model where the adversary may strategically construct and publish clues on
the public ledger to serve their own advantage. We show there exists a PPT
simulator Sim interacting with functionality FRetrieve generates a transcript that
is indistinguishable from the transcript generated by the real-world adversary
A.

Case I. When one of the server is corrupted with the sender(s).
Given (c1, c2, . . . , cN) as the clue vector:

1. Upon receiving (Retrieve, |P|) from Fretrieve, Sim samples two

seeds seed, seeda
$←− {0, 1}λ, g∗, h∗

$←− G, and computes
(ga, gb, ha, hb, R1, . . . , RN , γ1, . . . , γp) ← H(seed) and (ska, ξa, {σa,i}i∈[k]) ←
H(seeda);

2. Send (seed, gξaa , g∗, h
skaξa
a , h∗, seeda) to A;

3. Compare H(seed, gξaa , g∗, h
skaξa
a , h∗) with A and abort if not consistent;

4. Upon receiving Ma from A, Sim emulates FBatchPOE and receives x and y
from A. Sim aborts if x ̸= ξa or y ̸= skaξa or Rx

i ci[1]
y ̸= Ma[i] for any i ∈ [N]

or γx
i ̸= Ma[i+N] for any i ∈ [p];

5. Sample µ
$←− [N + p]p+|P|, and for i ∈ [k]: Sim samples Pb,i,P

′
b,i

$←− GN+M ,

and programs H(Pb,i[j]
ξ−1
a) = P ′

b,i[j] for j ∈ µ. Send (Pb,i,P
′
b,i) to A;

17

6. Sample ξb
$←− Zp, and send Mb

$←− GN+M to A where

Mb[j] :=


Rξb

j (cj [2]/cj [1]
ska)ξb , j ∈ µ and j ∈ [N],

γξb
j−N , j ∈ µ and j > N,
$←− G, otherwise;

7. Sim emulates FBatchPOE and returns 1 to A twice;
8. For i ∈ [k], upon receiving (Pa,i,P

′
a,i) from A, aborts if there are repeated

elements in Pa,i. Otherwise, compute Eb,i := {j |H(Pa,i[j]
ξ−1
b) = P ′

a,i[j]};
9. Upon receiving {Ea,i}i∈[k] from A, abort unless µ = Ea,i = σ−1

a,j(Eb,j) for
i, j ∈ [k].

We present proof by hybrids to show that the simulated world and the real world
are indistinguishable.
Hybrid 0. The real world protocol.
Hybrid 1. This hybrid is the same as the previous hybrid except that we use
the internally simulated FBatchPOE ideal functionality.
Hybrid 2. This hybrid is the same as the previous hybrid except that Sim

emulates the random oracle H and provides Pb. Sim samples P
hybrid2
b

$←− GN+M

and programs H(Pb[j]
ξ−1
a) = P ′

b [j] for j ∈ P. And we have

Viewhybrid1 := {M ,Pb,P
′
b , ξa},

and
Viewhybrid2 := {M ,P hybrid2

b ,P ′
b , ξa}.

Since under the random oracle model, (R1, . . . , RN) is uniformly distributed, we

can conclude that both M and P ′ξa
b are also uniformly distributed. Under the

DDH assumption, two views are indistinguishable.
Hybrid 3. This hybrid is the same as the previous hybrid except that P ′

b is
uniformly sampled. Define

P ′hybrid3
b

$←− GN+p,

and accordingly programs the random oracle. Assuming the randomness of
(R1, . . . , RN , γ1, . . . , γp) and the DDH assumption, the following two views are
indistinguishable:

Viewhybrid2 := {R1, . . . , RN , c1, . . . , cN , γ1, . . . , γp,P
′
b},

Viewhybrid3 := {R1, . . . , RN , c1, . . . , cN , γ1, . . . , γp,P
′hybrid3
b }.

Hybrid 4. This hybrid is the same as the previous hybrid except that Mb is
provided by Sim. Define

M
hybrid4
b [j] :=


Rξb

j (cj [2]/cj [1]
ska)ξb , j ∈ P,

γξb
j−N , j > N,
$←− G, otherwise;

18

Assuming the randomness of (R1, . . . , RN) and the DDH assumption, the fol-
lowing two views are indistinguishable:

Viewhybrid3 := {R1, . . . , RN , c1, . . . , cN ,Mb},

Viewhybrid4 := {R1, . . . , RN , c1, . . . , cN ,Mhybrid4
b }.

Hybrid 5. This hybrid is the same as the previous hybrid except that
(seed, gξaa , g∗, h

skaξa
a , h∗, seeda) are provided by Sim, where g∗ and h∗ is randomly

sampled. Assuming the randomness of (gb, hb) and the DDH assumption, two
views are indistinguishable.
Hybrid 6. This hybrid is identical to the previous hybrid except that in the
previous hybrid, Sim aborts unless for all i, j ∈ [k],

[N + 1, N + p] ⊂ σ−1
b,i (Ea,i) = σ−1

a,j(Eb,j).

While in this hybrid, Sim aborts unless for all i, j ∈ [k],

P ∪ [N + 1, N + p] = σ−1
b,i (Ea,i) = σ−1

a,j(Eb,j).

By Lemma 3, two hybrids are at least 1
(p+|P|)k -indistinguishable.

Hybrid 7. This hybrid is the same as the previous hybrid except that the

equality set is uniformly sampled. Sample µ
$←− [N + p]|P|+p, and define

Mhybrid7
b [j] :=


Rξb

j (cj [2]/cj [1]
ska)ξb , j ∈ µ and j ∈ [N],

γξb
j−N , j ∈ µ and j > N,
$←− G, otherwise;

H(P hybrid7
b [j]ξ

−1
a) = P ′hybrid3

b [j], if j ∈ µ.

Also in this hybrid, Sim aborts unless for all i, j ∈ [k],

µ = Ea,i = σ−1
a,j(Eb,j).

And we have

Viewhybrid6 := {σb(P ∪ [N + 1, N + p]), R1, . . . , RN , c1, . . . ,

cN , γ1, . . . , γp,M
hybrid4
b ,P hybrid2

b ,P ′hybrid3
b , ξa},

and
Viewhybrid7 := {µ,R1, . . . , RN , c1, . . . , cN , γ1, . . . , γp,

Mhybrid7
b ,P hybrid7

b ,P ′hybrid3
b , ξa}.

Because of the randomness of (σb, R1, . . . , RN , γ1, . . . , γp) and the DDH assump-
tion, two views are indistinguishable.

Since this hybrid is identical to the ideal world, we show that the real and
ideal worlds are indistinguishable.

Case II. When one of the server is corrupted with both the recipient
and the sender(s). Since the servers do not have any private input, the protocol
does not provide a malicious receiver any information to extract. However, we
still present the whole simulation for this case.

19

Two-Face One-Face

k = 2 k = 3 k = 4 k = 5 k = 6 N/A

#padding values p 220 10322 1024 256 102 N/A

Server running time (sec) 409.52 197.46 212.87 265.19 301.00 25.37

Reconstruction time (sec) 5.18 0.27 0.33 0.40 0.49 0.046

Server ↔ Server (MB) 393 183.54 229.45 278.14 327.06 41

Digest size (KB) 16384 243.12 33.57 11.95 7.13 0.21

Table 1. Cost under different choice of k, using board size N = 219, 4 threads. The
parameter k denotes how many times the servers repeat the permutation and blinding of
input vectors, while p represents the number of dummy values the recipient pads to the
input. The two parameters should satisfy the condition that pk ≥ 240. Reconstruction
time refers to the time the receiver spends recovering the relevant signals after receiving
the response from the servers. Digest size represents the amount of data communicated
from the server to the receiver. We also include our semi-honest protocol (One-Face)
in the rightmost column of the table for reference.

1. Upon receiving (seed, gA, g
ξb
b , hA, h

skbξb
b , skb, seedb), compare

H(seed, gA, g
ξb
b , hA, h

skbξb
b) with A and abort if not consistent.

Compute (ga, gb, ha, hb, R1, . . . , RN , γ1, . . . , γp) ← PRG(seed), and
(ξb, {σb,i}i∈[k])← PRG(seedb);

2. Upon receiving Ma from A, Sim emulates FBatchPOE and receives x and y from
A. Sim aborts if gxa ̸= gA or hy

a ̸= hA or Rx
i ci[1]

y ̸= Ma[i] for any i ∈ [N] or
γx
i ̸= Ma[i+N] for any i ∈ [p];

3. For i ∈ [k], Sim samples ωb,i
$←− Zp, and sends Pb,i :=

σb,i(M
ωb,i
a) and P ′

b,i := σ′
b,i(H(R

ωb,i

1 (c1[2]/c1[1]
skb)ωb,i),

. . . ,H(R
ωb,i

N (cN [2]/cN [1]skb)ωb,i),H(γ
ωb,i

1), . . . ,H(γ
ωb,i
p)) to A;

4. Sim sends Mb := (Rξb
1 c1[1]

skbξb , . . . , Rξb
N cN [1]skbξb , γξb

1 , . . . , γξb
p) to A;

5. Sim emulates FBatchPOE and returns 1 to A twice;
6. For i ∈ [k], upon receiving (Pa,i,P

′
a,i) from A, aborts if there are repeated

elements in Pa,i. Otherwise, compute Eb,i := {j |H(Pa,i[j]
ξ−1
b) = P ′

a,i[j]}.
Send {Eb,i}i∈[k] to A.

The only difference between the ideal world and the real protocol is that the
FBatchPOE ideal functionality is internally simulated, and thus two worlds are
indistinguishable.

6 Performance Evaluation

We highlight the main takeaways from our performance evaluation:

– One-Face is highly competitive compared to state-of-the-art semi-honest pro-
tocols. Its digest size is about 30× smaller than the best prior work (PS2)
while at the same time maintaining a competitive running time compared to
the fastest prior work (HomeRun).

20

– Two-Face introduces about 10× overhead of running time compared to its
semi-honest counterpart. Its performance is still competitive compared to prior
semi-honest protocols. For example, the digest size of Two-Face is only 5×
bigger than the best digest size of all prior semi-honest protocols.

– Finally, we experimentally verified the scalability of our protocols. It is friendly
to multi-threading, and the running time scales linearly with the board size,
processing one million messages in 4 minutes under moderate hardware.

6.1 Experiment setup

Our protocol is implemented in C++. We compared the performance of different
elliptic curves across various libraries and decided to instantiate our cyclic group
G using the secp256r1 elliptic curve from OpenSSL [23], due to its exceptional
performance in elliptic curve multiplication. We set the computational security
parameter κ to 128, and the statistical security parameter λ to 40.

SophOMD [16] and our protocols are executed using two AWS c4.8xlarge in-
stances, with 36v CPUs (2.9GHz) and 60GB RAM. The results for PS1, PS2 [20],
and HomeRun [14] is obtained from [14]. We use the same network configuration
as prior works (10Gbps bandwidth). However, we use significantly less amount
of communication and our speed would not be impacted much even under 1Gbps
network.

6.2 Microbenchmark

According to Lemma 3, we set p and k such that pk ≥ 240 for 40 bits of sta-
tistical security. Below, we analyze how the parameters k and p influence the
performance of our protocol.

Figure 7 illustrates the impact of two parameters on server running time,
as well as the concrete cost breakdown, assuming board size N = 219 (ap-
proximately the number of Bitcoin transactions per day, as noted in [20]). As
illustrated in the bar chart, elliptic curve operations constitute the majority of
the server-side computation. In our protocol, each server performs a total of
8N +5p+k(4N +3p) elliptic curve multiplications. Given N = 219, p = ⌈240/k⌉,
the number of EC multiplication is minimized to 1.06 × 107 when k = 3, with
the second-lowest value of 1.26× 107 when k = 4. This analysis of k aligns with
the experimental results in Figure 7, where the server running time reaches its
minimum at k = 3 and k = 4.

The remaining part of the server running time includes: (1) Data transfer,
which contains both the communication latency between the two servers and
the conversion of raw data into valid elliptic curve points; (2) Digest generation,
where each server produces a digest; and (3) Other overhead, such as the time
needed to expand the random seed.

Table 1 presents number of padding values, server running time, reconstruc-
tion time (recipient running time), server to server communication and digest
size (server to recipient communication) across different values of k. As shown in

21

0 50 100 150 200 250 300 350 400
Server running time (sec)

k = 6, p = 102

k = 5, p = 28

k = 4, p = 210

k = 3, p = 10322

k = 2, p = 220

Elliptic Curve Operation
Data Transfer
Digest Generation
Other

Fig. 7. Cost breakdown of server running time under different k and p, using board size
N = 219, 4 threads. The parameter k denotes how many times the servers repeat the
permutation and blinding of input vectors, while p represents the number of dummy
values the recipient pads to the input.

the table, besides server running time, the reconstruction time and server com-
munication are also minimized at k = 3, with the second-lowest value occurring
at k = 4. The digest size decreases significantly as k increases, due to the expo-
nential decline of p. Notably, in the configuration of k = 4, a digest size of 33.57
KB is already comparable to that of other semi-honest protocols. Given this,
along with reasonable server running time and communication cost, we propose
our protocol with k = 4.

6.3 Protocol Comparison

In this section, we provide a thorough performance comparison of our protocol
against prior works, leveraging the experiment results in [14]. In the realm of
FHE-based constructions [16, 17, 18], we replace OMDp1 [17] to SophOMD [16]
as the latter is the most recent work and offers the best performance in this
category. To ensure a fair comparison, we manually limit the number of threads in
SophOMD via setting OMP NUM THREADS=1 (or 4, or 16) prior to execution.
Assuming that there are 219 messages on the bulletin board, we compare the
computation and communication costs and summarize the results in Table 2.

22

PS1 [20] PS2 [20] SophOMD [16] HomeRun [14] One-Face Two-Face

Server(s) running time (sec)
1 thread 4.48 7425.94 1475.88 19.16 97.6 775.69
4 threads 660.13 7.42 25.37 212.87
16 threads 549.31 4.60 11.86 120.29

Reconstruction time (sec) 1.52 0.00014 0.0078 0.0065 0.046 0.33

Recipient → Server(s) (KB) 0.5 2.09 145408 0.22 0.048 0.35

Number of server 1 2 1 2 2 2

Server ↔ Server (MB) N/A ∼3750 N/A 582.84 41 229.45

Digest size for 50 pertinent signals (KB) 25 6.25 132 128 0.21 33.57

Limit of |P| 0 ∼ 50 0 ∼ N

Assumption TEE FOT RLWE DDH, FOT DDH, RO

Malicious Security ✓ ✗ ✗ ✗ ✗ ✓

Table 2. Comparisons of running time, communication cost, assumption used, and
security level in LAN settings, assuming board size N = 219. The running time for
PS1, PS2, and HomeRun are sourced from [14]. Reconstruction time refers to the time
the receiver spends recovering the relevant signals after receiving the response from
the servers. Digest size represents the amount of data communicated from the server
to the receiver. |P| refers to the number of pertinent signals for a single recipient. FOT

refers to the functionality of Oblivious Transfer [24]; RLWE refers to Ring Learning
With Errors [19]; RO refers to Random Oracle [1].

Server(s) Running Time. The server(s) is responsible for helping the recipient
to identify pertinent signals. As shown in Table 2, One-Face incurs 2.6× over-
head compared to HomeRun, while achieving a 46.3× speedup over SophOMD.
Two-Face, our maliciously secure protocol, is also competitive with semi-honest
protocols, showing 26.2× overhead relative to HomeRun and running 4.6× faster
than SophOMD. The comparison is obtained using 16 threads, a typical config-
uration in modern servers. Our performance is highly competitive because the
protocol scales well with multithreading; when using fewer threads (e.g., 1 or 4),
the overhead increases slightly. We include these results in the table for com-
pleteness.

Recipient Reconstruction Time. After receiving the response from the
server(s), the recipient needs to reconstruct the pertinent indexes (or messages).
From the table, we can tell that the reconstruction in all the semi-honest schemes
are much less than 1 second. The reconstruction time of Two-Face is 4.6× faster
than the other malicious protocol - PS1. The recipient in PS1 needs to decrypt
50 ciphertexts. While in Two-Face, the recipient only needs to reverse 2k per-
muted sets of size p + |P| and check whether they are all equal (The results is
based on the configuration |P| = 50, p = 210, k = 4).

Recipient → Server(s). The recipient needs to send a request to the server(s).
In One-Face, the recipient should send one share of the secret key, and one
seed to expand permutations, resulting in 49 bytes in total. In Two-Face, the
recipient needs to send four seeds, one share of secret key and 8 group elements

23

215 216 217 218 219 220

#Msgs on bulletin board (N)

23

26

29

212

Se
rv

er
 ru

nn
in

g
tim

e
(s

ec
)

Two-Face

One-Face

SophOMD

PS2

HomeRun

215 216 217 218 219 220

#Msgs on bulletin board (N)

23

26

29

212

Se
rv
er
 c
om
m
un
ic
at
io
n
(M
B
)

Two
-Fac

e

One
-Fac

e

PS2

Hom
eRu
n

215 216 217 218 219 220

#Msgs on bulletin board (N)

20

22

25

28

D
ig
es
t s
iz
e
(K

B
) Two-Face (P=500)

Two-Face (P=50)

One-Face (P=500)

One-Face (P=50)

PS2 (P=50)

SophOMD (P=50)

HomeRun

Fig. 8. Comparison of our protocols: One-Face (semi-honest) and Two-Face (malicious),
with SophOMD, HomeRun, and PS2 in server running time, server-server communi-
cation and digest size under different bulletin board size N , using single thread, LAN
setting.

for ΠBatchPOE, which is 328 bytes in total. Both request size is much smaller than
that in SophOMD and comparable with that in the other designs.

Server ↔ Server. Besides our protocols, only HomeRun and PS2 rely on two
servers. In One-Face, servers exchange 82 bytes per message on the board, result-
ing in a total server communication cost that is 14.2× smaller than HomeRun
and 91.5× smaller than PS2. In Two-Face, servers exchange 458 bytes per mes-
sage, achieving a 2.5× reduction compared to HomeRun and 16.3× reduction
compared to PS2.

Digest Size. The server(s) responds with a digest to the recipient, such that
the recipient can recover the pertinent indexes or messages. In One-Face, one
server sends |P| = 50 permuted indices to the recipient, resulting in a digest size
of only 0.21KB, which achieves a 29.8× reduction in digest size compared to the
best prior result. In Two-Face, each server should send k(p + |P|) = indices to
the recipient. When k = 4, p = 1024, the digest size is 33.57KB, which is smaller
than that in the designs of SophOMD and HomeRun.

Limit of |P|. Like HomeRun, we also enjoy the feature that the number of
pertinent signals for a recipient is unlimited. In contrast, other schemes only
allow a recipient to receive up to a pre-determined number of pertinent signals.
Additionally, as stated in Lemma 3, more pertinent signals will lead to a lower
false negative probability in our scheme. For the sake of fair comparisons, we set
the size of pertinent indices as 50 for all schemes.

Assumption & Malicious Security. As observed, Two-Face is the only one
that achieves malicious security without relying on the setup assumption of TEE.
Both the PS2 and HomeRun schemes cannot be straightforwardly adapted to
malicious security, as both protocols require each server to maintain a private
table, which serves as input for some general 2PC. To achieve malicious security,
besides replacing the underlying semi-honest 2PC with a maliciously secure one,
the servers must also prove that their inputs are honestly derived from the

24

board and the recipient’s request. SophOMD provides similar functionality to
our protocol when the retrieval process is executed twice by different servers,
assuming at least one server is honest. However, under these conditions, our
protocol achieves lower server running time and a detection key size that is
415451× smaller.

6.4 Protocol Scalability

Figure 8 presents the experimental results as the number of messages N increases
from 215 to 220. We compare our malicious protocol with previous works do
not rely on the TEE setup assumption. As shown in the figure, both One-Face
and Two-Face achieve faster server running time than PS2 for N = 219, and
SophOMD for N = 216 and N = 219. We only report two results from SophOMD
because their implementation provides fine-tuned parameters solely for these
two configurations. In comparison with HomeRun, our protocols introduce a
notable overhead due to the extensive use of elliptic curve multiplications in
order to achieve malicious security. It is worth noting that our implementation
does not incorporate any optimization techniques for accelerating elliptic curve
multiplication, despite repeatedly performing N multiplications with the same
exponent. We leave the exploration of such optimizations to future work.

For server communication, we compare our protocol with two other multi-
server schemes: HomeRun and PS2. The communication cost reported for Home-
Run includes both its online and offline phases, since its offline phase cannot be
reused across different bulletin board configurations. As illustrated in the figure,
the server communication in both One-Face and Two-Face are consistently lower
than HomeRun and PS2 with N varying from 215 to 220.

In terms of digest size, only HomeRun scales with varying board sizes,
while both SophOMD and PS2 have a fixed maximum number of 50 pertinent
messages. When the board size exceeds 215, the digest size of HomeRun and
SophOMD are consistently larger than that of Two-Face (with 500 pertinent
signals). The digest size of One-Face is remarkably small — its digest for 500
pertinent signals is even smaller than the digest size for just 50 signals in PS2,
which previously held the most compact digest among existing schemes.

References

1. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93, pages 62–
73. ACM Press, November 1993.

2. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, Report 2018/046, 2018.

3. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474.
IEEE Computer Society Press, May 2014.

25

4. Dan Boneh. The decision Diffie-Hellman problem. In Third Algorithmic Number
Theory Symposium (ANTS), volume 1423 of LNCS. Springer, 1998. Invited paper.

5. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements
and extensions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1292–1303.
ACM Press, October 2016.

6. Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. Software grand exposure: SGX cache attacks
are practical. In 11th USENIX Workshop on Offensive Technologies (WOOT 17),
Vancouver, BC, August 2017. USENIX Association.

7. Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous
messaging system handling millions of users. In 2015 IEEE Symposium on Security
and Privacy, pages 321–338. IEEE Computer Society Press, May 2015.

8. Victor Costan and Srinivas Devadas. Intel SGX explained. Cryptology ePrint
Archive, Report 2016/086, 2016.

9. Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast and private compu-
tation of cardinality of set intersection and union. In Josef Pieprzyk, Ahmad-Reza
Sadeghi, and Mark Manulis, editors, CANS 12, volume 7712 of LNCS, pages 218–
231. Springer, Berlin, Heidelberg, December 2012.

10. Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. Cache
attacks on intel SGX. In Cristiano Giuffrida and Angelos Stavrou, editors, Pro-
ceedings of the 10th European Workshop on Systems Security, EUROSEC 2017,
pages 2:1–2:6. ACM, 2017.

11. Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meikle-
john, and Vinod Vaikuntanathan. One server for the price of two: Simple and fast
single-server private information retrieval. In Joseph A. Calandrino and Carmela
Troncoso, editors, USENIX Security 2023, pages 3889–3905. USENIX Association,
August 2023.

12. Yan Huang, Jonathan Katz, and David Evans. Quid-Pro-Quo-tocols: Strength-
ening semi-honest protocols with dual execution. In 2012 IEEE Symposium on
Security and Privacy, pages 272–284. IEEE Computer Society Press, May 2012.

13. Sashidhar Jakkamsetti, Zeyu Liu, and Varun Madathil. Scalable private signaling.
Cryptology ePrint Archive, Report 2023/572, 2023.

14. Yanxue Jia, Varun Madathil, and Aniket Kate. HomeRun: High-efficiency oblivious
message retrieval, unrestricted. In Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda,
and David Lie, editors, ACM CCS 2024, pages 2012–2026. ACM Press, October
2024.

15. Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party
computation using a global transaction ledger. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 705–734.
Springer, Berlin, Heidelberg, May 2016.

16. Keewoo Lee and Yongdong Yeo. SophOMR: Improved oblivious message retrieval
from SIMD-aware homomorphic compression. Cryptology ePrint Archive, Report
2024/1814, 2024.

17. Zeyu Liu and Eran Tromer. Oblivious message retrieval. In Yevgeniy Dodis and
Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages
753–783. Springer, Cham, August 2022.

18. Zeyu Liu, Eran Tromer, and Yunhao Wang. PerfOMR: Oblivious message retrieval
with reduced communication and computation. In Davide Balzarotti and Wenyuan
Xu, editors, USENIX Security 2024. USENIX Association, August 2024.

26

19. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 1–23. Springer, Berlin, Heidelberg, May / June 2010.

20. Varun Madathil, Alessandra Scafuro, István András Seres, Omer Shlomovits, and
Denis Varlakov. Private signaling. In Kevin R. B. Butler and Kurt Thomas,
editors, USENIX Security 2022, pages 3309–3326. USENIX Association, August
2022.

21. Payman Mohassel and Matthew Franklin. Efficiency tradeoffs for malicious two-
party computation. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal
Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 458–473. Springer, Berlin,
Heidelberg, April 2006.

22. Shen Noether. Ring signature confidential transactions for monero. Cryptology
ePrint Archive, Report 2015/1098, 2015.

23. OpenSSL Project. OpenSSL: The Open Source Toolkit for SSL/TLS, 2024. Avail-
able at https://www.openssl.org/.

24. Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology
ePrint Archive, Report 2005/187, 2005.

25. Lior Rotem. Simple and efficient batch verification techniques for verifiable delay
functions. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part III, volume
13044 of LNCS, pages 382–414. Springer, Cham, November 2021.

26. Sajin Sasy and Ian Goldberg. Sok: Metadata-protecting communication systems.
Proceedings on Privacy Enhancing Technologies, 2024.

27. David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.
Dissent in numbers: Making strong anonymity scale. In 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12), pages 179–182, 2012.

A Volume-Hiding Private Signaling

A.1 Linear-Digest in Exchange of Volume-Hiding

As discussed in Section 3.2, imposing a strict 50-message cap per client is im-
practical for two reasons. First, it would make the protocol highly vulnerable to
denial-of-service attacks, since an adversary could easily exhaust a client’s quota
and block legitimate traffic. Second, no practical mechanism is known to enforce
a per-client limit of 50 messages.

Accordingly, the only practical way to conceal message volume is to let the
digest grow linearly with the size of the public ledger while keeping client com-
putation efficient. In our protocol, rather than having servers perform the com-
parisons (which would leak volume), the two servers send three elements per
entry to the client, who then carries out the comparisons locally. Full protocol
is presented in Figure 9.

A.2 Concrete performance

In our Volume-Hiding protocol, since the adversary does not learn the volume of
the retrieved signals, the false negative probability becomes (1

p+N)k (according

to Lemma 3) where p is the number of padding values, N is the size of the

27

https://www.openssl.org/

Protocol ΠprivSignal

Participants: Two servers Sa and Sb, the recipient R, and multiple anonymous
senders.

Setup & Send: Same as the semi-honest version (Figure 3).

Retrieve (Malicious, Volume-Hiding): Given (c1, c2, . . . , cN) as the clue vec-
tor containing N distinct ElGamal ciphertexts, H as a random oracle, to perform
a signal retrieval:

1. R samples seed, seeda, seedb
$←− {0, 1}λ, and calculates (ga, gb, ha, hb) ←

H(seed), (ska, ξa)← H(seeda), ξb ← H(seedb), and skb = skR − ska;

2. R sends (seed, gξaa , g
ξb
b , hskaξa

a , h
skbξb
b) to two servers, (seeda) to Sa, and

(skb, seedb) to Sb. Two servers compare H(seed, gξaa , g
ξb
b , hskaξa

a , h
skbξb
b) and abort

if not consistent;
3. Both servers compute (ga, gb, ha, hb, R1, . . . , RN) ← H(seed). Sa computes

(ska, ξa, {σa,i}i∈[k])← H(seeda), and Sb computes (ξb, {σb,i}i∈[k])← H(seedb);
4. Two servers proceed as follows to calculate all the indices i ∈ [N] satisfying

ci[1]
ska = ci[2]/ci[1]

skb :
– Sa calculates and sends Ma := (Rξa

1 c1[1]
skaξa , . . . , Rξa

N cN [1]skaξa) to Sb;
– Given public value (R1, . . . , RN , ga, c1, . . . , cN , ha,Ma, g

ξa
a hskaξa

a), Sa invokes
FBatchPOE with private input ξa and skaξa to prove that for i ∈ [N], Ma[i] =
Rξa

i ci[1]
skaξa . Sb aborts if check fails;

– For i ∈ [k]:

• Sb samples ωb,i
$←− Zp, and sends Pb,i := σb,i(M

ωb,i
a) to Sa;

• Sa aborts if there are repeated elements in Pb,i. Otherwise, compute Ai :=

(H(Pb,i[1]
ξ−1
a), . . . ,H(Pb,i[N]ξ

−1
a));

• Sa sends Ai to R, and Sb sends Bi := (H(R
ωb,i

1 (c1[2]/c1[1]
skb)ωb,i),

. . . ,H(R
ωb,i

N (cN [2]/cN [1]skb)ωb,i)) to R;
• R computes Ea,i := {j |Ai[σb,i(j)] = Bi[j]};

5. Two servers switch the roles and repeat the above procedure so that R obtains
{Eb,i}i∈[k];

6. R aborts unless for all i, j ∈ [k] s.t. Ea,i = Eb,j .

Fig. 9. Our volume-hiding malicious protocol for private signaling.

board, and k is number of times applying permutations. To reach the security
requirement for λ = 40 while minimizing the digest size, we set p = 0 and
k = 3, and the digest size becomes 2kN ∗ {output size of the random oracle} =
2 ∗ 3 ∗ 219 ∗ 16bytes = 48MB.

However, despite the linear blowup of the digest size, the client can still pro-
cess the digest and recover the relevant indices in under half a second. Comparing
the equality of 3 millions of group elements takes less than 10ms, resulting in a
reconstruction time of 0.34 second.

28

B Proof of Theorem 1

Theorem 3. (Theory 1, restated) ΠprivSignal.Retrieve in Figure 3 securely realizes
FRetrieve in the random oracle model in the semi-honest setting, assuming the
hardness of DDH.

Proof. We consider a worst-case scenario in which the adversary colludes with
the sender and has complete knowledge of the randomness used in all cipher-
texts posted on the bulletin board. We show there exists a PPT simulator Sim
interacting with functionality FRetrieve generates a transcript that is indistin-
guishable from the transcript generated by the real-world adversary A in each
of the following two settings.

Case I. When Sa is corrupted with the sender(s).
Given (c1, c2, . . . , cN) as the clue vector:

1. Upon receiving (Retrieve, |P|) from Fretrieve, Sim samples ska
$←− Zp and sends

to A;
2. Upon receiving M from A, sample µ ∈ [N]|P|, σ

$←− ZN
p , and ω

$←− Zp. Sim

computes P := σ(Mω), P ′ $←− GN , and programs H′(H(c[i]ska)ω) = P ′[i] for
i ∈ µ;

3. Sim sends P and P ′ to A and receives E.

By construction, the view only differs in the way P ′ is constructed. Denote
ai = ci[1]

ska and bi = ci[2]/ci[1]
skb where ska and skb are the secret keys in the

real world, then we demonstrate the following two views are indistinguishable:

Viewreal := {H(b1), . . . ,H(bN),P ′ := σ(H′(H(b1)
ω),

. . . ,H′(H(bN)ω)),M ,P },

Viewideal := {H(b1), . . . ,H(bN),P ′ := σ(H′(H(a1)
ω),

. . . ,H′(H(a|P|)
ω),H′(r1), . . . ,H

′(rN−|P|)),M ,P },

where r1, . . . , rN−|P|
$←− G.

Constructs (H(b1), . . . ,H(bN)) := (g, gx, gr3 , . . . , grN), and

D := (g, gx, gr3 , . . . , grN , σ(H′(gy),H′(gz),H′(gr3y), . . . ,

H′(grNy)),M ,P).

Note that D belongs to Viewreal if and only if (g, gx, gy, gz) is a proper Diffie-
Hellman tuple, i.e., z = xy and to Viewideal otherwise. Therefore, the adversary
has only negligible advantage in distinguishing the two views.

Case II. When Sb is corrupted with the sender(s). In this case, given

(c1, c2, . . . , cN) as the clue vector, Sim randomly samples M
$←− GN and sends

to A. As we explicitly require that ci to be pairwise distinct, M is intinguishable
from a vector of random group elements assuming the hardness of DDH.

29

C Proof of Lemma 2

Lemma 4. (Lemma 2, restated) The protocol ΠBatchPOE securely realizes
FBatchPOE with soundness error |G|−1 in the random oracle model, assuming
the hardness of the discrete logarithm problem.

Proof. We first consider the case of a corrupted prover and then the case of a
corrupted verifier.
Corrupted prover P∗ (Knowledge Soundness). We argue that there exists
an extractor E such that for any probabilistic polynomial-time (PPT) prover P∗,
if P∗ convinces V on input (A,B,C), then EP∗

extracts a witness (x, y) such
that C[i] = A[i]xB[i]y for i ∈ [N] with probability 1− |G|−1.

The extractor E programs H and runs P∗ twice with the same t but different
challenges e and e′. With P ∗ returning (z1, z2) and (z′1, z

′
2), E computes

x =
z1 − z′1
e− e′

, y =
z2 − z′2
e− e′

.

Denote A[N + 1] = Ã,B[N + 1] = B̃,C[N + 1] = C̃. Then we argue that if
∃i ∈ [N + 1],A[i]xB[i]y ̸= C[i], the probability that C = AxBy is small. Let S
be the set for i ∈ S,A[i]xB[i]y = C[i] ·Di where Di ̸= 1. We have

Pr
q

$←−ZN+1
p

[(∏
i∈[N+1]

A[i]q[i]
)x(∏

i∈[N+1]

B[i]q[i]
)y

=
∏

i∈[N+1]

C[i]q[i]
]

= Pr
q

$←−ZN+1
p

[(∏
i∈S

A[i]q[i]
)x(∏

i∈S
B[i]q[i]

)y
=
∏
i∈S

C[i]q[i]
]

= Pr
q

$←−ZN+1
p

[∏
i∈S

(C[i] ·Di)
q[i] =

∏
i∈S

C[j]q[i]
]

= Pr
q

$←−ZN+1
p

[∏
i∈S

D
q[i]
i = 1

]
= Pr

q
$←−ZN+1

p

[∑
i∈S

(
q[i] · Dlog(Di)

)
= 0
]
.

If N + 1 ̸∈ S, then x and y are publicly defined given the randomness of Ã
and B̃, and thus {Di}i∈S is fixed before the chosen of q, and we have

Pr
q

$←−ZN+1
p

[∑
i∈S

(
q[i] · Dlog(Di)

)
= 0
]

= Pr
q

$←−ZN+1
p

[
q[i∗] = −Dlog−1(Di∗) ·

∑
i∈S\i∗

(
q[i]Dlog(Di)

)]
=|G|−1.

30

If N +1 ∈ S, then we argue that given the knowledge of every discrete log in
the protocol except Ã, P∗ can calculate Dlog(Ã) as follows, which violates the
discrete log assumption. Since

Dlog(Ã) =x−1
(
Dlog(DN+1) + Dlog(C̃)− y · Dlog(B̃)

)
,

where

Dlog(DN+1) =−
∑
i∈S

(
q[i] · Dlog(Di)

)
=−

∑
i∈S

(
q[i]
(
xDlog(A[i]) + yDlog(B[i])

− Dlog(C[i])
))

.

Corrupted Verifier V∗ (Zero-Knowledge).We argue that there exists a PPT
simulator Sim such that for any PPT verifier V∗, the transcript generated by Sim
on input (A,B,C) is computationally indistinguishable from a real execution
of the protocol between an honest prover and V∗.

The simulator Sim simulates the transcript (C̃, t, z1, z2) as follows:

1. Sim samples q
$←− ZN+1

p and computes

A := Ãq[N+1]
∏

i∈[N]

A[i]q[i], B := B̃q[N+1]
∏

i∈[N]

B[i]q[i];

2. Sim samples t, z1, z2, e
$←− Zp and computes

C̃ =

(
(Az1Bz2 · t−1)e

−1∏
i∈[N] C[i]q[i]

)q[N+1]−1

,

which ensures that Az1Bz2 = t · Ce;
3. Sim programs H(A,B,C, Ã, B̃, C̃) = q and H(A,B,C, Ã, B̃, C̃, q, t) = e.

D Proof of Lemma 3

Lemma 5. (Lemma 3, restated) Given (c1, . . . , cN) as the clue vector obtained
from FLedger, an honest recipient R participating ΠprivSignal.Retrieve (Figure 6)
either learns the set of pertinent signals P = {i |DecskR(ci) = 1} or the protocol
aborts with probability greater than 1 − 1

(p+|P|)k in the random oracle model,

assuming the hardness of DDH and p > N
N

N−1 −N .

Proof. Assuming the existence of FBatchPOE, the vector Ma is well defined by
public values, and the adversary thus can not cheat in calculating Ma. As a
result, if the adversary honestly sends Ea,1 to the recipient, then the honest

31

recipient R either gets the set of pertinent signals P = σ−1
b,1 (Ea,1), or aborts if

any pertinent set received later is not consistent with P.
Below, we analyze the probability that the adversary can drop certain indices

from the sets Ea,1 while the protocol does not abort.
As stated in the proof Theorem 2, the real-world protocol is indistinguishable

from the one in Hybrid 5 of Case I. Equivalently, we present the probability that
the adversary drops certain indices from Ea,i and Sim does not abort in this
hybrid. Denote the set that the adversary drops in Ea,i as ϕi, and Sim will not
abort if and only if:

1. σ−1
b,i (ϕi) ̸⊂ [N +1, N + p]: without the knowledge of σb,i, ϕi should not touch

the values in [N + 1, N + p];
2. σ−1

b,i (ϕi) = σ−1
b,j (ϕj) for i, j ∈ [k]: each ϕi should be consistent after reversing

the permutation;
3. The adversary should also correctly guess φ = σ−1

b,i (ϕi) and modify these
entries when constructing Pa,i and P ′

a,i, so that entries in φ will not appear
in Eb,i.

We assume a worst-case scenario in which the adversary already knows the set
P (e.g., by excluding invalid clues they themselves have posted), which enables
the adversary directly guess φ ⊂ P. As observed in the Hybrid 5 of Case I,
the adversary calculates Ea,i by computing the intersection of two randomly
sampled vectors. Therefore there is no input to help A guess (φ, {ϕi}i∈[k]) other
than (P, {Ea,i}i∈[k]). Alternatively, the problem can be viewed as a game of
picking balls:

1. Randomly pick |φ| balls from |P| black balls and p white balls. Fail if any
chosen ball is white;

2. Repeat k − 1 times: Mix the |φ| black balls with another p+ |P| − |φ| white
balls and then blindly pick |φ| balls again. Fail if any picked ball is white;

3. Mix the |φ| black balls with another |P| − |φ| white balls and then blindly
pick |φ| balls again. Fail if any picked ball is white.

Thus we have

Pr

[
φ, {ϕi}i∈[k] ← A(P, {Ea,i}i∈[k])
st. φ = σ−1

b,j (ϕj) = σ−1
b,i (ϕi) ⊂ P

]

=

(|P|
|φ|
)(

p+|P|
|φ|
) · 1(

p+|P|
|φ|
)k−1

· 1(|P|
|φ|
)

≤
(|P|
p+ |P|

)|φ|
·
(|φ|
p+ |P|

)(k−1)|φ|
·
(|φ|
|P|

)|φ|

=
(|φ|
p+ |P|

)k|φ|

≤max

(
1

(p+ |P|)k
,
(|P|
p+ |P|

)k|P|
)
.

32

Because

ln
1

p+ |P|
− ln

((|P|
p+ |P|

)|P|
)

= ln
1

p+ |P|
− |P| · ln |P|

p+ |P|
=(|P| − 1) ln(p+ |P|)− |P| ln(|P|)

is larger than 0 when

p > |P|
|P|

|P|−1 − |P|.

Given p > N
N

N−1 − N > |P|
|P|

|P|−1 − |P|, the above equation is greater than 0,
and thus the probability is less than 1

(p+|P|)k .

33

	Private Signaling Secure Against Actively Corrupted Servers

