
Breaking the 1/λ-Rate Barrier
for Arithmetic Garbling

Geoffroy Couteau1, Carmit Hazay2, Aditya Hegde3⋆, and Naman Kumar4
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Abstract. Garbled circuits, introduced in the seminal work of Yao (FOCS, 1986), have re-
ceived considerable attention in the boolean setting due to their efficiency and application to
round-efficient secure computation. In contrast, arithmetic garbling schemes have received much
less scrutiny. The main efficiency measure of garbling schemes is their rate, defined as the bit
size of each gate’s output divided by the size of the (amortized) garbled gate. Despite recent
progress, state-of-the-art garbling schemes for arithmetic circuits suffer from important limi-
tations: all existing schemes are either restricted to B-bounded integer arithmetic circuits (a
computational model where the arithmetic is performed over Z and correctness is only guar-
anteed if no intermediate computation exceeds the bound B) and achieve constant rate only

for very large bounds B = 2Ω(λ3), or have a rate at most O(1/λ) otherwise, where λ denotes a
security parameter. In this work, we improve this state of affairs in both settings.
– As our main contribution, we introduce the first arithmetic garbling scheme over modular

rings ZB with rate O(log λ/λ), breaking for the first time the 1/λ-rate barrier for modular
arithmetic garbling. Our construction relies on the power-DDH assumption.

– As a secondary contribution, we introduce a new arithmetic garbling scheme for B-bounded
integer arithmetic that achieves a constant rate for bounds B as low as 2O(λ). Our con-
struction relies on a new non-standard KDM-security assumption on Paillier encryption
with small exponents.

1 Introduction

Garbled circuits, first introduced by Yao in the 1980s [Yao86], have become a fundamental and
versatile tool in modern cryptography. Since their inception, a substantial body of work has ex-
panded on Yao’s construction, offering various optimizations, abstractions, and extensions. In addi-
tion to being one of the fundamental paradigms for achieving constant-round secure computation
[Yao86, BMR90, FKN94, IK00, LP09], garbled circuits have also found applications in many other
cryptographic areas. Their popularity stems from the ability to encode a function f , represented as
a boolean circuit, in such a way that evaluating the encoded function on some input x reveals no
information other than f(x). Despite all the efforts to improve these constructions, the current state
of the art of garbled circuits, based solely on symmetric-key assumptions, implies a multiplicative
factor of O(λ) in the encoded circuit size. Namely, the rate between the original circuit size C and the

garbled circuit size Ĉ is 1/O(λ), where λ is the security parameter. This implies limited scalability
as the size of the circuit increases.

Another restriction of boolean circuits is their limited suitability for capturing a broader class
of function representations, such as arithmetic circuits, when the computation is performed over
integers, real numbers, or rings. Arithmetic circuits are often used to represent computations over
real-world data, such as financial transactions, machine learning, or privacy-preserving protocols for
statistics and data mining. For such applications, applying naive boolean garbling techniques to the
arithmetic setting proves too inefficient. In particular, while traditional garbled circuits are better
suited to boolean operations such as bitwise comparison, many real-world computations are more
naturally expressed using arithmetic operations performed over larger domains.

Compared to the vast literature on garbled circuits for boolean circuits, not much progress has
been made in the field of arithmetic garbling. This is partly because the traditional techniques do
not scale with the underlying ring. Consequently, arithmetic garbling requires new approaches that

⋆ This work was done in part while the author was at IRIF.



2 Geoffroy Couteau, Carmit Hazay, Aditya Hegde, and Naman Kumar

get beyond the bit representation of the circuit wires. The arithmetic computation model can be
captured by two different representations: (1) Bounded integer computations. This computational
model considers circuits defined over the integer ring Z with addition and multiplication gates and
a predefined bound B, where any wire value falls within [−B,B]. (2) Modular arithmetic. Here the
computations are performed over a finite ring R = Zp (where p is not necessarily a prime number).

A popular approach to arithmetic garbling in the bounded integer setting reduces the prob-
lem to a variant of Yao’s original garbling scheme, but this typically requires bit decomposition
[BGG+14, BMR16], meaning that arithmetic operations need to be broken down into individual bit-
wise operations, which increases the rate. An alternative construction was proposed by Applebaum
et al. [AIK11], offering a way to garble computations over bounded integers directly without bit de-
composition. This method allows for computations over integers Z within a bounded domain [−B,B],
where B can be large, possibly exponential, and the security of this scheme is based on the Learning
With Errors (LWE) assumption. However, their rate is still proportional to the security parameter
for the LWE assumption.

Building on the work of Applebaum et al. [AIK11], Ball et al. [BLLL23] introduced an instantiation
of the key expansion gadget introduced in [AIK11] using a variant of Paillier’s key and message
linearly homomorphic encryption scheme [Pai99, DJN10]. This approach achieves the first constant
multiplicative communication overhead relative to the bit-length representation of the computed
arithmetic circuit (when given in the clear). In more detail, Ball et al. introduced two variants of
arithmetic garbling schemes under the Decisional Composite Residuosity (DCR) assumption with a
rate of 1/36 and under the short exponent DCR assumption with a rate of 1/24. In both cases, the
bound B is of the order of B ≈ 24000. Both papers further study the modular arithmetic setting with
O(1/λ) rate.

A recent work by Meyer et al. [MORS24] improves on the concrete constants of [BLLL23] by
incorporating a different technique for computing the multiplication gates using Homomorphic Secret
Sharing (HSS). This approach enables to achieve rate 1/2 assuming DCR and rate-1 garbling by
additionally assuming key-dependent message (KDM) security. However, these approaches are fun-
damentally limited to the model of B-bounded integer computation, and furthermore, their achieved
bound B is still large on the order of N2 ≈ 2Ω(λ3) due to incorporating the same cryptographic
building blocks of Paillier. In another concurrent work [Hea24], Heath proposed a garbling scheme
based only on symmetric-key assumptions that garbles a circuit C over Zm for an arbitrary m with
rate O(1/λ).

Two important questions are at hand in light of this state of affairs. (1) Can we surpass the
1/λ barrier for modular arithmetic garbling? (2) To what extent can we reduce the bound B while
maintaining a constant rate?

1.1 Our Contributions

A Rate-ω(1/λ) Arithmetic Garbling Scheme. We construct the first arithmetic garbling scheme
that provides an asymptotic improvement in rate over 1/λ for modular arithmetic computation.
The security of our scheme is based on a mild variant of the well-known Power-DDH Assump-
tion [GJM03, CNs07]. Our scheme forms part of a unified approach towards arithmetic garbling,
which we introduce as the ‘VOLE-to-OLE’ framework that interprets the (both arithmetic as well as
boolean) garbling of a gate as a single-message conversion from a VOLE (Vector Oblivious Linear
Evaluation) correlation to an OLE (Oblivious Linear Evaluation). Our viewpoint unifies several re-
cent developments in garbling ([ZRE15, HKN24, Hea24, MORS24]) as an instantiation of the same
general framework. While previous approaches have achieved better (even constant) rates for schemes
based on B-bounded integer computation, all known schemes set the value of B to be exponential in
the size of the security parameter. Our scheme is the first to improve the rate over 1/λ for garbling
over ZB , for small, polynomial-size domains, from a standard cryptographic assumption.

Theorem 1 (Modular Garbling from Power-DDH, Informal). Let λ be a security parameter,
B be a polynomial-size modulus B ∈ poly(λ), and c be any arbitrarily slow growing function ω(1). Set
B′ = B2 + c · λ · B3. Then, assuming the B′-power-DDH assumption and the existence of tweakable
correlation-robust hash functions (a property of hash functions that holds unconditionally in the ran-
dom oracle model), there exists an arithmetic garbling scheme for P/poly that supports ZB-modular
arithmetic computation, has statistical correctness failure probability O(1/2c), and achieves a rate
O(logB/λ).
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A New PPRF from Power-DDH. Puncturable Pseudorandom Functions are primitives that
support a master key sk and a punctured key skx such that an underlying PRF can be evaluated at
all points in the domain with sk and on all but one point, x, with the punctured key skx. In this work,
we make use of a PPRF that features multiple attractive properties: the key size is small, consisting
of only a single element of Z∗

p, and it supports reusable setup, i.e., the same setup, that generates a
master secret key and a (possibly large) master public key, can be reused for multiple key generations,
which is advantageous in the amortized setting (i.e., although the master public key can be large, its
size overhead can be amortized over many instances). We use this PPRF to realize our VOLE-to-OLE
framework, in which it features the additional advantage that provided a VOLE correlation in the
form of setup, the punctured key skx can be derived at runtime without interaction. The security of
our PPRF relies on the standard Power-DDH assumption (plus the existence of a suitable correlation-
robust hash function, in the reusable-setup setting), and we believe the construction is of independent
interest.

Improved Constant-Rate Garbling for Small Integers. Our third contribution is a concrete
improvement over the HSS-based garbling scheme of [MORS24], which provides a constant rate for
an improved class of integers. In particular, our scheme provides constant-rate arithmetic garbling for
B-bounded integers where B can be as small as 22λ. We instantiate our scheme with Homomorphic
Secret Sharing from the Paillier-ElGamal cryptosystem ([OSY21]) with short exponent, a scheme
believed to be secure under the DCR and the SEI assumptions. We base the security of our garbling
scheme under a strong variant of circular security for the underlying Paillier-ElGamal cryptosystem
combined with a computational one-time encryption scheme we term circular security of the hybrid.

Theorem 2 (Small-integer Arithmetic Garbling from Circular Security of Paillier-ElGamal,
Informal). Let λ be a security parameter. Then, assuming (a variant of) circular security of Paillier-
ElGamal with small exponent and the existence of a pseudorandom function in NC1, for every B <
2O(λ) there exists an arithmetic garbling scheme for P/poly that supports B-bounded integer compu-
tation and achieves rate 1/2− ϵ for arbitrary constant ϵ.

Organization. In Section 2, we provide a detailed overview of our main contribution. We intro-
duce our new PPRF in Section 3 and our modular arithmetic garbling scheme in Section 4. Being
quite different in nature, our secondary contribution is deferred to the Appendix. In Appendix A
and Appendix B, we provide additional preliminaries on arithmetic garbling and homomorphic se-
cret sharing. Appendix C covers our rate-1/2 arithmetic garbling scheme for B-bounded arithmetic
with B = 2O(λ). We give a detailed technical overview in Appendix C.1 and the formal construction
in Appendix C.2.

Follow-up works. In a follow-up work [CHHK25], the same authors uses the techniques introduced
in the power-DDH-based arithmetic garbling scheme to construct a Boolean garbling scheme with
λ/
√
log λ bits per gate, beating the O(λ)-bit per gate barrier without resorting to heavy-hammer

cryptography, and making only a black-box use of cryptography.
In other subsequent works, Meyer, Orlandi, Roy, and Scholl [MORS25] and Ishai, Li, and Lin [ILL25]

introduced the first sublinear garbling scheme for Boolean circuits from DCR. Their scheme essentially
subsumes our second contribution, and is incomparable to our first contribution and to [CHHK25]
(in particular and unlike these works, both our work and the follow-up make a black-box use of
cryptography).

2 Technical Overview: Modular Arithmetic Garbling from Power-DDH

We start with an overview of our construction of a modular arithmetic garbling scheme with rate
ω(1/λ). Our starting point is a natural view on a common template for (boolean and arithmetic)
garbling as a non-interactive procedure from vector oblivious linear evaluation (VOLE) to oblivious
linear evaluation (OLE). We elaborate below.

2.1 Preliminaries on Power-DDH

We let GrpGen(1λ) denote a deterministic algorithm that, on inputs the security parameter λ in unary,
outputs a tuple (G, p, g) where G is (the description of) a cyclic group of order p, p is a prime of
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length 2λ bits, and g is a generator of G. Given an integer n, we write [±n] for the set {−n, · · · , n}
and [n] for the set {0, · · · , n}.
Definition 3 (B-power-DDH assumption). Let B = B(·) be a polynomial. The B-power-DDH
assumptions holds with respect to GrpGen if for all large enough security parameter λ, denoting
(G, p, g) := GrpGen(1λ), the following distributions are computationally indistinguishable:

D0 :=
{
(gi)i∈[±B(λ)] : α←$ Z∗

p, h←$ G, (gi)i∈[±B(λ)] ← (hαi

)i∈[±B(λ)]

}
D1 :=

{
(gi)i∈[±B(λ)] : α←$ Z∗

p, h, g0 ←$ G, (gi)i∈[±B(λ)]∗ ← (hαi

)i∈[±B(λ)]

}
.

The traditional formulation of the power-DDH assumption [GJM03, CNs07] states that given

(h, hα, · · · , hαB−1

), one cannot distinguish hαB

from random. Other common variants [AMN+18],
often called power-DDH as well (or DH-inversion), ask that it is hard to distinguish h1/α from

random given (h, hα, · · · , hαB−1

). In this work, we use yet another slight variant, where we ask that

given (hα−B

, · · · , hα−1

, hα, · · · , hαB

), it should be hard to distinguish the missing “center term” h
from random. All variants can be shown to be equivalent, up to a factor-2 loss in the bound B. Before
we sketch the simple proof, we introduce the “all-random” power-DDH variant below:

Definition 4 (All-random B-power-DDH assumption). Let B = B(·) be a polynomial. The
all-random B-power-DDH assumptions holds with respect to GrpGen if for all large enough security
parameter λ, denoting (G, p, g) := GrpGen(1λ), the following distributions are computationally indis-
tinguishable:

Dar
0 :=

{
(gi)i∈[B(λ)] : α←$ Z∗

p, h←$ G, (gi)i∈[B(λ)] ← (hαi

)i∈[B(λ)]

}
Dar

1 :=
{
(gi)i∈[±B(λ)] : (gi)i∈[B(λ)]∗ ←$ GB(λ)

}
.

Theorem 5. If the B-power-DDH assumption holds, then the all-random B-power-DDH assumption
holds.

Note that there is a slight loss in the parameters in Theorem 5 because the B-power-DDH assump-
tion involves 2B + 1 exponents, while the all-random B-power-DDH assumption only involves B + 1
exponents. Before we proceed with the proof, we note that the all-random B-power-DDH assumption
implies all known flavors of power-DDH, including those from [GJM03, CNs07] and [AMN+18]. Given
that all variants are equivalent, in this work, we simply call our variant “power-DDH”.

Proof. We proceed through a sequence of hybrid distributions, moving gradually from Dar
0 to Dar

1 . We
start with the distribution Dar

0 (“Hybrid−1).

Hybrid0. We modify Dar
0 by replacing g0 ← hα0

with g0 ←$ G, leaving everything else the same. We
denote Dar

0.0 the new distribution.

Hybrid1. We modify Dar
0.0 by replacing g1 ← hα1

with g1 ←$ G, leaving everything else the same.
We denote Dar

0.1 the new distribution.

Hybridi+1. We modify Dar
0.i by replacing gi+1 ← hαi+1

with gi+1 ←$ G, leaving everything else the
same.

HybridB. This is the distribution Dar
0.B = Dar

1 .

Claim. Under the B-power-DDH assumption, Hybrid−1 and Hybrid0 are indistinguishable.

Proof. The reduction receives a challenge (gi)i∈±[B(λ)−1] from either D0 or D1. It sets (g
′
0, · · · , g′B)←

(g0, · · · , gB) and runs the distinguisher on (g′i)i∈[B(λ)]. Observe that if the challenge comes from
D0, (g

′
i)i∈[B(λ)] is distributed as in Hybrid0, while if the challenges comes from D1, (gi)i∈[B(λ)] is

distributed as in Hybrid1. ■

Claim. Under the (B− i− 1)-power-DDH assumption, Hybridi and Hybridi+1 are indistinguishable.

Proof. The reduction receives a challenge (gj)j∈±[B(λ)−i−1] from either D0 or D1. It first samples
(g′0, · · · , g′i) ←$ Gi+1 and sets (g′i+1, · · · , g′B) ← (g0, · · · , gB−i−1). Then, it runs the distinguisher on
(g′j)j∈[B(λ)]. Observe that if the challenge comes from D0, (g

′
j)j∈[B(λ)] is distributed as in Hybridi,

while if the challenges comes from D1, (gj)j∈[B(λ)] is distributed as in Hybridi+1. ■

Eventually, we observe that the (B − i − 1)-power-DDH assumptions are all implied by the B-
power-DDH assumption for i = −1 to B − 1. This concludes the proof. ■
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2.2 A Template for Arithmetic Garbling

We start by outlining a template used, implicitly or explicitly, in various recent works [ZRE15, HKN24,
Hea24, MORS24]. For each wire x, the garbler generates a key Kx associated with the label Lx =
∆x + Kx where ∆ is a (randomly generated) global parameter known only to the garbler. Here,
(Lx,Kx) can also be interpreted as a secret sharing ⟨∆x⟩; similarly, the garbler can also generate
(lx, kx) to be a sharing of x, and the parties maintain an invariant sharing (⟨x⟩, ⟨∆ · x⟩) with the
garbler’s share being (lx, Lx), and the evaluator’s share being (kx,Kx) for each wire x.

With this invariant in place, the garbled circuit evaluation procedure reduces to computing suc-
cessive output wire values (⟨g(x, y)⟩, ⟨∆ · g(x, y)⟩). For additive gates, this follows for free by the
additively homomorphic property of secret sharing – the garbler and the evaluator can compute their
shares as (⟨x+ y⟩, ⟨∆ · (x+ y)⟩) = (⟨x⟩+ ⟨y⟩, ⟨∆ · x⟩+ ⟨∆ · y⟩). For a multiplication gate consider the
identities

z = x · y = ⟨x⟩E · ⟨y⟩E + ⟨x⟩E · ⟨y⟩G + ⟨y⟩E · ⟨x⟩G + ⟨x⟩G · ⟨y⟩G (1)

∆ · z = ∆x · y = ⟨∆x⟩E · ⟨y⟩E + ⟨∆x⟩E · ⟨y⟩G + ⟨y⟩E · ⟨∆x⟩G + ⟨∆x⟩G · ⟨y⟩G (2)

The first terms of both these identities can be computed without interaction by the evaluator,
while the garbler can calculate the last terms without interaction. Note, however, that the remaining
‘cross’ terms are secret-dependent – computing them requires garbling material.

The case of boolean circuits. The work of [ZRE15] was the first to use this identity explicitly to
design a (boolean) garbling scheme. We sketch the main intuition; we assume that x, y are bits, and
we focus for now on the cross term ⟨x⟩G · ⟨y⟩E. Recall that the parties hold shares ⟨∆y⟩. Observe that
⟨∆y⟩G −∆ · ⟨y⟩G (which the garbler can compute locally) and ⟨∆y⟩E form shares of ∆y −∆ · ⟨y⟩G =
∆ · ⟨y⟩E. Abstracting out, the garbler and the evaluator therefore hold shares (⟨∆⟨y⟩E⟩G, ⟨∆⟨y⟩E⟩E)
of ∆⟨y⟩E.5 Note that the evaluator share ⟨∆⟨y⟩E⟩E satisfies ⟨∆⟨y⟩E⟩E = −⟨∆⟨y⟩E⟩G if ⟨y⟩E = 0, and
⟨∆⟨y⟩E⟩E = ∆− ⟨∆⟨y⟩E⟩G if ⟨y⟩E = 1. Then, the parties proceed as follows:

Garbler: pick a random bit rG and add (h0, h1) := (H(−⟨∆⟨y⟩E⟩G)−rG,H(∆−⟨∆⟨y⟩E⟩G)+(⟨x⟩G−rG))
to the garbling of the gate. Define G’s share of ⟨x⟩G · ⟨y⟩E to be rG.

Evaluator: given the gate garbling (h0, h1), compute rE := h⟨y⟩E − H(⟨∆⟨y⟩E⟩E) and output rE.

Observe that h⟨y⟩E = H(∆⟨y⟩E − ⟨∆⟨y⟩E⟩G) + (⟨y⟩E⟨x⟩G − rG) = H(⟨∆⟨y⟩E⟩E) + (⟨y⟩E⟨x⟩G − rG) by
construction, hence rG and rE form additive shares of ⟨y⟩E⟨x⟩G: this takes care of the first cross term.
A similar strategy is used to handle the cross terms ⟨y⟩G⟨x⟩E and ⟨y⟩E⟨∆x⟩G (where each time we use
the fact that a bit known to E “selects” between two possible strings known to G). Eventually, the
remaining cross term ⟨∆x⟩E⟨y⟩G is slightly more tedious, but we can rewrite it as

⟨∆x⟩E⟨y⟩G = (∆x− ⟨∆x⟩G) · ⟨y⟩G = (∆(⟨x⟩G + ⟨x⟩E)− ⟨∆x⟩G) · ⟨y⟩G
= (∆⟨x⟩G − ⟨∆x⟩G) · ⟨y⟩G + ⟨x⟩E · (∆⟨y⟩G),

where in the last term, the leftmost part can be computed locally by G, and the rightmost part is
again the product of a bit known to E and a value known to G, hence can be handled via the same
approach as before.

Security of the garbling scheme hinges upon the fact that H(∆ − ⟨∆⟨y⟩E⟩E) looks random to
E, which holds assuming a suitable notion of circular correlation robustness for H. We note that
in [ZRE15], rG was chosen so that h0 = 0 to avoid having to send it, reducing the size of the garbled
gate to 2λ+2 bits (where λ is such that ∆ ∈ F2λ), but we omit this row-reduction optimization here
for simplicity (our focus is on asymptotic security and we do not optimize the constants).

The VOLE-to-OLE viewpoint. From a bird’s-eye view, the approach of [ZRE15] consists of ap-
plying the celebrated IKNP protocol [IKNP03] to convert many pairs of “∆-correlated oblivious
transfers” (where the sender’s inputs are pairs of strings whose difference is always ∆) into truly
random oblivious transfers (OTs) via a correlation-robust hash function, and then “derandomizing”
these OTs (by adding the derandomization messages to the garbled gate) to obtain the target shares
of the cross terms.

5 Over F2, addition and subtraction coincide, but we keep the distinction to facilitate the discussion when
we generalize later to other rings.
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This view suggests an immediate generalization to more general arithmetic structures (rings or
fields). Fix a ring R. The garbler and the evaluator will want to compute shares of terms of the form
u · v, where u ∈ R is known to the evaluator, and v is known to the garbler. The parties initially
hold shares of ∆ ·u (where ∆ is a global constant known to the garbler), and the computation should
proceed via a single message from G to E (this message will be appended to the garbling of the gate).
In secure computation, computing shares of u · v is often called executing an OLE (for Oblivious
Linear Evaluation: the evaluator should obliviously obtain f(u) = u · v− rG where rG is the garbler’s
share and f is an affine function), while shares of ∆u for many u’s but a single global ∆ (known
to G) are generally called a VOLE (for vector-OLE: denoting u the vector of all the u’s, and rE the
vector of all the evaluator’s shares of the ∆u’s, the garbler holds g(∆) = ∆ ·u− rE, which is an OLE
between two vectors held by E). Using this terminology, we want to achieve the following: the garbler
and the evaluator hold a single large VOLE (where the garbler plays the role of the receiver) and
want to convert it into a large number of OLEs (where the roles are swapped) using a single G-to-E
message.

2.3 Instantiating the Non-Interactive VOLE-to-OLE

The literature provides a few options for converting a VOLE into many OLEs using a single message.
One option is to use homomorphic secret sharing (HSS) [BGI16, BGI17, BCG+17]; this was the
route taken in the recent work of [MORS24]. For sufficiently large rings, this approach yields a
minimal communication overhead: it achieves rate-1 garbling, where the (amortized) size of a garbling
gate amounts to a single element of R. However, this optimal rate is only achieved over extremely
large rings, and due to limitations inherent to HSS-based OLEs, their construction is limited to B-
bounded arithmetic: that is, arithmetic circuits over the integers (without modular reduction) where
all intermediate values of the computation (for all possible “admissible” inputs) are guaranteed to be
bounded by B.

Another one-message VOLE-to-OLE transform was recently described by Roy in [Roy22]. The
approach of Roy is a direct generalization of IKNP [IKNP03] to larger fields. Under the hood, the
method of Roy is the one used in the recent works of [HKN24, Hea24] to garble general lookup tables
(in [HKN24]) and arithmetic circuits (in [Hea24]). A convenient way to describe the approach at a high
level is to rely on puncturable pseudorandom functions (PPRFs). A PPRF is a pseudorandom function
equipped with a puncturing algorithm which, given a PRF key K and a point z, output a punctured
key Kz. Given a punctured key Kz, one can evaluate the PPRF FKz

(x) = FK(x) at all points except
x = z. Furthermore, given Kz, the value FK(z) should remain indistinguishable from random. Now,
assume for now that the garbler holds a PPRF key K and that the evaluator somehow managed
to obtain the corresponding key Ku punctured at the point u. Further, assume that the ring R has
polynomial size. The garbler computes the following values: a :=

∑
z∈R FK(z), b :=

∑
z∈R z · FK(z).

Observe that the evaluator can compute c :=
∑

z∈R(u − z) · FK(z) = u · a − b, because Ku allows
computing all terms FK(z) except for FK(u), and this missing term is multiplied by u − z = 0.
Therefore, b and c form additive shares of u · a. Furthermore, the garbler can send v− a, allowing the
evaluator to compute c+u·(v−a) = u·v−b, obtaining shares of u·v. Because a = FK(u)+

∑
z ̸=u FK(z)

is pseudorandom from the viewpoint of E (under the security of the PPRF), v − a computationally
hides v.

It remains at this stage to explain how the evaluator can obtain the punctured key Ku. In [HKN24,
Hea24], this is done via the following steps:

– First, the PPRF is instantiated via the GGM PPRF [GGM86, KPTZ13, BW13, BGI14].
– To securely distribute the punctured key Ku (where G holds K and E holds u), [HKN24, Hea24]

use under the hood the Doerner-shelat protocol [Ds17] that distributes a punctured PPRF key
for the GGM PPRF in two rounds via log |R| parallel calls to a 2-round oblivious transfer.

– To obtain the necessary OTs (with a single G-to-E message), the same approach as [ZRE15] is
used: using shares of ∆ · ui for all the bits ui of u, the parties derive pseudorandom oblivious
transfers using a circular correlation robust hash function, and the garbler derandomizes the OTs
using a single message (added to the garbled gate).

We note that the above description is (voluntarily) oversimplified and uses a language very different
from the terminology used in [HKN24, Hea24] (we believe that the authors of [HKN24, Hea24] are
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aware of this “MPC-style” view of their construction, but found more convenient to describe it with
a different terminology). Nevertheless, it captures the intuition of their constructions.

The main downside of the approach taken in [HKN24, Hea24] is that to execute the Doerner-shelat
protocol, the parties must hold a “bitwise” VOLE for u – i.e., they must hold shares of ∆ · ui for all
bits ui of u. Concretely, this means that the size of the labels must scale as Ω(λ · log |R|). In turn,
because each of the log |R| OTs must be derandomized by adding material to the garbled gate, the
size of each garbled gate also scales as Ω(λ · log |R|). Therefore, the rate of the scheme is O(1/λ).

2.4 A Garbling-Friendly PPRF from Power-DDH

We overcome the limitations of the previous approaches by introducing a new construction of punc-
turable pseudorandom function. Our PPRF enjoys the following appealing feature: given additive
shares of ∆ · u, the parties can compute a pair (K,Ku) (where K is a PPRF key and Ku is the key
punctured at u) using zero communication. Our PPRF enjoys very short key size (a single element
of Zp, where p is the order of a discrete-log-hard group) in an amortized setting (where many pair
(K,Ku) are generated) and can be computed with low complexity (evaluating the PPRF boils down
to computing a single exponentiation, which can be done in the complexity class NC1). We believe
that our new PPRF could enjoy other applications.

The security of our PPRF reduces to the following assumption (B is some polynomial bound): fix
a group G of order p with generator g. Sample α←$ Zp and h←$ G. Then, given

(hα−B

, hα−B+1

, · · · , hα−2

, hα−1

, hα1

, hα2

, · · · , hαB−1

, hαB

),

(that is, all terms hαi

for i = −B to B except for i = 0), it should be infeasible to distinguish

h = hα0

from random. This assumption is a static and falsifiable variant of the standard power-DDH
assumption [GJM03, CNs07]. It follows from existing meta-theorems that it holds in the generic group
model. For simplicity, we call it B-power-DDH in this work. We describe our PPRF construction with
domain [B] = {0, · · · , B} below:

Setup. Output the description of a group G of order p with generator g, as well as a “master public
key” (gi)i∈[±B]∗ := (hαi

)i∈[±B]∗ , where [±B] stands for {−B, · · · , B} \ {0}. Set g0 := h. Set α to
be the corresponding master secret key.

KeyGen. Sample a secret key sk←$ Zp.

Eval. On input x ∈ [B], output gskx = hαxsk.

Puncture. Given a point z ∈ [B], output psk := αz · sk.
Punctured Eval. On input x ∈ [B], if x ̸= z, output gpskx−z.

Correctness can be checked easily, as gpskx−z = hαx−z·psk = hαx−z·αzsk = hαxsk = gskx . Security follows
from the fact that when x = z, then gx−z = h is indistinguishable from random under the B-power-
DDH assumption. In our scheme, the output of the PPRF will additionally be hashed into an element
of Zp−1, using a hash function satisfying a suitable correlation-robustness property (the reader can
think of this hash as a random oracle for simplicity). In our construction, the hash will also take some
salt as input; we omit the details in this simplified overview.

From VOLE to punctured keys with zero communication. Recall that our goal is to let G and
E agree on PPRF keys (K,Ku) where Ku is a key punctured at a value u known to E. Assume for now
that we want to perform arithmetic computations over ZB , and therefore have u ∈ ZB . Furthermore,
assume that G and E hold shares of ∆ · u over Zp−1.

The core observation is the following: let G denote a generator of Z∗
p, and let α := G∆ mod p.

Assume that the master public key (gi)i∈[±B]∗ := (hαi

)i∈[±B]∗ was generated and added to the

garbling by G (as a “header” of the garbled circuit). Then, if we denote sk := G⟨∆u⟩G mod p, it holds
that

G⟨∆u⟩E = G∆u−⟨∆u⟩G = αu ·G⟨∆u⟩G = αu · sk mod p,

hence the evaluator can set psk := G⟨∆u⟩E and obtain the punctured key at u with respect to the
secret key sk.
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2.5 Rate-Ω(1/λ) Modular Arithmetic Garbling

Fix a security parameter λ and a polynomial modulus B = B(λ). The previous scheme suggests the
following garbling scheme over ZB (below, the sharing is done modulo p− 1):

– The garbler initially generates ∆ ←$ Zp−1, sets α := G∆ mod p, and samples the master public
key (gi)i∈[±B]∗ using exponent α.

– For each input wire, the garbler samples her shares (⟨x⟩G, ⟨∆x⟩G) of the (yet-undefined) input x
uniformly at random. Once x is defined, the input labels will be constructed as the corresponding
evaluator shares (⟨x⟩E, ⟨∆x⟩E) of x. We will maintain the invariant that, before “computing” each
gate with inputs x0, x1 during the evaluation of the circuit on x, the garbler and the evaluator
will hold shares (⟨xb⟩, ⟨∆ · xb⟩) for b = 0, 1.

– For each multiplication gate and for each of the 4 cross-products u · v of the gate, where u ∈ ZB

will be known to E and v is known to G, the garbler computes a PPRF key sk := G⟨∆u⟩G . Then,
she computes a :=

∑
z∈[±B] Fsk(z) and b :=

∑
z∈[±B] z · Fsk(z). She sets her share of u · v to b and

adds v − a to the garbled gate.

Given the garbled circuit and the input labels, the evaluator will iteratively compute the labels
of each outgoing wire of a gate from the labels of the incoming wire. For each cross-product u · v in
a multiplication gate γ : x, y 7→ z = x · y, the evaluator sets psk := G⟨∆u⟩E and uses it to compute
u · (v − a) +

∑
z∈R(u− z) · FK(z) = u · v − b (over Zp−1). Using the template for arithmetic garbling

described in Section 2.2, this allows him to obtain shares ⟨xy⟩E, ⟨∆xy⟩E, i.e., the label of the outgoing
wire z.

Overall, assuming that log p = O(λ) and that the group elements have O(λ)-bit representations,
the size of a garbling of a ZB-arithmetic circuit is bounded by O(λ · B + |C| · λ). Asymptotically,
when |C| becomes larger than B, this translates to an amortized cost of O(λ) bits per gate over ZB .
However, the method described above does not work – in fact, it is not even correct!

Modulus mismatch, and how to fix it. The issue stems from a modulus mismatch between
the ZB-arithmetic computation, and the computation modulo Zp−1. Concretely, we would ideally
like to have the following: a label for a wire w carrying a value x is a pair (⟨x⟩E, ⟨∆x⟩E), and the
corresponding key (computed independently of x) is (⟨x⟩G, ⟨∆x⟩G), where

– ⟨x⟩E, ⟨x⟩G form additive shares of x over ZB , and
– ⟨∆ · x⟩E, ⟨∆ · x⟩G form additive shares of ∆ · x over Zp−1.

However, this cannot work. First, adding shares of ∆x and ∆y yields shares of ∆(x+ y) over Zp−1,
but (x + y) is not reduced modulo B. Second, going back to the template described in Section 2.2,
recall that to compute shares of the cross term ⟨x⟩G · ⟨y⟩E (when computing the keys and labels for
a product gate with inputs x and y), the first step was for the parties to compute shares of ∆⟨y⟩E of
the form (⟨∆y⟩G −∆ · ⟨y⟩G, ⟨∆y⟩E). However, this is incorrect, because y − ⟨y⟩G is not equal to ⟨y⟩E
when the computation is done modulo p− 1.

We could attempt to fix this by letting ⟨x⟩G, ⟨x⟩E be shares of a value x over Zp−1. However,
we would not anymore be computing a circuit over ZB (but rather a bounded integer arithmetic
circuit), missing our target goal. But even more fundamentally, recall that our PPRF-based method
is restricted to puncturing values from a polynomial-sized set. In our context, to compute shares
of the cross term ⟨x⟩G · ⟨y⟩E, the evaluator wants to obtain a key punctured at ⟨y⟩E. That is, we
inherently require the shares themselves to be small. Alas, even fixing the input labels to be small
does not work: first, we cannot mask over the integers with polynomial-size values (and we cannot
use rejection-sampling-based methods as the garbler shares must be picked before the inputs to be
masked are even defined), and second, the size of the shares will increase significantly after each gate
(by a factor at least B2).

First idea: PPRF-based modular reduction. The above issues are non-trivial to solve, and our
solution combines several ideas to address each of the shortcomings of the naive approach. We start
by changing the invariant that we wish to maintain. For each wire carrying a value x, the parties will
hold:

– values (kx, ℓx) := (⟨x⟩E, ⟨x⟩G) ∈ ZB forming additive shares of x over ZB , and
– values (Kx, Lx) := (⟨∆ · ⟨x⟩E⟩E, ⟨∆ · ⟨x⟩E⟩G) forming additive shares of ∆ · ⟨x⟩E over Zp−1, where
⟨x⟩E is viewed as an element of {0, · · · , B − 1} embedded into Zp−1.
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We must now explain how we maintain the invariant, which is non-trivial even for addition gates.
We start with addition gates, as they are simpler and already use one of our core ideas. Given an
addition gates with incoming wires carrying values x and y, the garbler sets k̃z := kx + ky and

K̃z := Kx+Ky, while the evaluator sets ℓ̃z := ℓx+ ℓy and L̃z := Lx+Ly. Observe that (K̃z, L̃z) form

additive shares of ∆ · (ℓx + ℓy) = ∆ · ℓ̃z mod p− 1. However, while (k̃z, ℓ̃z) sum to x+ y when reduced
mod B, they are not elements of ZB as the sum is computed over the integers.

To control the growth, we build a gadget allowing the parties, given shares of ∆ · ℓ̃z, to compute
shares of ∆ · [ℓ̃z mod B] (where [ℓ̃z mod B] denotes the remainder of the euclidean division of ℓ̃z by
B, which belongs to ZB). This is done by relying on the fact that in a PPRF-based OLE, the parties
can actually compute an arbitrary function of the punctured point for free. Indeed, fix an arbitrary

function f and let sk := GK̃z and psk := GL̃z = αℓ̃z · sk−1 mod p. Using sk, let the garbler compute

a :=
∑

i∈[2B]

Fsk(i) mod p− 1, Kz :=
∑

i∈[2B]

f(i) · Fsk(i) mod p− 1.

Above, the PPRF is assumed to have domain [2B] because ℓ̃z = ℓx + ℓy can be as large as 2B. Then,
the evaluator can compute

c :=
∑

i∈[2B],i̸=ℓ̃z

(f(ℓ̃z)− f(i)) · Fpsk(i) = f(ℓ̃z) · a−Kz mod p− 1.

Hence, G and E hold shares of f(ℓ̃z) · a over Zp− 1. Eventually, the garbler sends a−∆ to let the

evaluator shift his share to a share Lz of ∆ · f(ℓ̃z). Setting f : x 7→ [x mod B], the parties ultimately
obtain shares (Kz, Lz) of ∆ · ℓz with ℓz := [ℓ̃z mod B], and set (kz, ℓz) := ([k̃z mod B], [ℓ̃z mod B]),
maintaining the invariant.

Second idea: leakage-resilient computation on small shares. The above idea suffices to main-
tain the invariant for addition gates. However, for multiplication gates, we still have the issue that
after executing a PPRF-based OLE, the shares obtained are large. Concretely, consider a multipli-
cation gate with inputs x and y, where the garbler holds the keys (kx,Kx) and (ky,Ky), and the
evaluator holds the labels (ℓx, Lx) and (ℓy, Ly). The parties start by computing

– k̃z := kxky + ⟨kxℓy⟩G + ⟨kyℓx⟩G (over the integers)

– ℓ̃z := ℓxℓy + ⟨kxℓy⟩E + ⟨kyℓx⟩E (over the integers),

where we crucially require the shares of the cross terms kxℓy and kyℓx to be computed over the

integers. It now remains for the parties to compute shares of ∆ · ℓ̃z; after that, both parties will apply
the same modular reduction step as for addition gates to obtain shares of ∆ · [ℓ̃z mod B] mod p− 1.
The issue is that, unlike for addition gates, the size of ℓ̃z is influenced by the size of the shares
⟨kxℓy⟩E, ⟨kyℓx⟩E. Hence, to let the evaluator obtain a key punctured at ℓ̃z, we must guarantee that ℓ̃z
remains polynomially bounded.

To do that, we let the PPRF (used to compute the shares of the cross terms) output polynomially-
bounded values. Concretely, let us focus on the cross term kxℓy. Let sk := G⟨∆ℓy⟩G mod p and psk :=

G⟨∆ℓy⟩E = αℓy · sk mod p. Let B̃ be a (polynomial) bound on Fsk(i) (for any i ∈ [B]). Recall that
⟨kxℓy⟩E is computed as ℓx · (kx − a) +

∑
i ̸=ℓy

(ℓy − i) · Fpsk(i), where a =
∑

i Fsk(i). Then, the size of

⟨kxℓy⟩E is approximately bounded by B2 · B̃. This translates to a bound on the size of ℓ̃z of about

2B2B̃. Hence, to execute the PPRF-based modular reduction procedure described above, it suffices
at this stage to rely on another PPRF with domain [2B2B̃] and outputs over Zp−1.

The main issue of this approach is that setting B̃ to a polynomial introduces leakage on kx.
Concretely, the evaluator is given kx − a, where a =

∑
i Fsk(i). Substracting the terms that E can

compute, we are left with kx − Fsk(ℓx): the (secret) wire key kx is masked with Fsk(ℓx) over the

integers, but Fsk(ℓx) is bounded by B̃! Fortunately, we can measure precisely the leakage that this

value induces: concretely, if kx − Fsk(ℓx) belongs to {B − B̃, · · · , 0}, no leakage occurs; else, E learns
information of the form “kx ≤ i” or “kx ≥ i” (for example, if kx − Fsk(ℓx) = 2, E learns that kx ≥ 2).

To handle this leakage, we adopt the following strategy: instead of using kx directly in the compu-
tation, the garbler shares kx into c shares (k1x, · · · , kcx) over ZB , where c is a value to be determined
later. The intermediate values k̃z, ℓ̃z are computed via the modified equations below (over the inte-
gers):
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– k̃z :=
∑

i,j≤c k
i
xk

j
y +

∑c
i=1(⟨kixℓy⟩G + ⟨kiyℓx⟩G)

– ℓ̃z := ℓxℓy +
∑c

i=1(⟨kixℓy⟩E + ⟨kiyℓx⟩E).

Above, each of the shares ⟨kixℓy⟩E, ⟨kiyℓx⟩E are computed via the PPRF-based procedure, using

a polynomial bound B̃ := λ · B. In addition, we rely on a “salted” variant of the PPRF to ensure
independent executions: Fsk now takes as input a pair (i, salt) where salt is any string, and the PPRF
security game is extended to a multi-instance security notion where multiple values (Fsk(i, saltj))j
are simultaneously indistinguishable from random even given the punctured key psk punctured at i,
provided that the saltj are pairwise distinct.

Observe that the probability that a leakage occurs, that is, e.g., kix−Fsk(ℓx, salti) does not belong
to {B − λB, · · · , 0}, happens with probability 1/λ. For kx to leak, it must happen that all the kix
leak simultaneously, which happens with probability 1/λc. Setting c to be any superconstant function
suffices to make this quantity negligible. An important observation6, that yields a factor-c efficiency
improvement in the garbled circuit size, is that to compute the sum

∑c
i=1(⟨kixℓy⟩E + ⟨kiyℓx⟩E), it is

not necessary to transmit all masked values shiftix := kix − aix and shiftiy := kiy − aiy (even though it

would be secure to do so): the evaluator computes this sum as
∑c

i=1 ℓx · (kix−aix)+
∑c

i=1 ℓy · (kiy−aiy)

(where the aix, a
i
y denote the values

∑
j Fsk(j, salt

x
i ),
∑

j Fsk(j, salt
y
i ) for appropriate distinct salts).

Therefore, as ℓx and ℓy factor out, it suffices to let the evaluator transmit only
∑c

i=1(k
i
x − aix) and∑c

i=1(k
i
y − aiy). As a consequence, we can set c := Ω(λ) to achieve a leakage probability of O(1/2λ)

without harming the rate of our garbling scheme.
Using the above ideas, the parties have all the required ingredients to compute shares (K̃z, L̃z)

of ∆ · ℓ̃z mod p− 1 (using this time PPRF computations with domain Zp−1). Concretely, the parties
compute

– K̃z := ⟨Kxℓy⟩G −∆ · (
∑c

i=1(⟨kixℓy⟩G + ⟨kiyℓx⟩G) +
∑c

i=1(⟨∆kixℓy⟩G + ⟨∆kiyℓx⟩G) mod p− 1, and

– L̃z := ⟨Kxℓy⟩E + Lxℓy +
∑c

i=1(⟨∆kixℓy⟩E + ⟨∆kiyℓx⟩E) mod p− 1.

For the same reason as before, the term
∑c

i=1(⟨∆kixℓy⟩E+ ⟨∆kiyℓx⟩E) can be computed by E using
only two O(λ)-bit “sums of shifts” from G, instead of 2c. A simple (but slightly tedious) calculation
shows that K̃z + L̃z = ∆ · ℓ̃z mod p− 1. Furthermore, the value of ℓ̃z is bounded by (approximately)
2c ·λB3, which is polynomial; hence, the parties can use the previous PPRF-based modular reduction
to compute shares (Kz, Lz) of ∆ · [ℓ̃z mod B] over Zp−1 obtaining the desired invariant.

Dealing with circular security. An issue that we have overlooked so far is that the construction
uses PPRF outputs to hide terms that depend on ∆, but ∆ is (the discrete log of) the master secret
key of the PPRF itself. While the construction sketched above is plausibly secure, proving security
requires assuming a non-standard circularly secure flavor of the power-DDH assumption. To get a
reduction to power-DDH, we take instead a leveled approach, using D different keys ∆1, · · · , ∆D for
each of the D = depth(C) levels of the circuit C, and make sure that every time a ∆i is masked
with a term Fskj (x), it holds that j < i. This introduces additional overhead, as the garbled circuit
must now contain D master secret keys, and additional complications, as some of the equations we
used here break down when we have multiple ∆’s (specifically, the previous equations for computing
L̃z, K̃z don’t work anymore). However, correct equations for the leveled setting can be recovered with
slightly more work.

Wrapping up. Putting everything together, the size of the garbled circuit scales as |Ĉ| = O(λ · |C|+
λB′ · depth(C)), where B′ = O(cλB3) and c is ω(1) (we can take c = Ω(λ) to get an exponentially
small failure probability). Asymptotically, and for not too “tall-and-skinny” circuits, this yields a
circuit with an amortized cost of O(λ) bits per gate, a logB = O(log λ) improvement over the state-
of-the-art garbling scheme for modular arithmetic from [Hea24] (which uses O(λ · logB bits per gate),
and the first garbling scheme ever to beat the 1/λ-rate barrier for general modular arithmetic circuits.

Eventually, while the construction is tailored to small integer rings ZB , it immediately extends to
rings ZN of arbitrary size, provided that N is smooth (i.e., has only polynomial-size coprime factors)
by using CRT decomposition and running the modular garbling scheme for each of the coprime factors.
It also extends to extension rings of ZB , isomorphic to Zt

B , by using “schoolbook” multiplication to
write a product over Zt

B as t2 cross products over ZB ; in this setting, the rate improves asymptotically
over the state of the art as long as t2 ≪ logB, which still suffices to handle superpolynomial-size
extension rings.

6 Due to an anonymous Eurocrypt’25 reviewer
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3 A Puncturable PRF with Short Keys from Power-DDH

3.1 Correlation-Robust Hashing

A hash family H is correlation-robust for a class of correlations C if samples of the form H(C(x, s))
for public inputs x’s and secret s are indistinguishable from random. Common classes of correlations
in the literature include additive correlations [IKNP03] (C(x, s) = x + s), affine correlations [Ser24]
(C((x0, x1), s) = x0 · s + x1), group-induced correlations [AMN+18] (C(x, s) = x · s where x, s
belong to some group (G, ·)) and exponential correlations [BCM+24] (C(x, s) = sx where s ∈ G and
x ∈ Zord(G)). In this work, we rely on a correlation-robust hash function for the latter correlation. We
further need the hash family to be tweakable: A hash function H is tweakable correlation-robust for a
class of correlations C if samples of the form H(C(x, s), y) are indistinguishable from random given
public inputs x’s and public tweaks y’s (where all pairs (x, y) are distinct).

Tweakable correlation-robust hashing for exponential correlations. Given a security param-
eter λ, fix group parameters (G, p, g,G) := GrpGen∗(1λ) (recall that g generates G, and G generates
Z∗
p). We introduce below the notion of tweakable correlation-robustness for exponential correlations.

The definition is reproduced verbatim from [CHHK25]:7

Definition 6 (Tweakable correlation-robust hashing for exponential correlations over G).
Given a security parameter λ, let (G, p, g,G) := GrpGen∗(1λ). Let H = {Hλ}λ∈N be a family of
hash functions Hλ : G × {0, 1}∗ → Zp−1. Given h ∈ G, let OH,h denote the oracle that, on input
(x, y) ∈ Zp−1 × {0, 1}∗, returns H(hx, y). We call y the tweak.

We say that the hash family H = {Hλ}λ∈N is a TCR hash for exponential correlations over G if
for every probabilistic polynomial-time adversary A, it holds that∣∣Pr[AH,OH,h(1λ) = 1]− Pr[AH,RO(1λ) = 1]

∣∣ ≤ negl(λ),

where the probability is taken over the random choice of h ←$ G and of a random oracle RO :
Zp−1×{0, 1}∗ → Zp−1. When H and OH,h do not take as input a tweak y, we say that H is correlation-
robust for exponential correlations over G.

In particular, we note that random oracles are tweakable correlation-robust for exponential cor-
relations, hence security under the existence of a TCR hash implies security in the random oracle
model. TCR hashing for exponential correlations is a relatively simple security notion that can be
plausibly conjectured for any standard (unstructed) hash function, such as SHA2 ror SHA3.

3.2 Puncturable Pseudorandom Functions

Pseudorandom functions (PRF), introduced in [GGM86], are keyed functions which are indistinguish-
able from truly random functions. A puncturable pseudorandom function (PPRF) is a PRF F such
that given an input z, and a PRF key sk, one can generate a punctured key, denoted psk, which
allows evaluating F at every point except for z, and does not reveal any information about the value
F.Eval(sk, z). PPRFs have been introduced in [KPTZ13, BW13, BGI14].

In this work, we introduce and build upon a puncturable pseudorandom function which features
a reusable master public key and master secret key: the same pair (mpk,msk) can be reused for an
arbitrary number of generations of PPRF secret keys sk (and corresponding punctured secret keys
psk). The main advantage of our construction is its key size: the keys sk and psk contain a single
element of Z∗

p (where p is the order of a dlog-hard group). This is particularly useful in an amortized
setting, where the cost of storing mpk is amortized across many PPRF key generations. To capture
this setting, we define below a variant of selectively-secure puncturable pseudorandom functions with
setup.

Definition 7 (Puncturable Pseudorandom Function). A puncturable pseudorandom function
(PPRF) with domain Y = YB,λ is a 5-tuple of probabilistic polynomial-time algorithms (F.Setup,
F.KeyGen,F.Eval,F.Punct,F.PEval) such that

7 Though [CHHK25] is a follow-up to the current work, our work was updated a posteriori to include the
formal definition of this flavor of correlation-robustness, that was first formally defined in [CHHK25].
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Experiment ExpPPRF(1λ, B, b)

Setup Phase. Upon receiving a setup query from A, the challenger samples (mpk,msk) ←$

F.Setup(1λ, B) and sends mpk to A. Ignore all further setup queries from A.
Challenge Phase. Upon receiving a query (challenge, z) from A with z ∈ [B], the challenger picks

sk←$ F.KeyGen(mpk). The challenger sends psk←$ F.Punct(msk, sk, z) to A. If b = 0, the challenger
additionally sends F.Eval(msk, sk, z) to A; otherwise, if b = 1, the challenger picks y ←$ Y and sends
it to A.

Fig. 1: Selective security game with reusable setup for puncturable pseudorandom functions. The
adversary can request an arbitrary number of challenges. At the end of the experiment, A sends a
guess b′ and wins if b′ = b.

– F.Setup(1λ, B) outputs a master public key and master secret key (mpk,msk). The integer B
specifies the input domain [B] of the PRF, and (λ,B) specifies the range Yλ,B (we assume that
(λ,B) are included in mpk).

– F.KeyGen(mpk) outputs a PRF key sk.
– F.Eval(msk, sk, x), where x ∈ [B], outputs a PPRF evaluation y ∈ {0, 1}λ.
– F.Punct(msk, sk, z), outputs a punctured key psk.
– F.PEval(mpk, psk, z, x), on input a punctured key psk, a punctured point z, and a point x, outputs

y ∈ {0, 1}λ if x ̸= z, and ⊥ otherwise.

A PPRF F is selectively secure with reusable setup no probabilistic polynomial-time adversary wins
the experiment ExpPPRF represented on Figure 1 with non-negligible advantage over the random guess.

Remark 8. Our definition of PPRFs differs from the standard presentation on two aspects. First,
we consider PPRFs where the same setup can be reused for many key generations; we recover the
standard selective security game for PPRFs by restricting A to make a single challenge query. Second,
the standard definition of PPRFs typically requires that F.Setup,F.KeyGen,F.Eval is itself a pseudo-
random function (note that this is not implied by the selective security game, which only ensures
pseudorandomness at the punctured point given the punctured key). This stronger security notion
is not needed in our work, but we note that it can be nevertheless shown to hold as well for our
construction using a slightly stronger assumption.

3.3 An Efficient PPRF from Power-DDH

We represent on Protocol 1 a construction of punctured pseudorandom function over a polynomial-size
domain [B] from the power-DDH assumption.

Algorithm Puncturable PRF From Power-DDH

F.Setup(1λ, B)

1 : (G, p, g) := GrpGen(1λ)

2 : (α, h)←$ Z∗
p ×G

3 : for i ∈ [±B], gi := hαi

4 : mpk :=
(
G, p, (gi)i∈[±B]∗

)
5 : msk := (mpk, α, g0)

6 : return (mpk,msk)

F.KeyGen(mpk)

1 : parse p from mpk

2 : return sk←$ Z∗
p

F.Punct(msk, sk, z)

1 : parse (p, α) from msk

2 : return psk = αzsk mod p

F.PEvalH(mpk, psk, z, x)

1 : parse (gi)i ̸=0 from mpk

2 : return H
(
gpskx−z

)
F.EvalH(msk, sk, x)

1 : parse (gi)i∈[±B] from msk

2 : return H
(
gskx

)
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Protocol 1: Puncturable PRF from the power-DDH assumption.

The construction involves a large master public key mpk, containing Ω(B) elements of a group G
of order p. However, in an amortized setting where the same master public key is reused across
n ≫ B generations of PRF keys, it features extremely compact keys: both the secret key sk and
the punctured secret key psk contain a single element of Z∗

p. The procedures F.EvalH and F.PEvalH

rely on a hash function H : G → Y, where Y = Yλ,B is the range of the PPRF. Formally, H is a
family of functions Hλ,B parametrized by (λ,B) (note that G is fully determined by λ as GrpGen is a
deterministic procedure), but we drop the transcript for readability. We require H to be a TCR hash
for exponential correlations (see Definition 6).

Theorem 9. Assume that the B-power-DDH assumption holds (Definition 3) and that H is a tweak-
able correlation-robust hash for exponential correlations over G. Then the construction (F.SetupB ,
F.KeyGen,F.Eval,F.Punct,F.PEval) from Protocol 1 is a selectively-secure puncturable pseudorandom
function with reusable setup with polynomial-size input domain [B].

We note that this basic version of the PPRF does not use tweaks: standard (non-tweakable)
correlation-robustness actually suffices (but the tweak will be necessary in the version used in our
construction, that we discuss next).

Proof of Theorem 9. First, we argue correctness. Fix any mpk =
(
G, p, (gi)i∈[±B]∗

)
and msk =

(mpk, α, g0) in the support of F.SetupB . Fix any sk ∈ Z∗
p, and x, z ∈ [±B] with x ̸= z. Then,

F.Eval(msk, sk, x) = H(gskx ) = H(gα
x·sk) = H(gα

x−z·(αzsk)) = H(gpskx−z) = F.PEval(mpk, psk, z, x).

We now argue security through a sequence of straightforward game hops:

Game 0.b. This is the experiment ExpPPRF(1λ, B, b) from Figure 1:

Setup Phase. The challenger picks (G, p, g) := GrpGen(1λ) and samples α, h ←$ Z∗
p × G. It sets

(gi)i∈[±B] := (hαi

)i∈[±B] and sends
(
G, p, (gi)i∈[±B]∗

)
to A. Upon receiving z ∈ [±B], it samples

sk←$ Z∗
p.

Challenge Phase. The challenger sets psk := αzsk. If b = 0, the challenger sets y := H(gpsk0 ); else,
the challenger sets y ←$ Y. The challenger sends (psk, y) to A.

Game 1.b. In this game, the challenger does not construct psk as αzsk in the challenge phase; Instead,
it samples psk ←$ Z∗

p. Because sk is uniformly distributed over Z∗
p, so is αzsk, hence Game 1.b is

perfectly indistinguishable from Game 0.b.

Game 2.b. In this game, the challenger sets (gi)i∈[±B]∗ := (hαi

)i∈[±B]∗ , but behaves differently in
the challenge phase:

– If b = 0, it behaves as in Game 1.0, sets g0 := h and sends y := H(gpsk0 ).

– If b = 1, it samples instead a fresh uniform g0 ←$ G, and sends y := H(gpsk0 ).

The only difference with Game 1.b happens when b = 1, where y is computed as H(gpsk0 ) for a
fresh uniformly random group element g0. Observe that with overwhelming probability, all punctured
secret keys psk are distinct. Therefore, by the tweakable correlation-robustness of H for exponential
correlations over G (Definition 6), the distribution of every y is indistinguishable from the uniform
distribution over G, hence Game 1.b and Game 2.b are indistinguishable.

Claim. Under the B-power-DDH assumption, the advantage of any adversary in distinguishing
Game 2.0 and Game 2.1 is negligible.

Proof. We show how to turn an adversary against Game 2.b into an adversary with the same advantage
against the B-power-DDH assumption. The reduction receives a sample ((hαi

)i∈[±B]∗ , g0) from the

distribution Db from Definition 3. The reduction sends (hαi

)i∈[±B]∗ to A in the setup phase. In the
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challenge phase, it ignores the value z received from A, samples psk←$ Z∗
p, and computes y := H(gpsk0 ).

It sends (psk, y) to A. Observe that the view of A is perfectly identical to Game 2.b. Upon receiving
a guess b′ from A, the reduction outputs the guess b = b′; the advantage of the reduction against
B-power-DDH is exactly that of A in distinguishing Game 2.0 and Game 2.1. This concludes the
proof. ■

■

Remark 10 (Pseudorandomness). As noted in Remark 8, the standard definition of PPRFs typically
requires that F.Setup,F.KeyGen,F.Eval) is itself a pseudorandom function, and this property is not
implied by the selective security game. We note that our candidate can straightforwardly be shown
to be a PRF assuming the all-random power-DDH assumption (Definition 4), which is equivalent to
the B-power-DDH assumption (see Theorem 5).

3.4 A Modified PPRF Procedure

In the previous section, we described the PPRF (F.Setup,F.KeyGen,F.Eval,F.Punct,F.PEval) in a self-
contained way. In this section, we introduce several modifications of the PPRF that facilitate its use
within our modular garbling scheme. At a high level, we introduce two types of modifications:

– We change the procedures (F.Setup,F.KeyGen,F.Punct) to generate pairs (sk, psk) (where psk is a
key punctured at z ∈ [B]) from substractive shares of ∆z where ∆ ∈ Zp−1 is a value such that
α = G∆ mod p (for some generator G of Zp).

– We let H take an auxiliary salt salt as input. Looking ahead, we will use this salt to ensure
independence across various events in our analysis. For simplicity, we keep the notation F.EvalH

and F.PEvalH and treat salt as an additional optional input (when salt is not passed as input, we
assume that it is replaced with the dummy string 0λ).

Let G be a generator of Z∗
p and let α = G∆ mod p for some ∆ ∈ Zp−1. Consider a secret key

sk ←$ F.KeyGen(mpk) and a punctured key psk := F.Punct(msk, sk, z). Write sk = GΓ mod p. Then,
by construction, we have psk = G∆z+Γ mod p. That is, the pair (psk, sk) can be viewed as a pair
of substractive shares (ΓG, ΓE) = (Γ,∆z + Γ ) of ∆z lifted to the exponent of G. We call ΓE the
evaluator share and ΓG the garbler share. We make use of this observation by defining alternative
PPRF algorithms F.Setup∗,F.KeyGen∗,F.Punct∗ that generate secret keys sk and punctured secret
keys psk respectively from shares of ∆z. In the procedures below, GrpGen∗(1λ) refers to an algorithm
that behaves identically to GrpGen(1λ) and additionally outputs a generator G of Z∗

p.
In the procedure below, (ΓG, ΓE) are assumed to form subtractive shares of ∆z over Zp−1 (where
z ∈ [B] is the point to be punctured), that is, ΓE+ΓG = ∆z mod p− 1. When the garbler share ΓG is
uniformly distributed, these alternative procedures yield keys (sk, psk) distributed identically as with
the procedures F.KeyGen and F.Punct. The main advantage of these alternative procedures is that if
the two parties, the garbler and the evaluator, happen to have shares (ΓG, ΓE) of ∆z, then they can
compute PPRF keys sk and psk respectively without any interaction simply by lifting their shares to
the exponent of G.

F.Setup∗(1λ, B)

1 : (G, p, g,G) := GrpGen∗(1λ)

2 : (∆,h)←$ Zp−1 ×G, α := G∆ mod p

3 : for i ∈ [±B], gi := hαi

4 : mpk :=
(
G, p,G, (gi)i∈[±B]∗

)
5 : msk := (mpk,∆, g0)

6 : return (mpk,msk)

F.KeyGen∗(mpk, ΓG)

1 : parse p,G from mpk

2 : return sk = GΓG mod p

F.Punct∗(mpk, ΓE)

1 : parse p,G from mpk

2 : return psk = GΓE mod p

F.PEvalH(mpk, psk, z, x, salt)

1 : parse (gi)i ̸=0 from mpk

2 : return H
(
gpskx−z, salt

)
F.EvalH(msk, sk, x, salt)

1 : parse (gi)i∈[±B] from msk

2 : return H
(
gskx , salt

)
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3.5 Security of the Modified PPRF

We show that the modified PPRF remains selectively secure (with reusable inputs) as long as ΓE is
statistically independent of ∆. Formally, we consider the following modified selective security exper-
iment ExpPPRF∗(1λ, B, b, salt) (for an arbitrary value of salt):

Setup Phase. Upon receiving a setup query from A, the challenger samples, the challenger picks
(G, p, g,G) := GrpGen∗(1λ) and samples ∆,h ←$ Zp−1 × G. It sets α := G∆, (gi)i∈[±B] :=

(hαi

)i∈[±B], and sends
(
G, p, (gi)i∈[±B]∗

)
to A. Ignore all further setup queries from A.

Challenge Phase. Upon receiving a query (challenge, z, ΓE) with z ∈ [B] and ΓE ∈ Zp−1 from A, if
b = 0, the challenger sets y := H(gG

ΓE

0 , salt); else, the challenger sets y ←$ Y. The challenger sends
y to A.

Definition 11 (selective security). Fix B = B(λ) ∈ poly(λ). We say that the modified PPRF
(F.Setup∗,F.KeyGen∗,F.Eval,F.Punct∗,F.PEval) is selectively secure with reusable setup if for all large
enough λ and every salt ∈ S, the advantage of any PPT adversary A against ExpPPRF∗(1λ, B, b, salt)
is negligible.

Note that by defining sk := GΓE−∆z, it holds that H(gG
ΓE

0 , salt) = H(gG
ΓE−∆z

z , salt) =
F.EvalH(msk, sk, z, salt), hence the case b = 0 corresponds to the correct evaluation of the PPRF
at the punctured point z. Security follows via a sequence of game hops similar to the proof of Theo-
rem 9 , setting g0 to be either h if b = 0 or random if b = 1, embedding a B-power-DDH instance, and
finally invoking the tweakable correlation-robustness of H for exponential correlations over G (where
salt plays the role of the tweak; note that in this experiment, the tweak is the same for all queries).
We omit the straightforward details.
We also consider a t-fold variant of the above experiment where the adversary received t PPRF eval-
uations yi using different salts. Concretely, we define the t-instance selective security of the modified
PPRF with the experiment t-ExpPPRF∗(1λ, B, b, (salti)i≤t) below:

Setup Phase. Same as before: upon receiving a setup query from A, the challenger picks
(G, p, g,G) := GrpGen∗(1λ) and samples ∆,h ←$ Zp−1 × G. It sets α := G∆, (gi)i∈[±B] :=

(hαi

)i∈[±B], and sends
(
G, p, (gi)i∈[±B]∗

)
to A. Ignore all further setup queries from A.

Challenge Phase. Upon receiving a query (challenge, z, ΓE) with z ∈ [B] and ΓE ∈ Zp−1 from A, if
b = 0, for i = 1 to t, the challenger sets yi := H(gG

ΓE

0 , salti); else, the challenger sets yi ←$ Y. The
challenger sends (y1, · · · , yt) to A.

Definition 12 (t-instance selective security). Fix t = t(λ) and B = B(λ) ∈ poly(λ). We say that
the modified PPRF (F.Setup∗,F.KeyGen∗,F.Eval,F.Punct∗,F.PEval) is t-instance selectively secure
with reusable setup if for all large enough λ and every t-tuple of pairwise distinct (salt1, · · · , saltt) ∈ St,
the advantage of any PPT adversary A against t-ExpPPRF∗(1λ, B, b, (salti)i≤t) is negligible.

The security analysis is again essentially identical to the analysis in the single-instance setting, up to
using the salt as (distinct) tweaks for the TCR hash function.

4 Modular Garbling from Power-DDH

In this section, we introduce our modular arithmetic garbling scheme from the power-DDH assump-
tion. Our construction builds upon multiple variants of a PPRF-based VOLE-to-OLE conversion
protocol, which we introduce below.

4.1 VOLE to OLE Conversion

Fix a security parameter 1λ and a modulus B = B(λ) ∈ poly(λ). Let H : G × {0, 1}∗ → Zp−1 be a
tweakable correlation-robust hash function over G, where G, p are parsed from (G, p, g,G) := GrpGen∗

(note that this is a deterministic algorithm).
Let (mpk,msk) ←$ F.Setup∗(1λ, B). Let vG ∈ Zp−1 denote an element of Zp−1 known to the garbler
G vE ∈ [B] denote a value known to the evaluator E. In this section, we introduce a single-message
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deterministic conversion protocol, called VtO, that converts additive shares (⟨∆vE⟩G, ⟨∆vE⟩E) of
∆vE over Zp−1 (where ∆ ∈ Zp−1 is the second component of msk := (mpk, ∆, g0)) to Zp−1-shares
(⟨vGvE⟩G, ⟨vGvE⟩E) ∈ Z2

p−1 of vGvE, using the PPRF with reusable inputs of the previous section.

VtOH
G(msk, vG, ⟨∆vE⟩G, salt)

1 : sk := F.KeyGen∗(mpk, ⟨∆vE⟩G)
2 : (shift, ⟨vGvE⟩G) := (−vG, 0)
3 : for x ∈ [B]

4 : yx := F.EvalH(msk, sk, x, salt)

5 : shift := shift+ yx mod p− 1

6 : ⟨vGvE⟩G := ⟨vGvE⟩G + x · yx mod p− 1

7 : return (shift, ⟨vGvE⟩G)

VtOH
E (mpk, vE, ⟨∆vE⟩E, salt, shift)

1 : psk := F.Punct∗(mpk, ⟨∆vE⟩E)
2 : ⟨vGvE⟩G := −vE · shift mod p− 1

3 : for x ∈ [B] \ {vE}

4 : yx := F.PEvalH(mpk, psk, vE, x, salt)

5 : ⟨vGvE⟩E := ⟨vGvE⟩E + (vE − x) · yx mod p− 1

6 : return ⟨vGvE⟩E

Correctness and security. We require the above procedures to satisfy the following correctness
and security properties:

Definition 13 (Correctness and security of VtOH).

– Correctness. For every (mpk,msk) in the support of F.Setup∗(1λ, B), denoting msk := (mpk, ∆, g0),
for any vG ∈ Zp−1, vE ∈ [B], any ⟨∆vE⟩G ∈ Zp−1, and any salt salt, denoting ⟨∆vE⟩E := ∆vE −
⟨∆vE⟩G mod p− 1 and

(shift, ⟨vGvE⟩G) := VtOH
G(msk, vG, ⟨∆vE⟩G, salt)

⟨vGvE⟩E := VtOH
E (mpk, vE, ⟨∆vE⟩G, salt, shift),

it holds that ⟨vGvE⟩G + ⟨vGvE⟩E = vGvE mod p− 1.

– t-instance security. For any t-tuple of pairwise distincts salts salt = (salt1, · · · , saltt), the advan-
tage of any stateful polynomial-time adversary A against the experiment ExpVtOH defined below
is negligible.

In the experiments below, we assume that A is deterministic; by a standard averaging argument,
this is without loss of generality. At the end of the experiment, A outputs a guess b.

ExpVtOH
0 (1

λ, B, salt)

1 : (mpk,msk)←$ F.Setup∗(1λ, B)

2 : i := 1

3 : Upon receiving (vG, vE, ⟨∆vE⟩E) from A(mpk) :

4 : i := i+ 1; if i > t return ⊥
5 : ⟨∆vE⟩G := ⟨∆vE⟩E −∆vE mod p− 1

6 : (shift, ⟨vGvE⟩G) := VtOH
G(msk, vG, ⟨∆vE⟩G, salti)

7 : ⟨vGvE⟩E := VtOH
E (mpk, vE, ⟨∆vE⟩E, salti, shift)

8 : return (shift, ⟨vGvE⟩E)

ExpVtOH
1 (1

λ, B, salt)

1 : (mpk,msk)←$ F.Setup∗(1λ, B)

2 : Upon receiving (vG, vE, ⟨∆vE⟩E) from A(mpk) :

3 : i := i+ 1; if i > t return ⊥
4 : shift←$ Zp−1

5 : ⟨vGvE⟩E := VtOH
E (mpk, vE, ⟨∆vE⟩E, salti, shift)

6 : return (shift, ⟨vGvE⟩E)

Correctness and Security of VtOH.

Correctness. Let (mpk,msk)←$ F.Setup∗(1λ, B) with msk := (mpk, ∆, g0), let vG, vE ∈ [±B] and let

(⟨∆vE⟩G, ⟨∆vE⟩E) be two elements of Zp−1 such that ⟨∆vE⟩G + ⟨∆vE⟩E = ∆vE mod p − 1. Consider

the outputs (msg, ⟨vGvE⟩G) of VtOH
G(msk, vG, ⟨∆vE⟩G) and ⟨vGvE⟩E of VtOH

G(mpk, vE, ⟨∆vE⟩G,msg), and
parse msg := (shift, salt). We have:
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⟨vGvE⟩E = −vE · shift+
∑

x∈[±B]\{vE}

(vE − x) · F.PEvalH(mpk, psk, vE, x, salt) mod p− 1

= −vE · shift+
∑

x∈[±B]\{vE}

(vE − x) · F.EvalH(msk, sk, x, salt) mod p− 1 by PPRF security

= −vE · shift+
∑

x∈[±B]

(vE − x) · F.EvalH(msk, sk, x, salt) mod p− 1 as vE − vE = 0

= −vE · shift+ vE ·
∑

x∈[±B]

F.EvalH(msk, sk, x, salt)−
∑

x∈[±B]

x · F.EvalH(msk, sk, x, salt) mod p− 1

= −vE · shift+ vE · (shift+ vG)− ⟨vGvE⟩G mod p− 1

= vGvE − ⟨vGvE⟩G mod p− 1.

Security. Fix t pairwise distinct salts salt. We argue security through a sequence of game hops:

Game 0. This is the experiment ExpVtOH
0 (1

λ, B, salt).
Game 1. In this game, we modify the algorithm VtOH

G(msk, vG, ⟨∆vE⟩G, salti):
– On line 1 we additionally compute psk := F.Punct∗(mpk, ⟨∆vE⟩E).
– On line 4 we instead compute yx as yx := F.PEvalH(mpk, psk, vE, x, salti) for every x ̸= vE. For

x = vE, yx is still computed as F.EvalH(msk, sk, x, salti).
By (perfect) correctness of the PPRF, this game is perfectly indistinguishable from the previous
one.

Game 2. In this game, we modify again VtOH
G(msk, vG, ⟨∆vE⟩G, salti) for i = 1 to t: on line 4, we set

instead yvE ←$ Zp−1. Under the t-instance selective security of the PPRF (Definition 12), this
game is indistinguishable from the previous one. Note that the value shift output by the modified
VtOH

G(msk, vG, ⟨∆vE⟩G, salti) satisfies:

shift = yvE +
∑
x̸=vE

yx − vG mod p− 1.

Since all yvE
for i = 1 to t are sampled uniformly at random (independently of vG and (yx)x ̸=0), it

follows that the marginal distribution of all t shifts shift is the uniform distribution over (Zp−1)
t.

Game 3. This is the experiment ExpVtOH
1 (1

λ, B, salt). The difference with the previous game is
that shift is sampled uniformly from Zp−1 for i = 1 to t. As the marginal distribution of all shifts
in Game 2 is already uniform over (Zp−1)

t, this is a purely syntactic change and this game is
perfectly indistinguishable from Game 2. This concludes the proof.

■

4.2 Modular reduction of authenticated shares

We observe that the correctness and security analysis above remains identical if the parties replace
yx with f(yx), for an arbitrary function f , in the VtOH procedures. Concretely, consider the following
“functional” variants where f : Zp−1 → Zp−1 is an arbitrary efficient function:

fVtOH
G(msk, vG, ⟨∆vE⟩G, salt, f)

1 : sk := F.KeyGen∗(mpk, ⟨∆vE⟩G)
2 : (shift, ⟨vGvE⟩G) := (−vG, 0)
3 : for x ∈ [B]

4 : yx := F.EvalH(msk, sk, x, salt)

5 : shift := shift+ yx mod p− 1

6 : ⟨vGvE⟩G := ⟨vGvE⟩G + f(x) · yx mod p− 1

7 : return (shift, ⟨vG · f(vE)⟩G)

fVtOH
E (mpk, vE, ⟨∆vE⟩E, salt, shift, f)

1 : psk := F.Punct∗(mpk, ⟨∆vE⟩E)
2 : ⟨vGvE⟩G := −f(vE) · shift mod p− 1

3 : for x ∈ [B] \ {vE}

4 : yx := F.PEvalH(mpk, psk, vE, x, salt)

5 : ⟨vGvE⟩E := ⟨vGvE⟩E + (f(vE)− f(x)) · yx mod p− 1

6 : return ⟨vG · f(vE)⟩E

The same correctness analysis as before shows that with probability 1, it holds that ⟨vG · f(vE)⟩G +
⟨vG · f(vE)⟩E = vG · f(vE) mod p − 1. We use this observation below to define a procedure that lets
two parties compute modular reductions inside authenticated shares.
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The MR procedure. Fix a security parameter 1λ and two moduli B = B(λ) ∈ poly(λ) and
B′ = B′(λ) ∈ poly(λ) with B′ > B. Let H : G×{0, 1}∗ → Zp−1 be a TCR hash function for exponen-
tial correlations over G. Let (mpk′,msk′) ←$ F.Setup∗(1λ, B′) and parse (mpk′, ∆′, g0) := msk′. Let
ṽE ∈ [B′] denote a value known to the evaluator E. In this section, we introduce one more procedure
to convert, using our PPRF and via a single-message deterministic protocol called MR (for Modular
Reduction), Zp−1-shares (⟨∆′ṽE⟩G, ⟨∆′ṽE⟩E) of ∆′ṽE to Zp−1-shares (⟨∆′′vE⟩G, ⟨∆′′vE⟩E) of the value
∆′′vE = ∆′′ · [ṽE mod B]. That is, ⟨∆′′vE⟩G + ⟨∆′′vE⟩E = ∆′′ · [ṽE mod B] mod p− 1. Looking ahead,
∆′′ will be set in our protocol to be the “∆ component” of another PPRF secret key msk′′.

MRH
G(msk′, ∆′′, ⟨∆′ṽE⟩G, salt, B)

1 : parse (mpk′,∆′, g0) := msk′

2 : define f : x 7→ [x mod B]

3 : (shift, ⟨∆′′ · vE⟩G) := fVtOH
G(msk′,∆′, ⟨∆′ṽE⟩G, salt, f)

4 : return (shift, ⟨vG · vE⟩G)

MRH
E (mpk′, ṽE, ⟨∆′vE⟩E, salt, shift, B)

1 : define f : x 7→ [x mod B]

2 : ⟨vG · vE⟩E := fVtOH
E (mpk′, ṽE, ⟨∆′ṽE⟩E, salt, f)

3 : return ⟨∆′′ · vE⟩E

The above procedure lets two parties compute, given (⟨∆′ṽE⟩G, ⟨∆′ṽE⟩E), shares of∆′′·[ṽE mod B] mod
p − 1 using the functional VOLE-to-OLE procedure, where G sets its OLE input vG to ∆′′ and
the parties use the modular reduction function f : x 7→ [x mod B]. Note that we run the setup
(mpk′,msk′)←$ F.Setup∗(1λ, B′) using a larger modulusB′ > B. Looking ahead, we use this procedure
to shrink back labels in our garbling scheme to values in [B] after their size has been increased (but
remains bounded by B′) through computations over the integers.

Security. We define security using a slight modification of the ExpVtO to account for the function
f and for the fact that we fix vG to ∆ (hence we don’t let the adversary choose it).

ExpMRH
0 (1

λ, B′, B, salt)

1 : (mpk′,msk′)←$ F.Setup∗(1λ, B′)

2 : i := 1

3 : Upon receiving (∆′′, ṽE, ⟨∆′ṽE⟩E) from A(mpk′) :

4 : i := i+ 1; if i > t return ⊥
5 : ⟨∆′ṽE⟩G := ⟨∆′ṽE⟩E −∆′ṽE mod p− 1

6 : (shift, ⟨∆′′vE⟩G) := MRH
G(msk′,∆′′, ⟨∆′ṽE⟩G, salti, B)

7 : ⟨∆′′vE⟩E := MRH
E (mpk′, ṽE, ⟨∆′ṽE⟩E, shift)

8 : return (shift, ⟨∆′′vE⟩E)

ExpMRH
1 (1

λ, B′, B, salt)

1 : (mpk′,msk′)←$ F.Setup∗(1λ, B′)

2 : i := 1

3 : Upon receiving (∆′′, ṽE, ⟨∆′ṽE⟩E) from A(mpk′) :

4 : i := i+ 1; if i > t return ⊥
5 : shift←$ Zp−1

6 : ⟨∆′′vE⟩E := MRH
E (mpk′, ṽE, ⟨∆′ṽE⟩E, salti, shift, B)

7 : return (shift, ⟨∆′′vE⟩E)

Definition 14 (Security of MR). We say that MR is t-instance secure if for any B < B′ and any
t-tuple of pairwise distinct salts salt, the advantage of any stateful polytime adversary A against the
experiment ExpMRH defined above is negligible.

The security analysis is an immediate adaptation of the security analysis of ExpVtO and we omit it.

4.3 Leaky VOLE to OLE Conversion

We introduce another variant of the VtO procedure, called LVtO, with the following characteristics:

– LVtO is a single-message conversion protocol where the garbler holds an input vG ∈ [B]. LVtO
converts additive shares of ∆vE (over Zp−1) into additive shares of vGvE over the integers.

– The LVtO procedure produces small integer shares: the output shares (⟨vGvE⟩G, ⟨vGvE⟩E) are guar-
anteed to belong to [λB3].

– This combination of sharing over the integers and achieving a small share size comes at a cost in
security: with probability 1/λ, the procedure LVtO leaks information about vG to the evaluator
(in a sense that will be made precise).

Fix a security parameter 1λ and a modulus B = B(λ) ∈ poly(λ). Let H′ : G × {0, 1}λ → [λ · B] be
a tweakable correlation-robust hash function for exponential correlations over G. Let (mpk,msk) ←$

F.Setup∗(1λ, B). Let vG, vE ∈ [B] denote two values known to the garbler G and the evaluator E
respectively.
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LVtOH′

G (msk, vG, ⟨∆vE⟩G, salt)
1 : sk := F.KeyGen∗(mpk, ⟨∆vE⟩G)
2 : (shift, ⟨vGvE⟩G) := (−vG, 0)
3 : for x ∈ [B]

4 : yx := F.EvalH
′
(msk, sk, x, salt)

5 : shift := shift+ yx

6 : ⟨vGvE⟩G := ⟨vGvE⟩G + x · yx
7 : return (shift, ⟨vGvE⟩G)

LVtOH′

E (mpk, vE, ⟨∆vE⟩E, salt, shift)
1 : psk := F.Punct∗(mpk, ⟨∆vE⟩E)
2 : ⟨vGvE⟩G := −vE · shift
3 : for x ∈ [B] \ {vE}

4 : yx := F.PEvalH
′
(mpk, psk, vE, x, salt)

5 : ⟨vGvE⟩E := ⟨vGvE⟩E + (vE − x) · yx
6 : return ⟨vGvE⟩E

Correctness and efficiency. We define correctness as for VtO. The same analysis as in Section 4.1
shows that ⟨vGvE⟩G+⟨vGvE⟩E = vGvE (over the integers) with probability 1. In the procedures above, it
holds that yx ∈ [λ ·B] for every x ∈ [B]. Since ⟨vGvE⟩G =

∑
x∈[B] x · yx and ⟨vGvE⟩E = ⟨vGvE⟩G− vGvE,

we have |⟨vGvE⟩G| ≤ λ ·B2(B − 1)/2 ≤ λ ·B3/2, and |⟨vGvE⟩E| ≤ λB2(B − 1)/2 +B2 ≤ λ ·B3/2.

Security. To define multi-instance security, we introduce below a modified experiment ExpLVtO.
Compared to ExpVtO1, the simulated experiment ExpLVtO1 tosses a biased coin σ ←$ Ber(1/λ). With
probability 1− 1/λ, it samples shift independently of vG (no leakage occurred). With probability 1/λ,
it samples shift from a distribution that depends on vG (a leakage occurred).
The distribution of the simulated shifts in ExpLVtO1 are a bit more involved compared to ExpVtO1

(where shift is simply simulated as shift←$ Zp−1). For convenience, we define two algorithms SimShift
and SimLShift that simulate shift in the case where no leakage occurs (σ = 0) and where leakage
occurs (σ = 1) respectively:

SimShiftH
′
(mpk, psk, vE, salt)

1 : shift←$ [(λ− 1) ·B]

2 : for x ∈ [B] \ {vE}

3 : shift := shift+ F.PEvalH
′
(mpk, psk, vE, x, salt)

4 : return shift

SimLShiftH
′
(mpk, psk, vG, vE, salt)

1 : shift←$ [−vG, λB − vG] \ [(λ− 1) ·B]

2 : for x ∈ [B] \ {vE}

3 : shift := shift+ F.PEvalH
′
(mpk, psk, vE, x, salt)

4 : return shift

Definition 15 (t-instance security of LVtOH′
). For all large enough λ, all vE ∈ [B] and pairwise-

distinct t-tuple of salts salt = (salt1, · · · , saltt), the advantage of any polynomial-time stateful adver-

sary A against ExpLVtOH′
(1λ, B, salt) is negligible.

ExpLVtOH′

0 (1λ, B, salt)

1 : (mpk,msk)←$ F.Setup∗(1λ, B)

2 : i := 1

3 : Upon receiving (vG, vE, ⟨∆vE⟩E) from A(mpk) :

4 : i := i+ 1; if i > t return ⊥
5 : ⟨∆vE⟩G := ⟨∆vE⟩E −∆vE mod p− 1

6 : (shift, ⟨vGvE⟩G) := LVtOH′
G (msk, vG, ⟨∆vE⟩G, salti)

7 : ⟨vGvE⟩E := LVtOH′
E (mpk, vE, ⟨∆vE⟩E, salti, shift)

8 : return (shift, ⟨vGvE⟩E)

ExpLVtOH′

1 (1λ, B, salt)

1 : (mpk,msk)←$ F.Setup∗(1λ, B)

2 : i := 1

3 : Upon receiving (vG, vE, ⟨∆vE⟩E) from A(mpk) :

4 : i := i+ 1; if i > t return ⊥
5 : σi ←$ Ber(1/λ)t

6 : shift0 ←$ SimShiftH
′
(mpk, psk, vE, salti)

7 : shift1 ←$ SimLShiftH
′
(mpk, psk, vG, vE, salti)

8 : ⟨vGvE⟩iE := LVtOH′
E (mpk, vE, ⟨∆vE⟩E, salti, shift)

9 : return (shiftσi , ⟨vGvE⟩E)

The proof of correctness is identical to the previous section; we argue security below:

Proof of Security of LVtOH′
, Section 4.3. Fix any t-tuple of salts salt.

Game 0. This is the experiment ExpLVtOH
0 (1

λ, B, salt).

Game 1. In this game, we modify the algorithm LVtOH′

G (msk, vG, ⟨∆vE⟩G, salti):
– On line 1 we additionally compute psk := F.Punct∗(mpk, ⟨∆vE⟩E).



20 Geoffroy Couteau, Carmit Hazay, Aditya Hegde, and Naman Kumar

– On line 4, for i = 1 to t, we instead compute yx as yx := F.PEvalH
′
(mpk, psk, vE, x, salti) for

every x ̸= vE. For x = vE, yx is still computed as F.EvalH(msk, sk, x, salti).

By (perfect) correctness of the PPRF, this game is perfectly indistinguishable from the previous
one.

Game 2. In this game, we further modify LVtOH′

G (msk, vG, ⟨∆vE⟩G, salti) for i = 1 to t: on line 4, we
set instead yvE ←$ [λ ·B]. Under the t-instance selective security of the PPRF (Definition 12), this
game is indistinguishable from the previous one. Note that the value shift output by the modified

LVtOH′

G (msk, vG, ⟨∆vE⟩G, salti) satisfies:

shift = yvE − vG +
∑
x ̸=vE

yx.

In this equation, yvE is sampled uniformly at random from [λ ·B] (independently for all iterations
i = 1 to t). Equivalently, shift = z+

∑
x ̸=vE

yx where z := yvE−vG is sampled uniformly at random
from [−vG, λ ·B − vG]. Before we proceed, we prove a simple claim:

Claim. Pr[z /∈ [(λ− 1) ·B]] = 1/λ.

Proof. Pr[z /∈ [(λ−1) ·B]] = Pr[z ∈ [−vG, 0)]+Pr[z ∈ ((λ−1)B, λB−vG]] =
vG
λB + B−vG

λB = 1
λ . ■

Game 3. In this experiment, upon receiving each query from A for i = 1 to t, we sample z differently:
we first pick σi ←$ Ber(1/λ). If σi = 0 (which happens with probability 1 − 1/λ), we sample
z ←$ [(λ−1)·B]]. Else, (σi = 1, probability 1/λ) we sample z ←$ [−vG, λB−vG]\[(λ−1)·B]]. Note
that by the claim above, this induces exactly the same distribution as sampling z ←$ [−vG, λB−vG]
(where a leakage occurs if z /∈ [(λ− 1) · B]]), hence this game is perfectly indistinguishable from
Game 2. This game corresponds exactly to ExpLVtOH

0 (1
λ, B, vE, salt); this concludes the proof.

■

Remark 16. Multi-instance security allows running multiple LVtO instances in parallel using the same
pair (mpk,msk). We note that the same analysis of multi-instance security immediately extends
to show that security is preserved when running concurrently both VtO and LVtO instances using
the same pair (mpk,msk). We state below the corresponding experiment (denoted ExpBothVtO) for
completeness and introduce the corresponding security notion in Definition 17, but omit the proof,
which remains essentially identical.

Definition 17 (t-instance joint security of VtOH, LVtOH′
). For all large enough λ, all vE ∈ [B]

and pairwise-distinct t-tuple of salts salt = (salt1, · · · , saltt), the advantage of any polynomial-time

stateful adversary A against ExpBothVtOH,H′
(1λ, B, salt) is negligible.

ExpBothVtOH,H′

0 (1λ, B, salt)

1 : (mpk,msk)←$ F.Setup∗(1λ, B)

2 : i := 1

3 : Upon receiving (VtO, vG, vE, ⟨∆vE⟩E) from A(mpk) :

4 : i := i+ 1; if i > t return ⊥
5 : ⟨∆vE⟩G := ⟨∆vE⟩E −∆vE mod p− 1

6 : (shift, ⟨vGvE⟩G) := VtOH
G(msk, vG, ⟨∆vE⟩G, salti)

7 : ⟨vGvE⟩E := VtOH
E (mpk, vE, ⟨∆vE⟩E, salti, shift)

8 : return (shift, ⟨vGvE⟩E)
9 : Upon receiving (LVtO, vG, vE, ⟨∆vE⟩E) from A(mpk) :

10 : i := i+ 1; if i > t return ⊥
11 : ⟨∆vE⟩G := ⟨∆vE⟩E −∆vE mod p− 1

12 : (shift, ⟨vGvE⟩G) := LVtOH′
G (msk, vG, ⟨∆vE⟩G, salti)

13 : ⟨vGvE⟩E := LVtOH′
E (mpk, vE, ⟨∆vE⟩E, salti, shift)

14 : return (shift, ⟨vGvE⟩E)

ExpBothVtOH,H′

1 (1λ, B, salt)

1 : (mpk,msk)←$ F.Setup∗(1λ, B)

2 : i := 1

3 : Upon receiving (VtO, vG, vE, ⟨∆vE⟩E) from A(mpk) :

4 : i := i+ 1; if i > t return ⊥
5 : shift←$ Zp−1

6 : ⟨vGvE⟩E := VtOH
E (mpk, vE, ⟨∆vE⟩E, salti, shift)

7 : return (shift, ⟨vGvE⟩E)
8 : Upon receiving (LVtO, vG, vE, ⟨∆vE⟩E) from A(mpk) :

9 : i := i+ 1; if i > t return ⊥
10 : σi ←$ Ber(1/λ)t

11 : shift0 ←$ SimShiftH
′
(mpk, psk, vE, salti)

12 : shift1 ←$ SimLShiftH
′
(mpk, psk, vG, vE, salti)

13 : ⟨vGvE⟩iE := LVtOH′
E (mpk, vE, ⟨∆vE⟩E, salti, shift)

14 : return (shiftσi , ⟨vGvE⟩E)
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4.4 The Garbling Scheme

Equipped with the procedures introduced in the previous sections, we are now ready to present our
garbling scheme for modular arithmetic circuit. Let λ be a security parameter and B = B(λ) ∈ poly(λ)
be a polynomial-size modulus. We consider a polynomial-size arithmetic circuit C over ZB with n
inputs, m outputs, s gates (additions, substractions, and multiplications), of depth D. We let I(C)
denote the set of input wires, W (C) denote the set of all wires, O(C) denote the set of output wires,
and Γ (C) denote the set of gates. We write |C| to denote the size of C (the number of gates in C),
and depth(C) to denote its depth (the length of the longest path from an input to an output).

Theorem 18. Let B = B(λ) ∈ poly(λ) be a polynomial-size modulus. Let C = {Cλ}λ∈N denote the
class of all polynomial-size arithmetic circuits over the ring ZB. Let c = c(λ) denote a function such
that c = ω(1), and set B′ := B2 + c · λ · B3. Assume that the B′-power-DDH assumption holds
over a group (G, p, g) := GrpGen(1λ) of order p = 2O(λ) and that H is a tweakable correlation-robust
hash function for exponential correlations over G. Then there exists an arithmetic garbling scheme
AGC = (AGC.Garble,AGC.Eval) for C where, on input (1λ, C) with C ∈ Cλ, AGC.Garble outputs a
garbled circuit Ĉ of size

|Ĉ| = O(λ · |C|+ λB′ · depth(C)).

In particular, the rate of the scheme approaches O(logB/λ) when depth(C)≪ |C|.

More concretely, the garbled circuit Ĉ contains a “header” of size (B + B′) · log p · depth(C) and
garbled gates Ĉγ , where Ĉγ = 3 log p for addition/substraction gates, and Ĉγ ≤ 3 log p+ 2 · (log λ+
3 logB + 2 log p + 2 log c) for multiplication gates. The result of Theorem 18 represents a logarith-
mic improvement in rate compared with the state of the art: our scheme achieves asymptotic rate
Ω(log λ)/λ, while the best known arithmetic garbling scheme for modular arithmetic is the scheme
of [Hea24], which achieves asymptotic rate O(1/λ).

Remark 19. The dependency in depth(C) in Theorem 18 stems from the fact that our construction is
leveled : AGC.Garble samples fresh PPRF master keys mpkd at each level d ≤ depth(C). This leveled
construction allows us to avoid circularity, by ensuring that PPRF evaluations at a given level d are
always used to mask values that depend on mskd′ for d′ > d. The dependency can be removed at the
cost of assuming a non-standard circular variant of tweakable correlation-robustness. Concretely, fix
a hash H. Let (gi)i∈[±B′] ←$ D0, where D0 is the power-DDH distribution of Definition 3 with bound

B′, and let (α, h) ∈ Z∗
p×G be such that gi = hαi

for all i ∈ [±B′]. Then the “circular B′-power-DDH
assumption” states that no PPT adversary A (who receives the gi for i ̸= 0 as input) can, given at
most t samples of the form H(gu0 , salt) + αv, for queries (u, v, salt) of his choice with distinct salts,
distinguish the samples from random. In a follow-up work [CHHK25], we showed that this assumption
holds unconditionally in the generic group model when H is additionally modeled as a random oracle.
Under this assumption, the 2depth(C) different ∆’s in our construction can be replaced with a single
global ∆.

Garbling algorithm We represent on Algorithm 1 the garbling algorithm AGC.Garble(1λ, C). The
garbling algorithm maintains the following invariant: for every wire w at depth d of C, the garbler
constructs a wire key (kw,Kw) ∈ ZB × Zp−1. AGC.Garble outputs a global keys ∆1, a set of wire

keys K̂ = (kw,Kw)w∈W (C), and a garbled circuit Ĉ. Given a wire value xw ∈ ZB at depth d, the
corresponding wire label is defined as (ℓw, Lw) := (xw − kw mod B,∆d · ℓw −Kw mod p− 1).

Definition 20. We let InputLabels denote the function which, on input (1λ, C,∆1, K̂, x), outputs
(ℓi, Li) := (xi − ki mod B,∆1 · xi −Ki mod p− 1)i∈I(C).

Algorithm Modular Garbling from Power-DDH: AGC.Garble(1λ, C)

Parameters. Let (G, p, g,G) := GrpGen∗(1λ). Let c = c(λ) denote a functions c = ω(1), and set
B′ := B2+c·λ·B3. Let H : G→ Zp−1 and H′ : G×{0, 1}∗ → [λ·B] denote TCR hash functions for
exponential correlations over G. Let F = (F.Setup∗,F.KeyGen∗,F.Eval,F.Punct∗,F.PEval) denote
the modified PPRF of Section 3.4.
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Initialization. For d = 1 to D,
– sample (mpkd,mskd)←$ F.Setup(1λ, B). Parse mskd := (mpkd, ∆d, g0,d).
– Sample (mpk′d,msk′d)←$ F.Setup(1λ, B′). Parse msk′d := (mpk′d, ∆

′
d, g

′
0,d).

Input keys. For each input wire i, sample (ki,Ki)←$ ZB × Zp−1.
Addition/Subtraction Gate γ = (u, v, w). Given the incoming wires u and v with keys

(ku,Ku), (kv,Kv) and depth du, dv respectively, set d := max(du, dv) + 1. Set
For wire u. (shiftu, ⟨∆′

dℓu⟩G) := VtOH
G(mskdu

, ∆′
d,Ku, γ||u)

For wire v. (shiftv, ⟨∆′
dℓv⟩G) := VtOH

G(mskdv , ∆
′
d,Kv, γ||v)

For wire w.
– kw := ku ± kv mod B
– K̃w := ⟨∆′

dℓu⟩G ± ⟨∆′
dℓv⟩G mod p− 1

– (shiftw,Kw) := MRH
G(msk′d, ∆d, K̃w, γ, B)

– Set the keys of the outgoing wire w at depth d to (kw,Kw) and the garbled gate to

Ĉγ := (shiftu, shiftv, shiftw).

Multiplication Gate γ = (u, v, w). Given the incoming wires u and v with keys
(ku,Ku), (kv,Kv) and depth du, dv respectively, set d := max(du, dv) + 1 and sample c
uniformly random shares (kiu, k

i
v)i≤c of (ku, kv) over ZB .

For wire u. For i = 1 to c,

• (leakyshiftiu, ⟨kiuℓv⟩G) := LVtOH′

G (mskdv , k
i
u,Kv, γ||u||i)

• (shiftiu, ⟨∆′
dk

i
uℓv⟩G) := VtOH

G(mskdv , ∆
′
dk

i
u,Kv, γ||u||i)

– (shiftu,K
′
u) := VtOH

G(mskdu
, ∆′

d,Ku, γ||u)
– (shift′u, ⟨K ′

uℓv⟩G) := VtOH
G(mskdv

,K ′
u,Kv, γ)

For wire v. For i = 1 to c,

– (leakyshiftiv, ⟨kivℓu⟩G) := LVtOH′

G (mskdu
, kiv,Ku, γ||v||i)

– (shiftiv, ⟨∆′
dk

i
vℓu⟩G) := VtOH

G(mskdu
, ∆′

dk
i
v,Ku, γ||v||i)

For wire w. For i = 1 to c,
• k̃iw := ⟨kiuℓv⟩G + ⟨kivℓu⟩G
• K̃i

w := ⟨∆′
dk

i
uℓv⟩G + ⟨∆′

dk
i
vℓu⟩G mod p− 1

– k̃w :=
(∑c

i=1 k
i
u

)
·
(∑c

i=1 k
i
v

)
+
∑t

i=1 k̃
i
w

– K̃w := ⟨K ′
uℓv⟩G −∆′

d ·
(∑c

i=1 k̃
i
w

)
+
∑c

i=1 K̃
i
w mod p− 1

– kw := [k̃w mod B]
– (shiftw,Kw) := MRH

G(msk′d, ∆d, K̃w, γ, B)
– Set the keys of the outgoing wire w at depth d to (kw,Kw) and the garbled gate to

Ĉγ :=

(
c∑

i=1

(leakyshiftiu, leakyshift
i
v, shift

i
u, shift

i
v), shiftu, shift

′
u, shiftw

)
.

Output. The garbler outputs the global keys ∆1, the wire keys K̂ and the garbled circuit Ĉ,
where

K̂ = (kw,Kw)w∈W (C), Ĉ =
(
(mpkd,mpk′d)d≤D, (Ĉγ)γ∈Γ (C), (ko)o∈O(C)

)
.

Algorithm 1: Garbling Algorithm of the Modular Arithmetic Garbling Scheme over ZB with Rate
Θ(logB/λ) from Power DDH.

Evaluation algorithm We represent on Algorithm 2 the evaluation algorithm
AGC.Eval((ℓi, Li)i∈I(C), Ĉ). The evaluation algorithm takes as input the input labels (ℓi, Li)
for every i ∈ I(C), where we recall that labels are defined for every wire w with value xw

as (ℓw, Lw) := (xw − kw mod B,∆d · ℓw − Kw mod p − 1). It also receives the garbled circuit

Ĉ =
(
(mpkd,mpk′d)d≤D, (Ĉγ)γ∈Γ (C)

)
.
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Algorithm Modular Garbling from Power-DDH: AGC.Eval((ℓi, Li)i∈I(C), Ĉ)

Parameters. Let (G, p, g,G) := GrpGen∗(1λ). Let c = c(λ) denote an arbitrarily slowly
growing functions c = ω(1), and set B′ := B2 + c · λ · B3. Let H : G → Zp−1 and
H′ : G × {0, 1}∗ → [λ · B] denote TCR hash functions for exponential correlations over G. Let
F = (F.Setup∗,F.KeyGen∗,F.Eval,F.Punct∗,F.PEval) denote the modified PPRF of Section 3.4.

Parse Ĉ =
(
(mpkd,mpk′d)d≤D, (Ĉγ)γ∈Γ (C), (ko)o∈O(C)

)
. The evaluator computes the labels of

all outgoing wires of a gate using the labels of the gate’s incoming wires, starting with the input
wire labels and computing each gate’s outgoing wire’s label as soon as its incoming wire labels
have been computed.

Addition/Subtraction Gate γ = (u, v, w). Given the incoming wires u and v with labels
(ℓu, Lu), (ℓv, Lv) and depth du, dv respectively, set d := max(du, dv) + 1. Parse Ĉγ :=
(shiftu, shiftv, shiftw). Set
For wire u. ⟨∆′

dℓu⟩E := VtOH
E (mpkdu

, ℓu, Lu, γ||u, shiftu)
For wire v. ⟨∆′

dℓv⟩E := VtOH
E (mpkdv

, ℓv, Lv, γ||v, shiftv)
For wire w.

– ℓ̃w := ℓu ± ℓv
– ℓw := [ℓ̃w mod B]
– L̃w := ⟨∆′

dℓu⟩E ± ⟨∆′
dℓv⟩E mod p− 1

– Lw := MRH
E (mpk′d, ℓ̃w, L̃w, γ, shiftw, B)

– Set the outgoing wire label to (ℓw, Lw).
Multiplication Gate γ = (u, v, w). Given the incoming wires u and v with label

(ℓu, Lu), (ℓv, Lv) and depth du, dv respectively, set d := max(du, dv) + 1 and parse Ĉγ :=
(leakyshiftu, leakyshiftv, shift

0
u, shift

0
v, shiftu, shift

′
u, shiftw).

For wire u.
• ⟨
∑c

i=1 k
i
uℓv⟩E := LVtOH′

E (mpkdv
, ℓv, Lv, γ||u, leakyshiftu)

• ⟨∆′
d

∑c
i=1 k

i
uℓv⟩E := VtOH

E (mpkdv
, ℓv, Lv, γ||u, shift0u)

– L′
u := VtOH

E (mpkdu
, ℓu, Lu, γ||u, shiftu)

– ⟨K ′
uℓv⟩E := VtOH

E (mpkdv
, ℓv, Lv, γ, shift

′
u)

For wire v.
– ⟨
∑c

i=1 k
i
vℓu⟩E := LVtOH′

E (mpkdu
, ℓu, Lu, γ||v, leakyshiftv)

– ⟨∆′
d

∑c
i=1 k

i
vℓu⟩E := VtOH

E (mpkdu
, ℓu, Lu, γ||v, shift0v)

For wire w.
– ℓ̃w := ℓuℓv + ⟨

∑c
i=1 k

i
uℓv⟩E + ⟨

∑c
i=1 k

i
vℓu⟩E

– L̃w := ⟨K ′
uℓv⟩E + L′

uℓv + ⟨∆′
d

∑c
i=1 k

i
uℓv⟩E + ⟨∆′

d

∑c
i=1 k

i
vℓu⟩E mod p− 1

– ℓw := [ℓ̃w mod B]
– Lw := MRH

E (mpk′d, ℓ̃w, L̃w, γ, shiftw, B)
– Set the outgoing wire label to (ℓw, Lw).

Output. For all output wire o ∈ O(C), set zo := ℓo + ko mod B. Output z := (zo)o∈O(C).

Algorithm 2: Evaluation Algorithm of the Modular Arithmetic Garbling Scheme over ZB with Rate
Θ(logB/λ) from Power DDH.

4.5 Proof of Theorem 18

We provide a complete proof of correctness and security of our modular garbling scheme below.

Correctness Fix a circuit C and an input x. For every wire w of C, let xw denote the value carried
by this wire during the computation of C(x). We prove that the following invariant is maintained for
every wire w:

(ℓw, Lw) := (xw − kw mod B,∆d · ℓw −Kw mod p− 1),
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where ℓw ≤ B, and d denote the depth depth(w) of w. Note that in particular, this implies that
zo = ℓo+ko = xo mod B for every output wire o ∈ O(C), hence correctness is satisfied if the invariant
is maintained. Fix the input labels (ℓi, Li)i∈I(C) := InputLabels(1λ, C,∆1, K̂, x), which satisfy the
invariant by definition.

Addition/Subtraction Gate γ = (u, v, w) with incoming wires at depth du, dv with keys
(ku,Ku), (kv,Kv) and labels (ℓu, Lu), (ℓv, Lv). Assume that the invariant is maintained for u, v
and set d := max(du, dv) + 1.
For wire u. ⟨∆′

dℓu⟩G + ⟨∆′
dℓu⟩E = ∆′

dℓu mod p− 1 ▶ by correctness of VtOH

For wire v. ⟨∆′
dℓv⟩G + ⟨∆′

dℓv⟩E = ∆′
dℓv mod p− 1 ▶ by correctness of VtOH

For wire w.
– ℓw = ℓu ± ℓv mod B
– K̃w + L̃w = (⟨∆′

dℓu⟩G + ⟨∆′
dℓu⟩E)± (⟨∆′

dℓv⟩G + ⟨∆′
dℓv⟩E) = ∆′

d · (ℓu + ℓv) mod p− 1

– Kw + Lw = ∆′
d · [ℓu + ℓv mod B] = ∆′

dℓw mod p− 1 ▶ by correctness of MRH

Multiplication Gate γ = (u, v, w) with incoming wires at depth du, dv with keys (ku,Ku), (kv,Kv)
and labels (ℓu, Lu), (ℓv, Lv). Assume that the invariant is maintained for u, v and set d :=
max(du, dv) + 1.
For wire u.

•
∑c

i=1⟨kiuℓv⟩G + ⟨
∑c

i=1 k
i
uℓv⟩E =

∑c
i=1 k

i
uℓv (over Z) ▶ by correctness of LVtOH′

•
∑c

i=1⟨∆′
dk

i
uℓv⟩G + ⟨∆′

d

∑c
i=1 k

i
uℓv⟩E = ∆′

d

∑c
i=1 k

i
uℓv mod p − 1 ▶ by correctness of

VtOH

– K ′
u + L′

u = ∆′
dℓu mod p− 1 ▶ by correctness of VtOH

– ⟨K ′
uℓv⟩G + ⟨K ′

uℓv⟩E = K ′
uℓv mod p− 1 ▶ by correctness of VtOH

For wire v.
–
∑c

i=1⟨kivℓu⟩G + ⟨
∑c

i=1 k
i
vℓu⟩E =

∑c
i=1 k

i
vℓu (over Z) ▶ by correctness of LVtOH′

–
∑c

i=1⟨∆′
dk

i
vℓu⟩G + ⟨∆′

d

∑c
i=1 k

i
vℓu⟩E = ∆′

d

∑c
i=1 k

i
vℓu mod p− 1 ▶ by correctness of VtOH

For wire w.

k̃w + ℓ̃w =

(
c∑

i=1

kiu

)
·

(
c∑

i=1

kiv

)
+

t∑
i=1

k̃iw + ⟨
c∑

i=1

kiuℓv⟩E + ⟨
c∑

i=1

kivℓu⟩E + ℓuℓv

=

(
c∑

i=1

kiu

)
·

(
c∑

i=1

kiv

)
+

t∑
i=1

(kiuℓv + kivℓu) + ℓuℓv

=

(
c∑

i=1

kiu + ℓu

)
·

(
c∑

i=1

kiv + ℓv

)

=⇒ kw + ℓw =

(
c∑

i=1

kiu + ℓu

)
·

(
c∑

i=1

kiv + ℓv

)
mod B

= (ku + ℓu) · (kv + ℓv) mod B ▶ the kiu, k
i
v are shares of ku, kv over ZB

= xu · xv mod B ▶ by the invariants for u, v

K̃w + L̃w = (⟨K ′
uℓv⟩G + ⟨K ′

uℓv⟩E)−∆′
d ·

c∑
i=1

k̃iw + Luℓv +

c∑
i=1

K̃i
w

+ ⟨∆′
d

c∑
i=1

kiuℓv⟩E + ⟨∆′
d

c∑
i=1

kivℓu⟩E mod p− 1

= K ′
uℓv −∆′

d ·
c∑

i=1

k̃iw + L′
uℓv +∆′

d ·

(
c∑

i=1

k̃iw + ⟨
c∑

i=1

kiuℓv⟩E + ⟨
c∑

i=1

kivℓu⟩E

)
mod p− 1

= (K ′
u + L′

u)ℓv +∆′
d ·

(
⟨

c∑
i=1

kiuℓv⟩E + ⟨
c∑

i=1

kivℓu⟩E

)
mod p− 1

= ∆′
d · ℓuℓv +∆′

d ·

(
⟨

c∑
i=1

kiuℓv⟩E + ⟨
c∑

i=1

kivℓu⟩E

)
= ∆′

d · ℓ̃w mod p− 1

=⇒ Kw + Lw = ∆′
d · [ℓ̃w mod B] ▶ by correctness of MRH
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To conclude the proof of correctness, it remains to verify that, when using the MRH procedure on
shares of ∆′

d · (ℓ̃w) over Zp−1, the value ℓ̃w is bounded by B′ = B2 + λ · c ·B3 (in absolute value):

– For addition/substraction gates, ℓ̃w = ℓu + ℓv ≤ 2B < B′

– For multiplication gates, ℓ̃w = ℓuℓv +
∑c

i=1 ℓ̃
i
w, where ℓ̃iw = ⟨kiuℓv⟩E + ⟨kivℓu⟩E.

As shown in Section 4.3, the outputs of LVtOH′

E have absolute value at most λ ·B3/2, hence |⟨kiuℓv⟩E+
⟨kivℓu⟩E| ≤ λ · B3, and therefore |ℓ̃w| ≤ B2 + c · λ · B3 = B′. Eventually, the bound ℓw ≤ B is trivial
as ℓw := [ℓ̃w mod B]. This concludes the proof of correctness.

Security We represent on Algorithm 3 a simulator Sim that, on input (1λ, C, z), outputs a simulated
garbled circuit Ĉ together with simulated input labels L̂ = (ℓi, Li)i∈I(C).

Algorithm Modular Garbling from Power-DDH: Sim(1λ, C, z)

Parameters. Let (G, p, g,G) := GrpGen∗(1λ). Let c = c(λ) denote an arbitrarily slowly growing
functions c = ω(1), and set B′ := B2 + c · λ · B3. Set t ← (2c + 1) · s. Let H : G → Zp

and H′ : G → [λ · B] denote TCR hash functions for exponential correlations over G. Let
F = (F.Setup∗,F.KeyGen∗,F.Eval,F.Punct∗,F.PEval) denote the modified PPRF of Section 3.4.

Initialization. For d = 1 to D,
– sample (mpkd,mskd)←$ F.Setup(1λ, B). Parse mskd := (mpkd, ∆d, g0,d).
– Sample (mpk′d,msk′d)←$ F.Setup(1λ, B′). Parse msk′d := (mpk′d, ∆

′
d, g

′
0,d).

Simulated Input labels. For each input wire i, sample (ℓi, Li)←$ ZB × Zp−1.
Addition/Subtraction Gate γ = (u, v, w). Given the incoming wires u and v with simulated

labels (ℓu, Lu), (ℓv, Lv) and depth du, dv respectively, set d := max(du, dv) + 1.
For wire u. Set shiftu ←$ Zp−1 and ⟨∆′

dℓu⟩E := VtOH
E (mpkdu

, ℓu, Lu, γ||u, shiftu).
For wire v. Set shiftv ←$ Zp−1 and ⟨∆′

dℓv⟩G := VtOH
E (mpkdv

, ℓv, Lv, γ||v, shiftv).
For wire w.

– ℓ̃w := ℓu ± ℓv
– ℓw := [ℓ̃w mod B]
– L̃w := ⟨∆′

dℓu⟩E ± ⟨∆′
dℓv⟩E mod p− 1

– Sample shiftw ←$ Zp−1 and set Lw := MRH
E (mpk′d, ℓ̃w, L̃w, γ, shiftw, B)

– Set the simulated outgoing wire label to (ℓw, Lw) and the simulated garbled gate to

Ĉγ := (shiftu, shiftv, shiftw).

Multiplication Gate γ = (u, v, w). Given the incoming wires u and v with simulated label
(ℓu, Lu), (ℓv, Lv) and depth du, dv respectively, set d := max(du, dv) + 1.
For wire u. For i = 1 to c,

• pskiu := F.Punct∗(mpkdv
, Lv)

• Sample σu
i ←$ Ber(1/λ).

• If σu
i = 1, kiu ←$ ZB , leakyshift

i
u ←$ SimLShiftH

′
(mpkdv

, pskiu, k
i
u, ℓv, γ||u||i).

• Else, leakyshiftiu ←$ SimShiftH
′
(mpkdv

, pskiu, ℓv, γ||u||i)
• ⟨kiuℓv⟩E := LVtOH′

E (mpkdv
, ℓv, Lv, γ||u||i, leakyshiftiu)

• Sample shiftiu ←$ Zp−1

• ⟨∆′
dk

i
uℓv⟩E := VtOH

E (mpkdv
, ℓv, Lv, γ||u||i, shiftiu)

– Sample (shiftu, shift
′
u)←$ Zp−1 × Zp−1

– L′
u := VtOH

E (mpkdu
, ℓu, Lu, γ||u, shiftu).

– ⟨K ′
uℓv⟩E := VtOH

E (mpkdv
, ℓv, Lv, γ, shift

′
u)

For wire v. For i = 1 to c,
– pskiv := F.Punct∗(mpkdu

, Lu)
– Sample σv

i ←$ Ber(1/λ).

– If σv
i = 1, set kiv ←$ ZB and leakyshiftiv ←$ SimLShiftH

′
(mpkdu

, pskiv, k
i
v, ℓu, γ||v||i).

– Else, leakyshiftiv ←$ SimShiftH
′
(mpkdu

, pskiv, ℓu, γ||v||i)
– ⟨kivℓu⟩E := LVtOH′

E (mpkdu
, ℓu, Lu, γ||v||i, leakyshiftiv)
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– Sample shiftiv ←$ Zp−1

– ⟨∆′
dk

i
vℓu⟩E := VtOH

E (mpkdu
, ℓu, Lu, γ||v||i, shiftiv)

For wire w. For i = 1 to c,
• ℓ̃iw := ⟨kiuℓv⟩E + ⟨kivℓu⟩E
• L̃i

w := ⟨∆′
dk

i
uℓv⟩E + ⟨∆′

dk
i
vℓu⟩E mod p− 1

– ℓ̃w := ℓuℓv +
∑c

i=1 ℓ̃
i
w

– Sample shiftw ←$ Zp−1

– L̃w := ⟨K ′
uℓv⟩E + L′

uℓv +
∑c

i=1 L̃
i
w mod p− 1

– ℓw := [ℓ̃w mod B]
– Lw := MRH

E (mpk′d, ℓ̃w, L̃w, γ, shiftw, B)
– Set the simulated outgoing wire label to (ℓw, Lw) and the simulated garbled gate to

Ĉγ := (

c∑
i=1

(leakyshiftiu, leakyshift
i
v, shift

i
u, shift

i
v), shiftu, shift

′
u, shiftw).

Output. Given the output string z = (zo)o∈O(C), set ko := zo − ℓo mod B and output

L̂ = (ℓi, Li)i∈I(C) Ĉ =
(
(mpkd,mpk′d)d≤D, (Ĉγ)γ∈Γ (C), (ko)o∈O(C)

)
.

Algorithm 3: Simulator of the Modular Arithmetic Garbling Scheme over ZB with Rate ω(logB/λ)
from Power DDH.

Lemma 21. For all sequences of polynomial-size ZB-arithmetic circuits {Cλ}λ∈N, and every sequence
of inputs (xλ)λ∈N with |xλ| = |I(Cλ)|, the following holds:{
Sim(1λ, Cλ, z) : z ← Cλ(x)

}
≈c

{
((ℓi, Li)i∈I(Cλ), Ĉ) :

(∆1, K̂, Ĉ)←$ Garble(1λ, C)

(ℓi, Li)i∈I(Cλ) := InputLabels(1λ, Cλ, ∆1, K̂, x)

}
Proof. The proof proceed through a sequence of game hops. Fix a security parameter 1λ, a circuit
C = Cλ, and an input x = xλ. We let Game0 denote the real game:

Game0: the simulator Sim receives as input (1λ, C, x), computes (∆1, K̂, Ĉ) ←$ Garble(1λ, C) and
(ℓi, Li)i∈I(C) := InputLabels(1λ, C,∆1, K̂, x). Sim outputs ((ℓi, Li)i∈I(C), Ĉ).

In the following sequence of games, the simulator initially knows the wire values (xw)w∈W (C) for all
incoming wires of all gates and the corresponding incoming wire keys (kw,Kw)w∈W (C). The proof
proceeds by letting the simulator forget, in a level-by-level fashion, the incoming wire values xw and
corresponding wire keys (kw,Kw) for gates at a given level, and construct instead simulated labels
(ℓw, Lw).

Gamed: at the start of this game, Sim knows the wire values xw for all wires w at depth depth(w) ≥ d.
It performs the following steps:

Initialization. For d = 1 to D,
– sample (mpkd,mskd)←$ F.Setup(1λ, B). Parse mskd := (mpkd, ∆d, g0,d).
– Sample (mpk′d,msk′d)←$ F.Setup(1λ, B′). Parse msk′d := (mpk′d, ∆

′
d, g

′
0,d).

Simulated Input labels. For each input wire i, sample (ℓi, Li)←$ ZB × Zp−1.

During the simulation of Ĉ, Sim constructs simulated labels (ℓw, Lw) for every wire w at depth
depth(w) < d, and simulated wire keys (kw,Kw) for every wire w at depth depth(w) ≥ d. We cover
each of the two cases below.

Case 1: For every gate γ with outgoing wire w at depth depth(w) ≤ d. Given the incoming
wires u and v with simulated label (ℓu, Lu), (ℓv, Lv) and depth du, dv < d respectively, run the gate
garbling algorithm of Algorithm 3 to obtain the simulated outgoing wire label (ℓw, Lw) and the
simulated garbled gate Ĉγ . If depth(w) = d, set (kw,Kw) := (xw − ℓw mod B,∆dℓw −Lw mod p− 1).

Case 2: For every gate γ with outgoing wire w at depth depth(z) > d.
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Case 2.1: du, dv ≥ d. Run the gate garbling algorithm of Algorithm 1 with incoming wire keys
(ku,Ku) and (kv,Kv) to obtain the outgoing wire key (kw,Kw) and the garbled gate Ĉ.

Case 2.2: du < d, dv = dw − 1 ≥ d. Given the simulated labels (ℓu, Lu) for the incoming wire u and
the wire key (kv,Kv) for the incoming wire v, set (ℓv, Lv) := (xv−kv mod B,∆dv

xv−Kv mod p−
1).

We provide below the detailed procedure for case 2.2. We use red and blue to denote variants of the
procedure that will be used in later games hops. The procedure of case 2.2 corresponds to variant 1,
where the parts in blue are ignored.

Addition/Subtraction Gate γ = (u, v, w).
For wire u. Simulated procedure for incoming wires

– Set shiftu ←$ Zp−1 and ⟨∆′
dℓu⟩E := VtOH

E (mpkdu
, ℓu, Lu, γ||u, shiftu).

For wire v. Garbler procedure for incoming wires
– (shiftv, ⟨∆′

dw
ℓv⟩G) := VtOH

G(mskdv
, ∆′

dw
,Kv, γ||v)

– ⟨∆′
dw

ℓv⟩E := ∆′
dw

ℓv − ⟨∆′
dw

ℓv⟩G mod p− 1
For wire w. Hybrid procedure for outgoing wires

– ℓ̃w := ℓu ± ℓv
– ℓw := [ℓ̃w mod B]
– L̃w := ⟨∆′

dℓu⟩E ± ⟨∆′
dℓv⟩E mod p− 1

– K̃w := ∆′
dw
· (ℓu ± ℓv)− L̃w mod p− 1

– (shiftw,Kw) := MRH
G(msk′dw

, ∆dw , K̃w, γ, B)
– Set the outgoing wire key to (xw − ℓw mod B,Kw) and the simulated garbled gate to

Ĉγ := (shiftu, shiftv, shiftw).

Multiplication Gate γ = (u, v, w).
For wire u. Simulated procedure for incoming wires (version 1, version 2)

– Sample c uniformly random shares (kiu)i≤c of ku over ZB .
– For i = 1 to c,
• pskiu := F.Punct∗(mpkdv

, Lv)
• Sample σu

i ←$ Ber(1/λ).

• If σu
i = 1, set kiu ←$ ZB and leakyshiftiu ←$ SimLShiftH

′
(mpkdv

, pskiu, k
i
u, ℓv, γ||u||i).

• Else, leakyshiftiu ←$ SimShiftH
′
(mpkdv

, pskiu, ℓv, γ||u||i)
• ⟨kiuℓv⟩E := LVtOH′

E (mpkdv
, ℓv, Lv, γ||u||i, leakyshiftiu)

• Sample shiftiu ←$ Zp−1

• ⟨∆′
dw

kiuℓv⟩E := VtOH
E (mpkdv

, ℓv, Lv, γ||u||i, shiftiu)
• Sample (shiftu, shift

′
u)←$ Zp−1 × Zp−1

• L′
u := VtOH

E (mpkdu
, ℓu, Lu, γ||u, shiftu)

• ⟨K ′
uℓv⟩E) := VtOH

E (mpkdv
, ℓv, Lv, γ, shift

′
u)

For wire v. Garbler procedure for incoming wires
For i = 1 to c,

– (leakyshiftiv, ⟨kivℓu⟩G) := LVtOH′

G (mskdu
, kiv,Ku, γ||v||i)

– ⟨kivℓu⟩E := kivℓu − ⟨kivℓu⟩G
– (shiftiv, ⟨∆′

dw
kivℓu⟩G) := VtOH

G(mskdu
, ∆′

dk
i
v,Ku, γ||v||i)

– ⟨∆′
dw

kivℓu⟩E := ∆′
dw

kivℓu − ⟨∆′
dw

kivℓu⟩G mod p− 1
For wire w. Hybrid procedure for outgoing wires
For i = 1 to c,

• ℓ̃iw := ⟨kiuℓv⟩E + ⟨kivℓu⟩E
• L̃i

w := ⟨∆′
dw

kiuℓv⟩E + ⟨∆′
dw

kivℓu⟩E mod p− 1

– ℓ̃w := ℓuℓv +
∑c

i=1 ℓ̃
i
w

– ℓw := [ℓ̃w mod B]
– ⟨Kuℓv⟩E := Kuℓv − ⟨Kuℓv⟩G mod p− 1
– L̃w := ⟨K ′

uℓv⟩E + L′
uℓv +

∑c
i=1 L̃

i
w mod p− 1

– K̃w := ∆′
dw
· ℓ̃w − L̃w mod p− 1

– (shiftw,Kw) := MRH
G(msk′dw

, ∆′
dw

, K̃w, γ, B)
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– Set the outgoing wire key to (xw − ℓw mod B,Kw) and the simulated garbled gate to

Ĉγ := (

c∑
i=1

(leakyshiftiu, leakyshift
i
v, shift

i
u, shift

i
v), shiftu, shift

′
u, shiftw).

Gamed.1. In this game, we modify the simulation of the gate garbling procedure. The aim of the
sequence of games starting at Gamed.1 is to allow Sim to forget all values xw on wires at depth
depth(w) = d.

For every gate γ with outgoing wire w at depth depth(w) ≤ d. Sim behaves as in Gamed,
except that if depth(w) = d, it does not reconstruct (kw,Kw) anymore (and instead simply stores w’s
wire label (ℓw, Lw).

For every gate γ with outgoing wire w at depth depth(w) > d.

Case du ̸= d and dv ̸= d. Sim behaves exactly as in Gamed.
Case du = d or dv = d.

– For a ∈ {u, v}, if da ≤ d, denoting b the other incoming wire, run the version 2 of the simulated
procedure for incoming wires for wire b and gate γ. Else, run the garbler procedure for incoming
wires for wire b and gate γ. Note that this differs from Game2 only when da = d.

– As in Gamed, run the hybrid procedure for outgoing wires for the gate γ.

Claim. Under the t-instance joint security of VtOH, LVtOH′
(Definition 17), Gamed and Gamed.1

are indistinguishable.

Proof. The only difference betweenGamed andGamed.1 is that for all wires w at depth depth(w) = d
(incoming to a gate γ), Gamed.1 uses the simulated procedure for incoming wires to γ, while Gamed
uses the garbled procedure for incoming wires to γ. The reduction to the t-instance joint security

of VtOH, LVtOH′
is done by replacing the procedure for a depth-d incoming wire v to a gate γ (with

other incoming wire u and outgoing wire w) with

– One call (VtO, ∆′
dw

, ℓu, Lu) to the experiment ExpBothVtOH,H′
(1λ, B, salt) (where the salts

salt := (γ, γ||a, γ||a||i)γ∈Γ (C),a∈W (C),i≤c are all pairwise-distinct by construction) if γ is an addi-
tion/substraction gate;

– c calls (LVtO, kiu, ℓv, Lv), c calls (VtO, ∆′
dk

i
u, ℓv, Lv), and one call (VtO,Ku, ℓv, Lv) to

ExpBothVtOH,H′
(1λ, B, salt) if γ is a multiplication gate.

The total number of calls is at most (2c + 1) for each wire, and there can be at most s wire
at any given level, hence the total number of calls is at most (2c + 1)s = t. Answering the

queries as in ExpBothVtOH,H′

1 (1λ, B, salt) yields exactly Gamed.1. Answering the queries as in

ExpBothVtOH,H′

0 (1λ, B, salt) yields Gamed, up to one minor difference: the answers ⟨vGvE⟩E of

ExpBothVtO0 are computed as ⟨vGvE⟩E := LVtOH′

E (mpk, vE, ⟨∆vE⟩E, salti, shift), while they are com-
puted as vGvE − ⟨vGvE⟩G ( mod B if it is a VtO query, over Z otherwise) in Gamed. However, by
perfect correctness of VtO and LVtO, this is perfectly equivalent to ExpBothVtO0. This concludes the
proof. ■

Gamed.2. This game is identical to Gamed.1, except that we use version 1 in the simulated procedure
for an incoming wire to a multiplication gate.

Claim. The advantage of any adversary in distinguishing Gamed.1 from Gamed.2 is at most s/λc =
negl(λ).

Proof. The only difference between Gamed.1 and Gamed.2 lies in how the shares kiu are sampled:
in version 2, the kiu are random (c − 1)-out-of-c shares of ku, while in version 1, the kiu are sampled
independently. Observe that whenever σu

i = 0, the share kiu is not use by the procedure, and therefore,
the two versions become perfectly indistinguishable: the view of a distinguisher between both games
differs if and only if, for some incoming wire u, all the bits (σu

i )i≤c are equal to 1. As the σu
i are

independent Bernoulli samples equal to 1 with probability 1/λ, this happens with probability 1/λc,
and we conclude with a union bound over all gates. ■
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Gamed.3. In this game, we modify the procedure for all gates where both incoming wires use the
simulated procedure, but the outgoing wire uses the hybrid procedure. Instead, we let all such outgoing
wires w use the simulated procedure for outgoing wires of Algorithm 3.

Claim. Under the t-instance security of MRH (Definition 14), Gamed.2 and Gamed.3 are indistin-
guishable.

Proof. The claim is proven via a direct reduction to the ExpMRH(1λ, B′, B, salt) security game,
with salt = (γ)γ∈Γ (C): the procedure for an outgoing wire w is replaced by a call (∆′

dw
, ℓ̃w, L̃w)

to ExpMRH(1λ, B′, B, salt). Answering the queries as in ExpMRH,H′

1 (1λ, B′, B, salt) yields exactly

Gamed.3, and answering as in ExpMRH,H′

0 (1λ, B′, B, salt) yields exactly Gamed.2 using the perfect
correctness of MR. ■

We now finish the proof of Lemma 21. First, observe that Gamed.3 is exactly Gamed+1. Second,
GameD is exactly the simulator of Algorithm 3 (and the wire values xw for all wires w at depth
depth(w) ≥ D are the output wire values z = (zo)O(C), which are passed as input to Sim). This
concludes the proof. ■
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A Continued Preliminaries

Notation. Throughout this paper, we let G denote the garbler, and E denote the evaluator. We use
the notation ⟨x⟩ for additive (or subtractive) shares of x. Since this sharing is frequently between
a garbler and an evaluator, we will use ⟨x⟩G to denote the garbler’s share of x and ⟨x⟩E to denote
the evaluator’s share of x. Given an integer B, we denote by [B] the set {0, · · · , B}, by [±B] the set
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{−B,−B + 1, · · · , 0, · · · , B − 1, B}, and by [B]∗, [±B]∗ the sets sets [B], [±B] without 0. Given an
integer x, we write [x mod B] to denote the integer remainder of the euclidean division of x by B.
Given a distribution D (resp. a set S), we write x ←$ D (resp. x ←$ S) to denote that x is sampled
from D (resp. that x is sampled uniformly over S). Given a parameter p ∈ (0, 1), we let Ber(p) denote
the Bernoulli distribution that outputs 0 with probability 1− p and 1 with probability p.

A.1 Arithmetic Garbled Circuits

We consider a model of arithmetic circuits consisting of addition, subtraction and multiplication gates
with fan-in two. A circuit consists of a series of connected gates that computes some function over
its input domain D. We refer to the size of a circuit, denoted by |C|, as the number of gates in the
circuit.
Our model and definitions are heavily borrowed from [BLLL23] and [MORS24]. In this work we will
be considering two models of circuit computation, defined over different domains. We refer to a valid
input as admissible; the output value of the circuit is defined only over admissible inputs.

Modular Arithmetic Computation. In this model, the domain of the circuit is defined to be the
ring ZN . All input and intermediate computations are carried out over ZN . If C has n input wires,
every input vector x ∈ Zn

N is considered admissible.

Bounded Integer Computation. In this model, the domain of the circuit is defined to be Z and
there exists a bound B = B(λ) ∈ N that bounds the magnitude of circuit wire values. If C has n
input wires, then an input vector x ∈ Zn is considered admissible with respect to bound B if the
inputs, outputs, and every intermediate wire value obtained during the evaluation of C are in the
range [−B,B].

Arithmetic Garbling

Definition 22 (Arithmetic Garbled Circuit, adapted from [MORS24]). Let ZN -modular
arithmetic computation (resp. B-bounded integer computation) be the model of computation. A gar-
bling scheme for a family of circuit classes C = {Cλ}λ∈N∗ for modular arithmetic computation
(resp. B-bounded integer computation) with label space L = L(λ) is a pair of PPT algorithms
AGC = (AGC.Garble,AGC.Eval) with the following syntax and properties:

– Garble(1λ, C): On input a security parameter 1λ and a circuit C ∈ Cλ with n inputs, Garble outputs

n key pairs (ki0, k
i
1)i∈[n] ∈ L and a garbled circuit Ĉ.

– Eval((Li)i∈[n], Ĉ): On input n input labels (Li)i∈[n] ∈ Ln and a garbled circuit Ĉ, Eval outputs a
value y ∈ ZN (resp. y ∈ [B]).

– Correctness. A garbling scheme is correct if there exists a negligible function negl(λ) such that
for all λ ∈ N, every circuit C ∈ Cλ with n inputs, and every x1, . . . , xn ∈ Xn where X is the set
of admissible inputs of C, the following holds:

Pr

[
Eval((Li)i∈[n], Ĉ) =Z C(x1, . . . , xn) :

((ki0, k
i
1)i∈[n], Ĉ)

$←− Garble(1λ, C)
Li ← ki0 · xi + ki1

]
≤ negl(λ)

– Privacy. A garbling scheme is secure if there exists a PPT simulator Sim such that for all
sequences of circuits {Cλ}λ∈N, where Cλ ∈ Cλ with n = n(λ) inputs, and every admissible sequence
of inputs {(x1,λ, . . . , xn,λ}λ∈N, the following holds:

{
Sim(1λ, Cλ, y) : y ← Cλ(x)

}
≈c

{
((Li)i∈[n], Ĉ) : ((k

i
0, k

i
1)i∈[n], Ĉ)

$←− Garble(1λ, C)
Li ← ki0 · xi + ki1

}
Definition 23 (Rate of Arithmetic Garbled Circuit, adapted from [MORS24]). Let C be
a class of arithmetic circuits, let AGC be an arithmetic garbling scheme for C with ZN -modular
arithmetic computation (resp. B-bounded computation), and let ℓ = log(N) (resp. ℓ = log(2B + 1)).
The rate of AGC for C is the quantity

rate = lim inf
C∈C

min
x

(|C|+ n)ℓ

|Ĉ|+
∑

i size(k
i
0 · xi + ki1)

where the minimum is taken over admissible inputs to the circuit C, and the limit infimum is taken
over all circuits in C.
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B Homomorphic Secret Sharing

We start by recalling the standard definition of homomorphic secret sharing, as well as of Restricted
Multiplication Straight-line (RMS) programs which is the common model of computation in the
context of HSS. Our definitions have been taken from [CMPR23].

Definition 24 (Homomorphic Secret Sharing). Let λ be a security parameter. A Homomorphic
Secret Sharing (HSS) scheme for a class of programs P which is defined over a ring R and has input
space I ⊆ R consists of three PPT algorithms (Setup, Input,Eval) such that:

• Setup(1λ) → (pk, (ek0, ek1)): On input the security parameter λ, the setup algorithm outputs a
public key pk and a pair of evaluation keys (ek0, ek1).

• Input(pk, x) → (I0, I1): On input the public key pk and an input x ∈ I, the input algorithm
outputs a pair of input information (I0, I1).

• Eval(σ, ekσ, Iσ = (I
(1)
σ , . . . , I

(ρ)
σ ), P ) → yσ: On input a party index σ ∈ {0, 1}, an evaluation key

ekσ, a vector of ρ input values (I
(1)
σ , . . . , I

(ρ)
σ ), and a program P ∈ P, the evaluation algorithm

outputs the party σ’s corresponding share of the output yσ.

We require scheme to satisfy the following two properties:

• Correctness. For any security parameter λ ∈ N, and any program P ∈ P with input space
I ⊆ R, we have:

Pr
[
y0 − y1 = P (x(1), . . . , x(ρ))

]
≥ 1− negl(λ) ,

where the probability is taken over (pk, (ek0, ek1)) ← Setup(1λ), (I
(i)
0 , I

(i)
1 ) ← Input(pk, x(i)) for

i ∈ [ρ], and yσ ← Eval(σ, ekσ, (I
(1)
σ , . . . , I

(ρ)
σ ), P ), for σ ∈ {0, 1}.

• Security. For any PPT adversaries A,A′, and any bit σ ∈ {0, 1} the following value should be
negligible in λ: ∣∣∣∣∣∣∣∣∣∣

Pr

b′ = b :

(x0, x1, state)← A(1λ)
(pk, (ek0, ek1))← Setup(1λ)

b
$←− {0, 1}

(I0, I1)← Input(xb)
b′ ← A′ (state, pk, ekσ, Iσ)

− 1

2

∣∣∣∣∣∣∣∣∣∣
.

We now remind the definition of Restricted Multiplication Straight-line (RMS) programs. RMS pro-
grams form a class of programs which encompasses polynomial-size branching programs and therefore
NC1 circuits. In an RMS program, the multiplication is restricted to happen between an input value
and an intermediate value of the computation (so-called “memory” value).

Definition 25 (RMS Programs). An RMS program with magnitude bound B is defined as a
sequence of the instructions as follows:

- ConvertInput(Ix)→ Mx: Loads an input x into memory.
- Add(Mx,My)→ Mx+y: Adds two memory values.
- Mul(Ix,My) → Mx·y: Multiplies an input value and a memory value to produce a memory value
of their product.

- Output(Mx, n)→ x mod n: Outputs a memory value with respect to a modulus n < B.

B.1 Template for RMS Programs

We now outline a template construction for HSS in the context of RMS programs, adapted from
Section 4 of [CMPR23].

Definition 26 (HSS Following the RMS Template). A homomorphic secret sharing scheme
HSS = (Setup, Input, MemGen, Eval) following the RMS template is scheme as defined in Definition 24
with an additional algorithm MemGen which serves to produce memory values as follows:

• MemGen(σ, ekσ, x)→ Mσ: On input a party index σ ∈ {0, 1}, an evaluation key ekσ, and an input
x ∈ I, the memory generator algorithm outputs a memory value Mσ.
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Moreover, the Eval algorithm proceeds with sub-routines following the RMS operations ConvertInput,
Add, Mul, Output as follows:

• Eval(σ, ekσ, (I
(1)
σ , . . . , I

(ρ)
σ ), P ) → yσ: On input a party index σ ∈ {0, 1}, an evaluation key ekσ,

a vector of ρ input values (I
(1)
σ , . . . , I

(ρ)
σ ), and an RMS program P , this algorithm follows the

instructions of P and processes them as follows:
• ConvertInput(σ, ekσ, I

x
σ)→ Mx

σ: This algorithm simply uses the MemGen and Mult algorithms
as follows:
- Run MemGen(σ, ekσ, 1)→ M1

σ.
- Run Mult(σ, ekσ, I

x
σ,M

1
σ)→ Mx

σ.
• Add(σ, ekσ,M

x,My)→ Mx+y: This algorithm directly adds the given memory values of x and
y. Namely, Mx+y

σ = Mx
σ +My

σ.
• Mul(σ, ekσ, I

x,My)→ Mx·y: It multiplies an input value Ix and a memory valueMy and outputs
a memory value of x · y. The template does not impose any non-black box requirement on
this algorithm.
• Output(σ,Mx, n)→ x mod n: It uses Mx to output xσ mod n.

Correctness and security properties are defined as in Definition 24.

Any HSS following the RMS template as defined above satisfies the following lemma, which states
that one can evaluate share of z ·P (x(1), . . . , x(ρ)) using only a memory value of z (instead of an input
value) together with the input values of the rest of variables (x(1), . . . , x(ρ)). This property is key to
our garbling scheme, as it allows non-interactive evaluations of pseudorandomly generated shares.

Lemma 27. Let HSS = (Setup, Input,MemGen,Eval) be scheme following the RMS template. There
exists an extended evaluation algorithm ExtEval:

• ExtEval(σ, ekσ,Mσ, (I
(1)
σ , . . . , I

(ρ)
σ ), P ) → yσ: On input a party index σ ∈ {0, 1}, an evaluation key

ekσ, a single memory value Mσ, a vector of ρ input values (I
(1)
σ , . . . , I

(ρ)
σ ), and an RMS program

P , return a value yσ such that the following holds.

For any security parameter λ ∈ N and any RMS program P , we have:

Pr
[
y0 − y1 = z · P (x(1), . . . , x(ρ))

]
≥ 1− negl(λ) , (3)

where the probability over (pk, (ek0, ek1)) ← Setup(1λ), (I
(i)
0 , I

(i)
1 ) ← Input(pk, x(i)), Mσ ←

MemGen(σ, ekσ, z), and yσ ← ExtEval(σ, ekσ,Mσ, (I
(1)
σ , . . . , I

(ρ)
σ ), P ), for σ ∈ {0, 1}, i ∈ [ρ].

The proof of the above lemma is detailed in the supplementary material in Section B of [CMPR23].
In the HSS scheme from Paillier-ElGamal, the Input(pk, x(i)) is a ciphertext of x(i).

B.2 HSS based on Paillier-ElGamal

In this work, we will be working heavily with the Paillier-ElGamal Cryptosystem ([CS02], [BCP03]),
which is essentially the ElGamal cryptosystem over the group (Z/N2Z)×. We borrow the description
of Paillier-ElGamal from Appendix B of [OSY21]. We will be working with a mild variant of Paillier-
ElGamal (2) with the only semantic difference that the secret key is sampled from [22λ] instead of
[N2]; the rest of the description is identical to that of [OSY21]. The security of this cryptosystem can
be easily proven based on the DCR and SEI assumptions.

Definition 28 (S-bounded Short Exponent Indistinguishability Assumption). Let p and q
be primes of fixed length n(λ) where n is some polynomial function of λ and let N = pq be a Blum
Integer. Consider a group G of unknown order Nϕ(N) with generator g. Let S < N2 be an integer.
The S-bounded Short Exponent Indistinguishability (SEI) assumption holds if for all PPT A,∣∣∣Pr [z $←− [0, S − 1] : A(gz) = 1

]
− Pr

[
z

$←− [N2] : A(gz) = 1
]∣∣∣ ≤ negl(λ).

In this work, we set S = 22λ.
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Lemma 29 (Paillier-ElGamal Cryptosystem). The Paillier-ElGamal cryptosystem is a CPA-
secure encryption scheme iff the DCR assumption holds.

Lemma 30 (Paillier-ElGamal Cryptosystem with Short Exponent). The construction of 2
is a CPA-secure encryption scheme iff the DCR and the SEI assumptions hold.

Proof. Consider an adversary A which can distingush between short-exponent Paillier-ElGamal ci-
phertexts with noticeable probability. We will show that, assuming the security of ‘regular’ Paillier-
ElGamal, we can construct a distinguisher that can distinguish between elements of Nϕ(N) with
small and large exponent. Our distinguisher works as follows. Given the challenge (g, gx) (where x is
sampled from either [0, S − 1] or [N2]), the distinguisher D publishes pk = gd and sends it to A. In
return, A responds with (m0,m1), and D chooses r

$←− [N2] and responds with (gr, pkr(1+N)m1) as
the challenge ciphertext. If A responds with 0 then D outputs 1, otherwise D outputs 0. Since the
ciphertext always corresponds to a correct ‘left’-encryption of the adversary’s challenge, A outputs

0 with noticeable probability if x
$←− [0, S − 1] and 1 otherwise. Thus, D breaks the small exponent

indistinguishability game, but this contradicts the SEI assumption. ■

Pailler-ElGamal Cryptosytem with Short Exponent

PaillierEG.Gen(1λ)

1 : Sample (N, p, q)← GenPQ(1λ).

2 : Sample a random g′ ← [N2].

3 : Let g = (g′)2N mod N2.

4 : Sample d
$←− [22λ].

5 : return (N, g, pk = gd mod N2, sk = d)

PaillierEG.Enc(pk, x)

1 : Sample r
$←− [N2].

2 : return ct = (gr, pkr(1 +N)x)

PaillierEG.Dec(sk, ct = (ct0, ct1))

1 : Let ct′ = ct1(ct0)
−sk mod N2.

2 : return x = (ct′ − 1)/N.

Fig. 2: The Paillier-ElGamal Cryptosystem with Short Exponent.

C Constant-Rate Arithmetic Garbling over Small Integers

C.1 Technical Overview: Constant-Rate Arithmetic Garbling over Small Integers

The starting point of our scheme is the recent work of [MORS24], which constructs constant-rate
garbling for circuits with B-bounded integer arithmetic from the Decisional Composite Residuosity
Assumption (DCR) using techniques derived from Homomorphic Secret Sharing (HSS). We begin by
recalling the construction of [MORS24].

Homomorphic Secret Sharing Our techniques make heavy use of Homomorphic Secret Sharing
(HSS). Informally, 2-party HSS allows parties to share an input into shares x = (x0, x1) such that
any party Pi can evaluate any arbitrary function f from a class F of admissible functions and obtain
yi = Eval(i, f, xi). The correctness requirement states that y0 + y1 = f(x), and security requires
each share to computationally hide x. HSS is implied by a number of different standard assumptions
in the literature ([BGI16], [OSY21], [CM21]), and a plethora of different constructions are known
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for a variety of circuit classes. In this work, we will be interested in HSS schemes where the Share
algorithm supports a public-key style setup, ie. each party publishes a public key, and consequently,
shared public and evaluation keys can be derived non-interactively. We (very informally) term such
cryptosystems ‘HSS-compatible’.

Arithmetic Garbling from HSS At a high level, the garbling scheme of [MORS24] follows the tem-
plate introduced in Section 2.2, where the scheme utilizes HSS to allow the parties to non-interactively
compute shares of cross terms. In particular, the garbler begins by generating an HSS-compatible key
pair (sk, pk). Then by setting ∆ = sk, the garbler can provide Encpk(sk

−1) as one-time garbling cost,
along with Encpk(⟨x⟩G), Encpk(⟨y⟩G) and Encpk(⟨sk · x⟩G) for each gate as garbling material. Recall
that the distributed discrete log algorithm (DDlog) allows parties to non-interactively compute, using
as input an HSS-compatible encryption of A and a subtractive share of sk · B, sharings of sk · AB;
full details can be found in Section 3.4 of [MORS24]. With this in place, the parties can now do the
following:

1. Run DDlog(Encpk(⟨y⟩G), ⟨sk · x⟩) → ⟨sk · x · ⟨y⟩G⟩, DDlog(Encpk(⟨x⟩G), ⟨y⟩) → ⟨sk · y · ⟨x⟩G⟩, and
DDlog(Encpk(⟨sk · x⟩G), ⟨y⟩)→ ⟨sk · y · ⟨sk · x⟩G⟩.

2. Remove the sk factor in the sharings by running DDlog(Encpk(sk
−1), ⟨sk · x · ⟨y⟩G⟩) → ⟨x · ⟨y⟩G⟩,

DDlog(Encpk(sk
−1), ⟨sk · y · ⟨x⟩G⟩) → ⟨y · ⟨x⟩G⟩, and DDlog(Encpk(sk

−1), ⟨sk · y · ⟨sk · x⟩G⟩) →
⟨y · ⟨sk · x⟩G⟩.

The garbler can then set his share of z to be ⟨x⟩G ·⟨y⟩G−⟨x·⟨y⟩G⟩G−⟨y·⟨x⟩G⟩G and vice-versa. Similarly,
the parties can compute shares of sk ·z, maintaining the invariant. The procedure is continued till the
global output gates have been reached, at which point the garbler can send its (precomputed) shares
of output wires to reconstruct.
The above scheme works assuming the KDM-security of any HSS-compatible encryption scheme.
When instantiated using Damgard-Jurik ([RS21] shows that this scheme is HSS-compatible), the
asymptotic rate of the scheme comes out to be approximately 1/3. [MORS24] also carries a number
of optimizations to obtain a scheme with a rate arbitrarily close to 1, but the bare template remains
the same. We stop and make a note of two observations here, motivated by [MORS24]’s use of the
Damgard-Jurik cryptosystem.

– First, note that the Damgard-Jurik cryptosystem is parametrized by two numbers: a constant
ζ > 2 and an RSA modulus N , setting the plaintext space to be Z/N ζZ and the ciphertext space
to be Z/N ζ+1Z. In particular, to preserve security, the scheme requires the share sizes to scale as
poly(N).

– Secondly, the DDlog algorithm of [RS21] has a probability of failure with large plaintexts, restrict-
ing garbling to B-bounded integers where B ≈ Nζ−1/2κ with a statistical security parameter κ.

Small-Integer Garbling with Paillier-ElGamal Our first contribution is a constant-rate, B-
bounded arithmetic garbling scheme based on the circular security of the Paillier-ElGamal cryp-
tosystem with a short exponent that supports small integers (of size B ≈ 2O(λ)). Our motivation is
simple: an immediate way to overcome the problems inherent to the Damgard-Jurik garbling imple-
mentation is to instantiate HSS-based garbling from a different HSS-compatible encryption scheme.
[OSY21] shows a promising construction of HSS from the Paillier-ElGamal Cryptosystem (Figure 2).
However, simply instantiating the above HSS template using Paillier-ElGamal does not lead to any
improvement in domain size.

– The plaintext space of Paillier-ElGamal is Z/NZ, which is still proportional to the size of the
RSA modulus. Furthermore, this space also needs to be able to contain authenticated shares of
wire values, i.e., ⟨sk · x⟩ for a wire x, where sk is chosen from [N2].

– The ciphertext space is Z/N2Z, which is too large – simply instantiating the scheme above leads
to a far worse rate of 1/6.

With this in mind, we outline a series of techniques that lead to an arithmetic garbling scheme for
integers of size 2O(λ) with rate (close to) 1/2.

Reducing the size of the plaintext space. We can alleviate the first issue by additionally re-
lying on a well-known variant of the Paillier-ElGamal cryptosystem with short exponent. Informally
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speaking, the S-bounded Small Exponent Indistinguishability Assumption (SEI, Definition 28) states
that given a group G and generator g, a PPT adversary cannot distinguish between random ga and

gb where a
$←− [0, S − 1] and b

$←− G. Applying this to the Paillier-ElGamal group of unknown order
Nϕ(N), we can ensure that the encryption scheme remains secure even if sk is bounded above by a
small constant, say 22λ.
While the previous discussion allows us to reduce the size of sk, letting the authenticated share
⟨sk · x⟩ fit into the plaintext space, the underlying problem with the size of the plaintext space being
too large remains. However, we can, at this point, rely on an observation made in previous works
(including [OSY21]) to reduce the bit-length of both shares to size O(λ). The core idea is this: a
single invocation of DDlog returns substractive shares of the output over Z/NZ. If we want to convert
these to shares over the integers, however, then assuming that the output ⟨x⟩ of DDlog is randomly
distributed8, restricting x to be small immediately implies that the shares are already over Z with
high probability. In particular, if x is bounded by N/2κ for some statistical parameter κ, the formed
shares will be over Z with probability except 2κ; if we restrict B to, say, 22λ, this probability is
negligible. Our key observation is that with this in place, both the garbler and the evaluator can
perform a round of modular reduction over 2O(λ) on their shares and still obtain valid (substractive)
shares of x with negligible correctness error. Concretely, if the reduction is performed modulo 23λ,
then the probability of shares being malformed is negligible. Thus, the bitlength of the reduced shares
is ≈ 3λ. Setting this to be B, we obtain B = 23λ, as wished.
Combining the two approaches, our scheme achieves a quantitative reduction of share size (and hence,
B). In practice, this allows us to set B as low as 256 bits, an improvement from the previously known
best value of ≈ 4000 bits.

Choosing garbler shares pseudorandomly. The second problem is harder to solve. It is clear
that in order to achieve a competitive rate, the garbling material cannot consist of ciphertexts. We
make two key observations here: first, HSS allows parties to evaluate more than just a single DDlog
instance; it allows a non-interactive share conversion for any NC1 function of an encrypted input,
and second the garbler’s shares contain no information about the secret (by definition, since they
must be formed before the evaluator receives the garbled circuit) and hence can be defined to be
pseudorandom.
We construct our scheme as follows. Let idx be the label referring to the identity of the wire carrying
the value x; this value is completely independent of x. The garbler can sample a key k for a low-
depth PRF9 and set for any wire idx (which we can colloquially refer to as x) its shares (⟨x⟩G, ⟨sk ·
x⟩G) := PRFk(idx). For convenience, we can view PRFk(w) = (PRF1

k(w),PRF
2
k(w)). As before, parties

maintain the invariant (⟨x⟩, ⟨sk · x⟩) for every wire x. However, note now that addition gates are
no longer free since the garbler’s share of the output of an addition gate z = x ± y is defined to be
PRFk(idz) ̸= PRFk(idx)+PRFk(idy) except with negligible probability. Thus, the garbler sends a fresh
shift

(⟨x⟩G, ⟨sk · x⟩G)± (⟨y⟩G, ⟨sk · y⟩G)− PRFk(idz)

for each z, which the evaluator adds to its share to maintain the invariant.
Now assume the parties encounter a multiplication gate with input wires x and y and output wire
z. The garbler can then provide the evaluator with global ciphertexts Encpk(k) and Encpk(sk · k).
Assume that the chosen PRF has depth O(log(λ)). The key ingredient of our construction is a
procedure introduced in [CMPR23] that lets two parties, given ciphertexts Encpk(A),Encpk(sk · A)
for a PRF key A and a substractive input sharing (⟨B⟩, ⟨sk · B⟩) over Z, use a special form of
HSS (called HSS with simulatable memory shares in [CMPR23]) to compute substractive shares of
(⟨B ·PRFA(c)⟩, ⟨sk ·B ·PRFA(c)⟩) over Z for any c of their choice. We refer the reader to Appendix B.1
for an outline of the method of [CMPR23].
In particular, the parties can use the ciphertexts of k to compute ⟨y ·PRF1

k(idx)⟩, ⟨sk·y ·PRF
2
k(idx)⟩ and

⟨x·PRF1
k(idy)⟩, which are the required cross-terms in Equation (1) and Equation (2), and hence can set

their shares appropriately. However, note that with this in place, there is also another invariant: the
garbler’s share of (z, sk · z) = (x ·y, sk ·x ·y) is necessarily defined to be PRFk(idz). Let (⟨z⟩′G, ⟨sk · z⟩′G)

8 In general, this is non-trivial; however the parties can ensure it to be so by adding, say, a PRG output with
range [N ] to their obtained shares.

9 The construction of such a PRF is known from several standard assumptions, including DDH and DCR.
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be the computed share of the garbler immediately after the HSS evaluation, defined as

⟨z⟩′G := PRF1
k(idx) · PRF

1
k(idy)− ⟨x · PRF

1
k(idy)⟩G − ⟨y · PRF

1
k(idx)⟩G (4)

⟨sk · z⟩′G := PRF2
k(idx) · PRF

2
k(idy)− ⟨sk · x · PRF

1
k(idy)⟩G − ⟨y · PRF

2
k(idx)⟩G (5)

Contrast this with the invariant, which sets the actual share (⟨z⟩G, ⟨sk·z⟩G) := PRFk(idz). To maintain
this, the garbler sends two (plaintext) shifts ⟨z⟩G − ⟨z⟩′G and ⟨sk · z⟩G − ⟨sk · z⟩′G as garbling material
which the evaluator can add to its own shares to adjust them appropriately. The resulting invariant
is shares of (z, sk · z) where the garbler’s share is defined to be PRFk(idz), and the evaluation can
continue.
The per-gate garbling material is the size of two plaintexts, setting the scheme’s rate close to 1/2.
When instantiated with Paillier-ElGamal and the small exponent assumption, the scheme also sup-
ports small integers of size 2O(λ).
We briefly mention the security of the above sketch requires a variant of circular security for the
underlying Paillier-ElGamal cryptosystem, owing to the fact that the evaluator can see an encryption
of the PRF key, which is used to pseudorandomly mask (the garbler’s computed share of) sk · z. A
more involved technical discussion can be found in Appendix C.2.

C.2 Small-Integer Garbling from Circular Security of Paillier-ElGamal with Constant
Rate

HSS Share Reduction with Paillier-ElGamal The starting point of our construction for small-
integer garbling with constant rate is a share reduction mechanism that allows parties to non-
interactively perform homomorphic secret sharing from DCR that supports smaller share sizes. Recall
from the discussion in Appendix C.1 that our techniques heavily rely on homomorphic secret sharing
instantiated with the Paillier-ElGamal Cryptosystem with Small Exponent (henceforth referred to
as simply Paillier-ElGamal). Natively, this form of HSS follows the HSS template for RMS programs
described in Definition 26. In this setting, both parties maintain Memory Shares Mx of any interme-
diary value x required in the computation; these memory shares are of the form Mx := (⟨x⟩, ⟨sk · x⟩)
where the shares are interpreted as subtractive shares over the integers modulo N , where N is the
RSA modulus associated with the Paillier-ElGamal instantiation. A full description of how HSS is
constructed from Paillier-ElGamal can be found in Appendix B of [OSY21].
The key to our construction involves a technique that allows parties to reduce the size of intermediate
memory shares from a subtractive sharing over N to a subtractive sharing over the integers modulo
2O(λ). In this section, we introduce our (slightly modified) DDlog algorithm over reduced shares for
Paillier-ElGamal.
Let (N, g, kDDlogRS) be a CRS where (N, p, q)

$←− GenPQ(1λ), g = (g′)2N mod N2 where g′
$←− [N2],

and kDDlogRS is a randomly sampled (public) PRF key for a pseudorandom function PRFDDlogRS :
{0, 1}λ × {0, 1}id(λ) → [N ]. Let x, y ∈ {0, 1}kλ be integers such that arithmetic is 2(k−1)λ-bounded,
ie. xy does not exceed 2(k−1)λ where k > 1. Assume that (pk, sk) is an honestly generated Paillier-
ElGamal key pair. The DDlogRS algorithm then takes as input a Paillier-ElGamal ciphertext pair
c = Encpk(x), c

′ = Encpk(sk · x) and subtractive memory shares (⟨y⟩, ⟨sk · y⟩) over the integers and
outputs correct subtractive shares (⟨xy⟩, ⟨sk·xy⟩) over [2kλ]×[2(k+2)λ] with overwhelming probability.
Here, we use σ ∈ {0, 1} to denote the party ID.

DDlogRS(N, k, σ, c = (c0, c1), c
′ = (c′0, c

′
1), (⟨y⟩σ, ⟨sk · y⟩σ))

1 : Define (gσ, g
′
σ) := (c

⟨y⟩σ
1 · c−⟨sk·y⟩σ

0 , c
′⟨y⟩σ
1 · c′−⟨sk·y⟩σ

0 )

2 : Compute aσ, a
′
σ < N such that gσ = aσ + a′

σN

3 : Compute bσ, b
′
σ < N such that g′σ = bσ + b′σN

4 : Set zσ := (a′
σa

−1
σ mod N) + PRFDDlogRS(id) mod 2kλ

5 : Set z′σ := (b′σb
−1
σ mod N) + PRFDDlogRS(id

′) mod 2(k+2)λ

6 : return (zσ, z
′
σ)

Lemma 31. The outputs (zσ, z
′
σ) of DDlogRS are correctly obtained subtractive shares of (xy, sk ·xy).
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Proof. We note that the only difference between our algorithm DDlogRS and the multiplication pro-
cedure outlined in Section B.1 of [OSY21] is that we perform a second reduction modulo 2kλ and
2(k+2)λ in Steps 4 and 5. Hence, the shares Aσ := (a′σa

−1
σ mod N)+PRFDDlogRS(id) and Bσ := (b′σb

−1
σ

mod N) + PRFDDlogRS(id
′) are correctly computed substractive shares over [N ]. Furthermore, by the

security of PRFDDlogRS, the shares are also indistinguishable from uniform in ZN . We thus only need to
show that zσ and z′σ are substractive shares over [2kλ] and [2(k+2)λ] respectively. To do this, note that
z1 − z0 ≥ xy so long as z1 ≥ xy. However, this is only possible for xy ≤ 2(k−1)λ possible values of z1,
and since z1 is uniform, it happens with probability 2−λ = negl(λ). Thus, the shares are well-formed
with overwhelming probability in λ. ■

By replacing every instance of input multiplication in the HSS scheme from Paillier-ElGamal in
Section B.1 of [OSY21] with DDlogRS, we immediately obtain an HSS scheme with small shares from
Paillier-ElGamal with small exponent. Since this scheme follows the HSS template for RMS programs
in Definition 26, it can be equipped with the ExtEval algorithm that allows for computation of small
shares of (y · P (x)) for any input share x if (y · P (x)) is 2kλ-bounded.

Remark 32. For our purposes, we will require a slightly modified version of the algorithm that outputs
complete memory shares My·P (x) of (y · P (x)). Henceforth, we assume the output of ExtEval as
defined in Lemma 27 to output a memory value My

σ, where My
0 − My

1 = (z · P (x(1), · · · , x(ρ)), sk ·
z · P (x(1), · · · , x(ρ))) with all but negligible probability. When equipped with DDlogRS, this scheme
outputs reduced memory shares over the integers. Our algorithm ExtEval as used in Appendix C.2
uses this modified ExtEval procedure as an intermediary.

Rate-1/2 Garbling with Pseudorandom Garbler Shares We provide a formal specification
along with proofs of correctness and security of our rate-1/2 garbling scheme below; a high-level
description was covered in Appendix C.1. Our scheme requires a circular-secure variant of Paillier-
ElGamal, which (as far as we know) is not equivalent to any known circular-security assumptions.
Recall from Appendix C.1 that our scheme requires the garbler’s share to be defined pseudorandomly
as PRF(kPRF, idw) for some each wire w. In order to be able to compute shares of the cross terms defined
in Equation (1) and Equation (2) the parties employ the ExtEval procedure to compute shares of the
form (x ·PRF(kPRF, idy)) for each multiplication gate with input wires x and y; these correspond to the
required cross terms since the garbler’s share of y is defined as PRF(kPRF, idy). However, the garbler’s
calculated cross terms, which define its calculated share of xy are different from PRF(kPRF, idxy). In
order to maintain this invariant, the garbler must send a shift (⟨xy⟩G, ⟨sk · xy⟩G) − PRF(kPRF, idxy)
which the evaluator adds to its own share, setting it to be (xy, sk · xy)− PRF(kPRF, idxy).
In order to calculate this value using HSS, the evaluator receives an input share IkPRF corresponding to
the input key. Hence, the evaluator’s view includes two separate ciphertexts: a public-key encryption
of a symmetric key kPRF, and a symmetric key encryption of the secret key sk. This is similar to
the setting of hybrid encryption in the real world, in which parties first use a PKI to establish a
symmetric key and then use that symmetric key for efficient encryption and decryption. While the
security of hybrid encryption can be proved secure in the standard model, the view of the evaluator
in our construction consists of ciphertexts that are key-dependent, which is not covered by standard
security definitions of hybrid encryption. We thus introduce a natural variant of circular security for
the hybrid setting that formally captures the relevant security notion. We term this assumption as
circular security of the hybrid and provide a full specification below.
In the following definition, F and F ′ are function classes corresponding to the functions of the secret
key that are being encrypted by the public-key and symmetric-key encryption scheme respectively.

Definition 33 (F, F ′-Circular Security of (E , E ′)-Hybrid). Let E = (Gen,Enc,Dec) be a public-
key encryption scheme with plaintext spaceM, ciphertext space C and key spaces SK and PK, and let
E ′ = (Gen′,Enc′,Dec′) be a symmetric-key encryption scheme with key space K, plaintext space M′,
and ciphertext space C′. Furthermore, let F ⊆ K × SK → M′ and F ′ ⊆ K × SK → M be function
classes. We say that the (E , E ′)-hybrid is F, F ′-circular secure if for every polynomial time algorithm
A,
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∣∣∣∣∣Pr
[
AOF,k,sk,0,OF ′,k,sk,0(1λ) = 1 :

k
$←− K

(sk, pk)
$←− Gen(1λ)

]
−

Pr

[
AOF,k,sk,1,OF ′,k,sk,1(1λ) = 1 :

k
$←− K

(sk, pk)
$←− Gen(1λ)

]∣∣∣∣∣ ≤ negl(λ)

where OF,k,sk,0, OF,k,sk,1, OF ′,k,sk,0 and OF ′,k,sk,1 are as defined below.

OF,k,sk,0(f)

1 : if f /∈ F, return ⊥

2 : else c
$←− Enc(pk, f(k, sk))

3 : return c

OF,k,sk,1(f)

1 : if f /∈ F, return ⊥

2 : else c
$←− Enc(pk, 0|f(k,sk)|)

3 : return c

OF ′,k,sk,0(f)

1 : if f /∈ F ′, return ⊥

2 : else c
$←− Enc′(k, f(k, sk))

3 : return c

OF ′,k,sk,1(f)

1 : if f /∈ F ′, return ⊥

2 : else c
$←− Enc′(k, 0|f(k,sk)|)

3 : return c

Remark 34. Our security proof will require a relatively strong variant of the above assumption. In
particular, let E be the Paillier-ElGamal Encryption Scheme with Short Exponent, and let E ′ be a
one-time pseudorandom mask for a fixed number of messages defined as {PRFλ(kPRF, idi)⊕mi}i∈poly(λ)

where idi is public, m ∈ {0, 1}(2k+2)λ and kPRF is a uniform secret key; with our parameters, the above
scheme is equivalent to a computational one-time pad encryption of a message of length (n+|C|)(2k+
2). Furthermore, we require F to support only the identity and product functions IK : (k, sk) 7→ k and
× : (k, sk) 7→ k · sk. The function class we require F ′ to support is stronger and is defined recursively
in Figure 3. Note here that our function class F ′ is circuit-dependent, ie. the exact function depends
on the topology of the circuit. In our reduction, we will consider an adversary that is allowed to
make exactly one call to OF ′,k,sk,b(Fprf−mask,C(·, ·, idi)) for each gate i (by the security of our one-
time pseudorandom mask encryption scheme, which breaks if multiple messages are allowed to be
encrypted under the same mask). We note that the function is computable in time poly(λ).

Remark 35. Implicit in our construction below is the fact that each gate of the circuit can have
arbitrary fan-out. Note that our required garbling material per gate is a single plaintext shiftz, which
the evaluator uses to output a memory share Mz

E of the output wire of the gate. By the security of
HSS, this share computationally hides the value of z, and can thus be reused as an input share to
the next ExtEval. The evaluator does not get any additional information about z by reusing the input
share.

Remark 36. While the scheme as described in Protocol 2 does not allow the evaluation of addi-
tive/subtractive gates for free, there is a simple modification that enables this change. Note that
polynomially-many linear combinations of PRF evaluations can be evaluated in parallel and recon-
structed in logarithmic depth, and are hence representable in NC1. Thus, the garbler and the evaluator
can simply perform addition/subtraction on their shares when encountering an additive/subtractive
gate, and the garbler can set the obtained linear combination of PRF values as its share of an input
wire of a multiplicative gate. The evaluator (who knows the topology of the circuit, and thus can de-
termine the precise combination) simply performs an ExtEval with the adjusted program description
accordingly.

With this in mind, we can now give a full description of our scheme.
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The Function Fprf−mask,C

Parameters: Let C be a circuit and k, sk be the symmetric and secret key used in Definition 33 respec-
tively. The inputs to ExtEval are exactly as defined in Protocol 2.

1. For input wires, Fprf−mask,C(k, sk, idz) = 0(2k+2)λ.
2. For an additive/subtractive gate z = x ± y, Fprf−mask,C(k, sk, idz) = −Fprf−mask,C(k, sk, idx) ∓

Fprf−mask,C(k, sk, idy).
3. For a multiplicative gate z = x · y,

Fprf−mask,C(k, sk, idz) = (Fprf−mask,C(k, sk, idz)1, Fprf−mask,C(k, sk, idz)2),

where

Fprf−mask,C(k, sk, idz)1 = Fprf−mask,C(k, sk, idx)1 · Fprf−mask,C(k, sk, idy)1

− ExtEval(1, {kDDlogRS,MG},Mx
G, I

k,PRF1
λ(·, idy))1

− ExtEval(1, {kDDlogRS,MG},My
G, I

k,PRF1
λ(·, idx))1

Fprf−mask,C(k, sk, idz)2 = Fprf−mask,C(k, sk, idx)2 · Fprf−mask,C(k, sk, idy)1

− ExtEval(1, {kDDlogRS,MG},Mx
G, I

k,PRF1
λ(·, idy))2

− ExtEval(1, {kDDlogRS,MG},My
G, I

k,PRF2
λ(·, idx))1

Fig. 3: Function supported by the circular security assumption.

Protocol Small Integer Garbling from Paillier-ElGamal with Small Exponent AGCPaillierEG

Parameters. Let λ be a security parameter and k > 1 be a global parameter. We con-
sider B-bounded arithmetic circuits where B ≤ 2(k−1)λ. We consider a circuit C of size
at most poly(λ) with n inputs, m outputs and s× multiplication gates; we represent the
ith output wire by outi. Let PaillierEG = (PaillierEG.Gen,PaillierEG.Enc,PaillierEG.Dec) be
the Paillier-ElGamal cryptosystem with short exponent defined in Figure 2. Further define
PRFλ : {0, 1}λ×(n+|C|)→ {0, 1}2k+2 to be a family of PRFs of depth at most O(log λ). For con-
venience, we define PRF1

λ : {0, 1}λ×(n+|C|)→ {0, 1}k and PRF2
λ : {0, 1}λ×(n+|C|)→ {0, 1}k+2

as partial outputs of the PRF, ie. PRFλ = (PRF1
λ,PRF

2
λ). Furthermore, note that PRFλ(·, idx)

for fixed x is expressible as an RMS program, since PRF ∈ NC1.

AGCPaillierEG.Garble(1
λ, C):

1. The garbler samples kPRF, kDDlogRS
$←− {0, 1}λ and (N, g, pk, sk)

$←− PaillierEG.Gen(1λ).
2. The garbler sets IkPRF ← (PaillierEG.Enc(pk, kPRF),PaillierEG.Enc(pk, sk · kPRF)) and adds it

to Ĉ.
3. The garbler chooses a subtractive sharing of 1 (⟨1⟩i, ⟨sk⟩i)i∈{E,G} and adds one share ME :=

(⟨1⟩E , ⟨sk⟩E) to Ĉ. Here ME is the evaluator’s memory share of 1 that it uses to perform an
HSS evaluation. The garbler initiates its own HSS with the share MG := (⟨1⟩G, ⟨sk⟩G).

4. For each input wire i and admissible value x, the garbler sets its share as PRFλ(kPRF, idi).
The label associated with x is Li

x ← (x, sk · x) + PRFλ(kPRF, idi).
5. For each internal wire w, the garbler maintains the sharing (⟨w⟩G, ⟨sk · w⟩G). For each gate

in parallel, the garbler can compute:

Addition/Subtraction Gate z = x ± y. The garbler sets its label of wire z to be
PRFλ(kPRF, idz) and adds shiftz := −(⟨x⟩G, ⟨(sk · x)⟩G)∓ (⟨y⟩G, ⟨(sk · y)⟩G)− PRFλ(kPRF, idz)

to Ĉ.
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Multiplication Gate z = x · y. The garbler sets its label of wire z to be PRFλ(kPRF, idz).
It then computes

(⟨x · PRF1
λ(kPRF,idy)⟩G, ⟨sk · x · PRF

1
λ(kPRF, idy)⟩G)

← ExtEval(1, {kDDlogRS,MG},Mx
G, I

kPRF ,PRF1
λ(·, idy))

(⟨y · PRF1
λ(kPRF,idx)⟩G, ⟨sk · y · PRF

1
λ(kPRF, idx)⟩G)

← ExtEval(1, {kDDlogRS,MG},My
G, I

kPRF ,PRF1
λ(·, idx))

(⟨y · PRF2
λ(kPRF,idx)⟩G, ⟨sk · y · PRF

2
λ(kPRF, idx)⟩G)

← ExtEval(1, {kDDlogRS,MG},My
G, I

kPRF ,PRF2
λ(·, idx))

and sets
shiftz := (shift1z, shift

2
z),

where

shift1z = PRF1
λ(kPRF, idx) · PRF

1
λ(kPRF, idy)− ⟨x · PRF

1
λ(kPRF, idy)⟩G

− ⟨y · PRF1
λ(kPRF, idx)⟩G − PRF1

λ(kPRF, idz)

shift2z = PRF2
λ(kPRF, idx) · PRF

1
λ(kPRF, idy)− ⟨sk · x · PRF

1
λ(kPRF, idy)⟩G

− ⟨y · PRF2
λ(kPRF, idx)⟩G − PRF2

λ(kPRF, idz)

and adds shiftz to Ĉ.
6. The garbler outputs ((Li

x)i∈[n], Ĉ = (N, g, kDDlogRS, I
kPRF ,ME , (shifti)i∈C , {⟨outi⟩G}i∈m))

where x is over the set of admissible inputs.

AGCPaillierEG.Eval((Li)i∈[n], Ĉ):

1. The evaluator sets its sharing of input wire wi as (⟨wi⟩E, ⟨sk ·wi⟩E) := Li. It interprets Ĉ as
(N, g, kDDlogRS, I

kPRF ,ME , (shifti)i∈C , {⟨outi⟩G}i∈m)).
2. For each internal wire w, the evaluator maintains the sharing (⟨w⟩E, ⟨sk·w⟩E). It then proceeds

gate-by-gate in topological order:

Addition/Subtraction Gate z = x±y. The evaluator sets its share of wire z as (⟨x⟩E, ⟨(sk·
x)⟩E)± (⟨y⟩E, ⟨(sk · y)⟩E) + shiftz.

Multiplication Gate z = x · y. The evaluator computes

(⟨x · PRF1
λ(kPRF,idy)⟩E, ⟨sk · x · PRF

1
λ(kPRF, idy)⟩E)

← ExtEval(0, {kDDlogRS,ME},Mx
E , I

kPRF ,PRF1
λ(·, idy))

(⟨y · PRF1
λ(kPRF,idx)⟩E, ⟨sk · y · PRF

1
λ(kPRF, idx)⟩E)

← ExtEval(0, {kDDlogRS,ME},My
E , I

kPRF ,PRF1
λ(·, idx))

(⟨y · PRF2
λ(kPRF,idx)⟩E, ⟨sk · y · PRF

2
λ(kPRF, idx)⟩E)

← ExtEval(0, {kDDlogRS,ME},My
E , I

kPRF ,PRF2
λ(·, idx))

and sets its shares to be

⟨z⟩E := ⟨x⟩E · ⟨y⟩E + ⟨x · PRF1
λ(kPRF, idy)⟩E

+ ⟨y · PRF1
λ(kPRF, idx)⟩E + shift1z

⟨sk · z⟩E := ⟨sk · x⟩E · ⟨y⟩E + ⟨sk · x · PRF1
λ(kPRF, idy)⟩E

+ ⟨y · PRF2
λ(kPRF, idx)⟩E + shift2z

3. The evaluator outputs {⟨outi⟩E − ⟨outi⟩G}i∈m.
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Protocol 2: Small Integer Garbling Scheme from Paillier-ElGamal.

Theorem 37 (Small Integer Garbling from the Circular-Security of Paillier-ElGamal
with Small Exponent). Let λ be a security parameter and ℓ(λ) be the bitlength of a corresponding
RSA modulus. We consider a circuit C consisting of n input wires and m output wires. Assume the
({×, IK}, {Fprf−mask,C}C∈Cλ

)-circular security of the (Paillier-ElGamal with Small Exponent, Pseudo-
random Mask)-Hybrid (Definition 33, Remark 34) and the existence of a pseudorandom function in
NC1. Then for every integer k > 1, the construction AGCPaillierEG ( Protocol 2) is an arithmetic garbling
scheme for B-bounded integer computation where B is any integer less than 2(k−1)λ. Moreover, the
garbled circuit has bit-size

6ℓ(λ) + (n+ |C|+ 1)(2k + 2)λ+ (km+ 1)λ

where the size of each input label is kλ bits.

Proof. We show correctness and Privacy.

Correctness. We will show that for any wire w carrying the secret x, the following invariant holds:
⟨w⟩E − ⟨w⟩G = (x, sk · x).

– Input Labels: For the input labels, the invariant holds by Step 4 of the scheme.
– Addition/Subtraction Gates: Consider the output wires of addition/subtraction gates and

assume WLOG that the gate is an addition gate. The garbler sets its share to be PRFλ(kPRF, idz).
Assuming that the invariant holds for input gates, the evaluator calculates its share as (⟨x⟩E, ⟨(sk ·
x)⟩E)+(⟨y⟩E, ⟨(sk·y)⟩E)+shiftz = (⟨x⟩E, ⟨(sk·x)⟩E)+(⟨y⟩E, ⟨(sk·y)⟩E)−(⟨x⟩G, ⟨(sk·x)⟩G)−(⟨y⟩G, ⟨(sk·
y)⟩G)− PRFλ(kPRF, idz) = (x+ y, sk · (x+ y))− PRFλ(kPRF, idz), which maintains the invariant.

– Multiplication Gates: Consider the output wire of a multiplication gate. We use here the
correctness of the ExtEval algorithm. First, note that we require the PRF to be in NC1 since
ExtEval requires the program P to be defined as a polynomial-size RMS program; this class
encapsulates NC1 circuits. As stated in Lemma 27, the outputs of ExtEval in Step 5 of the protocol
form subtractive shares over [N ]. Along with the correctness of Lemma 31, these are shares over
2kλ and 2(k+2)λ with all but negligible probability. Hence, note that

Pr[⟨z⟩E − ⟨z⟩G ̸= z] ≤Pr[⟨x · PRF1
λ(kPRF, idy)⟩E − ⟨x · PRF

1
λ(kPRF, idy)⟩G ̸= x · PRF1

λ(kPRF, idy)]

+ Pr[⟨y · PRF1
λ(kPRF, idx)⟩E − ⟨y · PRF

1
λ(kPRF, idx)⟩G ̸= y · PRF1

λ(kPRF, idx)]

≤ 2negl(λ)

= negl(λ)

Thus, the output wire satisfies the above invariant with all but negligible probability. Note that
the depth of the circuit is polynomially bounded, and hence the label values of each output wire
go through at most polynomially many iterations of ExtEval. It follows that that each such wire
then maintains the above invariant with all but negigible probability.

– Output Wires: From the previous discussion, the above invariant is also maintained for each
output wire of the circuit. Hence, the output wires reconstruct, and the scheme is correct.

Privacy. We describe our simulator in Algorithm 4. We will argue indistinguishability via a series of
hybrids.

Algorithm Small Integer Garbling from Paillier-ElGamal with Small Exponent: Sim(1λ, C, z)

Parameters. Let λ be a security parameter and k > 1 be a global parameter. We consider a
circuit C of size at most poly(λ) with n inputs, m outputs and s× multiplication gates; we repre-
sent the ith output wire by outi. Let PaillierEG = (PaillierEG.Gen,PaillierEG.Enc,PaillierEG.Dec)
be the Paillier-ElGamal cryptosystem with short exponent defined in Figure 2.

Sim(1λ, C, z):

1. The simulator samples kDDlogRS
$←− {0, 1}λ and (N, g, pk, sk)

$←− PaillierEG.Gen(1λ).
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2. The simulator sets IkPRF ← (PaillierEG.Enc(pk, 0),PaillierEG.Enc(pk, 0)) and adds it to Ĉ.
3. The simulator chooses a subtractive sharing of 1 and adds one share ME := (⟨1⟩E , ⟨sk⟩E) to

Ĉ.
4. The simulator chooses Li

x
$←− {0, 1}(2k+2)λ.

5. For output wire i of any gate, the simulator chooses shifti
$←− {0, 1}(2k+2)λ.

6. The simulator runs AGCPaillierEG.Eval to find the outputs {⟨outi⟩E}i∈N

and chooses ⟨outi⟩G := ⟨outi⟩E − zi. Then it outputs ((Li
x)i∈[n], Ĉ =

(N, g, kDDlogRS, I
kPRF ,ME , (shifti)i∈C , {⟨outi⟩G}i∈m)).

Algorithm 4: Simulator for Small Integer Garbling Scheme from Paillier-ElGamal.

– Hybrid 0: The real-world protocol.
– Hybrid 1: The garbler runs Step 6 of the simulator instead of the garbling scheme. The only

difference between this hybrid and the previous one is how the simulator programs its output
shares. The garbler’s output shares, however, are statistically hidden by the correctness of the
protocol; thus the hybrids are statistically indistinguishible.

– Hybrid 2: In this hybrid, the garbler replaces IkPRF with encryptions of 0 instead of k and sk ·x, and
replaces the shifts shiftz with PRF outputs PRFλ(kPRF, idz). The indisinguishability of this hybrid
from the previous one follows via a direct application of the circular security of the (Paillier-
ElGamal, Pseudorandom Mask)-Hybrid parametrized with Remark 34.
Suppose that there is a PPT distinguisher Dist(1λ) that can distinguish between Hybrid 1 and
Hybrid 2 with greater than negligible probability. We will show an adversary A that, given access
to this distinguisher and the oracles OF,k,sk,b and OF ′,k,sk,b, can break the circular security of the
(Paillier-ElGamal, Pseudorandom Mask)-Hybrid. The adversary A(1λ, N, g) works as follows. It
runs AGCPaillierEG.Garble(1

λ, C) for some B-bounded circuit C, with the following changes:
• In step 1, it does not sample kPRF or PaillierEG.Gen(1λ).
• In step 2, it makes the oracle queries OF,k,sk,b(IK) and OF,k,sk,b(×) where IK and × are the
functions as defined in Remark 34.
• In step 4, the adversary sets its share by querying OF ′,k,sk,b(Fprf−mask,C(·, ·, idini)) for each
input wire ini.
• In step 5, the adversary sets shiftz ← OF ′,k,sk,b(Fprf−mask,C(·, ·, idz)).

Note that since the pseudorandom mask is a one-time encryption scheme, the adversary is only
allowed to make a single call to the oracle per gate. Nevertheless, the adversary sends the out-
put ((Li

x)i∈[n], Ĉ = (N, g, kDDlogRS, I
kPRF ,ME , (shifti)i∈C , {⟨outi⟩G}i∈m)) to Dist. If b = 0, then

the above procedure corresponds to Hybrid 1, while if b = 1 then the above procedure corre-
sponds to Hybrid 2. The adversary outputs whatever Dist outputs, however since Dist is able
to distinguish between the two hybrids with more than negligible probability, the adversary can
differentiate between b = 0 and b = 1 with more than negligible probability as well, breaking
the ({×, IK}, {Fprf−mask,C}C∈Cλ

)-circular security of the (Paillier-ElGamal, Pseudorandom Mask)-
Hybrid.

– Hybrid 3: In this hybrid, the garbler replaces both the labels Li and the shifts shiftz with truly
random values. Note that there is no information about kPRF remaining in the view. The indis-
tinguishability of this hybrid follows from the security of the PRF. Our reduction works briefly
as follows: assume that there is a distinguisher Dist(1λ) which can distinguish between Hybrids
2 and 3 with noticeable probability. Then consider a PPT adversary AO(·), where O(·) either
PRF(kPRF, ·) or R(·) where R is a truly random function. A can run the algorithm of Hybrid 2,
making calls to either PRFλ(kPRF, idz) or R(idz) as given. It sends the output of the garbled circuit
to Dist, then outputs as the distinguisher does accordingly. Since only a polynomial number of
calls to the oracle have been made, the adversary then can output whether O(·) is the PRF or a
truly random function with noticeable probability, breaking the underlying security of the PRF.

– Hybrid 4: The simulator’s algorithm of Algorithm 4. The hybrids are identical.

With this we complete the proof of privacy.

Size. Finally, we compute the size of the garbling output. Note that N is of size ℓ(λ), g is an element
of N and is hence also of size ℓ(λ). kDDlogRS is of length λ and M1, being a share, is of length (2k+2)λ,
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which is also the length of each one of the shifts (there are n + |C|) of them. Furthermore, IkPRF is
two ciphertexts and is hence of size 4ℓ(λ), and the output wires are of length kλ each. Together, this
adds up to

6ℓ(λ) + (n+ |C|+ 1)(2k + 2)λ+ (km+ 1)λ.

It is easy to see that the rate of the scheme goes rapidly to 1/2 as k →∞.
■
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