
How to Trace Viral Content
in End-to-End Encrypted Messaging

Pedro Branco1, Matthew Green2, Aditya Hegde2, Abhishek Jain2,3, and Gabriel Kaptchuk4

1Bocconi University
2Johns Hopkins University

3NTT Research
4University of Maryland, College Park

Abstract

We study the problem of combating viral misinformation campaigns in end-to-end encrypted
(E2EE) messaging systems such as WhatsApp. We propose a new notion of Hop Tracking Signa-
tures (HTS) that allows for tracing originators of messages that have been propagated on long
forwarding paths (i.e., gone viral), while preserving anonymity of everyone else. We define
security for HTS against malicious servers.

We present both negative and positive results for HTS: on the one hand, we show that
HTS does not admit succinct constructions if tracing and anonymity thresholds differ by exactly
one “hop”. On the other hand, by allowing for a larger gap between tracing and anonymity
thresholds, we can build succinct HTS schemes where the signature size does not grow with the
forwarding path. Our positive result relies on streaming algorithms and strong cryptographic
assumptions.

Prior works on tracing within E2EE messaging systems either do not achieve security against
malicious servers or focus only on tracing originators of pre-defined banned content.

Contents

1 Introduction 1
1.1 Our Contributions . 3
1.2 Related Work . 4

2 Technical Overview 6
2.1 Modeling E2EE Messaging Setting and Virality . 6

2.1.1 Boundaries on Achievable Security . 8
2.2 Hop Tracking Signatures . 9
2.3 Warmup: A Non-Succinct Construction . 10
2.4 Barriers To Succinctness . 11
2.5 Gapped Hop Tracking Signature Schemes . 11
2.6 Succinct HTS Using Streaming Algorithms . 12
2.7 Real World Implications . 17

3 Preliminaries 18
3.1 Basic Cryptographic Primitives . 18
3.2 Non-Interactive Zero Knowledge . 19
3.3 Group Signatures . 20
3.4 Policy-Based Signatures . 22
3.5 Extractable Witness Encryption . 23
3.6 Incrementally Verifiable Computation . 24

4 Hop Tracking Signatures 25
4.1 Discussion on the Unique Forwarders on a Path Predicate 31

5 Impossibility Of t-secure Succinct HTS 32

6 Succinct HTS Scheme 34
6.1 Streaming Algorithm . 34
6.2 Puncturable NIZK . 39
6.3 HTS Construction . 42

6.3.1 Required primitives . 43
6.3.2 Construction . 44

7 Extensions to HTS 58
7.1 Unique Forwarders in a Graph . 58
7.2 HTS with Forward Secrecy . 59

1 Introduction

Social networks empower individuals to broadcast their ideas to a mass audience. In addition to
enabling community building, these communication platforms can also be weaponized by mali-
cious agents to launch viral misinformation campaigns that cause significant harm. This concern
is not hypothetical: such misinformation campaigns have been aimed at destabilizing democra-
cies [Cho18], encouraging medically unsafe behavior [CC20], and some campaigns have resulted
in murder and genocidal attacks [Cho19]. As instances of these viral misinformation campaigns
grow in frequency and impact, social networks have begun to take an active role in moderating the
content spreading on their platform.

While content moderation is difficult in the best case, a novel challenge in this area stems from
the presence of viral content on end-to-end encrypted (E2EE) messaging platforms, such as Meta’s
WhatsApp [Wha23]. Ostensibly these networks were designed for person-to-person or small group
communications. However, the networks exhibit remarkable emergent behaviors through which
“broadcast” functionality can be realized via the via message forwarding chains, in which a single
piece of content is widely distributed to many users, who each forward it to additional users in their
contacts. Moderating content in these systems can be technically complex, given that the platform
(by design) cannot view the content of messages being exchanged between users [SM23].

The challenges of combating viral misinformation campaigns on E2EE messaging platforms has
led to several governments urging (or mandating, in the case of the Indian government [oET21])
that platforms provide capabilities that allow law enforcement to identify the originator of vi-
ral misinformation—a capability discussed in the academic literature as source traceback. Practi-
cally, this is commonly understood as a requirement to provide law enforcement with limited ac-
cess to plaintext, reducing the privacy guarantees provided for both “viral” and non-viral content.
Providers and human rights advocates fear that such “backdoors” may be used to fundamentally
undermine the confidentiality provided by end-to-end encryption—a concern that is supported by
instances of alleged spying directed against opposition parties and activists [U.S22].

Source Tracing in End-to-End Encrypted Messaging Systems. A proposed alternative to combat-
ing viral misinformation campaigns within end-to-end encrypted messaging systems is to restrict
the messages for which the platform can perform source traceback. This approach was first inves-
tigated by Tyagi et al. [TMR19], and relies on abuse reporting by clients; only once a message is
(voluntarily) reported as misinformation by a user, the platform can use information embedded
in the message to recursively walk back through a message’s forwarding path until the message’s
creator is found. Since Tyagi et al.’s initial work, source tracing has emerged as a technical prob-
lem of interest [PEB21, IAV22, LRTY22, BGJP23] and several governments have even called for
source tracing to be integrated into live deployments of end-to-end encrypted message platforms
[RS20, Ban18]. However, providers have been reluctant to adopt these solutions because they do
not provide sufficiently strong security properties [New21].

Most existing source tracing proposals suffer from a serious shortcoming: they assume that the
platform does not collude with users. The only thing stopping the platform from executing source
tracing in these proposals is access to plaintext; if the platform colludes with a user, they have
the technical capability to identify the origin of arbitrary messages received by the colluding user.
Thus, the platform’s ability to trace the source is independent of the nature of the message itself
and it is assumed that the platform will act honestly and only use its tracing power on messages
with content that is identified as misinformation. Unfortunately, this honesty assumption is im-

1

practical, as demonstrated by previous instances of foreign governments colluding with platform
employees [U.S22] and the use of E2EE platforms in conflict zones [Bla25].

The recent source tracing scheme of Bartusek et al. [BGJP23] attempts to mitigate the threat of
collusion between clients and server. Namely, it proposes a system that provides a source tracing
power to the platform that is limited—or “constrained,” in the language proposed by Ananth et
al. [AJJM22]—to content that falls within a very particular predicate: matching a pre-selected and
hard-coded list of banned content. This means that the platform cannot carry out source traceback
for any message that does not satisfy the predicate—even if the platform colludes with users—and
similarly, licit content that wrongly satisfies the predicate (e.g., due to collisions in the perceptual
hash function used [PFG+23, SHNK22]) becomes immediately traceable even if it has not gone
“viral” at all. Bartusek et al. consider this problem in the context of known instances of illegal
content, such as child sexual abuse material, as it is possible to predefine a predicate that captures a
subset of non-compliant messages before they are transmitted. In the viral misinformation setting,
however, creating a predicate for banned messages is a difficult problem—even with access to
plaintext— as cultural contexts differ, intent can be hard to assign, and language shifts over time.
Moreover, a message may only be considered problematic after it becomes widespread—long after
it is initially sent.

Limiting Source Tracing to Viral Messages. In this work, we take a step back and re-examine this
problem space from a theoretical—although practically motivated—perspective. Namely, we ask if
it possible to create end-to-end encrypted messaging systems that provide a constrained source trac-
ing power to malicious providers such that it can only be used on viral misinformation campaigns.
We observe that in order for misinformation to be viral—and thus a reasonable target for source
tracing—it must be widely disseminated among the platform’s user base; a message containing
misinformation that is passed among ten users cannot reasonably be construed as viral, even if half
of those users report it as misinformation. This requires defining a predicate not over the message’s
content, but instead over the manner in which a message has circulated on the platform to determine
whether it could be viral. This virality predicate can then be baked into the tracing system to cryp-
tographically constrain the platform, making it impossible for even a malicious operator to collude
with malicious users in order to trace non-viral messages—or even to weaken the security of users
who inadvertently forward the content1. Most critically, achieving constrained source tracing in the
presence of collusions rules out any solution that employs online trusted servers, or includes new
and vulnerable master tracing keys.

Our approach can be seen as lifting recent work on preconstrained cryptography [GKL21, ABD+21,
AJJM22, BGJP23, KLN23] into the distributed setting. In this paradigm, master keys of a crypto-
graphic scheme are generated with limits on their power; by carefully choosing these limits, pre-
constrained cryptographic primitives can be used to construct cryptosystems that meet desirable
policy goals. In the traceback setting, we limit the platform’s tracing power such that it can only be
used on messages that have traversed specific paths through the platform’s userbase. This is more
technically challenging than preconstrained encryption, since the predicate must reason over the
(private) joint state of a distributed system, in which there are many agents, each holding relevant
cryptographic key material.

1Importantly, our system prevents source tracing for non-viral messages, but does not provide any technical means
to distinguish between misinformation and non-misinformation. As such, a malicious operator might be able to execute
tracing on a viral message that is not misinformation, for an arbitrary notion of misinformation. Finding technical ways
to address this gap is important before deployment can be considered.

2

With this new conceptual approach to source tracing in hand, we study the feasibility of real-
izing it for a natural notion of virality: long forwarding paths, i.e., tracing can only be executed on
messages for which the path between final receiver and creator contains a sufficiently large number
of users. While not the only notion of virality that might be desirable, this predicate provides an
important starting point for the study of preconstraining viral content tracing and is a meaningful
notion of virality in practice, as we discuss in Section 4.1. Moreover, in Section 7, we show that
the techniques developed in realizing source tracing for this predicate can be extended to realize
source traceback for other virality predicates.

1.1 Our Contributions

In this work, we study source tracing for end-to-end encrypted messaging systems in which tracing
can only be executed on viral messages. We find that establishing the feasibility of constructing
asymptotically efficient instantiations of this paradigm—a first step toward concrete efficiency—is
highly non-trivial, requiring careful attention to definitions and new techniques. More specifically,
our contributions are as follows:

Hop Tracking Signatures. We propose the notion of Hop Tracking Signatures (HTSs), a new
cryptographic primitive that allows source tracing for messages with long forwarding paths.
Intuitively, the sender of a message should stay anonymous unless a malicious server gets
access to a copy of that message that has been forwarded by t users (some of whom may
be controlled by the adversary). We carefully define achievable notions of security for this
primitive and investigate their limitations and applicability to real-world systems. The syntax
and security of HTS is strongly motivated by ease of composition with E2EE messaging plat-
forms. Specifically, HTSs are simply appended to the message being sent and do not require
modifications to the messaging system.

Impossibility of Succinct, Non-Gapped Hop Tracking Signatures. We prove that it is impossible
to construct Hop Tracking Signatures that are both succinct in the number of times the mes-
sage has been forwarded and uses a single traceability threshold t, before which the source
is completely anonymous but after which the source is always traceable. We prove this using
lower bounds in communication complexity.

Succinct Hop Tracking Signatures with a Gap. We show that it is possible to construct suc-
cinct Hop Tracking Signatures when one admits a gap between the anonymity threshold tanon
(at which point anonymity ceases to hold for the source) and traceability threshold ttrace (at
which point the source can be traced). Specifically, we present a construction of succinct Hop
Tracking Signatures such that tanon = (1− ϵ)t and ttrace = (1+ ϵ)t for any ϵ < 1/2 and positive
integer t, such that 1/ϵ and t are polynomial in the security parameter.

Our positive result requires some notion of identity for users, which we achieve using a regis-
tration model (it is easy to see that without any notion of user identity, the entire notion of virality
becomes vacuous). We achieve this in our construction via a registration server that issues creden-
tials to new users. This server is not involved in any further operation of the system. The security
of our first construction holds against adversaries that can adaptively register new corrupted users
and have access to the key material of either the main E2EE server or the registration server, but
not both. As we discuss in Section 2.1, this corruption model is necessary for our result. Indeed, a

3

similar security model is considered in [BGJP23], where the adversary can corrupt either the main
server or the input-authentication server but not both.

In Section 7, we show that this registration server can be replaced with a non-secret functional-
ity such as a bulletin board or a key transparency server [LL23]: in this model, registration of new
users does not involve a secret key that the adversary could compromise in order to trace users.
This approach places some limits on the ideal functionality we can achieve, however: since the
only honest party in the system may be the message originator, the originator itself must commit
to its view of the set of registered users in the system at the time it sends its message. Thus only
those users who registered prior to the message being sent will count as valid forwarders, and
users who register afterwards will not be able to increase the forwarding count. This provides a
type of forward secrecy against adversaries that corrupt both the E2EE server and the registration
server. Specifically, an adversary can compromise source anonymity only for messages sent after all
servers are corrupted but cannot deanonymize messages sent before the time of compromise. In
contrast to prior work [TMR19, PEB21, IAV22, LRTY22]—where a server that colludes with users
can deanonymize the source of all messages, both before and after compromise—our approach
limits such deanonymization to messages sent after the system is fully compromised.

Techniques and Assumptions. Our positive result crucially relies on streaming algorithms for
counting distinct elements. A key contribution of our work is to use such algorithms in an ad-
versarial model where the adversary can adaptively choose inputs and view the internal state and
random tape of the streaming algorithm. Although prior work has studied streaming algorithms in
adversarial models, known positive results require assumptions on the adversary that are not true
in our setting. To overcome these challenges, we identify robustness properties of some streaming
algorithms in the literature [BYJK+02] that allows us to carefully compose them with cryptographic
tools to achieve security against such adversaries in our setting. See Section 2.6 for a discussion.

We also rely on standard cryptographic assumptions as well as two strong cryptographic primi-
tives: extractable witness encryption (eWE) [GKP+13, GGHW14] and incrementally verifiable com-
putation (IVC) for NP with knowledge soundness [Val08]. The latter of these primitives is known
either based on heuristics [Val08] or extractability assumptions [BCCT13].2 This is a topic of ex-
tensive research, with several practical constructions known and used in the blockchain ecosystem.
eWE is currently not known from standard assumptions; moreover, prior work has shown barriers to
constructing eWE from standard assumptions for specific auxiliary input distributions [GGHW14].
We note, however, that one could use existing candidates for “plain” witness encryption (which is
known from well-studied assumptions) [JLS21, JLS22] as heuristic candidates for eWE.

Obtaining our results from weaker assumptions or moving towards concrete efficiency are both
interesting directions for future research.

1.2 Related Work

We briefly summarize relevant related work below.

Pre-constrained Cryptography. A recent line of work has investigated the design of cryptographic
primitives in which the master keys are constrained from the onset in their capabilities [GKL21,
ABD+21, AJJM22, BGJP23, KLN23]. In the context of end-to-end encrypted messaging, the work
of [BGJP23] explores the problem of tracing the source of pre-defined illegal content. However,

2IVC for NP without knowledge soundness was recently constructed based on standard assumptions [DJJ+25].

4

these solutions do not extend to our setting, where the tracing predicate depends on the private
state of a distributed system, rather than the state of a single party.

Non-Interactive Secure Multiparty Computation over Graphs. A related line of work has in-
vestigated the design of secure multiparty computation (MPC) protocols in which the interaction
patterns among parties are defined via arbitrary graphs [HIJ+16, BJPY18]. Our setting is somewhat
similar to these works, in the sense that the computation of the virality predicate can be viewed
as a form of secure computation over the forwarding graph. However, a key distinction is that our
setting additionally requires preserving the anonymity of participants—a property not addressed in
these works.

Tracing misinformation. The problem of tracing originators of misinformation in E2EE messaging
systems was first studied by Tyagi et al. [TMR19]. They propose a system for path traceback that
allows the E2EE server to trace the source and all intermediate forwarders of a message upon receiv-
ing a report by any user. Informally, the system maintains an encrypted linked list where each node
in the list is a ciphertext held by the E2EE server while pointers to previous nodes are encryption
keys held by users. To report a message, the user sends the decryption key for the last node in the
linked list to the server, which allows it to decrypt ciphertexts in reverse order and thus trace all
users in the forwarding path. The authors also propose a system for tree traceback which allows
tracing all recipients of the message, including those on forwarding paths different from that of the
reporting user. In addition to the server’s storage requirements growing linearly with the number
of forwards, a primary drawback of the proposed system is that privacy is only guaranteed when
the E2EE server does not collude with any user. A single report on a message suffices to completely
deanonymize all users in the forwarding path.

The follow-up work of Peale et al. [PEB21] allows tracing only the message source and avoids
deanonymizing all users on the forwarding path. At a high level, their approach requires users
sending a new message to interactively compute a publicly verifiable and non-malleable encryption
of the source’s identity under the server’s secret key. This ciphertext is forwarded alongside the
message. A recipient can report the message by sending the ciphertext to the server, which decrypts
it to reveal the source. They also extend their solution to achieve a stronger unlinkability property,
ensuring that users who receive the same message cannot determine whether it originated from the
same source or from different sources. Subsequent work called Hecate [IAV22] extends the work
of Peale et al. [PEB21] to also ensure forward and backward secrecy. While these works remove
the need for large server storage, they do not provide any privacy guarantees when the E2EE server
colludes with even a single user.

Finally, Liu et al. [LRTY22] build on the solution of Peale et al. [PEB21] by introducing an
oblivious Bloom filter, which allows the server to efficiently and obliviously maintain a count of
the number of reports for every message. This count can be queried by any client that receives the
message. If the count exceeds a threshold t, the reporting user also submits the ciphertext—which,
as in [PEB21], encrypts the source identity—to the server, which can then decrypt it to trace the
source. However, as before, a server that colludes with even a single client can deanonymize the
source since it learns the ciphertext; the threshold is enforced only in the non-collusion setting.
Moreover, the proposed system counts the total number of reports, rather than the number of
distinct users reporting a message. To account for this, the system requires enforcing a per-user
limit on the number of reports that can be submitted.

In summary, while prior works on source tracing are concretely efficient, they provide a weaker
notion of security where the anonymity of the source is not guaranteed if the E2EE server colludes

5

with even a single client.

2 Technical Overview

We now give an overview of the key concepts in this work. We begin by giving an overview of
the modeling choices that we make, discuss how the notion of a viral message can be captured
formally and propose a simple but practically meaningful definition of virality. We then explore
how to instantiate a system with the desired properties.

2.1 Modeling E2EE Messaging Setting and Virality

In this work, we make black-box use of an underlying end-to-end encrypted messaging platform,
consisting of a set of users and a server. The platform realizes a very simple secure communication
functionality: registered users can send messages to one another such that the server can only
control if and when that message is delivered and can not read the contents of the messages. When
a user wants to forward a received message to a new recipient, they simply add an annotation
indicating that the message is being forwarded. This approach means that all forwarding logic can
be contained within the message payload being transmitted, and thus the cryptographic protocol
implementing end-to-end encryption remains unchanged.

When a user sends a new (i.e., not forwarded) message, we call that user the message’s source.
Adding traceability to an end-to-end encrypted messaging platform allows the server to identify
the source of a message upon receiving a report from a recipient, containing the message plaintext.
Tracing should be possible even when the server obtains a report from a user that received a
forwarded message—at which point it is not inherent that the reporting user knows the source’s
identity. Note that on properly end-to-end encrypted messaging platforms, the server cannot trace
the origin of a message even given access to ciphertexts and user communication patterns because
the server can not distinguish between encrypted messages containing forwarded content and one
with fresh content.

Tracing viral messages to their source. When prior work [PEB21, IAV22, LRTY22] has considered
the problem of source tracing within end-to-end encrypted messaging systems, these works provide
the server with the power to trace the origin of any message reported by a user. This means that
the server can trace the source of any message of its choice, as long as it colludes with a recipient.
Moreover, previous works sometimes reveal the identity of all intermediate users who forwarded the
message—an approach that can de-anonymize innocent users who were unaware that a message
contained disinformation [TMR19]. The only exception is [BGJP23], where the server can carry
out source traceback for a reported message only if the message content lies within a predefined
set of banned messages. Within this work, we are concerned with exact origin tracing in which the
server’s capability to trace messages is strictly limited to messages that have gone “viral.”

In order to formalize the notion of virality, we shift the focus of the protocol from the content of
the message to the private metadata about the message: how that message has spread throughout
the network. Specifically, the flow of the message through the platform via forwards, implicitly
defines a forwarding graph: a directed multi-graph in which nodes represent users and edges rep-
resent each forwarding event, as shown in Figure 1a. Note that users can appear multiple times
across different paths and even within the same path, since a user may forward the message to
multiple recipients, receive a forward of the same message from different users as well as forward

6

S

P1

P5

P2

P6

P3

P4

(a) The forwarding graph is a directed multi-graph.

S P1

S P1

S P5 S

P2

P2 P1 P6

P3

P4

P4

P6

(b) Re-interpreting the forwarding graph as a set of
forwarding paths.

Figure 1: The flow of a message via forwards in an E2EE messaging platform. Nodes represents
users, edges represent forwarding events and S denotes the source user that created the message.

a message that it had previously forwarded. We observe that a viral message can be formally speci-
fied by defining a virality predicate over the message’s forwarding graph. This virality predicate can
then be embedded within the system to constrain the server’s ability to trace the origin of messages.

While constraining the server’s ability for source tracing using a virality predicate over the
message’s forwarding graph provides a useful framework, the practical utility of the system strongly
depends on the choice of predicate. For example, a virality predicate that just tests for the number
of times a message has been forwarded (number of edges in the forwarding graph) doesn’t offer
any meaningful security in the real-world—two users can repeatedly forward the message between
themselves to render the predicate true, but such a message can hardly be considered viral. In this
work, we will mainly focus on the unique-forwarders-on-a-path predicate. Specifically, a reported
message is considered viral under this predicate only if the forwarding path—the sequence of users
that forwarded the message, from the source to the reporting user, as shown in Figure 1b—consists
of at least t unique users. Note that under this predicate a viral message has been received by
at least t distinct users and thus our notion of virality is robust to the repeated forwarding attack
discussed previously. While we limit our discussion in this section to the unique-forwarders-on-a-
path predicate, we consider a more general predicate that tests for number of unique users across
multiple forwarding paths in Section 7.

Equipped with a framework to formally define what makes a message viral, we now proceed
to discuss the security properties that are required of a system that supports source traceback of
only viral messages. Going forward, we use ‘viral messages’ to mean messages that satisfy the
unique-forwarders-on-a-path predicate, unless stated otherwise.

Security Goals. Our aim is to design a system with the following intuitive security properties.

– Source anonymity: When the source of a message is honest, then it remains anonymous as long as
the message is not viral. The malicious parties may choose to manipulate or forward the message
in an attempt to identify the source. That is, the adversary could try to attack the cryptographic
construction in order to execute the tracing functionality before the virality predicate is satisfied.3

– Forwarder anonymity: An honest forwarder—any intermediate user in the forwarding path—will
always remain anonymous, even if the source of the message is eventually traced.

3As discussed above, the adversary is also allowed to interact with the system in an attempt to “artificially” make the
message viral.

7

– Traceability: We must ensure that a malicious source cannot originate their message in a way
that prevents them from being identified later or changes the output of the tracing functionality
to be an innocent, honest user as the source.

We wish to achieve these goals within a model that reasonably approximates the powers of a
strong, real-world adversary. Specifically, we are concerned about an end-to-end encrypted messag-
ing system with a malicious server that may control a potentially large number of malicious users.
Security against such an adversary prevents malicious insiders within the platform from performing
source tracing inappropriately, even when they might control some number of accounts (either for
personal use or for testing purposes).

While it may be tempting to study this problem in the static setting (i.e., the set of users and the
subset of those users that are corrupt is determined before messages begin circulation) this does
not match the power of real-world adversaries. As such, we let the adversary adaptively register
new users in the system throughout the experiment, possibly sampling new users’ cryptographic
key material based on the messages it has already observed.

2.1.1 Boundaries on Achievable Security

There are, however, two inherent boundaries on the extent to which we can achieve these security
goals within the envisioned system; one which affects the anonymity guarantee and the other which
affects traceability.

Sybil Attacks. It is easy to see that allowing the adversary to create an unbounded number of users
in the system—essentially performing a Sybil attack—quickly makes virality a vacuous concept.
Specifically, such an adversary can always ensure that the forwarding path of any message contains
sufficient number of distinct users, thus rendering the message viral. It is thus impossible to ensure
anonymity of an honest source against such an adversary.

In order to ensure a meaningful notion of virality and guarantee anonymity of sources in the
face of these Sybil attacks, we consider a registration-based model where a registration server is
responsible for curating which users are part of the system. Specifically, the registration server
legitimizes each new user’s key material, enabling them to send and forward messages on the plat-
form, similar to the role of existing Key Transparency [MBB+15, LL23] or Certificate Transparency
[Cer, LLK13] systems. We emphasize that this is the only interaction that the registration server
has with users and the registration server is completely uninvolved with the execution of source
tracing.

We assume that the registration-server does not collude with the main (E2EE messaging) server.
That is, our security goals should hold as long as the adversary does not learn the key material of
both servers.4 This is necessary, since otherwise, the adversary could run the previously described
Sybil attack by using the registration server’s private key to register key materials for an unbounded
number of users.

Refresh Attacks. The very nature of E2EE messaging makes the tracing system susceptible to a
source “refresh” attack where a corrupt user can always choose to copy the content of a received
message into a new message—effectively forwarding the message while making themselves the
source. This could reset any progress made towards satisfying the virality predicate. Such an

4We note that the source tracing proposal of [BGJP23], which is the only other work that constrains the server’s source
tracing ability based on a predicate, also requires a non-collusion assumption to ensure that the predicate is meaningful.

8

attack on the traceability guarantee of the system is somewhat inherent to the E2EE messaging
functionality, since all users should be able to send new messages as well as view the content of
received messages.

Due to these unavoidable issues, we propose our security definitions to guarantee traceability
of the source when the message has been consecutively forwarded by sufficient number of unique
honest users. Looking ahead to Section 4.1, we verify this intuition by modeling the overall for-
warding graph of a message as a random graph where corrupt users always perform refresh attacks
and terminate forwarding paths. We find that in a network of 2 billion users (e.g., WhatsApp), even
extraordinarily powerful adversaries corrupting hundreds of millions of users cannot prevent long
forwarding chains (e.g., of a million users) from being formed. This indicates that ensuring trace-
ability when sufficient honest users consecutively forward the message can provide meaningful
guarantees in practice.

In Section 2.7, we discuss the real-world implications of requiring a registration server as well
as the consequence of refresh attacks.

2.2 Hop Tracking Signatures

Our goal is to allow source traceback of only viral messages in E2EE messaging systems, where
a message is considered viral (for the purpose of our discussion) if its forwarding graph satisfies
the unique-forwarders-on-a-path predicate discussed previously. However, any meaningful solu-
tion to supporting source traceback must require only minimal changes to existing E2EE messaging
systems—it should be functionally equivalent to an E2EE messaging platform, except that it ad-
ditionally allows users to forward and report messages as well as enables the server to trace the
origin of viral messages. We adopt a similar approach as prior work to ensure this compatibility
and focus our efforts on designing a cryptographic primitive that can be composed in a black-box
manner with E2EE messaging.

A natural starting point for a cryptographic primitive that meets our needs is group signatures.
Group signatures are an anonymous signature with the additional property that a master secret
holder can deanonymize the sender. The problem with group signatures is that they provide no
protections against a malicious secret key holder—once they have access to the group signature,
they can always trace the source. Recognizing this problem, Bartusek et al. [BGJP23] initiated the
study of pre-constraining group signatures, such that tracing powers are a function of the message
content. In this work, we define Hop Tracking Signatures (HTS), an approach to pre-constrained
group signatures that facilitates source tracing for only viral messages. Unlike group signatures,
HTSs will have an explicit Forward algorithm that is run by each forwarder. Recall that we want
this primitive to ensure (1) source anonymity when the length of the forwarding path is less than
t, (2) there should always be forwarder anonymity, no matter the forwarding path length, and (3)
traceability when the length of the forwarding path exceeds t. Composing such a primitive with
E2EE messaging systems is then straightforward: the source computes and appends an HTS on the
message when sending it to a recipient, each user runs the Forward algorithm on the HTS received
from their sender before forwarding it, and a user can send the message and the appended HTS
to the server to report a message. However, the difficulty in constructing HTS is that the source
cannot perform the necessary cryptographic operations alone, as it does not know if the message
will go viral. Instead, we need to perform a distributed computation (as the message is forwarded
through the network) that checks if the predicate has been satisfied.

9

2.3 Warmup: A Non-Succinct Construction

We begin by developing a template for constructing HTSs that provides the desired security and
correctness properties, at the expense of being communication inefficient. Our first task is to de-
sign a distributed computation that counts the number of unique users along the forwarding path.
Importantly, each of these users must be an authorized part of the system—and must demonstrate
their authorized status in order to participate in the distributed computation. This leads us nat-
urally to having each forwarder sign the message as it is forwarded, appending the signature to
the message. Determining the current forwarding path length is as simple as counting the number
of attached signatures. The upside of this approach is that it is unforgeable, in that an adversary
controlling some ℓ users in the system cannot make it look as though ℓ + 1 users have forwarded
the message. The downside of this approach, of course, is that it provides no privacy for any of
the forwarders—a verifiable proof that they forwarded the message is visible to anyone who sees a
plaintext.

In order to provide privacy, we can hope to replace the signatures with some form of anonymous
credential, like a ring signature [RST01]. Because any given ring signature could feasibly have been
produced by any user in the system (assuming the ring is the set of all users in the system), the
server or a corrupt user cannot use them to implicate any particular user as having been part of the
forwarding path. Such an approach seems to solve our privacy problem, but actually compromises
the integrity of the count. Imagine a malicious user that signs a particular message an arbitrarily
large number of times. By the anonymity property of the ring signature scheme, this result will be
indistinguishable from a set of signatures produced by a large number of honest users, and thus
seem to satisfy the predicate.

In order to make this template workable, we need a method to de-duplicate the signatures such
that each user can only contribute a single one. One straight-forward approach to this is to limit
the users’ power to produce multiple signatures without detection. To provide this property, we can
replace these ring signatures with unique ring signatures [FZ13], a derandomized version of ring
signatures that ensures that re-signing a message will always result in the same signature. Using
this tool, it will be trivial to observe if a malicious user has signed the message multiple times:
simply look to make sure that all of the signatures are distinct.

All that remains is identifying a way to use this stream of unique ring signatures to condition-
ally release the identity of the source. The natural tool to do this generically is witness encryption
[GGSW13]. The source can simply encrypt their identity with witness encryption such that the wit-
ness is a set of t distinct unique ring signatures on the chosen message. Once a path has gotten long
enough—and the message has accumulated enough unique ring signatures—the witness encryp-
tion can be decrypted. One subtlety is that we must ensure that a malicious source cannot frame
an honest user by putting the wrong identity into the witness encryption. This can be accomplished
using a non-interactive zero-knowledge proof (of knowledge) that the sender knows the secret key
of the identity being put into the witness encryption.

In summary, we have the source encrypt their identity within witness encryption (and prove
correctness of this encryption) and have each forwarder add a unique ring signature to the mes-
sage, t of which will serve as the key to the witness encryption. Anonymity of the source follows
directly from the use of the witness encryption scheme and signature unforgeability—if the adver-
sary can produce a valid witness when less than t users have signed the message, then it can forge
unique ring signatures for honest parties. Privacy of the intermediary forwarders follows from the
anonymity property of the signature scheme. Finally, a malicious source cannot frame an honest

10

user when tracing is executed due to the zero-knowledge proof of knowledge.

2.4 Barriers To Succinctness

While the baseline HTS construction discussed in the previous subsection works, it is not succinct—
the size of the signature grows linearly with the length of the forwarding path. With viral messages
in particular, the forwarding path can be quite long. As such, it is desirable to find a HTS con-
struction with the same security and correctness properties but where the signature size grows
sublinearly in the forwarding path length.

While such a HTS would be desirable, we find that they cannot be constructed without relaxing
our requirements in some way. To prove that such a succinct construction cannot exist, we reduce
to a well known lower bound in communication complexity. Namely, we show in Section 5that if
there exists a succinct HTS scheme then it could be used to construct a two party set disjunction
protocol with sublinear communication complexity in the size of the sets. However, Kalyanasun-
daram and Schnitger [KS92] showed an information theoretic lower bound that the communication
complexity of the disjunction functionality is Ω(n), where n is the size of the sets. Interestingly, the
impossibility result only relies on the correctness property of the HTS scheme and not its source
anonymity property i.e., the impossibility does not rely on security against a malicious server. In-
tuitively, this suggests a barrier to succinctly counting number of unique forwarders, even when all
users behave honestly.

2.5 Gapped Hop Tracking Signature Schemes

Having established that the construction of succinct HTS schemes is impossible without relaxing
our requirements, we turn our attention to finding an appropriate relaxation that permits a succinct
construction. We begin by asking if there is a way to realize the template described in Section 2.3
without appending a unique ring signatures for each forward—which was the primary cause of
non-succinctness. Observe that the unique ring signatures are playing multiple roles simultane-
ously: (1) counting the number of forwarders in the path, (2) de-duplicating any repeated users
in the forwarding path, (3) providing unforgeability such that the adversary can not simply gen-
erate a witness to decrypt the witness encryption independently, and (4) providing privacy for
each forwarder. When moving to the succinct regime, we must find a way to replicate all of these
properties—all without allowing the state to grow. Moreover, these requirements seem to have a lot
of internal tension e.g., the need for anonymity makes creating any kind of record difficult, while
de-duplication seems to demand some kind of record.

We take as our starting point the need to do counting in a succinct way. We observe that an HTS
scheme counts the number of unique forwarders in a streaming fashion. Thus, we need a stream-
ing algorithm for counting unique values—a well studied problem [FM85, BYJK+02, FEFGM07,
KNW10, CVM22]. Streaming algorithms, by definition, use memory that grows at most sublinearly
in the length of the stream processed. However, they suffer from two drawbacks: (1) these algo-
rithms only approximate the number of unique elements, and some error in their count is inherent;
and (2) these algorithms are rarely used in cryptographic settings, and ensuring robustness in our
highly adversarial setting will be non-trivial. We first discuss how we address the first drawback
and then continue to discuss the use of streaming algorithms in an adversarial setting.

Gapped Thresholds. Recall that the security requirements outlined in Section 2.1 required the

11

source to be traceable when the forwarding path consisted of more than t unique forwarders and
required the source to remain anonymous otherwise i.e., traceability and source anonymity were
defined using a single threshold t. Informed by the hope to use a streaming algorithm in order
to realize a succinct HTS scheme, we consider a natural relaxation of the source anonymity and
traceability requirements that allow circumventing the impossibility result. The core idea is to
introduce a gap in the source anonymity and traceability thresholds such that the HTS scheme does
not need to go from anonymous (i.e. hiding the source) to tracing abruptly exactly when the tth user
forwards the message. In more detail, we separate the threshold t into a pair of thresholds that will
parameterize an HTS scheme, an anonymity threshold tanon and a traceability threshold ttrace, subject
to the constraint that tanon = (1− ϵ)t and ttrace = (1+ ϵ)t where 0 < ϵ < 1/2 is a fixed constant and
t is fixed polynomial in the security parameter. In order to reduce notational complexity, we refer
to the primitive that realizes the relaxed security requirements as Hop Tracking Signatures (as the
non-relaxed version is impossible to construct). A (tanon, ttrace)-secure HTS scheme should satisfy
the following two (informal) properties:

(1) tanon Source Anonymity: When the number of forwarders of a message is less than tanon, a
malicious server with access to the message plaintext should be able to learn nothing about the
message’s source.

(2) ttrace Traceability: When the number of forwarders of a message is more than ttrace, a server
with access to the message plaintext should be able to learn the message’s source.

The forwarder anonymity requirement remains unchanged. Importantly, the relaxed require-
ments do not guarantee source anonymity or traceability when the number of forwarders is greater
than tanon but less than ttrace. Nevertheless, we will always require that an adversary cannot frame
an honest user regardless of the number of forwards.

Observe that an HTS scheme that has a gap in the source anonymity and traceability thresholds
need not compute the exact number of unique forwarders, which in turn implies that the impossi-
bility result discussed previously no longer applies to it. This motivates our approach of realizing
succinct HTS using streaming algorithms as discussed previously, where the inherent error in the
output of streaming algorithm manifests as the gap in the HTS scheme’s thresholds.

2.6 Succinct HTS Using Streaming Algorithms

At a high level, we want to use the same basic strategy as in the baseline, non-succinct construc-
tion, but rather than appending a unique ring signatures each time the message is forwarded, the
forwarder instead pushes its unique ring signature into the streaming algorithm5. The witness
encryption statement will change to reason over the state of the streaming algorithm. While this
template is intuitive, there remain a number of non-trivial problems we must address in order to
make it work.

Background: Streaming Algorithms. Streaming algorithms facilitate computing functions over a
large sequence of data with only limited memory (i.e., much less memory than the length of the
sequence). Because the algorithm could not hold the full sequence at once, the data is provided
to the algorithm as a stream, in that the algorithm only gets access to the data one element at a
time and must discard each element before proceeding to the next. In general the algorithm will

5Looking ahead we will replace the unique ring signature altogether, but this intuition remains informative.

12

also only be able to see each element of the stream once. This structure is amenable to use in our
setting: we execute the streaming algorithm in a distributed manner by having each forwarder use
its input to update the streaming algorithm’s state and additionally send the updated state to the
recipient.

However, employing this strategy to design succinct HTS schemes requires using the stream-
ing algorithm in an adversarial setting, where the adversary learns the intermediate state of the
streaming algorithm and influences the input steam by controlling the forwarding path.

Streaming Algorithms in Adversarial Settings. The standard model for analyzing streaming algo-
rithms assumes that the input stream is independent of the algorithm’s internal state—an assump-
tion that clearly does not hold in our setting. Other stronger models have been studied, but appear
to also fall short of meeting our needs. The first of these models, adversarially robust streaming
algorithms [BEY20, BHM+21, ABED+0, BEJWY22] provides robustness against an adaptive adver-
sary with oracle access to the algorithm’s current estimate. Importantly, however, the adversary is
not given access to the algorithm’s internal state. In our setting, corrupt forwarders learn both the
intermediate state of the algorithm and can adaptively choose the message’s forwarding path to
control the input stream, making them more powerful than the modeled adversary. A second chal-
lenge stems from the fact that streaming algorithms rely on randomness, either during initialization
or while processing inputs. In our setting, this randomness must be supplied by potentially corrupt
parties—including the source and intermediate forwarders—which makes it unclear how to ensure
that the randomness is truly uniform. The limitations of these algorithms in our setting are under-
scored by prior work that show that the estimates provided by streaming algorithms can be arbitrar-
ily inaccurate in the presence of adaptively chosen inputs [HW13, PR21, MFS23], i.e., biasing even
a polynomial number of inputs can cause the estimation of the count to be exponentially biased.
Another, stronger model considers white-box adversarial streaming algorithms [ABJ+22, FJW24],
which provides robustness against adversaries that can choose inputs and read the algorithm’s in-
ternal state. Constructions in this model leverage fresh randomness that is sampled each time an
input is processed; an important limitation on this adversary is that it cannot control or predict this
randomness. Unfortunately, it is unclear how to ensure that corrupt forwarders use good random-
ness for updating the streaming algorithm’s state in our setting6.

Robustly Counting Unique Forwarders. In order to overcome this problem, we carefully compose
cryptographic tools with streaming algorithms by adopting the following approach.

(1) We use a deterministic streaming algorithm, that does not use randomness to initialize its
state or process inputs, but provides accurate estimates only for specific distributions of the
input7—the stream must consist of repetitions and reorderings of uniformly random values.
The advantage of using a deterministic streaming algorithm is that it is secure against an
adversary that adaptively chooses the input stream based on the algorithm’s internal state. In
particular, an adversary that reorders or repeats uniformly random values gains no advantage
from inspecting the state, as it can compute the same state on its own. Moreover, determinism

6One natural approach to adapting white-box adversarial streaming algorithms in our settings would be to leverage
random oracles. Unfortunately, a random oracle does not seem to help since the adversary can query the oracle before
choosing the forwarding path—the input stream is then chosen adaptively based on the random coins that will be used by
the streaming algorithm. Moreover, it is unclear how to ensure that corrupt forwarders indeed use the random oracle’s
output for updating the streaming algorithm’s state.

7A deterministic streaming algorithm cannot provide good estimates of the number of distinct elements for arbitrary
streams [CK16].

13

sidesteps the need to verify that parties use uniform randomness when initializing and updating
the streaming state, thereby addressing the second challenge in applying streaming algorithms
to our setting.

(2) We use cryptographic techniques to ensure that the forwarders’ inputs to the streaming algo-
rithm follow the distribution required for obtaining accurate estimates of the number of unique
forwarders. Specifically, since the deterministic streaming algorithm expects the input stream
to consist of repetitions and reorderings of uniformly random values, we define a pseudoran-
dom mapping from forwarder identities to anonymized pseudonyms, which are then input to
the streaming algorithm. Key to ensuring pseudorandomness of this mapping is the fact that
our use of streaming algorithms is in a distributed setting, where inputs to the streaming algo-
rithm are provided by several parties, a subset of which are corrupt. The randomness provided
by honest parties is key to ensuring that the inputs to the streaming algorithm are indeed
(pseudo)random.

(3) An adversary that receives a signature can attempt to bias the input to the streaming algorithm
by selectively forwarding through a subset of corrupt users or by registering new parties. That
is, while the deterministic streaming algorithm is secure against adversaries that adaptively
reorder and repeat uniformly random values, adversaries in our setting can also subsample or
insert new inputs into the stream. To address this, we identify new robustness properties of
the streaming algorithm—insertion robustness and deletion robustness—and show that these
properties suffice to ensure source anonymity and traceability even under such adversarial
behavior.

(4) Finally, we ensure that all users follow the prescribed protocol using zero-knowledge proofs.

In more detail, our starting point is the streaming algorithm for counting distinct elements proposed
by Bar-Yossef et al. [BYJK+02]. The algorithm is initialized by sampling a pair-wise independent
hash function h. Each input xi is hashed and the algorithm maintains a running list of the γ smallest
values of h(xi), where γ is a tunable parameter. The number of distinct elements hashed can be
estimated by looking at the largest value on the list; as the number of distinct elements processed
increases, the largest value on the list will, in expectation, decrease because h maps the xi’s to
random (pairwise independent) values. The result is an estimate—for which we can get good,
formal bounds—on the number of unique elements in the stream8.

Observe that the only randomness used by the streaming algorithm is for sampling a pairwise
independent hash function i.e., the randomness is used to map the input stream into a stream of
random pairwise independent values. Given this stream of random values, the streaming algorithm
is deterministic since it only needs to update the list of minimum hash values. Thus, we view the
streaming algorithm of [BYJK+02] as a deterministic streaming algorithm for an input stream con-
sisting of repetitions and reorderings of random values. We are left to ensure that the forwarders’
inputs to the streaming algorithm have the required distribution to ensure accurate estimates of
the number of unique forwarders.

Recall that in the template discussed previously, each forwarder used a unique ring signature
as input to the streaming algorithm. Informally, unique ring signatures served as a pseudorandom

8In order to ensure that this estimate will be within a certain range with negligible error, multiple copies of this
algorithm will been run in parallel.

14

injective map for each message, from the forwarder’s identity to a publicly verifiable signature,
where the fact that this mapping was chosen pseudorandomly ensured the forwarder’s anonymity.

Now, to ensure that the input stream has the distribution required by the streaming algo-
rithm, we use PRFs to replace unique ring signatures with a pseudorandom injective mapping from
forwarder identities to anonymized pseudonyms. The primary challenge is ensuring that these
pseudonyms are indeed pseudorandom in the presence of an adversary that can corrupt users and
manipulate forwarding paths. We first consider the case of achieving source anonymity and then
consider achieving traceability.

– Source Anonymity: To ensure source anonymity, we rely on the randomness sampled by the
source to define the mapping from forwarder identity to pseudonyms. In more detail, the source
samples a per-message key kmsg which is carried with the message, and each forwarder computes
x = PRF(kmsg, ID∥m) and uses x as input to the streaming algorithm, where ID is some per-
user unique identifier. Observe that the choice of kmsg completely determines the contribution
xi = PRF(kmsg, IDi∥m) of a forwarder with identifier IDi. In case of an honest source, kmsg is
uniformly random which in turn implies that each xi is uniformly random9 — the adversary has
no influence in the choice of a corrupt forwarder’s pseudonym. Nevertheless, an adversary that
obtains the signature learns kmsg and hence the pseudonyms of the tanon corrupt users. Could it
then forward the signature using a subset of corrupt users to bias the input stream? We show that
the streaming algorithm is robust to such “deletions”. Informally, this is because the streaming
algorithm’s output is inversely proportional to the γ-th minimum value in the input stream, and
sub-sampling pseudonyms of corrupt forwarders can only increase the minimum value input to
the streaming algorithm.

– Traceability: Traceability requires that the streaming algorithm provide good estimates when
the source is corrupt. Our previous mapping from forwarder identity to pseudonyms is no longer
random in case of a corrupt source since kmsg is chosen by the adversary. To circumvent this
issue, each forwarder computes x = PRP(kmsg,PRF(fk,m)), where kmsg is the per-message key
described above, fk is a user-specific key sampled during user registration and PRP is a pseu-
dorandom permutation. Observe that in case of an honest source, the map continues to be
pseudorandom because kmsg is uniformly random. In case of a corrupt source, the pseudonym of
honest forwarders is pseudorandom since the user-specific key fk of honest users is unknown to
the adversary and PRP is a bijection and hence does not affect the distribution of honest users’
pseudonyms. This ensures that the streaming algorithm provides accurate estimates when the
signature is forwarded by honest users. However, can the adversary prevent traceability by addi-
tionally forwarding the signature through corrupt users with non-pseudorandom pseudonyms?
We show that the streaming algorithm is robust to such “insertion” attacks. This is because its
output is inversely proportional to the γ-th minimum value in the input stream and forwarding
through corrupt users can only decrease the minimum value input by honest forwarders.

To summarize, we exploit the randomness of an honest source for source anonymity and of hon-
est forwarders for traceability. Furthermore, we exploit an inherent asymmetry to ensure robustness
of the streaming algorithm to adversarially chosen forwarding paths: an adversary corrupting at
most tanon users cannot inflate the count, and it cannot deflate the count of a signature that has

9The pseudonyms are in fact pseudorandom, but nevertheless indistinguishable from uniformly random values. This
suffices for our application.

15

been forwarded by at least ttrace honest forwarders. Forwarder anonymity is guaranteed because
each user’s pseudonyms are anonymized by the user-specific PRF key fk.

We ensure that each user follows the prescribed algorithm using zero-knowledge proofs. Specif-
ically, we use Incrementally Verifiable Computation (IVC) [Val08], which allows for incrementally
computing a proof for a computation, enabling the verification of any intermediate state and the
efficient updating of this proof to prove the correctness of subsequent steps. Importantly, the size
of an IVC is independent of the number of steps in the computation which in turn ensures that
the HTS is succinct. Zero-knowledge of the IVC ensures forwarder anonymity since the witness for
computing each incremental proof contains the forwarder’s key fk.

Summary of the Construction. Equipped with a streaming algorithm to succinctly and robustly
count the number of unique forwarders, IVC to ensure honest behavior and witness encryption to
constrain the server, our HTS scheme works as follows.

(1) The source Usrc, begins by computing a group signature σgs on the message using its signing
key. It then encrypts the group signature using a witness encryption scheme10 (ct) and proves
the correctness of this encryption (π).

(2) The source initializes the streaming algorithm state stinit and samples a key kmsg. Finally, Usrc
initializes the IVC as πIVC

0 .

(3) The source then sends the message (m, ct, π, stinit, kmsg, π
IVC
0) via the end-to-end encrypted mes-

saging platform.

(4) When a user wants to forward the message (m, ct, π, sti, kmsg, π
IVC
i), it does the following:

– Compute streaming algorithm input as x = PRP(kmsg,PRF(fk,m)),

– Update the streaming state to be sti by processing the input x,

– Update the IVC to πIVC
i+1 by proving that the streaming algorithm’s state was correctly updated.

(5) When the server gets access to a plaintext message, it can attempt to decrypt the witness
encryption using the streaming algorithm state and the IVC as a witness. If the count is above
ttrace, then the decryption will succeed and it will obtain the group signature σgs. It can then
decrypt σgs using the opening key to learn the identity of the source.

Need for Extractability and Puncturability. In our scheme, the IVC proof serves as a witness
for decrypting the witness encryption. However, since an IVC proof only offers computational
soundness, we need extractable witness encryption11 to ensure source anonymity, i.e., security
requires extracting an IVC proof from an adversary that can successfully win the source anonymity
experiment.

Additionally, to prove anonymity, we must extract a witness from the IVC proof.12 Thus, we
rely on the knowledge soundness of the IVC. However, source anonymity must also rely on the

10We leave the statement and language for the witness encryption unspecified in this overview, as formally describing
it distracts from the overall intuition we wish to cultivate.

11This means that valid IVC proofs exist for false statements, they are simply infeasible to find. Hence, the witness
encryption statement might not be true, and we are unable to rely on the security of standard witness encryption.

12A witness for the IVC will be a signature scheme, and thus we will be able to reduce the hardness of breaking
anonymity to the unforgeability of the underlying signature

16

privacy of the honest user’s secret keys which in turn requires simulating the IVC. This raises the
following conundrum: how can we simulate IVC proofs while also using the IVC extractor? In
particular, simulation-extractable IVC are not known because IVC inherently requires non-black-
box extraction.

To address this issue, we follow the approach of prior works [BJPY18, AWZ23] and define a
primitive called Puncturable NIZKs. Here, a trapdoor can be punctured on a predicate to simulate
proofs for statements where the predicate is true, while proofs for statements where the predicate
is false are guaranteed to be sound. Each step of the IVC then verifies a Puncturable NIZK proof. In
the security proof, we can puncture the target statement. This allows the IVC extractor to simulate
all proofs except the target one and, thus, the reduction will be able to extract a valid witness.

2.7 Real World Implications

Finally, we conclude the overview with a discussion on real world implications of our modeling
choices discussed in Section 2.1. The primary focus of this work is to explore the feasibility of using
cryptography to combat misinformation while preserving the security of end-to-end encryption.
Thus, we limit our discussion to how our security model and definitions translate to real-world
scenarios. However, further research is crucial, especially on the social implications of deploying
tracing systems for viral messages, before such systems are deployed in practice.

Requiring a Registration Server. Recall that ensuring a meaningful notion of virality and preserv-
ing anonymity of honest sources requires preventing an adversary from running Sybill attacks. We
thus assume a registration-server that does not collude with the main (E2EE messaging) server i.e.,
an adversary does not learn the key material of both servers. Given this requirement, we design a
system that places minimal requirements on the registration authority. Ideally, the system should
only require a “universal” registration functionality that simply issues certificates to legitimate users
and is not tied to the E2EE messaging system itself. Our construction is motivated by this goal: the
registration-server is only used during user registration and is not required for the regulation op-
erations of the E2EE system. In Section 7, we discuss approaches to limit the consequences of a
compromised registration server.

In general, the problem of identifying “bots” and preventing Sybill attacks is of broad interest
due to its relevance to social networks and other systems. Finding good practical solutions is of
significance beyond our work. Indeed, centralized solutions (e.g., ID.me and other national digital
identity providers) are starting to be deployed, and research to move these credential systems out
of government control and add privacy is already underway.

Refresh Attacks. A consequence of the E2EE messaging functionality allowing all users to send
new messages is that a corrupt user can reset the source of a forwarded message by sending an
identical message anew. While our analysis in Section 4.1 indicates that the resulting traceability
guarantee is meaningful in practice, it nevertheless serves only as an approximation of how mes-
sages are forwarded in the real world. The following discussion in [TMR19] however provides
stronger evidence as to advantages of such tracing guarantees in the real world: “WhatsApp ran an
experiment on the effectiveness of limiting the number of forwards a user could make of a given
message. They found that this was effective despite the fact that the user could circumvent the
limit after they reached it by copying and pasting the message. As a result, this forward limitation
is now deployed globally.”

17

3 Preliminaries

Basic Notation. We use [x, y] to denote the set {x, x+ 1, . . . , y} where x, y ∈ Z and x ≤ y. We use
[x] as a shorthand to denote [1, x]. We use x ∈ X ℓ to denote a vector of ℓ elements in X . For a vector
x = (x1, . . . , xℓ), we use xi = xi to denote the i-th element in x where i ∈ [ℓ] and |x| = ℓ to denote
its length. For any algorithm A, we use AF(x; r) to denote that the algorithm runs on input x, with
oracle access to F(·) and random tape r. In most cases, the random tape and oracles are omitted if
it is clear from context or not required. We use λ as the computational security parameter, negl(λ)
to denote negligible functions, and poly(λ) to denote the set of polynomials in λ. We will slightly
abuse notation and often use p to denote both the polynomial as well as its evaluation p(λ) at λ.
For two probability ensembles {Ai}i and {Bi}i, we use {Ai}i p= {Bi}i to denote that the ensembles
are identical, {Ai}i

s≈ {Bi}i to denote that the ensembles are statistically close and {Ai}i
c≈ {Bi}i

to denote that the ensembles are computationally indistinguishable. We use Pr[E : A] to denote
the probability of an event E in an experiment defined by executing A.

3.1 Basic Cryptographic Primitives

We will use pseudorandom functions (PRFs), pseudorandom permutations (PRPs) and digital sig-
nature schemes that are existentially unforgeable under chosen message attack; all of which are
implied by one-way functions [LR89, HILL99, Rom90].

Definition 1 (Pseudorandom Function). Let ℓ ∈ poly(λ) and PRF : {0, 1}λ × {0, 1}ℓ(λ) → {0, 1}ℓ(λ)
be an efficiently computable keyed function. PRF is a pseudorandom function if for all non-uniform
polynomial time distinguishers D there exists a negligible function negl(·) such that for all λ ∈ N∣∣∣Prk←{0,1}λ[DPRF(k,·)(1λ) = 1

]
− Prf←Funcℓ

[
Df(·)(1λ) = 1

]∣∣∣ ≤ negl(λ)

where Funcℓ is the set of all functions from ℓ(λ) length bitstrings to ℓ(λ) length bitstrings.

Definition 2 (Pseudorandom Permutation). Let ℓ ∈ poly(λ) and PRP : {0, 1}λ × {0, 1}ℓ(λ) →
{0, 1}ℓ(λ) be an efficiently computable keyed permutation. PRP is a pseudorandom permutation
if for all non-uniform polynomial time distinguishers D there exists negligible function negl(·) such
that for all λ ∈ N∣∣∣Prk←{0,1}λ[DPRP(k,·)(1λ) = 1

]
− Prf←Permℓ

[
Df(·)(1λ) = 1

]∣∣∣ ≤ negl(λ)

where Permℓ is the set of all permutations over ℓ(λ) length bitstrings.

Definition 3 (Digital Signature). Let ℓ ∈ poly(λ). A digital signature scheme Sig = (Gen,Sign,Verify)
is a tuple of algorithms with the following syntax.

• Gen(1λ)→ (pk, sk) is a PPT algorithm that outputs a public key pk and a signing key sk.

• Sign(sk,m)→ σ is a PPT algorithm that takes the signing key sk and a message m ∈ {0, 1}ℓ(λ) as
input and outputs a signature σ on m.

• Verify(pk,m, σ) =: b is a polynomial time algorithm that takes the public key pk, a message
m ∈ {0, 1}ℓ(λ) and a signature σ as input and outputs a bit b ∈ {0, 1} denoting if σ is valid.

18

We require that the signature scheme satisfies the following properties.

• Correctness: For every λ ∈ N and every message m ∈ {0, 1}ℓ(λ), we have

Pr

[
Verify(pk,m, σ) = 1 :

(pk, sk)← Gen(1λ)
σ ← Sign(sk,m)

]
= 1.

• Unforgeability: For all λ ∈ N and all non-uniform polynomial time adversaries A we have

Pr

[
m ̸∈ Σ ∧

Verify(pk,m, σ) = 1
:

(pk, sk)← Gen(1λ)

(m,σ)← ASign(sk,·)(1λ, pk)

]
≤ negl(λ)

where Σ is the set of messages A queries to its signing oracle Sign(sk, ·).

3.2 Non-Interactive Zero Knowledge

A non-interactive zero-knowledge (NIZK) argument system enables a prover to compute a proof
that convinces a verifier about the validity of a given statement without revealing any additional
information about the witness. An argument of knowledge provides a stronger guarantee that the
prover indeed possesses a valid witness, as opposed to ensuring just the validity of the statement.
Currently, we know how to build NIZKs in the common reference string model from a wide variety
of assumptions such as the subgroup decision assumption over pairings [GOS06], Learning With
Errors (LWE) [CCH+19, PS19], a combination of Decisional Diffie-Hellman (DDH) and Learning
Parity with Noise (LPN) [BKM20, BCD+25], or sub-exponential DDH [JJ21]. NIZK arguments of
knowledge can be built generically from NIZKs and public-key encryption schemes with perfect
correctness [DP92].

Definition 4 (Non-interactive Zero-knowledge Argument Of Knowledge). Let L be an NP language
with relation R. A Non-Interactive Zero Knowledge (NIZK) argument of knowledge for L is a tuple
of algorithms NIZK = (Setup,Prove,Verify) with the following semantics.

• Setup(1λ)→ crs is a PPT setup algorithm that outputs a common reference string crs.

• Prove(crs, x, w) → π is a PPT algorithm that takes as input a common reference string crs, a
statement x in L and a witness w and outputs a proof π.

• Verify(crs, x, π) =: b is a polynomial time algorithm that takes as input a common reference string
crs, a statement x and a proof π and outputs a bit b ∈ {0, 1} indicating if the proof is accepted or
rejected.

We require a NIZK argument of knowledge to satisfy the following properties.

• Completeness: There exists a negligible function negl(·) such that for all λ ∈ N and (x,w) ∈ R,

Pr

[
Verify(crs, x, π) ̸= 1 :

crs← Setup(1λ)
π ← Prove(crs, x, w)

]
≤ negl(λ).

19

• Knowledge Soundness: There exists an extractor E = (Setup,Extract) which is a pair of PPT
algorithms with the following properties. Firstly,{

crs : crs← Setup(1λ)
}
λ

c≈
{
crs : (crs, td)← E .Setup(1λ)

}
λ
.

Moreover, for all non-uniform polynomial time adversaries A, there exists a negligible function
negl(·) such that for all λ ∈ N, we have

Pr

 Verify(crs, x, π) = 1
∧

(x,w) ̸∈ R
:

(crs, td)← E .Setup(1λ)
(x, π)← A(crs)

w ← E .Extract(td, x, π)

 ≤ negl(λ).

• Zero-Knowledge: There exists a simulator S = (Setup,Prove) which is a pair of PPT algorithms
such that for all non-uniform polynomial time adversaries A there exists a negligible function
negl(·) such that for all λ ∈ N we have∣∣∣∣ Pr

[
AProve(crs,·,·)(crs) = 1 : crs← Setup(1λ)

]
−Pr

[
ASimProve(·,·)(crs) = 1 : (crs, td)← S.Setup(1λ)

] ∣∣∣∣ ≤ negl(λ)

where SimProve(·, ·) is an oracle that when called on input (x,w) returns ⊥ if (x,w) ̸∈ R and
returns S.Prove(crs, td, x) otherwise.

3.3 Group Signatures

Group signature schemes, first introduced by Chaum and van Heyst [Cv91], allow a group of
users, each having its own private signing key, to compute signatures on behalf of the group such
that the signatures can be verified under a common public verification key. The scheme guaran-
tees that a signature does not provide any information about the identity of the user that signed
the message except to an authority that posses an opening key. Our definition is adapted from
[BSZ05], which defines group signatures with a registration server that issues private signing keys
to new group members, and an opener that can trace the source of a signature. Group signatures
can be constructed generically from perfectly correct public-key encryption schemes secure against
chosen-ciphertext attacks, digital signature schemes that are existentially unforgeable under chosen
message attacks, and simulation-sound adaptive NIZK proofs for NP [BSZ05].

Definition 5 (Group Signatures). A group signature scheme GSig = (Setup,KeyGen,Register,Sign,
Verify,Open) has the following syntax.

• Setup(1λ) → (gpk, rsk, osk) is a PPT setup algorithm that outputs the group public key gpk, the
registration key rsk, and the opening key osk.

• KeyGen(1λ) → (pk, sk) is a PPT key generation algorithm that allows a user that wishes to join
the group to compute its public key pk and private key sk.

• Register⟨Sreg(rsk),U(pk, sk)⟩ → ⟨pk, usk⟩ is an interactive protocol between the registration server
Sreg and a user U where the registration server has the registration key rsk as input and the user
has its locally computed public and private key (pk, sk) as input. At the end of the protocol,
the registration server obtains the user’s public key pk as output and the user obtains a private
signing key usk as output.

20

• Sign(usk,m) → σ is a PPT signing algorithm that allows a user to compute a signature σ on a
message m ∈ {0, 1}∗ using its private signing key usk.

• Verify(gpk,m, σ) =: b is a polynomial time algorithm that takes as input the group public key
gpk, a message m ∈ {0, 1}∗ and a signature σ and outputs a bit b ∈ {0, 1} indicating if σ is valid.

• Open(osk,m, σ) =: pk is a polynomial time opening algorithm that takes as input the opening
key osk, a message m and a signature σ on m and either outputs ⊥ or the identity pk of the user
that computed σ.

We model the adversary’s capabilities in security definitions using the following oracles. The
oracles are described using the keys (gpk, rsk, osk) generated by the experiment in the setup phase,
and a set of corrupt users I and honest users H initialized by the experiment.

• RegH(): Allows the adversary to register honest users. When called, it runs (pk, sk)← KeyGen(1λ),
⟨pk, usk⟩ ← Register⟨Sreg(rsk),U(pk, sk)⟩, and returns pk to A. It adds (pk, sk, usk) to H.

• Reg(): Allows the adversary to register corrupt users. When called, it plays the role of the reg-
istration server Sreg(rsk) in an execution of Register and adds the public key pk of the registered
corrupt user to I.

• Cor(pk): Allows the adversary to corrupt an honest user. When called with a user’s public key pk,
it returns (sk, usk) to the adversary and adds pk to I, if (pk, sk, usk) ∈ H.

• HSign(pk,m): Allows the adversary to obtain signatures from honest users. When called with
a user’s public key pk and a message m, it computes σ ← Sign(usk,m) and returns σ to the
adversary, if (pk, sk, usk) ∈ H.

• Trace(m,σ): Allows the adversary to open signatures. When called with a message m and signa-
ture σ, it computes pk := Open(osk,m, σ) and sends pk to the adversary.

We require that a group signature scheme satisfy the following properties.

• Correctness: For every non-uniform polynomial time adversary A, there exists a negligible func-
tion negl(·) such that for all λ ∈ N we have

Pr

 Verify(gpk,m, σ) = 1
∧

Open(osk,m, σ) = pk
:

(gpk, rsk, osk)← Setup(1λ)
(pk,m)← ARegH(gpk)

σ ← Sign(usk,m)

 = 1

where pk output by A is such that (pk, sk, usk) ∈ H.

• Anonymity: For every non-uniform polynomial time adversary A, there exists a negligible func-
tion negl(·) such that for all λ ∈ N we have

Pr

 σ ̸∈ Σ ∧ b = b′ :

(gpk, rsk, osk)← Setup(1λ)
(pk0, pk1,m, st)← ARegH,Reg,Cor,HSign,Trace(gpk, rsk)

b← {0, 1}
σ ← Sign(uskb,m)

b′ ← ARegH,Reg,Cor,HSign,Trace(st, σ)

 ≤ 1

2
+ negl(λ)

where Σ is the set of signatures queried to Trace, and (pk0, pk1) output by A are such that both
(pk0, sk0, usk0) and (pk1, sk1, usk1) are in H.

21

• Traceability: For every non-uniform polynomial time adversary A there exists a negligible func-
tion negl(·) such that for all λ ∈ N we have

Pr

 Verify(gpk,m, σ) = 1 ∧
(pk,m) ̸∈ J ∧ pk ̸∈ I :

(gpk, rsk, osk)← Setup(1λ)
(m,σ)← ARegH,Reg,Cor,HSign(gpk, osk)

pk← Open(osk,m, σ)

 ≤ negl(λ)

where J is the set of inputs queried to HSign.

• Unframeability: For every non-uniform polynomial time adversary A there exists a negligible
function negl(·) such that for all λ ∈ N we have

Pr

 Verify(gpk,m, σ) = 1 ∧
(pk,m) ̸∈ J ∧ pk ∈ H :

(gpk, rsk, osk)← Setup(1λ)
(m,σ)← ARegH,HSign(gpk, rsk, osk)

pk← Open(osk,m, σ)

 ≤ negl(λ)

where J is the set of inputs queried to HSign.

3.4 Policy-Based Signatures

Policy-based signature (PBS) schemes [BF14] allow computing signatures only on those messages
that conform to an authority specified policy. Informally, PBS schemes guarantee that signatures
are unforgeable and preserve the privacy of the policy. However, we will only require that signatures
are unforgeable. In fact, compared to the definition of [BF14], we require weaker properties from
PBS schemes where the policy language is always in P and unforgeability is only required against
an adversary that obtains a single signing key. PBS schemes can be built generically from public-key
encryption schemes secure against chosen plaintext attacks, digital signatures and NIZKs.

Definition 6 (Policy-Based Signatures). Let ℓ ∈ poly(λ). A policy-based signature scheme PBS =
(Setup,KeyGen,Sign,Verify) is a tuple of algorithms with the following syntax.

• Setup(1λ) → (mpk,msk) is a PPT algorithm that outputs a master public key mpk and master
secret key msk.

• KeyGen(msk, ν) → skν is a PPT algorithm that takes as input the master secret key msk and an
efficiently computable predicate ν, and outputs a signing key skν .

• Sign(skν ,m) → σ is a PPT algorithm that takes as input a signing key skν and a message m ∈
{0, 1}ℓ(λ) and outputs a signature σ.

• Verify(mpk,m, σ) =: b is a polynomial time algorithm that takes as input the master public mpk,
a message m ∈ {0, 1}ℓ(λ) and a signature σ and outputs a bit b ∈ {0, 1} denoting if σ is valid.

We require a PBS scheme to satisfy the following properties.

• Correctness: For all non-uniform polynomial time adversaries A, there exists a negligible func-
tion negl(·) such that for all λ ∈ N, we have

Pr

 ν(m) = 1
∧

Verify(mpk,m, σ) ̸= 1
:

(mpk,msk)← Setup(1λ)
(ν,m, st)← A(mpk)

skν ← KeyGen(msk, ν)
σ ← Sign(skν ,m)

 ≤ negl(λ)

22

where m ∈ {0, 1}ℓ(λ) and ν is efficiently computable.

• Unforgeability: For all non-uniform polynomial time adversaries A there exists a negligible
function negl(·) such that for all λ ∈ N we have

Pr

 ν(m) = 0
∧

Verify(mpk,m, σ) = 1
:

(mpk,msk)← Setup(1λ)
(ν, st)← A(mpk)

skν ← KeyGen(msk, ν)
(σ,m)← A(st, skν)

 ≤ negl(λ)

where ν is an efficiently computable predicate.

3.5 Extractable Witness Encryption

A witness encryption (WE) scheme [GGSW13] allows encrypting a message with respect to a state-
ment such that decryption is only possible if one has the corresponding witness. In this work we
use the stronger notion of extractable witness encryption [GKP+13, GGHW14].

While WE is known from well-founded assumptions [JLS21] or from variants of LWE [Tsa22,
VWW22], extractable WE is not known from standard assumptions. However, known candidates
for WE could be assumed to also be extractable. While there are conditional negative results
for extractable WE [GGHW14], they are with respect to specific auxiliary input distributions and
assuming strong forms of obfuscation. Recent work has shown that blockchains could help realize
a primitive that is equivalent to extractable witness encryption [GKM+22].

Definition 7 (Extractable Witness Encryption). Let L be an NP language with relation R and let
ℓ ∈ poly(λ). A witness encryption scheme WE = (Enc,Dec) for L is a tuple of algorithms with the
following syntax.

• Enc(1λ, x,m) → ct is a PPT algorithm that takes as input a statement x ∈ L and a message
m ∈ {0, 1}ℓ(λ) and outputs a ciphertext ct.

• Dec(w, ct)→ m is a PPT algorithm that takes as input a witness w and a ciphertext ct and either
outputs ⊥ or a message m ∈ {0, 1}ℓ(λ).

We require that an Extractable WE scheme satisfy the following properties.

• Correctness: For every λ ∈ N, (x,w) ∈ R and m ∈ {0, 1}ℓ(λ), we have

Pr
[
Dec(w, ct) = m : ct← Enc(1λ, x,m)

]
= 1.

• Extractability: For all PPT adversaries A and polynomials pa, there exists a PPT extractor EA
and a polynomial pe such that for all sufficiently large λ ∈ N, x ∈ L, m0,m1 ∈ {0, 1}ℓ(λ), and
polynomial length auxiliary input z ∈ {0, 1}∗ we have

Pr

[
A(x, ct, z) = b :

b← {0, 1}
ct← Enc(1λ, x,mb)

]
≥ 1

2
+

1

pa(λ)

=⇒ Pr[(x,w) ∈ R : EA(x, z) = w] ≥ 1

pe(λ)
.

23

3.6 Incrementally Verifiable Computation

Incrementally verifiable computation (IVC), first introduced by Valiant [Val08], allows incremen-
tally computing a proof for a computation so that any intermediate state can be verified and more-
over, a proof for an intermediate state can be efficiently updated to compute a proof for subsequent
steps of the computation. However, IVC as defined by Valiant, supports only deterministic compu-
tation. Specifically, a prover convinces a verifier that a Turing machine, the description of which is
known to both, reaches a particular state after a specific number of steps of its execution. Chiesa
and Tromer [CT10] generalized the notion of IVC to Proof Carrying Data (PCD) which supports
proving that an output was obtained through a computation that is compliant. Specifically, given
inputs, outputs, proofs of correct computation for each input and a compliance predicate for the
computation mapping the inputs to the output, a PCD scheme allows computing a proof of cor-
rectness for the output. Our definition of IVC is adapted from the definition of PCD by Bünz et
al. [BCMS20] and is a special case of a PCD where each step of the computation takes only one
new input i.e., in the language used by Bünz et al., the transcript is a simple directed path. Alter-
natively, it is a generalization of Valiant’s definition of IVC where each step of the Turing machine
may take a private input.

Currently, we know instantiations of IVC for non-deterministic computations from knowledge
assumptions (e.g., [BCCT13, BCMS20]) or from random oracles [Val08]. [HAN23] discuss the
impossibility of constructing IVC with zero-knowledge assuming the existence of collision resistant
hash functions or perfectly binding rerandomizable commitments. However, we remark that in this
work we only make use of knowledge sound IVC schemes with non-black box extraction and do
not do not require the IVC scheme to be zero-knowledge. Such IVC schemes are not ruled out by
[HAN23].

We first recall the definition of compliance predicates and the relation defined by them on
computations and then continue to define IVC.

Definition 8 (Relations From Compliance Predicates). Let m,n ∈ poly(λ). Let ϕ : {0, 1}n(λ) ×
{0, 1}n(λ) × {0, 1}m(λ) → {0, 1} be an efficiently computable compliance predicate. Let T =
(st0, (st1, w1), . . . , (stℓ, wℓ)) be a computation trace where st0 denotes the initial state and each
intermediate state sti is obtained as the output of computing on the previous state sti−1 and an
input wi. stℓ denotes the output of the computation. T is said to be ϕ-compliant if ϕ(st0,⊥,⊥) = 1
and for each i ∈ [ℓ], ϕ(sti−1, sti, wi) = 1.

The language Lϕ and the corresponding witness relation Rϕ are defined as

Rϕ = {(st, T) | st is output of T ∧ T is ϕ-compliant}
Lϕ = {st | ∃T such that (st, T) ∈ Rϕ}.

Definition 9 (Incrementally Verifiable Computation). Let Φ be a set of compliance predicates. An
IVC scheme IVC = (Setup,Prove,Verify) for Φ is a tuple of algorithms with the following semantics.

• Setup(1λ)→ crs is a PPT algorithm that outputs the common reference string crs.

• Prove(crs, ϕ, st, π, w, st′) → π′ is a PPT algorithm that takes the common reference string crs, a
predicate ϕ ∈ Φ, a state st, a proof of the correctness π for st, a witness w and the next state st′

and outputs a proof of correctness π′ for st′.

24

• Verify(crs, ϕ, st, π) =: b is a polynomial time algorithm that takes the common reference string
crs, a predicate ϕ ∈ Φ, a state st and a proof π and outputs a bit b ∈ {0, 1} denoting if the proof
is accepted or rejected.

We require an IVC scheme to satisfy the following properties.

• Completeness: For all non-uniform polynomial time adversaries A there exists a negligible
function negl(·) such that for all λ ∈ N we have

Pr

(

ϕ ∈ Φ ∧ ϕ(st′, st, w) = 1 ∧
(st = ⊥ ∨ Verify(crs, ϕ, st, π) = 1)

)
⇓

Verify(ϕ, st′, π′) = 1

:
crs← Setup(1λ)

(ϕ, st, π, w, st′)← A(1λ, crs)
π′ ← Prove(crs, ϕ, st, π, w, st′)

 ≥ 1− negl(λ).

• Soundness: For all PPT adversaries A there exists a PPT extractor EA and a negligible function
negl(·) such that for all λ ∈ N and polynomial length auxiliary input z ∈ {0, 1}∗, we have

Pr

ϕ ∈ Φ ∧ st = out(T)

∧
Verify(crs, ϕ, st, π) = 1

∧
T is not ϕ-compliant

:
crs← Setup(1λ)

(ϕ, st, π)← A(crs, z)
T ← EA(crs, z)

 ≤ negl(λ)

where out(T) denotes the output of the computation corresponding to T .

• Efficiency: For all ϕ ∈ Φ, common reference strings crs, and (st, T) ∈ Rϕ, the size of the proof
π, computed by repeatedly running Prove, is at most |π| ∈ poly(λ |ϕ| log |T |).

4 Hop Tracking Signatures

An HTS scheme allows a user to sign a message m, producing a signature σ that preserves the
anonymity of the signer. The signature can then be forwarded, while keeping track of the number
of unique users who have forwarded it, so that the source can be deanonymized once this count
exceeds a specified threshold. As discussed in Section 2.2, HTS schemes can be naturally composed
with E2EE messaging systems to allow tracing the source of viral messages, where virality here
means that the message’s forwarding graph satisfies the unique-forwarders-on-a-path predicate.

The syntax and properties of HTS schemes are described in Definition 10. Informally, the setup
procedure outputs a master public key mpk available to all users, the registration server’s secret key
rsk, and the E2EE server’s master secret key msk. New users run a registration protocol with the
registration server to obtain their keypair, while the server records the user’s public key. Registered
users can then use their secret keys to sign messages and forward signatures via the Sign and
Forward algorithms, respectively. Once a signature has been forwarded by ttrace distinct users, the
E2EE server, using its secret key msk, can deanonymize the source by running the Open algorithm.

Crucially, deanonymizing the source requires the master secret key msk, which is constrained:
it cannot be used to reveal the source identity if the signature has been forwarded by fewer than
tanon distinct users, and it always reveals the source identity once the signature has been forwarded
by at least ttrace distinct users. This property, along with other guarantees—such as the signature
preserving the anonymity of intermediate forwarders—is captured by the following properties.

25

Correctness: Correctness defines the behavior of the scheme when all users and servers are honest.
It requires that a signature that has been honestly signed and forwarded satisfies the following
properties: (1) it verifies successfully, (2) it does not reveal the identity of the source when
input to the Open algorithm if the number of distinct forwarders is less than tanon, (3) it
always opens to the source identity if the number of distinct forwarders is at least ttrace, and
(4) if it opens at any point when the number of distinct forwarders lies between tanon and
ttrace, it opens only to the identity of the source. To ensure that this property holds regardless
of the order of registration and forwards, we formalize it through an experiment in which an
adversary schedules user registrations and the sequence of forwards.

Source Anonymity: Source anonymity guarantees that a signature ensures anonymity of the signer
against an adversary that either corrupts the E2EE server or the registration server. Source
anonymity against a corrupt registration server is formally captured by the experiment de-
scribed in Figure 3. In this experiment, the adversary is given the registration server’s secret
key and outputs a challenge message m along the identities of two honest users, upk0 and
upk1. It must then determine whether a challenge signature σ on m was generated by upk0
or upk1. The only restriction13 is that the adversary cannot query the Trace oracle on sig-
natures of the challenge message m. Otherwise, the adversary could trivially break source
anonymity by forwarding σ sufficiently many times and then invoking Trace to recover the
source identity.

Source anonymity against a corrupt E2EE server is formally captured by the experiment de-
scribed in Figure 2. It proceeds similarly to the source anonymity experiment for the reg-
istration server, except that the adversary is given the master secret key msk instead of the
registration server’s secret key. Importantly, the adversary is allowed to corrupt fewer than
tanon parties and is restricted from using honest parties to forward signatures on the chal-
lenge message m. This prevents the adversary from trivially breaking source anonymity by
forwarding the signature sufficiently many times. Note that the definition captures the sce-
nario where an adversary that corrupts t < tanon − 1 users receives a signature forwarded by
tanon − t − 1 honest users; in the experiment, the adversary honestly forwards the signature
using tanon − t − 1 of the users it corrupts. However, the definition only guarantees selective
security with respect to the choice of message and the corruptions. Ideally, we would like to
allow the adversary to select the challenge message m and adaptively corrupt honest users
through the Cor oracle, as in Figure 3. Looking ahead, selective security is an artifact of
our proof strategy and it is unclear whether the proof of security for our construction can be
extended to establish the stronger adaptive security guarantee. Accordingly, we adopt the se-
lective security definition when formalizing HTS schemes and elaborate further on this point
in Section 6.

Forwarder Anonymity: Forwarder anonymity requires that signatures hide the identity of inter-
mediate forwarders. However, defining this property against an adversary capable of creating
arbitrary forwarding paths requires some care. Specifically, if a user forwards a signature
and later forwards it again, the number of distinct forwarders does not increase, allowing the
adversary to “link” signatures forwarded by the same user. To address this, we adopt a defi-
nition similar to that used for linkable ring signatures [BDH+19]. Specifically, the adversary

13The adversary is not given access to the Reg oracle, but it is unnecessary since it can locally generate keypairs for
corrupt users using the registration server’s secret key.

26

ExpSrcAnonopenHTS,A(1
λ,m):

1: Initialize I := ∅ and H := ∅. Compute
(mpk,msk, rsk)← Setup(1λ).

2: Let

(upk0, upk1, st)

← ARegH,Reg,HSign,HFwd(mpk,msk).

If there do not exist usk0 and usk1 such that
(upk0, usk0) and (upk1, usk1) are in H then
output 0.

3: Sample b ← {0, 1} uniformly at random and
compute σ ← Sign(uskb,m).

4: Let b′ ← ARegH,Reg,HSign,HFwd(st, σ).
5: Output 1 if

|I| < tanon ∧ m ̸∈ MHFwd ∧ b = b′,

where MHFwd is the set of messages queried
to HFwd. Else, output 0.

Figure 2: HTS source anonymity experiment for
opener. Key differences from Figure 3 are high-
lighted in red.

ExpSrcAnonregHTS,A(1
λ):

1: Initialize I := ∅ and H := ∅. Compute
(mpk,msk, rsk)← Setup(1λ).

2: Let

(m, upk0, upk1, st)

← ARegH,Cor,HSign,HFwd,Trace(mpk, rsk).

If there do not exist usk0 and usk1 such that
(upk0, usk0) and (upk1, usk1) are in H then
output 0.

3: Sample b ← {0, 1} uniformly at random and
compute σ ← Sign(uskb,m).

4: Let b′ ← ARegH,Cor,HSign,HFwd,Trace(st, σ).
5: Output 1 if

m ̸∈ MTrace ∧ b = b′,

where MTrace is the set of messages queried
to Trace. Else, output 0.

Figure 3: HTS source anonymity experiment for
registration server. Key differences from Fig-
ure 2 are highlighted in red.

outputs a challenge message m and the identities of two honest users, upk0 and upk1. It must
then determine whether requesting a forward by upk0 for a signature on m results in upk0
forwarding the signature or in upk1 forwarding the signature, and similarly for upk1. The
only restriction is that the adversary must output the challenge message and the identities of
upk0 and upk1 before issuing any forwarding queries on m involving these users via the HFwd
oracle. This prevents the adversary from trivially breaking forwarder anonymity by linking
multiple forwards made by the same user.

Traceability and Unframeability: Traceability requires that any valid signature generated by an
adversary that corrupts the E2EE server must open to the identity of a corrupt user—specifically,
one it obtains through the Reg or Cor oracles—after it has been forwarded by at least ttrace
distinct honest users. Unframeability is similar, except that the adversary additionally cor-
rupts the registration server. In this case, we require that the signature does not open to the
identity of an honest user i.e., while the adversary may locally generate keypairs and pro-
duce signatures that open to unregistered users, it must be unable to frame any honest user.
Note that the definition requires consecutively forwarding by ttrace honest users to prevent the
adversary from mounting refresh attacks, as discussed in Section 2.1.1.

Definition 10 (Hop Tracking Signature). Let tanon, ttrace ∈ poly(λ). A (tanon, ttrace)-secure Hop
Tracking Signature scheme HTS = (Setup, Register, Sign, Forward, Verify, Open) is a tuple with the
following semantics.

27

ExpTraceHTS,A(1
λ):

1: Initialize I := ∅ and H := ∅. Compute
(mpk,msk, rsk)← Setup(1λ).

2: Let

(m,σ0, stop, st)← AO,Reg(mpk,msk),

where O denotes the oracles (RegH,Cor,
HSign,HFwd). If σ0 does not verify success-
fully, output 0.

3: Initialize i := 0. While stop = 0, run

(upki+1, stop, st)← AO,Reg(st, σi)

σi+1 ← Forward(uski+1,m, σi)

i := i+ 1

where (upki+1, uski+1) ∈ H for each i. If for
any i there does not exist (upki+1, uski+1) in
H, then output 0. Let the counter i be equal
to ℓ when stop = 1.

4: Output 1 if

m ̸∈ MHSign ∧ m ̸∈ MHFwd ∧
L ≥ ttrace ∧ Open(msk,m, σℓ) ̸∈ I

whereMHSign andMHFwd are the set of mes-
sages queried to HSign and HFwd respectively,
and L =

∣∣∣{upki}ℓi=1

∣∣∣ is the number of distinct

public keys in (upk1, . . . , upkℓ).

Figure 4: HTS traceability experiment. Differ-
ences from Figure 5 are highlighted in red.

ExpFrameHTS,A(1
λ):

1: Initialize I := ∅ and H := ∅. Compute
(mpk,msk, rsk)← Setup(1λ).

2: Let

(m,σ0, stop, st)← AO(mpk,msk, rsk),

where O denotes the oracles (RegH,
Cor,HSign,HFwd). If σ0 does not verify
successfully, output 0.

3: Initialize i := 0. While stop = 0, run

(upki+1, stop, st)← AO(st, σi)

σi+1 ← Forward(uski+1,m, σi)

i := i+ 1

where (upki+1, uski+1) ∈ H for each i. If for
any i there does not exist (upki+1, uski+1) in
H, then output 0. Let the counter i be equal
to ℓ when stop = 1.

4: Output 1 if

m ̸∈ MHSign ∧ m ̸∈ MHFwd ∧
L ≥ ttrace ∧ Open(msk,m, σℓ) ∈ H

whereMHSign andMHFwd are the set of mes-
sages queried to HSign and HFwd respectively,
and L =

∣∣∣{upki}ℓi=1

∣∣∣ is the number of distinct

public keys in (upk1, . . . , upkℓ).

Figure 5: HTS unframeability experiment. Dif-
ferences from Figure 4 are highlighted in red.

• Setup(1λ) → (mpk,msk, rsk) is a PPT setup algorithm, run by a trusted party, that outputs the
master public key mpk, the master secret key msk and the registration key rsk.

• Register⟨Sreg(rsk),U(mpk)⟩ → ⟨upk, (upk, usk)⟩ is a registration protocol between the registration
server Sreg with input rsk and a user U with input mpk. At the end of the protocol, the server and
the user obtain the user’s public key upk and the user additionally obtains its secret key usk.

• Sign(usk,m) → σ is a PPT signing algorithm run by registered users that takes a user’s secret
key usk and a message m ∈ {0, 1}∗ as input and outputs a signature σ.

• Forward(usk,m, σ)→ σ′ is a PPT algorithm that takes a user’s secret key usk, a message m and a
signature σ on m and outputs a new signature σ′ on m.

• Verify(mpk,m, σ) =: b is a polynomial time algorithm that takes the master public key mpk, a
message m and a signature σ as input and outputs a bit b ∈ {0, 1} denoting if σ is valid.

28

• Open(msk,m, σ) =: upk is a polynomial time algorithm that takes the master secret key msk, a
message m and a signature σ on m as input and either outputs ⊥ or a public key upk.

We model the adversary’s capabilities in security definitions using the following oracles. The
oracles are described using the keys (mpk,msk, rsk) generated by the experiment in the setup phase,
and a set of corrupt users I and honest users H initialized by the experiment.

• RegH(): Allows the adversary to register honest users. When called, it locally runs the registra-
tion protocol Register⟨Sreg(rsk),U(mpk)⟩ to compute (upk, usk) which it then adds toH. It returns
upk to the adversary.

• Reg(): Allows the adversary to register corrupt users. When called, it acts as the registration
server Sreg(rsk) in an execution of Register and adds the public key upk of the registered corrupt
user to I.

• Cor(upk): Allows the adversary to corrupt honest users. When called with a user’s public key
upk, if (upk, usk) ∈ H it returns usk to the adversary and adds upk to I.

• HSign(upk,m): Allows the adversary to obtain signatures by honest users on messages of its
choice. When called with a user’s public key upk and a message m, if (upk, usk) ∈ H, it computes
σ ← Sign(usk,m) and returns σ to the adversary.

• HFwd(upk,m, σ): Allows the adversary to compute forwards on behalf of honest users. When
called with a user’s public key upk, a message m and a signature σ, if (upk, usk) ∈ H, it computes
Forward(usk,m, σ) to obtain σ′ and returns σ′ to the adversary.

• Trace(m,σ): Allows the adversary to trace the source of signatures. When called with a message
m and signature σ, it runs upk := Open(msk,m, σ) and returns upk to the adversary.

We require that a (tanon, ttrace)-secure HTS scheme HTS satisfy the following properties.

• Correctness: HTS is (tanon, ttrace)-correct if for every non-uniform polynomial time adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N

Pr

Verify(mpk,m, σℓ) ̸= 1
∨ upk′ ̸∈ {⊥, upk0}

∨
(
L < tanon ∧ upk′ ̸= ⊥

)
∨

(
L ≥ ttrace ∧ upk′ ̸= upk0

) :

(mpk,msk, rsk)← Setup(1λ)
(m, upk0, . . . , upkℓ)← ARegH(mpk)

σ0 ← Sign(usk0,m)
σi ← Forward(uski,m, σi−1), ∀i ∈ [ℓ]

upk′ := Open(msk,m, σℓ)

 ≤ negl(λ)

where L =
∣∣∣{upki}ℓi=1

∣∣∣ is the number of distinct public keys in (upk1, . . . , upkℓ), and (upki, uski)

is in H for each i ∈ [0, ℓ].

• Source Anonymity: HTS is tanon-source anonymous against the opener if for every non-uniform
polynomial time adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
ℓmsg ∈ poly(λ) and messages m ∈ {0, 1}ℓmsg ,

Pr
[
ExpSrcAnonopenHTS,A(1

λ,m) = 1
]
≤ 1

2
+ negl(λ)

29

where ExpSrcAnonopenHTS,A is defined in Figure 2.

HTS is source anonymous against the registration server if for every non-uniform polynomial
time adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,

Pr
[
ExpSrcAnonregHTS,A(1

λ) = 1
]
≤ 1

2
+ negl(λ)

where ExpSrcAnonregHTS,A is defined in Figure 3.

• Forwarder Anonymity: HTS is forwarder anonymous if for every non-uniform polynomial time
adversary A, there exists a negligible function negl(·) such that for all λ ∈ N we have

Pr

upk0, upk1 ̸∈ I ∧
(upk0,m) ̸∈ J ∧
(upk1,m) ̸∈ J ∧

b = b′

:

(mpk,msk, rsk)← Setup(1λ)
(m, upk0, upk1, st)← A∗,HFwd(mpk,msk, rsk)

b← {0, 1}
b′ ← A∗,HFwdb(st)

 ≤ 1

2
+ negl(λ)

where the secret keys corresponding to upk0 and upk1 are in H, J is the set of message and
user identity pairs queried to HFwd, HFwd0 is identical to HFwd, and HFwd1 is identical to
HFwd except that HFwd1(upk0,m, σ) returns Forward(usk1,m, σ) and HFwd1(upk1,m, σ) returns
Forward(usk0,m, σ) for any signature σ. A∗ is used to denote that A has oracle access to RegH,
Cor, and HSign.

• Traceability: HTS is ttrace-traceable if for every non-uniform polynomial time adversary A, there
exists a negligible function negl(·) such that for all λ ∈ N we have

Pr
[
ExpTraceHTS,A(1

λ) = 1
]
≤ negl(λ)

where ExpTraceHTS,A is defined in Figure 4.

• Unframeability: HTS is ttrace-unframeable if for every non-uniform polynomial time adversary
A, there exists a negligible function negl(·) such that for all λ ∈ N we have

Pr
[
ExpFrameHTS,A(1

λ) = 1
]
≤ negl(λ)

where ExpFrameHTS,A is defined in Figure 5.

When the tracing and anonymity thresholds are equal, we simply say that the HTS scheme is
t-secure.

Succinct HTS schemes. We say an HTS scheme is succinct if the size of signatures is sublinear in
the number of forwards. Non-succinct HTS schemes, where the size of the signature grows linearly
with the number of forwards, are infeasible for applications like source tracing of viral messages
where the number of forwards are expected to be relatively large.

Definition 11 (Succinct Hop Tracking Signature Scheme). An HTS scheme HTS is said to be suc-
cinct if there exists a sublinear function g(x) ∈ o(x) and a polynomial p(x) ∈ poly(x) such that for
all ℓmsg ∈ poly(λ), all λ, ℓ ∈ N, all messages m ∈ {0, 1}ℓmsg , all registration keys rsk in the support of
Setup(1λ) and user secret keys (usk0, . . . , uskℓ) in the support of Register, we have,

|σℓ| = g(ℓ)p(λ)

with probability 1 where σ0 ← Sign(usk0,m), σi ← Forward(upki,m, σi−1) for each i ∈ [ℓ], and the
probability is over the randomness used for signing and forwarding the signature.

30

4.1 Discussion on the Unique Forwarders on a Path Predicate

In this work, we consider primitives that allow source tracing for messages where the corresponding
forwarding graph satisfies the unique-forwarders-on-a-path predicate i.e., the number of forwarders
between the source and the final recipient is at least a threshold t. However, as discussed in
Section 2.1.1, corrupt parties can always prevent traceability by acting as a new source and sending
the message anew or resorting to “out-of-band” communication with other corrupt parties. As a
result, traceability is only possible if t honest users forward a message sequentially. In this section,
we explore whether such a traceability guarantee is meaningful in practice.

In practice, the adversary corrupts a set of parties in the system. Then a certain message is
signed and forwarded throughout users. We model this as a random graph where the vertices
correspond to the users and the edges correspond to the message path in the system. In a random
graph GN,p, given N vertices, the edges are sampled according to some probability, say p = c0/N
where c0 = O(1) is a constant. This provides a simple yet easy-to-analyze model of how a message
propagates through the system: we can think of c0 as the size of a user’s contact list, with the user
forwarding the message to all of its contacts. It is well-known that a random graph GN,p has a path
of length c1N except with negligible probability in N , where c1 < 1 is a constant depending on c0
[FK15].

Additionally, we show that a uniformly chosen subgraph H with (1 − ϵ)N vertices still has a
path of length c2N except with negligible probability in N , where ϵ < 1 is a constant. We can think
of the subgraph H as the set of honest users in the system. This means that, even if the adversary
corrupts a uniformly random set of users of size ϵN , there is a sufficiently long path containing only
honest users, except with negligible probability, and thus we can trace the source identity. In other
words, we can guarantee that even if the adversary corrupts a fraction of the entire system, we can
still deanonymize the source of a viral message.

Paths In Random Graphs. A random graph GN,p is a graph with N vertices and where each edge
is sampled independently with probability p. It is well-known that random sparse graphs have long
paths. Let G be a graph and let H be a subgraph, we denote by G \H the subgraph of G where the
vertices of H are removed.

Lemma 1 ([FK15]). Let p = c/N where c = O(logN). Then GN,p has a path of length at least(
1− 6 log c

c

)
N

except with negligible probability in N .

Let G be a random graph a let H be a random subgraph. We show that the graph G \ H still
has a long path.

Lemma 2. Let p = c/N where c = O(1) is a constant and G = GN,p be a random graph. Let H be a
uniformly chosen random subgraph of size k = ε ·N where ε < 1. Then the graph G \H has a path
of length d ·N where d is a constant, except with negligible probability in N .

Proof. Let F = G \ H. F has (1 − ε)N vertices and it is a random graph with p = c/N . Set
c′ = (1− ε) · c. Then, F = F(1−ε)N,p where p = c′/((1− ε)N). To see this note that

p =
c

N
=

c′

(1− ε)N
.

31

We can resort to Lemma 1 to argue that F has a path of length(
1− 6 log c′

c′

)
· (1− ε)N ∈ d ·N

except with negligible probability in N , for some constant d. ■

Example. As a concrete example, set N = 2B (two billion, which is roughly the number of
Whatsapp users) and let H be the nodes that an adversary corrupts. Let εN be the size of H.
Lemma 2 states that, in this case, G \H will have a path of length d ·N for some constant d, except
with negligible probability. If we set the tracing threshold to 1M (one million forwards), then the
size of H can be roughly ≈ 0.4 · N and G \ H will have a path of size 1M except with negligible
probability. This means that, even a very powerful adversary corrupting ≈ 0.4 · N = 0.8B can be
traced except with negligible probability.

5 Impossibility Of t-secure Succinct HTS

In this section we show that t-secure succinct HTS schemes cannot exist using a well known lower
bound in communication complexity. We first recall relevant details in communication complex-
ity; specifically the ϵ-error probabilistic communication complexity Cϵ(f) of a boolean function f ,
introduced by Yao [Yao79]. Consider two computationally unbounded parties, each holding an n
bit input x and y such that neither party knows the other’s input. The parties wish to compute the
output of a function f : {0, 1}2n → {0, 1} using a pre-determined protocol. To compute the output,
they are allowed to make random decisions as well as send messages to each other. At the end of
the protocol, the parties must output f(x, y) with probability at least 1 − ϵ for any x, y ∈ {0, 1}n.
CA(f) is defined as the expected number of bits communicated between the two parties when
computing f on the worst case input under the protocol A and Cϵ(f) is defined as the infimum of
the set of all CA(f) where the output of protocol A is correct with probability at least 1 − ϵ. In
other words, Cϵ(f) is the expected communication on the worst case input for any protocol that
computes f with at most ϵ error.

Let DISn : {0, 1}n×{0, 1}n → {0, 1} denote the disjointness function such that DISn(x, y) = 1 iff
for all i ∈ [n], either xi ̸= 1 or yi ̸= 1. Alternatively, let X,Y ⊆ [n] denote the set of indices where x
and y contain 1, respectively. Then, DISn(x, y) = 1 iff |X ∩ Y | = 0. Our main result for this section
follows from a lower bound established by Kalyanasundaram and Schnitger [KS92] who showed
that for any fixed ϵ < 1/2, Cϵ(DISn) ∈ Ω(n).

Informally, we show that any (t, t)-secure HTS signature that has been forwarded ℓ = O(t) times
has expected size linear in t. In other words, the signature size grows linearly with the number of
forwards and is therefore not succinct. Our result holds for non-constant thresholds t—so the only
parameter regime where we can hope to have a succinct t-secure HTS scheme is for a constant t,
where succinctness follows trivially from the fact that the signature needs to keep track of only a
constant number of forwarders. However, such a scheme does not provide any meaningful notion
of privacy since the source can be de-anonymized after a constant number of forwards. Looking
ahead, we show in Section 6 that having a gap in the anonymity and traceability thresholds suffices
to circumvent the impossibility result and realize a succinct HTS scheme where the signature size
is polylogarithmic in the number of forwards.

32

Theorem 3. Let t ∈ poly(λ) be a non-constant polynomial. Then, any (t, t)-secure HTS scheme cannot
be succinct (Definition 11).

Proof. We will first use a (t, t)-correct HTS scheme and a PRG to construct a protocol for computing
the disjointness function, where the communication complexity of the protocol depends on the size
of the signature. We will then leverage known lower bounds on the communication complexity
of any protocol that computes the disjointness function, to derive a lower bound on the size of
the signature. This lower bound on the signature size is conditioned on the existence of one-way
functions and relies solely on the correctness property of the HTS scheme. We conclude the proof
by showing that the source anonymity property implies the existence of one-way functions, which
in turn unconditionally establishes the impossibility of succinct (t, t)-secure HTS schemes.

Claim. Assuming one-way functions exist, any (t, t)-correct HTS scheme cannot be succinct.

Proof. Assume for the sake of contradiction that there exists a (t, t)-correct succinct HTS scheme
HTS for some non-constant polynomial t. Let λ denote the security parameter of HTS and let
n = t(λ) − 1. Let G be a PRG and let λ1 =

√
t(λ) be the security parameter of the PRG. Consider

two parties, Alice and Bob, with inputs x, y ∈ {0, 1}n that run the following protocol to compute
DISn(x, y).

1. Alice samples s← {0, 1}λ1 uniformly at random.

2. Alice uses G(s) as the random tape to compute (mpk,msk, rsk) ← HTS.Setup(1λ) and user keys
{(upki, uski)}

2n
i=1 using HTS.Register.

3. Alice computes σ0 ← HTS.Sign(usk0, 0).

4. For each i ∈ [n], Alice does one of the following.

• If xi = 1 then it computes σi ← HTS.Forward(uski, 0, σi−1).

• If xi = 0 then it computes σi ← HTS.Forward(uskn+i, 0, σi−1).

5. Alice sends (s, σn) to Bob.

6. Bob uses G(s) to compute the setup (mpk,msk, rsk) and the user keys {(upki, uski)}
2n
i=1.

7. Bob initializes z := 1 and does the following for every i ∈ [n] with yi = 1.

• It computes σn+i ← HTS.Forward(usk, 0, σn).

• If HTS.Open(msk, 0, σn+i) = ⊥ then it sets z := 0.

8. Bob sends z to Alice and both parties output z.

Correctness of the protocol follows from the security of PRG and the (t, t)-correctness of HTS.
In more detail, since t is a non-constant polynomial in λ and λ1 =

√
t(λ), it follows from the

security of the PRG that the correctness of HTS holds with overwhelming probability when G(s)
is used as the random tape for computing the setup and the user secret keys. Alice computes σn
by forwarding σ0 through n distinct forwarders, with public keys (upk′1, . . . , upk

′
n) where for each

i ∈ [n], upk′i = upki if xi = 1 and upk′i = upkn+i otherwise. Bob checks if xi = yi = 1 (in which case
the inputs are not disjoint) by attempting to trace the signature σn+i obtained by forwarding σn

33

through the user with public key upki. Observe that if xi = 1 then upk′i = upki which implies that
σn+i has been forwarded through n = t(λ) − 1 distinct users and so HTS.Open(msk, 0, σn+i) = ⊥
with overwhelming probability due to the correctness of HTS. Conversely, if xi = 0 then σn+i has
been forwarded through n + 1 = t(λ) distinct users in which case HTS.Open(msk, 0, σn+i) outputs
upk0 with overwhelming probability. Thus, it follows that the parties output DISn(x, y) with all but
negligible probability at the end of the protocol.

Next, observe that the parties communicate |σn| + λ1 + 1 bits during the protocol. Since HTS
is succinct and λ1 ∈ o(t(λ)) the expected communication complexity of the protocol for all inputs
x, y ∈ {0, 1}n is o(t(λ)). However, for large enough λ, this is a contradiction to the fact that for any
ϵ < 1

2 , Cϵ(DISn) ∈ Ω(n) [KS92]. This implies that HTS cannot be (t, t)-correct. □

Claim. If there exists a t-source anonymous HTS scheme then one-way functions exist.

Proof Sketch. Let HTS be a t-source anonymous HTS scheme. Consider a function f such that
f(1λ, x) runs (mpk,msk, rsk)← HTS.Setup(1λ;x) and outputs y = (mpk,msk). It is easy to see that
f is one-way. Specifically, if f is not one-way then an adversary for the ExpSrcAnonopenHTS,A experiment
can invert f to compute x and thus rsk. It can then break source anonymity by using rsk to locally
compute t user key-pairs and forward the challenge signature through these users to de-anonymize
the source. However, since HTS is t-source anonymous, it follows that f is a one-way function. □

This concludes the proof of the theorem. ■

We note that the proof of Theorem 3 can be extended to argue the impossibility of succinct
t-secure HTS schemes, even if a larger correctness error of up to 1/2 is allowed, since the lower
bound in [KS92] requires ϵ < 1/2. Similarly, it can be shown that t-secure HTS schemes that satisfy
a weaker form of succinctness, where the signature size is sublinear in the number of forwards only
in expectation, are also impossible.

6 Succinct HTS Scheme

We present our construction of a succinct HTS scheme in Section 6.3. Before describing our con-
struction, we first introduce two key building blocks: a streaming algorithm for counting distinct
elements in Section 6.1 and Puncturable NIZKs in Section 6.2.

6.1 Streaming Algorithm

In this section, we define the syntax and properties of streaming algorithms for counting distinct
elements. We then present the streaming algorithm of Bar-Yossef et al. [BYJK+02] and show that
it satisfies the required properties. We refer the reader to Section 2.6 for background on stream-
ing algorithms and a detailed discussion of how we address the challenges of using them in an
adversarial setting.

We formalize the syntax and properties of streaming algorithms for counting distinct elements
below. Our HTS construction requires three properties from streaming algorithms: correctness,
insertion robustness and deletion robustness. Correctness ensures that an adversary cannot affect
the algorithm’s estimate by reordering or repeating uniformly random inputs. Insertion and dele-
tion robustness, on the other hand, require that adversarial insertions do not decrease the estimate

34

and deletions do not increase it, even when the inputs are not uniformly random. Note that while
these robustness properties are fairly natural, they do not follow from correctness: since correct-
ness is defined only for uniformly random inputs, it does not rule out the possibility that adversarial
insertions (or deletions) could decrease (or increase) the estimate in other cases.

Definition 12 (Streaming Algorithm For Distinct Elements). Let ℓuniq be an integer-valued polyno-
mial. A streaming algorithm for distinct elements Uniq = (Update,Query) is a tuple of algorithms
with the following syntax.

• Update(ϵ, st, x) =: st′ is a deterministic algorithm that takes an error bound ϵ, the current state st
and a value x ∈ {0, 1}ℓuniq(λ) as input and outputs the next state st′. It runs in time poly(λ, 1/ϵ).
st = ⊥ denotes the initial state before any input is processed.

• Query(ϵ, st) =: q is a deterministic algorithm that takes the error bound ϵ and a state st as input
and outputs the number of distinct elements q in the input stream used to compute st. It runs in
time poly(λ, 1/ϵ).

We require the streaming algorithm to satisfy the following properties.

• Correctness: There exists a negligible function negl(·) such that for all adversaries A, λ ∈ N,
ϵ ≤ 1

2 and L ∈ poly(λ), we have

Pr

 {xi}Li=1 = {yi}
ℓ
i=1

∧
|Query(ϵ, stℓ)− L| ≥ ϵL

:

x1, . . . , xL ← {0, 1}ℓuniq(λ)
y1, . . . , yℓ ← A({xi}Li=1)

st0 := ⊥
sti := Update(ϵ, sti−1, yi), ∀i ∈ [ℓ]

 ≤ negl(λ).

• Insertion Robustness: There exists a negligible function negl(·) such that for all adversaries A,
λ ∈ N, all ϵ ≤ 1

2 , all L ∈ poly(λ), and all x1, . . . , xL ∈ {0, 1}ℓuniq(λ), we have

Pr

 {xi}Li=1 ⊆ {yi}
ℓ
i=1

∧
Query(ϵ, stxℓ) ≥ Query(ϵ, styL)

:
y1, . . . , yℓ ← A({xi}Li=1)

stxi := Update(ϵ, stxi−1, xi), ∀i ∈ [L],
styi := Update(ϵ, styi−1, yi), ∀i ∈ [ℓ]

 ≤ negl(λ),

where stx0 := ⊥ and sty0 := ⊥.

• Deletion Robustness: There exists a negligible function negl(·) such that for all adversaries A,
λ ∈ N, ϵ ≤ 1

2 and L ∈ poly(λ), and all x1, . . . , xL ∈ {0, 1}ℓuniq(λ), we have

Pr

 {xi}Li=1 ⊇ {yi}
ℓ
i=1

∧
Query(ϵ, stxℓ) ≤ Query(ϵ, styL)

:
y1, . . . , yℓ ← A({xi}Li=1)

stxi := Update(ϵ, stxi−1, xi), ∀i ∈ [L],
styi := Update(ϵ, styi−1, yi), ∀i ∈ [ℓ]

 ≤ negl(λ),

where stx0 := ⊥ and sty0 := ⊥.

• Succinctness: For all polynomials p1, there exists a polynomial p2 and a sublinear function
g(x) ∈ o(x) such that for all λ, L ∈ N and ϵ ≤ 1/2, where L < p1(λ), the size of the state st
obtained upon processing L values with error bound ϵ is at most p2(λ · 1/ϵ) · g(L).

35

Streaming Algorithm for Distinct Elements

Public parameters. Let ℓuniq ∈ Ω
(
λ2

)
denote the length of each input and let ℓsub(λ) = ℓuniq(λ)/λ.

Update(ϵ, st, x)

1 : parse x = (x1, . . . , xλ)

where each xi ∈ [0, 2ℓsub(λ)]

2 : γ :=
⌈
96/ϵ2

⌉
3 : if st ̸= ⊥
4 : parse st = (M1, . . . ,Mλ)

5 : else ∀i ∈ [λ], Mi := ∅
6 : for i ∈ [λ]

7 : x∗
i = max (Mi)

8 : if |Mi| < γ

9 : append xi toMi

10 : elseif xi < x∗
i

11 : replace x∗
i with xi inMi

12 : return st′ := (M1, . . . ,Mλ)

Query(ϵ, st)

1 : if st = ⊥ then return 0

2 : parse st = (M1, . . . ,Mλ)

3 : γ :=
⌈
96/ϵ2

⌉
4 : ∀i ∈ [λ], qi :=

γ2ℓsub(λ)

max (Mi)

5 : return q := median(q1, . . . , qλ)

Figure 6: Streaming algorithm for distinct elements [BYJK+02].

Construction. The streaming algorithm of Bar-Yossef et al. [BYJK+02] is described in Figure 6.
Intuitively, the streaming algorithm works by keeping track of the γ most minimum values among
all its inputs, each of which are uniformly random. It then uses the γ-th most minimum value to
estimate the number of distinct elements in the input stream. However, since a single estimate only
has a constant probability of being within the required range, the algorithm is repeated λ times to
amplify the probability.

Theorem 4. For all polynomials ℓuniq ∈ Ω
(
λ2

)
, the algorithm described in Figure 6 is a streaming

algorithm for distinct elements (Definition 12).

Proof. We first show that when the input stream consists of L uniformly random elements, the
algorithm’s output is, with overwhelming probability, at most ϵL away from L. The correctness
of the algorithm, as required by Definition 12, follows from the fact that the algorithm’s output
depends only on the set of distinct elements in the input stream and is independent of the order
in which the elements are processed. Specifically, the algorithm parses each input as a tuple of λ
integers and maintains the γ smallest values at each index separately, across all inputs. Since the
algorithm’s output is determined solely by the γλ smallest values it maintains, the output remains
unchanged even if elements in the input stream are repeated or reordered.

Insertion robustness follows from the fact that the algorithm’s output is inversely proportional
to the maximum value among the γλ smallest values it maintains. In particular, inserting more
elements into the stream cannot increase this maximum value, which means that the algorithm’s
output cannot decrease by adding new elements into the stream. Similarly, removing elements
from the stream cannot decrease this maximum value, which in turn implies that the algorithm’s

36

output cannot increase by deleting elements, thereby ensuring deletion robustness.

Claim. For all polynomials ℓuniq ∈ Ω
(
λ2

)
and error bounds ϵ ≤ 1/2, there exists a negligible function

negl(·) such that for all λ ∈ N and L ∈ poly(λ), the algorithm described in Figure 6 satisfies

Pr

 |Query(ϵ, stL)− L| ≥ ϵL :
x1, . . . , xL ← {0, 1}ℓuniq(λ)

st0 := ⊥
sti := Update(ϵ, sti−1, xi), ∀i ∈ [L]

 ≤ negl(λ).

Proof. The proof follows the same approach as [BYJK+02, Theorem 1]. Observe that the algorithm
outputs the median of q1, . . . , qλ. We bound the probability that the median is more than ϵL far
from L by bounding the probability that |qj − L| ≥ ϵL, for each j ∈ [λ]. Let xi,j denote the j-
th ℓsub(λ) length substring in xi where i ∈ [L]. Consider any arbitrary j ∈ [λ]. We have qj =

γ2ℓsub(λ)/max(Mj) whereMj contains the γ smallest values in {xi,j}Li=1.
We first consider the case when qj ≥ (1 + ϵ)L which in turn implies that at least γ values in the

set {xi,j}Li=1 are lesser than or equal to

γ2ℓsub(λ)

(1 + ϵ)L
≤

(
1− ϵ

2

) γ2ℓsub(λ)

L

where the second inequality follows from the fact that ϵ ≤ 1. For every i ∈ [L], let Xi be the
indicator random variable for the event xi,j ≤

(
1− ϵ

2

) γ2ℓsub(λ)

L . Since xi,j is sampled uniformly at
random from [2ℓsub(λ)], for each i ∈ [L] we have

E[Xi] ≤
(
1− ϵ

2

) γ

L
+

1

2ℓsub(λ)
<

(
1− ϵ

4

) γ

L

where the second inequality follows from the fact that for large enough λ, 2ℓsub(λ) > (4L)/(ϵγ) since
L ∈ poly(λ). Additionally,

V [Xi] = E
[
X2

i

]
− E[Xi]

2 = E[Xi]− E[Xi]
2 ≤ E[Xi] <

(
1− ϵ

4

) γ

L

where the second equality follows from the fact that Xi is a Bernoulli random variable. Let X =∑L
i=1Xi. From linearity of expectations we have E[X] <

(
1− ϵ

4

)
γ and V [X] <

(
1− ϵ

4

)
γ. From

Chebyshev’s inequality we have

Pr[X ≥ γ] ≤ Pr
[
|X − E[X]| > ϵγ

4

]
≤ 16V [X]

ϵ2γ2
<

16 (1− ϵ/4)

ϵ2γ
≤ 16

ϵ2γ
≤ 1

6

where the last inequality follows because γ = ⌈96/ϵ2⌉. Thus, the probability that at least γ values
in the set {xi,j}Li=1 are lesser than or equal to γ · 2ℓsub(λ)/ ((1 + ϵ)L) is at most 1/6, which implies
that Pr[qj ≥ (1 + ϵ)L] < 1/6.

We next consider the case when qj ≤ (1 − ϵ)L. This occurs when at most γ values in the set
{xi,j}Li=1 are lesser than or equal to γ · 2ℓsub(λ)/ ((1− ϵ)L). For each i ∈ [L], let Xi be the indicator

random variable for the event xi,j ≤ γ2ℓsub(λ)

(1−ϵ)L . For every i ∈ [L] we have

E[Xi] ≤
γ

(1− ϵ)L
≤ 2γ

L

37

since ϵ ≤ 1/2, and

E[Xi] ≥
γ

(1− ϵ)L
− 1

2ℓsub(λ)
≥ (1 + ϵ)γ

L
− 1

2ℓsub(λ)
≥

(
1 +

ϵ

2

) γ

L
.

As in the previous case, we have V [Xi] ≤ E[Xi] which implies that V [Xi] ≤ (2γ)/L. Let X =∑L
i=1Xi. From linearity of expectations we have E[X] ≤

(
1 + ϵ

2

)
γ and V [X] ≤ 2γ. Thus, from

Chebyshev’s inequality we have

Pr[X ≤ γ] ≤ Pr
[
|X − E[X]| ≤ ϵγ

2

]
≤ V [X]

((ϵγ)/2)2
≤ 1

12
<

1

6
.

Thus, the probability that at most γ values in the set {xi,j}Li=1 are lesser than or equal to γ ·
2ℓsub(λ)/ ((1− ϵ)L) is at most 1/6 which implies that Pr[qj ≤ (1− ϵ)L] < 1/6.

Thus, for every j ∈ [λ], we have Pr[|qj − L| ≥ ϵL] < 1/6. Moreover, since q1, . . . , qλ are inde-
pendent, it follows from a Chernoff bound that

Pr[|Query(stL)− L| ≥ ϵL] ≤ negl(λ).

□

Next, we argue that the algorithm has the correctness, insertion robustness and deletion robust-
ness properties.

Let x = (xi)
L
i=1 and let y = (yi)

ℓ
i=1 be the tuple output by an adversary A when run on input x.

Let qx and qy denote the algorithm’s output for input streams x and y respectively. Let x∗j and y∗j
be the γ-th minimum value in {xi,j}Li=1 and {yi,j}ℓi=1 respectively, for every j ∈ [λ].

Observe that qx and qy are completely determined by (x∗1, . . . , x
∗
λ) and (y∗1, . . . , y

∗
λ) respectively.

Thus, if x and y have the same set of distinct elements, in other words when {xi}Li=1 = {yi}ℓi=1,
then x∗j = y∗j for every j ∈ [λ]. This implies that qx = qy. However, when each element of x is
sampled uniformly at random, it follows from the previous claim that

Pr[|qy − L| ≥ ϵ · L] = Pr[|qx − L| ≥ ϵ · L] ≤ negl(λ).

Thus, the algorithm satisfies the correctness property.
Conversely, when {xi}Li=1 ⊆ {yi}

ℓ
i=1, we have x∗j ≥ y∗j for every j ∈ [λ]. This implies that

qx ≤ qy, since qx and qy are computed as the median value of γ2ℓsub(λ)/y∗j and γ2ℓsub(λ)/x∗j across all
j ∈ [λ] respectively. Thus, Pr[qx ≤ qy] = 1 and it follows that the algorithm has insertion robustness.

Similarly, when {xi}Li=1 ⊇ {yi}
ℓ
i=1, we have x∗j ≤ y∗j for every j ∈ [λ]. This implies that

Pr[qx ≥ qy] = 1 which in turn implies that the algorithm has deletion robustness.
We have thus shown that the algorithm is an ϵ-approximate streaming algorithm for distinct

elements. We are left to show that it is succinct. Observe that the algorithm’s state consists of λ
sets, each of which contains at most γ integers, where each integer is ℓsub(λ) bits in length. Thus,
the algorithm’s state size is Θ(λ · γ · ℓsub(λ)) = Θ(poly(λ)/ϵ2). ■

38

6.2 Puncturable NIZK

In this section we define and construct Puncturable NIZKs.
Informally, given a predicate ν, a Puncturable NIZK guarantees zero-knowledge for statements

x satisfying ν(x) = 1, and ensures knowledge soundness for statements x satisfying ν(x) = 0. More
precisely, it allows puncturing the trapdoor td on a predicate ν so that the resulting trapdoor tdν
can be used to simulate proofs on any statement x such that ν(x) = 1. On the other hand, it should
be infeasible for the adversary, even given the punctured trapdoor tdν , to prove false statements
x such that ν(x) = 0. This notion can be seen as a generalization of ID-based NIZKs [BJPY18].
Looking ahead, we use the ability to puncture the simulation trapdoor to prove source anonymity
of our HTS construction.

Definition 13 (Puncturable NIZK). Let L be an NP language with relation R. A Puncturable
Non-Interactive Zero Knowledge (PNIZK) argument of knowledge for L is a tuple of algorithms
PNIZK = (Setup,Prove,Verify,Puncture,SimProve) with the following semantics.

• Setup(1λ)→ (crs, td) is a PPT algorithm that outputs a common reference string and a trapdoor
td.

• Prove(crs, x, w) → π is a PPT algorithm that takes as input a common reference string crs, a
statement x ∈ L and a witness w, and outputs a proof π.

• Verify(crs, x, π) =: b is a polynomial time algorithm that takes as input a common reference string
crs, a statement x and a proof π and outputs a bit b ∈ {0, 1}.

• Puncture(td, ν)→ tdν is a PPT algorithm that takes the trapdoor td and an efficiently computable
predicate ν and outputs a punctured trapdoor tdν .

• SimProve(crs, x, tdν)→ π is a PPT algorithm that takes the crs, a trapdoor tdν and a statement x
as input and outputs a simulated proof π.

We require a PNIZK argument of knowledge to satisfy the following properties.

• Completeness: There exists a negligible function negl(·) such that for all λ ∈ N and (x,w) ∈ R,

Pr

[
Verify(crs, x, π) ̸= 1 :

(crs, td)← Setup(1λ)
π ← Prove(crs, x, w)

]
≤ negl(λ).

• Puncturable Knowledge Soundness: There exists an extractor E , which is a PPT algorithm
with the following properties. Firstly,{

(crs, td) : (crs, td)← Setup(1λ)
}
λ

c≈
{
(crs, td) : (crs, td, st)← E(1λ)

}
λ
.

Moreover, for all non-uniform polynomial time adversaries A there exists a negligible function
negl(·) such that for all λ ∈ N, we have

Pr

Verify(crs, x, π) = 1

∧
ν(x) = 0
∧

(x,w) ̸∈ R

:

(crs, td, ste)← E(1λ)
(ν, sta)← A(1λ, crs)

tdν ← Puncture(td, ν)
(x, π)← A(sta, tdν)

w ← E(ste, ν, tdν , x, π)

 ≤ negl(λ),

where ν is an efficiently computable predicate.

39

• Puncturable Zero Knowledge: For all non-uniform polynomial time adversaries A there exists
a negligible function negl(·) such that for all λ ∈ N, we have

Pr

(x,w) ∈ R
∧

ν(x) = 1
∧

b = b′

:

(crs, td)← Setup(1λ)
(ν, st)← A(1λ, crs)

tdν ← Puncture(td, ν)
(x,w, st)← A(1λ, tdν)
π0 ← Prove(crs, x, w)

π1 ← SimProve(crs, x, tdν)
b← {0, 1}

b′ ← A(st, πb)

≤ 1

2
+ negl(λ),

where ν is an efficiently computable predicate.

Remark 1 (Multi-theorem ZK). While puncturable zero knowledge is defined for a single statement
in Definition 4, the definition readily extends to a multi-theorem setting (for every statement x
satisfying ν(x) = 1) via a standard hybrid argument. This holds because the adversary receives the
punctured trapdoor and can generate simulated proofs on its own.

Remark 2 (PNIZK implies NIZK). Note that when the predicate is the null predicate, that is false
on every input, puncturable knowledge soundness is equivalent to the standard NIZK knowledge
soundness. On the other hand, when the predicate is the “all” predicate, that is true on every input,
puncturable zero knowledge is equivalent to standard NIZK zero knowledge.

Construction. We describe our construction of Puncturable NIZKs from policy-based signature
schemes (Definition 6) and NIZKs (Definition 4) in Figure 7. Informally, given a relation R and a
statement x ∈ R, the Puncturable NIZK computes a NIZK proof under an extended relation Rnzk

that accepts either a valid witness for x under R or a valid PBS signature on x. The PBS signing
key serves as the trapdoor td. Completeness of the Puncturable NIZK follows directly from the
completeness of the underlying NIZK. Puncturable knowledge soundness follows from the fact that
an adversary that receives tdν—the PBS signing key constrained by a policy ν—cannot produce
signatures on any x such that ν(x) = 0. Consequently, any witness w extracted from the NIZK
proof must satisfy (x,w) ∈ R. Conversely, the punctured trapdoor tdν does allow computing
signatures on statements x satisfying ν(x) = 1, which in turn allows producing valid proofs for
such statements. The zero-knowledge property of the NIZK ensures that the proof reveals nothing
about whether it was generated using the trapdoor or with a valid witness under R.

Theorem 5. For all NP relationsR, if PBS is a policy-based signature scheme (Definition 6) and NIZK
is a NIZK argument of knowledge (Definition 4) for the relation Rnzk, then the scheme described in
Figure 7 is a Puncturable NIZK scheme for R.

Proof. Completeness of the Puncturable NIZK follows directly from the completeness of the NIZK
and we mainly focus on proving puncturable knowledge soundness and puncturable zero-knowledge.

Claim. If PBS is unforgeable and NIZK is knowledge sound, then the scheme described in Figure 7 has
puncturable knowledge soundness.

Proof. There exists an extractor Enzk = (Setup,Extract) for NIZK, from its knowledge soundness
property. We will use Enzk to build an extractor E for the Puncturable NIZK scheme as follows.

40

Puncturable NIZK Scheme

Public parameters. The relationR for the Puncturable NIZK, a policy-based signature scheme PBS, and
a NIZK argument of knowledge for the relation

Rnzk = {(x,mpk;w) | (x,w) ∈ R ∨ PBS.Verify(mpk, x) = 1}.

Setup(1λ)

1 : crsnzk ← NIZK.Setup(1λ)

2 : (mpk,msk)← PBS.Setup(1λ)

3 : crs := (crsnzk,mpk)

4 : td := msk

5 : return (crs, td)

Prove(crs, x, w)

1 : parse crs = (crsnzk,mpk)

2 : π ← NIZK.Prove(

crsnzk, (x,mpk), w)

3 : return π

Verify(crs, x, π)

1 : parse crs = (crsnzk,mpk)

2 : b := NIZK.Verify(

crsnzk, (x,mpk), π)

3 : return b

Puncture(td, ν)

1 : parse td = msk

2 : tdν = PBS.KeyGen(msk, ν)

3 : return tdν

SimProve(crs, x, tdν)

1 : parse crs = (crsnzk,mpk)

2 : σ ← PBS.Sign(tdν , x)

3 : π ← NIZK.Prove(crsnzk, (x,mpk), σ)

4 : return π

Figure 7: Puncturable NIZK construction from policy-based signatures and NIZK arguments of
knowledge.

E first runs (crsnzk, td
′) ← Enzk.Setup(1λ) and (mpk,msk) ← PBS.Setup(1λ), and outputs crs =

(crsnzk,mpk), td = msk, and st = td′. Then, upon being called with input (st, ν, tdν , x, π), it com-
putes and outputs w ← Enzk.Extract(td′, x, π).

(crs, td) as output by E is indistinguishable from (crs, td) computed using the Puncturable
NIZK’s Setup algorithm since from the NIZK’s knowledge soundness property, crsnzk computed using
NIZK.Setup is indistinguishable from crsnzk computed using Enzk. We next use a hybrid argument
to show that any polynomial sized adversary A wins the puncturable knowledge soundness exper-
iment with at most negligible probability. Let the output of the experiment be defined as 1 if π
verifies successfully, ν(x) = 0 and (x,w) ̸∈ R, and be defined as 0 otherwise.

• Hyb0: This is the output of the puncturable knowledge soundness experiment when run with A.

• Hyb1: This hybrid is identical to the previous hybrid, except that the experiment aborts and
outputs ⊥ if (x,w) ̸∈ Rnzk.

Hyb0
c≈ Hyb1 since the knowledge soundness property of NIZK implies that the witness w

output by Enzk.Extract is such that (x,w) ∈ Rnzk, except with negligible probability; which in
turn implies that the experiment aborts in Hyb1 with at most negligible probability.

• Hyb2: This hybrid is identical to the previous hybrid, except that the experiment aborts and
outputs ⊥ if (x,w) ̸∈ R.

41

The only difference between Hyb1 and Hyb2 is that the experiment additionally aborts in
Hyb2 when (x,w) ̸∈ R. This means that when Hyb1 is not equal to Hyb2, then (x,w) ∈ Rnzk but
(x,w) ̸∈ R. It follows that w must then be a valid signature on x under mpk, from the definition
of Rnzk. However, since ν(x) = 0, it follows that Hyb1

c≈ Hyb2, where the indistinguishability
between the hybrids reduces directly to the unforgeability of PBS.

Observe that the experiment never outputs 1 in Hyb2 since it aborts and outputs ⊥ when
(x,w) ̸∈ R. Thus, the probability that Hyb2 = 1 is 0. Since Hyb0

c≈ Hyb2, it follows that the
experiment outputs 1 in Hyb0 with at most negligible probability, which in turn implies that A wins
the puncturable knowledge soundness experiment with at most negligible probability. □

Claim. If PBS is correct and NIZK is zero-knowledge, then the scheme described in Figure 7 has
puncturable zero-knowledge.

Proof. Let the output of the puncturable zero-knowledge experiment be defined as 1 if b′ = b and be
defined as 0 otherwise. We use a hybrid argument to show that for any polynomial sized adversary
A, the output of the experiment is 1 with a probability of at most 1/2 + negl(λ).

• Hyb0: This is the output of the puncturable zero-knowledge experiment when run with A.

• Hyb1: This hybrid is identical to the previous hybrid, except that the experiment aborts and
outputs ⊥ if σ computed in SimProve is such that PBS.Verify(mpk, σ, x) ̸= 1.

Since ν(x) = 1, it follows directly from the correctness of PBS that Hyb0
c≈ Hyb1.

• Hyb2: This hybrid is identical to the previous hybrid, except that crsnzk and the proof πb send to
A are simulated using the NIZK simulator.

When b = 1 and the experiments do not abort, we have ((x,mpk), σ) ∈ Rnzk since σ verifies
successfully under mpk. It follows that when (x,w) ∈ R, the witness used to compute πb is valid,
irrespective of if b is equal to 0 or 1. Thus, Hyb1

c≈ Hyb2 from the zero-knowledge property of
NIZK.

Observe that the proof sent to A is independent of b in Hyb2 since it is always simulated. It
follows that b′ = b and Hyb2 = 1 with probability exactly 1/2. Since Hyb0

c≈ Hyb2, A wins the
puncturable zero-knowledge experiment with a probability of at most 1/2 + negl(λ). □

It follows from the above argument that the scheme described in Figure 7 is a Puncturable
NIZK. ■

6.3 HTS Construction

In this section, we present our succinct HTS scheme. We first list the required primitives and then
describe the scheme.

42

6.3.1 Required primitives

We require the following primitives for our succinct HTS construction.

• A digital signature scheme Sig (Definition 3).

• A group signature scheme GSig (Definition 5).

• A streaming algorithm Uniq for counting distinct elements with input length ℓuniq (Definition 12).

• A pseudorandom permutation PRP (Definition 2) and a pseudorandom function PRF (Defini-
tion 1) with output lengths ℓuniq(λ).

• A pseudorandom permutation PRP (Definition 2) and a pseudorandom function PRF (Defini-
tion 1) with output lengths ℓuniq(λ).

• A protocol Πreg that realizes the functionality FSig
reg (Functionality 1).

• A Puncturable NIZK scheme PNIZK (Definition 13) for the relation Rpzk defined as

Rpzk =

{(
st, st′, ϵ, pksig, kmsg,m ; fk, cert

) ∣∣∣∣ Sig.Verify(pksig, fk, cert) ∧
st′ = Uniq.Update(ϵ, st, f)

}
where f = PRP(kmsg,PRF(fk,m)).

• An IVC scheme IVC (Definition 9) for the set of compliance predicates Φ where each predicate
ϕpar in Φ is parameterized by par = (crspzk, ϵ, pksig, kmsg,m) and is of the form

ϕpar(st, st
′, πfwd) =

1 st′ = ⊥ ∧ st = ⊥
1 PNIZK.Verify (crspzk, xpzk, πfwd) = 1

0 otherwise

where xpzk =
(
st, st′, ϵ, pksig, kmsg,m

)
.

• An extractable witness encryption WE (Definition 7) for the relation Rwe defined as

Rwe =

{(
t, ϵ, crsivc, crspzk, pksig,

kmsg,m ; st, π

) ∣∣∣∣ Uniq.Query(ϵ, st) ≥ t ∧
IVC.Verify(crsivc, ϕpar, st, π) = 1

}
where par =

(
crspzk, ϵ, pksig, kmsg,m

)
.

• A NIZK argument of knowledge NIZK (Definition 4) for the relation Rnzk defined as

Rnzk =

{(
gpkgs, t, ϵ, crsivc, crspzk,
pksig, kmsg,m ; σgs, rwe

) ∣∣∣∣ GSig.Verify(gpkgs,m, σgs) = 1 ∧
ctwe := WE.Enc (xwe, σgs ; rwe)

}
where xwe =

(
t, ϵ, crsivc, crspzk, pksig, kmsg,m

)
.

43

Functionality FSig
reg

The functionality is parameterized by a signature scheme Sig, and proceeds as follows with a user U and
the registration server Sreg, where either might be corrupt by an adversary S.

1: The functionality receives sksig from Sreg and mpk from U. It parses pksig from mpk and sends abort to
Sreg and U if sksig is not a valid signing key for pksig.

2: The functionality samples fk← {0, 1}λ uniformly at random and computes cert← Sig.Sign(sksig, fk).
3: If U is corrupt, the functionality sends (fk, cert) to S. In all cases, it receives status from S.
4: If status = abort it sends abort to Sreg and U. Else, it sends (fk, cert) to U and ⊤ to Sreg.

Functionality 1: Registration functionality.

Succinct HTS Scheme

Public parameters. Threshold parameter t ∈ poly(λ), error parameter ϵ ∈ R, and the primitives listed
in Section 6.3.1.

Setup(1λ)

1 : (gpkgs, rskgs, oskgs)← GSig.Setup(1λ)

2 : (pksig, sksig)← Sig.Gen(1λ)

3 : crsnzk ← NIZK.Setup(1λ)

4 : (crspzk, ·)← PNIZK.Setup(1λ)

5 : crsivc ← IVC.Setup(1λ)

6 : mpk := (gpkgs, pksig, crsnzk, crspzk, crsivc)

7 : msk := (mpk, oskgs)

8 : rsk := (mpk, rskgs, sksig)

9 : return (crs,msk, rsk)

Register⟨Sreg(rsk),U(mpk)⟩

1 : Sreg parses rskgs, sksig from rsk

2 : U runs (pk, sk)← GSig.KeyGen(1λ)

3 : ⟨pk, uskgs⟩ ←
GSig.Register⟨Sreg(rskgs),U(pk, sk)⟩

4 : ⟨·, (fk, cert)⟩ ←
Πreg⟨Sreg(rsk),U(mpk)⟩

5 : upk := pk

6 : usk := (mpk, uskgs, fk, cert)

7 : Sreg outputs upk

8 : U outputs (upk, usk)

Figure 8: Setup and registration procedures for the succinct HTS scheme. The remaining algorithms
are described in Figure 9.

6.3.2 Construction

We describe our construction of succinct HTS signatures in Figures 8 and 9. The scheme is param-
eterized by a threshold t ∈ poly(λ) and the streaming algorithm error parameter ϵ ∈ R so that the
resulting HTS thresholds are tanon = t/(1 + ϵ) and ttrace = t/(1− ϵ).

Informally, the setup algorithm generates the setup of the underlying primitives, provides the
group signature opening key osk to the E2EE server, and provides the group signature registration
key rsk along with a signing key sksig (used to authenticate forwarding keys) to the registration
server. During registration, the user receives its secret key usk for the group signature scheme,
along with a forwarding key fk that is authenticated via a signature under pksig. A signature in this

44

Succinct HTS Scheme (continued)

Sign(usk,m)

1 : parse mpk, uskgs from usk

2 : parse mpk =

(gpkgs, pksig, crsnzk, crspzk, crsivc)

3 : σgs ← GSig.Sign(uskgs,m)

4 : kmsg, rwe ← {0, 1}λ

5 : xwe := (t, ϵ, crsivc, crspzk, pksig, kmsg,m)

6 : ctwe := WE.Enc(xwe, σgs ; rwe)

7 : xnzk := gpkgs∥xwe

8 : πnzk ←
NIZK.Prove(crsnzk, xnzk, (σgs, rwe))

9 : σ := (ctwe, πnzk, kmsg,⊥,⊥)
10 : return σ

Forward(usk,m, σ)

1 : parse usk = (mpk, uskgs, fk, cert)

2 : parse σ = (ctwe, πnzk, kmsg, st, π)

3 : if Verify(mpk,m, σ) = 0

4 : return ⊥
5 : f := PRP(kmsg,PRF(fk,m))

6 : st′ := Uniq.Update(ϵ, st, f)

7 : xpzk := (st, st′, ϵ, pksig, kmsg,m)

8 : πfwd ← PNIZK.Prove(

crspzk, xpzk, (fk, cert))

9 : par := (crspzk, ϵ, pksig, kmsg,m)

10 : π′ ← IVC.Prove(

crsivc, ϕpar, st, π, πfwd, st
′)

11 : σ′ := (ctwe, πnzk, kmsg, st
′, π′)

12 : return σ′

Verify(mpk,m, σ)

1 : parse mpk =

(gpkgs, pksig, crsnzk, crspzk, crsivc)

2 : parse σ = (ctwe, πnzk, kmsg, st, π)

3 : xnzk := (gpkgs, t(λ), ϵ, crsivc, crspzk,

pksig, kmsg,m)

4 : if NIZK.Verify(crsnzk, xnzk, πnzk) = 0

5 : return 0

6 : par := (crspzk, ϵ, pksig, kmsg,m)

7 : return IVC.Verify(crsivc, ϕpar, st, π)

Open(msk,m, σ)

1 : parse msk = (mpk, oskgs)

2 : parse σ = (ctwe, πnzk, kmsg, st, π)

3 : if Verify(mpk,m, σ) = 0 or

Uniq.Query(ϵ, st) < t

4 : return ⊥
5 : σgs := WE.Dec((st, π), ctwe)

6 : upk := GSig.Open(oskgs,m, σgs)

7 : return upk

Figure 9: Signing, forwarding, verification, and opening algorithms for the succinct HTS scheme.
Setup and registration are described in Figure 8.

scheme is of the form

σ =

 ctwe, πnzk︸ ︷︷ ︸
Encryption of

source identity

, kmsg, st, π︸ ︷︷ ︸
Counting unique

forwarders

 .

Here, ctwe is a witness encryption of a group signature σgs on the message m, πnzk is a proof
that ctwe encrypts a valid group signature under the required statement, and kmsg is a PRF key—

45

all generated by the source during signing. To forward the signature, the user updates both the
streaming algorithm state st and the IVC proof π, which together help count the number of unique
forwarders. Specifically, each forwarder computes its contribution f := PRP(kmsg,PRF(fk,m)),
inputs f to the streaming algorithm to compute the updated state st′, and proves that it computed
st′ honestly, using kmsg and a valid (authenticated) forwarding key. Once ttrace users have forwarded
the signature, the witness encryption ctwe can be decrypted to recover the group signature σgs
computed by the source. In particular, the E2EE server can then use the group signature opening
key osk to deanonymize σgs and learn the source identity.

We briefly sketch the correctness and security of the scheme to build intuition for the construc-
tion; the formal statement and proof are provided in Theorem 11.

Correctness (Lemma 6): Correctness requires that a signature σℓ that has been honestly signed
and forwarded ℓ times satisfy several properties. First, σℓ must verify successfully. This fol-
lows directly from the completeness and correctness of the underlying primitives. Second,
when σℓ can be opened, it only opens to the identity of the source. Since the construction
deanonymizes the source by opening the group signature σgs, correctness of the group signa-
ture scheme ensures that σℓ only opens to the source’s identity. Finally, the signature σℓ must
fail to open when the number of unique forwarders L < tanon, and succeed when L ≥ ttrace.
Since the inputs to the streaming algorithm are pseudorandom—being outputs of a PRP—the
resulting estimate of the streaming algorithm is similar to that produced on a uniformly ran-
dom input stream. From the correctness of the streaming algorithm, this estimate is at most
ϵL away from L. In particular, when L < tanon, the estimate is at most (1 + ϵ) · tanon = t with
overwhelming probability, causing Open(msk,m, σℓ) to return ⊥. Conversely, if L ≥ ttrace,
then the estimate is at least (1 − ϵ) · ttrace = t with overwhelming probability. Combined
with the completeness of the IVC and the correctness of the witness encryption and group
signature schemes, this implies that σℓ opens to the identity of the source.

Source Anonymity Against Opener (Lemma 7): Source anonymity against the opener requires
that, even after corrupting the E2EE server and fewer than tanon users, the adversary cannot
identify the source of a signature σ generated by an honest user. At a high level, the only
components of the signature that depend on the source identity are πnzk and ctwe. The zero-
knowledge property of NIZK ensures that πnzk preserves the anonymity of the source. As
for ctwe, the adversary cannot compute a valid witness for decryption. This follows from
the unforgeability of the signature scheme Sig, which ensures that the adversary obtains
fewer than tanon valid certificates, corresponding only to corrupt parties. Consequently, the
knowledge soundness of PNIZK and the IVC imply that, in any signature computed by the
adversary via forwards, the streaming algorithm state must consist of fewer than tanon inputs.
Since each input is derived via a PRP evaluation at a key sampled uniformly at random by the
honest source, the deletion robustness and correctness properties of the streaming algorithm
imply that the estimate in such a signature is less than t with overwhelming probability.
Therefore, the adversary cannot compute a valid witness to decrypt ctwe, which by the security
of the witness encryption scheme, implies that the underlying group signature σgs remains
hidden—and with it, the source’s identity.

Note that the adversary can query the HFwd oracle to forward signatures on non-challenge
messages on behalf of honest parties. It is crucial that such queries do not allow the adver-
sary to learn additional certificates, as our argument above relies on the adversary obtaining

46

fewer than tanon certificates. The zero-knowledge property of PNIZK ensures that these for-
warded signatures do not reveal the certificates and forwarding keys of honest parties. This is
precisely why we require Puncturable NIZKs: they ensure zero-knowledge for non-challenge
messages, while still guaranteeing knowledge soundness on the challenge message. Finally,
we note that an artifact of our proof strategy is that the adversary cannot adaptively choose
the challenge message or adaptively corrupt honest parties. We discuss this in more detail in
Remarks 3 and 4.

Source Anonymity Against Registration Server (Lemma 8): Source anonymity against the reg-
istration server requires that an adversary that corrupts the registration server and learns its
secret key rsk cannot deanonymize the source of signatures generated by honest users. While
such an adversary can register an arbitrary number of parties and always decrypt the witness
encryption, the result of decryption is the anonymous group signature σgs, which it cannot
open without access to the group signature opening key oskgs.

Traceability and Unframeability (Lemma 9): Traceability requires that for any signature σ0 out-
put by an adversary, forwarding it sequentially through at least ttrace honest users must always
deanonymize the signature to a corrupt user’s identity. Observe that the Open algorithm ini-
tially checks if the streaming algorithm’s estimate is greater than t, and if so, decrypts the
witness encryption to obtain the group signature σgs and subsequently opens σgs. Knowledge
soundness of the NIZK scheme guarantees that ctwe decrypts to a valid group signature σgs.
The traceability of the group signature scheme then ensures that σgs will open to a corrupt
user’s identity.

However, decryption of ctwe is conditioned on the streaming algorithm’s estimate being greater
than t when the signature is forwarded through ttrace honest users. This occurs with over-
whelming probability due to the zero-knowledge property of the Puncturable NIZK, the secu-
rity of the PRF and the insertion robustness and correctness of the streaming algorithm. In
more detail, the zero-knowledge property of the Puncturable NIZK ensures that the forward-
ing key fk of honest users is hidden from the adversary. The security of the PRF then implies
that PRF(fk,m) is pseudorandom to the adversary, and since PRP is a permutation (albeit
not pseudorandom), the contribution f = PRP(kmsg,PRF(fk,m)) input by honest users to the
streaming algorithm is pseudorandom. Consequently, the insertion robustness and correct-
ness properties guarantee that the streaming algorithm’s estimate is greater than t with over-
whelming probability, regardless of how the adversary computed σ0 — the input stream used
to compute the streaming algorithm state st0 in σ0 constitute the insertions in the stream by
the adversary, which from the insertion robustness of the streaming algorithm, cannot lower
the final estimate.

Unframeability follows by a similar argument: since the adversary now possesses the group
signature registration key rskgs, the unframeability of the group signature scheme ensures
that the signature σgs cannot be opened to the identity of any honest party.

Forwarder Anonymity (Lemma 10): Forwarder anonymity requires that a forwarded signature
does not leak the forwarder’s identity. To prove that the scheme is forwarder anonymous, we
need to argue that for any message m of the adversary’s choice, forwarding a signature on m
with one party’s secret key is indistinguishable from using another’s. Intuitively, this follows
from the zero-knowledge property of the Puncturable NIZK and the fact that forwarding a

47

signature only involves evaluating a PRF on m using the forwarding key. Since this PRF
evaluation on m is indistinguishable from a uniformly random value, it is independent of the
forwarding key and thus does not leak the forwarder’s identity.

Succinctness Only the streaming algorithm state and IVC are updated in each forward. Due to
the efficiency of the IVC and streaming algorithm, the size of the signature grows at most
poly-logarithmically in the length of the forwarding path.

We now proceed to formally prove that the scheme described in Figures 8 and 9 is a succinct HTS
scheme.

Lemma 6 (Correctness). For all polynomials t and real numbers ϵ ≤ 1/2, the scheme described in
Figure 8 is (tanon, ttrace)-correct (Definition 10), where tanon = t/(1 + ϵ), ttrace = t/(1− ϵ), and 1/ϵ is
polynomial in the security parameter λ of the scheme.

Proof. Consider any non-uniform polynomial time adversary A. Let the output of the correctness
experiment be 1 if A wins the correctness experiment, and be defined as 0 otherwise. We use a
hybrid argument to show that the output of the correctness experiment when run with A is 0 with
overwhelming probability.

• Hyb0: This is the output of the correctness experiment when run with A.

• Hyb1: This is identical to the previous hybrid, except that when Verify(mpk,m, σℓ) = 0, the
experiment outputs 0.

The only difference between Hyb0 and Hyb1 is that Hyb0 = 1 if σℓ fails to verify while Hyb1 =
0 in this case. Observe that verifying σℓ involves verifying the NIZK proof πnzk and the IVC
proof π. The correctness of the group signature scheme and the fact that Πreg realizes FSig

reg

implies that (σgs, rwe) is a valid witness for the NIZK statement xnzk. The completeness of the
NIZK scheme then implies that πnzk verifies successfully with overwhelming probability. For the
IVC proof to verify successfully, the computation needs to be compliant, as defined by the IVC
compliance predicate, which in turn requires each Puncturable NIZK proof to verify successfully.
Since Πreg realizes FSig

reg and the digital signature scheme is correct, each cert verifies successfully
under pksig which implies from the completeness of the Puncturable NIZK scheme that each
proof πfwd verifies successfully with overwhelming probability. This implies that the computation
is compliant and the IVC proof verifies successfully with overwhelming probability from the
completeness of the IVC scheme. It follows that σℓ will verify successfully with overwhelming
probability and thus, Hyb0

c≈ Hyb1.

• Hyb2: This is identical to the previous hybrid, except that the experiment outputs 0 when
Uniq.Query(ϵ, st) ≥ t but Open(msk,m, σℓ) does not output the source identity upk0, where st
is the streaming algorithm state in σℓ.

We argue that Hyb1
c≈ Hyb2 due to the correctness of the witness encryption and the group

signature schemes. Observe that if the IVC proof π does not verify successfully then both Hyb1
and Hyb2 are 0. Similarly, the hybrids are identical when Uniq.Query(ϵ, st) < t. Thus, the only
case in which Hyb1 and Hyb2 can differ is when Uniq.Query(ϵ, st) ≥ t and π verifies successfully.
However, in this case, (st, π) is a valid witness for the witness encryption statement xwe, and
so WE.Dec((st, π), ctwe) outputs a valid group signature σgs with overwhelming probability. The
correctness of the group signature scheme then implies that Open(msk,m, σℓ) = upk0 in this case.
Thus, it follows that Hyb1

c≈ Hyb2.

48

• Hyb3: This is identical to the previous hybrid, except that the experiment outputs 0 if

|Uniq.Query(ϵ, st)− L| ≥ ϵ · L

where st is the streaming algorithm state in σℓ.
We argue that the streaming algorithm’s output is more than ϵ · L away from L with at most

negligible probability. Consider the distribution of Uniq.Query(ϵ, st′), where st′ is a streaming
algorithm state that is computed identical to st except that the PRP is replaced with a truly
random permutation i.e., each input to Uniq.Update is an evaluation of the truly random permu-
tation on PRF(fk,m). It follows from the pseudorandomness of the PRP that Uniq.Query(ϵ, st′)
and Uniq.Query(ϵ, st) are computationally indistinguishable. However, the correctness of the
streaming algorithm implies that |Uniq.Query(ϵ, st′)− L| ≤ ϵ · L with overwhelming probability.
Thus, it follows that Uniq.Query(ϵ, st) is at most ϵ ·L away from L with overwhelming probability,
which in turn implies that Hyb2

c≈ Hyb3.

• Hyb4: This hybrid is always 0.
Observe that Hyb3 and Hyb4 are both 0 when Uniq.Query(ϵ, st) > t but σℓ does not open to

the identity of the source. Similarly, if |Uniq.Query(ϵ, st)− L| ≥ ϵ · L, where st is the streaming
algorithm state in σℓ, then both Hyb3 and Hyb4 are 0. Thus, Hyb3 and Hyb4 only differ in the case
when |Uniq.Query(ϵ, st)− L| ≤ ϵ · L. Here, Hyb3 is 1 when L < tanon and Uniq.Query(ϵ, st) ≥ t
or when L ≥ ttrace and Uniq.Query(ϵ, st) < t. However, in this case, when L < tanon we have
Uniq.Query(ϵ, st) ≤ (1 + ϵ)L < (1 + ϵ)tanon = t, and when L ≥ ttrace, we have Uniq.Query(ϵ, st) ≥
(1− ϵ)L ≥ (1− ϵ)ttrace = t. This implies that Hyb3 is never 1 and thus Hyb3 p= Hyb4.

It follows from our argument above that Hyb0
c≈ Hyb4, which in turn implies that the output

of the correctness experiment is 0 with overwhelming probability when run with any adversary A.
Thus, the given scheme is (tanon, ttrace)-correct. ■

Lemma 7 (Source Anonymity Against Opener). For all polynomials t and real numbers ϵ ≤ 1/2,
the scheme described in Figure 8 is tanon-source anonymous against the opener (Definition 10), where
tanon = t/(1 + ϵ), and 1/ϵ is polynomial in the security parameter λ of the scheme.

Proof. Consider any non-uniform polynomial time adversary A. We use a hybrid argument to show
that for any polynomial length message m, A wins the source anonymity experiment for the opener
(Figure 2) with at most negligible probability more than 1/2. In what follows, we use pre-challenge
phase to refer to steps 1–3 of the source anonymity experiment, until the challenge signature σ
is computed, and use post-challenge phase to refer to steps 4–5, where the adversary takes the
challenge signature σ as input and attempts to guess the challenge bit b.

• Hyb0: This is the output of the source anonymity experiment for the opener, when run with A
i.e., this hybrid is equal to ExpSrcAnonopenHTS,A(1

λ,m).

• Hyb1: This hybrid is identical to the previous hybrid, except that the oracles Reg and RegH now
run FSig

reg in place of Πreg, and Reg uses the protocol’s simulator Sreg to simulate A’s view.
In both Hyb0 and Hyb1, the adversary only learns the public key of the honest user when it

invokes RegH since the registration server is honest. In case of Reg, the adversary’s view is that
of a corrupt user participating in Πreg. Since Πreg realizes FSig

reg , the view of the adversary in this
hybrid is indistinguishable to that in the previous hybrid, which implies that Hyb0

c≈ Hyb1.

49

• Hyb2: This hybrid is identical to the previous hybrid, except that the experiment terminates and
outputs 0 when A queries HFwd on the challenge message m, or if it invokes Reg for the tanon-th
time.

The only difference between Hyb1 and Hyb2 is that the experiment terminates early in Hyb2
when A queries HFwd on m or if it corrupts tanon users. However, both hybrids are equal to 0 in
this case. It follows that Hyb1 p= Hyb2.

• Hyb3: This hybrid is identical to the previous hybrid, except for the following changes.

• Setup additionally computes tdm ← PNIZK.Puncture(td, νm) where td is the trapdoor output
by PNIZK.Setup. Here, the predicate νm is such that νm(xpzk) = 0 if and only if the message
m′ in xpzk (parsed according to Rpzk) is equal to the challenge message m.

• The HFwd oracle is modified so that for every query (upk,m′, σ′), it computes πfwd as

πfwd ← PNIZK.SimProve(crspzk, xpzk, tdm)

when running Forward(usk,m′, σ′).

The only difference between Hyb2 and Hyb3 is that in Hyb2, πfwd is computed using the user’s
forwarding key fk and certificate cert when answering queries on HFwd, while in Hyb3, πfwd is
simulated using tdm. However, observe that by definition of the predicate νm and the puncturable
zero-knowledge property of the Puncturable NIZK, πfwd computed in Hyb2 is indistinguishable
from πfwd computed in Hyb3, for all messages m′ ̸= m. Moreover, both Hyb2 and Hyb3 terminate
and output 0 if A queries HFwd on m and thus Hyb3 never requires simulating πfwd for state-
ments containing the challenge message m. Thus, Hyb2

c≈ Hyb3 follows from a straightforward
reduction to the puncturable zero-knowledge property of PNIZK.

• Hyb4: This hybrid is identical to the previous hybrid, except for the following modifications.

• Before the pre-challenge phase is run, the experiment samples tanon − 1 PRF keys {fki}i and
for each key, computes a certificate certi ← Sig.Sign(sksig, fki). Let Kpre = {(fki, certi)}

tanon−1
i=1 .

• The oracle RegH no longer computes the certificate cert on the honest user’s forwarding key
fk within FSig

reg .

• The oracle Reg uses a (fki, certi) ∈ Kpre within FSig
reg , instead of computing it afresh. The used

pair is removed from Kpre.

The only difference between Hyb3 and Hyb4 is that in Hyb3, the experiment samples a fresh
PRF key fki and computes a certificate certi using sksig for each invocation of Reg and RegH. On
the other hand, in Hyb4, certificates for forwarding keys of honest parties are never computed
and the set of forwarding keys and certificates of corrupt parties are pre-computed and stored
in Kpre, at the start of the experiment. Note that it suffices to pre-compute tanon − 1 pairs since
the experiment aborts in both hybrids if |I| = tanon. Moreover, since the proof πfwd is simulated
in Hyb3 and Hyb4, the certificate on the forwarding keys of honest users is no longer required. It
thus follows that Hyb3 p= Hyb4.

• Hyb5: This hybrid is identical to the previous hybrid, except that crspzk is computed using
PNIZK.E(1λ)→ (crspzk, td, stpzk), where PNIZK.E is the extractor for PNIZK.

Hyb4
c≈ Hyb5 follows directly from the fact that (crspzk, td) output by PNIZK.E is indistin-

guishable from that generated using PNIZK.Setup.

50

• Hyb6: This hybrid is identical to the previous hybrid, except that the NIZK simulator Snzk is used
to generate crsnzk in Setup and for simulating πnzk when computing the challenge signature σ.

The only difference between Hyb5 and Hyb6 is that the NIZK proof in the challenge signature
is simulated. Hyb5

c≈ Hyb6 follows immediately from a straightforward reduction to the zero-
knowledge property of NIZK.

• Hyb7: This hybrid is identical to the previous hybrid, except that ctwe is computed as an encryp-
tion of 0|σgs| instead of σgs.

Assume for the sake of contradiction that Hyb6 is distinguishable from Hyb7 with non-negligible
probability i.e., the difference in the probability with whichAwins the source anonymity game in
Hyb6 compared to Hyb7 is non-negligible. We will useA to construct an adversary that breaks the
deletion robustness property of the streaming algorithm with non-negligible probability. How-
ever, this contradicts the security of the streaming algorithm, which in turn implies that our
assumption was wrong and that Hyb6 and Hyb7 are indeed indistinguishable.

First, we prove the following claim, which informally states that if Hyb6 and Hyb7 are distin-
guishable with non-negligible probability, then there exists an adversary Aint that takes tanon − 1
forwarding keys with their certificates as input, and outputs a streaming algorithm state st such
that Uniq.Query(ϵ, st) ≥ t. Moreover, each value in the input stream used to compute st is of the
form PRP(kmsg,PRF(fki,m)) for some forwarding key fki with a valid certificate certi.

Claim. If Hyb6 and Hyb7 are distinguishable with non-negligible probability, then there exists a
non-uniform polynomial time adversary Aint and a non-negligible function δ(·) such that for all
λ ∈ N and all polynomial length messages m,

Pr

 Uniq.Query(ϵ, stℓ) ≥ t
∧

PNIZK.Verify
(
crspzk, x

(i)
pzk, π

(i)
fwd

)
= 1, ∀i ∈ [ℓ]

 ≥ δ(λ)

where st0 = ⊥, x(i)pzk := (sti−1, sti, ϵ, pksig, kmsg,m) and the probability is over the following experi-
ment.

• Generate (crspzk, td, stpzk) ← PNIZK.E(1λ), tdm ← PNIZK.Puncture(td, νm) and (pksig, sksig) ←
Sig.Gen(1λ).

• Sample kmsg ← {0, 1}λ uniformly at random. Sample fki ← {0, 1}λ uniformly at random and
compute certi ← Sig.Sign(sksig, fki) for each i ∈ [tanon − 1].

• Run
{
sti, π

(i)
fwd

}ℓ

i=1
← Aint

(
crspzk, tdm, pksig, kmsg, {fki, cert}i

)
.

Proof. If Hyb6 is distinguishable from Hyb7 then the difference in the probabilities with which A
wins in Hyb6 and Hyb7 is non-negligible. We will exploit this to construct the adversary Aint.

Observe that running the experiment in Hyb6 and Hyb7 with A requires the following, which
we denote by stexp: the public key mpk = (gpkgs, pksig, crsnzk, crspzk, crsivc), the group signature
scheme’s registration key rskgs and opening key oskgs, the pre-computed set of forwarding keys
and certificates Kpre, the NIZK simulation trapdoor tdnzk, and the punctured trapdoor tdm of the
Puncturable NIZK. It will also be helpful to include the PRP key kmsg in stexp, that is used in
the challenge signature σ. Importantly, running the experiment does not require the registration
server’s signing key sksig nor the certificates on the forwarding key of any of the honest users.

51

We now proceed to show that Aint can indeed be constructed from A. We begin by show-
ing that A can be used to construct an adversary Awe against the extractable security of WE.
Awe receives stexp as auxiliary input and runs the experiment in Hyb7 with A. When A outputs
(upk0, upk1), Awe computes the challenge signature σ as in Hyb7 except for the witness encryp-
tion component. Instead, it outputs xwe and a pair of messages (σgs, 0

|σgs|). Upon receiving
the challenge witness encryption ciphertext ctwe, it appends ctwe to σ and continues to run the
experiment. Awe outputs 1 if A wins the internal source anonymity experiment and outputs 0
otherwise. If ctwe corresponds to an encryption of σgs then the view of A corresponds to that in
Hyb6, else if it’s an encryption of 0|σgs|, A’s view corresponds to that in Hyb7. Thus, Awe distin-
guishes between witness encryptions of σgs and 0|σgs| with non-negligible probability. It follows
from the extractable security of WE that there exists an extractor Ewe that outputs a statement
xwe and a witness (st, π) for the relation Rwe, with non-negligible probability.

Next, we use Ewe to construct an adversary Aivc against the knowledge soundness of IVC. Aivc

takes crsivc as input and stexp as auxiliary input. It updates the Puncturable NIZK CRS in stexp
with crsivc to obtain st′exp and runs Ewe with st′exp as auxiliary input. It obtains xwe, a streaming
algorithm state st and an IVC proof π and outputs (ϕpar, st, π), where par are computed from
xwe. Since π verifies under crsivc with non-negligible probability, it follows from the knowledge
soundness of the IVC that there exists an extractor Eivc that outputs a valid computation trace

T =
(
sti, π

(i)
fwd

)ℓ

i=1
under ϕpar.

Finally, we use Eivc to construct Aint as follows. Aint takes crspzk, tdm, pksig, kmsg, and Kpre

as input and computes (gpkgs, rskgs, oskgs), (crsnzk, tdnzk), and crsivc to build stexp. It then runs

Eivc with crsivc as input and stexp as auxiliary input to obtain and output
(
sti, π

(i)
fwd

)ℓ

i=1
. We have

Uniq.Query(ϵ, stℓ) ≥ t since Ewe outputs a witness (stℓ, π) under Rwe. Moreover, since Eivc outputs
a valid computation trace under ϕpar with non-negligible probability, it follows that each π

(i)
fwd

verifies successfully under the statement x(i)pzk with non-negligible probability. □

Next, we show that Aint can be used to construct an adversary Auq against the deletion
robustness property of the streaming algorithm, albeit on a pseudorandom input stream.

Claim. If Hyb6 and Hyb7 are distinguishable with non-negligible probability, then there exists a
non-uniform polynomial time stateful adversary Auq and a non-negligible function δ(·) such that
for all λ ∈ N,

Pr

{xi}tanon−1i=1 ⊇ {yi}ℓi=1

∧
Uniq.Query(ϵ, stℓ) ≥ t

:

x1, . . . , xtanon−1 ← Auq(1
λ)

kmsg ← {0, 1}λ
y1, . . . , yℓ ← Auq(kmsg)

st0 := ⊥
sti := Uniq.Update(ϵ, sti−1,PRP(kmsg, yi)), ∀i ∈ [ℓ]

 ≥ δ(λ).

Proof. We constructAuq using the adversaryAint from the previous claim. For the sake of brevity,
we say Aint wins its experiment to denote the event when its output indeed provides a valid
sequence of streaming algorithm states and Puncturable NIZK proofs such that the estimate on
the last state is greater than t.
Auq proceeds as follows. It first computes (pksig, sksig) using Sig.Gen, samples fki ← {0, 1}λ

uniformly at random and computes certi ← Sig.Sign(sksig, fki) for each i ∈ [tanon − 1]. It then

52

chooses an arbitrary message m and outputs (x1, . . . , xtanon−1), where each xi = PRF(fki,m).
Upon receiving kmsg as input, it runs the experiment described in the previous claim for Aint.

If Aint does not win its experiment, Auq outputs (x1, . . . , xtanon−1). Else, it obtains
{
sti, π

(i)
fwd

}ℓ

i=1
from Aint and outputs (y1, . . . , yℓ), where each yi = PRF(fk′i, 0) and (fk′i, cert

′
i) is the witness

extracted by PNIZK.E for the proof π(i)
fwd.

We will first use a hybrid argument to prove that {yi}ℓi=1 output by Auq is indeed a subset of
{xi}tanon−1i=1 with all but negligible probability.

• Hyb7.0: In this hybrid, we run Auq as described in the claim. The hybrid is 0 if {yi}ℓi=1 ̸⊆
{xi}tanon−1i=1 , and is equal to 1 otherwise.

• Hyb7.1: This hybrid is identical to the previous hybrid, except that it is 1 whenever Aint run by
Auq does not win its experiment.
In this case, Auq outputs {yi}i = {xi}i. It follows that Hyb7.0 p= Hyb7.1.

• Hyb7.2: This hybrid is identical to the previous hybrid, except that it is 1 if PNIZK.E does
not output a valid witness for π(i)

fwd under the statement x(i)pzk = (sti−1, sti, ϵ, pksig, kmsg,m) and
relation Rpzk.
Observe that Hyb7.1 and Hyb7.2 only differ in the case whenAint wins its experiment. However,
in this case, each π

(i)
fwd is a valid proof for the statement x(i)pzk. Moreover, since tdm(x

(i)
pzk) = 0 for

each x
(i)
pzk, it follows from a standard hybrid argument, reducing to the puncturable knowledge

soundness of PNIZK, that Hyb7.1
c≈ Hyb7.2.

• Hyb7.3: This hybrid is always equal to 1.

Observe that the only case in which Hyb7.2 might not be equal to 1 is when
{
fk′i

}ℓ

i=1
̸⊆

{fki}
tanon−1
i=1 . Let fk′j be the element not in {fki}

tanon−1
i=1 . If this is the case, then (fk′j , cert

′
j)

extracted from π
(j)
fwd is such that cert′j is a valid signature on fk′j but a signature on fk′j was

never provided to Aint. Thus, this breaks the unforgeability of Sig. Since running Aint does
not require the signing key sksig, it follows from a straightforward reduction to unforgeability
of Sig that Hyb7.3

c≈ Hyb7.2.

It follows from our argument that Hyb7.0
c≈ Hyb7.3, which implies that {yi}ℓi=1 is indeed a

subset of {xi}tanon−1i=1 with overwhelming probability. Finally, observe that when Aint wins its
experiment, the output of Auq is such that the resulting streaming algorithm state stℓ provides
an estimate greater than or equal to t, with overwhelming probability. This is because, the Aint

outputs stℓ such that Uniq.Query(ϵ, stℓ) ≥ t and stℓ computed using Auq’s output is identical
to Aint’s output. The claim then follows immediately from the fact that when Hyb6 and Hyb7
are distinguishable with non-negligible probability, Aint wins its experiment with non-negligible
probability. □

We conclude by showing that Uniq.Query(ϵ, stℓ) < t with overwhelming probability due to the
streaming algorithm’s deletion robustness and correctness. Consequently, this implies that Hyb6
is indistinguishable from Hyb7.

Claim. Hyb6
c≈ Hyb7.

Proof. Let (x1, . . . , xtanon−1) ← Auq(1
λ) and let (y1, . . . , yℓ) ← Auq(kmsg), where Auq is the ad-

versary from the previous claim and kmsg ← {0, 1}λ is sampled uniformly at random. Let

53

stx0 = sty0 = ⊥ and let

stxi := Uniq.Update(ϵ, stxi−1,PRP(kmsg, xi)), ∀i ∈ [tanon − 1]

styi := Uniq.Update(ϵ, styi−1,PRP(kmsg, yi)), ∀i ∈ [ℓ].

That is, stxtanon−1 and styℓ are the streaming algorithm states obtained on inputs {PRP(kmsg, xi)}i
and {PRP(kmsg, yi)}i respectively. From the previous claim, we have {yi}ℓi=1 ⊆ {xi}

tanon−1
i=1 , which

along with the deletion robustness property of the streaming algorithm, implies that

Uniq.Query(ϵ, styℓ) ≤ Uniq.Query(ϵ, stxtanon−1). (1)

Next, observe that the security of PRP implies that the distribution of stxtanon−1 is indistinguishable
from the streaming algorithm state computed using tanon−1 uniformly random inputs. In partic-
ular, since Auq outputs {xi}i before receiving kmsg as input, stxtanon−1 can be computed with only
oracle access to the PRP. Thus, from the correctness of the streaming algorithm, the estimate on
stxtanon−1 is at most ϵ(tanon−1) away from tanon−1. Combined with Equation (1), this implies that

Uniq.Query(ϵ, styℓ) ≤ Uniq.Query(ϵ, stxtanon−1) ≤ (1 + ϵ)(tanon − 1) < (1 + ϵ)tanon = t

with overwhelming probability. However, by the contrapositive of the previous claim and the
fact that Uniq.Query(ϵ, styℓ) < t with overwhelming probability, it follows that Hyb6

c≈ Hyb7. □

Observe that the challenge signature σ is independent of upkb in Hyb7. Thus, any adversary
A wins the experiment in Hyb7 with probability at most 1/2. Since Hyb0

c≈ Hyb7, it follows that
A wins the HTS source anonymity experiment with at most negligible probability more than 1/2.
Thus, the given scheme is tanon-source anonymous against the opener. ■

Remark 3 (Selective Message Security). As discussed earlier, the construction achieves selective
message security for source anonymity against the opener. In particular, the challenge message is
fixed in advance and not chosen by the adversary during step 2 of the experiment (see Figure 2).
This restriction arises from the structure of the proof: leveraging the knowledge soundness of
the IVC requires constructing an adversary Aivc that internally simulates the entire experiment for
the witness encryption adversary. To do so, Aivc must receive the punctured trapdoor as input
before the pre-challenge phase, since the reduction ultimately relies on the puncturable knowledge
soundness of the PNIZK. As a result, computing the punctured trapdoor necessitates fixing the
challenge message at the outset of the experiment.

Remark 4 (Barriers to Adaptive Corruptions). In addition to selective message security (see Re-
mark 3), another limitation arising from the proof is that the adversary cannot adaptively corrupt
honest parties in the source anonymity experiment. Allowing such adaptive corruptions would
require revealing the honest party’s forwarding key fk and corresponding certificate cert to the ad-
versary upon corruption. However, the reduction to the unforgeability of the signature scheme Sig
relies on the adversary Aint using fewer than tanon certificates. Accommodating adaptive corrup-
tions while ensuring that the forwarding keys of corrupted parties are consistent with the inputs to
the streaming algorithm—as computed by HFwd prior to corruption—appears to require more than
tanon certificates, which would exceed the bound required for the reduction to go through.

54

Remark 5 (Inputs to the Streaming Algorithm). Because the challenge message is fixed non-adaptively
in the source anonymity against opener experiment, the proof continues to hold even if inputs to the
streaming algorithm are computed as PRF(fk,m), rather than PRP(kmsg,PRF(fk,m)). In this case,
since the message is fixed before registration and all forwarding keys are sampled uniformly at ran-
dom during Πreg, the resulting inputs to the streaming algorithm are pseudorandom. Correctness
and deletion robustness then suffice to argue that the estimate remains below t with overwhelming
probability.

However, as noted in Remark 3, selective message security is an artifact of the proof strategy.
We therefore adopt a more general design that decouples handling of the streaming algorithm
from the selective-message restriction. In particular, when the message is chosen adaptively af-
ter some corrupt parties are registered, the input PRF(fk,m) is no longer pseudorandom, and the
estimate of the streaming algorithm can become arbitrarily inaccurate. Computing the inputs as
PRP(kmsg,PRF(fk,m)) ensures security even in the adaptive setting: pseudorandomness for corrupt
parties registered before message selection follows from the security of PRP(kmsg, ·), while pseudo-
randomness for parties registered afterward follows from the uniform sampling of fk in Πreg.

Lemma 8 (Source Anonymity Against Registration Server). For all polynomials t and real num-
bers ϵ ≤ 1/2, the scheme described in Figure 8 is source anonymous against the registration server
(Definition 10), where 1/ϵ is polynomial in the security parameter λ of the scheme.

Proof. The registration server, possessing the signing key sksig, can locally generate the keys of ttrace
users. This allows it to forward the HTS signature through these users, decrypt the witness en-
cryption and learn the group signature computed by the source. However, the source’s anonymity
remains intact due to the anonymity properties of the group signature scheme, since the registra-
tion server lacks access to the group signature opening key oskgs. Observe that a user’s signing
key uskgs, under the group signature scheme, is only used to compute the signature σgs. Thus,
source anonymity against the registration server follows from a straightforward reduction to the
anonymity of the group signature scheme. ■

Lemma 9 (Traceability and Unframeability). For all polynomials t and real numbers ϵ ≤ 1/2, the
scheme described in Figure 8 is ttrace-traceable and ttrace-unframeable (Definition 10), where ttrace =
t/(1− ϵ), and 1/ϵ is polynomial in the security parameter λ of the scheme.

Proof. We focus on arguing traceability; the proof for unframeability follows a similar approach
and is discussed later. We use a hybrid argument to show that for any non-uniform polynomial
time adversary A, the output of the traceability experiment is 1 with at most negligible probability.

• Hyb0: This is the output of the traceability experiment when run with A i.e., this hybrid is equal
to ExpTraceHTS,A(1

λ).

• Hyb1: This hybrid is identical to the previous hybrid, except that the experiment outputs 0 when
σℓ fails to verify in step 3 of Open(msk,m, σℓ).

If σ0 output by A fails to verify, then both Hyb0 and Hyb1 are 0. On the other hand, when
σ0 does verify, the correctness of the digital signature scheme and the completeness of the Punc-
turable NIZK and IVC guarantee that the IVC proof in σℓ verifies successfully, since σℓ is computed
by forwarding σ0 honestly. Thus, Hyb0

c≈ Hyb1.

• Hyb2: This hybrid is identical to the previous hybrid, except that PNIZK.SimProve and td∗ are
used to simulate πfwd when computing σ1, . . . , σℓ and within HFwd. Here, td∗ corresponds to

55

the output of PNIZK.Puncture(td, ν∗) where td is the trapdoor output by PNIZK.Setup, and the
predicate ν∗ evaluates to 1 on all inputs.

Hyb1
c≈ Hyb2 from a straightforward reduction to the puncturable zero-knowledge property

of PNIZK.

• Hyb3: This hybrid is identical to the previous hybrid, except that it is 0 if L ≥ ttrace and
Uniq.Query(ϵ, stℓ) < t, where stℓ is the streaming algorithm state in σℓ and L is the number
of unique honest users used to forward σ0 and compute σℓ.

Observe that the adversary’s view is identical in Hyb2 and Hyb3. The only difference between
the two hybrids is that Hyb2 is 1 when L ≥ ttrace and Uniq.Query(ϵ, stℓ) < t, while Hyb3 is 0 in this
case. We will show that the streaming algorithm’s estimate on stℓ is at least t with overwhelming
probability when L ≥ ttrace.

Let kmsg be the PRF key in σ0, and for each upki output by A let fki be the party’s correspond-
ing forwarding key. Let st′0 := ⊥ and let

st′i := Uniq.Update(ϵ, st′i−1,PRP(kmsg,PRF(fki,m))), ∀i ∈ [ℓ].

That is, stℓ in σℓ denotes the streaming algorithm state obtained by updating the initial state st0
in σ0 with the inputs of the honest parties, whereas st′ℓ refers to the state computed using only
the honest parties’ inputs, ignoring any inputs already incorporated into st0. It then immediately
follows from the insertion robustness property that

Uniq.Query(ϵ, st′ℓ) ≤ Uniq.Query(ϵ, stℓ).

Next, observe that the distribution of the state st′ℓ is indistinguishable from that computed us-
ing L uniformly random inputs. This is because each PRP(kmsg,PRF(fki,m)) is pseudorandom:
PRF(fki,m) is pseudorandom since the adversary’s view is independent of fki, and applying a
permutation PRP to pseudorandom inputs yields pseudorandom outputs. In particular, note that
it suffices to have oracle access to PRF(fki, .) in this hybrid since πfwd is simulated. It then follows
from the correctness of the streaming streaming algorithm that the estimate on st′ℓ is at most ϵL
away from L. Combined with the previous observation, this implies that

t = (1− ϵ)ttrace ≤ Uniq.Query(ϵ, st′ℓ) ≤ Uniq.Query(ϵ, stℓ)

with overwhelming probability. Thus, Hyb2
c≈ Hyb3.

• Hyb4: This hybrid is identical to the previous hybrid, except that the experiment outputs 0 if
decryption of ctwe within Open yields an invalid group signature.

When the NIZK proof πnzk fails to verify, both Hyb3 and Hyb4 are 0. On the other hand, if πnzk
verifies successfully, the soundness of the NIZK guarantees that ctwe is an encryption of a valid
group signature. It then follows from the soundness of the NIZK and the perfect correctness of
the witness encryption scheme that Hyb3

c≈ Hyb4.

• Hyb5: This hybrid is always 0.
The only difference between Hyb4 and Hyb5 is that Hyb4 is 1 if the group signature σgs,

obtained by decrypting ctwe, does not open to a corrupt user’s identity, while Hyb5 is 0 in this case.
However, observe that since the adversary never queries HSign on the message m, it follows from
a straightforward reduction to the traceability of the group signature scheme that Hyb4

c≈ Hyb5.

56

It follows from our argument that Hyb0
c≈ Hyb5. Since Hyb5 is always 0, it follows any non-

uniform polynomial time adversary A wins the traceability experiment with at most negligible
probability.

Lastly, note that the scheme’s ttrace-unframeability property can be proved using a similar ar-
gument as the one used to prove ttrace-traceability. The key distinction is that with the adversary’s
view now consisting of rskgs, the indistinguishability between Hyb4 and Hyb5 reduces to the un-
frameability property of the group signature scheme. ■

Lemma 10 (Forwarder Anonymity). For all polynomials t and real numbers ϵ ≤ 1/2, the scheme
described in Figure 8 is forwarder anonymous (Definition 10), where 1/ϵ is polynomial in the security
parameter λ of the scheme.

Proof. Consider any non-uniform polynomial time adversary A. We define the output of the for-
warder anonymity experiment to be 1 if upk0, upk1 are not corrupt at the end of the experiment,
if the adversary did not query HFwd on m in the pre-challenge phase and if b = b′. The output of
the experiment is defined as 0 in all other cases. We show that A wins the forwarder anonymity
experiment with at most negligible probability.

• Hyb0: This is the output of the forwarder anonymity experiment when run with A.

• Hyb1: This hybrid is identical to the previous hybrid, except that PNIZK.SimProve and td∗ are
used to simulate πfwd when computing forwards on behalf of honest users within the HFwd
oracle. Here, td∗ ← PNIZK.Puncture(td, ν∗) where td is the trapdoor output by PNIZK.Setup,
and the predicate ν∗ evaluates to 1 on all inputs.

Hyb0
c≈ Hyb1 from a straightforward reduction to the puncturable zero-knowledge property

of PNIZK.

• Hyb2: This hybrid is identical to the previous hybrid, except for the following modification to
HFwd0 and HFwd1. When forwarding any signature on the challenge message m output by A,
they compute the input to the streaming algorithm as f0 = PRP(kmsg, r0) for upk0 and f1 =
PRP(kmsg, r1) for upk1, where r0 and r1 are uniformly random and sampled at the onset of the
experiment.

Let fk0 and fk1 denote the forwarding keys corresponding to upk0 and upk1 respectively. The
only difference between the two hybrids is in the input to the PRP when forwarding signatures
on the message m on behalf of upk0 and upk1. In Hyb1, these are computed by evaluating the
PRF at m, under fk0 and fk1, while in Hyb2, these are uniformly random. However, observe that
A’s view is independent of fk0 and fk1 since the Puncturable NIZK proofs are simulated and the
adversary never corrupts upk0 and upk1. Moreover, A does not query HFwd on (upk0,m) nor
(upk1,m) in the pre-challenge phase, which implies that its view is independent of PRF(fk0,m)
and PRF(fk1,m). It thus follows from the security of the PRF that Hyb1

c≈ Hyb2.

Observe that in Hyb2, HFwd0 and HFwd1 are identical. Thus, in this hybrid, b = b′ with probabil-
ity at most 1/2 for any adversaryA. Since Hyb0

c≈ Hyb2, it follows that any non-uniform polynomial
time adversary wins the forwarder anonymity game with at most negligible probability. ■

Theorem 11. For all polynomials t and real numbers ϵ ≤ 1/2, the scheme described in Figure 8 is
a (tanon, ttrace)-secure succinct HTS scheme (Definitions 10 and 11), where tanon = t/(1 + ϵ), ttrace =
t/(1− ϵ), and 1/ϵ is polynomial in the security parameter λ of the scheme.

57

Proof. It follows from Lemmas 6 to 10 that the scheme is a (tanon, ttrace)-secure HTS scheme. We
are left to argue that the scheme is a succinct HTS scheme. Observe that the only components of
the HTS signature that are updated on each forward are the streaming algorithm and IVC proof.
However, the succinctness of the streaming algorithm and compactness of IVC immediately imply
that the size of the HTS grows sublinearly in the length of the forwarding path. It follows that the
scheme is a succinct HTS scheme. ■

7 Extensions to HTS

In this section, we discuss how our construction from Section 6 can be extended to support alter-
native definitions of viral traceback.

7.1 Unique Forwarders in a Graph

As discussed in Section 2, virality is modeled using a virality predicate over the forwarding graph—
a directed multi-graph that captures the flow of the message through the network, where nodes
represent users and edges represent forwarding events (see Section 2.1). Our focus until now
has been on the unique-forwarders-on-a-path predicate, which requires that the number of distinct
users along any forwarding path from the source to a recipient is at least t. We now consider a
more general predicate, which we refer to as unique-forwarders-in-a-graph. This predicate requires
that the number of distinct users in a subgraph between the source and a sink node in the for-
warding graph is at least t—that is, virality is determined based on the number of distinct users in
a forwarding subgraph, rather than a single path. In the context of HTS schemes, each signature
must track the number of distinct users in such a subgraph and, in effect, serves as a proof that the
subgraph contains at least t distinct users. The source node corresponds to the originator of the
message, and the sink node corresponds to the user performing the final forward that generated
the signature. The signature can then be used to de-anonymize the source if the number of distinct
users in the underlying subgraph reaches the threshold t. We next discuss how our construction
from Section 6 can be modified to capture this virality predicate.

To enable tracking the number of distinct users in a subgraph, we augment an HTS scheme with
the ability to merge signatures originating from the same source. Specifically, if a user receives the
same message—originating from the same source—from two different forwarders, they can merge
the corresponding signatures to compute the number of distinct users across both forwarding paths.
More generally, this allows the recipient to count the number of distinct users in the union of the
subgraphs associated with each signature. To support merging of signatures, we observe that we
need two additional properties from our building blocks.

• Streaming Algorithms with Mergeable State: Our construction relies on streaming algorithms
to count the number of distinct forwarders. Thus, to merge signatures, we need the ability to
merge two streaming algorithm states—each corresponding to a different stream of inputs—such
that the merged state counts the number of distinct inputs across both substreams. Specifically,
consider two streaming algorithm states: one updated with inputs (x1, . . . , xn) and the other
updated with the inputs (y1, . . . , ym). The merged state should count the number of distinct val-
ues in (xi)

n
i=1 ∥ (yi)

m
i=1. In our HTS construction, the IVC ensures consistency across overlapping

inputs: if the same party appears in both subgraphs being merged, then its contributions xi and
yj to the respective states are equal, i.e., xi = yj .

58

Many streaming algorithms are already equipped with this property. For example, the streaming
algorithm that we discuss in Figure 6 maintains the γ most minimum values in the stream, where
γ depends only on the error parameter ϵ. It is then easy to see that one can merge two states
of this streaming algorithm by retaining only the γ most minimum values from both the input
states.

• Proof Carrying Data: The validity of the streaming algorithm state is ensured by the IVC. How-
ever, since we now hope to merge states of the streaming algorithm that belong to two different
signatures (originating from the same source), we also need a mechanism to output a proof of
correctness for the merged state. In more detail, the IVC in Figure 8 takes a streaming algorithm
state and its proof of correctness, a witness, and the next state and produces a proof of correct-
ness for the next state. To support merging of streaming algorithm states, we would require an
IVC that as input two streaming algorithm states and their corresponding proofs of correctness,
a witness, and the merged state and outputs a proof of correctness for the merged state. In other
words, we require the IVC to merge proofs of correctness on each of its inputs and output a proof
of correctness for its output. This property is provided by a generalization of IVC called Proof
Carrying Data (PCD) [CT10] which is a primitive used to prove that each step of a distributed
computation was carried out correctly, where in a single step a node that gets a set of inputs and
proof of correctness for each input uses its local data to compute the input for the next step.

It is then easy to see that our construction can be modified to support the unique-forwarders-in-a-
graph predicate by adding a merge algorithm to merge the states of the streaming algorithm and
then computing a proof of correctness for the merged state. Moreover, the witness encryption now
requires a PCD as the proof of correctness for the streaming algorithm state.

Note that this now allows honest parties to merge signatures and count distinct forwarders in
the subgraph rather than counting forwarders only on a single forwarding path. While corrupt
parties may choose not to merge signatures, they cannot arbitrarily inflate the count. As a result,
source anonymity continues to hold, following a similar argument as in the original construction.

7.2 HTS with Forward Secrecy

Our definition of HTS schemes in Section 4 requires source anonymity only against a non-colluding
registration server and E2EE server. Indeed, our construction in Section 6 is insecure if an adversary
corrupts both servers: it can use the registration server’s secret key to generate the key material of
more than ttrace users, which in turn allows it to render any message viral and subsequently use
the E2EE server’s opening key to deanonymize the source. As discussed in Section 2.1.1, ensuring
a meaningful notion of virality requires assuming that the registration server does not collude with
the E2EE server.

Nevertheless, it is natural to ask if we can mitigate the impact of a colluding registration server.
In this section, we discuss how our HTS construction can be extended to provide a notion of for-
ward secrecy: users who register after a message is sent cannot contribute to the count of distinct
forwarders for that message. Informally, this means that once a signature is created, only users
who were registered at the time of creation can influence the hop count. This ensures that mes-
sages sent before the registration server is corrupted continue to preserve source anonymity, even if
the adversary subsequently compromises the server and registers additional users in an attempt to
inflate forwarder counts.

59

We propose the following modifications to our construction from Section 6 to ensure forward
secrecy.

• The setup algorithm generates a keypair (pk, sk) for a public-key encryption scheme and includes
the public key pk in the CRS. The corresponding secret key sk is not provided to any user or server.

• During registration, the user obtains its secret key as before, along with an additional random
bitstring r ∈ {0, 1}λ. The registration server also receives a ciphertext ct = Enc(pk, fk; r) i.e., it
obtains an encryption (which we will later use as a commitment) of the user’s forwarding key fk
under the public key pk and randomness r.

• The registration server computes a Merkle hash h over all ciphertexts ct1, . . . , ctN generated
during user registrations and publishes h as part of the public parameters. This hash serves as a
commitment to the set of users registered up to that point. Additionally, the server sends each
user a Merkle opening (or hint) ρi of their ciphertext cti, which encrypts their forwarding key.

• While the input to the streaming algorithm is computed as before when forwarding signatures,
the IVC statement requires each forwarder to prove the following: (1) there exists a Merkle
opening ρi that opens h to cti (2) there exists randomness ri and a forwarding key fki such that
cti = Enc(pk, fki; ri), and (3) fki was used to compute the input to the streaming algorithm. Note
that the IVC statement now includes the Merkle hash h. As a result, when a user generates a
new signature, h is embedded in the statement of the witness encryption, which, in turn, verifies
the IVC proof.

At a high level, forward secrecy is achieved by including the Merkle hash h in both the witness
encryption statement and the IVC. This ensures that deanonymizing the source is only possible if
the streaming algorithm is updated using inputs from users whose encrypted forwarding keys were
included in the computation of h. As a result, users who register after the message was sent do not
possess a valid opening under the Merkle hash embedded in the witness encryption, and therefore
cannot contribute to updating the streaming algorithm state when forwarding the signature.

One limitation of the scheme described above is that, whenever a new user joins the system,
the Merkle hash h must be recomputed, and updated openings (or hints) must be provided to
all previously registered users. However, there are generic techniques to mitigate this overhead,
allowing the number of updated hints required per user to scale only with O(logN), where N is
the total number of registered users [GHMR18, GHM+19, HLWW23, GKMR23].

Remark 6. A key advantage of the forward secure HTS variant described in this section is that the
registration server no longer requires the signing key sksig used to issue certificates in Figure 8.
This is because the Merkle hash published by the server authenticates the forwarding keys held
by users. Eliminating the need for this signing key is crucial to achieving forward secrecy: if
an adversary were to obtain sksig, they could generate certificates for arbitrary forwarding keys
and thereby deanonymize signatures retroactively—including those generated before the key was
compromised. In the forward-secure variant, the only secret held by the registration server is
the group signature registration key rsk, which does not impact source anonymity. Instead, it is
used to ensure that users encrypt a valid identity within the witness encryption. Moreover, the
unframeability property of the group signature scheme guarantees that even if an adversary learns
rsk, it cannot be used to frame honest users.

60

Acknowledgments

We thank Kuldeep Meel for pointing us toward streaming algorithms for constructing succinct HTS
schemes. Pedro Branco is supported by the European Research Council through an ERC Starting
Grant (Grant agreement No. 101077455, ObfusQation). Matthew Green would like to acknowl-
edge support from the NSF under awards CNS-1955172, CNS-1653110, CNS-1854000 and CNS-
1801479,NS-1329737 and CNS-195517 as well as from the Office of Naval Research under con-
tract N00014-19-1-2292, a Security and Privacy research award from Google, and DARPA under
Contract No. HR001120C0084. Aditya Hegde and Abhishek Jain were supported by NSF CNS-
1814919, NSF CAREER 1942789 and Johns Hopkins University Catalyst award. Abhishek Jain was
additionally supported by JP Morgan Faculty Award, and research gifts from Ethereum, Stellar, and
Cisco. Part of this work was done while Gabriel Kaptchuk was at Boston University and supported
by the National Science Foundation under Grant #2030859 to the Computing Research Associa-
tion for the CIFellows Project and DARPA under Agreement No. HR00112020021. Any opinions,
views, findings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the United States Government, DARPA or other
sponsors.

61

References

[ABD+21] Navid Alamati, Pedro Branco, Nico Döttling, Sanjam Garg, Mohammad Hajiabadi,
and Sihang Pu. Laconic private set intersection and applications. In Kobbi Nissim
and Brent Waters, editors, TCC 2021: 19th Theory of Cryptography Conference, Part III,
volume 13044 of Lecture Notes in Computer Science, pages 94–125, Raleigh, NC, USA,
November 8–11, 2021. Springer, Heidelberg, Germany.

[ABED+0] Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, and Eylon Yogev.
Adversarial laws of large numbers and optimal regret in online classification. SIAM
Journal on Computing, 0(0):STOC21–154–STOC21–210, 0.

[ABJ+22] Miklós Ajtai, Vladimir Braverman, T.S. Jayram, Sandeep Silwal, Alec Sun, David P.
Woodruff, and Samson Zhou. The white-box adversarial data stream model. In Pro-
ceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS ’22, page 15–27, New York, NY, USA, 2022. Association for Computing
Machinery.

[AJJM22] Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Pre-
Constrained Encryption. In Mark Braverman, editor, 13th Innovations in Theoretical
Computer Science Conference (ITCS 2022), volume 215 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 4:1–4:20, Dagstuhl, Germany, 2022. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

[AWZ23] Damiano Abram, Brent Waters, and Mark Zhandry. Security-preserving distributed
samplers: How to generate any crs in one round without random oracles. Cryptology
ePrint Archive, Paper 2023/860, 2023. https://eprint.iacr.org/2023/860.

[Ban18] Samarth Bansal. ‘China model of censorship’: Pro-
posal to trace online content sparks concern. Hindustan
Times. Available at https://www.hindustantimes.com/india-news/
china-model-of-censorship-proposal-to-trace-online-content-sparks-concern/
story-ACbKKedJWFZKCvR55RVu5K.html, December 2018.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim Rough-
garden, and Joan Feigenbaum, editors, 45th Annual ACM Symposium on Theory of
Computing, pages 111–120, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

[BCD+25] Pedro Branco, Arka Rai Choudhuri, Nico Döttling, Abhishek Jain, Giulio Malavolta,
and Akshayaram Srinivasan. Black-box non-interactive zero knowledge from vector
trapdoor hash. In Serge Fehr and Pierre-Alain Fouque, editors, Advances in Cryptology
– EUROCRYPT 2025, pages 64–92, Cham, 2025. Springer Nature Switzerland.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Recursive
proof composition from accumulation schemes. In Rafael Pass and Krzysztof Pietrzak,
editors, TCC 2020: 18th Theory of Cryptography Conference, Part II, volume 12551 of
Lecture Notes in Computer Science, pages 1–18, Durham, NC, USA, November 16–19,
2020. Springer, Heidelberg, Germany.

62

https://eprint.iacr.org/2023/860
https://www.hindustantimes.com/india-news/china-model-of-censorship-proposal-to-trace-online-content-sparks-concern/story-ACbKKedJWFZKCvR55RVu5K.html
https://www.hindustantimes.com/india-news/china-model-of-censorship-proposal-to-trace-online-content-sparks-concern/story-ACbKKedJWFZKCvR55RVu5K.html
https://www.hindustantimes.com/india-news/china-model-of-censorship-proposal-to-trace-online-content-sparks-concern/story-ACbKKedJWFZKCvR55RVu5K.html

[BDH+19] Michael Backes, Nico Döttling, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider.
Ring signatures: Logarithmic-size, no setup - from standard assumptions. In Yuval
Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part III,
volume 11478 of Lecture Notes in Computer Science, pages 281–311, Darmstadt, Ger-
many, May 19–23, 2019. Springer, Heidelberg, Germany.

[BEJWY22] Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework
for adversarially robust streaming algorithms. Journal of the ACM, 69(2):1–33, Jan-
uary 2022.

[BEY20] Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling. In Pro-
ceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS’20, page 49–62, New York, NY, USA, 2020. Association for Computing
Machinery.

[BF14] Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. In Hugo Krawczyk, edi-
tor, PKC 2014: 17th International Conference on Theory and Practice of Public Key Cryp-
tography, volume 8383 of Lecture Notes in Computer Science, pages 520–537, Buenos
Aires, Argentina, March 26–28, 2014. Springer, Heidelberg, Germany.

[BGJP23] James Bartusek, Sanjam Garg, Abhishek Jain, and Guru-Vamsi Policharla. End-to-
end secure messaging with traceability only for illegal content. In Carmit Hazay and
Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, Part V, volume
14008 of Lecture Notes in Computer Science, pages 35–66, Lyon, France, April 23–27,
2023. Springer, Heidelberg, Germany.

[BHM+21] Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep Sil-
wal, and Samson Zhou. Adversarial robustness of streaming algorithms through im-
portance sampling, 2021.

[BJPY18] Elette Boyle, Abhishek Jain, Manoj Prabhakaran, and Ching-Hua Yu. The bottle-
neck complexity of secure multiparty computation. In Ioannis Chatzigiannakis, Chris-
tos Kaklamanis, Dániel Marx, and Donald Sannella, editors, ICALP 2018: 45th In-
ternational Colloquium on Automata, Languages and Programming, volume 107 of
LIPIcs, pages 24:1–24:16, Prague, Czech Republic, July 9–13, 2018. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik.

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and trapdoor hash
via correlation intractability for approximable relations. In Daniele Micciancio and
Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, Part III, volume
12172 of Lecture Notes in Computer Science, pages 738–767, Santa Barbara, CA, USA,
August 17–21, 2020. Springer, Heidelberg, Germany.

[Bla25] Dan Black. Google Threat Intelligence Group: Signals of Trouble: Multiple Russia-
Aligned Threat Actors Actively Targeting Signal Messenger, 2025.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The
case of dynamic groups. In Alfred Menezes, editor, Topics in Cryptology – CT-RSA 2005,

63

volume 3376 of Lecture Notes in Computer Science, pages 136–153, San Francisco, CA,
USA, February 14–18, 2005. Springer, Heidelberg, Germany.

[BYJK+02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting
Distinct Elements in a Data Stream. In G. Goos, J. Hartmanis, J. van Leeuwen, José
D. P. Rolim, and Salil Vadhan, editors, Randomization and Approximation Techniques in
Computer Science, volume 2483. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.
Series Title: Lecture Notes in Computer Science.

[CC20] Helena Costa and Mônica Chaves. Infected texts: disinformation meets polarization
in Brazil. Heinrich Böll Stiftung. Available at https://eu.boell.org/en/2020/06/22/
infected-texts-disinformation-meets-polarization-brazil, June 2020.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, 51st Annual ACM Symposium on Theory of Computing, pages
1082–1090, Phoenix, AZ, USA, June 23–26, 2019. ACM Press.

[Cer] Certificate transparency : Certificate transparency. https://certificate.transparency.
dev/.

[Cho18] Rohit Chopra. Disinformation Spreads on WhatsApp Ahead of Brazilian Election. The
New York Times. Available at https://www.nytimes.com/2018/10/19/technology/
whatsapp-brazil-presidential-election.html, October 2018.

[Cho19] Rohit Chopra. In India, WhatsApp is a weapon of antisocial ha-
tred. The Conversation. Available at https://theconversation.com/
in-india-whatsapp-is-a-weapon-of-antisocial-hatred-115673, April 2019.

[CK16] Amit Chakrabarti and Sagar Kale. Strong fooling sets for multi-player communication
with applications to deterministic estimation of stream statistics. In Irit Dinur, edi-
tor, 57th Annual Symposium on Foundations of Computer Science, pages 41–50, New
Brunswick, NJ, USA, October 9–11, 2016. IEEE Computer Society Press.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from
signature cards. In Andrew Chi-Chih Yao, editor, ICS 2010: 1st Innovations in Com-
puter Science, pages 310–331, Tsinghua University, Beijing, China, January 5–7, 2010.
Tsinghua University Press.

[Cv91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor,
Advances in Cryptology – EUROCRYPT’91, volume 547 of Lecture Notes in Computer Sci-
ence, pages 257–265, Brighton, UK, April 8–11, 1991. Springer, Heidelberg, Germany.

[CVM22] Sourav Chakraborty, N. V. Vinodchandran, and Kuldeep S. Meel. Distinct elements in
streams: An algorithm for the (text) book, 2022.

[DJJ+25] Pratish Datta, Abhishek Jain, Zhengzhong Jin, Alexis Korb, Surya Mathialagan, and
Amit Sahai. Incrementally Verifiable Computation for NP from Standard Assumptions.
In Seny Kamara and Yael Tauman Kalai, editors, Advanced in Cryptology — CRYPTO
2025. Springer, Heidelberg, Germany, 2025.

64

https://eu.boell.org/en/2020/06/22/infected-texts-disinformation-meets-polarization-brazil
https://eu.boell.org/en/2020/06/22/infected-texts-disinformation-meets-polarization-brazil
https://certificate.transparency.dev/
https://certificate.transparency.dev/
https://www.nytimes.com/2018/10/19/technology/whatsapp-brazil-presidential-election.html
https://www.nytimes.com/2018/10/19/technology/whatsapp-brazil-presidential-election.html
https://theconversation.com/in-india-whatsapp-is-a-weapon-of-antisocial-hatred-115673
https://theconversation.com/in-india-whatsapp-is-a-weapon-of-antisocial-hatred-115673

[DP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge with-
out interaction (extended abstract). In 33rd Annual Symposium on Foundations of
Computer Science, pages 427–436, Pittsburgh, PA, USA, October 24–27, 1992. IEEE
Computer Society Press.

[FEFGM07] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. HyperLogLog:
the analysis of a near-optimal cardinality estimation algorithm. Discrete Mathematics
& Theoretical Computer Science, DMTCS Proceedings vol. AH, 2007 Conference on
Analysis of Algorithms (AofA 07), jan 2007.

[FJW24] Ying Feng, Aayush Jain, and David P. Woodruff. Fast white-box adversarial streaming
without a random oracle, 2024.

[FK15] Alan Frieze and Michał Karoński. Introduction to Random Graphs. Cambridge Univer-
sity Press, 2015.

[FM85] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci., 31(2):182–209, sep 1985.

[FZ13] Matthew K. Franklin and Haibin Zhang. Unique ring signatures: A practical con-
struction. In Ahmad-Reza Sadeghi, editor, FC 2013: 17th International Conference
on Financial Cryptography and Data Security, volume 7859 of Lecture Notes in Com-
puter Science, pages 162–170, Okinawa, Japan, April 1–5, 2013. Springer, Heidelberg,
Germany.

[GGHW14] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibil-
ity of differing-inputs obfuscation and extractable witness encryption with auxiliary
input. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science, pages 518–
535, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its
applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th
Annual ACM Symposium on Theory of Computing, pages 467–476, Palo Alto, CA, USA,
June 1–4, 2013. ACM Press.

[GHM+19] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi,
and Sruthi Sekar. Registration-based encryption from standard assumptions. In Dong-
dai Lin and Kazue Sako, editors, PKC 2019: 22nd International Conference on Theory
and Practice of Public Key Cryptography, Part II, volume 11443 of Lecture Notes in Com-
puter Science, pages 63–93, Beijing, China, April 14–17, 2019. Springer, Heidelberg,
Germany.

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza
Rahimi. Registration-based encryption: Removing private-key generator from IBE.
In Amos Beimel and Stefan Dziembowski, editors, TCC 2018: 16th Theory of Cryptog-
raphy Conference, Part I, volume 11239 of Lecture Notes in Computer Science, pages
689–718, Panaji, India, November 11–14, 2018. Springer, Heidelberg, Germany.

65

[GKL21] Matthew Green, Gabriel Kaptchuk, and Gijs Van Laer. Abuse resistant law enforcement
access systems. In Anne Canteaut and François-Xavier Standaert, editors, Advances in
Cryptology – EUROCRYPT 2021, Part III, volume 12698 of Lecture Notes in Computer
Science, pages 553–583, Zagreb, Croatia, October 17–21, 2021. Springer, Heidelberg,
Germany.

[GKM+22] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and Yifan Song.
Storing and retrieving secrets on a blockchain. In Goichiro Hanaoka, Junji Shikata,
and Yohei Watanabe, editors, PKC 2022: 25th International Conference on Theory and
Practice of Public Key Cryptography, Part I, volume 13177 of Lecture Notes in Computer
Science, pages 252–282, Virtual Event, March 8–11, 2022. Springer, Heidelberg, Ger-
many.

[GKMR23] Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Efficient
registration-based encryption. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’23, page 1065–1079, New York, NY,
USA, 2023. Association for Computing Machinery.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run Turing machines on encrypted data. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II, volume
8043 of Lecture Notes in Computer Science, pages 536–553, Santa Barbara, CA, USA,
August 18–22, 2013. Springer, Heidelberg, Germany.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for NP. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume
4004 of Lecture Notes in Computer Science, pages 339–358, St. Petersburg, Russia,
May 28 – June 1, 2006. Springer, Heidelberg, Germany.

[HAN23] Mathias Hall-Andersen and Jesper Buus Nielsen. On valiant’s conjecture: Impossibility
of incrementally verifiable computation from random oracles. In Carmit Hazay and
Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, Part II, volume
14005 of Lecture Notes in Computer Science, pages 438–469, Lyon, France, April 23–
27, 2023. Springer, Heidelberg, Germany.

[HIJ+16] Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Rabin. Secure mul-
tiparty computation with general interaction patterns. In Madhu Sudan, editor, ITCS
2016: 7th Conference on Innovations in Theoretical Computer Science, pages 157–168,
Cambridge, MA, USA, January 14–16, 2016. Association for Computing Machinery.

[HILL99] Johan HÅstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–
1396, 1999.

[HLWW23] Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered attribute-
based encryption. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology –
EUROCRYPT 2023, Part III, volume 14006 of Lecture Notes in Computer Science, pages
511–542, Lyon, France, April 23–27, 2023. Springer, Heidelberg, Germany.

66

[HW13] Moritz Hardt and David P. Woodruff. How robust are linear sketches to adaptive
inputs? In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual
ACM Symposium on Theory of Computing, pages 121–130, Palo Alto, CA, USA, June 1–
4, 2013. ACM Press.

[IAV22] Rawane Issa, Nicolas Alhaddad, and Mayank Varia. Hecate: Abuse reporting in secure
messengers with sealed sender. In Kevin R. B. Butler and Kurt Thomas, editors, USENIX
Security 2022: 31st USENIX Security Symposium, pages 2335–2352, Boston, MA, USA,
August 10–12, 2022. USENIX Association.

[JJ21] Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from sub-
exponential DDH. In Anne Canteaut and François-Xavier Standaert, editors, Advances
in Cryptology – EUROCRYPT 2021, Part I, volume 12696 of Lecture Notes in Computer
Science, pages 3–32, Zagreb, Croatia, October 17–21, 2021. Springer, Heidelberg, Ger-
many.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors,
53rd Annual ACM Symposium on Theory of Computing, pages 60–73, Virtual Event,
Italy, June 21–25, 2021. ACM Press.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN
over Fp, DLIN, and PRGs in NC0. In Orr Dunkelman and Stefan Dziembowski, editors,
Advances in Cryptology – EUROCRYPT 2022, Part I, volume 13275 of Lecture Notes
in Computer Science, pages 670–699, Trondheim, Norway, May 30 – June 3, 2022.
Springer, Heidelberg, Germany.

[KLN23] Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen. Privacy-preserving blueprints.
In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology – EURO-
CRYPT 2023, Part II, volume 14005 of Lecture Notes in Computer Science, pages 594–
625, Lyon, France, April 23–27, 2023. Springer, Heidelberg, Germany.

[KNW10] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’10, page 41–52, New
York, NY, USA, 2010. Association for Computing Machinery.

[KS92] Bala Kalyanasundaram and Georg Schintger. The probabilistic communication com-
plexity of set intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992.

[LL23] Sean Lawlor and Kevin Lewi. Deploying key transparency at whatsapp. https:
//engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/, apr 2023.

[LLK13] Ben Laurie, Adam Langley, and Emilia Kasper. Rfc 6962 - certificate transparency.
https://datatracker.ietf.org/doc/html/rfc6962, Jun 2013.

[LR89] Michael Luby and Charles Rackoff. A study of password security. Journal of Cryptology,
1(3):151–158, October 1989.

67

https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/
https://datatracker.ietf.org/doc/html/rfc6962

[LRTY22] Linsheng Liu, Daniel S. Roche, Austin Theriault, and Arkady Yerukhimovich. Fighting
fake news in encrypted messaging with the fuzzy anonymous complaint tally system
(FACTS). In 29th Annual Network and Distributed System Security Symposium, NDSS
2022, San Diego, California, USA, April 24-28, 2022. The Internet Society, 2022.

[MBB+15] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and
Michael J. Freedman. CONIKS: Bringing key transparency to end users. In Jaeyeon
Jung and Thorsten Holz, editors, USENIX Security 2015: 24th USENIX Security Sym-
posium, pages 383–398, Washington, DC, USA, August 12–14, 2015. USENIX Associ-
ation.

[MFS23] Sam A. Markelon, Mia Filić, and Thomas Shrimpton. Compact frequency estimators in
adversarial environments. Cryptology ePrint Archive, Paper 2023/1366, 2023. https:
//eprint.iacr.org/2023/1366.

[New21] Newley Purnell and Jeff Horwitz. WhatsApp Says It Filed Suit in India to Prevent
Tracing of Encrypted Messages. Available from https://www.wsj.com/world/india/
whatsapp-says-it-filed-suit-in-india-to-prevent-tracing-of-encrypted-messages-11622000307,
May 2021.

[oET21] Ministry of Electronics and Information Technology. Intermediary guidelines
and digital media ethics code rules. Gazette Of India. Available at https:
//web.archive.org/web/20230124115918/https://www.meity.gov.in/writereaddata/
files/Intermediary Guidelines and Digital Media Ethics Code Rules-2021.pdf, 2021.

[PEB21] Charlotte Peale, Saba Eskandarian, and Dan Boneh. Secure complaint-enabled source-
tracking for encrypted messaging. In Giovanni Vigna and Elaine Shi, editors, ACM CCS
2021: 28th Conference on Computer and Communications Security, pages 1484–1506,
Virtual Event, Republic of Korea, November 15–19, 2021. ACM Press.

[PFG+23] Jonathan Prokos, Neil Fendley, Matthew Green, Roei Schuster, Eran Tromer, Tushar
Jois, and Yinzhi Cao. Squint hard enough: Attacking perceptual hashing with adver-
sarial machine learning. In 32nd USENIX Security Symposium (USENIX Security 23),
pages 211–228, Anaheim, CA, August 2023. USENIX Association.

[PR21] Kenneth G. Paterson and Mathilde Raynal. HyperLogLog: Exponentially bad in
adversarial settings. Cryptology ePrint Archive, Report 2021/1139, 2021. https:
//eprint.iacr.org/2021/1139.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, Ad-
vances in Cryptology – CRYPTO 2019, Part I, volume 11692 of Lecture Notes in Com-
puter Science, pages 89–114, Santa Barbara, CA, USA, August 18–22, 2019. Springer,
Heidelberg, Germany.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In 22nd Annual ACM Symposium on Theory of Computing, pages 387–394, Baltimore,
MD, USA, May 14–16, 1990. ACM Press.

68

https://eprint.iacr.org/2023/1366
https://eprint.iacr.org/2023/1366
https://www.wsj.com/world/india/whatsapp-says-it-filed-suit-in-india-to-prevent-tracing-of-encrypted-messages-11622000307
https://www.wsj.com/world/india/whatsapp-says-it-filed-suit-in-india-to-prevent-tracing-of-encrypted-messages-11622000307
https://web.archive.org/web/20230124115918/https://www.meity.gov.in/writereaddata/files/Intermediary_Guidelines_and_Digital_Media_Ethics_Code_Rules-2021.pdf
https://web.archive.org/web/20230124115918/https://www.meity.gov.in/writereaddata/files/Intermediary_Guidelines_and_Digital_Media_Ethics_Code_Rules-2021.pdf
https://web.archive.org/web/20230124115918/https://www.meity.gov.in/writereaddata/files/Intermediary_Guidelines_and_Digital_Media_Ethics_Code_Rules-2021.pdf
https://eprint.iacr.org/2021/1139
https://eprint.iacr.org/2021/1139

[RS20] Katitza Rodriguez and Seth Schoen. FAQ: Why Brazil’s Plan to Mandate Traceability
in Private Messaging Apps Will Break User’s Expectation of Privacy and Security.
Electronic Frontier Foundation. Available at https://www.eff.org/deeplinks/2020/08/
faq-why-brazils-plan-mandate-traceability-private-messaging-apps-will-break-users,
August 2020.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin
Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes
in Computer Science, pages 552–565, Gold Coast, Australia, December 9–13, 2001.
Springer, Heidelberg, Germany.

[SHNK22] Lukas Struppek, Dominik Hintersdorf, Daniel Neider, and Kristian Kersting. Learning
to break deep perceptual hashing: The use case neuralhash. In Proceedings of the 2022
ACM Conference on Fairness, Accountability, and Transparency, pages 58–69, 2022.

[SM23] Sarah Scheffler and Jonathan R. Mayer. Sok: Content moderation for end-to-end
encryption. Proc. Priv. Enhancing Technol., 2023(2):403–429, 2023.

[TMR19] Nirvan Tyagi, Ian Miers, and Thomas Ristenpart. Traceback for end-to-end encrypted
messaging. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019: 26th Conference on Computer and Communications Se-
curity, pages 413–430, London, UK, November 11–15, 2019. ACM Press.

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In Yevgeniy
Dodis and Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, Part I,
volume 13507 of Lecture Notes in Computer Science, pages 535–559, Santa Barbara,
CA, USA, August 15–18, 2022. Springer, Heidelberg, Germany.

[U.S22] U.S. Department of Justice. Former Twitter Employee Found Guilty of
Acting as an Agent of a Foreign Government and Unlawfully Sharing
Twitter User Information. Available at https://www.justice.gov/opa/pr/
former-twitter-employee-found-guilty-acting-agent-foreign-government-and-unlawfully-sharing,
August 2022.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Ran Canetti, editor, TCC 2008: 5th Theory of Cryptogra-
phy Conference, volume 4948 of Lecture Notes in Computer Science, pages 1–18, San
Francisco, CA, USA, March 19–21, 2008. Springer, Heidelberg, Germany.

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and null-
IO from evasive LWE. In Shweta Agrawal and Dongdai Lin, editors, Advances in Cryp-
tology – ASIACRYPT 2022, Part I, volume 13791 of Lecture Notes in Computer Science,
pages 195–221, Taipei, Taiwan, December 5–9, 2022. Springer, Heidelberg, Germany.

[Wha23] WhatsApp. WhatsApp Encryption Overview. Available at https://www.noahpinion.
blog/p/dont-be-a-decel, September 2023.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive comput-
ing(preliminary report). In Proceedings of the Eleventh Annual ACM Symposium on

69

https://www.eff.org/deeplinks/2020/08/faq-why-brazils-plan-mandate-traceability-private-messaging-apps-will-break-users
https://www.eff.org/deeplinks/2020/08/faq-why-brazils-plan-mandate-traceability-private-messaging-apps-will-break-users
https://www.justice.gov/opa/pr/former-twitter-employee-found-guilty-acting-agent-foreign-government-and-unlawfully-sharing
https://www.justice.gov/opa/pr/former-twitter-employee-found-guilty-acting-agent-foreign-government-and-unlawfully-sharing
https://www.noahpinion.blog/p/dont-be-a-decel
https://www.noahpinion.blog/p/dont-be-a-decel

Theory of Computing, STOC ’79, page 209–213, New York, NY, USA, 1979. Association
for Computing Machinery.

70

	Introduction
	Our Contributions
	Related Work

	Technical Overview
	Modeling E2EE Messaging Setting and Virality
	Boundaries on Achievable Security

	Hop Tracking Signatures
	Warmup: A Non-Succinct Construction
	Barriers To Succinctness
	Gapped Hop Tracking Signature Schemes
	Succinct HTS Using Streaming Algorithms
	Real World Implications

	Preliminaries
	Basic Cryptographic Primitives
	Non-Interactive Zero Knowledge
	Group Signatures
	Policy-Based Signatures
	Extractable Witness Encryption
	Incrementally Verifiable Computation

	Hop Tracking Signatures
	Discussion on the Unique Forwarders on a Path Predicate

	Impossibility Of t-secure Succinct HTS
	Succinct HTS Scheme
	Streaming Algorithm
	Puncturable NIZK
	HTS Construction
	Required primitives
	Construction

	Extensions to HTS
	Unique Forwarders in a Graph
	HTS with Forward Secrecy

