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Abstract. Synergy is a lightweight block cipher designed for resource-
constrained environments such as loT devices, embedded systems, and
mobile applications. Built around a 16-round Feistel network, 8 indepen-
dent pseudorandom number generators (PRNGs) ensure strong diffusion
and confusion through the generation of per-block unique round keys.
With a 1024-bit key and a 64-bit block size, Synergy mitigates vulnera-
bilities to ML-based cryptanalysis by using a large key size in combina-
tion with key- and data-dependent bit rotations, which reduce statistical
biases and increase unpredictability. By utilizing 32-bit arithmetic for
efficient processing, Synergy achieves high throughput, low latency, and
low power consumption, providing performance and security for applica-
tions where both are critical.

1 Introduction

Symmetric encryption is a cryptographic method that uses the same key for both
encryption and decryption, securing data across various applications. Lightweight
versions have the potential to protect resource-constrained devices such as IoT,
edge computing, 5G networks, mobile devices, and RFID tags with minimal
computational overhead.

This paper introduces Synergy, a new cipher designed to efficiently secure
data in lightweight applications.

1.1 The Synergy Cipher

The growing demand for secure cryptographic solutions in resource-constrained
environments necessitates lightweight block ciphers that balance security and
performance. Such environments often have limited computational power, mem-
ory, and energy resources, making efficiency a critical design factor. Simultane-
ously, advancements in quantum computing and Al-driven cryptanalysis present
increasing threats to traditional key sizes, potentially requiring larger keys for
long-term security. Current lightweight ciphers often struggle to meet these dual
requirements of strong security and high efficiency, offering either insufficient
security or suboptimal performance. Synergy addresses these challenges by com-
bining a 1024-bit key with computational efficiency and a low memory footprint.

The name Synergy reflects the cryptographic synergy achieved by integrat-
ing high-speed yet cryptographically weak pseudorandom number generators



(PRNGs) with a lightweight Feistel network to construct a robust block cipher.
Rather than relying on the inherent strength of the PRNGs, Synergy lever-
ages structure, dynamic round transformations, and high-entropy key material
to collectively obscure internal states and mitigate statistical leakage, even un-
der emerging threats such as MIL-based cryptanalysis. This design enables the
use of a 1024-bit key while maintaining high throughput and low latency, mak-
ing it well-suited for resource-constrained environments with high demands for
both performance and security. The strength of this approach lies in the round
function of the Feistel network, which incorporates variable bitwise rotations to
obscure the internal states of eight independently seeded PRNGs. By altering
the transformation of these states dynamically on a per-block basis, the cipher
mitigates statistical biases and pattern predictability in the resulting ciphertexts.

2 Background and Related Work

2.1 Block Ciphers Overview

A block cipher is a symmetric-key cryptographic algorithm that encrypts data
in fixed-size blocks (e.g., 64-bit, 128-bit). It applies a series of mathematical
transformations to produce ciphertext using a secret key. Block ciphers are
widely used in secure communication, file encryption, and authentication [1].

How Block Ciphers Work - Encryption: Plaintext is transformed into ci-
phertext using the secret key and the cipher’s algorithm. - Decryption: Cipher-
text is transformed back into plaintext using the same secret key and the inverse
of the cipher’s algorithm. - Modes of Operation: To handle data larger than
a single block, block ciphers use modes of operation (e.g., CBC, CTR, GCM).

2.2 Related Work

Lightweight cryptographic algorithms have gained prominence due to their suit-
ability for resource-constrained environments. Notable examples include:

— Ascon: Selected by NIST for its Lightweight Cryptography standardization
project, Ascon combines encryption and message authentication in a single
operation [2].

— Speck: Developed by the NSA, Speck supports various block and key sizes,
offering flexibility for constrained environments [3].

— PRESENT: Designed in 2007, PRESENT operates on 64-bit blocks and
supports 80- or 128-bit keys, providing compact design and resistance to
cryptanalysis [4].



3 Novelty and Contributions

Synergy introduces the following novelties:

A 1024-bit key for a lightweight block cipher.
Data- and round-key-dependent bit rotations in a Feistel network.

— The use of fast pseudorandom number generators (PRNGs) combined to
provide security.

— Per-round and per-block unique round keys generated with PRNGs.

— A lightweight key schedule for high-performance encryption with large keys.

The use of data-dependent bit rotations in cryptographic design has been
explored before, as demonstrated by IBM in their design of MARS [5], an AES
finalist. In Synergy, the novel aspect is how variable bit rotations depend on
both the data and the pseudorandom round keys to achieve a strong avalanche
effect that is unique for each block.

4 Design Principles of Synergy

4.1 General Structure

Synergy utilizes a 16-round Feistel network with a 64-bit block size and a 1024-
bit key. Eight independent Xorshift128 [6] PRNGs generate unique round keys
for each round and block. While these PRNGs are vulnerable in isolation, their
combination and obfuscation within the Feistel network ensure strong diffusion
and confusion, effectively securing both the plaintext and the round keys.

4.2 Xorshift PRNGs

To mitigate the known limitations of xorshift generators, particularly the issue
of short periods highlighted by Panneton and L’Ecuyer [10], Synergy combines
eight independent xorshift generators. Each generator has a period of 2128 — 1,
significantly extending the shorter periods mentioned and reducing the risk of
repeating key sequences. This aligns with recommendations to use ”a larger num-
ber of xorshifts together with a long period” to improve the statistical properties
of the generated sequences. However, the long period alone is not sufficient for
cryptographic security. The crucial non-linear mixing within the dynamic key
schedule, combined with the diffusion provided by the Feistel network through
variable bit rotations, mitigates the inherent linearity of the xorshift generators
and enhances their statistical properties for cryptographic applications. The de-
sign with independently seeded PRNG instances provides a large key space, in
preparation for the rapid advancements in cryptanalysis [7].



4.3 Round Function

The round function F' for encryption in Synergy is defined as:

Here, ROL(R;, (R;&0x1F)) represents a left rotation of R; by a number of bits
determined by its lower five bits. This operation ensures entropy preservation
across rounds, improving diffusion and obscuring relationships between plaintext
and ciphertext. The bitwise rotation in the round function depends on the value
of the left half block, making the rotation variable and hard to predict.

4.4 Number of Rounds

Our analysis suggests that 8 rounds provide moderate diffusion, which may resist
some cryptanalytic techniques but could be vulnerable to advanced attacks. At
16 rounds, diffusion approaches an ideal level, where small changes in input lead
to nearly 50% of output bits flipping on average. Doubling the number of rounds
from 8 to 16 significantly increases the probability of single bit flips in plaintext
data affecting the variable bit rotations, making it substantially more difficult
for future attackers to analyze and exploit potential weaknesses.

In addition to enhancing diffusion, increasing the number of rounds plays a
crucial role in confusion. Each round of the Feistel network mixes the round key
with the data. With more rounds, the data undergoes this mixing process multi-
ple times with different round keys, making it progressively more difficult for an
attacker to work backward from the ciphertext to recover the round keys or the
master key. The increased complexity effectively "hides” the round keys, making
cryptanalytic attacks that rely on key recovery significantly more challenging.

Table[I]shows the average Hamming distance for one million ciphertext pairs,
where one bit at a pseudorandom position in the plaintext differs.

Table 1. Average Hamming Distance for Different Rounds (1,000,000 runs)

Number of Rounds|Average Hamming Distance|Standard Deviation
8 30.889494 5.512236
16 32.001687 3.992993
24 32.002514 3.995475
32 32.003161 4.006110

4.5 Block Size

Synergy’s block size of 64 bits enables efficient processing of half-blocks as single
32-bit integers in the Feistel network. This design enhances performance on 32-
bit architectures while minimizing memory usage, making it suitable for resource-
constrained devices.



The security of the small block size is strengthened in Synergy by the genera-
tion of pseudorandom unique round keys for each block with a period of 2128 —1
(block period of 2127 — 1 since two pseudorandom numbers per PRNG are used
per block), thus mitigating the weaknesses generally associated with small block
sizes when fixed key schedules are used.

4.6 Key Derivation

The use of a 1024-bit key significantly increases security by mitigating risks asso-
ciated with smaller key sizes. The key size aligns with the number of Xorshift128
instances in Synergy, where each instance contains four 32-bit integers as inter-
nal state, totaling 8 x 4 x 32 = 1024 bits. This key size ensures that all PRNG
instances can be directly seeded from the key and IV without entropy loss.

The 1024-bit IV length matches the key size, providing sufficient entropy for
key derivation and enabling robust mixing of the key and IV. This enhances
the security of the derived keys and prevents attacks such as IV reuse, where
repeated IVs can compromise confidentiality.

The key derivation function takes two inputs:

— IV[8]: An 8-element array of 64-bit integers representing an initialization
vector.

— key[8]: An 8-element array of 64-bit integers representing a cryptographic
key.

The derived key is key @ IV, ensuring low-latency key derivation. However,
reusing keys across multiple encryptions can increase vulnerability to cryptanal-
ysis, making ephemeral keys essential for security.

Secure key management strategies, such as a two-tiered key system using
ephemeral keys—e.g., derived from a smaller key—can be adopted based on
implementation needs.

5 Security Considerations

While Synergy incorporates several design features to enhance security, a com-
prehensive cryptanalytic evaluation is beyond the scope of this paper. A full
cryptanalytic evaluation is necessary to establish the security of Synergy for
real-world applications, including resistance against machine learning models
(ML models) [9].

However, some aspects of Synergy’s security have been considered. The cipher
utilizes eight independent Xorshift128 PRNGs, which are known to have weak-
nesses [10]. The Feistel structure, with its data- and key-dependent rotations,
is expected to provide significant diffusion and confusion, potentially mitigat-
ing these weaknesses. The key-dependent rotation, where the rotation amount
depends on the lower 5 bits of the right half of the block (representing all pos-
sible bit positions in the 32-bit block half), introduces nonlinearity and makes



it more difficult to predict the internal states of the PRNGs. The hypothesis is
that this dynamic rotation in combination with 16 rounds in the Feistel network
significantly complicates attacks that rely on predicting the PRNG outputs.

ML models are expected to become increasingly capable of predicting PRNGs
[11], and even with data- and key-dependent variable bit rotations in the Feistel
network, patterns may be leaked in the ciphertexts that ML models can use for
prediction. In anticipation of possibilities like these, Synergy uses eight indepen-
dently seeded PRNGs for generating unique round keys for each round and for
each block.

The 1024-bit key in Synergy provides entropy for seeding all eight Xorshift128
generators. Synergy’s design prioritizes lightweight operations, including key
derivation, to achieve minimal latency and suitability for resource-constrained
environments. This focus on lightweight key derivation, however, necessitates
careful key management practices. Specifically, we recommend the use of ephemeral
keys, where a unique key is generated for each encryption session.

6 Performance Evaluation

All calculations in the Synergy algorithm use 32-bit arithmetic with only bitwise
operations. Therefore, Synergy is expected to have high performance and low
power consumption in both software implementations running on low-power 32-
bit CPUs and hardware implementations.

7 Conclusion

With a novel approach to symmetric encryption, Synergy, a lightweight block
cipher has been presented that enables high throughput, low latency and low
power consumption while at the same time allowing for a large key size. Synergy
achieves robust security and efficiency through the use of fast PRNGs in combi-
nation with variable bit rotations in a Feistel network, making it well-suited for
lightweight cryptographic applications.

Future work may focus on evaluating the security of the cipher and how it
can be implemented on different platforms.
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A Appendix: Pseudocode for Synergy

Below is the pseudocode for Synergy, providing a high-level description of its
algorithms:

Algorithm 1 Global Constants and Arrays
1: Define NUM_ROUNDS = 16
2: Define NUM_PRNGS =38
3: Define PRNGS_MODULO = NUM_PRNGS -1
4: Global Arrays: t{[NUM_PRNGS], yNUM_PRNGS],
2[NUM_PRNGS)], w[NUM_PRNGS)|, rk[NUM_ROUNDS|

Algorithm 2 Initialize Seeds

Require: key]] and iv]] are arrays of size at least NUM_PRNGS x 4
Ensure: Global arrays z]], y[], z[], w][] are initialized based on key]] and iv]|
1: function INITIALIZESEEDS(key(], iv[])
2 for i =0to NUM_PRNGS —1do
3 x[i] + keyl[i] ® iv[i]
4 yli] < key[i + NUM_PRNGS] @ iv]i + NUM_PRNGS)
5: z[i] + key[i + NUM_PRNGS x 2] @ iv[i + NUM_PRNGS X 2]
6
7
8:

wli] « key[i + NUM_PRNGS x 3] ® w[i + NUM_PRNGS x 3]
end for
end function

Algorithm 3 XOR128 Function

Require: i is an integer such that 0 <i < NUM_PRNGS
Ensure: A pseudo-random number is generated and returned
1: function XOR128(%)

2 t <« z[i] ® (z[7] < 11)
3l < yli]

4: yli] < z[g]

5: z[t] < wli]
6.
7
8:

wli] = wli] ® (w[i] > 19) @t & (¢ > 8)
return wi|
end function




Algorithm 4 Feistel Encryption

Require: plaintext]] contains valid data, blockIndex is within bounds, global arrays
are initialized

Ensure: Encrypted ciphertext is stored in ciphertext[blockIndex] and
ciphertext[blockIndex + 1]

1: function FEISTELENCRYPT(plaintext[], ciphertext||, blockIndex)
2 left < plaintext[blockIndex]

3 right < plaintext[blockIndezx + 1]

4: for i =0to NUM_ROUNDS — 1 do

5: rk[i] < zor128(i& PRNGS_MODULO)

6: end for

7 for i =0to NUM_ROUNDS — 1 do

8: temp < right

9: n < right A Ox1f
10: right < left ® rk[i] & ((right < n) V (right > (32 — n)))
11: left < temp

12: end for

13: ciphertext[blockIndex] + left

14: ciphertext[blockIndex + 1] < right
15: end function

Algorithm 5 Feistel Decryption

Require: ciphertext]] contains valid data, blockIndex is within bounds, global arrays
are initialized
Ensure: Decrypted plaintext is stored in  plaintext[blockIndex) and
plaintextblockIndex + 1]
1: function FEISTELDECRYPT(ciphertext|], plaintext[], blockIndex)

2: left < ciphertext[blockIndex]

3: right < ciphertext[blockIndex + 1]

4: for i =0to NUM_ROUNDS —1 do

5: rk[i] < zor128(i& PRNGS_MODULO)

6: end for

7 for i = NUM_ROUNDS — 1 downto 0 do

8: temp < left

9: n < left NO0xlf

10: left < right ® rk[i] ® ((left < n) V (left > (32 —n)))
11: right < temp

12: end for

13: plaintext[blockIndex] < left

14: plaintext[blockIndex 4+ 1] + right
15: end function




Algorithm 6 Encrypt Function
Require: plaintext]] PKCS#7 padded, keyl], and iv[] are valid arrays, len is even and
within bounds

Ensure: Encrypted ciphertext is stored in ciphertext|]

1: function ENCRYPT(plaintext[], key[], iv[], ciphertext(], len)

2 initializeSeeds(key]], iv[])

3 for i =0 to len — 1 step 2 do
4: feistelEncrypt(plaintext]], ciphertext[], i)

5

6:

end for
end function

Algorithm 7 Decrypt Function

Require: ciphertext]], key[], and iv[] are valid arrays, len is even and within bounds
Ensure: Decrypted plaintext is stored in plaintext|]

1: function DECRYPT(ciphertext|], key[], iv[], plaintext[], len)

2 initializeSeeds(key]], iv[])

3 for i =0 to len — 1 step 2 do

4: feistelDecrypt(ciphertext|], plaintext]], i)

5 end for

6: end function




B Appendix: C Code Implementation

An example C code implementation of Synergy:

#include <stdint.h>
#include <string.h>

#define NUM_ROUNDS 16
#define NUM_PRNGS 8
#define PRNGS_MODULO (NUM_PRNGS — 1)

uint32_t x[NUM_PRNGS];
uint32_t y[NUM_PRNGS];
uint32_t z[NUM_PRNGS];
uint32_t w[NUM_PRNGS];
uint32_t rk [NUM_ROUNDS];

void initializeSeeds (const uint32_t key[], const uint32_t iv[]) {
for (int i = 0; i < NUMPRNGS; i++) {
x[i] key[i] ~ iv[il];
y[i] = key[i + NUMPRNGS] ~ iv[i + NUMPRNGS];
z[i] = key[i + NUMPRNGS * 2] " iv[i + NUMPRNGS % 2];
w[i] = key[i + NUMPRNGS * 3] " iv[i + NUMPRNGS % 3];

}

static inline uint32_t xorl128(int i) {
uint32_t t = x[i] © (x[i] << 11);
x[i] =vy[i];
yli] = z[i];
2(i] =wlili
wli] wli] ~ (w[i] > 19) ~ t ~ (t >> 8);
return wli];

}

void feistelEncrypt(const uint32_t plaintext[], uint32_t ciphertext[],
blocklndex) {
uint32_t left = plaintext[blocklndex];
uint32_t right = plaintext[blocklndex + 1];

for (int i = 0; i < NUM_ROUNDS; i++) {
rk[i] = xorl128(i & PRNGS.MODULO) ;
}
for (int i = 0; i < NUMROUNDS; i++) {
uint32_t temp = right;
uint32_t n = right & 0x1f;
right = left ~ rk[i] ~ ((right << n) | (right >> (32 — n)));
left = temp;
}
ciphertext[blocklndex] = left;

ciphertext[blocklndex 4+ 1] = right;

}

void feistelDecrypt(const uint32_t ciphertext[], uint32_t plaintext[],
blocklndex) {
uint32_t left = ciphertext[blocklndex];
uint32_t right = ciphertext[blocklndex + 1];

for (int i = 0; i < NUM_ROUNDS; i++) {
rk[i] = xor128(i & PRNGS.MODULO) ;

for (int i = NUMLROUNDS — 1; i >= 0; i—) {
uint32_t temp = left;

int

int



uint32_t n = left & Ox1f;
left = right ~ rk[i] "~ ((left << n) | (left >> (32 — n)));
right = temp;

plaintext [blocklndex] = left;
plaintext [blocklndex + 1] = right;

void encrypt(const uint32_t plaintext[], const uint32_t key[], const uint32_t
iv[], uint32_t ciphertext[], int len) {
initializeSeeds (key, iv);

for (int i = 0; i < len; i 4= 2) {
feistelEncrypt(plaintext , ciphertext, i);
}

void decrypt(const uint32_t ciphertext[], const uint32_t key[], const
uint32_t iv[], uint32_t plaintext[], int len)
initializeSeeds (key, iv);

for (int i = 0; i < len; i 4= 2) {
feistelDecrypt (ciphertext , plaintext, i);
}

int main() {
// Initialize key material (replace with secure randomness)
uint8_t keyMaterial [NUM_PRNGS % 16];
for (int i = 0; i < sizeof(keyMaterial); i++) {
keyMaterial[i] = i + 1;

// Convert key material to uint32_t array
uint32_t key [NUM_PRNGS x* 4];
memcpy (key , keyMaterial , sizeof(keyMaterial));

// Initialize IV (zero—filled for demonstration)
uint32_t iv[NUM_PRNGS % 4] = {0};

// Define message
uint32_t message[] = {101, 102, 103, 104, 105, 0x04040404}; // PKCS#7

padded
int len = sizeof(message) / sizeof(message[0]);
// Encrypt
uint32_t ciphertext[len];
encrypt(message, key, iv, ciphertext, len);
printf(” Ciphertext: ");
for (int i = 0; i < len; i++) {

printf("%08x ", ciphertext[i]);
printf("\n");
// Decrypt

uint32_t plaintext[len];
decrypt(ciphertext , key, iv, plaintext, len);
printf(" Plaintext: ");

for (int i = 0; i < len — 1; i++) {
printf("%u ", plaintext[i]);

printf(”"\n");

return 0;

Listing 1.1. C Code Example
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