
XHMQV: Better Efficiency and Stronger Security
for Signal’s Initial Handshake based on HMQV⋆

Rune Fiedler1, Felix Günther2 , Jiaxin Pan3 , and Runzhi Zeng3

1 Technische Universität Darmstadt, Darmstadt, Germany
rune.fiedler@cryptoplexity.de

2 IBM Research Europe – Zurich, Rüschlikon, Switzerland
mail@felixguenther.info

3 University of Kassel, Kassel, Germany
{jiaxin.pan,runzhi.zeng}@uni-kassel.de

Abstract. The Signal protocol is the most widely deployed end-to-end-
encrypted messaging protocol. Its initial handshake protocol X3DH al-
lows parties to asynchronously derive a shared session key without the
need to be online simultaneously, while providing implicit authentication,
forward secrecy, and a form of offline deniability. The X3DH protocol has
been extensively studied in the cryptographic literature and is acclaimed
for its strong “maximum-exposure” security guarantees, hedging against
compromises of users’ long-term keys and medium-term keys but also the
ephemeral randomness used in the handshake. This maximum-exposure
security is achieved by deriving keys from the concatenation of 3–4 Diffie–
Hellman (DH) secrets, each combining two long-term, medium-term, or
ephemeral DH shares.
Remarkably, X3DH’s approach of concatenating plain DH combinations
is sub-optimal, both in terms of maximum-exposure security and perfor-
mance. Indeed, Krawczyk’s well-known HMQV protocol (Crypto ’05) is
a high-performance, DH-based key exchange that provides strong secu-
rity against long-term and ephemeral key compromise. One might hence
wonder: why not base Signal’s initial handshake on HMQV?
In this work, we study this question and show that a carefully adapted
variant of HMQV, which we call XHMQV, indeed enables stronger se-
curity and efficiency while matching the constraints of Signal’s initial
handshake. Most notably, HMQV does not work as a drop-in replace-
ment for X3DH, as the latter’s asynchronicity requires the protocol to
handle cases where one party runs out of ephemeral keys (pre-uploaded
to the Signal server). Our XHMQV design hence augments HMQV with
medium-term keys analogous to those used in X3DH. We prove that
XHMQV provides security in all 3–4 compromise scenarios where X3DH
does and additionally in 1–2 further scenarios, strengthening the hand-
shake’s maximum-exposure guarantees while using more efficient group
operations. We further confirm that our XHMQV design achieves deni-
ability guarantees comparable to X3DH. Our security model is the first

⋆ A preliminary version of this paper appears in the proceedings of the 45th Annual
International Cryptology Conference (CRYPTO 2025), © IACR 2025. This is the
full version.

https://orcid.org/0000-0002-8495-6610
https://orcid.org/0000-0002-7459-6850
https://orcid.org/0000-0002-8606-3007

2 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

Alice BobSignal Server
gb, gs, gy

Bob’s pre-key bundle
ga

Alice’s long-term
x←$ Zq

gx

K ← KDF(gas∥gxb∥gxs∥gxy) K ← KDF(gas∥gxb∥gxs∥gxy)

Fig. 1. Signal’s X3DH handshake (simplified), involving long-term keys a and b of users
Alice resp. Bob, semi-static key s, and ephemeral keys x and y.

to capture Signal’s long-term key reuse between DH key exchange and
signatures, which may be of independent interest.

1 Introduction

The Signal protocol [49] for end-to-end-encrypted messaging is used by billions
of people daily, underlying major messaging apps such as Facebook Messen-
ger, Google Messages, Skype, Signal, or WhatsApp. Its initial handshake proto-
col X3DH (“extended triple Diffie–Hellman”) is used to establish a session key
between two users that want to start a conversation. It is designed in a way
that the two users do not have to be online simultaneously: users upload a “pre-
key bundle” to the Signal server which initiators of a conversation can fetch to
asynchronously run their part of the X3DH protocol and start sending messages,
while responders can catch up later by completing their part of the handshake.
X3DH further provides implicit authentication of the users, forward secrecy in
case of future compromise of long-term keys, and a form of deniability allowing
users to dispute having been involved in a conversation.

Sub-optimal solution for “maximum-exposure”. Perhaps most importantly, X3DH
aims at strong security guarantees, sometimes referred to as “maximum-exposure”
security: its design hedges against compromises of users’ long-term keys and
medium-term keys as well as exposure of the ephemeral randomness used in the
handshake. This maximum-exposure security is achieved by deriving the session
key from the concatenation of 3–4 Diffie–Hellman (DH) secrets gas, gxb, gxs,
and (optionally) gxy, each combining two long-term (ga, gb for users Alice and
Bob), medium-term (gs for user Bob only), or ephemeral DH shares (gx, gy). See
Figure 1 for a (simplified) illustration of the X3DH handshake. Signal’s hand-
shake and related designs have been studied extensively in the cryptographic
literature [11,12,35,53,27,28,19,8,24,6,13,23,29] and Signal is widely recognized
as the “gold standard” for secure messaging.

Notably, X3DH uses only a partial coverage of the potential DH combinations,
even when considering only the long-term and ephemeral keys. For instance, it
does not include the long-/long-term combination gab, which is useful to hedge
against compromise of ephemeral randomness and medium-term secrets. This
is a security property that the current Signal handshake cannot achieve. A

XHMQV: Signal’s Initial Handshake based on HMQV 3

Protocol Group exp. Key Indistinguishability Deniability
Alice Bob LT-SS E-LT E-SS E-E LT-LT LT-E semi-hon. malic.

X3DH 4 (3) 4 (3) ✓ ✓ ✓ (✓) ✗ ✗ ✓ ✦

XHMQV 3 (2) 2 ✓ ✓ ✓ (✓) ✓ (✓) ✓ ✗

Table 1. Performance, security, and deniability properties of X3DH and XHMQV. Key
indistinguishability conditions AA-BB demand security as long as Alice’s AA and Bob’s
BB keys are uncompromised, where LT, SS, E denote long-term, medium-term/semi-
static, and ephemeral keys, respectively. Parenthesized entries are for reduced mode
(without Bob’s ephemeral key present). We discuss the intricacies of malicious denia-
bility below.

straightforward modification is to incorporate this additional long-term/long-
term combination, yet simply concatenating plain DH values is sub-optimal in
terms of performance. On the other hand, the well-known HMQV protocol by
Krawczyk [36], building on the MQV protocol [43,39], is a high-performance,
DH-based key exchange that provides strong security against long-term and
ephemeral key compromise. This naturally raises the question:

Can Signal’s initial handshake be (more) efficiently instantiated
based on HMQV to provide (even) stronger security?

The short answer is: Yes, but it requires careful adaptation and rigorous proofs.

1.1 Contributions

In this work, we study the above question and introduce XHMQV, a carefully
adapted variant of HMQV that enables stronger security and improved efficiency
over X3DH, while adhering to the real-world constraints imposed on Signal’s ini-
tial handshake. We emphasize that HMQV does not work as a drop-in replace-
ment for X3DH, as the latter’s asynchronicity requires the protocol to handle
cases where one party runs out of ephemeral keys (pre-uploaded to the Sig-
nal server). Our XHMQV design hence augments HMQV with semi-static keys
analogous to those used in X3DH.

We prove that XHMQV’s session keys are secure under all 3–4 compromise
scenarios targeted by X3DH and additional 1–2 scenarios (see Table 1 for de-
tails), and also that it matches Signal’s deniability targets (we discuss technical
subtleties below). Notably, our security model and proof is the first to capture
the re-use of long-term keys in Signal for key exchange and signatures, which
may be of independent interest.

In more detail, our contributions are as follows.

XHMQV: HMQV-based Signal handshake. We propose XHMQV, a new Signal
handshake protocol based on Krawczyk’s HMQV protocol [36], illustrated in

4 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

Alice BobSignal Server
B := gb, S := gs , Y := gy

Bob’s pre-key bundle
A := ga

Alice’s long-term
x←$ Zq

X := gx

DH := (Y Be1 S e2)x+da DH := (XAd) y+ e1b+ e2 s

d := h0(A, X), e1 := h1(B, S , Y), e2 := h2(B, S, Y)

K := KDF(DH , A, B, S , Y , X)

Fig. 2. Our XHMQV handshake protocol (simplified), involving long-term keys a and
b of users Alice resp. Bob, semi-static key s, and ephemeral keys x and y, as well as
hash functions h0, h1, h2. If Bob’s ephemeral key Y := gy is unavailable, the resulting
reduced handshake mode omits elements highlighted in light blue .

Figure 2. The core idea is to augment HMQV with a semi-static key on Bob’s
side S = gs, similar to the semi-static keys used in Signal’s X3DH for delayed
forward secrecy in case the Signal server runs out of pre-key bundles for Bob
including a fresh ephemeral share Y = gy. (Indeed, removing S = gs and all
related computations from Figure 2 essentially yields HMQV, modulo interaction
and hashing context.)

In terms of performance, XHMQV involves 3 or 2 group exponentiations (for
Alice and Bob, respectively; in reduced mode only 2 for Alice) whereas X3DH
involves 4 group exponentiations per party (in full mode, 3 in reduced mode).
While XHMQV additionally involves group multiplications, these are generally
much more efficient than exponentiations, resulting in an overall performance
advantage.4

Stronger “maximal-exposure” security. Compared to X3DH, our XHMQV design
ensures security under two additional compromise scenarios, namely compromise
of everything except (1) both initiator and responder long-term keys, as well as
(2) the initiator long-term key and the responder ephemeral randomness. In
both cases, an adversary can trivially compute all DH combinations in the key
derivation of X3DH to obtain the session key, whereas our XHMQV protocol
inherits protection against such compromise from the original HMQV protocol.

We argue that these strengthened security guarantees are not only theoret-
ical: The former scenario (long-term–long-term uncompromised) hedges against
bad randomness used when generating ephemeral and semi-static keys (while
long-term keys generated only once may benefit from better randomness sources).
4 Note that we use multiplicative notation here, in line with prior Signal anal-

yses. Signal’s X3DH handshake is using elliptic-curve cryptography, specifically
X25519 based on Curve25519 [5,38] for key exchange and XEdDSA signatures [46]
over Ed25519 [38]. Notably, X3DH is re-using long-term Diffie–Hellman keys for both
DH key exchange and signing a user’s pre-key bundle, involving a (cheap) conversion
between Curve25519 and Ed25519. When implementing XHMQV with X25519, one
would likewise convert between Curve25519 and Ed25519 to benefit from the latter’s
fast, constant-time point addition.

XHMQV: Signal’s Initial Handshake based on HMQV 5

The latter scenario (long-term–ephemeral uncompromised) mirrors the protec-
tion sought after by X3DH through combining initiator ephemeral and responder
long-term keys. We stress that both additional security guarantees essentially
come “for free” through employing HMQV’s clever key derivation.

Security proof capturing reuse of long-term keys. We prove security for XHMQV
in a computational, game-based security model capturing Bellare–Rogaway-
style [4] key indistinguishability. To this end, we adopt the security model of
Brendel et al. [8,7] and Fiedler and Günther [23], which in turn builds on the
initial computational analysis of Signal by Cohn-Gordon et al. [11,12]. In this
model, the adversary actively interacts with multiple users and sessions, is al-
lowed to adaptively compromise long-term, semi-static, and ephemeral secrets,
and is tasked with distinguishing from random the session key in a chosen test
session which is not trivially compromised and “clean”. Cleanliness of a session
captures the “maximum-exposure” security aimed at by the XHMQV protocol,
asking for security as long as certain combination of keys are uncompromised for
the test session. The stronger security achieved by XHMQV compared to X3DH
corresponds to our model demanding security in (two) more “clean” cases.

As a notable technical difference to prior models, our security model is
the first to capture Signal’s key reuse of long-term user keys for both in the
X25519 Diffie–Hellman key exchange and as signing key for XEdDSA [46] sig-
natures. Prior work either modeled these signatures using separate signing keys
[35,53,24,6,23,29] or not at all [11,12,8].

As a result of modeling the key reuse, we require a more fine-grained version of
signature security. The technical challenge is that, since the long-term key in the
DH key exchange is the same as the public key of the signature scheme, we cannot
compute the session key when we construct a reduction to signature security,
since we do not know the corresponding long-term secret key. To resolve this,
we introduce a new notion of security, namely, one-per message unforgeability
with a Ddh oracle, where Ddh(X = gx, Y = gy, Z) outputs whether Z =
gxy. This is a notion that can be satisfied by signatures using the CDH or
DLog assumptions. In Section 2.2 we argue that both the Schnorr and (EC)DSA
signature schemes satisfy this notion. As discussed in [22], the (weaker) one-per
message unforgeability is sufficient for AKE protocols.

We give more technical details about why this additional Ddh oracle can
help us to simulate the session key. In our XHMQV protocol, our reduction
to the signature security needs to compute K := KDF(DH , A, B, S, X) for ad-
versary A who is attacking XHMQV, where DH = (XAd)e1b+s, imagining the
simplest reduced handshake mode. Since the long-term keys A and B are com-
ing from the signature challenger, the reduction knows neither a nor b. Our
solution is to always answer KDF(DH , A, B, S, X) with a random value k, al-
though the reduction cannot compute DH . To prevent the adversary from notic-
ing this, KDF is modeled as a random oracle and if at some point A queries KDF
with the correct DH secret DH = (XAd)e1b+s, then the reduction will program
KDF(DH , A, B, S, X) to k. To check whether DH = (XAd)e1b+s holds, we need
the Ddh oracle.

6 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

Deniability. Signal aims for deniability of the initial handshake protocol [41,
Section 4.4] in the following sense: the transcript of a protocol execution should
not prove either party’s involvement in the execution, even if the distinguisher
gets access to both party’s secret keys. In particular, this excludes the case of one
party cooperating with the distinguisher during the protocol execution (online
deniability), which Unger and Goldberg [51, Section 6.6] deem unachievable for
asynchronous key exchange with forward secrecy. Hence, we focus on offline de-
niability. Arguably, Signal’s requirement is restricted to semi-honest adversaries,
i.e., adversaries that follow the protocol.

Fiedler and Janson [24] show that offline deniability against semi-honest ad-
versaries holds for X3DH. Additionally, they show deniability for Alice against
malicious adversaries limited to honestly generated long-term and semi-static
keys. Furthermore, Vatandas, Gennaro, Ithurburn, and Krawczyk [53] show that
X3DH is deniable against malicious adversaries based on their novel Extended
Knowledge of Diffie–Hellman (EKDH) assumption. However, Fiedler and Lan-
grehr [25] show that the EKDH assumption does not hold and that X3DH is not
deniable as soon as simple auxiliary input is allowed.

Our protocol XHMQV matches the deniability guarantees of X3DH against
semi-honest adversaries. Against malicious adversaries limited to honestly gen-
erated long-term and semi-static keys, our XHMQV does not provide deniability
for Alice (unlike X3DH). Specifically, if Bob provably does not know his own
ephemeral secret key, then the long-term–ephemeral contribution proves Alice’s
involvement. Arguably, the same deniability issue arises already in X3DH when
Bob’s semi-static keys are (also) allowed to be maliciously generated, which we
deem realistic albeit not modeled in [24].5 In that regard, XHMQV fares com-
parably to X3DH in terms of deniability against realistic malicious adversaries.
Against malicious adversaries in general, we expect that the findings of Fiedler
and Langrehr [25] discussed above likewise apply to XHMQV as to X3DH.

Post-quantum readiness. Our XHMQV design can be readily extended to protect
against harvest-now-decrypt-later quantum attacks, following a similar approach
as Signal’s recent post-quantum revision PQXDH [37] of the initial handshake.
Recall that PQXDH essentially adds a (signed) KEM flow to the X3DH design,
mixing the derived KEM shared secret into the key derivation. Such a KEM flow
and the derived KEM shared secret can be added in an identical fashion to our
XHMQV design, lifting the resulting security to a quantum-safe version as for
PQXDH. We refer to [6,24,23] for detailed analyses of the design and security of
PQXDH.

Deployment considerations. Since our XHMQV protocol only requires a change in
how session keys are derived, but does not change the wire format of the protocol,
5 Even when assuming the Signal server does not collude in a deniability attack (and

asks users to prove possession of keys they upload), we expect this is done only for
long-term keys, but not semi-static keys. The honest key registration oracle of [24]
however enforces that long-term and semi-static keys are honestly generated.

XHMQV: Signal’s Initial Handshake based on HMQV 7

we deem XHMQV readily deployable through a next breaking protocol update
of Signal. Observe that, in contrast to X3DH, the key derivation in XHMQV
also includes as context the involved DH public keys; this is good practice and
supports our proof technique. Similar suggestions have been made in the security
analyses of Signal’s PQXDH protocol [6,23] for a more robust design safeguarding
against KEM re-encapsulation attacks [14].

1.2 Related Work and Further Discussion

Analyses of the HMQV protocol. The HMQV protocol was proven secure in [36]
based on the Gap Diffie–Hellman assumption using the Forking Lemma [47].
In [34] Kiltz et al. gave a different security proof of HMQV with a modular
approach. They first proposed a multi-user variant of the Computational DH
problem, the Challenge-Response Gap DH with Corruption (CorrCRGapDH) as-
sumption, and they proved that the CorrCRGapDH assumption tightly implies
the security of HMQV. Then they showed that the CorrCRGapDH assumption is
non-tightly implied by the Gap DH assumption [1] using the Forking Lemma.
Although their proof has the same loss as the original one in [36], its modular
approach allows us to focus on the core algebraic assumption for the security
of HMQV. In this paper, we follow the same modular approach to simplify our
proof.

Tightness of the security proof. Similar to prior work analyzing HMQV [34],
X3DH [12], and PQXDH [23], our security bound is not tight, as illustrated in
Table 2. However, none of them models the reuse of long-term keys for DH
and signing operations. Our analysis of XHMQV is the first one to account for
the key reuse. While the result of [34] for HMQV is the only one to allow for
multiple Test queries, the protocol does not involve semi-static keys, nor does
it take signatures on public keys or key reuse into account. The analysis of X3DH
takes the semi-static keys into account, and the analysis of PQXDH additionally
considers the signatures on the semi-static keys.

Our result relies on a challenge-response version CRGapDH of the Gap Diffie–
Hellman assumption introduced by Kiltz et al. [34] (under the name (2,1)-
CorrCRGapDH assumption). Kiltz et al.’s use of the Forking Lemma to reduce
CorrCRGapDH to GapDH means that, to base our results on the GapDH assump-
tion, we require rewinding that comes with a square root security loss. However,
the security proof for DLog-based signature schemes such as XEdDSA (used in
X3DH) and Schnorr signatures is in the ROM and uses rewinding, which leads
to a square root loss as well. Therefore, an analysis of X3DH (or any other proto-
col for Signal’s initial handshake) that takes the signatures into account already
incurs a square root loss. Hence, the use of the CRGapDH assumption does not
incur much penalty for rewinding. We discuss the relation between the GapDH
assumption and its challenge-response variant in more detail in Section 2.1.

Analyses of the Signal protocol. The Signal protocol (both the initial handshake
X3DH and the Double Ratchet protocol) were first analyzed with a game-based

8 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

Protocol #Test
queries

Semi-
static
keys

Key
reuse Model Security bound

HMQV
(+context)

[34]
T ✗ ✗

ROM
GGM

(qG+nu+ns+1)2

p
+ 2qRO

p

+ 3(nu+ns+1)2(2qRO+1)
p

X3DH
[12] 1 ✓ ✗ ROM

(nu+nu·nss+ns)2

p

+n2
u · ns · (4nss + 2 + ns)

(
1
p

+ ϵGDH
)

PQXDH
[23] 1 ✓✓ ✗ ROM

(nu+nunss+ns)2

p
+ γcoll(nunss + ns)

+ns · δcorr + ϵLEAK+r

+
(
n2

unss + nsnu + nunssns

)
· ϵGDH

+4nu · ϵSIG

+
(
nunssns + n2

s

)
·min(ϵGDH, ϵCCA)

+nun2
s · qRO · ϵCCA

XHMQV
(this work) 1 ✓✓ ✓ ROM

(nu+nunss+ns)2

p
+ nu · ϵEUF-opCMA-DDH

+
(
2n2

u + 2nuns + n2
unss

)
·δsim

+
(

n2
u + nunss + n2

unss + nuns

+nsnunss + n2
ss

)
·
(
ϵCRGapDH+ QRO

p

)
Table 2. Comparing the tightness of the bounds for HMQV (with additional context
as input to the KDF), X3DH, PQXDH, and XHMQV (against classical adversaries).
Column 2 denotes the number of allowed Test queries; column 3 if semi-static keys
are modeled (✗ not at all, ✓ yes but without being signed, ✓✓ yes and signed); column 4
indicates if the key reuse of the long-term keys for both DH and signing operations is
modeled; column 5 states the model; and the final column gives the bound. For HMQV,
qG denotes the number of queries to the group oracle (of the generic group model).

approach by Cohn-Gordon, Cremers, Dowling, Garratt, and Stebila [11,12] and
with a tool-based approach by Kobeissi, Bhargavan, and Blanchet [35] in the
symbolic and computational model. Signal’s initial handshake has since been
replaced with PQXDH [37], which extends X3DH with a KEM in order to keep
the classical guarantees of X3DH. Bhargavan, Jacomme, Kiefer, and Schmidt [6]
have analyzed PQXDH with a tool-based approach in the symbolic and com-
putational model and Fiedler and Günther [23] with a game-based approach.
Several post-quantum replacements for X3DH have been proposed: Hashimoto,
Katsumata, Kwiatkowski, and Prest [27,28] proposed SC-AKE, SC-DAKE, and
SC-DAKE’ based on KEMs, ring signatures and NIZKs achieving varying lev-
els of deniability. Brendel, Fiedler, Günther, Janson, and Stebila [8] proposed
SPQR, which is based on KEMs and designated verifier signatures. Dobson and
Galbraith [19] proposed SI-X3DH based on supersingular isogenies, which was
broken by the SIDH attack [10,40,48]. Collins, Huguenin-Dumittan, Nguyen,

XHMQV: Signal’s Initial Handshake based on HMQV 9

Rolin, and Vaudenay [13] proposed K-Waay based on KEMs and splitKEMs.
Hashimoto, Katsumata, and Wiggers [29] proposed RingXKEM, which batches
computation of pre-key bundles for better efficiency.

Deniability of X3DH was first analyzed by Vatandas, Gennaro, Ithurburn,
and Krawczyk [53]. Fiedler and Janson [24] studied the deniability of PQXDH.

Key reuse. Haber and Pinkas [26] and An, Dodis, and Rabin [2] considered reuse
of keys between signature schemes and public key encryption schemes and offer
definitions for combined security. Degabriele, Lehmann, Paterson, Smart, and
Strefler [17] and Paterson, Schuldt, Stam, and Thomson [44] looked at the same
setting and define security for one scheme in the presence of an oracle for the
other scheme, i.e., IND-CCA in the presence of a signing oracle and EUF-CMA
in the presence of a decryption oracle. Patton and Shrimpton [45] generically
compose two schemes while taking the context into account. Thormaker [50]
analyzed the joint security of an X25519 based KEM and the Ed25519 signature
scheme.

On the multi-test security from the multi-instance CorrCRGapDH. Kiltz et al.
[34] proved that the security of HMQV can be tightly reduced to the (m, n)-
CorrCRGapDH assumption, a multi-instance variant of CRGapDH. Moreover,
their AKE security model considers a multi-test setting, namely, the adversary
is allowed to query the Test oracle multiple times. This naturally raises the
question of whether our XHMQV protocol can be proven secure with a tight
reduction under the (m, n)-CorrCRGapDH assumption in the multi-test setting.

We leave it for future study for the following reasons: First, we aim to remain
consistent with prior analyses of Signal’s handshake protocols [12,23]. Second,
we would need to carefully modify our proof such that the underlying (m, n)-
CorrCRGapDH assumption does not use an n or m depending on T , the number
of Test queries. Otherwise, T would appear in the security loss to the Gap
DH assumption, since the reduction from (m, n)-CorrCRGapDH to Gap DH loses
m2n (cf. Theorem 1 and Figure 5 in [34]).

2 Preliminaries

We assume that all our algorithms are efficiently computable and probabilistic
unless we state it.

2.1 Diffie–Hellman Assumptions

We use a weaker variant of the Challenge-Response Gap Diffie-Hellman with
Corruption (CorrCRGapDH) assumption of Kiltz et al. [34] to prove our XHMQV
protocol secure. In [34] Kiltz et al. gave a direct security proof of HMQV from
CorrCRGapDH, and by using the Forking Lemma [47] they proved that the Gap
DH (GapDH) assumption [1] implies the CorrCRGapDH assumption. Hence, by
using the CorrCRGapDH assumption, we do not require the direct use of the

10 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

GCRGapDH
(G,p,g) (A, QDdh, QCh):

1 a, b←$ Zp, A := ga, B := gb

2 C←$ADdh,Ch((G, p, g), A, B)
3 return JC ∈ LCRGapDHK

GGapDH
(G,p,g)(A, QDdh):

1 a, b←$ Zp, A := ga, B := gb

2 C←$ADdh((G, p, g), A, B)
3 return JC = AbK

Ddh(X, Y, Z):
// at most QDdh queries

4 return JZ = XDLg(Y)K

Ch(R ∈ G):
// at most QCh queries

5 h←$ Zp

6 LCRGapDH := LCRGapDH ∪ {(R ·Ah)b, (R ·Bh)a}
7 return h

Fig. 3. Security game for the CRGapDH problem defined in Definition 1.

Forking Lemma in our security proof for XHMQV, simplifying the presentation.
By [34, Theorem 1], the security of XHMQV is based on the GapDH assumption.
The original CorrCRGapDH assumption is in the multi-user, multi-challenge set-
ting, and ours is in the single-pair-of-user, single-challenge setting, and thus our
assumption does not have any corruption query and is denoted by CRGapDH,
which is (2, 1)-CorrCRGapDH in the notation of [34].

Let G be a cyclic group with prime order p and generator g. We write (G, p, g)
as the group description of G.

Definition 1 (Challenge-Response Gap Diffie–Hellman Problem). We
say the (t, ϵ, QDdh, QCh)-CRGapDH assumption holds in (G, p, g) if for any ad-
versary A with running time at most t making at most QDdh queries to its Ddh
oracle and QCh queries to its Ch oracle, we have that

AdvCRGapDH
(G,p,g) (A, QDdh, QCh) := Pr

[
GCRGapDH

(G,p,g) (A, QDdh, QCh)
]
≤ ϵ,

where GCRGapDH
(G,p,g) (A, QDdh, QCh) is defined in Fig. 3. For simplicity, when the

numbers of oracle queries are clear, we may ignore t, QDdh, and QCh so that we
can focus on security bounds. We may then write the game as GCRGapDH

(G,p,g) (A) and
the advantage function as AdvCRGapDH

(G,p,g) (A).

Lemma 1 (GapDH rewind−−−−−→ CRGapDH [34, Lemma 6]). For any adversary A
that breaks the (t, ϵ, QDdh, QCh)-CRGapDH assumption, there exists an adversary
B that breaks the (t′, ϵ′, Q′Ddh)-GapDH assumption, where t′ ≈ 2t, ϵ′ ≈ QChϵ2, and
Q′Ddh ≈ 2QDdh.

2.2 Signature

In Signal’s X3DH and PQXDH protocols, user’s semi-static keys are signed under
their long-term keys, and the signatures included in the pre-key bundles. These
signatures ensure that no one can upload a malicious semi-static key unless the
user’s long-term key is compromised.

We recall that a signature scheme Sig := (KGen, Sign, Ver) consists of the
following algorithms:

XHMQV: Signal’s Initial Handshake based on HMQV 11

GEUF-opCMA-DDH
Sig[(G,p,g)] (A, QSign, QDdh):

1 (vk = gsk ∈ G, sk ∈ Zp)←$ KGen
2 (m∗, σ∗)←$ASign,Ddh((G, p, g), vk)
3 if (m∗, σ∗) /∈ Lsign

∧ Ver(vk, σ∗, m∗) = 1
4 return 1
5 else return 0

Sign(m):
// at most QSign queries

6 if ∃σ s.t. (m, σ) ∈ Lsign

7 return σ

8 σ←$ Sign(sk, m)
9 return σ

10 Lsign := Lsign ∪ {(m, σ)}
11 return σ

Ddh(X, Y, Z):
// at most QDdh queries

12 return JZ = XDLg(Y)K

Fig. 4. Game EUF-opCMA-DDH for a signature scheme Sig.

– KGen generates a public and secret key pair (vk, sk).
– Sign(sk, m) generates a signature σ of message m under secret key sk.
– Ver(vk, m, σ) deterministically outputs 1 if σ is a valid signature of m under

vk or 0 otherwise.
We require a signature scheme to be correct, namely, for all (vk, sk)←$ KGen and
all messages m, we have Ver(vk, m, Sign(sk, m)) = 1.

Existential UnForgeability against Chosen-Message Attacks (EUF-CMA) is
a standard security notion for signature schemes and is also used in proving
security of Signal’s PQXDH handshake when modeling signatures in the previous
computational analysis of [23]. Here, we require only a weaker form of EUF-CMA,
namely, one-per message unforgeability [22] where an adversary is restricted to
ask at most one signature per message. This is because, in proving XHMQV
(similar to the computational proofs for X3DH [11] and PQXDH [23]), we rule
out collisions in honestly generated keys early on, meaning that each semi-static
public key will only be singed once by a user. Since Signal’s initial handshake
protocol uses the same long-term key both for the DH key exchange and as secret
key in its XEdDSA signature scheme, we consider the following customized one-
per message security notion, which augments the regular notion with a decisional
Diffie–Hellman oracle Ddh.

Definition 2 (One-per message unforgeability with a Ddh oracle). Let
Sig be a signature scheme based on a group description (G, p, g). We say Sig is
(t, ϵ, QSign, QDdh)-EUF-opCMA-DDH-secure if for any adversary F with running
time at most t making at most QSign queries to its Sign oracle and QDdh queries
to its Ddh oracle, we have

AdvEUF-opCMA-DDH
Sig[(G,p,g)] (A, QSign, QDdh) := Pr

[
GEUF-opCMA-DDH

Sig[(G,p,g)] (A, QSign, QDdh)
]
≤ ϵ,

where GEUF-opCMA-DDH
Sig[(G,p,g)] (A, QSign, QDdh) is defined in Figure 4. For simplicity,

when the group and the numbers of oracle queries are clear, we may write the
game as GEUF-opCMA-DDH

Sig (A) and the advantage funcion as AdvEUF-opCMA-DDH
Sig (A).

The Schnorr signature scheme can be proven EUF-opCMA-DDH secure by
using a variant of the Discrete Logarithm assumption, where an attacker has to
solve a discrete logarithm when given a DDH oracle. This additional DDH oracle

12 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

GReal
Sig,Q(A):

1 (vk, sk)←$ Sig.KGen, LRO := ∅
2 (m1, ..., mQ)←$A()
3 for i ∈ {1, ..., Q}
4 σi←$ SignRO(sk, mi)

5 bguess←$ARO(vk, sk, {σi}1≤i≤Q)
6 return bguess

GSim
Sig,Q(A):

1 (vk, sk)←$ Sig.KGen, LRO := ∅
2 (m1, ..., mQ)←$A()
3 for i ∈ {1, ..., Q}
4 (σi, qryi, hi)←$ SIMsign(vk, mi)
5 LRO := LRO ∪ {(qryi, hi)}
6 bguess←$ARO(vk, sk, {σi}1≤i≤Q)
7 return bguess

RO(qry) // In GSim
Sig :

8 if ∃h s.t. (qry, h) ∈ LRO
9 return h

10 h←$ RO.image
11 LRO := LRO ∪ {(qry, h)}
12 return h

Fig. 5. Security game for the δ-simulatability in Definition 3. Here, A is stateful.

DSA.SignRO(sk = x, m):
1 r←$ Zp

2 R := gr

3 t := f(R)
4 h := RO(m)
5 s := r−1 · (h + xt)
6 return (s, t)

SIMsign(vk = X, m):

1 (a, b)←$ Z2
p

2 R := Xa · gb

3 t := f(R)
4 h := b · t · a−1

5 s := t · a−1

6 return ((s, t), m, h) // Here qry is m.

Schnorr.SignRO(sk = x, m):
1 r←$ Zp, R := gr

2 h := RO(R, m)
3 s := (r + x · h) ∈ Zp

4 return (s, R)

SIMsign(vk = X, m):
1 h←$ Zp

2 s←$ Zp

3 R := gs · (X−1)h

4 return ((s, R), (R, m), h) // Here qry is (R, m).

Fig. 6. Signing (Sign) and simulated signing (SIMsign) algorithms for DSA and Schnorr
signatures. For both schemes, the secret key is a random x←$ Zp and public key is
X := gx.

is to simulate the Ddh oracle in Fig. 4 and the remainder of the proof reduces
forging a signature to computing a discrete logarithm as in [47,33]. This variant
of the Discrete Log assumption is implied by the standard Gap DH assumption.
We can show that the (EC)DSA scheme is also EUF-opCMA-DDH secure by
following the proof in [22] and introducing a DDH oracle in the underlying
assumption.

To stay as close as possible to the original Signal X3DH handshake, which
uses long-term keys for both DH key exchange and signing, our XHMQV protocol
does the same. We thus require the following δ-simulatability notion, adapted
from [22, Definition 5]. Essentially, δ-simulatability states that there is an algo-
rithm that can efficiently generate signatures which are statistically close to real
signatures, when allowed programming the random oracle.

Definition 3 (δ-Simulatability, adapted from [22, Definition 5]). Let
Sig be a signature scheme whose signing algorithm uses a function RO modeled
as a random oracle. Consider the two games defined in Figure 5. We say Sig is
δ-simulatable if there exists an algorithm SIMsign such that for any (unbounded)

XHMQV: Signal’s Initial Handshake based on HMQV 13

adversary A and Q∈ N, we have∣∣Pr
[
GReal

Sig,Q(A) = 1
]
− Pr

[
GSim

Sig,Q(A) = 1
]∣∣ ≤ δ.

Both the DSA and the schnorr signature schemes satisfy the δ-simulatability
definiton with negligible δ. Fig. 6 presents the SIMsign algorithms for the DSA
and Schnorr signature schemes. The one for DSA is from [22, Figure 5]. The
idea here is that the construction of h in the SIMsign of DSA ensures that h
is distributed uniformly at random unless a is not invertible (which happens
with probability 1

p). By a union bound, we have δ ≤ Q
p . For the full proof of

the simulatability of DSA scheme, we refer to [22, Lemma 1]. For the Schnorr
scheme, we have δ = 0.

3 Security Model

We analyze the security of our XHMQV protocol with a security model for au-
thenticated key exchange, following the seminal Bellare–Rogaway (BR)–style key
exchange model [4], adapted to the setting of Signal’s initial handshake in a series
of prior work [11,12,8,23]. Our analysis is game-based and yields a computational
guarantee.

BR-style key exchange models allow an adversary to interact with multi-
ple honest users with multiple sessions each. It can fully control the network
and deliver, modify, inject and suppress messages (through a Send oracle).
Furthermore, the adversary can (partially) compromise users: It can corrupt
long-term keys (via the CorruptLTKey oracle), corrupt semi-static keys (via
the CorruptSSKey oracle), reveal the ephemeral randomness of a session
(via the RevealRand oracle), and reveal the session key of a session (via the
RevealSessKey oracle). This fine-grained control over user compromise allows
us to model the maximum exposure guarantees that Signal strives for. Lastly,
the adversary picks a test session (via a Test oracle) for which it needs to dis-
tinguish between the real session key and a randomly sampled session key. Our
model precludes the adversary from being able to trivially compute the session
key in the test session. Formally, we do this via a “freshness” condition, which
includes checking for protocol specific compromise scenarios with the so-called
clean predicate. We give more details on this below.

Our model is directly based on the revision by [8,23], adapted mainly to cap-
ture the additional exposure scenarios that our XHMQV design protects against.
We hence closely follow the exposition of [23]. Based on this line of work, we
consider Bob, who first uploads his pre-key bundle, as responder, and Alice, who
thereafter sends the first peer-specific message, as initiator.

3.1 Syntax and Notation
We follow the syntax of [23], who explicitly model the signatures on semi-static
keys.6
6 As [23] analyzed PQXDH, their model includes two types of semi-static keys (DH

and KEM keys), while ours focuses on DH keys only.

14 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

– KGenLT() $→ (ltpk , ltsk): The long-term key generation algorithm that out-
puts a party’s public-key/secret-key pair.

– KGenSS(ltsk) $→ (sspk , sssk): The semi-static key generation algorithm that
takes as input a long-term secret key ltsk and outputs a public-key/secret-
key pair.

– Run(ltsk , sssk , ltpk , π, m) $→ (π′, m′): The session execution algorithm that
takes as input a party’s long-term secret key ltsk , that party’s semi-static se-
cret keys sssk , all parties’ long-term public keys ltpk , a session state π, and
an incoming message m, and outputs an updated session state π′ and a (pos-
sibly empty) outgoing message m′. The session sending the first message is
set up by calling Run with a distinguished message m = (create, (ssid, type)),
where ssid indicates the semi-static key to be used and type whether a full
(type = full) or reduced (type = reduced) handshake should be performed.

Parties and sessions. In the model, each party P ∈ [np] holds a long-term
public-key/secret-key pair generated by KGenLT and may run multiple instances
of the protocol (simultaneously or sequentially); we denote the ith such session
of party P by πi

P . The security game maintains the following information for
each session:

– oid ∈ [np]: The identity of the session owner.
– pid ∈ [np] ∪ {⋆}: The identity of the intended peer, which may initially be

unknown (indicated by ⋆).
– role ∈ {initiator, responder}: The role of the party.
– stexec ∈ {⊥, running, accepted, rejected}: The status of this session’s execution.
– sid ∈ {0, 1}∗ ∪ {⊥}: A session identifier defining partnering.
– cid ∈ {0, 1}∗ ∪ {⊥}: A contributive identifier, defining a preliminary form

of partnering (often as a substring or prefix of the session identifier) for the
case the session is not yet bound to an authenticated peer [21].

– K ∈ KKE ∪ {⊥}: The session key established in this session, initialized to ⊥.
– type ∈ {full, reduced}: Indicator whether an ephemeral pre-key was used

(type = full) for key establishment, or not (type = reduced).
– coins ∈ RKE: The random coins from the randomness space RKE used in the

execution of Run; set by the game and read-only thereafter.
– sspk ∈ {0, 1}∗ ∪ {⊥}: The semi-static public key used in this session.
– state ∈ {0, 1}∗: Potential session state of the protocol.

For bookkeeping in the security game we additionally introduce the following
flags, which are not accessible by the protocol sessions:

– revrand ∈ {true, false} indicates whether the random coins π.coins have been
revealed via a RevealRand query. The default value is false.

– pcorr ∈ {true, false} indicates whether the peer’s long-term key was corrupted
at the point in time when this session accepted. The default value is false.

Session partnering. We say that two sessions πi
U , πj

V are partnered if they agree
on the session identifier, i.e., if πi

U .sid = πj
V .sid ̸= ⊥. Contributive identifiers

indicate that two sessions may eventually derive the same session key but are
not fully partnered (yet).

XHMQV: Signal’s Initial Handshake based on HMQV 15

3.2 Security Game

We formalize security as key indistinguishability through game GKI
KE(A) in Fig-

ure 7. The game first fixes a bit btest←$ {0, 1}. Next, it samples long-term and
semi-static keys for all users (one long-term key and nss for each of the np users).
Then, the adversary A gets all public keys ltpk , sspk and can access several or-
acles to control interaction with and between honest users.

– Send(U, i, m): Sends message m to session πi
U , which corresponds to exe-

cuting Run(ltskU , ssskU , ltpk , πi
U , m), saving the updated session state π′ as

πi
U , and returning the outgoing message m′ to the adversary.

– CorruptLTKey(U): Returns party U ’s long-term secret key ltskU to the
adversary; recorded through the flag corrltkU .

– CorruptSSKey(U, ssid): Returns party U ’s semi-static secret key ssskssid
U

to the adversary; recorded through the flag corrssksspkssid
U

.7

– RevealRand(U, i): Returns the randomness πi
U .coins of session πi

U to the
adversary, recorded in the session through the flag revrand.

– RevealSessKey(U, i): Returns the session key πi
U .K of session πi

U to the
adversary, recorded in the session through the flag revealed.

– Test(U, i): If a Test query has been made before or session πi
U has not

accepted, then return ⊥. Otherwise; if btest = 0, return πi
U .K, otherwise

return a randomly sampled session key from the protocol’s key space KKE.
Record the test session as π∗ ← πi

U .

Finally, the adversary outputs a bit bguess. If the adversary was able to violate
soundness of the protocol, the game outputs 1. If the adversary can trivially
compute the session key of the test session, we say that it violates freshness
and the game outputs a random bit. Otherwise, the game returns whether the
adversary’s guess bguess correctly decided the test bit btest, i.e., if the adversary
can distinguish between the real session key and a randomly sampled session
key. The advantage of the adversary is its chance of winning minus its chance of
randomly guessing correctly (1

2).

Definition 4 (Key Indistinguishability [23]). Let KE be a key exchange
protocol and A an adversary against the key indistinguishability (KI) game GKI

KE(A)
in Figure 7. We say that KE achieves (t, ϵ, (qSnd, qCorrLT, qCorrSS, qRevR, qRevSK))–
key indistinguishability, if for any adversary A against GKI

KE(A) with running
time at most t and making at most qSnd, qCorrLT, qCorrSS, qRevR, resp. qRevSK
queries to its Send, CorruptLTKey, CorruptSSKey, RevealRand, resp.
RevealSessKey oracles, we have that AdvKI

KE(A) = Pr
[
GKI

KE(A)
]
− 1

2 ≤ ϵ. Note
that the model restricts the adversary to a single query to the Test oracle.

7 Following [23], we base the corrssk flag on the semi-static public key and not on the
semi-static id ssid, since initiator sessions do not learn the ssid.

16 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

GKI
KE(A):
1 btest←$ {0, 1} // sample challenge bit

2 π∗ ← ⊥ // variable for test session

3 for U ∈ [np] // generate long-term keys

4 (ltpkU , ltskU)←$ KGenLT()
5 for s ∈ [nss] // generate semi-static keys

6 (sspk U [s], ssskU [s]) ←$ KGenSS(ltskU)
7 ltpk ←

{
ltpkU

}
U∈[np]

8 sspk ←
{

sspk U

}
U∈[np]

9 bguess←$A
(
ltpk , sspk

)
// run adversary

10 if sound() = false: return true
// adversary wins if it breaks soundness

11 if fresh(π∗) = false: bguess ← 0
// attack invalid if test session is not fresh

12 return Jbguess = btestK // determine win or loss

fresh(π∗):
13 if π∗.revealed = true: return false

// test session is revealed

14 if ∃πj
V ̸= π∗ : (πj

V .sid = π∗.sid ∧ πj
V .revealed = true):

return false
// test session’s partner is revealed

15 return cleanKE
π∗.type(π∗)

// test session is clean wrt. to its handshake type (full resp. reduced)

sound():

16 return ∀ distinct π, π′, π′′ :
(

17 (π.sid = π′.sid ̸= ⊥ =⇒ π.K = π′.K ∧ π.type =
π′.type ∧ π.cid = π′.cid)

// same session identifiers imply same key, type, contributive identifiers

18 and (π.sid = π′.sid ̸= ⊥ ∧ π.role = initiator =⇒
π′.role = responder)

// session identifiers of two initiator sessions never collide

19 and (π.sid = π′.sid = π′′.sid ̸= ⊥ =⇒ π.type =
reduced)

)
// session identifiers of three sessions only collide in reduced mode

Send(U, i, m):

20 if πi
U = ⊥:

// initiate session: for responders, we have m = (create, (ssid, type))

21 πi
U .oid← U // set owner identity

22 if m = (create, . . .): πi
U .role← responder

// set responder role

23 else πi
U .role← initiator

// set initiator role (m is first message)

24 πi
U .coins←$RKE // sample session randomness

25 πi
U .stexec ← running

26 (πi
U , m′)← Run(ltskU , sssk U , ltpk , πi

U , m)
// run session, random coins in πi

U

27 if πi
U .stexec = accepted:

// flag if peer was corrupted upon acceptance

28 πi
U .pcorr← corrltkπi

U
.pid

29 return (m′, πi
U .stexec) // return message and session state

Test(U, i):

30 if πi
U = ⊥ or πi

U .stexec ̸= accepted or π∗ ̸= ⊥:
return ⊥
// session does not exist, has not accepted yet, or test already asked

31 π∗ ← πi
U // record test session

32 K0 ← πi
U .K

33 K1←$KKE
34 return Kbtest // return real-or-random challenge key

CorruptLTKey(U):
35 corrltkU ← true // mark long-term key corrupted

36 return ltskU // return long-term secret key

CorruptSSKey(U, ssid):
37 corrssksspkssid

U
← true // mark semi-static key corrupted

38 return ssskU [ssid] // return semi-static secret key

RevealRand(U, i):

39 if πi
U = ⊥: return ⊥ // session does not exist

40 πi
U .revrand← true // mark randomness revealed

41 return πi
U .coins // return session’s random coins

RevealSessKey(U, i):

42 if πi
U = ⊥ or πi

U .stexec ̸= accepted: return ⊥
// session does not exist or has not yet derived session key

43 πi
U .revealed← true // mark session key revealed

44 return πi
U .K // return session key

Fig. 7. Key indistinguishability (KI) game for key exchange protocol KE (top), in which
adversary A has access to oracles Send, Test, CorruptLTKey, CorruptSSKey,
RevealRand, and RevealSessKey (bottom), and wrt. to (protocol-specific) clean
predicates cleanKE for KE. The clean predicates satisfied by our XHMQV protocol are
given in Figure 8.

Soundness. The model captures soundness, i.e., that session identifiers correctly
reflect protocol executions, via the sound predicate. Specifically, it excludes the
following three cases:

XHMQV: Signal’s Initial Handshake based on HMQV 17

cleanXHMQV
full (π∗):

45 return

cleanXHMQV
reduced (π∗)

or cleanEE(π∗)
or cleanLTE(π∗)

cleanXHMQV

reduced (π∗):

46 return cleanLTSS(π∗) or cleanELT(π∗)
or cleanESS(π∗) or cleanLTLT(π∗)

cleanEE(π∗):
47 return ¬π∗.revrand and cleanpeerE(π∗)

// test session randomness is unrevealed
and peer’s ephemeral contribution is clean

cleanpeerE(π∗):

48 return
(
π∗.role = initiator

and ∃π ̸= π∗ :

(
π.role = responder
and π∗.cid = π.cid
and ¬π.revrand

))
// contributively-partnered responder session’s

randomness is unrevealed

49 or
(
π∗.role = responder

and ∃π ̸= π∗ :

(
π.role = initiator
and π∗.sid = π.sid
and ¬π.revrand

))
// partnered initiator session’s randomness is unrevealed

cleanLTLT(π∗) :

50 return
51

(
¬corrltkπ∗.oid and ¬corrltkπ∗.pid

)
// both initiator and responder long-term secret keys

are uncompromised

cleanLTSS(π∗):
52 return
53

(
π∗.role = initiator and ¬corrltkπ∗.oid and
¬corrsskπ∗.sspk and (¬π∗.pcorr or π∗.sspk ∈ sspkπ∗.pid)

)
// tested initiator long-term and responder semi-static secret key is uncompromised

and responder long-term (signing) secret key was uncompromised upon acceptance
or semi-static key was honestly generated

54 or
(
π∗.role = responder and ¬corrltkπ∗.pid and
¬corrsskπ∗.sspk

)
// initiator long-term and tested responder’s semi-static secret key is uncompromised

cleanELT(π∗):
55 return
56

(
π∗.role = initiator and ¬π∗.revrand and ¬corrltkπ∗.pid

)
// tested initiator’s randomness and responder long-term secret key is uncompromised

57 or
(
π∗.role = responder and cleanpeerE(π∗) and ¬corrltkπ∗.oid

)
// initiator’s ephemeral contribution is clean

and tested responder’s long-term secret key is uncompromised

cleanLTE(π∗) :

58 return
59

(
π∗.role = initiator and ¬corrltkπ∗.oid and cleanpeerE(π∗)

)
// tested initiator long-term secret key is uncompromised

and responder’s ephemeral contribution is clean

60 or
(
π∗.role = responder and ¬corrltkπ∗.pid and ¬π∗.revrand

)
// initiator long-term secret key and tested responder’s randomness is uncompromised

cleanESS(π∗):
61 return
62

(
π∗.role = initiator and ¬π∗.revrand

and ¬corrsskπ∗.sspk and (¬π∗.pcorr or π∗.sspk ∈ sspkπ∗.pid)
)

// tested initiator’s randomness and responder semi-static secret key is uncompromised
and responder long-term (signing) secret key was uncompromised upon acceptance
or semi-static key was honestly generated

63 or
(
π∗.role = responder and cleanpeerE(π∗) and ¬corrsskπ∗.sspk

)
// initiator’s ephemeral contribution is clean

and tested responder’s semi-static secret key is uncompromised

Fig. 8. Clean predicates for the XHMQV protocol. Predicates satisfied by XHMQV but
not X3DH are highlighted .

(i) Two sessions accept with the same session identifier, but derive different
session keys, indicate different handshake types (full vs. reduced), or do not
agree on their contributive identifiers (Fig. 7, line 17).

(ii) Two initiator sessions accept with the same session identifier (Fig. 7, line 18).
(iii) Three sessions accept with the same session identifier in full handshake type

(Fig. 7, line 19).

Freshness. The security model excludes cases which allow the adversary to win
trivially: If the adversary has revealed the test session (line 13), if it has revealed
a session partnered to the test session (line 14), or if it can compute the ses-
sion key with the keys it has compromised via queries to the CorruptLTKey,
CorruptSSKey, RevealRand oracles (line 15). The clean predicates are
protocol-specific since different protocols require different (combinations of) keys
to compute the session key.

18 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

3.3 Clean Predicates for XHMQV

In our XHMQV protocol, key derivation combines both of Alice’s keys (long-term
and ephemeral) with each of Bob’s keys (long-term, semi-static, and ephemeral),
yielding six combinations in a full handshake. If Bob’s ephemeral key is unavail-
able (because the Signal server ran out of pre-key bundles for Bob), the number
of combinations accordingly reduce to four. As long as one of these six (or four)
combinations is not known to the adversary, it should not be able to compute
the session key.

Formally, we model this with the cleanXHMQV predicates given in Figure 8,
more specifically cleanXHMQV

full and cleanXHMQV
reduced capturing the expected security of

a full resp. reduced handshake. These predicates ensure that at least one of the
combinations long-term–semi-static (cleanLTSS), ephemeral–long-term (cleanELT),
ephemeral–semi-static (cleanESS), or long-term–long-term (cleanLTLT) is uncom-
promised. For a full handshake, the predicate is also satisfied if the ephemeral–
ephemeral (cleanEE) or long-term–ephemeral (cleanLTE) combination is uncom-
promised.

To check that an ephemeral contribution is not compromised, we use the
cleanpeerE sub-predicate: Here, we check that for an initiator session the random-
ness of a contributively partnered (i.e., via cid) responder session is not revealed
or for a responder session the randomness of a partnered (via cid) initiator session
is nor revealed.

For cases involving semi-static keys, i.e., cleanLTSS and cleanESS, simply requir-
ing the semi-static key to be uncompromised is not sufficient: We additionally
check that the responder’s long-term key is uncompromised at the time when
the initiator accepts via the pcorr flag or that the semi-static key was honestly
generated. The first additional check was introduced by [23] to model that the re-
sponder’s semi-static key is authenticated via a signature under the responder’s
long-term key. The second additional check is a novel strengthening to capture
that even if the responder’s long-term key is compromised, we expect security
as long as the semi-static key is not compromised.

Compared to X3DH, the clean predicates of our XHMQV protocol give a
strictly stronger guarantee: For all cases in which X3DH is clean, our XHMQV
protocol is clean as well. Furthermore, if only the long-term–long-term or only the
long-term–ephemeral combination is clean, then our clean predicate for XHMQV
demands security, but X3DH does not satisfy this. This is the stronger maximum-
exposure guarantee of our XHMQV protocol.

4 Our XHMQV Protocol

We now introduce our XHMQV protocol, using a group (G, p, g) and a signature
scheme Sig (like in Signal, Sig may build on G). Further, denoting by K the
session key space, we use two key derivation functions KDFf , KDFr : {0, 1}∗ → K
for deriving session keys, and four hash functions h0, h1, h2, h3 : {0, 1}∗ → Zp.
(The indices indicate that in practice, we expect those to be instantiated using
the same algorithm using domain separation.)

XHMQV: Signal’s Initial Handshake based on HMQV 19

We fully define XHMQV in Fig. 9, along with a variant XHMQV+. In XHMQV,
long-term keys are used for both the DH key exchange key and for signing semi-
static keys (as is done in X3DH). XHMQV+ instead use independent signing keys,
ensuring proper key separation. We will focus on and prove security for XHMQV,
i.e., with key reuse, given this is closest to Signal’ deployment. We emphasize
that our analysis capturing this key reuse is in contrast to prior work, which
either modeled the signatures using separate signing keys [35,53,24,6,23,29] or
not at all [11,12,8]. Our results naturally apply to XHMQV+, under weaker
assumptions.

Adapting HMQV. To understand the design of XHMQV, we start by introducing
how we adapt the idea from HMQV to the Signal setting. Let (A, a) and (X, x)
be the long-term (identity) key pair and ephemeral key pair of Alice, and let
(B, b), (S, s), and (Y, y) be the long-term, semi-static, and ephemeral key pairs
of Bob, respectively. Following X3DH, a handshake session is either in the full
mode or in the reduced mode.

Recall that in HMQV only involves two key pairs (long-term, ephemeral)
on each side. In a full handshake, we hence need to integrate the additional
semi-static key of the responder (S, s)) into the combination of DH secrets. Our
approach is to view (S, s) as another “long-term secret” of Bob (in the HMQV
sense), and integrate it into DH combinations in the following way (from Alice’s
view):

(Y Be1)x+da// HMQV −→ (Y Be1Se2)x+da// XHMQV,

where d, e1, e2 are exponents derived using hash functions, following HMQV’s
design.

In a reduced handshake, (Y, y) is unavailable and the semi-static key pair
(S, s), which is regularly rotated, serves to provide (delayed) forward secrecy.
Here, we can essentially fall back to the HMQV equation, dropping (Y, y) and
e2, and using the semi-static key in place of the responder’s ephemeral key (again,
from Alice’s view):

(Y Be1)x+da// HMQV −→ (Be1S)x+da// XHMQV,

Let us discuss how to derive d, e1, and e2. These three exponents are chosen
to prevent a linear relationship between Y , B, and S. We keep d := h0(A, X) as
in HMQV and let e1 := h1(B, Y, S) and e2 := h2(B, Y, S). That is, both e1 and
e2 include the long-term, semi-static, and ephemeral information of Bob. This
choice is not only for excluding trivial attacks (e.g., if S is not involved in e2,
then the adversary can contruct a malicious Y to eliminate S), but also essential
for our security proof, namely, allows us to construct reductions from CRGapDH
assumption (cf. Definition 1).

Similar to X3DH, we sign semi-static keys in XHMQV using the long-term
key, to protect against active attackers replacing them. While adding signature
upgrades the protocol from weak forward secrecy security to full forward se-
crecy, the key reuse issue requires the signature scheme to have stronger security

20 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

than the standard unforgeability definition (cf. Definition 2). For completeness,
we also provide a version that use independent signing key, XHMQV+, see the
highlighted differences in Fig. 9.

Security of XHMQV. The security theorem for XHMQV is given in Theorem 1
below. One can use it to derive a similar result for XHMQV+ (except that we
would require Sig to achieve EUF-opCMA instead of EUF-opCMA-DDH).

Theorem 1. The XHMQV protocol given in Fig. 9 achieves (t, ϵ, (qSnd, qCorrLT,
qCorrSS, qRevR, qRevSK))–key indistinguishability defined in Definition 4.

Specifically, let nu, nss, and ns be the numbers of users, semi-static keys per
user, and sessions in the key exchange game GKI

KE, respectively. Let (G, p, g) be
a group and both XHMQV and the signature scheme Sig of XHMQV be built on
this group. If the (t0, ϵCRGapDH, QDdh, QCh)-CRGapDH assumption holds in G and
Sig has (t1, ϵEUF-opCMA-DDH, QSign, Q′Ddh)-EUF-opCMA-DDH security and δsim-
simulatability, then for any adversary A with running time t, we have

ϵ ≤ (nu + nunss + ns)2

p
+ nu · ϵEUF-opCMA-DDH

+
(
2n2

u + 2nuns + n2
unss

)
· δsim

+
(

n2
u + nunss + n2

unss

+ nuns + nsnunss + n2
ss

)
·
(

ϵCRGapDH + QRO

p

)
,

where QRO is the number of random oracle queries issued by A across h0, h1, h2,
h3, KDFf , and KDFr, and t ≈ t0 ≈ t1, QCh ≈ QRO, QDdh ≈ QRO, Q′Ddh ≈ QRO,
and QSign ≈ nss. Without loss of generality, we assume that A does not issue
repeated queries since they return the same response, so we also have qSnd ≤
2ns, qCorrLT ≤ nu, qCorrSS ≤ nu · nss, qRevR ≤ ns, and qRevSK ≤ ns.

Remark 1 (Use the same KDF or hash function, with domain separation). For
the key derivation functions KDFf and KDFr, as well as the hash functions
h0, h1, h2, and h3, the indices indicate that in practice, we expect those to be
instantiated using the same algorithm using domain separation [3]. This can be
achieved, e.g., via prefixing labels, similar to domain separation already done in
Signal [46, Section 2.5].

Remark 2 (On the “Another Look at HMQV”.). Menezes [42] identified several
vulnerabilities in HQMV, including small-subgroup and unknown key-share at-
tacks, and proposed corresponding countermeasures. These considerations are
also reflected in our XHMQV design. For instance, XHMQV includes the session
context in key derivation process to prevent unknown key-share attacks. In real-
world implementations, XHMQV must additionally validate all group elements,
ensuring the correct order or group membership of long-term public keys, semi-
static public keys, and ephemeral pre-keys.

XHMQV: Signal’s Initial Handshake based on HMQV 21

KGenLT(U):
1 u←$ Zp

2 (vk, sk)←$ KGen

3 ltpkU := (gu, vk)

4 ltskU := (u, sk)
5 return (ltskU , ltpkU)

KGenSS(ltskU):

6 (u, sk) := ltskU

7 s←$ Zp, S := gs

8 σ ← Sign(u, S)
σ ← Sign(sk, S)

9 sspkU := (S, σ)
10 ssskU := (s, σ)
11 return (ssskU , sspkU)

Run(ltskB, ltpk , sssk B, πB, (create, ssid, type))):
12 B := πB.oid
13 r := πB.coins
14 (s, σ) := sssk B[ssid]
15 sspk := gs

16 if type = full
17 y := Zp(r), epk := gy

18 else epk := ⊥
19 πB.(pid, sspk, type) := (⋆, sspk , type)
20 πB.state := (ssid, y)

// Store ssid and ephemeral secret in session state

21 πB.cid := (B, ltpkB, sspk , epk)
22 m := (B, sspk , epk , σ)
23 return (πB, m)

Run(ltskA, ltpk , πA, m):
24 A := πA.oid
25 (a, skA) := ltskA, (A, vkA) := ltpk [A]
26 (B, sspk , epkB) := m

27 (S, σ) := sspk
28 (B, vkB) := ltpk [B]
29 if Vf(B, σ, sspk) ̸= 1 : return (πA,⊥)

if Vf(vkB, σ, sspk) ̸= 1 : return (πA,⊥)
30 r := πA.coins
31 x := Zp(r), X := gx

32 d := h0(A, X)
33 if epkB ̸= ⊥ // full handshake

34 Y := epkB
35 e1 := h1(B, Y, S)
36 e2 := h2(B, Y, S)
37 DH := (Y Be1 Se2)x+da

38 ctxt := (A, B, S, Y, X)
39 πA.K := KDFf (DH , ctxt)
40 πA.type := full
41 else // reduced handshake

42 e1 := h3(B, S)
43 DH := (Be1 S)x+da

44 ctxt := (A, B, S, X)
45 πA.K := KDFr(DH , ctxt)
46 πA.type := reduced
47 epkA := X

48 πA.(pid, sspk, stexec) := (B, sspk , accepted)
49 πA.cid := (B, ltpk [B], sspk , epkB)
50 πA.sid := (A, B, ltpk [A], ltpk [B], sspk , epkB, epkA)
51 return (πA, m′ := (A, epkA))

Run(ltskB, sssk B, ltpk , πB, m′):
52 B := πB.oid
53 (b, skB) := ltskB

54 (B, vkB) := ltpk [B]
55 (ssid, y) := πB.state // Retrieve the session state

56 s := sssk B[ssid] // Retrieve the semi-static secret key

57 S := πB.sspk
58 (A, epkA) := m′

59 X := epkA

60 (A, vkA) := ltpk [A]
61 d := h0(A, X)
62 if type = full // full handshake

63 e1 := h1(B, Y, S)
64 e2 := h2(B, Y, S)
65 DH := (XAd)y+e1b+e2s

66 ctxt := (A, B, S, Y, X)
67 πB.K := KDFf (DH , ctxt)
68 πB.type := full
69 else // reduced handshake

70 e1 := h3(B, S)
71 DH := (XAd)e1b+s

72 ctxt := (A, B, S, X)
73 πA.K := KDFr(DH , ctxt)
74 πA.type := reduced
75 πB.(pid, stexec) := (A, accepted)
76 πB.sid := (A, B, ltpk [A], ltpk [B], sspk , epkB, epkA)
77 return πB

m

m′

Fig. 9. Our XHMQV protocol and its variant XHMQV+. Elements in gray boxes are
only present in XHMQV, those in dashed boxes are only present in XHMQV+.

22 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

5 Security Proof of XHMQV (Theorem 1)

We start with G0 which is the original key exchange security game GKI
KE(A) with

two modifications to simplify our proof: (1) For each session πi
U, we add a variable

πi
U.ctxt into the session to store the context value ctxt used in computing the

session key. By using this variable, we can easily verify if a hash query to KDFf

or KDFr matches the public keys (i.e., long-term, semi-static, and ephemeral
keys) used in a session. (2) We use random oracles to simulate all hash functions.
Since the proof is in the ROM, these changes are conceptual, so we have

AdvKI
KE(A) = AdvG0

XHMQV(A).

Game G1: This game excludes collisions of DH keys. Specifically, we abort the
game (i.e., overwrite A’s output with 0) if any two honestly generated DH key
pairs collide. In the game, there are at most nu long-term key pairs, nss semi-
static key pairs for each user, and ns ephemeral DH key pairs. By the birthday
bound (over G with |G| = p), we have

AdvG0
XHMQV(A) ≤ AdvG1

XHMQV(A) + (nu + nu · nss + ns)2

p

Game G2: We introduce a new abort event Forge in G2: If A forges a signa-
ture on a semi-static key with respect to an uncorrupted long-term key, then
we abort the game. We denote this event as Forge. If Forge does not happen,
then the distribution of G2 is the same as the one of G1. In the following, we
construct an adversary F against the EUF-opCMA-DDH security of Sig to bound
Pr [Forge]. In the description of F , we underline how we embed the challenge
into the game and how we get the forgery if Forge happens.

Reduction FDdh,Sign(vk∗ = B∗):
– Initialize G2:

1. Initialize two patch key lists Lpatch-f (for full sessions) and Lpatch-r (for
reduced sessions) to store all keys that are needed to be patched to the
random oracle. For example, if there is a tuple (A, B, S, Y, X, K) in Lpatch-f ,
then it means that there is a session π such that π.K = K and π.ctxt =
(A, B, S, Y, X).

2. Initialize a candidate key list (for full sessions) Lskey-f to deal with the case
that the adversary first computes the key itself (and queries the RO) and
finishes the session later. Similarly, initialize and a key candidate list Lskey-r
for reduced sessions. For example, if there is a tuple (A, B, S, Y, X, K) in
Lskey-f , then it means that A has queried KDFf on (A, B, S, Y, X, DH)
(where DH is the correct XHMQV secret). Here (A, B, S, Y, X) may cor-
respond to the context of a session (that is not yet completed). If A
completes such a session, then we can set its session key as K.

3. Guess a party B∗ and set its long-term public key to B∗. When generating
semi-static keys S of B∗, F queries Sign(S) to get the signatures. Note
that we exclude collisions of all DH key pairs, so all S are unique and we
only need to query Sign(S) once for each S.

XHMQV: Signal’s Initial Handshake based on HMQV 23

4. For all other parties, run KGenLT and KGenSS faithfully. After this step,
F has ltpk , sspk , and ltsk (except for the long-term secret key of B∗).

5. Run bguess←$A(ltpk , sspk) and proceed the game as in G1. The simula-
tion of random oracles and game oracles are simulated in the way described
below.

6. If the adversary never forges a valid signature on one of B∗’s semi-static
keys before corrupting B∗, then abort the simulation and return a random
forgery.

– Simulation of oracles defined in GKI
KE:

• All oracles except Send and CorruptLTKey are simulated as defined
in GKI

KE. For CorruptLTKey, F aborts if A queried for the long-term
secret key of B∗ (in which case Forge cannot happen afterwards) and
answers with the corresponding secret key for all other users. For Send
queries, if the query does not involve B∗, then we also simulate the oracles
in the same way as in GKI

KE.
• Send(B∗, i, m): We only describe the changes to the Run algorithm and

the setup of session keys.
∗ Run(ltskB∗ , ssskB∗ , ltpk , πi

B∗ , (create, ssid, type)) – responder creation:
Simulated as specified.

∗ Run(ltskB∗ , ssskB∗ , ltpk , πi
B∗ , m = (U, S, Y, σ)) – initiator: We describe

handling a full handshake (Y ̸= ⊥); handling the reduced mode works
analogously.
1. If σ is a valid signature of B∗ and S /∈ sspk B∗ , then we abort the

simulation and output (S, σ).
2. Generate the ephemeral key pair (X, x).
3. Let U be the long-term public key of U. If there exists an entry

(B, U, S, Y, X, K) in Lskey-f , then retrieve this K. Otherwise, sam-
ple a random K and record (B, U, S, Y, X, K) in Lpatch-f .

4. Set πi
B∗ .K := K.

∗ Run(ltskB∗ , ssskB∗ , ltpk , πi
B∗ , m′ = (U, epkU = X)) – responder com-

pletion: We describe handling a full handshake; handling the reduced
mode works analogously.
1. Get the semi-static secret s and the ephemeral secret y (and their

public keys) of this session. Let U be U’s long-term public key.
2. If there exists an entry (U, B, S, Y, X, K) in Lskey-f , then retrieve

this K. Otherwise, sample a random K and record (U, B, S, Y, X, K)
in Lpatch-f .

3. Set πi
B∗ .K := K.

• Send(U, i, m = (B∗, S, σ)): If σ is a valid signature and S /∈ sspk B∗ , then
we abort the simulation and output (S, σ).

– Simulation of random oracles h0, h1, h2, h3, KDFf , and KDFr: We only discuss
new queries. For repeated queries, F returns the previously recorded values.
• KDFf (DH , A, B, S, Y, X):

1. If Ddh(XAd, Y Be1Se2 , DH) outputs 1:
∗ If there exists (A, B, S, Y, X, K) in Lpatch-f , retrieve this K.

24 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

∗ If not, then sample a random key K and record (A, B, S, Y, X, K)
in Lskey-f .

∗ Set KDFf (DH , A, B, S, Y, X) := K
∗ Return K.

2. Otherwise, simulate via lazy sampling.
• KDFr(DH , A, B, S, X):

1. If Ddh(XAd, SBe1 , DH) outputs 1:
∗ If there exists an entry (A, B, S, X, K) in Lpatch-r, retrieve this K.
∗ If not, then sample a random key K and record (A, B, S, X, K) in
Lskey-r.

∗ KDFr(DH , A, B, S, X) := K.
∗ Return K.

2. Otherwise, simulate via lazy sampling.

If Forge occurs, meaning that A forges a signature for a party’s semi-static
key before corrupting the party, then F can use this forgery to win the unforge-
ability game if B∗ is the party whose signature A has forged. Since the guess of
B∗ is independent of A’s view, we have

1
nu
· Pr [Forge] ≤ Pr

[
AdvEUF-opCMA-DDH

Sig (F)
]

Therefore, we have

AdvG1
XHMQV(A) ≤ AdvG2

XHMQV(A) + Pr [Forge]
≤ AdvG2

XHMQV(A) + nu · AdvEUF-opCMA-DDH
Sig (F).

Splitting G2 into clean cases: We now divide the proof into six sub-cases ac-
cording to which clean predicate the test session π∗ satisfies. Let G2 ∧ cleanX

denote G2 conditioned on clean predicate cleanX being satisfied. We can bound
the advantage of A in G2 by the sum of A’s advantages in G2 ∧ cleanX , for
cleanX ∈ {cleanLTLT, cleanLTE, cleanLTSS, cleanELT, cleanESS, cleanELT} being one of
the clauses in cleanXHMQV:

AdvG2
XHMQV(A) ≤

∑
cleanX∈{cleanLTLT,cleanLTE,cleanLTSS,

cleanELT,cleanESS,cleanEE}

AdvG2∧cleanX

XHMQV (A).

Note that predicates cleanLTE and cleanEE only apply to a test session in full
handshake mode (π∗.type = full).

We bound the probabilities of each predicate in Appendix A. For space rea-
sons, we summarize the resulting bound in the following lemma and only give a
proof sketch illustrating the common proof strategy across the clean cases.

Lemma 2. With the notations and assumptions from Theorem 1, let ϵCRGapDH
be the advantage bound for the CRGapDH assumption in G and δsim be the bound

XHMQV: Signal’s Initial Handshake based on HMQV 25

for simulatability of Sig, we have

AdvG2
XHMQV(A) ≤ nunu · (2δsim + ϵCRGapDH + QRO/p) // cleanLTLT

+ nuns · (δsim + ϵCRGapDH + QRO/p) // cleanLTE
+ n2

unss · (δsim + ϵCRGapDH + QRO/p) // cleanLTSS
+ nuns · (δsim + ϵCRGapDH + QRO/p) // cleanELT
+ nsnunss · (ϵCRGapDH + QRO/p) // cleanESS
+ n2

s · (ϵCRGapDH + QRO/p) . // cleanEE

Let us illustrate the proof strategy at the example of the cleanLTLT case, i.e.,
bounding AdvG2∧cleanLTLT

XHMQV (A). We proceed via the following steps:
1. We first guess the initiator and responder party of the test session π∗, picking

two user identities A∗ and B∗ uniformly at random and aborting if that guess
was incorrect. This leads to the multiplicative security loss of n2

u.
2. We then use the δ-simulatability of Sig to replace signatures of A∗ and B∗.

More specifically, we change the game such that all signatures of these two
users are generated by running SIMsign and programming random oracles.
This step allows us to simulate signatures only using public keys, which is
essential for later reductions because we do not have the secret keys when
constructing the CRGapDH reduction.

3. We then use the CRGapDH assumption over G to exclude the case that the
adversary queries the random oracle on the hash input of π∗’s session key.
To this end, we will embed the CRGapDH challenge into the public keys of
the two users A∗ and B∗. Roughly, if A queries KDFf or KDFr on (DH , ctxt),
where ctxt = π∗.ctxt and DH is the correct XHMQV’s DH shared secret,
then we can extract a CRGapDH solution from such a query.
The other proof cases have a similar structure: First, we guess where to

embed the CRGapDH challenge, leading to different guessing losses depending
on the clean case. Second, for all clean cases involving a long-term key, i.e., the
first four cases, we use the simulatability of Sig to replace the long-term key,
resulting in a δsim term. Thirdly, we reduce to CRGapDH, obtaining the term
ϵCRGapDH + QRO/p. By combining all probability bounds, we obtain

AdvKI
XHMQV(A) ≤ (nu + nunss + ns)2

p
+ nu · ϵEUF-opCMA-DDH

+
(
2n2

u + nunss + n2
unss + nuns

)
· δsim

+
(

n2
u + nunss + n2

unss

+ nuns + nsnunss + n2
ss

)
·
(

ϵCRGapDH + QRO

p

)
,

This concludes our proof of Theorem 1. ⊓⊔

6 Deniability of XHMQV

Signal strives for deniability of its initial handshake protocol, as discussed in their
descriptions of X3DH and PQXDH [41,37, both Section 4.4]. The deniability

26 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

property that Signal aims for considers transcripts of protocol executions. Given
a transcript, no third party should be able to tell if the transcript is legitimate
or if it was created using solely one party’s (long-term and semi-static) secret
keys; even if the third party has access to both parties’ secret keys. Precisely
this notion was formalized by Brendel, Fiedler, Günther, Janson, and Stebila [8]
in a game-based setting.

We consider types of offline deniability, i.e., the distinguisher has to decide
after the fact. In contrast, online deniability [20,51,52] allows the distinguisher
to interact during the protocol execution. However, Unger and Goldberg’s “Iron
Triangle” [51, Section 6.6] presumes it is impossible to combine asynchronicity,
forward secrecy, and online deniability in a key exchange protocol.

Deniable key exchange. Prior work has produced several deniability definitions
for key exchange [18,32,15,16,54,30,53,31,28,8,24,13]. Most definitions follow the
same blueprint8: An adversary queries a challenge oracle, which either acts as
a real user (by executing the Run algorithm and using that user’s secret key)
or pretends to be that user (by executing the Fake algorithm or the simulator,
depending on the formalism, but without that user’s secret key) to answer the
adversary. Afterwards, the distinguisher gets the transcript of the adversary’s
interaction with the challenge oracle and has to guess if the challenge oracle
used Run or Fake. Intuitively, this guarantees that a transcript does not prove
involvement of a party since the transcript could have been produced by the
Fake algorithm.

Fiedler and Janson [24] provide a modular definition, which eases comparing
deniability notions, with the following parameters:

1. adversarial power (is the adversary malicious, i.e., it may deviate from the
protocol flow, or semi-honest?);

2. power of the Fake algorithm (can anybody fake a transcript (1-out-of-∞
deniability) or only the peer (1-out-of-2 deniability)? When producing a
message for Bob, does the Fake algorithm need access to another session of
Bob?);

3. power of the distinguisher (does the distinguisher get all honestly generated
secret keys (big brother model)?);

4. auxiliary inputs (do we assume the adversary, the Fake algorithm, and po-
tentially the distinguisher get common extra input, e.g., transcripts of honest
protocol executions?).

We recount the full definition in Appendix B.

Deniability of Signal’s initial handshake. Vatandas, Gennaro, Ithurburn, and
Krawczyk [53] show deniability of HMQV and X3DH against malicious adver-
saries by relying on the novel Extended Knowledge of Diffie–Hellman assumption
8 We describe the blueprint for the game-based setting, since our proof uses the game-

based setting as well. For definitions in the simulation-based setting the formalism
differs but the idea remains the same.

XHMQV: Signal’s Initial Handshake based on HMQV 27

(EKDHA). For X3DH, they additionally rely on the auxiliary input to obtain
a signature on Bob’s semi-static key. Unfortunately, Fiedler and Langrehr [25]
disprove the EKDHA and deniability of X3DH against malicious adversaries by
relying on simple auxiliary input. Fiedler and Janson [24, Table 2] compare the
deniability guarantees for X3DH and PQXDH by considering Alice and Bob sep-
arately: To achieve deniability for Bob, they model two ways for the Fake algo-
rithm to obtain a signature on Bob’s semi-static key and for PQXDH additionally
on an ephemeral key that the distinguisher never sees.9 Against malicious adver-
saries, they require the EKDHA for both protocols and for PQXDH additionally
plaintext awareness of the KEM.10 The two following results hold even in the
big brother model: Against semi-honest adversaries, Fiedler and Janson show
that either party can produce the transcript (1-out-of-2 deniability) by relying
on the commutativity of DH operations (i.e., (gx)y = (gy)x). Similarly, against
malicious adversaries restricted to honestly generated long-term and semi-static
keys, they show deniability for Alice without assumptions: There, the Fake al-
gorithm uses Bob’s semi-static secret key to compute the long-term–semi-static
contribution and a freshly sampled ephemeral key for Alice to compute the other
three contributions. With this approach the Fake algorithm cannot compute a
long-term–ephemeral contribution (which is not present in X3DH and PQXDH),
but, looking ahead, prevents us from proving deniability for XHMQV in this
setting. Though, it is not clear to us which scenario we model by forcing the
adversary to sample semi-static keys honestly but not the ephemeral keys.

Deniability of post-quantum replacements for Signal’s initial handshake. Hashimoto,
Katsumata, Kwiatkowski, and Prest [28] propose SC-DAKE’ based on KEMs,
ring signatures, and NIZKs, which they prove deniable under the model of [18].
Dobson and Galbraith [19] propose SI-X3DH based on supersingular isogenies,
broken by the SIDH attack [10,40,48], and sketch a deniability argument based
on X3DH. Brendel et al. [8] propose SPQR based on KEMs and designated ver-
ifier signatures (DVS) and show its deniability against semi-honest adversaries
in the big brother model for Alice with their novel deniability definition match-
ing the requirements of X3DH [41, Section 4.4]. Collins, Huguenin-Dumittan,
Nguyen, Rolin, and Vaudenay [9] propose K-Waay, which combines KEMs with
a splitKEM and show its deniability under a novel definition close to that of [8].

Deniability of XHMQV. In the following, we show that our protocol XHMQV
achieves the same deniability guarantees against semi-honest adversaries in the
big brother model as X3DH and PQXDH.11 For malicious adversaries limited to
honestly generated (long-term and semi-static) keys our XHMQV protocol does
not provide the deniability guarantees of X3DH. We cannot avoid this since the
long-term–ephemeral contribution proves Alice’s involvement if Bob provably
9 The Fake learns the signature via the auxiliary input or with the oracle to another

session of Bob.
10 Note that Signal’s implementation uses Kyber as KEM, which does not achieve

plaintext awareness.
11 SPQR is proven to achieve the same guarantee only for Alice, but not for Bob.

28 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

does not know his ephemeral secret key. For malicious adversaries (which are
not artificially limited to honestly generated long-term and semi-static keys)
the currently only known proof strategy for X3DH involves the broken EKDHA
assumption. Hence, XHMQV is the same as X3DH and PQXDH for not having a
(viable) proof of deniability against malicious adversaries.

We use the model of [24], formally given in Definition 5, which considers Bob
as initiator and Alice as responder. We split the theorems by role, beginning
with the case of Bob, for whom the Fake algorithm needs to obtain signatures
on the semi-static keys. Following [24], we do this via the auxiliary input and
note that it can similarly be done with the User oracle that allows Fake to access
another session with Bob. When answering for Alice, the Fake algorithm does
not need auxiliary input or the User oracle, since Alice does not sign anything.
The proof strategy follows [24, Theorem 4.1]: The Fake algorithm uses its SK
oracle to learn the peer’s long-term and semi-static secret keys and the extracts
the ephemeral secret key from the adversary’s randomness. Using these secret
keys it computes the session key. We give the proofs in Appendix B.

Theorem 2. The XHMQV protocol as shown in Figure 9 is (np, nss, qOA , qOF ,
qOD , tA, tDist, ϵDist)-deniable with respect to ({RegHon,ChallHonInit}, {SK},
{SKs,aux})-oracles and auxiliary info sampled with AuxPrep yielding a valid
pre-key bundle per ssid and user, and aux known to the distinguisher, where np

is the number of parties and nss the number of semi-static keys per party, and
qOA , qOF , qOD , tA, tDist are arbitrary and ϵDist = 0.

Theorem 3. The XHMQV protocol as shown in Figure 9 is (np, nss, qOA , qOF ,
qOD , tA, tDist, ϵDist)-deniable with respect to ({RegHon,ChallHonResp}, {SK},
{SKs,aux})-oracles and auxiliary info sampled with arbitrary AuxPrep, and aux
known to the distinguisher, where np is the number of parties and nss the num-
ber of semi-static keys per party, and qOA , qOF , qOD , tA, tDist are arbitrary and
ϵDist = 0.

Acknowledgments

We thank the anonymous reviewers for their insightful comments. R.F. was sup-
ported by the German Federal Ministry of Education and Research and the
Hessian Ministry of Higher Education, Research, Science and the Arts within
their joint support of the National Research Center for Applied Cybersecurity
ATHENE.

XHMQV: Signal’s Initial Handshake based on HMQV 29

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 143–158. Springer, Berlin, Heidelberg (Apr 2001). https://doi.org/10.1007/
3-540-45353-9_12

2. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–
107. Springer, Berlin, Heidelberg (Apr / May 2002). https://doi.org/10.1007/
3-540-46035-7_6

3. Bellare, M., Davis, H., Günther, F.: Separate your domains: NIST PQC KEMs,
oracle cloning and read-only indifferentiability. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 3–32. Springer, Cham (May
2020). https://doi.org/10.1007/978-3-030-45724-2_1

4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 232–249. Springer, Berlin, Heidelberg
(Aug 1994). https://doi.org/10.1007/3-540-48329-2_21

5. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228.
Springer, Berlin, Heidelberg (Apr 2006). https://doi.org/10.1007/11745853_14

6. Bhargavan, K., Jacomme, C., Kiefer, F., Schmidt, R.: Formal verification of the
PQXDH post-quantum key agreement protocol for end-to-end secure messaging.
In: Balzarotti, D., Xu, W. (eds.) USENIX Security 2024. USENIX Association (Aug
2024), https://www.usenix.org/conference/usenixsecurity24/presentation/
bhargavan

7. Brendel, J., Fiedler, R., Günther, F., Janson, C., Stebila, D.: Post-quantum asyn-
chronous deniable key exchange and the Signal handshake. Cryptology ePrint
Archive, Report 2021/769 (2021), https://eprint.iacr.org/2021/769

8. Brendel, J., Fiedler, R., Günther, F., Janson, C., Stebila, D.: Post-quantum asyn-
chronous deniable key exchange and the Signal handshake. In: Hanaoka, G.,
Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II. LNCS, vol. 13178, pp. 3–34.
Springer, Cham (Mar 2022). https://doi.org/10.1007/978-3-030-97131-1_1

9. Carlini, N., Hayes, J., Nasr, M., Jagielski, M., Sehwag, V., Tramèr, F., Balle,
B., Ippolito, D., Wallace, E.: Extracting training data from diffusion models.
In: Calandrino, J.A., Troncoso, C. (eds.) USENIX Security 2023. pp. 5253–
5270. USENIX Association (Aug 2023), https://www.usenix.org/conference/
usenixsecurity23/presentation/carlini

10. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay,
C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 423–447.
Springer, Cham (Apr 2023). https://doi.org/10.1007/978-3-031-30589-4_15

11. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the Signal messaging protocol. In: 2017 IEEE European Sym-
posium on Security and Privacy. pp. 451–466. IEEE Computer Society Press (Apr
2017). https://doi.org/10.1109/EuroSP.2017.27

12. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the Signal messaging protocol. Journal of Cryptology 33(4),
1914–1983 (Oct 2020). https://doi.org/10.1007/s00145-020-09360-1

13. Collins, D., Huguenin-Dumittan, L., Nguyen, N.K., Rolin, N., Vaudenay, S.:
K-waay: Fast and deniable post-quantum X3DH without ring signatures. In:
Balzarotti, D., Xu, W. (eds.) USENIX Security 2024. USENIX Association (Aug

https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/3-540-46035-7_6
https://doi.org/10.1007/3-540-46035-7_6
https://doi.org/10.1007/3-540-46035-7_6
https://doi.org/10.1007/3-540-46035-7_6
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://www.usenix.org/conference/usenixsecurity24/presentation/bhargavan
https://www.usenix.org/conference/usenixsecurity24/presentation/bhargavan
https://eprint.iacr.org/2021/769
https://doi.org/10.1007/978-3-030-97131-1_1
https://doi.org/10.1007/978-3-030-97131-1_1
https://www.usenix.org/conference/usenixsecurity23/presentation/carlini
https://www.usenix.org/conference/usenixsecurity23/presentation/carlini
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1007/s00145-020-09360-1

30 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

2024), https://www.usenix.org/conference/usenixsecurity24/presentation/
collins

14. Cremers, C., Dax, A., Medinger, N.: Keeping up with the KEMs: Stronger security
notions for KEMs and automated analysis of KEM-based protocols. In: Luo, B.,
Liao, X., Xu, J., Kirda, E., Lie, D. (eds.) ACM CCS 2024. pp. 1046–1060. ACM
Press (Oct 2024). https://doi.org/10.1145/3658644.3670283

15. Cremers, C., Feltz, M.: One-round strongly secure key exchange with perfect for-
ward secrecy and deniability. Cryptology ePrint Archive, Report 2011/300 (2011),
https://eprint.iacr.org/2011/300

16. Dagdelen, Ö., Fischlin, M., Gagliardoni, T., Marson, G.A., Mittelbach, A., Onete,
C.: A cryptographic analysis of OPACITY - (extended abstract). In: Cramp-
ton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
345–362. Springer, Berlin, Heidelberg (Sep 2013). https://doi.org/10.1007/
978-3-642-40203-6_20

17. Degabriele, J.P., Lehmann, A., Paterson, K.G., Smart, N.P., Strefler, M.: On the
joint security of encryption and signature in EMV. In: Dunkelman, O. (ed.) CT-
RSA 2012. LNCS, vol. 7178, pp. 116–135. Springer, Berlin, Heidelberg (Feb / Mar
2012). https://doi.org/10.1007/978-3-642-27954-6_8

18. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key
exchange. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM
CCS 2006. pp. 400–409. ACM Press (Oct / Nov 2006). https://doi.org/10.1145/
1180405.1180454

19. Dobson, S., Galbraith, S.D.: Post-quantum Signal key agreement from SIDH.
In: Cheon, J.H., Johansson, T. (eds.) Post-Quantum Cryptography - 13th Inter-
national Workshop, PQCrypto 2022. pp. 422–450. Springer, Cham (Sep 2022).
https://doi.org/10.1007/978-3-031-17234-2_20

20. Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and on-line deniabil-
ity of authentication. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
146–162. Springer, Berlin, Heidelberg (Mar 2009). https://doi.org/10.1007/
978-3-642-00457-5_10

21. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of
the TLS 1.3 handshake protocol candidates. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015. pp. 1197–1210. ACM Press (Oct 2015). https://doi.org/10.
1145/2810103.2813653

22. Fersch, M., Kiltz, E., Poettering, B.: On the one-per-message unforgeability of
(EC)DSA and its variants. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II.
LNCS, vol. 10678, pp. 519–534. Springer, Cham (Nov 2017). https://doi.org/
10.1007/978-3-319-70503-3_17

23. Fiedler, R., Günther, F.: Security analysis of Signal’s PQXDH handshake. In: Jager,
T., Pan, J. (eds.) PKC 2025, Part II. LNCS, vol. 15675, pp. 137–169. Springer,
Cham (May 2025). https://doi.org/10.1007/978-3-031-91823-0_5

24. Fiedler, R., Janson, C.: A deniability analysis of Signal’s initial handshake
PQXDH. PoPETs 2024(4), 907–928 (Oct 2024). https://doi.org/10.56553/
popets-2024-0148

25. Fiedler, R., Langrehr, R.: On deniable authentication against malicious verifiers.
Cryptology ePrint Archive, Paper 2025/470 (2025), https://eprint.iacr.org/
2025/470

26. Haber, S., Pinkas, B.: Securely combining public-key cryptosystems. In: Reiter,
M.K., Samarati, P. (eds.) ACM CCS 2001. pp. 215–224. ACM Press (Nov 2001).
https://doi.org/10.1145/501983.502013

https://www.usenix.org/conference/usenixsecurity24/presentation/collins
https://www.usenix.org/conference/usenixsecurity24/presentation/collins
https://doi.org/10.1145/3658644.3670283
https://doi.org/10.1145/3658644.3670283
https://eprint.iacr.org/2011/300
https://doi.org/10.1007/978-3-642-40203-6_20
https://doi.org/10.1007/978-3-642-40203-6_20
https://doi.org/10.1007/978-3-642-40203-6_20
https://doi.org/10.1007/978-3-642-40203-6_20
https://doi.org/10.1007/978-3-642-27954-6_8
https://doi.org/10.1007/978-3-642-27954-6_8
https://doi.org/10.1145/1180405.1180454
https://doi.org/10.1145/1180405.1180454
https://doi.org/10.1145/1180405.1180454
https://doi.org/10.1145/1180405.1180454
https://doi.org/10.1007/978-3-031-17234-2_20
https://doi.org/10.1007/978-3-031-17234-2_20
https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/978-3-031-91823-0_5
https://doi.org/10.1007/978-3-031-91823-0_5
https://doi.org/10.56553/popets-2024-0148
https://doi.org/10.56553/popets-2024-0148
https://doi.org/10.56553/popets-2024-0148
https://doi.org/10.56553/popets-2024-0148
https://eprint.iacr.org/2025/470
https://eprint.iacr.org/2025/470
https://doi.org/10.1145/501983.502013
https://doi.org/10.1145/501983.502013

XHMQV: Signal’s Initial Handshake based on HMQV 31

27. Hashimoto, K., Katsumata, S., Kwiatkowski, K., Prest, T.: An efficient and generic
construction for Signal’s handshake (X3DH): Post-quantum, state leakage secure,
and deniable. In: Garay, J. (ed.) PKC 2021, Part II. LNCS, vol. 12711, pp. 410–440.
Springer, Cham (May 2021). https://doi.org/10.1007/978-3-030-75248-4_15

28. Hashimoto, K., Katsumata, S., Kwiatkowski, K., Prest, T.: An efficient and generic
construction for Signal’s handshake (X3DH): Post-quantum, state leakage secure,
and deniable. Journal of Cryptology 35(3), 17 (Jul 2022). https://doi.org/10.
1007/s00145-022-09427-1

29. Hashimoto, K., Katsumata, S., Wiggers, T.: Bundled authenticated key exchange:
A concrete treatment of (post-quantum) Signal’s handshake protocol. In: 34th
USENIX Security Symposium, USENIX Security 2025. USENIX Association (Aug
2025), to appear. Available as Cryptology ePrint Archive Report 2025/040, https:
//eprint.iacr.org/2025/040.

30. Jiang, S.: Timed encryption with application to deniable key exchange. Theor.
Comput. Sci. 560, 172–189 (2014). https://doi.org/10.1016/J.TCS.2014.02.
005, https://doi.org/10.1016/j.tcs.2014.02.005

31. Jiang, S., Chee, Y.M., Ling, S., Wang, H., Xing, C.: A new framework for deniable
secure key exchange. Inf. Comput. 285(Part), 104866 (2022). https://doi.org/
10.1016/J.IC.2022.104866, https://doi.org/10.1016/j.ic.2022.104866

32. Jiang, S., Safavi-Naini, R.: An efficient deniable key exchange protocol (extended
abstract). In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 47–52. Springer,
Berlin, Heidelberg (Jan 2008). https://doi.org/10.1007/978-3-540-85230-8_4

33. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from iden-
tification schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II.
LNCS, vol. 9815, pp. 33–61. Springer, Berlin, Heidelberg (Aug 2016). https:
//doi.org/10.1007/978-3-662-53008-5_2

34. Kiltz, E., Pan, J., Riepel, D., Ringerud, M.: Multi-user CDH problems and the
concrete security of NAXOS and HMQV. In: Rosulek, M. (ed.) CT-RSA 2023.
LNCS, vol. 13871, pp. 645–671. Springer, Cham (Apr 2023). https://doi.org/
10.1007/978-3-031-30872-7_25

35. Kobeissi, N., Bhargavan, K., Blanchet, B.: Automated verification for secure mes-
saging protocols and their implementations: A symbolic and computational ap-
proach. In: 2017 IEEE European Symposium on Security and Privacy. pp. 435–450.
IEEE Computer Society Press (Apr 2017). https://doi.org/10.1109/EuroSP.
2017.38

36. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Berlin,
Heidelberg (Aug 2005). https://doi.org/10.1007/11535218_33

37. Kret, E., Schmidt, R.: The PQXDH key agreement protocol (Jan 2024), https:
//signal.org/docs/specifications/pqxdh/

38. Langley, A., Hamburg, M., Turner, S.: Elliptic Curves for Security. RFC 7748
(Informational) (Jan 2016). https://doi.org/10.17487/RFC7748, https://www.
rfc-editor.org/rfc/rfc7748.txt

39. Law, L., Menezes, A., Qu, M., Solinas, J.A., Vanstone, S.A.: An efficient protocol
for authenticated key agreement. DCC 28(2), 119–134 (2003). https://doi.org/
10.1023/A:1022595222606

40. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key
recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023,
Part V. LNCS, vol. 14008, pp. 448–471. Springer, Cham (Apr 2023). https://
doi.org/10.1007/978-3-031-30589-4_16

https://doi.org/10.1007/978-3-030-75248-4_15
https://doi.org/10.1007/978-3-030-75248-4_15
https://doi.org/10.1007/s00145-022-09427-1
https://doi.org/10.1007/s00145-022-09427-1
https://doi.org/10.1007/s00145-022-09427-1
https://doi.org/10.1007/s00145-022-09427-1
https://eprint.iacr.org/2025/040
https://eprint.iacr.org/2025/040
https://doi.org/10.1016/J.TCS.2014.02.005
https://doi.org/10.1016/J.TCS.2014.02.005
https://doi.org/10.1016/J.TCS.2014.02.005
https://doi.org/10.1016/J.TCS.2014.02.005
https://doi.org/10.1016/j.tcs.2014.02.005
https://doi.org/10.1016/J.IC.2022.104866
https://doi.org/10.1016/J.IC.2022.104866
https://doi.org/10.1016/J.IC.2022.104866
https://doi.org/10.1016/J.IC.2022.104866
https://doi.org/10.1016/j.ic.2022.104866
https://doi.org/10.1007/978-3-540-85230-8_4
https://doi.org/10.1007/978-3-540-85230-8_4
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-031-30872-7_25
https://doi.org/10.1007/978-3-031-30872-7_25
https://doi.org/10.1007/978-3-031-30872-7_25
https://doi.org/10.1007/978-3-031-30872-7_25
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/11535218_33
https://signal.org/docs/specifications/pqxdh/
https://signal.org/docs/specifications/pqxdh/
https://doi.org/10.17487/RFC7748
https://doi.org/10.17487/RFC7748
https://www.rfc-editor.org/rfc/rfc7748.txt
https://www.rfc-editor.org/rfc/rfc7748.txt
https://doi.org/10.1023/A:1022595222606
https://doi.org/10.1023/A:1022595222606
https://doi.org/10.1023/A:1022595222606
https://doi.org/10.1023/A:1022595222606
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16

32 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

41. Marlinspike, M., Perrin, T.: The X3DH key agreement protocol (Nov 2016), https:
//signal.org/docs/specifications/x3dh/

42. Menezes, A.: Another look at HMQV. Cryptology ePrint Archive, Report 2005/205
(2005), https://eprint.iacr.org/2005/205

43. Menezes, A., Qu, M., , Vanstone, S.A.: Some new key agreement protocols provid-
ing mutual implicit authentication. 2nd Workshop on Selected Areas in Cryptog-
raphy (SAC 1995) (1995)

44. Paterson, K.G., Schuldt, J.C.N., Stam, M., Thomson, S.: On the joint secu-
rity of encryption and signature, revisited. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 161–178. Springer, Berlin, Heidelberg (Dec
2011). https://doi.org/10.1007/978-3-642-25385-0_9

45. Patton, C., Shrimpton, T.: Security in the presence of key reuse: Context-
separable interfaces and their applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 738–768. Springer, Cham (Aug
2019). https://doi.org/10.1007/978-3-030-26948-7_26

46. Perrin, T.: The XEdDSA and VXEdDSA signature schemes (Oct 2016), https:
//signal.org/docs/specifications/xeddsa/

47. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13(3), 361–396 (Jun 2000). https://doi.org/10.
1007/s001450010003

48. Robert, D.: Breaking SIDH in polynomial time. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 472–503. Springer, Cham (Apr
2023). https://doi.org/10.1007/978-3-031-30589-4_17

49. Signal: Technical information, https://signal.org/docs/
50. Thormarker, E.: On using the same key pair for Ed25519 and an X25519 based

KEM. Cryptology ePrint Archive, Report 2021/509 (2021), https://eprint.
iacr.org/2021/509

51. Unger, N., Goldberg, I.: Deniable key exchanges for secure messaging. In: Ray, I.,
Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp. 1211–1223. ACM Press (Oct 2015).
https://doi.org/10.1145/2810103.2813616

52. Unger, N., Goldberg, I.: Improved strongly deniable authenticated key exchanges
for secure messaging. PoPETs 2018(1), 21–66 (Jan 2018). https://doi.org/10.
1515/popets-2018-0003

53. Vatandas, N., Gennaro, R., Ithurburn, B., Krawczyk, H.: On the cryptographic de-
niability of the Signal protocol. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi,
A. (eds.) ACNS 2020, Part II. LNCS, vol. 12147, pp. 188–209. Springer, Cham
(Oct 2020). https://doi.org/10.1007/978-3-030-57878-7_10

54. Yao, A.C.C., Zhao, Y.: OAKE: a new family of implicitly authenticated Diffie-
Hellman protocols. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM
CCS 2013. pp. 1113–1128. ACM Press (Nov 2013). https://doi.org/10.1145/
2508859.2516695

https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://eprint.iacr.org/2005/205
https://doi.org/10.1007/978-3-642-25385-0_9
https://doi.org/10.1007/978-3-642-25385-0_9
https://doi.org/10.1007/978-3-030-26948-7_26
https://doi.org/10.1007/978-3-030-26948-7_26
https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/xeddsa/
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-031-30589-4_17
https://signal.org/docs/
https://eprint.iacr.org/2021/509
https://eprint.iacr.org/2021/509
https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1515/popets-2018-0003
https://doi.org/10.1515/popets-2018-0003
https://doi.org/10.1515/popets-2018-0003
https://doi.org/10.1515/popets-2018-0003
https://doi.org/10.1007/978-3-030-57878-7_10
https://doi.org/10.1007/978-3-030-57878-7_10
https://doi.org/10.1145/2508859.2516695
https://doi.org/10.1145/2508859.2516695
https://doi.org/10.1145/2508859.2516695
https://doi.org/10.1145/2508859.2516695

XHMQV: Signal’s Initial Handshake based on HMQV 33

A Full Proof of Bounding G2 in Theorem 1

In this section, we formally bound the probability from Theorem 1:

AdvG2
XHMQV(A) ≤

∑
cleanX∈{cleanLTLT,cleanLTE,cleanLTSS,

cleanELT,cleanESS,cleanEE}

AdvG2∧cleanX

XHMQV (A).

We prove each case in different subsections below; concrete security bounds for
each case can be found in these subsections. Here we only give the final security
bound of AdvG2

XHMQV(A), i.e., the bound in Lemma 2 where ϵCRGapDH denotes the
advantage bound for the CRGapDH assumption in G and δsim the bound for
simulatability of Sig:

AdvG2
XHMQV(A) ≤ nunu · (2δsim + ϵCRGapDH + QRO/p) // cleanLTLT

+ nuns · (δsim + ϵCRGapDH + QRO/p) // cleanLTE
+ n2

unss · (δsim + ϵCRGapDH + QRO/p) // cleanLTSS
+ nuns · (δsim + ϵCRGapDH + QRO/p) // cleanELT
+ nsnunss · (ϵCRGapDH + QRO/p) // cleanESS
+ n2

s · (ϵCRGapDH + QRO/p) . // cleanEE

A.1 Case cleanLTLT

By the definition of cleanLTLT, the long-term keys of both π∗.oid and π∗.pid are
uncompromised. We begin with G ltlt

0 := G2 ∧ cleanLTLT(π∗), so we have

AdvG2∧cleanLTLT(π∗)
XHMQV (A) = AdvG

ltlt
0

XHMQV(A)

We use game sequence G ltlt
1 -G ltlt

4 to bound the winning advantage of A when
π∗ satisfies cleanLTLT. The transitions G ltlt

1 -G ltlt
3 enable the game to simulate signa-

tures without using long-term keys. We use the simulatability (cf. Definition 3)
of the signature scheme to bound the probability difference. For G ltlt

3 -G ltlt
4 , we

use the CRGapDH assumption to prove that if the adversary cannot query KDFf

(or KDFr) on the correct hash input of π∗, then it cannot distinguish the real
session key of π∗ from a random key.

Game G ltlt
1 : We guess the identities A∗ and B∗ of the initiator and responder

involved in the test session (i.e., (π∗.oid, π∗.pid) = (A∗, B∗)). If this guess is
incorrect, then we overwrite A’s bit guess with 0. Since there are at most nu

users involved in ths game and the guess is uniformly at random in A’s view, we
have

AdvG
ltlt
0

XHMQV(A) = n2
u · AdvG

ltlt
1

XHMQV(A)

For the sake of simplicity, let (a∗, A∗) and (b∗, B∗) be the long-term key
pairs of A∗ and B∗, respectively. In the game transitions G ltlt

1 -G ltlt
3 , we change the

simulation of hsig (the random oracle used by the signature scheme) and the

34 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

KGenSS(ltskB∗ = b∗) for G ltlt
1 :

1 s←$ Zp, S := gs

2 σ ← Signhsig (b∗, S)
3 ssskU := s, sspkU := (S, σ)
4 return (ssskU , sspkU)

hsig(qry):
// Lazy sampling

64 if ∃h s.t. (qry, h) ∈ Lhsig

65 return h

66 h←$ hsig.image
67 Lhsig := Lhsig ∪ (qry, h)
68 return h

KGenSS(ltskB∗ = b∗) for G ltlt
2 :

1 s←$ Zp, S := gs

2 (σ, qry, h)←$ SIMsign(B∗, S)
3 Lsim := Lsim ∪ {(qry, h)}
4 σ ← Signhsig (b∗, S)
5 ssskU := s, sspkU := (S, σ)
6 return (ssskU , sspkU)

hsig(qry):

69 if ∃h s.t. (qry, h) ∈ Lsim

70 return h // Program the RO s.t. hsig(qry) = h

71 · · · // As the lazy sampling in Gltlt
1

Fig. 10. Code of KGenSS and hsig for games G ltlt
1 (left) and G ltlt

2 (right)

generation of A∗’s and B∗’s semi-static keys before running A.

Game G ltlt
2 : This game changes the random oracle hsig (used by the signature

scheme) and the key generation of semi-static keys for B∗. Since the code is
presented in Fig. 10, here we only give the high-level idea:

– When running KGenSS(ltskB∗), we use SIMsign to generate simulated sig-
natures and some simulation information. The simulation information is
recorded in Lsim and will be used to program hsig later.

– We use the outputs of SIMsign(B∗, ·) to simulate hsig’s responses to queries
that may be related to the signatures of B∗’s semi-static keys.

In G ltlt
2 , the differences compared to G ltlt

1 are (1) we use the signature from
SIMsign, and (2) we use the simulated hash value from SIMsign to simulate the
random oracle hsig. We construct a straight-forward reduction from δ-simulatability
of Sig to bound these differences: Let R be an adversary against the simulata-
bility of Sig. R plays against either GReal

Sig or GSim
Sig and simulates either G ltlt

1 or
G ltlt

2 for A, respectively. R works as follows:

– R first samples btest and a party id B∗. It generates B∗’s semi-static keys
(si, Si) for 1 ≤ i ≤ nss, and outputs (Si)1≤i≤nss

to the game. It then gets
(vk = B∗, sk = b∗, (σi)1≤i≤[nss]) and random oracle access to RO.

– Then, R sets up all variables (long-term key pairs and semi-static key pairs
of all other parties, session initialization, etc.) and oracles required in G ltlt

2
and runs A. All hsig queries from A are forwarded to RO.

– When A outputs bguess, R returns Jbtest = bguessK.

It is straight-forward to see that ifR is playing against GReal
Sig , then it perfectly

simulates G ltlt
1 for A. If R is playing against GReal

Sig , then we have hsig(qry′) = h′ =
RO(qry) if (σ′, qry′, h′) is generated by SIMsign. Hence, in this case R perfectly
simulates G ltlt

2 . Therefore, we have∣∣∣AdvG
ltlt
1

XHMQV(A)− AdvG
ltlt
2

XHMQV(A)
∣∣∣ =

∣∣Pr
[
GReal

Sig = 1
]
− Pr

[
GSim

Sig = 1
]∣∣ ≤ δ

XHMQV: Signal’s Initial Handshake based on HMQV 35

and
AdvG

ltlt
1

XHMQV(A) ≤ AdvG
ltlt
2

XHMQV(A) + δ.

From G ltlt
2 on, we no longer need the long-term secret key of B∗ to generate

signatures on B∗’s semi-static keys.

Game G ltlt
3 : We apply the same approach used in G ltlt

2 to A∗. Namely, we use
a modified KGenSS and change the simulation of hsig so that we can simulate
signatures on A∗’s semi-static keys without using its long-term key. Similar to
G ltlt

2 , we have
AdvG

ltlt
2

XHMQV(A) ≤ AdvG
ltlt
3

XHMQV(A) + δ,

and from G ltlt
3 on, we no longer need the long-term secret key of A∗.

Game G ltlt
4 : We introduce a new abort event QueryDHltlt in G ltlt

4 : Specifically, if

– A queries KDFf on (DH , A∗, B∗, S, Y, X) , where d = h0(A∗, X), e1 = h1(B∗,
Y, S), e2 = h2(B∗, Y, S), and Ddh(X(A∗)d, Y (B∗)e1Se2 , DH) = 1, and (A∗,
B∗, S, Y, X) = π∗.ctxt, or

– A queries KDFr on (DH , A∗, B∗, S, X), where d = h0(A∗, X), e1 = h3(B∗, S),
and Ddh(X(A∗)d, S(B∗)e1 , DH) = 1 and (A∗, B∗, S, X) = π∗.ctxt,

then the game aborts (i.e., return 0 asA’s bit guess). In other words, we abort the
game if A queries KDFf or KDFr on any DH value that contains the information
of (B∗)a∗(= (A∗)b∗).

To bound the probability of this event, we construct a CRGapDH adversary
Bltlt such that if such an abort event happens, then B can output a solution to
its CRGapDH challenge. By Definition 1, the input to Bltlt is (A∗, B∗) and Bltlt
has access to oracles Ddh and Ch. We underline how we embed the challenge
into the game.

Reduction BDdh,Ch
ltlt (A∗, B∗):

– Initialize G ltlt
4 :

1. Choose two users A∗ and B∗ uniformly at random and set the long-term
public key of A∗ and B∗ as A∗ and B∗, respectively.

2. Initialize lists Lpatch-f , Lskey-f , Lpatch-r, and Lskey-r for the simulation of
session keys using Ddh and random oracle patching (as in G2). We also
initialize Lsim to simulate the signatures on A∗’s and B∗’s semi-static keys
(as in Fig. 10).

3. For parties A∗ and B∗, run the modified KGenSS algorithm defined in
Fig. 10. After this step, Bltlt has ltpk , sspk , and ltsk (except for the long-
term secret keys of A∗ and B∗). For all other parties, follow the KGenLT
and KGenSS defined in XHMQV faithfully.

4. Run bguess←$A(ltpk , sspk) and proceed the game as in GKI
KE. If the initia-

tor and responder of the test session are not A∗ and B∗, respectively, then
overwrite A’s bit with 0.
The random oracles and game oracles are simulated as described below.

36 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

– Simulation of oracles defined in GKI
KE:

• All oracles except Send and CorruptLTKey are simulated in the same
way defined in GKI

KE.
• By cleanLTLT, the adversary does not query CorruptLTKey on A∗ or B∗.
CorruptLTKey queries on other parties are simulated as usual (since
we have long-term keys of all other parties).

• For Send, if the query does not involve A∗ and B∗, then we also simulate
the oracle in the same way as in GKI

KE.
• Send(A∗, i, m) (We only present how to simulate the Run algorithms and

set up the session keys):
∗ Case m = (create, ssid, type) (as the session responder): Simulate as

usual.
∗ Case m = (U, X) (as the session responder and type = full):

1. Get the semi-static secret s, the ephemeral secret y (and their
public keys) of this session. Let U be the long-term public key of
the initiator party U.

2. If there exists an entry (U, A∗, S, Y, X, K) in Lskey-f , then retrieve
this K.

3. Otherwise, sample a random K and record (U, A∗, S, Y, X, K) in
the list Lpatch-f .

4. Set πi
A∗ .K := K.

∗ Case m = (U, X) (as the session responder and type = reduced). This
case is similar to the case of type = full. We present the details for
completeness:
1. Get the semi-static key pair (s, S) of this session. Let U be the

long-term public key of U.
2. If there exists (U, A∗, S, X, K) in Lskey-r, then retrieve this K.
3. Otherwise, sample a random K and record (U, A∗, S, X, K) in
Lpatch-r.

4. Set πi
A∗ .K := K.

∗ Case m = (U, S, Y, σ) (as the session initiator and type = full):
1. Generate the ephemeral key pair (X, x) of this session. Let U be

the long-term public key of the responder party U.
2. If there exists (A∗, U, S, Y, X, K) in Lskey-f , then retrieve this K.
3. Otherwise, sample a random K and record (A∗, U, S, Y, X, K) in
Lpatch-f .

4. Set πi
A∗ .K := K

∗ Case m = (U, S, Y = ⊥, σ) (as the session initiator) and type = reduced
works analogously to the case of type = full.

• Send(B∗, j, m): The simulation is analogous to Send(A∗, i, m).
– Simulation of Random Oracles:
• For fresh RO queries to KDFf (A, B, S, Y, X, DH) and KDFr(A, B, S, X, DH),

where (A, B) ̸= (A∗, B∗), we simulate in the same way as in G2. Similarly,
for fresh RO queries to h0, h1, h2, and h3 that do not involve A∗ and B∗,
we simulate as usual.

• h0(A∗, X): h← Ch(X), h0(A∗, X) := h.

XHMQV: Signal’s Initial Handshake based on HMQV 37

• h1(B∗, Y, S): e2 := h2(B∗, Y, S), R := Y Se2 , h← Ch(R), h1(B∗, Y, S) := h.
• h2(B∗, Y, S): Simulate as usual.
• h3(B∗, S): h← Ch(S), h0(B∗, S) := h.
• KDFf (DH , A∗, B∗, S, Y, X):

1. If (A∗, B∗, S, Y, X) = π∗.ctxt and Ddh(X(A∗)d, Y (B∗)e1Se2 , DH) =
1, then extract the value

DH ′ :=

(
DH/(X(A∗)d)y+se2

)e1
−1

, π∗ is a responder session

(DH/ (Y (B∗)e1Se2)x)d−1
, π∗ is an initiator session

where d := h0(A∗, X), e1 := h1(B, Y, S), and e2 := h2(B, Y, S). If π∗

is an initiator session, then we have its ephemeral key x. If π∗ is a
responder session, then we have the ephemeral key y and the semi-
static key s of the responder B∗. Once such a DH ′ value is found, Bltlt
aborts the simulation and returns DH ′ as the CRGapDH solution.

2. Otherwise, simulate by lazy sampling.
• KDFr(DH , A∗, B∗, S, X):

1. If (A∗, B∗, S, X) = π∗.ctxt and Ddh(X(A∗)d
, S(B∗)e1) = 1, then ex-

tract the value

DH ′ :=

(
DH/(X(A∗)d)s

)e1
−1

, π∗ is a responder session

(DH/ ((S(B∗)e1)x))d−1
, π∗ is an initiator session

where d := h0(A∗, X) and e1 := h3(B, S). If π∗ is an initiator session,
then we have its ephemeral key x. If π∗ is a responder session, then we
have the semi-static key s of the responder B∗. Once such a DH ′ value
is found, Bltlt aborts the simulation and returns DH ′ as the CRGapDH
solution.

2. Otherwise, simulate by lazy sampling.

To bound Pr [QueryDHltlt], we first prove that Bltlt can extract a correct
CRGapDH solution from KDFf and KDFr (specifically, when the Ddh oracle
outputs 1 and the query matches π∗.ctxt). In KDFf , if π∗ is an initiator session,
then the extracted DH value DH ′ equals (Y (B∗)e1Se2)a∗ . By the simulation of
h1(B∗, Y, S), we have e2 = h1(B∗, Y, S) = h where h ← Ch(Y Se2). Therefore,
we have

DH ′ = (Y (B∗)e1Se2)a∗
= ((Y Se2) · (B∗)h)a∗

,

where h = Ch(Y Se2). So, DH ′ is a solution to CRGapDH. A similar argument
applies to KDFr and the case that π∗ is a responder session. Therefore, as long
as Bltlt aborts the game when simulating KDFf or KDFr, the extracted solution
is a correct CRGapDH solution.

By definition, if QueryDHltlt happens, thenAmust have queried KDFf (DH , A∗,
B∗, S, Y, X) or KDFr(DH , A∗, B∗, S, X) which makes the Ddh oracle output 1,

38 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

and Bltlt will extract a CRGapDH solution. Therefore, if QueryDHltlt happens, then
Bltlt solves its CRGapDH challenge, and thus we have

AdvG
ltlt
3

XHMQV(A) ≤ AdvG
ltlt
4

XHMQV(A) + Pr [QueryDHltlt]

≤ AdvG
ltlt
4

XHMQV(A) + AdvCRGapDH
(G,p,g) (Bltlt) + QRO/p,

where the last term counts in the probability that there exists a non-invertible
h value from the Ch oracle.

Now we can bound the adversary’s advantage in G ltlt
4 . In this game, the session

keys of all sessions are computed via lazy sampling. These keys are distributed
uniformly at random in A’s view until it queries KDFf or KDFr on the cor-
rect hash input. By the abort event QueryDHltlt, the adversary cannot query the
correct hash input of the test session, so the session key of π∗ is distributed
uniformly at random in A’s view, independent of the game’s challenge bit btest.
Therefore, the probability that bguess = btest is 1

2 , and we have

AdvG
ltlt
4

XHMQV(A) = 0.

We assume that the ϵ-CRGapDH assumption holds over (G, p, g). Combining
all the probability bounds, we have the final bound for the case cleanLTLT(π∗):

AdvG2∧cleanLTLT
XHMQV (A) ≤ n2

u · (2δ + ϵ + QRO/p)

A.2 Case cleanLTSS

By the definition of cleanLTSS, we have (1) the initiator of π∗ is uncompromised,
(2) the semi-static key of π∗’s responder is uncompromised, and (3) if π∗ is an
initiator session, then either the responder’s long-term key was uncompromised
upon acceptance, or the semi-static key used in π∗ is generated by the security
game (rather than generated by the adversary).

By G2, we always have π∗.sspk ∈ sspkπ∗.pid as long as cleanLTSS(π∗). This
is because, on the one hand, if cleanLTSS(π∗) and π∗.pcorr = 0, then we have
π∗.sspk ∈ sspk unless A forged a valid signature on the semi-static key of an
uncompromised party, which has been excluded in G2. On the other hand, by
definition, we have cleanLTSS(π∗)∧π∗.pcorr =⇒ π∗.sspk ∈ sspkπ∗.pid. Therefore,
the third condition described above and the modification in G2 ensure that the
semi-static key used in π∗ has been generated by the game. This allows us to
embed a CRGapDH challenge into the semi-static key.

We begin with G ltss
0 := G2 ∧ cleanLTSS(π∗), so we have

AdvG2∧cleanLTSS(π∗)
XHMQV (A) = AdvG

ltss
0

XHMQV(A)

We use the game sequence G ltss
1 -G ltss

4 to bound the winning advantage of A
when π∗ satisfies cleanLTSS. Similar to the proof of the case cleanLTLT(π∗), we
use game transitions G ltss

1 -G ltss
3 and the simulatability (cf. Definition 3) of the

XHMQV: Signal’s Initial Handshake based on HMQV 39

signature scheme to simulate signatures of the initiator of π∗ without using its
long-term key. Then, we use G ltss

3 -G ltss
4 and CRGapDH to prove that the adver-

sary cannot query KDFf (or KDFr) on the correct hash input of π∗, and thus it
cannot distinguish whether π∗’s key is real or random.

Game G ltss
1 : We guess the identity A∗ of the initiator involved in the test session.

If this guess is incorrect, then we overwrite A’s bit guess with 0. We denote A∗’s
long-term key pair as (a∗, A∗). We have

AdvG
ltss
0

XHMQV(A) ≤ nu · AdvG
ltss
1

XHMQV(A)

Game G ltss
2 : We guess the identity B∗ of the responder involved in π∗ and the

identifier ssid∗ of the repsonder B∗’s uncorrupted semi-static key. The semi-
static key pair of π∗ is denoted as (s∗, S∗) (i.e., π∗.ssid = ssid∗ and (s∗, S∗) =
(ssskB∗ [ssid∗], sspkB∗ [ssid∗])). Since there are at most nu users involved in this
game and at most nss semi-static keys for each user, we have

AdvG
ltss
1

XHMQV(A) ≤ nunss · AdvG
ltss
2

XHMQV(A)

Game G ltss
3 : In this game, we use the RO-simulatability of Sig to simulate A∗’s

signatures without using a∗. Similar to the case of cleanLTLT(π∗) = 1, we can use
the δ-RO-simulatability of Sig to bound the probability difference, so we have

AdvG
ltss
2

XHMQV(A) ≤ AdvG
ltss
3

XHMQV(A) + δ

Game G ltss
4 : We introduce an abort event QueryDHltss in G ltss

4 : Specifically, if

– A queries KDFf on (DH , A∗, B, S∗, Y, X) , where d = h0(A∗, X), e1 =
h1(B, Y, S∗), e2 = h2(B, Y, S∗), Ddh(X(A∗)d, Y Be1(S∗)e2 , DH) = 1, and
(A∗, B, S∗, Y, X) = π∗.ctxt,

– A queries KDFr on (DH , A∗, B, S∗, X), where d = h0(A∗, X), e1 = h3(B, S∗),
and Ddh(X(A∗)d, S∗Be1 , DH) = 1 and (A∗, B, S∗, X) = π∗.ctxt,

then the game aborts. In other words, we abort the game if A queries KDFf

or KDFr on any DH value that contains the information of (A∗)s∗(= (S∗)a∗).
We construct a CRGapDH adversary Bltss to bound the probability of QueryDHltss.

Reduction BDdh,Ch
ltss (A∗, S∗):

– Initialize G ltss
4 :

1. Choose two users A∗ and B∗ uniformly at random. Pick ssid∗←$ [nss]. The
long-term public key of A∗ is set as A∗.

2. Initialize lists Lpatch-f , Lskey-f , Lpatch-r, and Lskey-r for the simulation of
session keys using Ddh and random oracle patching (as in G2). We also
initialize Lsim to simulate the signatures of A∗’s and B∗’s semi-static keys
(as we did in Fig. 10).

40 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

3. For party A∗, run the modified KGenSS algorithm defined in Fig. 10. After
this step, Bltss has ltpk , sspk , and ltsk (except for the long-term secret
key of A∗). Bltss further replaces sspk B∗ [ssid∗] with S∗. For all other parties,
follow the KGenLT and KGenSS defined in XHMQV faithfully.

4. Run bguess←$A(ltpk , sspk) and proceeds the game as in GKI
KE. If the ini-

tiator and responder of the test session are not A∗ and B∗ respectively,
then overwrite A’s bit with 0.
The random oracles and game oracles are simulated as described below.

– Simulation of oracles defined in GKI
KE:

• All oracles except Send, CorruptLTKey, and CorruptSSKey are
simulated in the same way defined in GKI

KE.
• By the definition of cleanLTSS, A does not query CorruptLTKey on A∗,

nor to CorruptSSKey on (B∗, ssid∗). Queries to CorruptLTKey and
CorruptSSKey on other parties and sessions are simulated as usual.

• For a Send query, if the query does not involve either A∗ or B∗ with ssid∗,
then we also simulate the oracle in the same way as in GKI

KE. If the query
involves A∗ or B∗ with ssid∗, then we simulate in the same ways as in Bltlt.
Namely, we use Lpatch-f , Lskey-f , Lpatch-r, and Lskey-r to make sure that we
can always create session keys that are consistent with the random oracles.

– Simulation of Random Oracles:
• For fresh RO queries to KDFf and KDFr that do not match π∗, we simulate

in the same way as in G2. Similarly, for fresh RO queries to h0, h1, h2, and
h3 that do not involve either A∗ or S∗, we simulate as usual.

• h0(A∗, X): h← Ch(X), h0(A∗, X) := h.
• h2(B, Y, S∗): h← Ch(Y), h0(B, Y, S∗) := h.
• h1 and h3: Simulate as usual.
• KDFf (DH , A∗, B∗, S, Y, X):

1. If (A∗, B∗, S∗, Y, X) = π∗.ctxt and Ddh(X(A∗)d, Y (B∗)e1(S∗)e2 , DH)
= 1, then extract the value

DH ′ :=

(

DH/(X(A∗)d)y+b∗e1
)e2

−1

, π∗ is a responder session(
DH/ (Y (B∗)e1(S∗)e2)x ·Ade1b

)d−1

, π∗ is an initiator session

where d := h0(A∗, X), e1 := h1(B∗, Y, S∗), and e2 := h2(B∗, Y, S∗). In
this game, we have the long-term keys of all parties except A∗, so we
have the long-term key b∗ of the party B∗. If π∗ is an initiator session,
then we have its ephemeral key x. If π∗ is a responder session, then
we have the ephemeral key y. Once such a DH ′ is found, Bltss aborts
the simulation and return DH ′ as the CRGapDH solution.

2. Otherwise, simulate by lazy sampling.
• KDFr(DH , A∗, B∗, S, X):

1. If (A∗, B∗, S∗, X) = π∗.ctxt and Ddh(X(A∗)d, S∗(B∗)e1 , DH) = 1,
then extract the value

DH ′ :=
{

DH/(X(A∗)d)be1 , π∗ is a responder session(
DH/ (S∗(B∗)e1)x ·Ade1b

)d−1

, π∗ is an initiator session

XHMQV: Signal’s Initial Handshake based on HMQV 41

where d := h0(A∗, X) and e1 := h3(B∗, Y, S∗). In this game, we have
the long-term key b∗ of B∗. If π∗ is a responder session, then we have
the ephemeral key y, and thus Bltss can calculate DH ′ and return DH ′
as the CRGapDH solution.
If π∗ is an initiator session, then DH ′ = DH(A∗, S∗). However, DH ′
itself does not align with the format of a CRGapDH solution. To deal
with it, Bltss first pick a random r←$ Zp and compute R := gr, and
queries Ch(R) to obtain h. Then Bltss computes DH ′′ := (S∗)r ·(DH ′)h

and outputs DH ′′ as the CRGapDH solution. One can verify that
DH ′′ = (R(A∗)h)s∗ , where h = Ch(R), which means that it is a
valid CRGapDH solution.

2. Otherwise, simulate by lazy sampling.

Here we only prove that the simulation of KDFf and KDFr can extract the
CRGapDH solution. In KDFf , if π∗ is an initiator session, then the extracted DH
value DH ′ equals to (Y (S∗)e2)a∗ , where e2 = Ch(B∗, Y, S∗) = h and h is from
Ch(Y), so DH ′ is a valid solution in this case. If π∗ is a responder session, then
DH ′ = (X(A∗)d)s∗ and d is from Ch(X), and thus it is also a valid CRGapDH
solution. A similar argument applies to KDFr. Therefore, we have

AdvG
ltss
3

XHMQV(A) ≤ AdvG
ltss
4

XHMQV(A) + AdvCRGapDH
(G,p,g) (Bltss) + QRO/p

The remain argument to bound Pr [QueryDHltss] is the same as in the case of
cleanLTLT, so we have

AdvG
ltss
4

XHMQV(A) = 0.

We assume that the ϵ-CRGapDH assumption holds over (G, p, g). Combining
all the probability bounds gives us the final bound of the case cleanLTSS:

AdvG2∧cleanLTSS
XHMQV (A) ≤ nu

2nss · (δ + ϵ + QRO/p)

A.3 Case cleanLTE(π∗)

In this case, π∗ performs a full handshake as the ephemeral secret of the re-
sponder is involved. By definition of cleanLTE, the initiator’s long-term key is
uncompromised and the responder’s session randomness is not revealed. We be-
gin with G lte

0 := G2 ∧ cleanLTE(π∗), so we have

AdvG2∧cleanLTE(π∗)
XHMQV (A) = AdvG

lte
0

XHMQV(A)

We use game sequence G lte
1 -G lte

4 to bound the winning advantage of A when
π∗ satisfies cleanLTE. Similar to the proof of the case cleanLTLT(π∗), we use game
transitions G lte

1 -G lte
3 and the simulatability (cf. Definition 3) of the signature

scheme to simulate signatures of the initiator of π∗ without using its long-term
key. Then, we use G lte

3 -G lte
4 and the CRGapDH assumption to prove that the ad-

versary cannot query KDFf (or KDFr) on the correct hash input of π∗, and thus

42 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

cannot distinguish whether π∗’s key is real or random.

Game G lte
1 : We guess the responder session π∗r involved in the test session π∗

(i.e., either π∗ = π∗r or π∗.cid = π∗r .cid). If the guess is incorrect, then we
overwrite A’s bit guess with 0. We denote π∗r ’s ephemeral key pair as (y∗, Y ∗).

Specifically, we guess π∗r in the following way (the code will be provided in
the reduction described later): We first initialize a counter cnt := 0 and choose
cnt∗←$ [ns]. When A issues Send(U, i, m) queries with m = (create, ∗, ∗) (i.e.,
initializes a responder session), then cnt increments. If cnt = cnt∗, then we set
π∗r := πi

U.
In G lte

1 , there are at most ns sesssions during GKI
KE. Since cnt∗ is independent

of A’s view, the probability that cnt∗-th responder session (regardless of the
owner) is involved in π∗ is 1

ns
, and thus we have

AdvG
lte
0

XHMQV(A) = ns · AdvG
lte
1

XHMQV(A)

Game G lte
2 : We guess the identity A∗ of the initiator involved in the test session.

If this guess is incorrect, then we overwrite A’s bit guess with 0. We denote A∗’s
long-term key pair as (a∗, A∗). Since there are at most nu users involved in this
game and the guess is uniformly at random in A’s view, we have

AdvG
lte
1

XHMQV(A) ≤ nu · AdvG
lte
2

XHMQV(A)

Game G lte
3 : In this game, we use the RO-simulatability of Sig to simulate A∗’s

signatures only using A∗’s long-term public key A∗. Similar to G ltlt
2 and G ltlt

3 in
the case of cleanLTLT(π∗), we can use the δ-RO-simulatability of Sig to bound
the probability difference.

AdvG
lte
2

XHMQV(A) ≤ AdvG
lte
3

XHMQV(A) + δ

Game G lte
4 : We introduce an abort event QueryDHlte in G lte

4 : Specifically, if

– A queries KDFf on (DH , A∗, B, S, Y ∗, X) , where d = h0(A∗, X), e1 =
h1(B, Y ∗, S), e2 = h2(B, Y ∗, S), Ddh(X(A∗)d, Y ∗Be1Se2 , DH) = 1, and
(A∗, B, S, Y ∗, X) = π∗.ctxt,

then the game aborts (i.e., return 0 as A’s bit guess). In other words, we abort
the game if A queries KDFf or KDFr on any DH value that contains the infor-
mation of (A∗)y∗(= (Y ∗)a∗). We construct a CRGapDH adversary Blte such that
if such an abort event happens, then Blte can output a solution to its CRGapDH
challenge.

Reduction BDdh,Ch
lte (A∗, Y ∗):

– Initialize G lte
4 :

1. Choose a party A∗ uniformly at random and set its long-term public key
as A∗.

XHMQV: Signal’s Initial Handshake based on HMQV 43

2. Initialize a counter cnt := 0 and choose cnt∗←$ [ns]. Initialize π∗r := ⊥
and set it up later.

3. Initialize lists Lpatch-f , Lskey-f , Lpatch-r, and Lskey-r, and Lsim.
4. For party A∗, we use its long-term public key, the algorithm SIMsign, and
Lsim to simulate the signatures of its semi-static keys (as we did in Fig. 10).
For all other parties, follow the KGenLT and KGenSS defined in XHMQV
to generate ltpk , sspk , and ltsk faithfully.

5. Run bguess←$A(ltpk , sspk) and proceed the game as in GKI
KE. If the initia-

tor of π∗ is not A∗, π∗r is not π∗ itself, or π∗r is not the contributive partner
session of π∗, then overwrite A’s bit guess with 0.
The random oracles and game oracles are simulated as described below.

– Simulation of oracles defined in GKI
KE:

• All oracles except Send, CorruptLTKey, and RevealRand are simu-
lated in the same way defined in GKI

KE.
• If CorruptLTKey(A∗) is queried, then abort the game and overwrite
A’s bit guess with 0. By definition of cleanLTE, if the guess is correct,
then A will not corrupt A∗. CorruptLTKey queries on other parties are
simulated as usual.

• If RevealRand(U, i) is queried, where πU
i = π∗r ̸= ⊥, then abort the game

and overwrite A’s bit with 0. By definition of cleanLTE, if the guess is cor-
rect, then A will not reveal the session randomness of π∗r . RevealRand
queries on other sessions are simulated as usual.

• Send(U ̸= A∗, i, m):
∗ Case m = (create, ssid, type) (as the session responder): cnt := cnt + 1.

If cnt = cnt∗ and type = full, then we use Y ∗ as the ephemeral public
key of this session and set π∗r := πU

i . Otherwise, simulate as usual.
∗ For other cases, simulate as usual.

• Send(A∗, i, m) (We only present how to set up the session keys):
∗ Case m = (create, ssid, type) (as the session responder): Simulate as

usual. If type = full, then cnt := cnt + 1.
∗ Case m = (U, X) (as the session responder): We apply the same ap-

proach as in case cleanLTLT for Bltlt. Namely, we use the lists Lpatch-f ,
Lpatch-r, Lskey-f , and Lskey-r and oracle patching for KDFf and KDFr

to simulate the session keys and the RO outputs of KDFf and KDFr

consistently.
∗ Case m = (B, S, Y, σ) (as the session initiator): Simulate analogously

to the case m = (U, X) (no matter whether Y = Y ∗).
– Simulation of Random Oracles:
• For fresh RO queries to KDFr(DH , A, B, S, X) and KDFf (DH , A, B, S, Y,

X), where (A, Y) ̸= (A∗, Y ∗), we simulate in the same way as in G2.
Similarly, for fresh RO queries to h0, h1, h2, and h3 that do not involve A∗

and Y ∗, we simulate as usual.
• h0(A∗, X): h← Ch(X), h0(A, X) := h.
• h1(B, Y ∗, S): Simulate as usual.
• h2(B, Y ∗, S): h← Ch(S), h1(B, Y ∗, S) := h−1

• KDFf (DH , A∗, B, S, Y ∗, X):

44 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

1. If Ddh(X(A∗)d, Y ∗Be1Se2 , DH) outputs 1, then extract the value

DH ′ :=
{

DH/(X(A∗)d)be1+se2 , π∗ is a responder session(
DH/ (Y ∗Be1Se2)x · (A∗)dbe1

)d−1e2
−1

, π∗ is an initiator session

where d := h0(A∗, X), e1 := h1(B, Y, S), and e2 := h2(B, Y, S). If π∗

is an initiator session, then we have its ephemeral key x. If π∗ is a
responder session, then we have the long-term key b of the responder
B and the semi-static key s. Blte aborts the simulation and return DH ′
as the CRGapDH solution.

2. Otherwise, simulate by lazy sampling.

We first prove that the simulation of KDFf can successfully extract the
CRGapDH solution. In KDFf , if π∗ is an initiator session, then the extracted
DH value DH ′ equals to (Y ∗Se2)a∗e2

−1 = ((Y ∗)e2
−1

S)a∗ . By the simulation of
h2(B∗, Y, S), we have e2 = h2(B, Y ∗, S) = h−1 where h ← Ch(S). Therefore,
we have

DH ′ = ((Y ∗)e2
−1

S)a∗
= (S(Y ∗)h)a∗

,

where h = Ch(S). So, DH ′ is a solution to CRGapDH. Similarly, if π∗ is a
responder session, then we have

DH ′ = (X(A∗)d)y∗
,

where d = Ch(X). This is also a valid solution to CRGapDH.
It is straight-forward to see that if QueryDHlte occurs, then Blte will extract a

CRGapDH solution from KDFf . So, we have

AdvG
lte
3

XHMQV(A) ≤ AdvG
lte
4

XHMQV(A) + Pr [QueryDHlte]

≤ AdvG
lte
4

XHMQV(A) + AdvCRGapDH
(G,p,g) (Blte) + QRO/p,

where the last term counts in the probability that there exists a non-invertible
h value from the Ch oracle. Finally, we use a similar argument as for bounding
G ltlt

4 to bound A’s advantage in G lte
4 . That is, if A cannot trigger QueryDHlte, then

the session key of π∗ is distributed uniformly at random in A’s view. Therefore,
we have

AdvG
lte
4

XHMQV(A) = 0.

We assume that the ϵ-CRGapDH assumption holds over (G, p, g). Combining
all the probability bounds gives us the final bound of the case cleanLTE(π∗):

AdvG2∧cleanLTE
XHMQV (A) ≤ nuns · (δ + ϵ + QRO/p)

XHMQV: Signal’s Initial Handshake based on HMQV 45

A.4 Case cleanELT

In this case, cleanELT ensures for π∗ that (1) the initiator randomness involved in
π∗ is not revealed, (2) the long-term key of the responder of π∗ is uncompromised,
and (3) if π∗ is a responder session, then there exists a partnered initiator session.
Condition (3) ensures that the initiator ephemeral public key of π∗ is always
controlled by the game (so we can embed the CRGapDH challenge). Since cleanELT
is similar to cleanLTE, we may reuse some arguments in proving cleanLTE (cf.
Appendix A.3). We begin with Gelt

0 := G2 ∧ cleanELT, so we have

AdvG2∧cleanELT
XHMQV (A) = AdvG

elt
0

XHMQV(A)

Game Gelt
1 : We guess the initiator session π∗i involved in the test session π∗ (i.e.,

either π∗ = π∗i or π∗.sid = π∗i .sid). If the guess is incorrect, then we overwrite
A’s bit guess with 0. We denote π∗i ’s ephemeral key pair as (x∗, X∗).

We apply the same guessing approach used in proving G lte
1 to this proof case.

Roughly, we use a counter cnt which increments each time A queries Send to
initialize an initiator session. And we guess cnt∗←$ [ns] and set π∗i := πi

U if
Send(U, i, m) is the cnt∗-th Send query for initializing an initaitor session. We
have

AdvG
elt
0

XHMQV(A) = ns · AdvG
elt
1

XHMQV(A)

Game Gelt
2 : We guess the identity B∗ of the responder involved in the test session.

If this guess is incorrect, then we overwrite A’s bit guess with 0. We denote B∗’s
long-term key pair as (b∗, B∗). Since there are at most nu users involved in this
game and the guess is uniformly at random in A’s view, we have

AdvG
elt
1

XHMQV(A) ≤ nu · AdvG
elt
2

XHMQV(A)

Game Gelt
3 : In this game, we use the RO-simulatability of Sig to simulate B∗’s

signatures without using b∗. Similar to previous proof cases that involve uncom-
promised long-term secrets, we can use the δ-RO-simulatability of Sig to bound
the probability difference.

AdvG
elt
2

XHMQV(A) ≤ AdvG
elt
3

XHMQV(A) + δ

Game Gelt
4 : We introduce an abort event QueryDHelt in Gelt

4 : Specifically, if

– A queries KDFf on (DH , A, B∗, S, Y, X∗) , where d = h0(A, X∗), e1 = h1(B,
Y ∗, S), e2 = h2(B∗, Y, S), Ddh(X∗Ad, Y (B∗)e1Se2 , DH) = 1, and (A, B∗, S, Y,
X∗) = π∗.ctxt, or

– A queries KDFr on (DH , A, B∗, S, X∗), where d = h0(A, X∗), e1 = h3(B∗, S),
and Ddh(X∗(A)d, S(B∗)e1 , DH) = 1 and (A, B∗, S, X∗) = π∗.ctxt,

then the game aborts (i.e., return 0 as A’s bit guess). In other words, we abort
the game if A queries KDFf or KDFr on any DH value that contains the infor-
mation of (B∗)x∗(= (X∗)b∗). We construct a CRGapDH adversary Belt such that

46 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

if such an abort event happens, then Belt can output a solution to its CRGapDH
challenge.

Reduction BDdh,Ch
elt (X∗, B∗):

– Initialize Gelt
4 :

1. Choose a party B∗ uniformly at random and set the long-term public key
of B∗ as B∗.

2. Initialize a counter cnt := 0 and choose cnt∗←$ [ns]. Initialize π∗i := ⊥
and set up it later.

3. Initialize lists Lpatch-f , Lskey-f , Lpatch-r, and Lskey-r, and Lsim.
4. For party B∗, we use B∗, the algorithm SIMsign, and Lsim to simulate

the signatures of its semi-static keys (as we did in Fig. 10). For all other
parties, follow the KGenLT and KGenSS defined in XHMQV to generate
ltpk , sspk , and ltsk faithfully.

5. Run bguess←$A(ltpk , sspk) and proceeds the game as in GKI
KE. If the re-

sponder of π∗ is not B∗, π∗i is not π∗, or π∗i is not the matching session of
π∗, then overwrite A’s bit with 0.
The random oracles and game oracles are simulated as described below.

– Simulation of oracles defined in GKI
KE:

• All oracles except Send, CorruptLTKey, and RevealRand are simu-
lated in the same way defined in GKI

KE.
• If CorruptLTKey(B∗) is queried, then abort the game and overwrite A’s

bit with 0. By definition of cleanELT, if the guess is correct, then A will
not corrupt B∗. CorruptLTKey queries on other parties are simulated
as usual.

• If RevealRand(U, j) is queried, where πU
j = π∗i ̸= ⊥, then abort the game

and overwrite A’s bit with 0. By definition of cleanELT, if the guess is cor-
rect, then A will not reveal the session randomness of π∗i . RevealRand
queries on other sessions are simulated as usual.

• Send(U ̸= B∗, j, m):
∗ Case m = (B∗, sspk , epk) (initiator session with intended partner B∗):

cnt := cnt + 1. If cnt = cnt∗, then we use X∗ as the ephemeral public
key of this session and set π∗i := πU

j . Otherwise, simulate as usual.
∗ For other cases, simulate as usual.

• Send(B∗, j, m): We apply the same approach used in Bltlt to this case.
Namely, we use the lists Lpatch-f , Lpatch-r, Lskey-f , and Lskey-r and oralce
patching of KDFf and KDFr to simualte the session keys and the RO
outputs of KDFf and KDFr consistently.

– Simulation of Random Oracles:
• For fresh RO queries to KDFr(DH , A, B, S, X) and KDFf (DH , A, B, S, Y,

X), where (B, X) ̸= (B∗, X∗), we simulate in the same way as in G2.
Similarly, for fresh RO queries to h0, h1, h2, and h3 that do not involve B∗

and X∗, we simulate as usual.
• h1(B∗, Y, S): Compute e2 := h2(B∗, Y, S), R := Y Se2 , and queries Ch(R)

and gets h. Set h1(B∗, Y, S) := h.

XHMQV: Signal’s Initial Handshake based on HMQV 47

• h3(B∗, S): h← Ch(S), h3(B∗, S) := h.
• h0(A, X∗) and h2(B, Y ∗, S): Simulate as usual.
• KDFf (DH , A, B∗, S, Y, X∗):

1. If (A, B∗, S, Y, X∗) = π∗.ctxt and Ddh(X∗Ad, Y (B∗)e1Se2 , DH) out-
puts 1, then extract the value

DH ′ :=
{(

DH/(X∗Ad)y+se2 · (B∗)e1ad
)e1

−1

, π∗ is a responder session
DH/(Y (B∗)e1Se2)ad, π∗ is an initiator session

where d := h0(A, X∗), e1 := h1(B∗, Y, S), and e2 := h2(B∗, Y, S). We
have a since we have long-term keys of all parties except B∗. If π∗ is
an initiator session, then Blte aborts the simulation and return DH ′
as the CRGapDH solution. If π∗ is a responder session (so we have
the ephemeral key y and the semi-static key s), then we have that
DH ′ = (X∗)b∗ . Similar to Bltss, in this case, Belt first pick a r←$ Zp

and compute R := gr, and queries Ch(R) and gets h. Then Bltss
computes DH ′′ := (S∗)r · (DH ′)h and outputs DH ′ as the CRGapDH
solution.

2. Otherwise, simulate by lazy sampling.
• KDFr(DH , A, B∗, S, X∗):

1. If (A, B∗, S, X∗) = π∗.ctxt and Ddh(X∗Ad, S(B∗)e1 , DH) outputs 1,
then extract the value

DH ′ :=
{(

DH/(X∗Ad)s · (B∗)e1ad
)e1

−1

, π∗ is a responder session
DH/(S(B∗)e1)ad, π∗ is an initiator session

where d := h0(A, X∗) and h1(B∗, S). If π∗ is an initiator session, then
Blte aborts the simulation and return DH ′ as the CRGapDH solution. If
π∗ is a responder session, then we have DH ′ = (X∗)b∗ , and we can use
the same approach in KDFf to construct a valid CRGapDH solution.

2. Otherwise, simulate by lazy sampling.

Here we only prove that the simulation of KDFf and KDFr can extract the
CRGapDH solution. In KDFf , if π∗ is an initiator session with full mode, then
we have DH ′ = (Y (B∗)e1Se2)x∗ = ((Y Se2) · (B∗)e1)x∗ , where e1 = h1(B∗, Y, S)
is from Ch(Y Se2), so DH ′ is a valid solution in this case. A similar argument
applies to KDFr. Therefore, we have

AdvG
elt
3

XHMQV(A) ≤ AdvG
elt
4

XHMQV(A) + AdvCRGapDH
(G,p,g) (Bltss) + QRO/p

The remain argument to bound Pr [QueryDHltss] is the same as in previous
cases. We have AdvG

elt
4

XHMQV(A) = 0. We assume that the ϵ-CRGapDH assumption
holds over (G, p, g). Combining all the probability bounds gives us the final
bound of the case cleanLTSS:

AdvG2∧cleanELT
XHMQV (A) ≤ nuns · (δ + ϵ + QRO/p)

48 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

A.5 Case cleanESS

In this case, cleanESS ensures for π∗ that:

– The initiator randomness involved in π∗ is not revealed.
– The responder’s semi-static key is uncompromised.
– If π∗ is an initiator session, then the responder’s long-term key was uncom-

promised upon acceptance or π∗.sspk ∈ sspkπ∗.pid.
We can use the argument in Appendix A.2 to compress this condition into
simply π∗.sspk ∈ sspkπ∗.pid (without considering π∗.pcorr). Roughly, G2
ensures that A cannot forge a signature on an uncompromised party, so we
can argue that cleanESS(π∗) =⇒ π∗.sspk ∈ sspkπ∗.pid. Therefore, the third
condition described above and the modification in G2 ensure that the semi-
static key used in π∗ has been generated by the game. This enables us to
embed a CRGapDH challenge into the semi-static key.

– If π∗ is a responder session, then there exists a partner initiator session. This
condition ensures that the initiator ephemeral key of π∗ is controlled by the
game so that we can embed CRGapDH challenge when doing the reduction.

In this proof case, we reuse some arguments from proving cleanELT and
cleanLTSS (cf. Appendices A.2 and A.4). The main difference is that the reduc-
tions always know the long-term secret keys of all parties, so we do not need to
use the simulatability property of Sig. We begin with Gess

0 := G2 ∧ cleanESS, so
we have

AdvG2∧cleanESS
XHMQV (A) = AdvG

ess
0

XHMQV(A)

Game Gess
1 : We guess the initiator session π∗i involved in the test session π∗ (i.e.,

either π∗ = π∗i or π∗.sid = π∗i .sid). If the guess is incorrect, then we overwrite
A’s bit guess with 0. We denote π∗i ’s ephemeral key pair as (x∗, X∗). We apply
the same guessing approach used in proving G lte

1 and Gelt
1 (cf. Appendices A.3

and A.4) to this proof case. We have

AdvG
ess
0

XHMQV(A) = ns · AdvG
ess
1

XHMQV(A)

Game Gess
2 : We guess the identity B∗ of the responder involved in π∗ and the

identifier ssid∗ ∈ [nss] of the repsonder B∗’s uncompromised semi-static key. We
denote the semi-static key pair as (s∗, S∗). We have

AdvG
ess
1

XHMQV(A) ≤ nunss · AdvG
ess
2

XHMQV(A)

Game Gess
3 : We introduce an abort event QueryDHess in Gess

3 : Specifically, if

– A queries KDFf on (DH , A, B∗, S∗, Y, X∗) , where d = h0(A, X∗), e1 =
h1(B∗, Y, S∗), e2 = h2(B∗, Y, S∗), Ddh(X∗Ad, Y Be1(S∗)e2 , DH) = 1, and
(A, B∗, S∗, Y, X∗) = π∗.ctxt, or

– A queries KDFr on (DH , A, B∗, S∗, X∗), where d = h0(A, X∗), e1 = h3(B∗,
S∗), and Ddh(X∗(A)d, S∗Be1 , DH) = 1 and (A, B∗, S∗, X∗) = π∗.ctxt,

XHMQV: Signal’s Initial Handshake based on HMQV 49

then the game aborts (i.e., return 0 as A’s bit guess). In other words, we abort
the game if A queries KDFf or KDFr on DH value that contains the informa-
tion of (S∗)x∗(= (X∗)s∗). We construct a CRGapDH adversary Bess such that if
such an abort event happens, then Bess can output a solution to its CRGapDH
challenge.

Reduction BDdh,Ch
ess (X∗, S∗):

– Initialize Gess
3 :

1. Choose a party B∗ uniformly at random and pick ssid∗←$ [nss].
2. Initialize a counter cnt := 0 and choose cnt∗←$ [ns]. Initialize π∗i := ⊥

and set up it later.
3. Initialize lists Lpatch-f , Lskey-f , Lpatch-r, and Lskey-r.
4. For all parties, follow the KGenLT and KGenSS defined in XHMQV to

generate ltpk , sspk , and ltsk . After this step, Bess has ltpk , sspk , and
ltsk . Bess further replaces sspk B∗ [ssid∗] with S∗.

5. Run bguess←$A(ltpk , sspk) and proceeds the game as in GKI
KE. If the re-

sponder of π∗ is not B∗, π∗i is not π∗, or π∗i is not the matching session of
π∗, then overwrite A’s bit with 0.
The random oracles and game oracles are simulated as described below.

– Simulation of oracles defined in GKI
KE:

• All oracles except Send, CorruptSSKey, and RevealRand are simu-
lated in the same way defined in GKI

KE.
• If CorruptSSKey(B∗, ssid∗) is queried, then abort the game and over-

write A’s bit with 0. CorruptSSKey queries on other parties are simu-
lated as usual.

• If RevealRand(U, j) is queried, where πU
j = π∗i ̸= ⊥, then abort the game

and overwrite A’s bit with 0. RevealRand queries on other sessions are
simulated as usual.

• Send(U ̸= B∗, j, m):
∗ Case m = (B∗, sspk , epk) (initiator session with intended partner B∗):

cnt := cnt + 1. If cnt = cnt∗, then we use X∗ as the ephemeral pk of
this session and set π∗i := πU

j . Otherwise, simulate as usual.
∗ For other cases, simulate as usual.

• For all other Send queries, We apply the same approach used in Bltlt to
simulate the session key. Namely, we use the lists Lpatch-f , Lpatch-r, Lskey-f ,
and Lskey-r and oralce patching of KDFf and KDFr (using Ddh) to simualte
the session keys and the RO outputs of KDFf and KDFr consistently.

– Simulation of Random Oracles:
• For fresh RO queries to KDFr(DH , A, B, S, X) and KDFf (DH , A, B, S, Y,

X) that do not involve (B∗, S∗, X∗), we simulate in the same way as in
G2. Similarly, for fresh RO queries to h0, h1, h2, and h3 that do not involve
(B∗, S∗, X∗), we simulate as usual.

• h2(B∗, Y, S∗): h← Ch(Y), h2(B∗, Y, S∗) := h
• h0, h1, and h3: Simulate as usual.
• KDFf (DH , A, B∗, S∗, Y, X∗):

50 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

1. If (A, B∗, S∗, Y, X∗) = π∗.ctxt and Ddh(X∗Ad, Y Be1(S∗)e2 , DH) out-
puts 1, then extract the value

DH ′ :=
{(

DH/(Y Be1(S∗)e2)ad · (X∗)y+e1b
)e2

−1

, π∗ is a responder session
DH/(Y Be1(S∗)e2)ad · (X∗)e1b, π∗ is an initiator session

where d := h0(A, X∗), e1 := h1(B∗, Y, S∗), and e2 := h2(B∗, Y, S∗).
We have a since we have long-term keys of all parties. If π∗ is an
initiator session, then Bess aborts the simulation and return DH ′ as
the CRGapDH solution. If π∗ is a responder session (so we have the
ephemeral key y), then we have that DH ′ = (X∗)s∗ , and Bess can use
a similar approach in Bess to construct a valid CRGapDH solution.

2. Otherwise, simulate by lazy sampling.
• KDFr(DH , A, B∗, S∗, X∗):

1. If (A, B∗, S∗, X∗) = π∗.ctxt and Ddh(X∗Ad, (S∗)Be1 , DH) outputs 1,
then extract the value

DH ′ := DH/(S∗Be1)ad · (X∗)e1b

where d := h0(A, X∗), e1 := h1(B∗, Y, S∗), and e2 := h2(B∗, Y, S∗).
We have a and b since we have long-term keys of all parties. Since we
have DH ′ = (X∗)s∗ in this case, Bess can use a similar approach in
Bess to construct a valid CRGapDH solution.

2. Otherwise, simulate by lazy sampling.

Here we only prove that the simulation of KDFf can extract the CRGapDH
solution. If π∗ is an initiator session with full mode, then we have DH ′ =
(Y (S∗)e2)x∗ , where e2 = h2(B∗, Y, S∗) is from Ch(Y), so DH ′ is a valid so-
lution in this case. Therefore, we have

AdvG
ess
3

XHMQV(A) ≤ AdvG
ess
4

XHMQV(A) + AdvCRGapDH
(G,p,g) (Bess) + QRO/p

The remain argument to bound Pr [QueryDHess] is the same as in previ-
ous cases. We have AdvG

ess
3

XHMQV(A) = 0 and ϵ-CRGapDH assumption holds over
(G, p, g). Combining all the probability bounds gives us the final bound of the
case cleanESS:

AdvG2∧cleanESS
XHMQV (A) ≤ nsnunss · (ϵ + QRO/p)

A.6 Case cleanEE

In this case, cleanEE ensures for π∗ that:

– The randomness of π∗ is not revealed, and
– π∗ has a partnered session whose randomness is also not revealed.

XHMQV: Signal’s Initial Handshake based on HMQV 51

In this proof case, we reuse some arguments from proving cleanELT and
cleanLTE (cf. Appendices A.3 and A.4). Similar to the case of cleanESS(π∗), the
reductions always know the long-term secret keys of all parties, so we do not need
to use the simulatability property of Sig. We begin with Gee

0 := G2 ∧ cleanEE, so
we have

AdvG2∧cleanEE
XHMQV (A) = AdvG

ee
0

XHMQV(A)

Game Gee
1 : We guess the initiator session π∗i involved in the test session π∗ (i.e.,

either π∗ = π∗i or π∗.sid = π∗i .sid). If the guess is incorrect, then we overwrite
A’s bit guess with 0. We denote π∗i ’s ephemeral key pair as (x∗, X∗). We use the
same guessing approach as for proving Gee

1 and Gee
1 (cf. Appendices A.3 and A.4).

We have
AdvG

ee
0

XHMQV(A) = ns · AdvG
ee
1

XHMQV(A)

Game Gee
2 : We guess the responder session π∗r involved in the test session π∗

(i.e., either π∗ = π∗i or π∗.cid = π∗i .cid). If the guess is incorrect, then we
overwrite A’s bit guess with 0. We denote π∗r ’s ephemeral key pair as (y∗, Y ∗).
We use the same guessing approach in proving G lte

1 and Gelt
2 (cf. Appendices A.3

and A.4). We have

AdvG
ee
1

XHMQV(A) = ns · AdvG
ee
2

XHMQV(A)

Now if the guess of π∗i and π∗r is correct, then either π∗ = π∗i or π∗ = π∗r .

Game Gee
3 : We introduce an abort event QueryDHee in Gee

3 : Specifically, if (A, B,
S, Y ∗, X∗) = π∗.ctxt, and

– A queries KDFf (DH , A, B, S, Y ∗, X∗) , where d = h0(A, X∗), e1 = h1(B, Y ∗,
, S), e2 = h2(B, Y ∗, S), Ddh(X∗Ad, Y ∗Be1Se2 , DH) = 1,

then the game aborts (i.e., return 0 as A’s bit guess). In other words, we abort
the game if A queries KDFf on DH value that contains the information of
(Y ∗)x∗(= (X∗)y∗). We construct a CRGapDH adversary Bee such that if such an
abort event happens, then Bee can output a solution to its CRGapDH challenge.

Reduction BDdh,Ch
ee (X∗, S∗):

– Initialize Gee
3 :

1. Choose a B∗ uniformly at random. Pick ssid∗←$ nss.
2. Initialize counters cnt1 := 0 and cnt2 := 0 and choose cnt∗1, cnt∗2←$ [ns].

Initialize π∗i := ⊥ and Initialize π∗j := ⊥ and set up them later.
3. Initialize lists Lpatch-f , Lskey-f , Lpatch-r, and Lskey-r.
4. For all parties, follow the KGenLT and KGenSS defined in XHMQV to

generate ltpk , sspk , and ltsk .
5. Run bguess←$A(ltpk , sspk) and proceeds the game as in GKI

KE. If π∗ and
the partner session of π∗ are not π∗i and π∗j , then overwrite bguess with 0.
The random oracles and game oracles are simulated as described below.

– Simulation of oracles defined in GKI
KE:

52 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

• All oracles except Send and RevealRand are simulated in the same way
defined in GKI

KE.
• If RevealRand(U, j) is queried, where πU

j = π∗i ̸= ⊥ or πU
j = π∗r ̸= ⊥,

then abort the game and overwrite A’s bit with 0. RevealRand queries
on other sessions are simulated as usual.

• Send(U, j, m):
∗ Case m = (V, sspk , epk): cnt1 := cnt1 + 1. If cnt1 = cnt∗1, then Bee uses

X∗ as the ephemeral pk of this session and set π∗i := πU
j . Otherwise,

simulate as usual.
∗ Case m = (create, ssid, type): cnt2 := cnt2 + 1. If cnt2 = cnt∗2, then
Bee uses Y ∗ as the ephemeral pk of this session and set π∗r := πU

j . Bee
further sets h2(U, Y ∗, S) := h−1 where U is the long-term public key
of U, h← Ch(S), S is the semi-static pk of πU

j . Otherwise, simulate as
usual.

∗ For other cases, simulate as usual.
• For all other Send queries, we apply the same approach used in Bltlt to

simulate the session key. Namely, we use the lists Lpatch-f , Lpatch-r, Lskey-f ,
and Lskey-r and oralce patching of KDFf and KDFr (using Ddh) to simualte
the session keys and the RO outputs of KDFf and KDFr consistently.

– Simulation of Random Oracles:
• For fresh RO queries to KDFf (DH , A, B, S, Y, X) that do not involve

(X∗, Y ∗), we simulate in the same way as in G2.
• h0, h1, h2, h3, and KDFr: Simulate as usual.
• KDFf (DH , A, B, S, Y ∗, X∗):

1. If (A, B, S, Y ∗, X∗) = π∗.ctxt and Ddh(X∗Ad, Y ∗Be1Se2 , DH) out-
puts 1, then extract the value

DH ′ :=
{

DH/(Y ∗Be1Se2)ad · (X∗)e1b+e2s, π∗ is a responder session(
DH/(Y ∗Be1Se2)ad · (X∗)e1b

)e2
−1

, π∗ is an initiator session

where d := h0(A, X∗), e1 := h1(B, Y ∗, S), and e2 := h2(B, Y ∗, S). We
have a and b since we have long-term keys of all parties. If π∗ is an
initiator session, then Bee aborts the simulation and return DH ′ as
the CRGapDH solution. If π∗ is a responder session (and we have the
semi-static key s), then we have that DH ′ = (X∗)y∗ , and Bee can use
a similar approach in Bee to construct a valid CRGapDH solution.

2. Otherwise, simulate by lazy sampling.

If π∗ is an initiator session with full mode, then we have DH ′ = (Y ∗(S)e2)x∗e2
−1 ,

where e2 = h2(B, Y ∗, S) = h−1 and h is from Ch(S). So, we also have

DH ′ = (Y ∗(S)e2)x∗e2
−1

= (Y ∗(S)h−1
)x∗h = (S(Y ∗)h)x∗

Therefore, DH ′ is a valid solution in this case, and we have

AdvG
ee
3

XHMQV(A) ≤ AdvG
ee
4

XHMQV(A) + AdvCRGapDH
(G,p,g) (Bess) + QRO/p

XHMQV: Signal’s Initial Handshake based on HMQV 53

The remain argument to bound Pr [QueryDHee] is the same as in previous
cases. We have AdvG

ee
3

XHMQV(A) = 0. By assuming ϵ-CRGapDH holds over (G, p, g)
and combining all the probability bounds, we have the final bound of the case
cleanESS:

AdvG2∧cleanEE
XHMQV (A) ≤ n2

s · (ϵ + QRO/p)

B Deferred Material on Deniability

We recall the formal definition for deniability of key exchange from Fiedler and
Janson [24]. The model includes user messages, i.e., “Hey Bob, what’s up?”,
as µ. We leave the user messages µ empty for clarity and since the subsequent
AEAD encryption of user messages is not affected by the changes proposed in
our protocol XHMQV. We refer the reader to [24, Section 3] for a full explanation
of the model.

Definition 5 (Deniability for Key Exchange [24]). We say that a key ex-
change protocol KE = (KGenLT, KGenSS, Run) is (np, nss, qOA , qOF , qOD , tA, tDist,
ϵDist)-deniable wrt. (OA,OF ,OD)-oracles, where OA ⊆ {Reg, Init,ChallInit,
ChallResp,RegHon,ChallHonInit,ChallHonResp}, OF ⊆ {SK,Userx,y},
OD ⊆ {SKs,aux}, and auxiliary inputs sampled with AuxPrep, if for any ad-
versary A running in time tA, making queries to OA limited by qOA , there exists
an algorithm Fake making queries to OF limited by qOF such that for any dis-
tinguisher Dist making queries to OD limited by qOD and running in time tDist,
it holds that

Pr[GOA,OF ,OD-den
KE,AuxPrep,np,nss

(A, Dist) = 1] ≤ 1
2 + ϵDist,

where GOA,OF ,OD-den
KE,AuxPrep,np,nss

(A, Dist) is defined in Figures 11 and 12.

B.1 Deferred proofs of deniability for XHMQV

Here, we give the deferred proofs for deniability, beginning with initiator (Bob)
deniability. Note that the model of [24] considers the party who sends the first
message as initiator, in contrast to the setting of Signal, where we usually con-
sider Alice as initiator.

Proof (of Theorem 2). We give the Fake algorithm in Figure 13.
The Fake algorithm simulates Bob’s pre-key bundle by sampling a fresh

ephemeral key (if needed) and learns a signature on the semi-static key from the
auxiliary info aux. Furthermore, to process Alice’s message, the Fake algorithm

54 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

GOA,OF ,OD-den
KE,AuxPrep,np,nss

(A, Dist):

1 Q[·] := []; K[·] := ⊥; C := ∅
2 (pk, sk)←$ KeyPrep(np, nss)
3 aux ←$ AuxPrep(pk, sk)
4 b←$ {0, 1}
5 r←$RA // randomness for the adversary

6 AOA (pk, aux; r)
7 b′←$ DistOD (pk, r, Q, K)
8 return Jb′ = bK

KeyPrep(np, nss):
9 for U ∈ [np] // number of keys to prepare

10 (ltpkU , ltskU)←$ KGenLT()
11 for ssid ∈ [nss]
12 (sspkssid

U , ssskssid
U)←$ KGenSS()

13 ltpk := {ltpkU}U∈[np]

14 sspk := {sspkssid
U }

ssid∈[nss]
U∈[np]

15 ltsk := {ltskU}U∈[np]

16 sssk := {ssskssid
U }

ssid∈[nss]
U∈[np]

17 return ((ltpk , sspk), (ltsk , sssk))
Init(U, s, role, V):
18 if πs

U = ⊥ ∧ U /∈ C

19 πs
U .role := role

20 πs
U .oid := U // set owner identity

21 πs
U .pid := V

// set partner identity (⋆ if post-specified peers)

22 return success
23 return ⊥
Userx,y(π, u, m, µ):
24 U := π.oid
25 H := Hu

π

// easier notation for uth honest dummy for session π

26 if πH
U = ⊥

27 (pkH , skH)←$ KeyPrep(1, 1)
28 pk := pk ∪ {pkH}
29 if π.role = initiator
30 πH

U .role := x

31 else
32 πH

U .role := y

33 πH
U .oid := U

34 πH
U .pid := H

35 (πH
U , m′, µ′)←$ Run(skU , pk, πH

U , m, µ)
36 return m′

RegHon(U):
37 if U ∈ [np] ∪ C

// abort if another key is already known for U

38 return ⊥
39 (pkU , skU)←$ KeyPrep(1, nss)
40 pk +←− pkU ; sk +←− skU

41 C := C ∪ {U}
42 return (pkU , skU)

// simulates A honestly generating keys

Reg(U, pkU):
43 if U ∈ [np] ∪ C

// abort if another key is already known for U

44 return ⊥
45 C := C ∪ {U}
46 pk +←− pkU // includes semi-static keys

47 return success
SK(π):
48 return skπ.pid

SKs():
49 return sk
aux():
50 return aux

Fig. 11. The deniability game for key exchange as defined in Definition 5. The
challenge oracles are in Figure 12. The oracles are split into the adversary’s
capabilities OA ⊆ {Reg, Init,ChallInit,ChallResp,RegHon,ChallHonInit,
ChallHonResp}, the capabilities of the Fake algorithm OF ⊆ {SK,Userx,y}, and
the capabilities of the distinguisher Dist OD ⊆ {SKs,aux}.

XHMQV: Signal’s Initial Handshake based on HMQV 55

ChallInit(U, s, m, µ) ChallResp(U, s, m, µ) :

51 if πs
U = ⊥ // initialized session only

∨ πs
U .role = responder initiator

52 return ⊥
53 if b = 0
54 (πs

U , m′)←$ Run(skU , pk, πs
U , m, µ)

55 else
56 (πs

U , m′)←$ FakeOF (pk, πs
U , m, µ, aux, r)

57 Q[πs
U] +←− (m, m′)

58 K[πs
U]← πs

U .K
59 return m′

ChallHonInit(U, V, infocreate, µ, rC):
60 if U ∈ C // do not allow challenging a party under A’s control

61 return ⊥
62 πU .oid← U ; πU .pid← V

63 πV .oid← V ; πV .pid← U

64 πU .role← initiator; πV .role← responder
65 m1 ← (create, infocreate)
66 (µ1, . . . , µnm)← µ

67 for i ∈ [1, 3, . . . , nm − 1] // until nm if nm is odd

68 if b = 0
69 (πU , mi+1)←$ Run(skU , pk, πU , mi, µi)
70 else
71 (πU , mi+1)←$ FakeOF (pk, πU , mi, µi, aux, rC)
72 (πV , mi+2)← Run(skV , pk, πV , mi+1, µi+1; rC)
73 Q[πU]← (mi)nm

i=1; K[πU]← πU .K

74 return (Q[πU], K[πU])
ChallHonResp(U, V, infocreate, µ, rC):
75 if V ∈ C // do not allow challenging a party under A’s control

76 return ⊥
77 πU .oid← U ; πU .pid← V

78 πV .oid← V ; πV .pid← U

79 πU .role← initiator; πV .role← responder
80 m1 ← (create, infocreate)
81 (µ1, . . . , µnm)← µ

82 for i ∈ [1, 3, . . . , nm − 1] // until nm if nm is odd

83 (πU , mi+1)← Run(skU , pk, πU , mi, µi; rC)
84 if b = 0
85 (πV , mi+2)←$ Run(skV , pk, πV , mi+1, µi+1)
86 else
87 (πV , mi+2)←$ FakeOF (pk, πV , mi+1, µi+1, aux, rC)
88 Q[πV]← (mi)nm

i=1; K[πV]← πV .K

89 return (Q[πV], K[πV])

Fig. 12. The challenge oracles for the deniability game in Definition 5, separate from
Figure 11 for space reasons. The suffix of the oracle name indicates as which party the
oracle acts. The infix Hon indicates that this oracle enforces semi-honest behavior of
the adversary.

56 Rune Fiedler, Felix Günther, Jiaxin Pan, and Runzhi Zeng

Fake(pk = (ltpk , sspk), π, m, µ, aux, rC):
1 (create, (ssid, type)) := m

2 B := π.oid
3 π.(pid, sspk, type) := (⋆, sspk , type)
4 sspk := sspk B[ssid]
5 σ := from aux for sspk
6 if type = full
7 y←$ Zp, epkB := gy

8 else epkB := ⊥
9 m := (B, sspk , epkB, σ)

10 return (π, m, ε)

Fake(pk, π, m = (A, X), µ, aux, rC):
11 π.pid := A, A := ltpk [A]
12

(
a, skA

)
:= extract from SK(π)

13 x := from rC // Alice’s ephemeral secret key

14 X := gx

15 (B, vkB) := ltpk [π.oid], S := π.sspk
16 Y := π.cid[4] // Bob’s ephemeral public key

17 d := h0(A, X)
18 if Y ̸= ⊥ // full handshake

19 e1 := h1(B, Y, S)
20 e2 := h2(B, Y, S)
21 DH := (Y Be1 Se2)x+da

22 ctxt := (A, B, S, Y, X)
23 π.K := KDFf (ctxt, DH)
24 else // reduced handshake

25 e1 := h3(B, S)
26 DH := (Be1 S)x+da

27 ctxt := (A, B, S, X)
28 π.K := KDFr(ctxt, DH)
29 return (π, ε, ε)

Fig. 13. The Fake algorithms simulating Bob’s messages (initiator deniability), used
in Theorem 2.

learns Alice’s long-term secret key from the SK oracle and Alice’s ephemeral se-
cret key X from the randomness that was previously used to create Alice’s mes-
sage. Finally, the Fake algorithm computes the session key with Alice’s ephemeral
and long-term secret keys.

Since Fake produces a transcript and session key in the same way as Run,
the distinguisher cannot have an advantage in winning its game, even if the
distinguisher has access to all long-term and semi-static secret keys.

Next is responder (Alice) deniability.

Proof (of Theorem 3). We give the Fake algorithm in Figure 14.
The Fake algorithm verifies Bob’s signature on the semi-static key. Next,

it learns Bob’s long-term and semi-static secret keys from the SK oracle and
Bob’s ephemeral secret key Y from the randomness that was previously used to
create Bob’s message. It samples a fresh ephemeral key X for Alice. Finally, the
Fake algorithm computes the session key with Bob’s ephemeral, semi-static, and
long-term secret keys.

Since Fake produces a transcript and session key in the same way as Run,
the distinguisher cannot have an advantage in winning its game, even if the
distinguisher has access to all long-term and semi-static secret keys.

XHMQV: Signal’s Initial Handshake based on HMQV 57

Fake(pk = (ltpk , sspk), π, m, µ, aux, rC):
1 (B, sspk , epkB) := m, π.pid := B,
2 (B, vkB) := ltpk [B] S := sspk , // prepare Bob’s keys

3
(

b, skB , s
)

:= extract from SK(π)
4 y ← from rC , Y := epkB
5 if Vf(B, σ, sspk) ̸= 1 : return (π, ε, ε) // verify signature

6 if Vf(vkB, σ, sspk) ̸= 1 : return (π, ε, ε)
7 A := ltpk [A] // prepare Alice’s keys

8 x←$ Zp, X := gx

9 d := h0(A, X)
10 if Y ̸= ⊥ // full handshake

11 e1 := h1(B, Y, S)
12 e2 := h2(B, Y, S)
13 DH := (XAd)y+e1b+e2s

14 ctxt := (A, B, S, Y, X)
15 π.K := KDFf (ctxt, DH)
16 else // reduced handshake

17 e1 := h3(B, S)
18 DH := (XAd)e1b+s

19 ctxt := (A, B, S, X)
20 π.K := KDFr(ctxt, DH)
21 return (π, ε, ε)

Fig. 14. The Fake algorithms simulating Alice’s message (responder deniability), used
in Theorem 3.

	XHMQV: Better Efficiency and Stronger Security for Signal's Initial Handshake based on HMQV

