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Abstract

We construct distributed broadcast encryption and registered attribute-based encryption (ABE) that support

an arbitrary polynomial of users from the succinct LWE assumption. Specifically, if we take 𝜆 to be the security

parameter and 𝑁 to be the number of users, we obtain the following:

• We obtain a distributed broadcast encryption scheme where the size of the public parameters, user public/secret

keys, and ciphertexts are optimal (i.e., have size poly(𝜆, log𝑁 )). Security relies on the poly(𝜆, log𝑁 )-succinct
LWE assumption. Previously, this was only known from indistinguishability obfuscation or witness encryption.

All constructions that did not rely on these general tools could only support an a priori bounded number of users.

• We obtain a key-policy registered ABE scheme that supports arbitrary bounded-depth Boolean circuit policies

from the poly(𝜆, 𝑑, log𝑁 )-succinct LWE assumption in the random oracle model, where 𝑑 is the depth of

the circuit computing the policy. The public parameters, user public/secret keys, and ciphertexts have size

poly(𝜆, 𝑑, log𝑁 ), which are optimal up to the poly(𝑑) factor. This is the first registered ABE scheme with

nearly-optimal parameters. All previous schemes (including constructions based on indistinguishability ob-

fuscation, witness encryption, or evasive LWE) either have ciphertexts that scale with the policy size and

attribute length, or can only support a bounded number of users (with long public parameters and public keys

that scale with the number of users).

1 Introduction
In recent years, registration-based cryptography [GHMR18] has emerged as a popular paradigm for realizing advanced

cryptographic primitives without a trusted authority. In this work, we study two trustless cryptographic primitives:

distributed broadcast encryption and registered attribute-based encryption (registered ABE):

• Distributed broadcast encryption: In broadcast encryption [FN93], a sender can encrypt a message to

an arbitrary set of recipients with a ciphertext whose size scales sublinearly with the number of recipients.

Traditionally, broadcast encryption requires a central authority who issues decryption keys to each recipient

in the system. Distributed broadcast encryption [WQZD10, BZ14] removes the central authority. Instead,

each receiver independently generates their own public/secret key and publishes it in a public-key directory.

Thereafter, a sender can encrypt a message to an arbitrary set of public keys with a ciphertext whose size scales

sublinearly with the number of recipients.

• Registered ABE: Attribute-based encryption [SW05, GPSW06] is a generalization of public-key encryption

that provides fine-grained access control to encrypted data. In key-policy ABE, decryption keys are associated

with a policy 𝑓 while ciphertexts are associated with an attribute 𝑥 . Decryption recovers the associated message

𝑚 only if the decryption policy is satisfied (e.g., if 𝑓 (𝑥) = 0). Like the case with broadcast encryption, the

standard notion of an ABE scheme assumes the existence of a central trusted authority that issues keys to users.

Registered ABE [HLWW23] removes this trusted authority. In this model, each user independently generates

their own public/secret key and publishes it to a public-key directory. Then, there is a process that aggregates

all of the individual public keys (with their associated decryption policies) into a succinct master public key
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mpk. The aggregated master public key functions as the public key for an ABE scheme (i.e., one can encrypt

a message with respect to any attribute 𝑥 with the guarantee that only registered users associated with an

accepting policy 𝑓 can decrypt).

In both settings, the goal is to support the capabilities provided by broadcast encryption or attribute-based encryption

without needing to assume the existence of a trusted authority. In the traditional centralized versions of these

primitives, there is a central point of failure. If the adversary compromises the central authority, they immediately

compromise the security of every user in the system. Registration-based cryptography ensures that individual users

retain control of their secret keys and that trust is not concentrated in any single entity.

Bounded vs. unbounded. In the last few years, there has been a flurry of activity in constructing distributed

broadcast encryption [WQZD10, BZ14, KMW23, FWW23, GKPW24, CW24, CHW25] and registered ABE [HLWW23,

FWW23, ZZGQ23, AT24, GLWW24, CHW25, ZZC
+
25] from different cryptographic assumptions. Thus far, these

works can be categorized into two main categories:

• Unbounded constructions: The first class of constructions are those that support an arbitrary polynomial of

users. Namely, these are schemes where any number of users can join the system by posting their public key to

the public-key directory. This is the most natural formulation of these primitives (and an implicit requirement in

the original work introducing registration-based cryptography [GHMR18]). Constructing schemes that support

an arbitrary number of users has thus far relied on strong tools such as indistinguishability obfuscation [BZ14,

HLWW23], witness encryption for NP [FWW23], or strong non-falsifiable assumptions [ZZC
+
25].

• Bounded constructions: A second line of work has focused on direct algebraic constructions of trustless

cryptographic primitives that do not need general-purpose tools like indistinguishability obfuscation or witness

encryption. These constructions often have the advantage of being simpler, concretely-efficient, and in the case

of lattice-based schemes, plausibly post-quantum secure. However, with the exception of [ZZC
+
25], which

is based on private-coin evasive LWE, all of the constructions in this family [WQZD10, HLWW23, KMW23,

ZZGQ23, AT24, GLWW24, CW24, GKPW24, CHW25] make a significant compromise by assuming there is an

a priori maximum number of users that the scheme can support. Moreover, in these schemes, the parameters as

well as the size of each user’s public key grows linearly (or worse) with the maximum number of users. For

schemes with large number of users, the size of these parameters introduces significant overhead.

A major challenge in the study of trustless cryptography is developing new techniques that support an arbitrary

number of users from simple (and falsifiable) assumptions (and without relying on heavy machinery such as program

obfuscation or witness encryption).

1.1 Our Results
In this work, we develop new techniques for constructing distributed broadcast encryption and (key-policy) registered

ABE for general policies that support an a priori unbounded number of users. Security of both constructions relies on

the succinct LWE assumption [Wee24], and our registered ABE scheme additionally relies on the random oracle model.

The succinct LWE assumption is a simple and falsifiable lattice assumption (which is also implied by public-coin

evasive LWE). We now provide a brief comparison of our results with those from prior work (see also Tables 1 and 2).

Distributed broadcast encryption. Our first result is a distributed broadcast encryption scheme that supports

an arbitrary polynomial number of users from the poly(𝜆, log𝑁 )-succinct LWE assumption, where 𝜆 is the security

parameter and 𝑁 is the total number of users. The size of the public parameters, the user public/secret keys, as well

as the ciphertext in our scheme are all poly(𝜆, log𝑁 ). Previously, this was only known from indistinguishability

obfuscation [BZ14] or from plain witness encryption [FWW23]. Compared to these approaches, our algebraic

approach is conceptually simpler. For instance, the [FWW23] construction relies on witness encryption together with

a function-binding hash function; this latter primitive in turn relies on fully homomorphic encryption. In contrast,

our approach for distributed broadcast encryption does not need any kind of homomorphic computation machinery.
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Scheme Assumption |pp| |pk| |sk| |ct| TP PQ AD

[BZ14] 𝑖O + one-way function – 1 1 1 ✓ ✗ ✓∗

[FWW23] witness encryption + LWE 1 1 1 1 ✓ ✓ ✓∗

[WQZD10] bilinear Diffie-Hellman exponent 𝑁 𝑁 2 𝑁 1 ✓ ✗ ✗
[KMW23] bilinear Diffie-Hellman exponent 𝑁 𝑁 1 1 ✗ ✗ ✓∗

[GKPW24] generic bilinear group 𝑁 𝑁 1 1 ✗ ✗ ✗

[CW24] poly(𝜆, 𝑁 )-succinct LWE 𝑁 2 𝑁 1 1 ✗ ✓ ✗

[CHW25] poly(𝜆, 𝑁 )-succinct LWE
† 𝑁 2 𝑁 1 1 ✗ ✓ ✓

This work poly(𝜆, log𝑁 )-succinct LWE 1 1 1 1 ✗‡ ✓ ✗

∗
These schemes were originally shown to satisfy semi-static security. Adaptive security can then be obtained by using the

Gentry-Waters compiler [GW09] in the random oracle model or the more recent Hsieh-Waters-Wu compiler [HWW25],

which gives adaptive security in the plain model.

†
Security of this scheme additionally relies on the random oracle model.

‡
We can obtain a variant of this construction with transparent setup by using the recently-introduced decomposed LWE

assumption [AMR25]. We refer to Remark 4.13 for more details.

Table 1: Comparison with previous distributed broadcast encryption schemes. For each scheme, we report the size

of the public parameters pp, the user public key pk, the user secret key sk, and the ciphertext ct as a function of

the number of users 𝑁 . For ease of comparison, we suppress poly(𝜆, log𝑁 ) factors, where 𝜆 is the security parameter.

For each scheme, we also indicate whether the public parameters pp (if present) can be sampled with a transparent
setup (TP), whether it is plausibly post-quantum secure (PQ), and whether it is proven to be adaptively secure (AD).

We write 𝑖O to denote indistinguishability obfuscation [BGI
+
01].

Compared to direct algebraic constructions based on bilinear maps [WQZD10, KMW23, GKPW24] or succinct

LWE [CW24, CHW25], our scheme is the only one that supports an unbounded number of users. In previous schemes,

both the size of the public parameters and the size of an individual user’s public key scale with the number of users

𝑁 . As we discuss more in Section 2.1, all of these schemes were bounded because each user’s public key needed to

include a “cross-term” for every other user in the system. A key technical contribution of this work is a new technique

for efficiently deriving the cross-terms from a succinct commitment. This enables algebraic schemes that support

an unbounded number of users. We provide a more detailed comparison in Table 1.

Key-policy registered ABE. Our second construction is a key-policy registered ABE scheme for general policies

(modeled as bounded-depth Boolean circuits) from the succinct LWE assumption in the random oracle model. Our

scheme supports an arbitrary number of users andmoreover, has succinct ciphertexts (of size poly(𝜆, 𝑑, log𝑁 ), where𝑑
is the depth of the circuit and𝑁 is the number of users). Notably, the size of the ciphertext does not scale with the size of

the policy circuit or with the length of the attribute. Prior to this work, the only scheme with this level of ciphertext suc-

cinctness is the scheme from [CHW25] from succinct LWE (in the random oracle model), but that scheme only supports

a bounded number of users (and requires long public parameters and user public keys). The other constructions from

obfuscation [HLWW23], witness encryption [FWW23], or private-coin evasive LWE [ZZC
+
25] all have ciphertexts

whose size scales linearly with the attribute length. Thus, we obtain the first unbounded registered ABE scheme with

nearly-optimal ciphertext size (i.e., optimal up to the poly(𝑑) factor). We provide a more detailed comparison in Table 2.

Concurrent work. In a concurrent and independent work, Abram, Malavolta, and Roy [AMR25] introduced the

decomposed LWE assumption, a weaker variant of the succinct LWE assumption, and show (among other things)

how to obtain a registered ABE scheme that supports general circuit policies in the plain model. We provide a brief

comparison of our two schemes:

• Bounded vs. unbounded: The [AMR25] registered ABE scheme relies on a structured reference string that

contains 𝑁 secret keys for a (centralized) ABE scheme, where 𝑁 is a bound on the number of parties. As a result,
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Scheme Assumption |pp| |pk| |sk| |ct| TP PQ AD

[HLWW23] 𝑖O + SSB hash function 1 1 1 poly( |𝐶 |, |x|) ✓ ✗ ✓

[FWW23] witness encryption + LWE 1 1 1 poly( |𝐶 |, |x|) ✓ ✓ ✗

[ZZC
+
25] private-coin evasive LWE poly(𝑑) poly(𝑑) poly(𝑑) poly(𝑑, |x|) ✓ ✓ ✗

[CHW25] poly(𝜆, 𝑑, 𝑁 )-succinct LWE
∗ 𝑁 2 · poly(𝑑) 𝑁 · poly(𝑑) poly(𝑑) poly(𝑑) ✗ ✓ ✗

This work poly(𝜆, 𝑑, log𝑁 )-succinct LWE
∗ poly(𝑑) poly(𝑑) poly(𝑑) poly(𝑑) ✗‡ ✓ ✗

∗
Security of these schemes are in the random oracle model.

‡
We can obtain a variant of this construction with transparent setup by using the recently-introduced decomposed LWE assumption [AMR25].

We refer to Remark 5.31 for more details.

Table 2: Comparison with previous (key-policy) registered ABE schemes that support general circuit policies. For

each scheme, we report the size of the public parameters pp, the user public key pk, the user secret key sk, and the

ciphertext ct as a function of the number of users 𝑁 , the attribute x, and the policy circuit𝐶 . We write 𝑑 to denote the

depth of the circuit𝐶 . We assume the decryption algorithm is provided the description of the policy circuit𝐶 as well as

the attribute |x| as input, so these do not necessarily have to be encoded as part of the secret key or the ciphertext. For
ease of comparison, we suppress poly(𝜆, log𝑁 ) factors, where 𝜆 is the security parameter. For each scheme, we also

indicate whether the public parameters pp can be sampled with a transparent setup (TP), whether it is plausibly post-

quantum secure (PQ), and whether it is proven to be adaptively secure (AD). We write 𝑖O to denote indistinguishability

obfuscation [BGI
+
01] and “SSB hash function” to refer to a somewhere-statistically-binding hash function [HW15].

their scheme only supports an a priori bounded number of parties. Our scheme requires a structured reference

string whose size scales logarithmically with 𝑁 , and thus, can support an arbitrary polynomial number of

parties. Supporting an unbounded polynomial number of parties is the central goal of this work. As noted in

Remark 5.31, we can also obtain a version of our scheme with a transparent setup (where the public parameters

now consist of a uniform random string) by using the decomposed LWE assumption from [AMR25].

• Security definition: The work of [AMR25] analyze security of their scheme under a “very selective” model

where the adversary has to choose its public keys before seeing the CRS and the honest parties’ keys. In

our setting, we consider the standard security definition for registered ABE where the adversary can register

malicious keys of its choosing (after seeing the CRS and the honest parties’ keys). The standard security model

for registered ABE captures adversarial strategies such as rogue-key attacks (see [RY07, BDN18] for examples

of rogue-key attacks in the context of aggregate signatures). Since the broader goal of registration-based

cryptography is to allow users to choose their own keys, it seems unreasonable to remove this capability from

the adversary. As discussed in more detail in [CHW25, §1.2], we are not aware of any generic techniques

that lifts a registered ABE scheme secure in the very selective model to the standard security definition for

registered ABE.

• Hardness assumption: Security of the [AMR25] construction relies on the decomposed LWE assumption in

the plain model whereas our registered ABE scheme relies on the succinct LWE assumption in the random

oracle model. The work [AMR25] show that the decomposed LWE assumption is a weaker assumption than

succinct LWE. As we note in Remarks 4.13 and 5.31, we can also modify our scheme to obtain security based on

the decomposed LWE assumption (and in fact, the resulting scheme would have the added benefit of having a

transparent setup). In either case, security of our registered ABE scheme would still rely on the random oracle.

Like [CHW25], we rely on the random oracle to handle the ability of the adversary to register malicious keys.

2 Technical Overview
In the following, let 𝑛,𝑚,𝑞 be lattice parameters where𝑚 = 𝑂 (𝑛 log𝑞). We use curly underlines to suppress low-norm

errors. Namely, we write sTA
::

to denote sTA + eT, where e is a low-norm error vector. For a matrix B ∈ Z𝑛×𝑚𝑞 and
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a target vector z ∈ Z𝑛𝑞 , we write y ← B−1 (z) to denote sampling y ∈ Z𝑚𝑞 from a discrete Gaussian distribution

conditioned on By = z. We write G to denote the standard gadget matrix [MP12].

ℓ-succinct LWE. Our constructions rely on the succinct LWE assumption introduced by Wee [Wee24]. For a param-

eter ℓ , the ℓ-succinct LWE assumption asserts that the following distributions are computationally indistinguishable:

(B , sTB
::

, W , T) and (B , uT , W , T),

where B r← Z𝑛×𝑚𝑞 , s r← Z𝑛𝑞 , W
r← Zℓ𝑛×𝑚𝑞 , T is a random Gaussian matrix where [Iℓ ⊗ B | W]T = Iℓ ⊗ G, and Iℓ is the

identity matrix of dimension ℓ . Equivalently, ℓ-succinct LWE asserts that LWE is hard with respect to the (random)

matrix B given a trapdoor for the related matrix [Iℓ ⊗ B | W]. In the following, we will often refer to (B,W,T) as
the public parameters for a succinct LWE instance of dimension ℓ .

Matrix commitment scheme. The key ingredient we use underlying our distributed broadcast encryption and

registered ABE schemes is the recent matrix commitment scheme by Wee [Wee25]. Specifically, the work of [Wee25]

shows that given the public parameters ppcom = (B,W,T) for a succinct LWE instance of dimension 2𝑚2
(i.e.,

W ∈ Z2𝑚2𝑛×𝑚
𝑞 and [I

2𝑚2 ⊗ B | W]T = I
2𝑚2 ⊗ G) and any matrix M ∈ Z𝑛×𝑁𝑞 , there is an efficient and deterministic

algorithm to compute a commitment C ∈ Z𝑛×𝑚𝑞 and a low-norm opening Z𝑚×𝑁 such that

C · V𝑁 = M − B · Z ∈ Z𝑛×𝑁𝑞 , (2.1)

where V𝑁 ∈ Z𝑚×𝑁𝑞 is a fixed low-norm verification matrix that is publicly derived from ppcom and the width 𝑁 . Wee

used the matrix commitment scheme to construct key-policy and ciphertext-policy ABE schemes for bounded-depth

Boolean circuits from the poly(𝜆, 𝑑)-succinct LWE assumption, where 𝑑 denotes the depth of the Boolean circuit.

2.1 Distributed Broadcast Encryption
We now show how to use matrix commitments to construct a distributed broadcast encryption scheme. In distributed

broadcast encryption, each public key is associated with an index 𝑖 ∈ N, and one can encrypt to any set of public keys,

provided that each key has a different index. When 𝑁 = 2
𝜆
, we can interpret each index as an identity (or a hash of an

identity) and we say the scheme supports an arbitrary or unbounded polynomial number of users. The main technical

challenges for constructing a distributed broadcast encryption that support an unbounded number of users are twofold:

• First, the size of all of the scheme components (i.e., the public parameters pp, the user public key pk, the user
secret key sk, and the ciphertext ct) must all be bounded by poly(𝜆, log𝑁 ),

• Second, the running time of key-generation needs to be bounded by poly(𝜆, log𝑁 ), and that of encryption and

decryption must be bounded by |𝑆 | · poly(𝜆, log𝑁 ), where 𝑆 is the broadcast set.

As a warm-up, we first describe a scheme with short parameters (i.e., a scheme that addresses the first challenge),

but where the running time of key-generation time, encryption, and decryption is slow (i.e., scaling with poly(𝜆, 𝑁 )).

• Public parameters: The public parameters for the distributed broadcast encryption scheme pp = (ppcom,A, p)
consists of the public parameters ppcom = (B,W,T) for a succinct LWE instance of dimension 2𝑚2

, a matrix

A r← Z𝑛×𝑚𝑞 , and a vector p r← Z𝑛𝑞 . The vector p can be viewed as a public key for a dual Regev encryption

scheme and the matrix A is used to program the challenge set into the public parameters in the security analysis.

Let V𝑁 ∈ Z𝑚×𝑁𝑞 be the low-norm verification matrix associated with ppcom and matrices with width 𝑁 . Let

V𝑁 = [v1 | · · · | v𝑁 ] where v𝑖 ∈ Z𝑚𝑞 is the 𝑖th column of V𝑁 .

• User key-generation: To generate a public key for a slot 𝑖 ∈ [𝑁 ], the user samples r𝑖
r← {0, 1}𝑚 . The public

key is t𝑖 = Br𝑖 + p − Av𝑖 and the secret key is r𝑖 .

• Encryption: Let 𝑆 ⊆ [𝑁 ] be a set of indices and let {( 𝑗, t𝑗 )} 𝑗∈𝑆 be a set of public keys. To encrypt a message

𝜇 ∈ {0, 1} to this set of public keys, the encrypter proceeds as follows:
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– For each 𝑗 ∈ 𝑆 , let C𝑗 ∈ Z𝑛×𝑚𝑞 be the commitment to uT
𝑗 ⊗ t𝑗 where u𝑗 ∈ {0, 1}𝑁 is the 𝑗 th standard basis

vector. Let Z𝑗 ∈ Z𝑚×𝑁𝑞 be the respective opening. By Eq. (2.1), this means

C𝑗V𝑁 = (uT
𝑗 ⊗ t𝑗 ) − BZ𝑗 .

If we parse Z𝑗 = [z𝑗,1 | · · · | z𝑗,𝑁 ], then this means

C𝑗v𝑗 = t𝑗 − Bz𝑗, 𝑗 and ∀𝑖 ≠ 𝑗 : C𝑗v𝑖 = −Bz𝑗,𝑖 . (2.2)

We often refer to z𝑗,𝑖 for 𝑗 ≠ 𝑖 as a cross-term since it recodes from B to the product C𝑗v𝑖 of user 𝑖’s public
key C𝑖 with user 𝑗 ’s decryption component v𝑗 .

– The encrypter now samples an LWE secret s r← Z𝑛𝑞 and outputs the ciphertext

ct =
(
sTB
::

, sT
(
A +∑

𝑗∈𝑆 C𝑗

)
:::::::::::::

, sTp + 𝜇 · ⌊𝑞/2⌋
:::::::::::

)
• Decryption: Take any user 𝑖 ∈ 𝑆 . By Eq. (2.2), we have

sT
(
A +∑

𝑗∈𝑆 C𝑗

)
:::::::::::::

· v𝑖 ≈ sTAv𝑖 +
∑

𝑗∈𝑆 sTC𝑗v𝑖 = sTAv𝑖 + sTt𝑖 −
∑

𝑗∈𝑆 sTBz𝑗,𝑖 .

Observe now that given the users’ public keys {( 𝑗, t𝑗 )} 𝑗∈𝑆 , the decrypter can compute z𝑗,𝑖 itself (z𝑗,𝑖 is the 𝑖th

column of the opening Z𝑗 to the matrix uT
𝑗 ⊗ t𝑗 ). Next, using the fact that t𝑖 = Br𝑖 + p − Av𝑖 , and knowledge of

the secret key r𝑖 , the decrypter computes

sT
(
A +∑

𝑗∈𝑆 C𝑗

)
:::::::::::::

· v𝑖 − sTB
::

(
r𝑖 −

∑
𝑗∈𝑆 z𝑗,𝑖

)
≈ sTAv𝑖 + sT (Br𝑖 + p − Av𝑖 ) − sTBr𝑖 = sTp.

Subtracting this from sTp + 𝑏 · ⌊𝑞/2⌋
:::::::::::

and rounding recovers the message 𝜇.

By construction, the size of the public parameters pp, the users’ public/secret keys (pk, sk), and the size of the ciphertext
ct are poly(𝜆, log𝑁 ). However, the running time of key generation, encryption, and decryption is poly(𝜆, 𝑁 ) because
they compute commitments and/or openings to matrices of width 𝑁 . When 𝑁 is super-polynomial, this means

key-generation, encryption, and decryption are no longer efficient algorithms. In order to support an arbitrary number

of users (or alternatively, an identity-based distributed broadcast encryption scheme) with 𝑁 = 2
𝜆
, we need to reduce

the running times of these algorithms to poly(𝜆, log𝑁 ). We discuss this below (after sketching the security analysis).

Arguing security. We consider selective security where the adversary declares the set 𝑆 ⊆ [𝑁 ] of challenge indices
at the beginning of the security game. To prove security from succinct LWE, we need to show how to simulate the

challenge ciphertext given (B, sTB
::
,W,T). We do so by programming the matrix A and the public keys pk𝑖 for the

users 𝑖 ∈ 𝑆 . Here, we crucially exploit the fact that the challenge ciphertext does not depend on the public keys

outside 𝑆 (which are chosen adversarially). As an aside, we note that unlike standard broadcast encryption, we do

not need to explicitly simulate secret keys for users outside 𝑆 , since malicious users outside the set 𝑆 can register

any (possibly malformed) public key. The reduction has the following high-level procedure:

• For all 𝑗 ∈ 𝑆 , the challenger samples the public key as t𝑖
r← Z𝑛𝑞 . By the leftover hash lemma, the honestly-

generated public keys t𝑗 = Br𝑗 + p − Av𝑗 are statistically indistinguishable from a uniform random vector

t𝑗
r← Z𝑛𝑞 . Importantly, the public keys are now independent of A, and thus, the challenger can now sample

the public keys t𝑗 before it samples the matrix A.

• When setting the public parameters, the challenger embeds the challenge set into the public parameters. Namely,

after sampling the public keys t𝑗
r← Z𝑛𝑞 for the honest users 𝑗 ∈ 𝑆 , the challenger now sets A = BRA −

∑
𝑗∈𝑆 C𝑗 ,

where RA
r← {0, 1}𝑚×𝑚 and C𝑗 is a commitment to the vector uT

𝑗 ⊗ t𝑗 . It also sets p = Brp where rp
r← {0, 1}𝑚 .

Again by the leftover hash lemma, the distribution of A and p are statistically close to uniform, which coincides

with their distribution in the real scheme.
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• With the above modifications, the challenge ciphertext can now be written as

ct =
(
sTB
::

, sT
(
A +∑

𝑗∈𝑆 C𝑗

)
:::::::::::::

, sTp + 𝜇 · ⌊𝑞/2⌋
:::::::::::

)
≈

(
sTB
::

, sTB
::
· RA , sTB::

· rp + 𝜇 · ⌊𝑞/2⌋
)
,

which can be simulated from sTB
::

. By the 2𝑚2
-succinct LWE assumption, sTB

::
is pseudorandom given ppcom =

(B,W,T). This implies the ciphertext is pseudorandom and security holds.

We refer to Section 4 for the formal description of the construction and security analysis.

Local openings. To support 𝑁 = 2
𝜆
(i.e., an arbitrary polynomial number of users), we show how to implement

the key-generation, encryption, and decryption algorithms in poly(𝜆, log𝑁 ) time. The modification is purely algo-

rithmic and the modifications have no effect on the correctness or security analysis. Our approach relies on two key

observations:

• The above scheme only commits to sparse matrices (of the form uT
𝑖 ⊗ t𝑖 ). While this matrix has 𝑁 columns,

only a single column is non-zero.

• The key-generation, encryption, and decryption algorithms only needs local access to the verification matrix

V𝑁 and the openings Z𝑗 . In fact, each algorithm only reads a single column of the verification matrix V𝐿 or

the opening matrix Z𝑗 .

In Appendix A, we show that the [Wee25] matrix commitment scheme satisfies the following two properties:

• The commitment C ∈ Z𝑛×𝑚𝑞 to a sparse matrixM ∈ Z𝑛×𝑁𝑞 with 𝐾 non-zero columns can be computed in time

poly(𝑚, log𝑞, log𝑁,𝐾).

• There is an algorithm running in time poly(𝑚, log𝑞, log𝑁 ) for computing the 𝑖th column of the verification

matrix V𝑁 and an algorithm running in time poly(𝑚, log𝑞, log𝑁,𝐾) for computing the 𝑖th column of the

opening Z𝑗 to a matrixM with 𝐾 non-zero columns.

In some sense, the matrix commitment scheme from [Wee25] has a Merkle-tree-like structure where a commitment to

a matrix M = [Ml | Mr] is derived by first committing to its left half Ml and its right half Mr, and finally committing

to the resulting commitments [Cl | Cr]. We can efficiently commit and provide local openings for (exponentially-long)

sparse vectors with a Merkle tree, and the same is true for the matrix commitment scheme of [Wee25]. This yields

a distributed broadcast encryption scheme that supports 𝑁 = 2
𝜆
users.

Comparison with [CW24]. The structure of our distributed broadcast encryption scheme shares some similarities

with that from [CW24]. In our notation, the public keys in [CW24] consists of a (random) matrix C𝑖 together with

a collection of low-norm cross-terms z𝑖, 𝑗 where Bz𝑖, 𝑗 = −C𝑖v𝑗 . The secret key is a low-norm vector z𝑖,𝑖 where
Bz𝑖,𝑖 = p + Av𝑖 − C𝑖v𝑖 . The public parameters include the matrices A,B, the target vector p, the vectors v1, . . . , v𝑁 ,
along with a (sufficiently-large) succinct LWE trapdoor that is used to sample public keys C𝑖 , cross-terms z𝑖, 𝑗 , and
secret keys z𝑖,𝑖 . From a structural perspective, the public/secret keys between our scheme and the [CW24] scheme

are very similar (and likewise for the ciphertexts). The key difference is the following:

• In [CW24], the key-generation algorithm jointly samples the public-key matrix C𝑖 together with the cross-terms

z𝑖, 𝑗 . This leads to a scheme with 𝑂 (𝑁 )-size public keys. Notably, there is no compact description of the cross-

terms needed for decryption (i.e., the terms z𝑗,𝑖 that recode from B to C𝑗v𝑖 ). Note that publishing the randomness

used to sample C𝑖 and z𝑖, 𝑗 for 𝑗 ≠ 𝑖 is not sufficient since the randomness would also leak the secret key z𝑖,𝑖 .

• In our scheme, the public key is simply a vector t𝑖 , and the associated public-key matrix C𝑖 and the cross-

terms z𝑖, 𝑗 are all deterministically derived from t𝑖 using the matrix commitment scheme. The secret key is the

randomness used to sample t𝑖 . Because the matrix C𝑖 and the cross-terms have a compact description, our
scheme supports an unbounded number of users. A key technical contribution of this work is showing that

the structure of the [Wee25] matrix commitments enables us to compress cross-terms (or alternatively, derive

cross-terms from a public procedure).
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We note here that the need to include a cross-term for every other user is a standard feature in nearly all con-

structions of distributed broadcast encryption and registered ABE that do not go through obfuscation or witness

encryptions [WQZD10, HLWW23, KMW23, ZZGQ23, AT24, GLWW24, CW24, GKPW24, CHW25]. This is also the

main reason these schemes cannot handle an arbitrary number of users. While we still rely on the same type of

cross-term cancellation in this work, our use of matrix commitments enables a new compact description for these

cross terms. This enables schemes that support an arbitrary number of users.

Comparison with [FWW23]. Our distributed broadcast encryption construction also shares some high-level

similarities with the [FWW23] construction based on witness encryption. Both constructions embed a succinct

commitment (alternatively, a hash) of the public keys of the users in the broadcast set 𝑆 in the ciphertext, and moreover,

in the security analysis, both reductions modify the distribution of the public keys for the users in 𝑆 . In a bit more detail:

• In [FWW23], the commitment to the public keys is the instance used in the witness encryption ciphertext.

In their setting, the commitment is a (function-binding) hash of the users’ public keys. In our scheme, the

commitment to the public keys is

∑
𝑗∈𝑆 C𝑗 and we embed it as an LWE sample sT

(
A +∑

𝑗∈𝑆 C𝑗

)
:::::::::::::

in the ciphertext.

In both schemes, the commitment has a tree-like structure, and decryption relies on a local opening to the user’s

public key, which can be derived given just the public keys for the set 𝑆 (along with the public parameters).

• In order to invoke semantic security of the witness encryption scheme in the [FWW23] security proof, they not

only modify the distribution of the public keys in 𝑆 , and also rely on the commitment satisfying a “function bind-

ing” property (which can be based on LWE). In contrast, our security proof is simpler and follows by directly pro-

gramming the set 𝑆 into the public parameters (e.g., setting A = −∑
𝑗∈𝑆 C𝑗 , after modifying t𝑗 , and thus C𝑗 , to be

independent ofA). This partitioning strategy (for arguing selective security) is a standard approach for analyzing
the security of (distributed) broadcast encryption schemes (c.f., [BGW05, KMW23, CW24]). On the flip side, we

note that the proof strategy in [FWW23] based on function-binding hash functions shows their scheme to satisfy

semi-static security; this can in turn be lifted to full adaptive security via the [GW09, HWW25] transformations.

2.2 Key-Policy Registered ABE
We can combine our techniques for distributed broadcast encryption with ideas from the recent work of [CHW25] to

obtain a key-policy registered ABE scheme with succinct ciphertexts in the random oracle model. In some sense, the

work of [CHW25] starts with the distributed broadcast encryption scheme from [CW24] and shows how to extend

it to a registered ABE scheme. In this work, we start from our new distributed broadcast encryption scheme (from

Section 2.1) and show how to apply the [CHW25] techniques to lift the scheme to a registered ABE scheme. Since

our underlying distributed broadcast encryption scheme supports an unbounded number of users, our registered

ABE scheme also achieves this property. The previous construction of [CHW25] only supports a bounded number of

users. Our techniques yield the first registered ABE scheme that can simultaneously support an arbitrary polynomial

number of users and which has succinct ciphertexts (see Table 2). Such a scheme was not previously known even

from witness encryption or indistinguishability obfuscation. Here, we provide a brief overview of how we augment

our distributed broadcast encryption scheme to obtain a (key-policy) registered ABE scheme.

Lattice-based homomorphic evaluation. Our construction relies on the classic homomorphic evaluation ma-

chinery from [GSW13, BGG
+
14]. Specifically, given a matrix A ∈ Z𝑛×ℓ𝑚𝑞 , a Boolean function 𝑓 : {0, 1}ℓ → {0, 1}, and

an input x ∈ {0, 1}ℓ , there exists a low-norm matrix HA,𝑓 ,x such that

(A − xT ⊗ G) · HA,𝑓 ,x = A𝑓 − 𝑓 (x) · G, (2.3)

where A𝑓 is a matrix that only depends on A and 𝑓 .

Registered key-policy ABE. We now describe the general structure of our key-policy registered ABE scheme.

Specifically, we describe a “slotted” registered ABE scheme where each key is associated with an index 𝑖 ∈ [𝑁 ],
and instead of users joining the system dynamically, there is instead an aggregation algorithm that takes as input a
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collection of 𝑁 public keys pk
1
, . . . , pk𝑁 along with their associated policies 𝑓1, . . . , 𝑓𝑁 and aggregates them together

into a master public key mpk and a set of helper decryption keys hsk1, . . . , hsk𝑁 for the 𝑁 users. To decrypt, the

user combines their secret key and their helper decryption key with the ciphertext. The work of [HLWW23] show

that the slotted primitive generically implies standard the usual notion of registered ABE (that supports dynamic

registrations) with only poly(𝜆, log𝑁 ) overhead. In this work, we focus exclusively on the simpler slotted primitive.

For ease of exposition, we describe our construction with long ciphertexts (that scale with the attribute length).

We can then apply the ciphertext compression approach from [Wee24, Wee25] to obtain a registered ABE scheme with

succinct ciphertexts. Essentially, instead of encrypting with respect to xT ⊗G ∈ Z𝑛×ℓ𝑚𝑞 (as in the classic [BGG
+
14] ABE

scheme), we instead encrypt to a [Wee25] commitmentCx ∈ Z𝑛×𝑚𝑞 to xT⊗G. We start with a basic version of the scheme:

• Public parameters: The public parameters pp = (ppcom,A, p, {d𝑖 }𝑖∈[𝑁 ]) have essentially the same structure

as that for our distributed broadcast encryption scheme. Here ppcom = (B,W,T) are the public parameters for

a succinct LWE instance of dimension 2𝑚2
, A r← Z𝑛×ℓ𝑚𝑞 is the matrix used to embed the attribute, p r← Z𝑚𝑞 is a

dual Regev public key (for encoding the message), and d1, . . . , d𝑁
r← Z𝑛𝑞 are vectors used for noise smudging

(in the security analysis). As described, the size of the CRS scales linearly with 𝑁 , but since the d𝑖 vectors are
uniformly random, we can compress them by working in the random oracle model and setting d𝑖 = 𝐻1 (𝑖),
where 𝐻1 is modeled as a random oracle.

• User key-generation: To generate a public key for a slot 𝑖 ∈ [𝑁 ] and a function 𝑓 , the user samples

r𝑖
r← {0, 1}𝑚 and sets the secret key to be t𝑖 = Br𝑖 + p + A𝑓G−1 (d𝑖 ) ∈ Z𝑛𝑞 . The secret key is the randomness r𝑖 .

• Key aggregation: Given a collection of public keys t1, . . . , t𝑁 for functions 𝑓1, . . . , 𝑓𝑁 , the aggregation algorithm

computes commitments C𝑖 ∈ Z𝑛×𝑚𝑞 and openings Z𝑖 ∈ Z𝑚×𝐿𝑞 to uT
𝑖 ⊗ t𝑖 where u𝑖 ∈ {0, 1}𝑁 is the 𝑖th unit vector.

It parses Z𝑖 = [z𝑖,1 | · · · | z𝑖,𝑁 ]. The master public keympk and helper decryption key hsk𝑖 for user 𝑖 are defined
to be

mpk = Ĉ =
∑︁
𝑗∈[𝑁 ]

C𝑗 and hsk𝑖 = ẑ𝑖 =
∑︁
𝑗∈[𝑁 ]

z𝑗,𝑖 . (2.4)

• Encryption: To encrypt a message 𝜇 ∈ {0, 1} with attribute x ∈ {0, 1}ℓ , the encryption algorithm samples

s r← Z𝑛𝑞 and outputs the ciphertext

ct =
(
sTB
::

, sTĈ
::

, sT (A − xT ⊗ G)
::::::::::::

, sTp + ⌊𝑞/2⌋ · 𝜇
:::::::::::

)
. (2.5)

• Decryption: To decrypt using a secret key r𝑖 for slot 𝑖 and an associated function 𝑓𝑖 where 𝑓𝑖 (x) = 0, the

decrypter first computes

sT (A − xT ⊗ G)
::::::::::::

· HA,𝑓 ,x ≈ sT (A𝑓 − 𝑓 (x) · G) = sTA𝑓

by Eq. (2.3). Let V𝑁 ∈ Z𝑚×𝑁𝑞 be the low-norm verification matrix associated with ppcom and matrices of width

𝑁 . Write V = [v1 | · · · | v𝑁 ]. Then, using the fact that C𝑖 is a commitment to uT
𝑖 ⊗ t𝑖 and Z𝑖 is the associated

opening, we appeal to Eqs. (2.1) and (2.4) to write

sTĈ
::
· v𝑖 ≈ sT

∑︁
𝑗∈[𝑁 ]

C𝑗v𝑖 = sTt𝑖 − sT
∑︁
𝑗∈[𝑁 ]

Bz𝑗,𝑖 = sTt𝑖 − sTBẑ.

Finally, using the fact that t𝑖 = Br𝑖 + p + A𝑓G−1 (d𝑖 ), the decrypter can use its secret key r𝑖 to compute

sTĈ
::
· v𝑖 − sT (A − xT ⊗ G)

::::::::::::
· HA,𝑓 ,x · G−1 (d𝑖 ) − sTB::

· (r𝑖 − ẑ)

≈ sT (Br𝑖 + p + A𝑓G−1 (d𝑖 )) − sTBẑ − sTA𝑓G−1 (d𝑖 ) − sTBr𝑖 + sTBẑ
= sTp.

Taking the difference with sTp + ⌊𝑞/2⌋ · 𝜇
:::::::::::

and rounding now recovers the message 𝜇.
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Arguing security. We consider attribute-selective security where the adversary commits to the challenge attribute

x at the beginning of the security game. To prove security from the succinct LWE assumption, we again need to show

how to simulate the challenge ciphertext (Eq. (2.5)) from (B, sTB
::
,W, T). Since the adversary commits to the challenge

attribute x, we can use the strategy from [BGG
+
14] and program x into the matrix A (e.g., by setting A = BRA+xT ⊗G).

Now the reduction can simulate the attribute-embedding component in the challenge ciphertext as

sT (A − xT ⊗ G)
::::::::::::

≈ sTBRA ≈ sTB
::
· RA .

Similarly, the challenger sets p = Arp for a low-norm p. Then, it can simulate the message-embedding component

of the challenger ciphertext as

sTp + ⌊𝑞/2⌋ · 𝜇
:::::::::::

≈ sTBrp + ⌊𝑞/2⌋ · 𝜇 ≈ sTB
::
· rp + ⌊𝑞/2⌋ · 𝜇.

The difficult term is simulating sTĈ
::

. Here, Ĉ =
∑

𝑖∈[𝑁 ] C𝑖 , where C𝑖 is the commitment to the public key of user 𝑖 .

In registered ABE, these keys can be chosen maliciously. This is a major distinction between registered ABE and

distributed broadcast encryption. In distributed broadcast encryption, the keys that influence the challenge ciphertext

are honestly generated, so the reduction algorithm can program them so as to be able to simulate the challenge

ciphertext. This is not the case in registered ABE. We solve this problem by using the ciphertext re-randomization

technique from [CHW25]. The idea is to start with the following randomized aggregation algorithm:

• The aggregation algorithm samples C0

r← Z𝑛×𝑚𝑞 together with low-norm vectors z0,𝑖 ∈ Z𝑚𝑞 where C0v𝑖 = −Bz0,𝑖
for all 𝑖 ∈ [𝑁 ]. We can view C as a random [Wee25] commitment to the all-zeroes matrix 0𝑛×𝑁 with opening

Z0 = [z0,1 | · · · | z0,𝑁 ]. We show that there is an efficient algorithm to sample C0 together with Z0 using the

succinct LWE trapdoor (see Section 5.1 and Theorem 5.9).

• The aggregated master public key is then mpk = Ĉ = C0 +
∑

𝑗∈[𝑁 C𝑗 and the corresponding helper decryption

key for user 𝑖 is hsk𝑖 = ẑ𝑖 = z0,𝑖 +
∑

𝑗∈[𝑁 ] z𝑗,𝑖 .

It is not hard to see that this modification still preserves correctness of the scheme. Now, in the security proof, the

reduction algorithm will set C0 = BRĈ −
∑

𝑗∈[𝑁 ] C𝑗 , where RĈ is a low-norm matrix sampled by the reduction. This

allows the reduction to simulate the challenge ciphertext component as

sTĈ
::
≈ sT ©«C0 +

∑︁
𝑗∈[𝑁 ]

C𝑗
ª®¬ = sTBRĈ ≈ sTB

::
· RĈ.

Of course, there is still the caveat that the reduction algorithm now needs to simulate the low-norm vectors z0,𝑖 where
C0v𝑖 = −Bz0,𝑖 . To do so, the reduction algorithm will first set d𝑖 = Brd𝑖 for a low-norm rd𝑖 known to the reduction.

Now, we consider two possibilities depending on whether a key for a slot 𝑖 was honestly-generated (by the reduction

algorithm) or chosen maliciously by the adversary:

• Suppose a slot 𝑖 is associated with an honestly-generated key. Using again the fact that for all 𝑗 ≠ 𝑖 , C𝑗v𝑖 = −Bz𝑗,𝑖
and C𝑖v𝑖 = t𝑖 − Bz𝑖,𝑖 , we have

BRĈv𝑖 +
∑

𝑖∈[𝑁 ] Bz𝑗,𝑖 = (C0 +
∑

𝑗∈[𝑁 ] C𝑗 )v𝑖 +
∑

𝑗∈[𝑁 ] Bz𝑗,𝑖 = C0v𝑖 + t𝑖 . (2.6)

When generating the keys for the honest users, the reduction algorithm programs the public key to be

t𝑖 = Br𝑖 + d𝑖 = Br𝑖 + Brd𝑖 . Combined with Eq. (2.6), this means

B ·
(
rd𝑖 + r𝑖 − RĈv𝑖 −

∑
𝑗∈[𝑁 ] z𝑗,𝑖

)︸                                  ︷︷                                  ︸
z0,𝑖

= t𝑖 − C0v𝑖 − t𝑖 = −C0v𝑖 .

• Suppose a slot 𝑖 is associated with an adversarially-chosen key t𝑖 . In this case, the associated policy 𝑓𝑖 is not

satisfied by the challenge attribute x (i.e., 𝑓 (x) = 1). To construct z0,𝑖 in this case, the reduction algorithm will
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need to know a short r𝑖 such that t𝑖 = Br𝑖 + p + A𝑓𝑖G
−1 (d𝑖 ). As in [CHW25], we facilitate this by requiring

each public key include a non-interactive zero-knowledge (NIZK) proof of knowledge of the associated secret

key r𝑖 . The reduction algorithm in turn extracts the associated secret key from each public key chosen by the

adversary. In this case, since 𝑓 (x) = 1,

BRA · HA,𝑓𝑖 ,xG
−1 (d𝑖 ) = (A − xT ⊗ G) · HA,𝑓𝑖 ,xG

−1 (d𝑖 ) = (A𝑓𝑖 − G) · G−1 (d𝑗 ) = A𝑓𝑖G
−1 (d𝑖 ) − Brd𝑖 .

This means

t𝑖 = Br𝑖 + p + A𝑓𝑖G
−1 (d𝑖 ) = Br𝑖 + Brp + BRAHA,𝑓𝑖 ,xG

−1 (d𝑖 ) + Brd𝑖 .
By Eq. (2.6), we have

B ·
(
rd𝑖 + r𝑖 + rp + RAHA,𝑓𝑖 ,xG

−1 (d𝑖 ) − RĈv𝑖 −
∑

𝑗∈[𝑁 ] z𝑗,𝑖
)︸                                                                   ︷︷                                                                   ︸

z0,𝑖

= t𝑖 − C0v𝑖 − t𝑖 = −C0v𝑖

In both cases, the reduction algorithm is able to construct a low-norm z0,𝑖 such that Bz0,𝑖 = −C0v𝑖 . Thus, using this
procedure, the reduction algorithm can program C0 = BRĈ −

∑
𝑗∈[𝑁 ] C𝑗 and simulate the challenge ciphertext. There

are two remaining issues we need to address:

• First, in registered ABE, we require aggregation to be deterministic. Following [CHW25], we can derandomize

the aggregation algorithm by having the real scheme sample (C0, z0,1, . . . , z0,𝑁 ) using the random oracle (by hash-

ing the input to the aggregation algorithm). To implement this strategy, we require an “explainable” sampling

procedure for sampling (C0, z0,1, . . . , z0,𝑁 ). Namely, given any (correctly-distributed) tuple (C0, z0,1, . . . , z0,𝑁 ),
there is an efficient algorithm that outputs a set of random coins to the sampling algorithm that would produce

the tuple. In Section 5.1 (Theorem 5.9), we show that the explainable discrete Gaussian preimage sampler from

[CHW25] can be used in conjunction with the succinct LWE trapdoor to build such a sampler. To argue that

the reduction’s strategy for constructing z0,𝑖 follows the same distribution as that output by the sampler, we

use a similar noise smudging argument as in [CHW25]. Specifically, the rd𝑖 component in each z0,𝑖 is sampled

from a sufficiently-wide (but still low-norm) Gaussian distribution so as to drown out the remaining low-order

terms. We give the details of the explainable sampler in Section 5.2 (see the proof of Theorem 5.14).

• Second, to achieve succinct ciphertexts that are independent of the attribute length, we use the compression

technique from [Wee24, Wee25]. Specifically, let Cx be a commitment to xT ⊗ G, and let Zx be the associated

opening. Let Vℓ𝑚 be the verification matrix associated with ppcom and matrices of length ℓ𝑚. Then Eq. (2.1) says

CxVℓ𝑚 = xT ⊗ G − BZx .

Sample B0

r← Z𝑛×𝑚𝑞 and define A = −B0Vℓ𝑚 . The attribute-embedding component sT (A − xT ⊗ G)
::::::::::::

in the

ciphertext is now replaced by sT (B0 + Cx)
:::::::::

. The observation now is that

[sTB
::
| sT (B0 + Cx)

:::::::::
] ·

[
−Zx
−Vℓ𝑚

]
≈ −sTBZx − sTB0Vℓ𝑚 − sTCxVℓ𝑚 = sT (A − xT ⊗ G).

Thus sT (B0 + Cx)
:::::::::

∈ Z𝑚𝑞 can be viewed as a compressed representation of sT (A − xT ⊗ G)
::::::::::::

.

We give the full details in Construction 5.11. Taken together, we obtain a key-policy registered ABE scheme with

succinct ciphertexts and which supports an unbounded number of users from the 2𝑚2
-succinct LWE assumption.

3 Preliminaries
Throughout this work, we write 𝜆 ∈ N to denote the security parameter. For a positive integer 𝑛 ∈ N, we write
[𝑛] := {1, . . . , 𝑛}. We write poly(𝜆) to denote a function that is bounded by a fixed polynomial in 𝜆 and negl(𝜆) to
denote a function that is negligible in 𝜆 (i.e., 𝑓 (𝜆) = negl(𝜆) if 𝑓 = 𝑜 (𝜆−𝑐 ) for all constants 𝑐 ∈ N). For a finite set
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𝑆 , we write 𝑥
r← 𝑆 to denote a uniform random draw from 𝑆 . For a distribution D, we write 𝑥 ← D to denote a

sample from D. When A is a deterministic algorithm, we write 𝑥 = A(·) to denote assigning 𝑥 to the output of A.

We say an algorithm is efficient if it runs in probabilistic polynomial time in the length of its input. We say that two

distribution ensembles D0 = {D0,𝜆}𝜆∈N and D1 = {D1,𝜆}𝜆∈N are computationally indistinguishable if for all efficient

adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[A(1𝜆, 𝑥) : 𝑥 ← D0,𝜆] − Pr[A(1𝜆, 𝑥) : 𝑥 ← D1,𝜆] | = negl(𝜆).

We say that D0 and D1 are statistically indistinguishable if the statistical distance between D0,𝜆 and D1,𝜆 is bounded

by a negligible function negl(𝜆), and that they are identical if the statistical distance is identically 0.

3.1 Lattice Preliminaries
We use bold uppercase letters (e.g., B,B) for matrices and bold lowercase letters (e.g., u, v) for vectors. We use

non-boldface letters for their components (e.g., v = [𝑣1, . . . , 𝑣𝑛]). For a matrix V ∈ Z𝑛×𝑛′ over the integers, we write
∥V∥ to denote the maximum absolute value of its entries. When V ∈ Z𝑛×𝑛′𝑞 , we write ∥V∥ := ∥VZ∥, where VZ ∈ Z𝑛×𝑛

′

is the matrix obtained by replacing each component of V with its integer representative in the interval (−𝑞/2, 𝑞/2).
We write A ⊗ B to denote the Kronecker product between matrices A and B. For matrices A,B,C,D with compatible

dimensions, we have

(A ⊗ C) (B ⊗ D) = AB ⊗ CD. (3.1)

For a matrix A, we write vec(A) to denote the vector obtained by concatenating the columns of A. We use the

following identity:

vec(ABC) = (CT ⊗ A) · vec(B). (3.2)

Next, we recall the (generalized) leftover hash lemma from [DORS08]. We state the specific formulation from [ABB10]:

Lemma 3.1 (Generalized Leftover Hash Lemma [ABB10, Lemma 13, adapted]). Let 𝑛,𝑚,𝑞 be integers such that
𝑚 ≥ 2𝑛 log𝑞 and 𝑞 > 2 is prime. Then, for all fixed vectors e ∈ Z𝑚𝑞 and all 𝑘 = poly(𝑛), the statistical distance between
the following distributions is negl(𝑛):

• (A,AR, eTR) where A r← Z𝑛×𝑚𝑞 ,R r← {0, 1}𝑚×𝑘 .

• (A,U, eTR) where A r← Z𝑛×𝑚𝑞 ,U r← Z𝑛×𝑘𝑞 ,R r← {0, 1}𝑚×𝑘 .

Discrete Gaussians. We write 𝐷Z,𝜎 to denote the discrete Gaussian distribution over Z with width parameter

𝜎 > 0. For a matrix B ∈ Z𝑛×𝑚𝑞 and a target Z ∈ Z𝑛×𝑛′𝑞 in the image of B, we write B−1𝜎 (Z) to denote the ran-

dom variable Y ← 𝐷𝑚×𝑛′
Z,𝜎 conditioned on BY = Z mod 𝑞. For positive integers 𝑛, 𝑞 ∈ N and 𝑚 ≥ 𝑛 ⌈log𝑞⌉, we

write G𝑛 := I𝑛 ⊗ gT ∈ Z𝑛×𝑚𝑞 to denote the gadget matrix [MP12], where I𝑛 is the identity matrix of dimension 𝑛,

gT = [1, 2, . . . , 2⌈log𝑞⌉−1, 0, . . . , 0] ∈ Z𝑚 . We write G−1𝑛 (·) : Z𝑛𝑞 → Z𝑚𝑞 to denote the standard deterministic entry-wise

bit decomposition (and padding with 0s if𝑚 ≥ 𝑛 · ⌈log𝑞⌉). When the context is clear, we omit the subscript 𝑛 and

simply writeG andG−1 (·). We now recall some useful properties on the discrete Gaussian distribution that we will use:

Lemma 3.2 (Gaussian Tail Bound [MP12, Lemma 2.6, adapted]). Let 𝑛,𝑚,𝑞 be lattice parameters where𝑚 ≥ 2𝑛 log𝑞.
For all but a negl(𝑛)-fraction of matrices B ∈ Z𝑛×𝑚𝑞 , all 𝜎 ≥ log𝑚, and all vectors y ∈ Z𝑛𝑞 in the column space of B,

Pr[∥u∥ ≥
√
𝑚𝜎 : u← B−1𝜎 (y)] ≤ 𝑂 (2−𝑚).

In addition, for all 𝜆 ∈ N,
Pr[|𝑥 | ≥

√
𝜆𝜎 : 𝑥 ← 𝐷Z,𝜎 ] ≤ 2

−𝜆 .

Lemma 3.3 (Gaussian Preimages [GPV08]). Let 𝑛,𝑚,𝑞 be lattice parameters where𝑚 ≥ 2𝑛 log𝑞 and 𝑞 is prime. Let
𝜎 ≥ log𝑚. There exist a negligible function negl(·) such that for all but a negl(𝑛)-fraction of matrices B ∈ Z𝑛×𝑚𝑞 , the
statistical distance between the following distributions is at most negl(𝑛):

{(y,By) : y← 𝐷𝑚
Z,𝜎 } and {(y, z) : z r← Z𝑛𝑞 , y← B−1𝜎 (z)}.

Moreover, this property holds when 𝜎 ≥ log𝑚 and B = G𝑛 .
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Lemma 3.4 (Marginal of Gaussian Preimages [WW23, Corollary 2.11, adapted]). Let 𝑛,𝑚,𝑞 be lattice parameters
where𝑚 ≥ 2𝑛 log𝑞 and 𝑞 is prime. Let ℓ, 𝑘 = poly(𝑛, log𝑞). There exist a negligible function negl(·) such that for all but
a 𝑞−𝑛-fraction of matrices B ∈ Z𝑛×𝑚𝑞 , all matrices W ∈ Z𝑛ℓ×𝑘𝑞 and matrices C = [Iℓ ⊗ B | W], all target vectors y ∈ Z𝑛ℓ𝑞 ,
and all width parameters 𝜎 ≥ 4 log(ℓ𝑚), the statistical distance between the following distributions is at most negl(𝑛):{

v : v← C−1𝜎 (y)
}

and
{[
v1
v2

]
:

v2 ← 𝐷𝑘
Z,𝜎

v1 ← (Iℓ ⊗ B)−1𝜎 (y − Bv2)

}
.

Gadget trapdoors. We now recall the notion of a gadget trapdoor:

Lemma 3.5 (Gadget Trapdoor [Ajt96, GPV08, MP12]). Let 𝑛,𝑚,𝑞 be lattice parameters with𝑚 ≥ 3𝑛 log𝑞. There exists
efficient algorithms (TrapGen, SamplePre) with the following syntax:

• TrapGen(1𝑛, 1𝑚, 𝑞) → (B,T): On input the lattice dimension 𝑛, the width𝑚, and the modulus 𝑞, the trapdoor-
generation algorithm outputs a matrix B ∈ Z𝑛×𝑚𝑞 together with a trapdoor T ∈ Z𝑚×𝑚𝑞 .

• SamplePre(B,T,Z, 𝜎) → Y: On input a matrix B ∈ Z𝑛×𝑚𝑞 , a trapdoor T ∈ Z𝑚×𝑚𝑞 , a target matrix Z ∈ Z𝑛×𝑛′𝑞 , and
a width parameter 𝜎 > 0, the preimage-sampling algorithm outputs Y ∈ Z𝑚×𝑛′𝑞 .

Moreover, the above algorithms satisfy the following properties:

• Trapdoor distribution: If (B, T) ← TrapGen(1𝑛, 1𝑚, 𝑞), then the distribution of B is negl(𝑛)-close to the uniform
distribution over Z𝑛×𝑚𝑞 . Moreover, BT = G ∈ Z𝑛×𝑚𝑞 and ∥T∥ = 1.

• Preimage sampling: For all matrices B ∈ Z𝑛×𝑚𝑞 , T ∈ Z𝑚×𝑚𝑞 , width parameters 𝜎 > 0, and all Z ∈ Z𝑛×𝑛′𝑞 in the
image of B, the output Y← SamplePre(B,T,Z, 𝜎) satisfies BY = Z.

• Preimage distribution: There exists a negligible function negl(·) such that for all B ∈ Z𝑛×𝑚𝑞 and T ∈ Z𝑚×𝑚𝑞

where BT = G, all 𝜎 ≥ 𝑚∥T∥ log𝑛, and all targets Z ∈ Z𝑛×𝑛′𝑞 , the output of SamplePre(B, T,Z, 𝜎) is negl(𝑛)-close
to the distribution B−1𝜎 (Z).

Homomorphic computation. Our construction of registered ABE will rely on the lattice homomorphic evaluation

machinery from [GSW13, BGG
+
14].

Theorem 3.6 (Homomorphic Encodings [GSW13, BGG
+
14]). Let 𝜆 be a security parameter and 𝑛,𝑚,𝑞 be lattice

parameters where𝑚 ≥ 2𝑛 log𝑞. Let Fℓ,𝑑 be a family of functions 𝑓 : {0, 1}ℓ → {0, 1} that can be computed by a Boolean
circuit of depth 𝑑 . There exists a pair of efficient algorithms (EvalF, EvalFX) with the following properties:

• EvalF(A, 𝑓 ) → A𝑓 : On input a matrix A ∈ Z𝑛×ℓ𝑚𝑞 and a function 𝑓 ∈ Fℓ,𝑑 , output a matrix A𝑓 ∈ Z𝑛×𝑚𝑞 .

• EvalFX(A, 𝑓 , x) → HA,𝑓 ,x: On input a matrix A ∈ Z𝑛×ℓ𝑚𝑞 , a function 𝑓 ∈ Fℓ,𝑑 , and an input x ∈ {0, 1}ℓ , output
a matrix HA,𝑓 ,x ∈ Zℓ𝑚×𝑚𝑞 .

For all matrices A ∈ Z𝑛×ℓ𝑚𝑞 , functions 𝑓 ∈ Fℓ,𝑑 , and inputs x ∈ {0, 1}ℓ , the matrices A𝑓 ← EvalF(A, 𝑓 ) and
HA,𝑓 ,x ← EvalFX(A, 𝑓 , x) satisfy the following properties:

• (A − xT ⊗ G) · HA,𝑓 ,x = A𝑓 − 𝑓 (x) · G.

•

HA,𝑓 ,x
 ≤ 𝑚𝑂 (𝑑 ) .

Learning with errors. The learning with errors (LWE) assumption [Reg05] with parameters (𝑛,𝑚,𝑞, 𝜒) states that

(B, sTB + eT) 𝑐≈ (B, cT),

where B r← Z𝑛×𝑚𝑞 , s r← Z𝑛𝑞 , e← 𝐷𝑚
Z,𝜒 , and c r← Z𝑚𝑞 .
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ℓ-succinct LWE. The ℓ-succinct LWE assumption [Wee24] states that (B, sTB + eT) is pseudorandom even given

a trapdoor for the matrix [Iℓ ⊗ B | W], where W r← Zℓ𝑛×𝑚𝑞 . We give the formal statement below:

Assumption 3.7 (ℓ-Succinct LWE [Wee24]). Let 𝜆 be a security parameter and (𝑛,𝑚,𝑞, 𝜒) be LWE parameters. The

(ℓ, 𝜎)-succinct LWE assumption states that

(B, sTB + eT,W,T) 𝑐≈ (B, cT,W,T),

where B r← Z𝑛×𝑚𝑞 , s r← Z𝑛𝑞 , e← 𝐷𝑚
Z,𝜒 , c

r← Z𝑚𝑞 , W
r← Zℓ𝑛×𝑚𝑞 , and T← [Iℓ ⊗ B | W]−1𝜎 (Iℓ ⊗ G). We abbreviate the

assumption to ℓ-succinct LWE when 𝜎 = poly(𝜆, ℓ,𝑚).

3.2 Matrix Commitments
Our constructions rely on the matrix commitments recently introduced in the work of Wee [Wee25]. Specifically,

a commitment to a matrix M ∈ Z𝑛×𝐿𝑞 with respect to B ∈ Z𝑛×𝑚𝑞 is a matrix C ∈ Z𝑛×𝑚𝑞 such that

C · V𝐿 = M − B · Z, (3.3)

where V𝐿 ∈ Z𝑚×𝐿𝑞 is a fixed verification matrix that only depends on the dimension 𝐿 and Z ∈ Z𝑚×𝐿𝑞 is a short opening.

The work of [Wee25] shows how to sample a commitment C to an arbitrary matrix M ∈ Z𝑛×𝐿𝑞 (for any 𝐿) given

pp = (B,W,T) where B ∈ Z𝑛×𝑚𝑞 , W ∈ Z2𝑚2𝑛×𝑚
𝑞 , T ∈ Z(2𝑚

2+1)𝑚×2𝑚3

𝑞 , and [I
2𝑚2 ⊗ B | W] · T = I

2𝑚2 ⊗ G. In this

context, T is a trapdoor for a succinct LWE instance with dimension 2𝑚2
. We now give the formal statement, and

for completeness, include the description of the algorithms from [Wee25, §3.2] in Appendix A:

Lemma 3.8 (Matrix Commitment [Wee25, adapted]). Let 𝑛,𝑚,𝑞 be lattice parameters with𝑚 ≥ 2𝑛 log𝑞. There exist
a triple of efficient and deterministic algorithms (Commx,Vermx,Openmx) with the following syntax:

• Commx (pp,M) → C: On input public parameters pp and a matrix M ∈ Z𝑛×𝐿𝑞 , output a matrix C ∈ Z𝑛×𝑚𝑞 .

• Vermx (pp, 1𝐿) → V𝐿 : On input public parameters pp and the length parameter 𝐿, output a matrix V𝐿 ∈ Z𝑚×𝐿⌈log𝑞⌉𝑞 .

• Openmx (pp,M) → Z: On input public parameters pp and a matrix M ∈ Z𝑛×𝐿𝑞 , output a matrix Z ∈ Z𝑚×𝐿⌈log𝑞⌉𝑞 .

Moreover, for all pp = (B,W, T) where B ∈ Z𝑛×𝑚𝑞 , W ∈ Z2𝑚2𝑛×𝑚
𝑞 , T ∈ Z(2𝑚

2+1)𝑚×2𝑚3

𝑞 , [I
2𝑚2 ⊗ B | W] · T = I

2𝑚2 ⊗ G, all
parameters 𝐿 ∈ N, all matrices M ∈ Z𝑛×𝐿𝑞 , and setting C = Commx (pp, x), V𝐿 = Vermx (pp, 1𝐿), and Z = Openmx (pp, x),

C · V𝐿 = M · G𝐿 − B · Z and ∥V𝐿 ∥ ≤ 𝑂 (∥T∥ ·𝑚4
log𝑞) and ∥Z∥ ≤ 𝑂 (∥T∥ ·𝑚7

log𝑞 log𝐿) .

Remark 3.9 (Committing toM). The commitment relation (C ·V𝐿 = M ·G𝐿 −B ·Z) in Lemma 3.8 does not completely

match Eq. (3.3), but this is easy to fix by simply multiplying by G−1
𝐿
(I𝐿). In this case, we have

C · V𝐿 · G−1𝐿 (I𝐿)︸         ︷︷         ︸
Ṽ𝐿

= M · G𝐿 · G−1𝐿 (I𝐿) − B · Z · G−1 (I𝐿) = M − B · Z · G−1𝐿 (I𝐿)︸       ︷︷       ︸
Z̃𝐿

.

Since the columns of G−1
𝐿
(I𝐿) have Hamming weight 1, the matrices Ṽ and Z̃ are submatrices of V and Z, respectively.

This means ∥Ṽ∥ ≤ ∥V∥ and ∥Z̃∥ ≤ ∥Z∥. Since Eq. (3.3) is more convenient to work with in our constructions, we

define algorithms (Commat,Vermat,Openmat) as follows:
• Commat (pp,M): Output C = Commx (pp,M) ∈ Z𝑛×𝑚𝑞 .

• Vermat (pp, 1𝐿): Compute V′
𝐿
= Vermx (pp, 1𝐿) and output V𝐿 = V′

𝐿
· G−1

𝐿
(I𝐿) ∈ Z𝑚×𝐿𝑞 .

• Openmat (pp,M): Compute Z′
𝐿
= Openmx (pp,M) and output Z = Z′

𝐿
· G−1

𝐿
(I𝐿) ∈ Z𝑚×𝐿𝑞 .

Moreover, for all pp = (B,W, T) where B ∈ Z𝑛×𝑚𝑞 ,W ∈ Z2𝑚2𝑛×𝑚
𝑞 , T ∈ Z(2𝑚

2+1)𝑚×2𝑚3

𝑞 , [I
2𝑚2 ⊗ B | W] ·T = I

2𝑚2 ⊗G, all
parameters 𝐿 ∈ N, all matricesM ∈ Z𝑛×𝐿𝑞 , and setting C = Commx (pp, x), V𝐿 = Vermx (pp, 1𝐿), and Z = Openmx (pp, x),

C · V𝐿 = M − B · Z and ∥V𝐿 ∥ ≤ 𝑂 (∥T∥ ·𝑚4
log𝑞) and ∥Z∥ ≤ 𝑂 (∥T∥ ·𝑚7

log𝑞 log𝐿).
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Committing to sparse matrices. Our applications to distributed broadcast encryption and registered ABE relies

on the ability for users to commit to sparse matricesM ∈ Z𝑛×𝐿𝑞 where 𝐿 is exponential (e.g., 𝐿 = 2
𝜆
), but whereM only

contains a polynomial number of non-zero columns. This property allows us to construct schemes that support an a

priori unbounded number of users. When committing to exponentially-wide matrices, the verification matrix V𝐿 and

the opening Z are also exponentially wide. Our applications also require an algorithm that provides local access to the
columns of V𝐿 and Z. Namely, there is an efficient algorithm that runs in time poly(𝑚, log𝑞, log𝐿) which can compute

the 𝑖th column of the verification matrix V𝐿 . Similarly, there is an algorithm that runs in time poly(𝐾,𝑚, log𝑞, log𝐿)
that computes the 𝑖th column of the opening matrix Z, where 𝐾 is the number of non-zero columns in the matrix

M. It is straightforward to adapt the construction from [Wee25, §3.2] to support these properties. We summarize

the properties we need in the following lemma, and provide a formal proof of it in Appendix A.1.

Lemma 3.10 (Committing to Sparse Matrices and Computing Local Openings). There exists a tuple of efficient
algorithms (ComSparsemat,VerLocalmat,OpenLocalmat) with the following syntax and properties:

• ComSparsemat (pp,M) → C: On input the public parameters pp (with lattice parameters 𝑛,𝑚,𝑞) and a matrix
M ∈ Z𝑛×𝐿𝑞 , ComSparsemat (pp,M) outputs C = Commat (pp,M) in time poly(𝐾,𝑚, log𝑞, log𝐿), where 𝐾 is the
number of non-zero columns in M.

• VerLocalmat (pp, 𝐿, 𝑖) → v𝐿,𝑖 : On input the public parameters pp (with lattice parameters 𝑛,𝑚,𝑞), the length
parameter 𝐿 (in binary) and a column index 𝑖 ∈ [𝐿], VerLocalmat (pp, 𝐿, 𝑖) outputs the 𝑖th column v𝐿,𝑖 ∈ Z𝑚𝑞 of the
matrix V𝐿 = Vermat (pp, 1𝐿) in time poly(𝑚, log𝑞, log𝐿).

• OpenLocalmat (pp,M, 𝑖) → z𝑖 : On input the public parameters pp (with lattice parameters 𝑛,𝑚,𝑞), a sparse matrix
M ∈ Z𝑛×𝐿𝑞 , and an index 𝑖 ∈ [𝐿], OpenLocalmat (pp,M, 𝑖) outputs the 𝑖th column z𝑖 ∈ Z𝑚𝑞 of Z𝑖 = Openmat (pp,M)
in time poly(𝐾,𝑚, log𝑞, log𝐿), where 𝐾 is the number of non-zero columns in M.

4 Distributed Broadcast Encryption
In this section, we show how to construct an distributed broadcast encryption [WQZD10, BZ14] scheme from the

succinct LWE assumption. In distributed broadcast encryption, users choose their own public and secret keys and

post their public keys to a public-key directory. One can then encrypt a message to an arbitrary subset of public

keys with a ciphertext whose size scales polylogarithmically with the number of users in the broadcast set. Previous

distributed broadcast encryption schemes based on bilinear maps [KMW23, FWW23] or succinct LWE [CW24] could

only support a bounded number of users, where the size of the public parameters and individual public keys scale

linearly (or worse) with the bound on the number of users. We give the first distributed broadcast encryption scheme

from succinct LWE that supports an arbitrary polynomial number of users. Previous schemes that could support an

unbounded number of users relied either on indistinguishability obfuscation [BZ14] or witness encryption [FWW23].

Distributed broadcast encryption. We begin by recalling the notion of distributed broadcast encryption. Our

definition is adapted from the works of [BZ14, KMW23].
1

Definition 4.1 (Distributed Broadcast Encryption [BZ14, KMW23]). Let 𝜆 be a security parameter. A distributed

broadcast encryption scheme ΠDBE is a tuple of efficient algorithms ΠDBE = (Setup,KeyGen, Encrypt,Decrypt) with
the following syntax:

• Setup(1𝜆, 𝑁 ) → pp: On input the security parameter 𝜆 and the number of users 𝑁 (in binary), the setup

algorithm outputs the public parameters pp. We assume that pp contains 1
𝜆
and 𝑁 .

• KeyGen(pp, 𝑖) → (pk𝑖 , sk𝑖 ): On input the public parameters pp and an index 𝑖 ∈ [𝑁 ], the key-generation
algorithm outputs a public key pk𝑖 and secret key sk𝑖 .

1
Some previous lattice-based schemes [CW24, CHW25] also required an IsValid algorithm that is used to (publicly) decide whether a user public

key is well-formed or not, and only required correctness/security to hold when encrypting to well-formed keys. Our distributed broadcast

encryption construction (Construction 4.2) will not require this property, so for ease of exposition, we omit this algorithm from the formal

syntax. The syntax we use matches that from [BZ14, KMW23].
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• Encrypt(pp, {(𝑖, pk𝑖 )}𝑖∈𝑆 , 𝜇) → ct: On input the public parameters pp, a collection of public keys pk𝑖 and a

message 𝜇 ∈ {0, 1}, the encryption algorithm outputs a ciphertext ct.

• Decrypt(pp, {(𝑖, pk𝑖 )}𝑖∈𝑆 , ct, (𝑖∗, sk𝑖∗ )) → 𝜇: On input the public parameters pp, a collection of public keys pk𝑖 ,
a ciphertext ct, and a secret key sk𝑖∗ for an index 𝑖∗, the decryption algorithm outputs a message 𝜇 ∈ {0, 1}.

We require that ΠDBE satisfy the following properties:

• Correctness: For all parameters 𝜆, 𝑁 ∈ N, all pp in the support of Setup(1𝜆, 𝑁 ), all sets 𝑆 ⊆ [𝑁 ], all indices
𝑖∗ ∈ 𝑆 , all public keys pk𝑖 for 𝑖 ∈ 𝑆 \ {𝑖∗}, and all messages 𝜇 ∈ {0, 1},

Pr

[
Decrypt(pp, {(𝑖, pk𝑖 )}𝑖∈𝑆 , ct, (𝑖∗, sk𝑖∗ )) = 𝜇 :

(pk𝑖∗ , sk𝑖∗ ) ← KeyGen(pp, 𝑖∗)
ct← Encrypt(pp, {(𝑖, pk𝑖 )}𝑖∈𝑆 , 𝜇)

]
= 1.

• Selective security: For a security parameter 𝜆, a bound 𝑁 , and a bit 𝑏 ∈ {0, 1}, we define the selective security
game between an adversary A and a challenger as follows:

– On input the security parameter 1
𝜆
and the bound 𝑁 , the adversary outputs the challenge set 𝑆∗ ⊆ [𝑁 ].

– The challenger samples pp← Setup(1𝜆, 𝑁 ) and (pk𝑖 , sk𝑖 ) ← KeyGen(pp, 𝑖) for 𝑖 ∈ 𝑆∗. Finally, it computes

ct𝑏 ← Encrypt(pp, {pk𝑖 }𝑖∈𝑆∗ , 𝑏, 𝑆∗) and sends

(
pp, {pk𝑖 }𝑖∈𝑆∗ , ct𝑏

)
to A.

– At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say the distributed broadcast encryption scheme is selectively secure if for all efficient adversaries A and

all bounds 𝑁 ≤ 2
𝜆
, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

|Pr[𝑏′ = 1 | 𝑏 = 1] − Pr[𝑏′ = 1 | 𝑏 = 0] | = negl(𝜆)

in the selective security game.

• Succinctness: There exists a fixed polynomial poly(·, ·) such that for all 𝜆, 𝑁 ∈ N, all subsets 𝑆 ⊆ [𝑁 ], all public
parameters pp in the support of Setup(1𝜆, 𝑁 ), all public keys pk𝑖 , all messages 𝜇 ∈ {0, 1}, and all ciphertexts

ct in the support of Encrypt(pp, {pk𝑖 }𝑖∈𝑆 , 𝜇, 𝑆), it holds that |ct| ≤ poly(𝜆, log𝑁 ).

Construction 4.2 (Distributed Broadcast Encryption). Let 𝜆 be a security parameter and (𝑛,𝑚,𝑞, 𝜒) be LWE param-

eters (that can be functions of 𝜆 and 𝑁 ). Let 𝜎 be a Gaussian width parameter. We construct a distributed broadcast

encryption scheme as follows:

• Setup(1𝜆, 𝑁 ): On input the security parameter 𝜆 and the number of users 𝑁 , sample

(B,TB) ← TrapGen(1𝑛, 1𝑚, 𝑞),W r← Z2𝑚2𝑛×𝑚
𝑞

T← SamplePre( [I
2𝑚2 ⊗ B | W],

[ I
2𝑚2⊗TB

0

]
, I
2𝑚2 ⊗ G, 𝜎)

A r← Z𝑛×𝑚𝑞 , p r← Z𝑛𝑞 .

If ∥T∥ >
√
𝑚𝜎 , then set T =

[ I
2𝑚2⊗TB

0

]
. Let ppcom = (B,W,T) and output the public parameters pp =

(𝑁, ppcom,A, p).

• KeyGen(pp, 𝑖): On input the public parameters pp = (𝑁, ppcom,A, p) and an index 𝑖 ∈ [𝑁 ], sample

r𝑖
r← {0, 1}𝑚

v𝑖 = VerLocalmat (ppcom, 𝑁 , 𝑖)

Output the public key t𝑖 = Br𝑖 + p − Av𝑖 ∈ Z𝑛𝑞 and the secret key sk = r𝑖 .
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• Encrypt(pp, {(𝑖, pk𝑖 )}𝑖∈𝑆 , 𝜇): On input the public parameters pp = (𝑁, ppcom,A, p) where ppcom = (B,W,T),
the public keys pk𝑖 = t𝑖 ∈ Z𝑛×𝑚𝑞 and a message 𝜇 ∈ {0, 1}, sample the following:

s r← Z𝑛𝑞 , e← 𝐷𝑚
Z,𝜒 , D1

r← {0, 1}𝑚×𝑚 , d2
r← {0, 1}𝑚 .

If ∥e∥ >
√
𝑚𝜒 , then set e = 0𝑚 . Then, for all 𝑖 ∈ 𝑆 , compute C𝑖 = ComSparsemat (ppcom, uT

𝑖 ⊗ t𝑖 ), where
u𝑖 ∈ {0, 1}𝑁 is the 𝑖th unit vector. Output the ciphertext

ct =

(
sTB + eT , sT

(
A +

∑︁
𝑖∈𝑆

C𝑖

)
+ eTD1 , sTp + eTd2 + ⌊𝑞/2⌋ · 𝜇

)
• Decrypt(pp, {(𝑖, pk𝑖 )}𝑖∈𝑆 , ct, (𝑖∗, sk𝑖∗ )): On input the public parameters pp = (𝑁, ppcom,A, p) where ppcom =

(B,W,T), the public keys pk𝑖 = t𝑖 ∈ Z𝑛×𝑚𝑞 , the ciphertext ct = (c1, c2, 𝑐3), and a secret key sk𝑖∗ = r𝑖∗ for an
index 𝑖∗ ∈ 𝑆 , the decryption algorithm first computes

v𝑖∗ = VerLocalmat (ppcom, 𝑁 , 𝑖∗)
∀𝑖 ∈ 𝑆 : z𝑖,𝑖∗ = OpenLocalmat (ppcom, uT

𝑖 ⊗ t𝑖 , 𝑖∗).

Finally, compute

�̃� = 𝑐3 + cT1r𝑖∗ − cT2v𝑖∗ −
∑︁
𝑖∈𝑆

cT
1
z𝑖,𝑖∗

and output 0 if −𝑞/4 < 𝜉 < 𝑞/4 and 1 otherwise.

Theorem 4.3 (Correctness). Suppose 𝑞 > 𝑁 ·𝑂 (𝑚9𝜒𝜎 log𝑞 log𝑁 ). Then, Construction 4.2 is correct.

Proof. Take any 𝜆, 𝑁 ∈ N, any pp in the support of Setup(1𝜆, 𝑁 ), any set 𝑆 ⊆ [𝑁 ], any index 𝑖∗ ∈ 𝑆 , any col-

lection of public keys {pk𝑖 }𝑖∈𝑆\{𝑖∗ } , and any message 𝜇 ∈ {0, 1}. Let (pk𝑖∗ , sk𝑖∗ ) ← KeyGen(pp, 𝑖∗) and ct ←
Encrypt(pp, {(𝑖, pk𝑖 )}𝑖∈𝑆 , 𝜇). Consider Decrypt(pp, {(𝑖, pk𝑖 )}𝑖∈𝑆 , ct, (𝑖∗, sk𝑖∗ )):

• Let pp = (𝑁, ppcom,A, p) where ppcom = (B,W,T). By construction of Setup, [I
2𝑚2 ⊗ B | W]T = I

2𝑚2 ⊗ G and

∥T∥ ≤
√
𝑚𝜎 .

• By definition, pk𝑖∗ = t𝑖∗ = Br𝑖∗ + p − Av𝑖∗ where r𝑖∗ ∈ {0, 1}𝑚 and v𝑖∗ = VerLocalmat (ppcom, 𝑁 , 𝑖∗).

• Let s, e,D1, d2 be the components sampled by Encrypt. By definition, ∥e∥ ≤
√
𝑚𝜒 and ∥D1∥ , ∥d2∥ ≤ 1. The

ciphertext can be written as

ct = (cT
1
, cT

2
, 𝑐3) =

(
sTB + eT , sT

(
A +

∑︁
𝑖∈𝑆

C𝑖

)
+ eTD1 , sTp + eTd2 + ⌊𝑞/2⌋ · 𝜇

)
.

• Let v𝑖∗ and z𝑖,𝑖∗ be the vectors computed by Decrypt. For each 𝑖 ∈ 𝑆 , let C𝑖 = ComSparsemat (ppcom, uT
𝑖 ⊗ t𝑖 ). By

Remark 3.9 and Lemma 3.10, we have for all 𝑖 ∈ 𝑆

C𝑖v𝑖∗ =

{
t𝑖∗ − Bz𝑖∗,𝑖∗ 𝑖 = 𝑖∗

−Bz𝑖,𝑖∗ 𝑖 ≠ 𝑖∗ .

Thus, we can now write

cT
2
v𝑖∗ +

∑︁
𝑖∈𝑆

cT
1
z𝑖,𝑖∗ = sTAv𝑖∗ +

∑︁
𝑖∈𝑆

sTC𝑖v𝑖∗ +
∑︁
𝑖∈𝑆

sTBz𝑖,𝑖∗ + eTD1v𝑖∗ +
∑︁
𝑖∈𝑆

eTz𝑖,𝑖∗

= sT (Av𝑖∗ + t𝑖∗ ) + 𝑒1
= sT (p + Br𝑖∗ ) + 𝑒1.
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where 𝑒1 = eTD1v𝑖∗ +
∑

𝑖∈𝑆 eTz𝑖,𝑖∗ . Then

�̃� = 𝑐3 + cT1r𝑖∗ − cT2v𝑖∗ −
∑︁
𝑖∈𝑆

cT
1
z𝑖,𝑖∗

= sTp + eTd2 + ⌊𝑞/2⌋ · 𝜇 + sTBr𝑖∗ + eTr𝑖∗ − sT (p + Br𝑖∗ ) − 𝑒1
= ⌊𝑞/2⌋ · 𝜇 + eTd2 + eTr𝑖∗ − 𝑒1,

Let 𝑒 = eTd2 + eTr𝑖∗ − 𝑒1. As long as |𝑒 | < 𝑞/4, correctness holds.

• We now bound |𝑒 |. First, for all 𝑖 ∈ 𝑆 , by Remark 3.9 and Lemma 3.10,

∥v𝑖∗ ∥ ≤ 𝑂 (∥T∥ ·𝑚4
log𝑞) ≤ 𝑂 (𝑚9/2𝜎 log𝑞)z𝑖,𝑖∗ ≤ 𝑂 (∥T∥ ·𝑚7
log𝑞 log𝑁 ) ≤ 𝑂 (𝑚15/2𝜎 log𝑞 log𝑁 ).

First, we bound |𝑒1 |. Since ∥e∥ ≤
√
𝑚𝜒 , we have

|𝑒1 | ≤
eTD1v𝑖∗

 +∑︁
𝑖∈𝑆

eTz𝑖,𝑖∗ ≤ 𝑂 (𝑚7𝜒𝜎 log𝑞) + 𝑁 ·𝑂 (𝑚9𝜒𝜎 log𝑞 log𝑁 )

= 𝑁 ·𝑂 (𝑚9𝜒𝜎 log𝑞 log𝑁 ).

Next,

|𝑒 | ≤ |eTd2 | + |eTr𝑖∗ | + |𝑒1 | ≤ 𝑁 ·𝑂 (𝑚9𝜒𝜎 log𝑞 log𝑁 ).
Setting 𝑞 > 𝑁 ·𝑂 (𝑚9𝜒𝜎 log𝑞 log𝑁 ) suffices for correctness. □

Theorem 4.4 (Selective Security). Suppose 𝑛 ≥ 𝜆, 𝑚 ≥ 3𝑛 log𝑞, and 𝜎 ≥ 𝑂 (𝑚3
log𝑚). Then, under the (2𝑚2, 𝜎)-

succinct LWE assumption with parameters (𝑛,𝑚,𝑞, 𝜒), Construction 4.2 is selectively secure.

Proof. Take any 𝑁 ≤ 2
𝜆
and any efficient adversary A for the selective security game. We now define a sequence

of hybrid experiments:

• Hyb(𝑏 )
0

: This is the selective security experiment where the challenger encrypts the bit 𝑏 ∈ {0, 1}. Specifically,
the game proceeds as follows:

– On input the security parameter 1
𝜆
and the bound 𝑁 , algorithm A outputs the challenge set 𝑆∗ ⊆ [𝑁 ].

– The challenger then samples pp← Setup(1𝜆, 𝑁 ) by computing

(B,TB) ← TrapGen(1𝑛, 1𝑚, 𝑞),W r← Z2𝑚2𝑛×𝑚
𝑞

T← SamplePre( [I
2𝑚2 ⊗ B | W],

[ I
2𝑚2⊗TB

0

]
, I
2𝑚2 ⊗ G, 𝜎)

A r← Z𝑛×𝑚𝑞 , p r← Z𝑛𝑞 .

If ∥T∥ >
√
𝑚𝜎 , then it sets T =

[ I
2𝑚2⊗TB

0

]
. The challenger sets ppcom = (B,W, T) and pp = (𝑁, ppcom,A, p).

– Next, for each 𝑖 ∈ 𝑆∗, the challenger samples a public key by computing pk𝑖 ← KeyGen(pp, 𝑖). Specifically,
for each 𝑖 ∈ 𝑆∗, the challenger samples

r𝑖
r← {0, 1}𝑚

v𝑖 = VerLocalmat (ppcom, 𝑁 , 𝑖)

and sets pk𝑖 = t𝑖 = Br𝑖 + p − Av𝑖 ∈ Z𝑛×𝑚𝑞 .

– Finally, the challenger constructs the challenge ciphertext ct∗ ← Encrypt(pp, {(𝑖, pk𝑖 )}𝑖∈[𝑁 ], 𝑏). Con-
cretely, the challenger starts by sampling

s r← Z𝑛𝑞 , e← 𝐷𝑚
Z,𝜒 , D1

r← {0, 1}𝑚×𝑚 , d2
r← {0, 1}𝑚 .
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If ∥e∥ >
√
𝑚𝜒 , then the challenger sets e = 0𝑚 . Then, for all 𝑖 ∈ 𝑆 , the challenger computes C𝑖 =

ComSparsemat (ppcom, uT
𝑖 ⊗ t𝑖 ). It defines the challenge ciphertext ct∗ to be

ct∗ =

(
sTB + eT , sT

(
A +

∑︁
𝑖∈𝑆∗

C𝑖

)
+ eTD1 , sTp + eTd2 + ⌊𝑞/2⌋ · 𝑏

)
.

– The challenger gives

(
pp, {(𝑖, pk𝑖 )}𝑖∈𝑆∗ , ct∗

)
to A.

– At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb(𝑏 )
1

: Same as Hyb(𝑏 )
0

, except when sampling the public parameters, the challenger samples

T r← [I
2𝑚2 ⊗ B | W]−1𝜎 (I2𝑚2 ⊗ G) and B r← Z𝑛×𝑚𝑞 .

• Hyb(𝑏 )
2

: Same as Hyb(𝑏 )
1

, except when sampling the public parameters, the challenger no longer checks the

condition ∥T∥ >
√
𝑚𝜎 . Similarly, when constructing the challenge ciphertext ct∗, the challenger no longer

checks if ∥e∥ >
√
𝑚𝜒 .

• Hyb(𝑏 )
3

: Same as Hyb(𝑏 )
2

, except the challenger samples t𝑖
r← Z𝑛×𝑚𝑞 for all 𝑖 ∈ 𝑆∗.

• Hyb(𝑏 )
4

: Same as Hyb(𝑏 )
3

, except the challenger now sets A = BD1 −
∑

𝑖∈𝑆∗ C𝑖 and p = Bd2. Specifically, this
experiment operates as follows:

– On input the security parameter 1
𝜆
, algorithm A outputs the bound 𝑁 and a challenge set 𝑆∗ ⊆ [𝑁 ].

– The challenger samples

B r← Z𝑛×𝑚𝑞 ,W r← Z2𝑚2𝑛×𝑚
𝑞

T← [I
2𝑚2 ⊗ B | W]−1𝜎 (I2𝑚2 ⊗ G)

t𝑖
r← Z𝑛𝑞 for all 𝑖 ∈ 𝑆∗

D1

r← {0, 1}𝑚×𝑚, d2 r← {0, 1}𝑚

The challenger sets ppcom = (B,W, T). For each 𝑖 ∈ 𝑆∗, the challenger sets pk𝑖 = t𝑖 and also computes C𝑖 =

ComSparsemat (ppcom, uT
𝑖 ⊗ t𝑖 ). The challenger sets A = BD1−

∑
𝑖∈𝑆∗ C𝑖 , p = Bd2, and pp = (𝑁, ppcom,A, p).

– To construct the challenge ciphertext, the challenger samples s r← Z𝑛𝑞 and e← 𝐷𝑚
Z,𝜒 . It then defines the

challenge ciphertext ct∗ to be

ct∗ =

(
sTB + eT , sT

(
A +

∑︁
𝑖∈𝑆∗

C𝑖

)
+ eTD1 , sTp + eTd2 + ⌊𝑞/2⌋ · 𝑏

)
=

(
sTB + eT , (sTB + eT)D1 , (sTB + eT)d2 + ⌊𝑞/2⌋ · 𝑏

)
.

– The challenger gives

(
pp, {(𝑖, pk𝑖 )}𝑖∈𝑆∗ , ct∗

)
to A.

– At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb(𝑏 )
5

: Same as Hyb(𝑏 )
4

, except the challenger samples c1
r← Z𝑚𝑞 and defines the challenge ciphertext to be

ct∗ = (cT
1
, cT

1
D1 , cT1d2 + ⌊𝑞/2⌋ · 𝑏).

• Hyb(𝑏 )
6

: Same as Hyb(𝑏 )
5

, except the challenger samples c2
r← Z𝑚𝑞 and 𝑐3

r← Z𝑞 . The challenger defines the
challenge ciphertext to be ct∗ = (cT

1
, cT

2
, 𝑐3). Notably, in this experiment, the adversary’s view is independent

of the bit 𝑏.
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We write Hyb(𝑏 )
𝑖
(A) to denote the distribution of the output of Hyb(𝑏 )

𝑖
with adversary A. We now analyze each pair

of adjacent distributions.

Lemma 4.5. If 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, and 𝜎 ≥ 𝑂 (𝑚3
log𝑚), then for all 𝑏 ∈ {0, 1}, Hyb(𝑏 )

0
and Hyb(𝑏 )

1
are statistically

indistinguishable.

Proof. By Lemma 3.5, ∥TB∥ = 1. As long as 𝜎 ≥ (2𝑚2 + 1)𝑚 ∥TB∥ log(2𝑚2𝑛) = 𝑂 (𝑚3
log𝑚), these two distributions

are statistically indistinguishable by Lemma 3.5. □

Lemma 4.6. If 𝑛 ≥ 𝜆, 𝑚 ≥ 2𝑛 log𝑞, 𝑞 is prime, and 𝜎 ≥ 𝑂 (log𝑚), then for all 𝑏 ∈ {0, 1}, Hyb(𝑏 )
1

and Hyb(𝑏 )
2

are
statistically indistinguishable.

Proof. By Lemmas 3.2 and 3.4, with overwhelming probability over the choice of B r← Z𝑛×𝑚𝑞 , we have that ∥T∥ ≤
√
𝑚𝜎 .

By Lemma 3.4, we have that ∥e∥ ≤
√
𝑚𝜒 with probability at least 1 −𝑚 ·𝑂 (2−𝑚). Thus, the conditions the challenger

checks in Hyb(𝑏 )
1

hold with negligible probability so the two experiments are statistically indistinguishable. □

Lemma 4.7. If 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞, and 𝑞 > 2 is prime, then for all 𝑏 ∈ {0, 1}, Hyb(𝑏 )
2

and Hyb(𝑏 )
3

are statistically
indistinguishable by

Proof. Specifically, by Lemma 3.1, the distributions (B,Br) and (B, t) where B r← Z𝑛×𝑚𝑞 , r r← {0, 1}𝑚×𝑚 , and t r← Z𝑛×𝑚𝑞

are statistically indistinguishable. Since |𝑆∗ | = poly(𝜆), the claim now follows by a standard hybrid argument. □

Lemma 4.8. If 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞, and 𝑞 > 2 is prime, then for all 𝑏 ∈ {0, 1}, Hyb(𝑏 )
3

and Hyb(𝑏 )
4

are statistically
indistinguishable.

Proof. Specifically, invoking Lemma 3.1 with the error vector e ∈ Z𝑚𝑞 the challenger samples inHyb(𝑏 )
3

andHyb(𝑏 )
4

, we

can conclude that the distributions (B,BD1, eTD1) and (B,A∗, eT1D1) are statistically indistinguishable when B r← Z𝑛×𝑚𝑞 ,

D1

r← {0, 1}𝑚×𝑚 , A∗ r← Z𝑛×𝑚𝑞 . In Hyb(𝑏 )
3

and Hyb(𝑏 )
4

, write A = A∗ − ∑
𝑖∈𝑆∗ C𝑖 . When A∗ = BD1, we obtain the

distribution of A in Hyb(𝑏 )
3

and when A∗ r← Z𝑛×𝑚𝑞 , we obtain the distribution of A in Hyb(𝑏 )
4

(since A∗ is sampled

independently of all other quantities in the experiment). Similarly, the distributions (B,Bd2, eTd2) and (B, p, eTd2)
are statistically indistinguishable when B r← Z𝑛×𝑚𝑞 , d2

r← {0, 1}𝑚 , p r← Z𝑛𝑞 and the claim holds. □

Lemma 4.9. Under the (2𝑚2, 𝜎)-succinct LWE assumption with lattice parameters (𝑛,𝑚,𝑞, 𝜒), for all 𝑏 ∈ {0, 1}, Hyb(𝑏 )
4

and Hyb(𝑏 )
5

are computationally indistinguishable.

Proof. Suppose | Pr[Hyb(𝑏 )
4
(A) = 1] − Pr[Hyb(𝑏 )

5
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. We use A to construct

an adversary B for the (2𝑚2)-succinct LWE assumption:

1. On input the succinct LWE challenge (B, c1,W,T), algorithm B starts running algorithm A which outputs

the bound 𝑁 = 𝑁 (𝜆) and the challenge set 𝑆∗ ⊆ [𝑁 ].

2. Algorithm B sets ppcom = (B,W,T) and samples D1

r← {0, 1}𝑚×𝑚 and d2
r← {0, 1}𝑚 . Next, for each 𝑖 ∈ 𝑆∗,

algorithm B samples pk𝑖 = P𝑖
r← Z𝑛×𝑚𝑞 and computes C𝑖 = ComSparsemat (ppcom, uT

𝑖 ⊗ P𝑖 ). Finally, algorithm
B sets A = BD1 −

∑
𝑖∈𝑆∗ C𝑖 , p = Bd2, and pp = (𝑁, ppcom,A, p).

3. Finally, algorithm B constructs the challenger ciphertext as ct∗ = (cT
1
, cT

1
D1, ctT1d2 + ⌊𝑞/2⌋ · 𝑏).

4. Algorithm B gives

(
pp, {(𝑖, pk𝑖 )}𝑖∈𝑆∗ , ct∗

)
to A and outputs whatever A outputs.

By definition, the challenger samples B r← Z𝑛×𝑚𝑞 , W r← Z2𝑚2𝑛×𝑚
𝑞 , and T ← [I

2𝑚2 ⊗ B | W]−1𝜎 (I2𝑚2 ⊗ G). Thus,
algorithm B perfectly simulates pp according to the distribution of Hyb(𝑏 )

4
and Hyb(𝑏 )

5
. The remaining components

in the public parameters and the public keys are sampled exactly as in Hyb(𝑏 )
4

and Hyb(𝑏 )
5

. It suffices to consider the

challenger ciphertext:
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• If the challenger sets cT
1
= sTB + eT where s r← Z𝑛𝑞 and e r← 𝐷𝑚

Z,𝜒 , then algorithm B perfectly simulates the

distribution of Hyb(𝑏 )
4

.

• If the challenger samples c1
r← Z𝑚𝑞 , then algorithm B perfectly simulates the distribution of Hyb(𝑏 )

5
.

Thus, algorithm B breaks succinct LWE security with the same advantage 𝜀. □

Lemma 4.10. If 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞, and 𝑞 > 2 is prime, then for all 𝑏 ∈ {0, 1}, Hyb(𝑏 )
5

and Hyb(𝑏 )
6

are statistically
indistinguishable.

Proof. Applying Lemma 3.1 with respect to the matrix

[
B
cT
1

]
, the following distributions are statistically indistinguish-

able:

(B, c1,BD1,Bd2, cT1D1, cT1d2) and (B, c1,A∗, p, c2, 𝑐3),

when B r← Z𝑛×𝑚𝑞 , c1
r← Z𝑚𝑞 , D1

r← {0, 1}𝑚×𝑚 , d2 r← {0, 1}𝑚 , A∗ r← Z𝑛×𝑚𝑞 , p r← Z𝑛𝑞 , c2
r← Z𝑚𝑞 , and 𝑐3

r← Z𝑞 . Applying
Lemma 3.1 again with respect to the matrix B, we conclude that the following two distributions are also statistically

indistinguishable:

(B, c1,A∗, p, c2, 𝑐3) and (B, c1,BD1,Bd2, c2, 𝑐3),

By a hybrid argument, we conclude that

(B, c1,BD1,Bd2, cT1D1, cT1d2) and (B, c1,BD1,Bd2, c2, 𝑐3)

are statistically indistinguishable. The left distribution maps toHyb(𝑏 )
5

while the right distribution maps toHyb(𝑏 )
6

. □

By construction, the challenger’s behavior in Hyb(𝑏 )
6

is independent of the bit 𝑏 ∈ {0, 1}. Thus, Hyb(0)
6
(A) ≡

Hyb(1)
6
(A). The claim now follows by combining Lemmas 4.5 to 4.10. □

Theorem 4.11 (Succinctness). Suppose𝑚 log𝑞 = poly(𝑛, log𝑁 ). Then Construction 4.2 is succinct.

Proof. A ciphertext in Construction 4.2 can be written as (c1, c2, 𝑐3) where c1, c2 ∈ Z𝑚𝑞 and 𝑐3 ∈ Z𝑞 . Thus, the total
size of a ciphertext is 𝑂 (𝑚 log𝑞) = poly(𝑛, log𝑁 ), as required. □

Parameter instantiation. We now describe one instantiation of the parameters in Construction 4.2 to satisfy

Theorems 4.3, 4.4, and 4.11. Let 𝜆 be the security parameter and 𝑁 be the maximum number of users. Take any

constant 0 < 𝜀 < 1. We instantiate the LWE parameters (𝑛,𝑚,𝑞, 𝜒) and the width parameter 𝜎 where

𝑛 = 𝜆 log1/𝜀 𝑁

𝑚 = 𝑛 · poly(𝜆, log𝑁 )
𝜒 = poly(𝜆, log𝑁 )
𝜎 = 𝑂 (𝑚3

log𝑚)
𝑞 = 𝑁 · poly(𝜆, log𝑁 )

and the (2𝑚2, 𝜎)-succinct LWE assumption holds with LWE parameters (𝑛,𝑚,𝑞, 𝜒). This corresponds to a succinct

LWE instance where the modulus-to-noise ratio is 𝑁 · poly(𝜆, log𝑁 ) = 2
�̃� (𝑛𝜀 )

. For this choice of parameters, we

obtain a distributed broadcast encryption scheme with the following properties:

|pp| = poly(𝜆, log𝑁 ) , |pk| = poly(𝜆, log𝑁 ) , |sk| = poly(𝜆, log𝑁 ) , |ct| = poly(𝜆, log𝑁 ).

In particular, the size of the public parameters, the size of individual public/secret keys, and the size of the ciphertext

are optimal . Moreover, in the case where 𝑁 = poly(𝜆), then 𝑞 = poly(𝜆). In this case, we can rely on succinct LWE

with a polynomial modulus-to-noise-ratio. We summarize our instantiation with the following corollary:
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Corollary 4.12 (Distributed Broadcast Encryption). Let 𝜆 be a security parameter and 𝑁 be the number of users. Under
the poly(𝜆, log𝑁 )-succinct LWE assumption with a sub-exponential modulus-to-noise ratio, there exists a distributed
broadcast encryption scheme supporting up to 𝑁 users where the size of the public parameters, the size of individual
public/secret keys, and the size of the ciphertext is poly(𝜆, log𝑁 ). Moreover, when 𝑁 = poly(𝜆), then security can be
based on the poly(𝜆, log𝑁 )-succinct LWE assumption with a polynomial modulus-to-noise ratio.

Remark 4.13 (Transparent Setup via Decomposed LWE). Our distributed broadcast encryption scheme (Construc-

tion 4.2) makes black-box use of the [Wee25] matrix commitment scheme. Moreover, the cryptographic assumption

in the security proof (Theorem 4.4) can equivalently be restated as asking that(
ppcom, s

TB + eT
) 𝑐≈

(
ppcom, c

T
)
,

where ppcom = (B,W, T) is the public parameters for the matrix commitment scheme, s r← Z𝑛𝑞 , e← 𝐷𝑚
Z,𝜒 , and c

r← Z𝑚𝑞 .
In [Wee25, Appendix C], Wee shows an alternative way to realize a matrix commitment scheme from the decomposed

LWE assumption introduced in [AMR25]. Specifically, the decomposed LWE assumption (with dimension ℓ and width

parameter 𝜎) along with LWE parameters (𝑛,𝑚,𝑞, 𝜒) asserts that(
B, sT (W(Iℓ ⊗ R) + vec(Iℓ )T ⊗ G) + eT,W,R

) 𝑐≈
(
B, cT,W,R),

where B r← Z𝑛×𝑚𝑞 , s r← Z𝑛𝑞 , W
r← Z𝑛×ℓ𝑚𝑞 , R← 𝐷𝑚×ℓ𝑚

Z,𝜎 , e← 𝐷ℓ2𝑚
Z,𝜒 , and c r← Zℓ2𝑚𝑞 . Wee then shows that an analogous

matrix commitment scheme (satisfying the properties in Lemma 3.8) where the public parameters are given by

ppcom = (B̂,W,R), where W ∈ Z𝑛×2𝑚3

𝑞 , R ∈ 𝐷𝑚×2𝑚3

Z,𝜎 , and

B̂ := W(I
2𝑚2⊗R + vec(I2𝑚2 )T ⊗ G) ∈ Z𝑛×4𝑚5

𝑞 . (4.1)

Then, the decomposed LWE assumption (with dimension 2𝑚2
and width parameter 𝜎) asserts that(

ppcom, s
TB̂ + eT

) 𝑐≈
(
ppcom, c

T
)
,

where ppcom = (B̂,W,R),W r← Z𝑛×2𝑚3

𝑞 , R← 𝐷𝑚×2𝑚3

Z,𝜎 , B̂ ∈ Z𝑛×4𝑚5

𝑞 as in Eq. (4.1), s r← Z𝑛𝑞 , e← 𝐷4𝑚5

Z,𝜒 , and c r← Z4𝑚5

𝑞 .

As such, we can substitute this alternative instantiation for the matrix commitment in Construction 4.2 to obtain a

distributed broadcast encryption scheme from the decomposed LWE assumption with dimension 2𝑚2
andwidth param-

eter 𝜎 . Compared to the basic instantiation from Construction 4.2, this has the following advantages and disadvantages:

• Transparent setup: The public parameters ppcom for the matrix commitment scheme in the above instantiation

can be described by W r← Z𝑛×2𝑚3

𝑞 and R← 𝐷𝑚×2𝑚3

Z,𝜎 . These can be derived from a uniform random string. The

remaining components of the public key in Construction 4.2 is a uniform random matrix A and a uniform

random vector p. Thus, this yields a construction with a transparent setup process. The construction based on

succinct LWE requires including the succinct LWE trapdoor T as part of the commitment parameters, which

results in the need for a structured string.

• Larger parameters: A downside of using decomposed LWE instead of succinct LWE is the matrix B̂ ∈ Z𝑛×4𝑚5

𝑞

now has width 4𝑚5
(compared to B ∈ Z𝑛×𝑚𝑞 in Construction 4.2). Thus, the ciphertexts are longer in the modified

construction. Note though that this is a polynomial blowup in the parameter size (since𝑚 = poly(𝜆, log𝑁 )).

5 Key-Policy Registered Attribute-Based Encryption
In this section, we show how to construct a registered key-policy ABE for general circuits from the succinct LWE

assumption in the random oracle model. Our construction combines ideas from the recent registered ABE construction

from [CHW25] with our distributed broadcast encryption scheme from Section 4.
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Slotted registered ABE. Similar to prior works on registered ABE [HLWW23, FWW23, ZZGQ23, GLWW24,

AT24, CHW25], we focus on the simpler “slotted” primitive introduced in [HLWW23]. In a slotted registered ABE

scheme, there is a fixed number of users 𝑁 and each user is associated with a specific slot index. Instead of users

joining the system at arbitrary times, there is instead an aggregation algorithm that takes all 𝑁 keys (together with

their associated policies) and aggregates them into a single succinct master public key. The work of [HLWW23]

show that a slotted registered ABE scheme implies the normal notion that supports dynamic registrations with

only polylogarithmic overhead (using a standard powers-of-two transformation implicit in earlier works such as

[GHMR18]). In this work, we focus exclusively on the slotted primitive because it is simpler to describe and construct.

Definition 5.1 (Slotted Key-Policy Registered ABE [HLWW23, adapted]). Let 𝜆 be a security parameter and 𝜏 be

a policy-family parameter. Let X = {X𝜏 }𝜏∈N be a family of attributes and F = {F𝜏 }𝜏∈N be a set of policies (where

each 𝑓 ∈ F𝜏 is a function 𝑓 : F𝜏 → {0, 1}). Throughout this work, we adopt the convention that an attribute 𝑥 ∈ X𝜏
satisfies a policy 𝑓 ∈ F𝜏 if 𝑓 (𝑥) = 0 (and does not satisfy the policy if 𝑓 (𝑥) = 1). A slotted key-policy registered ABE

scheme with attribute space X and policy space F is a tuple of efficient algorithms ΠsRABE = (Setup,KeyGen, IsValid,
Aggregate, Encrypt,Decrypt) with the following syntax:

• Setup(1𝜆, 1𝜏 , 𝑁 ) → pp: On input the security parameter 𝜆, the policy-family parameter 𝜏 , and the number of

slots 𝑁 (in binary), the setup algorithm outputs the public parameters pp. We assume that pp implicitly defines

1
𝜆
, 1

𝜏
, and 𝑁 .

• KeyGen(pp, 𝑖, 𝑓 ) → (pk, sk): On input the public parameters pp, a slot index 𝑖 ∈ [𝑁 ] and a function 𝑓 ∈ F𝜏 ,
the key-generation algorithm outputs a public key pk and a secret key sk.

• IsValid(pp, 𝑖, 𝑓 , pk) → 𝑏: On input the public parameters pp, a slot index 𝑖 ∈ [𝑁 ], a function 𝑓 ∈ F𝜏 , and a

public key pk, the validity-checking algorithm outputs a bit 𝑏 ∈ {0, 1}.

• Aggregate(pp, (pk
1
, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁 )) → (mpk, hsk1, . . . , hsk𝑁 ): On input the common reference string pp,

a collection of 𝑁 public keys pk
1
, . . . , pk𝑁 , and their respective functions 𝑓1, . . . , 𝑓𝑁 ∈ F𝜏 , the aggregation

algorithm outputs a master public key mpk and a collection of helper decryption keys hsk1, . . . , hsk𝑁 . This
algorithm is deterministic.

• Encrypt(mpk, 𝑥, 𝜇) → ct: On input the master public key mpk, an attribute 𝑥 ∈ X𝜏 , and a message 𝜇 ∈ {0, 1},
the encryption algorithm outputs a ciphertext ct.

• Decrypt(sk, hsk, 𝑓 , 𝑥, ct) → 𝜇: On input the secret key sk, a helper decryption key hsk, a policy 𝑓 ∈ F𝜏 , an
attribute 𝑥 ∈ X𝜏 , and a ciphertext ct, the decryption algorithm outputs a message 𝜇 ∈ {0, 1}.

Moreover, ΠsRABE should satisfy the following properties:

• Completeness: For all 𝜆, 𝜏 ∈ N, all 𝑁 ≤ 2
𝜆
, all indices 𝑖 ∈ [𝑁 ], and all policies 𝑓 ∈ F𝜏 ,

Pr

[
IsValid(pp, 𝑖, 𝑓 , pk) = 1 :

pp← Setup(1𝜆, 1𝜏 , 𝑁 )
(pk, sk) ← KeyGen(pp, 𝑖, 𝑓 )

]
= 1.

• Correctness: We say ΠsRABE is correct if for all 𝜆, 𝜏 , all 𝑁 ≤ 2
𝜆
, all indices 𝑖 ∈ [𝑁 ], all policies 𝑓𝑖 ∈ F𝜏 ,

all attributes 𝑥 ∈ X𝜏 where 𝑓𝑖 (𝑥) = 0, all pp in the support of Setup(1𝜆, 1𝜏 , 𝑁 ), all {( 𝑗, 𝑓𝑗 , pk𝑗 )} 𝑗≠𝑖 where
IsValid(pp, 𝑗, 𝑓𝑗 , pk𝑗 ) = 1, and all messages 𝜇 ∈ {0, 1},

Pr

[
Decrypt(sk𝑖 , hsk𝑖 , 𝑓 , 𝑥, ct) = 𝜇 : ct← Encrypt(mpk, 𝑥, 𝜇)

]
= 1,

where (mpk, hsk1, . . . , hsk𝑁 ) = Aggregate(pp, pk
1
, . . . , pk𝑁 ).

• Compactness: There exists a polynomial poly(·, ·) such that for all 𝜆, 𝜏 ∈ N, all 𝑁 ≤ 2
𝜆
, all pp in the sup-

port of Setup(1𝜆, 1𝜏 , 𝑁 ), all (pk
1
, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁 ) where IsValid(pp, 𝑖, 𝑓𝑖 , pk𝑖 ) = 1 for all 𝑖 ∈ [𝑁 ], and all

(mpk, hsk1, . . . , hsk𝑁 ) in the support of Aggregate(pp, (pk
1
, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁 )), it holds that

|mpk| ≤ poly(𝜆, 𝜏) and ∀𝑖 ∈ [𝑁 ] : |hsk𝑖 | ≤ poly(𝜆, 𝜏).
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• Security: Let 𝑏 ∈ {0, 1} be a bit. For a policy-family parameter 𝜏 ∈ N, a slot number 𝑁 , and an adversary A,

we define the following security game between A and a challenger:

– Setup phase: The challenger begins by sampling pp← Setup(1𝜆, 1𝜏 , 𝑁 ) and gives pp toA. The challenger

also initializes a counter ctr = 0 and an (empty) dictionary D to keep track of key-generation queries.

– Query phase: Adversary A can now issue the following queries:

∗ Key-generation query: In a key-generation query, the adversary specifies a slot index 𝑖 ∈ [𝑁 ] and
a function 𝑓 ∈ F𝜏 . The challenger increments the counter ctr = ctr + 1 and samples (pkctr, skctr) ←
KeyGen(pp, 𝑖, 𝑓 ). The challenger replies to A with (ctr, pkctr) to A and then adds the mapping

ctr ↦→ (𝑖, 𝑓 , pkctr, skctr) to D.
∗ Corruption query: In a corruption query, the adversary specifies an index 1 ≤ 𝑐 ≤ ctr. In response,

the challenger looks up the tuple (𝑖′, 𝑓 ′, pk′, sk′) = D[𝑐] and replies to A with sk′.
– Challenge phase: Algorithm A now outputs a list of tuples (𝑐1, 𝑓1, pk1), . . . , (𝑐𝑁 , 𝑓𝑁 , pk𝑁 ) where either
𝑐𝑖 ∈ {1, . . . , ctr} to reference a challenger-generated key or 𝑐𝑖 = ⊥ to reference a key outside this set. The

adversary also specifies a challenge attribute 𝑥∗ ∈ X𝜏 . The challenger then checks the following:

∗ If 𝑐𝑖 ∈ {1, . . . , ctr}, then the challenger looks up the entry D[𝑐𝑖 ] = (𝑖′, 𝑓 ′, pk′, sk′) and checks that

𝑖 = 𝑖′. If not, the challenger outputs 0. Otherwise, the challenger sets pk∗𝑖 = pk′ and 𝑓 ∗𝑖 = 𝑓 ′. In
addition, if the adversary issued a “corruption” query on index 𝑐𝑖 , then the challenger additionally

checks that 𝑓 ′ (𝑥∗) = 1 and outputs 0 if not.

∗ If 𝑐𝑖 = ⊥, then the challenger checks that IsValid(pp, 𝑖, 𝑓𝑖 , pk𝑖 ) = 1 and 𝑓𝑖 (𝑥∗) = 1. If so, then the

challenger sets pk∗𝑖 = pk𝑖 and 𝑓
∗
𝑖 = 𝑓𝑖 . Otherwise, the challenger outputs 0.

The challenger computes (mpk, hsk1, . . . , hsk𝑁 ) = Aggregate(pp, (pk∗
1
, 𝑓 ∗

1
) . . . , (pk∗𝑁 , 𝑓 ∗𝑁 )) and replies

with the challenge ciphertext ct∗ ← Encrypt(mpk, 𝑥∗, 𝑏).
– Output phase: At the end of the experiment, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output

of the experiment. If A aborts before this point, then the output of the experiment is 0.

We say that a slotted registered ABE scheme is secure if for all polynomials 𝜏 = 𝜏 (𝜆) and 𝑁 = 𝑁 (𝜆), and all

efficient adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

|Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(𝜆)

in the above security game.

Relaxed security notions. We now describe two relaxations of the security definition in Definition 5.1.

Definition 5.2 (Attribute-Selective Security). We say a slotted registered ABE scheme ΠsRABE satisfies attribute-

selective security if the adversary must declare its challenger attribute 𝑥∗ ∈ X𝜏 at the beginning of the setup phase

(before seeing pp).

Definition 5.3 (Security without Corruptions). We say a slotted registered ABE scheme ΠsRABE satisfies security

without corruptions if the adversary in the security game of Definition 5.1 is not allowed to make corruption queries.

Remark 5.4 (Relationship between Definitions). While Definitions 5.2 and 5.3 relax the main security notion in

Definition 5.1, there are generic ways to transform a scheme satisfying the relaxed notions of security into one that

satisfies full security:

• First, if ΠsRABE satisfies attribute-selective security, we can obtain an adaptively-secure scheme (where the

attribute is chosen in the challenge phase) via standard complexity leveraging [BB04]. Using complexity

leveraging will require assuming sub-exponential hardness, and moreover, the size of the scheme parameters

will scale with the attribute length.

• If ΠsRABE satisfies security without corruptions, we can apply the generic transformation from [FWW23] to

obtain a scheme with security against adversaries that can make corruption queries in the random oracle model.

Since our base registered ABE scheme is already in the random oracle model, this transformation is essentially

free (the transformation itself only incurs constant overhead over the base scheme).
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5.1 Additional Building Blocks
Similar to the registered ABE scheme from [CHW25], our construction also relies on simulation-sound extractable

NIZK arguments, an explainable discrete Gaussian sampler, as well as a Gaussian preimage smudging lemma. We

review these notions below:

Simulation-sound extractable NIZKs. The first primitive we require is a simulation-sound extractable non-

interactive zero-knowledge (NIZK) argument for NP [BFM88, FLS90, Sah99, DDO
+
01]. Similar to [CHW25], we will

use the NIZK argument of knowledge to extract secret keys in the security analysis of the registered ABE scheme.

We give the definition below (taken mostly verbatim from [CHW25]):

Definition 5.5 (Simulation-Sound Extractable NIZK). A simulation-sound extractable NIZK argument ΠNIZK for NP
is a tuple of efficient algorithms ΠNIZK = (Setup, TrapSetup, Prove,Verify, Sim, Extract) with the following syntax:

• Setup(1𝜆) → crs: On input the security parameter 𝜆, the setup algorithm outputs a common reference string crs.

• TrapSetup(1𝜆) → (crs, td): On input the security parameter 𝜆, the trapdoor setup algorithm outputs a common

reference string crs and a trapdoor td.

• Prove(crs,𝐶, 𝑥,𝑤) → 𝜋 : On input the common reference string crs, a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ →
{0, 1}, a statement 𝑥 ∈ {0, 1}𝑛 , and a witness𝑤 ∈ {0, 1}ℎ , the prove algorithm outputs a proof 𝜋 .

• Verify(crs,𝐶, 𝑥, 𝜋) → 𝑏: On input the common reference string crs, a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ →
{0, 1}, a statement 𝑥 ∈ {0, 1}𝑛 , and a proof 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

• Sim(td,𝐶, 𝑥) → 𝜋 : On input the trapdoor td, a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, and a statement

𝑥 ∈ {0, 1}𝑛 , the simulation algorithm outputs a proof 𝜋 .

• Extract(td,𝐶, 𝑥, 𝜋) → 𝑤 : On input the trapdoor td, a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a statement

𝑥 ∈ {0, 1}𝑛 , the extraction algorithm outputs a witness𝑤 ∈ {0, 1}ℎ (or a special symbol ⊥).

We require that ΠNIZK satisfy the following properties:

• Completeness: For all 𝜆 ∈ N, all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, all statements 𝑥 ∈ {0, 1}𝑛 and

witnesses𝑤 ∈ {0, 1}ℎ where 𝐶 (𝑥,𝑤) = 1,

Pr

[
Verify(crs,𝐶, 𝑥, 𝜋) = 1 :

crs← Setup(1𝜆)
𝜋 ← Prove(crs,𝐶, 𝑥,𝑤)

]
= 1.

• Zero-knowledge: For a security parameter 𝜆, an adversary A, and a bit 𝑏 ∈ {0, 1}, we define the zero-

knowledge security game as follows:

– If 𝑏 = 0, the challenger samples crs ← Setup(1𝜆) and if 𝑏 = 1, the challenger samples (crs, td) ←
TrapSetup(1𝜆). The challenger gives crs to A.

– Algorithm A can now make adaptive queries of the form (𝐶, 𝑥,𝑤), where 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}
is a Boolean circuit, 𝑥 ∈ {0, 1}𝑛 is a statement, and𝑤 ∈ {0, 1}ℎ is a witness.

∗ The challenger first checks if 𝐶 (𝑥,𝑤) = 1. If not, the challenger responds with ⊥.
∗ Otherwise, if 𝑏 = 0, the challenger replies with 𝜋 ← Prove(crs,𝐶, 𝑥,𝑤). If 𝑏 = 1, the challenger

replies with 𝜋 ← Sim(td,𝐶, 𝑥).
– After A is finished making queries, it outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠNIZK satisfies computational zero-knowledge if for all efficient adversaries A, there exists a

negligible function negl(·) such that for all 𝜆 ∈ N, | Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆) in the

zero-knowledge security game.
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• Simulation extractability: For a security parameter 𝜆, and an adversary A, we define the simulation ex-

tractability games as follows:

– The challenger starts by sampling (crs, td) ← TrapSetup(1𝜆) and gives crs to A. The challenger also

initializes an (empty) list Q.
– AlgorithmA can nowmake adaptive queries (𝐶, 𝑥) where𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1} is a Boolean circuit

and 𝑥 ∈ {0, 1}𝑛 is a statement. The challenger replies with 𝜋 ← Sim(td,𝐶, 𝑥) and adds (𝐶, 𝑥, 𝜋) to Q.
– After A is finished making queries, it outputs a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a statement

𝑥 ∈ {0, 1}𝑛 , and a proof 𝜋 .

– The challenger computes𝑤 = Extract(td,𝐶, 𝑥, 𝜋) and outputs𝑏′ = 1 ifVerify(crs,𝐶, 𝑥, 𝜋) = 1, (𝐶, 𝑥, 𝜋) ∉ Q
and 𝐶 (𝑥,𝑤) = 0. Otherwise, the challenger outputs 𝑏′ = 0.

We say that ΠNIZK satisfies simulation extractability if for all efficient adversaries A, there exists a negligible

function negl(·) such that for all 𝜆 ∈ N, Pr[𝑏′ = 1] = negl(𝜆) in the simulation extractability game.

The work of [DDO
+
01] show how to construct a simulation-sound extractable NIZK for NP from any NIZK for NP

together with a public-key encryption scheme (and a one-time signature scheme, which is implied by public-key

encryption). Both NIZKs for NP [PS19, Wat24, WWW25, BCD
+
25] and public-key encryption [Reg05] are known

from the plain LWE assumption.

Remark 5.6 (On Semi-Malicious Security). In our registered ABE construction (Construction 5.11), each user’s public

key includes a NIZK proof of knowledge of the randomness used to sample the key. Essentially, the NIZK serves

to provide a proof of well-formedness for public keys. A natural question is whether we can provide a more modular

description where we first show that the registered ABE scheme without NIZK proofs of well-formedness is secure

against semi-malicious adversaries. In this model, when the adversary specifies a public key in the challenge phase,

it must also reveal the key-generation randomness used to sample the key. We can then upgrade a scheme with

semi-malicious security to one with full security by requiring public keys to include a NIZK proof of knowledge of

the key-generation randomness; indeed, such a transformation was recently described in [LWW25] in the context

of multi-authority registered ABE. Unfortunately, this modular approach does not apply in our setting (for the same

reason it did not apply in [CHW25]). This is because in the security proof, the reduction algorithm needs to know

the key-generation randomness associated with adversarially-chosen public keys when it is simulating random oracle
queries (before the challenge phase). It is not meaningful to restrict the adversary to only query the random oracle

on inputs that are well-formed. As a result, our current proof strategy critically relies on the ability to extract the

key-generation randomness from any well-formed public key (as opposed to only the subset of public keys chosen

during the challenge phase). We refer to the proof of Theorem 5.14 for the full details.

Explainable Gaussian sampling. Our construction relies on the re-randomization technique introduced in

[CHW25]. Namely, the key-aggregation algorithm will sample and register a “dummy key,” and the randomness for

sampling the dummy key will be derived from the random oracle. In the security analysis, the reduction algorithm

programs the aggregation randomness in order to correctly simulate the challenge ciphertext. To implement this,

the work of [CHW25] relies on an explainable discrete Gaussian sampler for sampling from the distribution A−1𝜎 (z).
Specifically, there is an Explain algorithm that takes a preimage y← A−1𝜎 (z) and outputs the randomness (for the

sampler algorithm) that would produce x. The work of [CHW25] observed that the Gentry-Peikert-Vaikuntanathan

preimage sampling algorithm [GPV08] is explainable (when instantiated with an explainable discrete Gaussian

sampler over the integers [LW22]). We give the formal definition and the required properties from [CHW25] below:

Definition 5.7 (Explainable Discrete Gaussian Preimage Sampler [CHW25, Definition 4.1]). Let 𝜆 be a security

parameter, and 𝑛,𝑚,𝑞 be lattice parameters. A (𝜌, 𝜎loss)-explainable discrete Gaussian preimage sampler ΠDGS with

randomness length 𝜌 and width parameter 𝜎loss is a pair of efficient algorithms ΠDGS = (SamplePre, Explain) with
the following syntax:

• SamplePre(1𝜆,A,T, z, 𝜎 ; 𝑟 ): On input the security parameter 𝜆, a matrix A ∈ Z𝑛×𝑚𝑞 , a trapdoor T ∈ Z𝑚×𝑚𝑞 , a

target vector z ∈ Z𝑛𝑞 , a width parameter 𝜎 > 0, and randomness 𝑟 ∈ {0, 1}𝜌 , the preimage sampling algorithm

outputs a vector y ∈ Z𝑚𝑞 .
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• Explain(1𝜆, 1𝜅 ,A,T, z, y, 𝜎) → 𝑟 : On input the security parameter 𝜆, the precision parameter 𝜅, a matrix

A ∈ Z𝑛×𝑚𝑞 , a trapdoor T ∈ Z𝑚×𝑚𝑞 , a target vector z ∈ Z𝑛𝑞 , a preimage y ∈ Z𝑚𝑞 , and a width parameter 𝜎 > 0, the

explain algorithm outputs a string 𝑟 ∈ {0, 1}𝜌 .

Moreover, there exists a negligible function negl(·) such that for all 𝜆 ∈ N, all matricesA ∈ Z𝑛×𝑚𝑞 , trapdoors T ∈ Z𝑚×𝑚𝑞

where AT = G, all targets z ∈ Z𝑛𝑞 where ∥z∥ ≤ 2
𝜆
, and all width parameters 𝜎 where ∥T∥ ·𝜎loss ≤ 𝜎 ≤ 2

𝜆
, the following

two properties hold:

• Correctness: The following distributions are statistically indistinguishable:

{x← SamplePre(1𝜆,A,T, y, 𝜎)} and {x← A−1𝜎 (y)}.

Moreover, for all x in the support of SamplePre(1𝜆,A,T, y, 𝜎), we have Ax = y.

• Explainability: For all 𝜅 ∈ N, the statistical distance between the following distributions is bounded by

1/𝜅 + negl(𝜆):

– DSamplePre: Sample 𝑟
r← {0, 1}𝜌 and y← SamplePre(1𝜆,A,T, z, 𝜎 ; 𝑟 ). Output (y, 𝑟 ).

– DExplain: Sample 𝑟 ′ r← {0, 1}𝜌 and y← SamplePre(1𝜆,A,T, z, 𝜎 ; 𝑟 ′) and 𝑟 ← Explain(1𝜆, 1𝜅 ,A,T, z, y, 𝜎).
Output (y, 𝑟 ).

Theorem 5.8 (Explainable Discrete Gaussian Preimage Sampler [CHW25, Theorem 4.2]). Let 𝜆 be a security parameter,
and 𝑛,𝑚,𝑞 be lattice parameters. There exists an explicit (𝜌, 𝜎loss)-explainable discrete Gaussian preimage sampler where
𝜌 = poly(𝜆, 𝑛,𝑚, log𝑞) and 𝜎loss = 18𝑚3/2

log(𝑚𝜆) log log𝑞.

Explainable re-randomizer. Let pp = (B,W,T) be the public parameters for a matrix commitment scheme. To

apply the re-randomization technique from [CHW25] to prove security of our registered ABE scheme, we require

an explainable sampler for sampling from the following distribution:{
(C, y1, . . . , y𝑁 ) :

C r← Z𝑛×𝑚𝑞

y𝑖 ← B−1𝜎 (−Cv𝑖 )

}
where V = [v1 | · · · v𝑁 ] = Vermat (pp, 1𝑁 ). To simplify the exposition of our main construction, we abstract out the

properties we require and then show how to build an explainable sampler for this distribution below:

Theorem 5.9 (Explainable Re-randomizer). Let 𝜆 be a security parameter, 𝑛,𝑚,𝑞 be lattice parameters, and 𝜌 be a
randomness parameter. There exists a pair of efficient algorithms (Sample, Explain) with the following syntax:

• Sample(pp, 1𝜆, 1𝑁 , 𝜎 ; 𝑟 ) → (C, y1, . . . , y𝑁 ): On input the public parameters pp, the security parameter 𝜆, the
dimension 𝑁 , a width parameter 𝜎 > 0, and randomness 𝑟 ∈ {0, 1}𝜌 , output C ∈ Z𝑛×𝑚𝑞 and y1, . . . , y𝑁 ∈ Z𝑚𝑞 .

• Explain(pp, 1𝜆, 1𝜅 , (C, y1, . . . , y𝑁 ), 𝜎) → 𝑟 : On input the public parameters pp, a security parameter 𝜆, a precision
parameter 𝜅, a matrix C ∈ Z𝑛×𝑚𝑞 , vectors y1, . . . , y𝑁 ∈ Z𝑚𝑞 , and a width parameter 𝜎 > 0, output randomness
𝑟 ∈ {0, 1}𝜌 .

There exists a polynomial 𝜌 = poly(𝜆, 𝑁 , 𝑛,𝑚, log𝑞) such that for all 𝑛 ≥ 𝜆 and𝑚 ≥ 2𝑛 log𝑞, for all but a negligible
fractions of matrices B ∈ Z𝑛×𝑚𝑞 , and all W ∈ Z2𝑚2𝑛×𝑚

𝑞 , T ∈ Z(2𝑚
2+1)𝑚×2𝑚3

𝑞 where [I
2𝑚2 ⊗ B | W] · T = I

2𝑚2 ⊗ G, all
parameters 𝑁 ∈ N, and setting pp = (B,W,T), the following properties hold:

• Sampling distribution: For all width parameters ∥T∥ ·𝑂 (𝑚12𝑁 3) < 𝜎 < 2
𝜆 , the statistical distance between

the following distributions is bounded by negl(𝜆):

– (C, y1, . . . , y𝑁 ) ← Sample(pp, 1𝜆, 1𝑁 , 𝜎 ; 𝑟 ).
– (C, y1, . . . , y𝑁 ) where C r← Z𝑛×𝑚𝑞 and y𝑖 ← B−1𝜎 (−Cv𝑖 ), and [v1 | · · · | v𝑁 ] = Vermat (pp, 1𝑁 ).
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Moreover, for all (C, y1, . . . , y𝑁 ) in the support of Sample(pp, 1𝜆, 1𝑁 , 𝜎), it holds that By𝑖 = −Cv𝑖 and ∥y𝑖 ∥ ≤
√
𝑚𝜎 .

• Explainability: There exists a negligible function negl(·) such that for all precision parameters 𝜅, dimensions
𝑁 ∈ N, and width parameters ∥T∥ ·𝑂 (𝑚12𝑁 3) < 𝜎 < 2

𝜆 , the statistical distance between the following distributions
is bounded by 1/𝜅 + negl(𝜆):

– DSample: Sample 𝑟 r← {0, 1}𝜌 and (C, y1, . . . , y𝑁 ) ← Sample(pp, 1𝜆, 1𝑁 , 𝜎 ; 𝑟 ). Output (C, y1, . . . , y𝑁 , 𝑟 ).
– DExplain: Sample 𝑟 ′ r← {0, 1}𝜌 and (C, y1, . . . , y𝑁 ) ← Sample(pp, 1𝜆, 1𝑁 , 𝜎 ; 𝑟 ′). Then, sample the random-

ness 𝑟 ← Explain(pp, 1𝜆, 1𝜅 , (C, y1, . . . , y𝑁 ), 𝜎). Output (C, y1, . . . , y𝑁 , 𝑟 ).

Proof. We define the algorithms as follows:

• Sample(pp, 1𝜆, 1𝑁 , 𝜎 ; 𝑟 ): On input the public parameters pp = (B,W, T), the security parameter 𝜆, the dimension

𝑁 ∈ N, a width parameter 𝜎 > 0, and randomness 𝑟 ∈ {0, 1}𝜌 , the sampling algorithm proceeds as follows:

1. Compute V𝑁 = Vermat (pp, 1𝑁 ). Parse V𝑁 = [v1 | · · · | v𝑁 ] where each v𝑖 ∈ Z𝑚𝑞 .
2. Let G𝑁 = I𝑁 ⊗ G ∈ Z𝑛𝑁×𝑚𝑁

𝑞 , and let m1, . . . ,m𝑚𝑁 ∈ Z𝑛𝑁𝑞 be the columns of G𝑁 . Let M𝑖 ∈ Z𝑛×𝑁𝑞 be the

matrix where vec(M𝑖 ) = m𝑖 . Then, for each 𝑖 ∈ [𝑚𝑁 ], compute the commitment C𝑖 = Commat (pp,M𝑖 ) ∈
Z𝑛×𝑚𝑞 and the opening Z𝑖 = Openmat (pp,M𝑖 ) ∈ Z𝑚×𝑁𝑞 .

3. Define the vector r𝑖 ∈ Z𝑚𝑁+𝑘
𝑞

r𝑖 =
[

vec(Z𝑖 )
G−1𝑛𝑚 (vec(C𝑖 ))

]
∈ Z𝑚𝑁+𝑘

𝑞 .

Let R = [r1 | · · · | r𝑚𝑁 ] ∈ Z(𝑚𝑁+𝑘 )×𝑚𝑁
𝑞 .

4. Let 𝑘 = 𝑛𝑚 ⌈log𝑞⌉ and let D = [D1 | · · · | D𝑘 ] ∈ Z𝑛×𝑚𝑘
𝑞 be the matrix where vec(D𝑖 ) is the 𝑖th column

of G𝑛𝑚 . Now define the matrix A as follows:

A =


B D(I𝑘 ⊗ v1)

. . .
...

B D(I𝑘 ⊗ v𝑁 )

 ∈ Z
𝑛𝑁×(𝑚𝑁+𝑘 )
𝑞 . (5.1)

5. Sample 
y1
...

y𝑁
y0


← DGS.Sample(1𝜆,A,R, 0𝑛𝑁 , 𝜎 ; 𝑟 ),

where y1, . . . , y𝑁 ∈ Z𝑚𝑞 and y0 ∈ Z𝑘𝑞 . If ∥y𝑖 ∥ >
√
𝑚𝜎 for any 𝑖 ∈ [𝑁 ], then output C = 0𝑛×𝑚 and

y1, . . . , y𝑁 = 0𝑚 . Otherwise, output the matrix C = D(y0 ⊗ I𝑚) and the vectors y1, . . . , y𝑁 .

• Explain(pp, 1𝜆, 1𝜅 , (C, y1, . . . , y𝑁 ), 𝜎): On input the public parameters pp = (B,W,T), the precision parameter

𝜅, a target (C, y1, . . . , y𝑁 ), and a width parameter 𝜎 , the explain algorithm proceeds as follows:

– Compute y0 ← SamplePre(G𝑛𝑚, I𝑘 , vec(C), 𝜎).
– Let yT = [yT

1
| · · · | yT

𝑁
| yT

0
]T. Compute A,R as in Sample(pp, 1𝜆, 1𝑁 , 𝜎). By construction, A,R is a

deterministic function of pp. Output 𝑟 ← DGS.Explain(1𝜆, 1𝜅 ,A,R, 0𝑛𝑁 , y, 𝜎).

We now show that (Sample, Explain) satisfy the requirements in Theorem 5.9.
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Sampling distribution. First, we argue that AR = I𝑁 ⊗ G. By Remark 3.9, for all 𝑖 ∈ [𝑚𝑁 ], C𝑖V𝑁 = M𝑖 − BZ𝑖 .

By Eq. (3.2), this means

m𝑖 = vec(M𝑖 ) = (I𝑁 ⊗ B) · vec(Z𝑖 ) + (I𝑁 ⊗ C𝑖 ) · vec(V𝑁 ). (5.2)

Next, recall that D = [D1 | · · · | D𝑘 ] where D𝑖 ∈ Z𝑛×𝑚𝑞 . For any vector x ∈ Z𝑘𝑞 , we have

D(x ⊗ I𝑚) = [D1 | · · · | D𝑘 ] (x ⊗ I𝑚) =
∑︁
𝑖∈[𝑘 ]

𝑥𝑖D𝑖 .

Then,

vec(D(x ⊗ I𝑚)) = vec
©«
∑︁
𝑖∈[𝑘 ]

𝑥𝑖D𝑖
ª®¬ =

∑︁
𝑖∈[𝑘 ]

𝑥𝑖 · vec(D𝑖 ) = [vec(D1) | · · · | vec(D𝑘 )] · x = G𝑛𝑚 · x. (5.3)

This means

vec(C𝑖 ) = G𝑛𝑚 · G−1𝑛𝑚 (vec(C𝑖 )) = vec(D(G−1𝑛𝑚 (vec(C𝑖 )) ⊗ I𝑚)) .

Since C𝑖 and D(G−1𝑛𝑚 (vec(C𝑖 )) ⊗ I𝑚) are matrices with the same dimension, we conclude that

C𝑖 = D(G−1𝑛𝑚 (vec(C𝑖 )) ⊗ I𝑚). (5.4)

Now,

Ar𝑖 = (I𝑁 ⊗ B) · vec(Z𝑖 ) +

D(I𝑘 ⊗ v1)

...

D(I𝑘 ⊗ v𝑁 )

 G
−1
𝑛𝑚 (vec(C𝑖 )) by Eq. (5.1)

= (I𝑁 ⊗ B) · vec(Z𝑖 ) +

D(G−1𝑛𝑚 (vec(C𝑖 )) ⊗ I𝑚)v1

...

D(G−1𝑛𝑚 (vec(C𝑖 )) ⊗ I𝑚)v𝑁

 by Eq. (3.1)

= (I𝑁 ⊗ B) · vec(Z𝑖 ) + (I𝑁 ⊗ C𝑖 )vec(V𝑁 ) by Eq. (5.4)

= m𝑖 by Eq. (5.2).

We conclude that AR = [m1 | · · · | m𝑚𝑁 ] = G𝑁 , as required. By Remark 3.9, for all 𝑖 ∈ [𝑚𝑁 ],

∥Z𝑖 ∥ ≤ 𝑂 (∥T∥ ·𝑚7
log𝑞 log𝑁 ).

Thus, ∥R∥ ≤ 𝑂 (∥T∥ ·𝑚7
log𝑞 log𝑁 ). Let 𝜎 ′loss = 18(𝑚𝑁 + 𝑘)3/2 log((𝑚𝑁 + 𝑘)𝜆) log log𝑞 ≤ 𝑂 (𝑚4𝑁 2). Then,

∥R∥ · 𝜎 ′loss ≤ ∥T∥ ·𝑂 (𝑚
12𝑁 3).

If ∥R∥ ·𝜎 ′loss ≤ ∥T∥ ·𝑂 (𝑚
12𝑁 3) ≤ 𝜎 ≤ 2

𝜆
, the distribution of (y0, y1, . . . , y𝑁 ) output byDGS.Sample(1𝜆,A,R, 0𝑛𝑁 , 𝜎 ; 𝑟 )

is statistically close to sampling 
y1
...

y𝑁
y0


← A−1𝜎 (0𝑛𝑁 ). (5.5)

We now characterize the distribution of (y0, y1, . . . , y𝑁 ). We proceed by a hybrid argument:

• D0: Sample (y0, y1, . . . , y𝑁 ) according to Eq. (5.5). Set C = D(y0 ⊗ I𝑚) and output (C, y1, . . . , y𝑁 ) if for all
𝑖 ∈ [𝑁 ], ∥y𝑖 ∥ ≤

√
𝑚𝜎 . Otherwise, if ∥y𝑖 ∥ >

√
𝑚𝜎 for some 𝑖 ∈ [𝑁 ], output (0𝑛×𝑚, 0𝑚, . . . , 0𝑚).
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• D1: Sample y0 ← 𝐷𝑘
Z,𝜎 and set C = D(y0 ⊗ I𝑚). Then, for 𝑖 ∈ [𝑁 ], sample y𝑖 ← B−1𝜎 (−Cv𝑖 ). Out-

put (C, y1, . . . , y𝑁 ) if for all 𝑖 ∈ [𝑁 ], ∥y𝑖 ∥ ≤
√
𝑚𝜎 . Otherwise, if ∥y𝑖 ∥ >

√
𝑚𝜎 for some 𝑖 ∈ [𝑁 ], output

(0𝑛×𝑚, 0𝑚, . . . , 0𝑚).

• D2: Sample C r← Z𝑛×𝑚𝑞 and for each 𝑖 ∈ [𝑁 ], sample y𝑖 ← B−1𝜎 (−Cv𝑖 ). Output (C, y1, . . . , y𝑁 ) if for all 𝑖 ∈ [𝑁 ],
∥y𝑖 ∥ ≤

√
𝑚𝜎 . Otherwise, if ∥y𝑖 ∥ >

√
𝑚𝜎 for some 𝑖 ∈ [𝑁 ], output (0𝑛×𝑚, 0𝑚, . . . , 0𝑚).

• D3: Sample C r← Z𝑛×𝑚𝑞 and for each 𝑖 ∈ [𝑁 ], sample y𝑖 ← B−1𝜎 (−Cv𝑖 ). Output (C, y1, . . . , y𝑁 ). In particular,

there is no additional check on the norms of y1, . . . , y𝑁 .

As argued above, when ∥T∥ · 𝜎loss ≤ 𝜎 ≤ 2
𝜆
, the output of Sample(pp, 1𝜆, 1𝑁 , 𝜎 ; 𝑟 ) is statistically close toD0. We now

show that D0 is statistically close to D3:

• By Lemma 3.4, for all but a negligible fraction of matrices B ∈ Z𝑛×𝑚𝑞 , the distribution of (y0, y1, . . . , y𝑁 ) is
statistically close to sampling y0 ← 𝐷Z,𝜎𝑘 and y𝑖 ← B−1𝜎 (−D(I𝑘 ⊗ v𝑖 )y0). By Eq. (3.1), we can write

D(I𝑘 ⊗ v𝑖 )y0 = D(y0 ⊗ I𝑚)v𝑖 = Cv𝑖 .

This is the distribution in D1.

• By Eq. (5.3), we can write vec(C) = vec(D(y0 ⊗ I𝑚)) = G𝑛𝑚 · y0. In D1, y0 ← 𝐷𝑘
Z,𝜎 so by Lemma 3.3, G𝑛𝑚 · y0

is statistically close to uniform over Z𝑛𝑚𝑞 . Correspondingly, this means that the marginal distribution of C is

statistically close to uniform over Z𝑛×𝑚𝑞 , as required.

• By Lemma 3.2, for all 𝑖 ∈ [𝑁 ], we have Pr[∥y𝑖 ∥ ≥
√
𝑚𝜎] ≤ 𝑂 (2−𝑚). Since𝑚 ≥ 2𝜆 and 𝑁 ≤ 2

𝜆
, the probability

that there exists 𝑖 ∈ [𝑁 ] where ∥y𝑖 ∥ ≥
√
𝑚𝜎 is at most 2

𝜆/2𝑚 ≤ 2
−𝜆
. Thus, with overwhelming probability,

the vectors ∥y𝑖 ∥ sampled in D2 all satisfy ∥y𝑖 ∥ ≤
√
𝑚𝜎 , so D2 and D3 are statistically indistinguishable.

The claim now follows by a hybrid argument. Finally, the worst-case guarantee that By𝑖 = −Cv𝑖 follows imme-

diately by the worst-case guarantee of ΠDGS. Namely, the (y0, y1, . . . , y𝑁 ) output by DGS.Sample always satisfies
y𝑖 = B(−D(I𝑘 ⊗ v𝑖 )y0) = B(−Cv𝑖 ). The norm constraint is ensured by construction.

Explainability. We proceed via a hybrid argument. We start by defining a sequence of distributions:

• D0: This is distribution DSample. Namely, sample 𝑟
r← {0, 1}𝜌 , and (C, y1, . . . , y𝑁 ) ← Sample(pp, 1𝜆, 1𝑁 , 𝜎 ; 𝑟 ).

Concretely, compute A,R as in Sample(pp, 1𝜆, 1𝑁 , 𝜎). Then sample

y =


y1
...

y𝑁
y0


← DGS.Sample(1𝜆,A,R, 0𝑛𝑁 , 𝜎 ; 𝑟 ),

where y1, . . . , y𝑁 ∈ Z𝑚𝑞 and y0 ∈ Z𝑘𝑞 . Let C = D(y0 ⊗ I𝑚). If there exists 𝑖 ∈ [𝑁 ] where ∥y𝑖 ∥ >
√
𝑚𝜎 , then set

C = 0𝑛×𝑚 and y1, . . . , y𝑁 = 0𝑚 . Output (C, y1, . . . , y𝑁 , 𝑟 ).

• D1: Same as D0 except the distribution no longer checks the norm constraints ∥y𝑖 ∥ >
√
𝑚𝜎 .

• D2: Same as D1 except after sampling y and C, sample 𝑟 ′ ← DGS.Explain(1𝜆, 1𝜅 ,A,R, 0𝑛𝑁 , y, 𝜎) and output

(C, y1, . . . , y𝑁 , 𝑟 ′).

• D3: Same as D2, except sample y← A−1𝜎 (0𝑛𝑁 ).

• D4: Same as D3, except instead sample y0 ← 𝐷𝑘
Z,𝜎 . Then set C = D(y0 ⊗ I𝑚) and sample y𝑖 ← B−1𝜎 (−Cv𝑖 ) for

each 𝑖 ∈ [𝑁 ]. In this experiment, the vector y is still defined as

y =


y1
...

y𝑁
y0


.
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• D5: Same as D4, except sample C r← Z𝑛×𝑚𝑞 and y0 ← (G𝑛𝑚)−1𝜎 (vec(C)).

• D6: Same as D5 except sample y′
0
← 𝐷𝑘

Z,𝜎 and set C = D(y′
0
⊗ I𝑚). Next, sample y0 ← (G𝑛𝑚)−1𝜎 (vec(C)) and

for each 𝑖 ∈ [𝑁 ], sample y𝑖 ← B−1𝜎 (−Cv𝑖 ).

• D7: Same as D6 except sample 
y1
...

y𝑁
y′
0


← A−1𝜎 (0𝑛𝑁 ).

Then set C = D(y′
0
⊗ I𝑚) and compute y0 ← (G𝑛𝑚)−1𝜎 (vec(C)). Let y = [yT

1
| · · · | yT

𝑁
| yT

0
]T and

𝑟 ′ ← DGS.Explain(1𝜆, 1𝜅 ,A,R, 0𝑛𝑁 , y, 𝜎) as before.

• D8: Same as D7 except sample 
y1
...

y𝑁
y′
0


← DGS.Sample(1𝜆,A,R, 0𝑛𝑁 , 𝜎).

Set C = D(y′
0
⊗ I𝑚) and compute y0 ← (G𝑛𝑚)−1𝜎 (vec(C)). Let y = [yT

1
| · · · | yT

𝑁
| yT

0
]T and 𝑟 ′ ←

DGS.Explain(1𝜆, 1𝜅 ,A,R, 0𝑛𝑁 , y, 𝜎) as before.

• D9: Same as D8 except sample y0 ← SamplePre(G𝑛𝑚, I𝑘 , vec(C), 𝜎). This is the distribution DExplain.

We now analyze each adjacent pair of distributions. As in the analysis of the sampling distribution, we assume that

∥R∥ · 𝜎 ′loss ≤ ∥T∥ ·𝑂 (𝑚
12𝑁 3) ≤ 𝜎 ≤ 2

𝜆
, where 𝜎 ′loss = 18(𝑚𝑁 + 𝑘)3/2 log((𝑚𝑁 + 𝑘)𝜆) log log𝑞 ≤ 𝑂 (𝑚4𝑁 2).

• Distributions D0 and D1 are statistically indistinguishable by the above analysis on the sampling distribution.

• Distributions D1 and D2 have statistical distance 1/𝜅 + negl(𝜆) by the explainability property of ΠDGS.

• Distributions D2 and D3 are statistically indistinguishable by the correctness property of ΠDGS.

• Distributed D3 and D4 are statistically indistinguishable by Lemma 3.4. Specifically, for all but a negligible

fraction of matrices B ∈ Z𝑛×𝑚𝑞 , the distribution of y← A−1𝜎 (0𝑛𝑁 ) is statistically close to sampling y0 ← 𝐷Z,𝜎𝑘

and y𝑖 ← B−1𝜎 (−Cv𝑖 ) where C = D(y0 ⊗ I𝑚). The former sampling procedure corresponds to D2 while the

latter corresponds to D3.

• Distributions D4 and D5 are statistically indistinguishable by Lemma 3.3. Specifically, by Eq. (5.3), we can

write vec(C) = vec(D(y0 ⊗ I𝑚)) = G𝑛𝑚 · y0. By Lemma 3.3, the following distributions are statistically

indistinguishable:

– (C, y0) where y0 ← 𝐷𝑘
Z,𝜎 and C = D(y0 ⊗ I𝑚).

– (C, y0) where C r← Z𝑛×𝑚𝑞 , y0 ← (G𝑛𝑚)−1𝜎 (vec(C)).

The left distribution corresponds to D4 while the right distribution corresponds to D5.

• Distributions D5 and D6 are also statistically indistinguishable by Lemma 3.3 (via the same argument as in

the previous case).

• Distributions D6 and D7 are statistically indistinguishable by Lemma 3.4 (via the same argument as used to

argue indistinguishability of D2 and D3).

• Distributions D7 and D8 are statistically indistinguishable by the correctness property of ΠDGS.
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• Distributions D8 and D9 are statistically indistinguishable by Lemma 3.5.

By a hybrid argument, the statistical distance between D0 ≡ DSample and D9 ≡ DExplain can be bounded by

1/𝜅 + negl(𝜆), as required. □

Gaussian preimage smudging. We will also need the following noise smudging lemma from [CHW25]:

Lemma 5.10 (Gaussian Preimage Smudging [CHW25, Theorem 4.3, adapted]). Let 𝑛,𝑚,𝑞 be lattice parameters such
that 𝑚 ≥ 2𝑛 log𝑞 and 𝑞 is prime. Then, for all but a 𝑞−𝑛-fraction of matrices A ∈ Z𝑛×𝑚𝑞 , for all vectors y ∈ Z𝑛𝑞 in
the column-span of A, all z ∈ Z𝑚𝑞 , and all width parameters 𝜎 > 𝜆𝜔 (1)

√
𝑚 ∥𝑧∥, then the following distributions are

statistically indistinguishable: {
A−1𝜎 (y + Az)

}
and

{
A−1𝜎 (y) + z

}
.

5.2 Key-Policy Registered ABE Construction
In this section, we give our construction of a key-policy registered ABE scheme that supports arbitrary (bounded-

depth) Boolean circuits. Specifically, the scheme has short parameters and thus, can be used to obtain a registered

ABE scheme that supports an arbitrary polynomial number of users. All previous registered ABE schemes [HLWW23,

ZZGQ23, GLWW24, AT24, CHW25] that does not rely on indistinguishability obfuscation or witness encryption

could only support an a priori bounded number of users.

Construction 5.11 (Key-Policy Slotted Registered ABE). Let 𝜆 be a security parameter and 𝜏 be a policy-family

parameter. We define the following quantities:

• Let (𝑛,𝑚,𝑞, 𝜒) be LWE parameters (which may be functions of 𝜆, 𝜏). Let𝑚′ = 𝑛 ⌈log𝑞⌉. Let 𝜎td, 𝜎agg > 0 be

width parameters.

• Let ℓ = ℓ (𝜏) be the attribute length. Let X = {X𝜏 }𝜏∈N where X𝜏 = {0, 1}ℓ (𝜏 ) be the attribute space.

• Let F𝜏 be the family of functions 𝑓 that can be computed by a Boolean circuit of depth at most 𝑑 = 𝑑 (𝜏).

• Let 𝜆DGS be the security parameter for the explainable re-randomizer (Sample, Explain) from Theorem 5.9. Let

𝜌 = poly(𝜆DGS, 𝑁 , 𝑛,𝑚, log𝑞) be the randomness length from Theorem 5.9.

• LetΠNIZK = (NIZK.Setup,NIZK.TrapSetup,NIZK.Prove,NIZK.Verify,NIZK.Sim,NIZK.Extract) be a simulation-

sound extractable NIZK argument for NP. Let𝐶valid be the Boolean circuit that takes a statement (𝑖,A, d, p,B, t),
a witness r, and outputs 1 if t = Br + AG−1 (d) + p.2

• Let 𝐻1 : N → Z𝑚𝑞 and 𝐻2 : {0, 1}∗ → {0, 1}𝜌 be hash functions (which we model as random oracles in the

security analysis).

We construct a key-policy slotted registered ABE scheme ΠsRABE = (Setup,KeyGen, IsValid,Aggregate, Encrypt,
Decrypt) as follows:

• Setup(1𝜆, 1𝜏 ): On input the security parameter 𝜆 and the policy family parameter 𝜏 , sample

crsNIZK ← NIZK.Setup(1𝜆)

(B,TB) ← TrapGen(1𝑛, 1𝑚, 𝑞),W r← Z2𝑚2𝑛×𝑚
𝑞

T← SamplePre( [I
2𝑚2 ⊗ B | W],

[ I
2𝑚2⊗TB

0

]
, I
2𝑚2 ⊗ G, 𝜎td)

B0

r← Z𝑛×𝑚𝑞 , p r← Z𝑛𝑞 .

If ∥T∥ >
√
𝑚𝜎td, then set T =

[ I
2𝑚2⊗TB

0

]
. Let ppcom = (B,W,T) and output the public parameters pp =

(crsNIZK, ppcom,B0, p).
2
Note that the circuit ignores the index 𝑖 , but including it as part of the statement allows us to bind a proof to the specific index 𝑖 (when appealing

to simulation-sound extractability).
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• KeyGen(pp, 𝑖, 𝑓 ): On input the public parameters pp = (crsNIZK, ppcom,B0, p), where ppcom = (B,W,T), com-

pute

d𝑖 = 𝐻1 (𝑖) ∈ Z𝑛𝑞
Vℓ𝑚 = Vermat (ppcom, 1ℓ𝑚) ∈ Z𝑚×ℓ𝑚𝑞

A = −B0Vℓ𝑚 ∈ Z𝑛×ℓ𝑚𝑞

A𝑓 = EvalF(A, 𝑓 ) ∈ Z𝑛×𝑚𝑞 .

(5.6)

Sample r r← {0, 1}𝑚 and compute

t = Br + A𝑓G−1 (d𝑖 ) + p ∈ Z𝑛𝑞 .

Compute a NIZK proof 𝜋 ← NIZK.Prove(𝐶valid, (𝑖,A𝑓 , d𝑖 , p,B, t), r). Output the public key pk = (t, 𝜋) and the

secret key sk = (t, r).

• IsValid(pp, 𝑖, 𝑓 , pk): On input the public parameters pp = (crsNIZK, ppcom,B0, p) where ppcom = (B,W,T) and
a public key pk = (t, 𝜋), compute d𝑖 ,A𝑓 according to Eq. (5.6) and output 1 if

NIZK.Verify(crsNIZK, (𝑖,A𝑓 , d𝑖 , p,B, t), 𝜋) = 1.

Otherwise, output 0.

• Aggregate(pp, (pk
1
, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁 )): On input the public parameters pp = (crsNIZK, ppcom,B0, p) where

ppcom = (B,W,T), a list of public keys pk
1
= (t1, 𝜋1), . . . , pk𝑁 = (t𝑁 , 𝜋𝑁 ) and their associated policies

𝑓1, . . . , 𝑓𝑁 , the aggregation algorithm computes for each 𝑖 ∈ [𝑁 ],

C𝑖 = Commat (ppcom, uT
𝑖 ⊗ t𝑖 ) ∈ Z𝑛×𝑚𝑞

Z𝑖 = Openmat (ppcom, uT
𝑖 ⊗ t𝑖 ) ∈ Z𝑛×𝑁𝑞 ,

where u𝑖 ∈ Z𝑁𝑞 is the 𝑖th unit vector. The aggregation algorithm parses Z𝑖 = [z𝑖,1 | · · · | z𝑖,𝑁 ]. Next, it computes

the re-randomization terms

𝜉 = (pp, (pk
1
, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁 ))

(C0, z0,1, . . . , z0,𝑁 ) = Sample(ppcom, 1𝜆DGS , 1𝑁 , 𝜎agg;𝐻2 (𝜉)) .

Output mpk = C0 +
∑

𝑖∈[𝑁 ] C𝑖 and hsk𝑖 = (𝑁, 𝑓𝑖 , z0,𝑖 +
∑

𝑗∈[𝑁 ] z𝑗,𝑖 ) for all 𝑖 ∈ [𝑁 ].

• Encrypt(mpk, x, 𝜇): On input the master public keympk = Ĉ, an attribute x ∈ {0, 1}ℓ , and a message 𝜇 ∈ {0, 1},
sample the following:

s r← Z𝑛𝑞 , e← 𝐷𝑚
Z,𝜒 , RĈ,RB0

r← {0, 1}𝑚×𝑚 , rp
r← {0, 1}𝑚 .

If ∥e∥ >
√
𝑚𝜒 , then set e = 0𝑚 . Next, compute Cx = Commat (ppcom, xT ⊗ G) ∈ Z𝑛×𝑚𝑞 and output the ciphertext

ct =
(
sTB + eT , sTĈ + eTRĈ , s

T (B0 + Cx) + eTRB0
, sTp + eTrp + ⌊𝑞/2⌋ · 𝜇

)
.

• Decrypt(sk, hsk, 𝑓 , x, ct): On input the secret key sk = (t, r), the helper decryption key hsk = (𝑁, 𝑓 , ẑ), the func-
tion 𝑓 , the attribute x ∈ {0, 1}ℓ , and the ciphertext ct = (cT

1
, cT

2
, cT

3
, 𝑐4), the decryption algorithm first computes

Vℓ𝑚 = Vermat (ppcom, 1ℓ𝑚) ∈ Z𝑚×ℓ𝑚𝑞

Zx = Openmat (ppcom, xT ⊗ G) ∈ Z𝑚×ℓ𝑚𝑞 .
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Next, it computes the homomorphic evaluation matrices

A = −B0Vℓ𝑚 ∈ Z𝑛×ℓ𝑚𝑞

A𝑓 = EvalF(A, 𝑓 ) ∈ Z𝑛×𝑚𝑞

HA,𝑓 ,x = EvalFX(A, 𝑓 , x) ∈ Zℓ𝑚×𝑚𝑞

Finally, it computes d = 𝐻1 (𝑖) ∈ Z𝑛𝑞 and

𝑐T
3
= [cT

1
| cT

3
] ·

[
−Zx
−Vℓ𝑚

]
· HA,𝑓𝑖 ,xG

−1 (d).

Next, it computes v = VerLocalmat (ppcom, 𝑁𝑚, 𝑖) and the (noisy) encoding of the message

�̃� = 𝑐4 + cT1 (r − ẑ) − cT2v + 𝑐3.

It outputs 0 if −𝑞/4 < �̃� < 𝑞/4 and 1 otherwise.

Theorem 5.12 (Completeness). If ΠNIZK is complete, then Construction 5.11 is complete.

Proof. Take any 𝜆, 𝜏 ∈ N, any𝑁 ≤ 2
𝜆
, any 𝑖 ∈ [𝑁 ], and policy 𝑓 . Take any pp = (crsNIZK, ppcom,B0, p) in the support of

Setup(1𝜆, 1𝜏 , 𝑁 ) and any (pk, sk) in the support of KeyGen(pp, 𝑖, 𝑓 ). By construction, we can parse ppcom = (B,W, T)
and pk = (t, 𝜋) where

d𝑖 = 𝐻1 (𝑖) ∈ Z𝑛𝑞
Vℓ𝑚 = Vermat (ppcom, 1ℓ𝑚) ∈ Z𝑚×ℓ𝑚𝑞

A = −B0Vℓ𝑚 ∈ Z𝑛×ℓ𝑚𝑞

A𝑓 = EvalF(A, 𝑓 ) ∈ Z𝑛×𝑚𝑞

t = Br + A𝑓G−1 (d𝑖 ) + p ∈ Z𝑛𝑞
𝜋 ← NIZK.Prove(𝐶valid, (𝑖,A𝑓 , d𝑖 , p,B, t), r),

and r ∈ {0, 1}𝑚 . By design, 𝐶valid ((𝑖,A𝑓 , d𝑖 , p,B, t), r) = 1 so by completeness of ΠNIZK,

NIZK.Verify(𝐶valid, (𝑖,A𝑓 , d𝑖 , p,B, t), 𝜋) = 1.

Correspondingly, IsValid(pp, 𝑖, 𝑓 , pk) outputs 1 and the claim holds. □

Theorem 5.13 (Correctness). Suppose𝑚 ≥ 𝑛 log𝑞 and suppose 𝑞 > 𝑚𝑂 (𝑑 ) · 𝜒 · (𝜎td · ℓ log ℓ + 𝜎td · 𝑁 log𝑁 + 𝜎agg).

Proof. Take 𝜆, 𝜏 ∈ N, 𝑁 ≤ 2
𝜆
, any index 𝑖 ∈ [𝑁 ], any policy 𝑓𝑖 ∈ F𝜏 , any attribute x ∈ {0, 1}ℓ where 𝑓𝑖 (x) = 0, any

pp in the support of Setup(1𝜆, 1𝜏 , 𝑁 ), any (pk𝑖 , sk𝑖 ) in the support of KeyGen(pp, 𝑖, 𝑓𝑖 ), any set {( 𝑗, 𝑓𝑗 , pk𝑗 )} 𝑗≠𝑖 where
IsValid(pp, 𝑗, 𝑓𝑗 , pk𝑗 ) = 1 for all 𝑗 ≠ 𝑖 , and any message 𝜇 ∈ {0, 1}. Let

(mpk, hsk1, . . . , hsk𝑁 ) = Aggregate(pp, pk
1
, . . . , pk𝑁 )

ct← Encrypt(mpk, x, 𝜇).

Then the following holds:

• First, pp = (crsNIZK, ppcom,B0, p) where ppcom = (B,W,T). By construction, [I
2𝑚2 ⊗ B | W]T = I

2𝑚2 ⊗ G and

∥T∥ ≤
√
𝑚𝜎td.

• Let Vℓ𝑚 = Vermat (ppcom, 1ℓ𝑚), A = −B0Vℓ𝑚 . For each 𝑗 ∈ [𝑁 ], let A𝑓𝑗 = EvalF(A, 𝑓𝑗 ) and d𝑗 = 𝐻1 ( 𝑗).

• Since (pk𝑖 , sk𝑖 ) is in the support of KeyGen(pp, 𝑖, 𝑓𝑖 ), we can write pk𝑖 = (t𝑖 , 𝜋𝑖 ) where

t𝑖 = Br𝑖 + A𝑓𝑖G
−1 (d𝑖 ) + p

and sk𝑖 = (t𝑖 , r𝑖 ) for some r𝑖 ∈ {0, 1}𝑚 .
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• Consider the quantities constructed by the aggregation algorithm. For each 𝑗 ∈ [𝑁 ], the aggregation algorithm

computes

C𝑗 = Commat (ppcom, uT
𝑗 ⊗ t𝑗 )

Z𝑗 = Openmat (ppcom, uT
𝑗 ⊗ t𝑗 ).

The aggregation algorithm parses Z𝑗 = [z𝑗,1 | · · · | z𝑗,𝑁 ]. Then it computes

𝜉 = (pp, (pk
1
, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁 ))

(C0, z0,1, . . . , z0,𝑁 ) = Sample(ppcom, 1𝜆DGS , 1𝑁 , 𝜎agg;𝐻2 (𝜉)) .

The master public key mpk and helper decryption key hsk𝑖 is then defined to be

mpk = Ĉ = C0 +
∑︁
𝑗∈[𝑁 ]

C𝑗 and hsk𝑖 = ẑ𝑖 = z0,𝑖 +
∑︁
𝑗∈[𝑁 ]

z𝑗,𝑖 .

• Next, consider the ciphertext ct. By definition,

ct = (cT
1
, cT

2
, cT

3
, 𝑐4) =

(
sTB + eT , sTĈ + eTRĈ , s

T (B0 + Cx) + eTRB0
, sTp + eTrp + ⌊𝑞/2⌋ · 𝜇.

)
,

where Cx = Commat (ppcom, xT ⊗ G), s ∈ Z𝑛𝑞 , e← 𝐷𝑚
Z,𝜒 , RĈ,RB0

∈ {0, 1}𝑚×𝑚 and rp ∈ {0, 1}𝑚 .

Consider now Decrypt(sk, hsk𝑖 , 𝑓𝑖 , x, ct):

• Let Vℓ𝑚 = Vermat (ppcom, 1ℓ𝑚) and Zx = Openmat (ppcom, xT ⊗ G). By Remark 3.9, we have

Cx · Vℓ𝑚 = xT ⊗ G − B · Zx .

Recalling that A = −B0Vℓ𝑚 , this means

[B | B0 + Cx] ·
[
−Zx
−Vℓ𝑚

]
= −B · Zx − B0 · Vℓ𝑚 − Cx · Vℓ𝑚 = A − xT ⊗ G.

Let HA,𝑓𝑖 ,x = EvalFX(A, 𝑓𝑖 , x). Since 𝑓𝑖 (x) = 0, we appeal to Theorem 3.6 to conclude that

(A − xT ⊗ G) · HA,𝑓𝑖 ,x = A𝑓𝑖 − 𝑓𝑖 (x) · G = A𝑓𝑖 .

Thus,

𝑐T
3
= [cT

1
| cT

3
]
[
−Zx
−Vℓ𝑚

]
· HA,𝑓𝑖 ,xG

−1 (d𝑖 )

= sT [B | B0 + Cx]
[
−Zx
−Vℓ𝑚

]
· HA,𝑓𝑖 ,xG

−1 (d𝑖 ) + eT [I𝑚 | RB0
]
[
−Zx
−Vℓ𝑚

]
· HA,𝑓𝑖 ,xG

−1 (d𝑖 )︸                                           ︷︷                                           ︸
𝑒1

= sTA𝑓𝑖G
−1 (d𝑖 ) + 𝑒1.

• Let V𝑁 = [v1 | · · · | v𝑁 ] = Vermat (ppcom, 1𝑁 ). For all 𝑗 ∈ [𝑁 ], C𝑗 is a commitment to uT
𝑗 ⊗ t𝑗 and Z𝑗 is an

opening to uT
𝑗 ⊗ t𝑗 . By Remark 3.9, C𝑗V𝑁 = (uT

𝑗 ⊗ t𝑗 ) − BZ𝑗 , and in particular,

∀𝑗 ≠ 𝑖 : C𝑗v𝑖 = −Bz𝑗,𝑖
C𝑖v𝑖 = t𝑖 − Bz𝑖,𝑖 = BR𝑖 + A𝑓𝑖G

−1 (d𝑖 ) + p − Bz𝑖,𝑖 .
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By Theorem 5.9, we have that Bz0, 𝑗 = −C0v𝑗 for all 𝑗 ∈ [𝑁 ]. Combining these two relations, we conclude

Ĉv𝑖 + Bẑ𝑖 = C0v𝑖 +
∑︁
𝑗∈[𝑁 ]

C𝑗v𝑖 + Bz0,𝑖 +
∑︁
𝑗∈[𝑁 ]

Bz𝑗,𝑖 = C𝑖v𝑖 = Br𝑖 + A𝑓𝑖G
−1 (d𝑖 ) + p.

Thus,

cT
1
(r𝑖 − ẑ𝑖 ) − cT2v𝑖 + 𝑐3 = sT (Br𝑖 − Bẑ𝑖 − Ĉv𝑖 + A𝑓𝑖G

−1 (d𝑖 )) + 𝑒2
= −sTp + 𝑒2

where

𝑒2 = eTr𝑖 − eTẑ𝑖 − eTRĈv𝑖 + 𝑒1 .

Thus, we have

�̃� = 𝑐4 + cT1 (r𝑖 − ẑ𝑖 ) − cT2v𝑖 + 𝑐3
= sTp + eTrp + ⌊𝑞/2⌋ · 𝜇 − sTp + 𝑒2
= ⌊𝑞/2⌋ · 𝜇 + eTrp + 𝑒2.

As long as |eTrp + 𝑒2 | < 𝑞/4, correctness holds.

To complete, the proof, it suffices to bound the error |eTrp − 𝑒2 |.

• By definition, we have ∥T∥ ≤
√
𝑚𝜎td and ∥e∥ ≤

√
𝑚𝜒 . In addition, RĈ,RB0

∈ {0, 1}𝑚×𝑚 and r𝑖 , rp ∈ {0, 1}𝑚 .

• By Remark 3.9, for all 𝑗 ∈ [𝑁 ], we have

∥Vℓ𝑚 ∥, ∥V𝑁 ∥ ≤ 𝑂 (∥T∥ ·𝑚4
log𝑞) = 𝑂 (𝜎td𝑚9/2

log𝑞)
∥Zx∥ ≤ 𝑂 (∥T∥ ·𝑚7

log𝑞 log(ℓ𝑚)) = 𝑂 (𝜎td𝑚15/2
log𝑞 log(ℓ𝑚))

∥Z𝑗 ∥ ≤ 𝑂 (∥T∥ ·𝑚7
log𝑞 log𝑁 ) = 𝑂 (𝜎td𝑚15/2

log𝑞 log𝑁 ).

From Theorem 5.9, we have that ∥z0,𝑖 ∥ ≤
√
𝑚𝜎agg. Since ẑ𝑖 = z0,𝑖 +

∑
𝑗∈[𝑁 ] z𝑗,𝑖 , this means

∥ẑ𝑖 ∥ ≤ ∥z0,𝑖 ∥ +
∑︁
𝑗∈[𝑁 ]

∥z𝑗,𝑖 ∥ ≤
√
𝑚𝜎agg + 𝑁 ·𝑂 (𝜎td𝑚15/2

log𝑞 log𝑁 ).

• By Lemma 3.5, we have ∥HA,𝑓𝑖 ,x∥ ≤ 𝑚𝑂 (𝑑 )
.

• By definition, 𝑒1 = eT [I𝑚 | RB0
]
[ −Zx
−Vℓ𝑚

]
· HA,𝑓𝑖 ,xG

−1 (d𝑖 ). This means

|𝑒1 | ≤ (
√
𝑚𝜒) ·𝑚 ·𝑂 (𝜎td𝑚15/2

log𝑞 log(ℓ𝑚)) · (2𝑚) ·𝑚𝑂 (𝑑 ) · ℓ𝑚 ·𝑚
≤ 𝑚𝑂 (𝑑 ) · 𝜎tdℓ 𝜒 log𝑞 log ℓ .

• Next 𝑒2 = eTr𝑖 − eTẑ𝑖 − eTRĈv𝑖 + 𝑒1. Then,

|𝑒2 | ≤ 𝑚𝑂 (𝑑 ) · 𝜎tdℓ 𝜒 log𝑞 log ℓ +𝑚2𝜒𝜎agg + 𝑁 ·𝑂 (𝜎td𝜒𝑚9
log𝑞 log𝑁 ).

Finally, |eTrp | ≤ 𝑚
√
𝑚𝜒 .

If𝑚 ≥ 𝑛 log𝑞, setting
𝑞 > 𝑚𝑂 (𝑑 ) · 𝜒 · (𝜎td · ℓ log ℓ + 𝜎td · 𝑁 log𝑁 + 𝜎agg)

suffices for correctness. □
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Theorem 5.14 (Attribute-Selective Security without Corruptions). Suppose ΠNIZK is complete, zero-knowledge, and
simulation-sound extractable, and that the (2𝑚2, 𝜎td)-succinct LWE assumption holds with parameters (𝑛,𝑚,𝑞, 𝜒). Sup-
pose also 𝑛 ≥ 𝜆,𝑚 ≥ 𝑂 (𝑛 log𝑞), 𝑞 > 2 is prime, 𝜒 ≥ log𝑚, 𝜎td > 𝑂 (𝑚3

log𝑚), 𝜎agg > 𝜆𝜔 (1) · 𝜎td ·𝑚𝑂 (𝑑 ) · 𝑁 3
log ℓ ,

and 𝜆DGS > log𝜎agg. Then, Construction 5.11 satisfies attribute-selective security without corruptions.

Proof. Our proof follows a similar structure as the corresponding proof from [CHW25]:

• First, we replace the NIZK proofs in the keys sampled by the challenger with simulated proofs. For the

adversarially-generated keys, the reduction extracts an associated secret key.

• Next, we change the distribution of the honest keys. Instead of sampling them as t = Br + A𝑓G−1 (d𝑖 ) + p,
they are replaced with t = Br + d𝑖 . In particular, the reduction algorithm no longer has a secret key for the

honestly-generated public keys.

• Next, we program the challenge attribute x into the public parameters (i.e., we set B0 − BRB0
− Cx, where Cx

is a commitment to xT ⊗ G and x is the challenge attribute).

• Then we use the explainable re-randomizer to program the challenge public keys into C0. Specifically, we

choose C0 such that the aggregated key Ĉ can be written as Ĉ = C0 +
∑

𝑖∈[𝑁 ] C∗𝑖 = BRC0
, where C∗𝑖 is the

commitment to the (adversarially-chosen) public key for slot 𝑖 . Just as in [CHW25], the re-randomization term

C0 is chosen to “cancel” out the adversarially-chosen public keys. This is the critical step that enables the

reduction algorithm (to succinct LWE) to simulate the challenge ciphertext.

• Finally, we rely on succinct LWE to argue that the challenge ciphertext is pseudorandom.

We now give the formal argument. Take polynomials 𝜏 = 𝜏 (𝜆) and 𝑁 = 𝑁 (𝜆) and let A be an efficient adversary

for the attribute-selective security game (without corruptions). In the security analysis, we model the hash functions

𝐻1 and 𝐻2 as random oracles. For ease of exposition, we assume that A has the following properties:

• Algorithm A does not query 𝐻1 or 𝐻2 on the same input more than once.

• Algorithm A always queries 𝐻2 on the tuple 𝜉∗ = (pp, (pk
1
, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁 )) associated with the challenge

query before entering the challenge phase.

Observe that both properties hold without loss of generality. Namely, any efficient algorithm A that does not satisfy

these properties can be generically compiled into an algorithm that does. Finally, let 𝑄ro be a bound on the number

of random oracle queries algorithm A makes (to either 𝐻1 or 𝐻2).

Hybrid experiments. We now define the sequence of hybrid experiments for our security analysis. Each experi-

ment is parameterized by a bit 𝑏 ∈ {0, 1} and a precision parameter 𝜅 = 𝜅 (𝜆) (i.e., the input to the explainable sampling

procedure). For simplicity of notation, we omit the index 𝜅 when the behavior of the experiment is independent of

the choice of 𝜅.

• Hyb(𝑏 )
0

: This is the semi-malicious attribute-selective security experiment with challenge bit 𝑏:

– Setup phase: On input the security parameter 1
𝜆
, the policy-family parameter 1

𝜏
, and the number of

slots 𝑁 , algorithm A outputs the challenge attribute x ∈ {0, 1}ℓ (𝜏 ) . The challenger samples

crsNIZK ← NIZK.Setup(1𝜆)

(B,TB) ← TrapGen(1𝑛, 1𝑚, 𝑞),W r← Z2𝑚2𝑛×𝑚
𝑞

T← SamplePre( [I
2𝑚2 ⊗ B | W],

[ I
2𝑚2⊗TB

0

]
, I
2𝑚2 ⊗ G, 𝜎td)

B0

r← Z𝑛×𝑚𝑞 , p r← Z𝑛𝑞 .

If ∥T∥ >
√
𝑚𝜎td, then the challenger sets T =

[ I
2𝑚2⊗TB

0

]
. Let ppcom = (B,W,T). The challenger gives the

public parameters pp = (crsNIZK, ppcom,B0, p) to A. The challenger also initializes a counter ctr = 0 and
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a dictionary D. In addition, whenever A queries 𝐻1 on an index 𝑖 ∈ [𝑁 ], the challenger responds with
d𝑖

r← Z𝑛𝑞 . Whenever algorithmA queries 𝐻2 on a string 𝜉 ∈ {0, 1}∗, the challenger responds with a string

𝛾
r← {0, 1}𝜌 .

– Query phase: When A makes a key-generation query on an index 𝑖 ∈ [𝑁 ] and a function 𝑓 , the

challenger increments the counter ctr = ctr + 1. Then it computes

d𝑖 = 𝐻1 (𝑖) ∈ Z𝑛𝑞
Vℓ𝑚 = Vermat (ppcom, 1ℓ𝑚) ∈ Z𝑚×ℓ𝑚𝑞

A = −B0Vℓ𝑚 ∈ Z𝑛×ℓ𝑚𝑞

A𝑓 = EvalF(A, 𝑓 ) ∈ Z𝑛×𝑚𝑞 .

(5.7)

Then, it samples r r← {0, 1}𝑚 and computes

t = Br + A𝑓G−1 (d𝑖 ) + p ∈ Z𝑛𝑞 .

The challenger then computes 𝜋 ← NIZK.Prove(𝐶valid, (𝑖,A𝑓 , d𝑖 , p,B, t), r) and responds with the public

key pk = (t, 𝜋). The challenger adds the mapping ctr ↦→ (𝑖, 𝑓 , t) to D.

– Challenge phase: Let ((𝑐1, 𝑓1, pk𝑖 ), . . . , (𝑐𝑁 , 𝑓𝑁 , pk𝑁 )) be algorithmA’s challenge query. For each 𝑖 ∈ [𝑁 ],
the challenger proceeds as follows:

∗ If 𝑐𝑖 ∈ {1, . . . , ctr}, then the challenger looks up (𝑖′, 𝑓 ′, pk′) = D[𝑐𝑖 ] and checks that 𝑖 = 𝑖′. If not, the
challenger outputs 0. Otherwise, the challenger sets pk∗𝑖 = pk′ = (t𝑖 , 𝜋𝑖 ) and 𝑓 ∗𝑖 = 𝑓 ′.

∗ If 𝑐𝑖 = ⊥, then the challenger checks that 𝑓𝑖 (x) = 1. If so, it parses pk𝑖 = (t𝑖 , 𝜋𝑖 ). Then, it checks that
IsValid(pp, 𝑖, 𝑓𝑖 , pk𝑖 ) = 1. If so, the challenger sets pk∗𝑖 = pk𝑖 and 𝑓

∗
𝑖 = 𝑓𝑖 . Otherwise, the challenger

outputs 0.

Next, for each 𝑖 ∈ [𝑁 ], the challenger computes C∗𝑖 = Commat (ppcom, uT
𝑖 ⊗ t𝑖 ) and the re-randomization

matrix C0 as

𝜉∗ = (pp, (pk∗
1
, 𝑓 ∗

1
), . . . , (pk∗𝑁 , 𝑓 ∗𝑁 ))

𝛾∗ = 𝐻2 (𝜉∗)
(C0, z0,1, . . . , z0,𝑁 ) = Sample(ppcom, 1𝜆DGS , 1𝑁 , 𝜎agg;𝛾∗).

(5.8)

Finally, the challenger sets

Ĉ = C0 +
∑︁

𝑖∈[𝑁 ]
C∗𝑖 .

Next, to construct the challenge ciphertext, the challenger samples the following:

s r← Z𝑛𝑞 , e← 𝐷𝑚
Z,𝜒 , RĈ,RB0

r← {0, 1}𝑚×𝑚 , rp
r← {0, 1}𝑚 .

If ∥e∥ >
√
𝑚𝜒 , it sets e = 0𝑚 . Next, compute Cx = Commat (ppcom, xT ⊗ G) ∈ Z𝑛×𝑚𝑞 and the ciphertext

ct =
(
sTB + eT , sTĈ + eTRĈ , s

T (B0 + Cx) + eTRB0
, sTp + eTrp + ⌊𝑞/2⌋ · 𝑏

)
.

The challenger gives ct to A.

– Output phase: At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the

experiment.

• Hyb(𝑏 )
1

: Same asHyb(𝑏 )
0

except at the beginning of the experiment, the challenger samples an index ind r← [𝑄ro].
In the challenge phase, after the challenger computes 𝜉∗ according to Eq. (5.8), the challenger additionally

checks that algorithm A has made at least ind queries to 𝐻2, and if so, that the indth query 𝜉ind ∈ {0, 1}∗
algorithm A made to 𝐻2 satisfies 𝜉ind = 𝜉

∗
. If this is not the case, then the challenger halts with output 0.
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• Hyb(𝑏 )
2

: Same as Hyb(𝑏 )
1

except when responding to key-generation queries (on an index 𝑖 and function 𝑓 ), the

challenger outputs 0 if IsValid(pp, 𝑖, 𝑓 , pk) = 0.

• Hyb(𝑏 )
3

: Same as Hyb(𝑏 )
2

except the challenger replaces the NIZK proofs in the key-generation queries with

simulated NIZK proofs:

– In the setup phase, the challenger samples (crsNIZK, tdNIZK) ← NIZK.TrapSetup(1𝜆).
– On each key-generation query, the challenger computes 𝜋 ← NIZK.Sim(tdNIZK,𝐶valid, (𝑖,A𝑓 , d𝑖 , p,B, t)) .

• Hyb(𝑏 )
4

: Same as Hyb(𝑏 )
3

except the challenger extracts secret keys for the public keys associated with the indth

query 𝜉ind to 𝐻2. Specifically, the experiment proceeds as follows:

– During the setup phase, the challenger initializes an empty dictionary Dsk.

– Whenever A makes a key-generation query on an index 𝑖 and function 𝑓 , after the challenger samples

r r← {0, 1}𝑚 and computes t = Br − A𝑓G−1 (d𝑖 ) − p, the challenger adds the mapping (𝑖,A𝑓 , t) ↦→ (0, r)
to Dsk if (𝑖,A𝑓 , t) is not already contained in Dsk.

When responding to the indth query 𝜉ind to 𝐻2, the challenger proceeds as follows:

– Parse 𝜉ind = (pp∗, (pk∗1, 𝑓 ∗1 ), . . . , (pk
∗
𝑁 , 𝑓

∗
𝑁
)), where pk∗𝑖 = (t∗𝑖 , 𝜋∗𝑖 ). If 𝜉ind does not have this form or pp∗ ≠

pp, then the challenger outputs 0. If IsValid(pp, 𝑖, 𝑓 ∗𝑖 , pk
∗
𝑖 ) = 0 for any 𝑖 ∈ [𝑁 ], the challenger outputs 0.

– For each 𝑖 ∈ [𝑁 ], the challenger computes A𝑓 ∗
𝑖
= EvalF(A, 𝑓 ∗𝑖 ). If (𝑖,A𝑓 ∗

𝑖
, t∗𝑖 ) is not contained in Dsk, the

challenger first checks that 𝑓 ∗𝑖 (x) = 1. If not, the challenger outputs 0. Otherwise, the challenger computes

r∗𝑖 = NIZK.Extract(tdNIZK,𝐶valid, (𝑖,A𝑓 ∗
𝑖
, d𝑖 , p,B, t∗𝑖 ), 𝜋∗𝑖 ).

If r∗𝑖 ∉ {0, 1}𝑚 or Br∗𝑖 ≠ t∗𝑖 + A𝑓 ∗
𝑖
G−1 (d𝑖 ) + p, then the challenger outputs 0. Otherwise, the challenger

adds the mapping (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (1, r∗𝑖 ) to Dsk.

If all of the checks pass, the challenger samples 𝛾∗ r← {0, 1}𝜌 and responds with 𝐻2 (𝜉ind) := 𝛾∗. In this exper-

iment, for every pk∗𝑖 = (t∗𝑖 , 𝜋∗𝑖 ) and accompanying policy 𝑓 ∗𝑖 in 𝜉ind, there is a mapping (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (𝑏∗𝑖 , r∗𝑖 )

in Dsk. The bit 𝑏
∗
𝑖 indicates whether r

∗
𝑖 was sampled by the challenger (in response to a key-generation query)

or if r∗𝑖 was chosen by the adversary.

• Hyb(𝑏 )
5

: Same as Hyb(𝑏 )
4

, except when sampling the public parameters, the challenger samples

B r← Z𝑛×𝑚𝑞 and T← [I
2𝑚2 ⊗ B | W]−1𝜎td (I2𝑚2 ⊗ G).

• Hyb(𝑏 )
6

: Same asHyb(𝑏 )
5

, except the challenger samples the matrices RĈ,RB0

r← {0, 1}𝑚×𝑚 and rp
r← {0, 1}𝑚 dur-

ing the setup phase instead. Then, the challenger computes Cx = Commat (ppcom, xT ⊗G). It sets B0 = BRB0
−Cx

and p = Brp. When responding to a key-generation query (on an index 𝑖 and function 𝑓 ), the challenger instead

sets t = Br + d𝑖 . The challenger still adds the mapping (𝑖,A𝑓 , t) ↦→ (0, r) to Dsk as before.

• Hyb(𝑏 )
7,𝜅

: Same as Hyb(𝑏 )
6

, except when the adversary makes the indth query 𝜉ind to 𝐻2, the challenger now

samples

𝛾
r← {0, 1}𝜌

(C0, z0,1, . . . , z0,𝑁 ) = Sample(ppcom, 1𝜆DGS , 1𝑁 , 𝜎agg;𝛾)
𝛾∗ ← Explain(ppcom, 1𝜆DGS , 1𝜅 , (C0, z0,1, . . . , z0,𝑁 ), 𝜎agg).

The challenger replies to A with 𝛾∗ (i.e., implicitly setting 𝐻2 (𝜉ind) := 𝛾∗).
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• Hyb(𝑏 )
8,𝜅

: Same as Hyb(𝑏 )
7,𝜅

, except when responding to the indth query 𝜉ind to 𝐻2, the challenger now samples

C0

r← Z𝑛×𝑚𝑞 and ∀𝑖 ∈ [𝑁 ] : z0,𝑖 ← B−1𝜎agg (−C0v𝑖 )

where V𝑁 = [v1 | · · · | v𝑁 ] = Vermat (ppcom, 1𝑁 ).

• Hyb(𝑏 )
9,𝜅

: Same as Hyb(𝑏 )
8,𝜅

except the challenger changes how it samples C0 and z0,𝑖 when responding to the indth

query 𝜉ind to 𝐻2. Specifically, let 𝜉ind = (pp, (pk∗1, 𝑓 ∗1 ), . . . , (pk
∗
𝑁 , 𝑓

∗
𝑁
)) where pk∗𝑖 = (t∗𝑖 , 𝜋∗𝑖 ). If 𝜉ind does not have

this form, then the challenger outputs 0 (as in Hyb(𝑏 )
4

and all subsequent hybrids). The challenger populates the

dictionaryDsk usually the same procedure described inHyb(𝑏 )
4

. Then, for each 𝑖 ∈ [𝑁 ], the challenger computes

C∗𝑖 = Commat (ppcom, uT
𝑖 ⊗ t∗𝑖 )

Z∗𝑖 = Openmat (ppcom, uT
𝑖 ⊗ t∗𝑖 )

The challenger parses Z∗𝑖 = [z∗𝑖,1 | · · · | z∗𝑖,𝑁 ]. Next, the challenger sets C0 = BRĈ −
∑

𝑗∈[𝑁 ] C∗𝑗 . By construction,

if the challenger has not halted, we have for every 𝑖 ∈ [𝑁 ], there exists a mapping (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (𝑏∗𝑖 , r∗𝑖 ) in Dsk.

Then, for each 𝑖 ∈ [𝑁 ], it defines z0,𝑖 as follows:

– Suppose (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (0, r∗𝑖 ) in Dsk. Then, the challenger sets

z0,𝑖 ← B−1𝜎agg
(
d𝑖 − B

(
RĈv𝑖 − r

∗
𝑖 +

∑
𝑗∈[𝑁 ] z∗𝑗,𝑖

) )
.

– Suppose (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (1, r∗𝑖 ) in Dsk. Then, the challenger sets

z0,𝑖 ← B−1𝜎agg
(
d𝑖 − B

(
RĈv𝑖 − r

∗
𝑖 + (Zx + RB0

Vℓ𝑚)HA,𝑓 ∗
𝑖
,xG−1 (d𝑖 ) − rp +

∑
𝑗∈[𝑁 ] z∗𝑗,𝑖

) )
.

The rest of the experiment proceeds as in Hyb(𝑏 )
8,𝜅

.

• Hyb(𝑏 )
10,𝜅

: Same as Hyb(𝑏 )
9,𝜅

except the challenger changes how it samples z0,𝑖 when responding to the indth query
𝜉ind to 𝐻2. As usual, let 𝜉ind = (pp, (pk∗1, 𝑓 ∗1 ), . . . , (pk

∗
𝑁 , 𝑓

∗
𝑁
)) where pk∗𝑖 = (t∗𝑖 , 𝜋∗𝑖 ).

– Suppose (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (0, r∗𝑖 ) in Dsk. Then, the challenger samples z̃0,𝑖 ← B−1𝜎agg (d𝑖 ) and sets

z0,𝑖 = z̃0,𝑖 − RĈv𝑖 + r
∗
𝑖 −

∑︁
𝑗∈[𝑁 ]

z∗𝑗,𝑖 .

– Suppose (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (1, r∗𝑖 ) in Dsk. Then, the challenger samples z̃0,𝑖 ← B−1𝜎agg (d𝑖 ) and sets

z0,𝑖 = z̃0,𝑖 − RĈv𝑖 + r
∗
𝑖 − (Zx + RB0

Vℓ𝑚)HA,𝑓 ∗
𝑖
,xG−1 (d𝑖 ) + rp −

∑︁
𝑗∈[𝑁 ]

z∗𝑗,𝑖 .

• Hyb(𝑏 )
11,𝜅

: Same as Hyb(𝑏 )
10,𝜅

, except when simulating d𝑖 = 𝐻1 (𝑖), instead of sampling d𝑖
r← Z𝑛𝑞 , the challenger

instead samples z̃0,𝑖 ← 𝐷𝑚
Z,𝜎agg

and sets d𝑖 = Bz̃0,𝑖 . When answering the indth query to 𝐻2, the challenger uses

these values of z̃0,𝑖 for all 𝑖 ∈ [𝑁 ] instead of sampling them.

• Hyb(𝑏 )
12,𝜅

: Same as Hyb(𝑏 )
11,𝜅

, except when sampling the public parameters, the challenger no longer checks the

condition ∥T∥ >
√
𝑚𝜎td. Similarly, when constructing the challenge ciphertext ct∗, the challenger no longer

checks if ∥e∥ >
√
𝑚𝜒 .

• Hyb(𝑏 )
13,𝜅

: Same asHyb(𝑏 )
12,𝜅

except when simulating the challenge ciphertext, the challenger now samples c̃ r← Z𝑚𝑞
and defines

ct =
(
c̃T , c̃TRĈ , c̃

TRB0
, c̃Trp + ⌊𝑞/2⌋ · 𝑏

)
.
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• Hyb(𝑏 )
14,𝜅

: Same as Hyb(𝑏 )
13,𝜅

except when responding to the indth query 𝜉ind to 𝐻2, the challenger samples z0,𝑖 as
follows:

– Suppose (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (0, r∗𝑖 ) in Dsk. Then, the challenger sets

z0,𝑖 ← B−1𝜎agg
(
d𝑖 − B

(
RĈv𝑖 − r

∗
𝑖 +

∑
𝑗∈[𝑁 ] z∗𝑗,𝑖

) )
.

– Suppose (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (1, r∗𝑖 ) in Dsk. Then, the challenger sets

z0,𝑖 ← B−1𝜎agg
(
d𝑖 − B

(
RĈv𝑖 − r

∗
𝑖 + (Zx + RB0

Vℓ𝑚)HA,𝑓 ∗
𝑖
,xG−1 (d𝑖 ) − rp +

∑
𝑗∈[𝑁 ] z∗𝑗,𝑖

) )
.

Note that this is equivalent to sampling

z0,𝑖 ← B−1𝜎agg
(
d𝑖 − B

(
RĈv𝑖 − r

∗
𝑖 + (Zx + RB0

Vℓ𝑚)HA,𝑓 ∗
𝑖
,xG−1 (d𝑖 ) +

∑
𝑗∈[𝑁 ] z∗𝑗,𝑖

)
+ p

)
.

This latter expression only depends on p and not rp.

• Hyb(𝑏 )
15,𝜅

: Same as Hyb(𝑏 )
14,𝜅

except when simulating the challenger ciphertext, the challenger samples 𝑐4
r← Z𝑞

and outputs

ct =
(
c̃T , c̃TRĈ , c̃

TRB0
, 𝑐4

)
.

Notably, the challenger’s behavior in this experiment is independent of the bit 𝑏 ∈ {0, 1}.

We write Hyb(𝑏 )
𝑖
(A) to denote the distribution of the output of Hyb(𝑏 )

𝑖
with adversary A. We now analyze each pair

of adjacent distributions.

Lemma 5.15. For all 𝑏 ∈ {0, 1}, Pr[Hyb(𝑏 )
1
(A) = 1] = 1

𝑄ro
Pr[Hyb(𝑏 )

0
(A) = 1].

Proof. By construction, the view of adversary A is identical in Hyb(𝑏 )
0

and Hyb(𝑏 )
1

. By assumption, algorithm A
is guaranteed to query 𝐻2 on 𝜉

∗
prior to the challenge phase. Algorithm A makes at most 𝑄ro queries to 𝐻2 so let

ind∗ ∈ [𝑄ro] be the index of query 𝜉∗. Since all the queries A makes to 𝐻2 are distinct, with probability 1/𝑄ro over

the choice of ind r← [𝑄ro], it will be the case that ind = ind∗. The output in experiment Hyb(𝑏 )
1

is 1 if and only if

ind = ind∗ and the output in experiment Hyb(𝑏 )
0

is 1. We conclude

Pr[Hyb(𝑏 )
1
(A) = 1] = Pr[Hyb(𝑏 )

0
(A) = 1 ∧ ind = ind∗] = 1

𝑄ro
Pr[Hyb(𝑏 )

0
(A) = 1] . □

Lemma 5.16. Suppose ΠNIZK is complete. Then, for all 𝑏 ∈ {0, 1},Hyb(𝑏 )
1
(A) andHyb(𝑏 )

2
(A) are identically distributed.

Proof. By Theorem 5.12, Construction 5.11 is complete so IsValid(pp, 𝑖, 𝑓 , pk) = 1 for all pk in the support of

KeyGen(pp, 𝑖, 𝑓 ). Thus, the additional abort condition never triggers and the two experiments are identical. □

Lemma 5.17. Suppose ΠNIZK satisfies zero-knowledge. Then, for all 𝑏 ∈ {0, 1}, Hyb(𝑏 )
2
(A) and Hyb(𝑏 )

3
(A) are

computationally indistinguishable.

Proof. Suppose | Pr[Hyb(𝑏 )
2
(A) = 1] − Pr[Hyb(𝑏 )

3
(A) = 1] | = 𝜀 for some non-negligible 𝜀. We use A to construct

an efficient adversary B that breaks zero-knowledge of ΠNIZK:

• Setup phase: At the beginning of the game, algorithm B receives a common reference string crsNIZK from

the zero-knowledge challenger. Algorithm B samples an index ind r← [𝑄ro] and starts running A on input

41



the security parameter 1
𝜆
, the policy-family parameter 1

𝜏
, and the number of slots 𝑁 . Algorithm A outputs

the challenge attribute x ∈ {0, 1}ℓ (𝜏 ) . Algorithm B now samples

(B,TB) ← TrapGen(1𝑛, 1𝑚, 𝑞),W r← Z2𝑚2𝑛×𝑚
𝑞

T← SamplePre( [I
2𝑚2 ⊗ B | W],

[ I
2𝑚2⊗TB

0

]
, I
2𝑚2 ⊗ G, 𝜎td)

B0

r← Z𝑛×𝑚𝑞 , p r← Z𝑛𝑞 .

If ∥T∥ >
√
𝑚𝜎td, then algorithm B sets T =

[ I
2𝑚2⊗TB

0

]
. Let ppcom = (B,W,T). Algorithm B gives the public

parameters pp = (crsNIZK, ppcom,B0, p) to A. Algorithm B also initializes a counter ctr = 0 and a dictionary

D. In addition, whenever A queries 𝐻1 on an index 𝑖 ∈ [𝑁 ], algorithm B responds with d𝑖
r← Z𝑛𝑞 . Whenever

algorithm A queries 𝐻2 on a string 𝜉 ∈ {0, 1}∗, algorithm B responds with a string 𝛾
r← {0, 1}𝜌 .

• Query phase: When A makes a key-generation query on an index 𝑖 ∈ [𝑁 ] and a function 𝑓 , algorithm

B increments the counter ctr = ctr + 1. Then it computes d𝑖 ,Vℓ ,A,A𝑓 according to Eq. (5.7) and samples

r r← {0, 1}𝑚 . Algorithm B computes t = Br + A𝑓G−1 (d𝑖 ) + p and submits (𝐶valid, (𝑖,A𝑓 , d𝑖 , p,B, t), r) to the

zero-knowledge challenger. The zero-knowledge challenger replies with a proof 𝜋 . Algorithm B responds to

A with the public key pk = (t, 𝜋) and also adds the mapping ctr ↦→ (𝑖, 𝑓 , t) to D. Finally, algorithm B checks

if IsValid(pp, 𝑖, 𝑓 , pk) = 0 and outputs 0 if so.

• Challenge phase: Let ((𝑐1, 𝑓1, pk𝑖 ), . . . , (𝑐𝑁 , 𝑓𝑁 , pk𝑁 )) be algorithm A’s challenge query. For each 𝑖 ∈ [𝑁 ],
algorithm B proceeds as follows:

– If 𝑐𝑖 ∈ {1, . . . , ctr}, then algorithm B looks up (𝑖′, 𝑓 ′, pk′) = D[𝑐𝑖 ] and checks that 𝑖 = 𝑖′. If not, algorithm
B outputs 0. Otherwise, algorithm B sets pk∗𝑖 = pk′ = (t𝑖 , 𝜋𝑖 ) and 𝑓 ∗𝑖 = 𝑓𝑖 .

– If 𝑐𝑖 = ⊥, then algorithm B checks that 𝑓𝑖 (x) = 1. If so, it parses pk𝑖 = (t𝑖 , 𝜋𝑖 ). Then, it checks that
NIZK.Verify(crsNIZK, (𝑖,A𝑓𝑖 , d𝑖 , p,B, t𝑖 ), 𝜋𝑖 ) = 1 where A𝑓𝑖 = EvalF(A, 𝑓𝑖 ), and d𝑖 = 𝐻1 (𝑖)). If the checks
pass, algorithm B sets pk∗𝑖 = pk𝑖 and 𝑓

∗
𝑖 = 𝑓𝑖 . Otherwise, algorithm B outputs 0.

Next, for each 𝑖 ∈ [𝑁 ], algorithm B computes C∗𝑖 = Commat (ppcom, uT
𝑖 ⊗ t𝑖 ) and the re-randomization matrix

C0 as

𝜉∗ = (pp, (pk∗
1
, 𝑓 ∗

1
), . . . , (pk∗𝑁 , 𝑓 ∗𝑁 ))

𝛾∗ = 𝐻2 (𝜉∗)
(C0, z0,1, . . . , z0,𝑁 ) = Sample(ppcom, 1𝜆DGS , 1𝑁 , 𝜎agg;𝛾∗).

If adversary A has not yet made at least ind queries to 𝐻2, or if its indth query 𝜉ind to 𝐻2 satisfies 𝜉ind ≠ 𝜉∗,
then algorithm B outputs 0. Otherwise, algorithm B computes

Ĉ = C0 +
∑︁

𝑖∈[𝑁 ]
C∗𝑖 , s

r← Z𝑛𝑞 , e← 𝐷𝑚
Z,𝜒 , RĈ,RB0

r← {0, 1}𝑚×𝑚 , rp
r← {0, 1}𝑚 .

If ∥e∥ >
√
𝑚𝜒 , algorithm B sets e = 0𝑚 . Next, algorithm B computes Cx = Commat (ppcom, xT ⊗ G) ∈ Z𝑛×𝑚𝑞

and the ciphertext

ct =
(
sTB + eT , sTĈ + eTRĈ , s

T (B0 + Cx) + eTRB0
, sTp + eTrp + ⌊𝑞/2⌋ · 𝑏

)
.

Algorithm B gives ct to A.

• Output phase: At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

By construction, on every key-generation query, we have that

t = Br + A𝑓G−1 (d𝑖 ) + p,

so 𝐶valid ((𝑖,A𝑓 , d𝑖 , p,B, t), r) = 1. We now consider two possibilities:

42



• Suppose the zero-knowledge challenger sampled crsNIZK ← NIZK.Setup(1𝜆) and constructed the proofs 𝜋 by

setting 𝜋 ← NIZK.Prove(crsNIZK,𝐶valid, (𝑖,A𝑓 , d𝑖 , p,B, t), r). Then, algorithmB perfectly simulates an execution

of Hyb(𝑏 )
2

and outputs 1 with probability Pr[Hyb(𝑏 )
2
(A) = 1].

• Suppose the zero-knowledge challenger sampled (crsNIZK, tdNIZK) ← NIZK.TrapSetup(1𝜆) and constructed

the proof 𝜋 by setting 𝜋 ← NIZK.Sim(tdNIZK,𝐶valid, (𝑖,A𝑓 , d𝑖 , p,B, t)). Then, algorithm B perfectly simulates

an execution of Hyb(𝑏 )
3

and outputs 1 with probability Pr[Hyb(𝑏 )
3
(A) = 1].

We conclude that algorithm B breaks zero-knowledge with the same advantage 𝜀. □

Lemma 5.18. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞, and 𝑞 is prime. If ΠNIZK satisfies simulation-sound extractability, then for
all 𝑏 ∈ {0, 1}, Hyb(𝑏 )

3
(A) and Hyb(𝑏 )

4
(A) are computationally indistinguishable.

Proof. The only difference between Hyb(𝑏 )
3

and Hyb(𝑏 )
4

is the extra check that the challenger performs when respond-

ing to the indth query 𝜉ind to 𝐻2. Specifically, the two experiments can only differ when the following occurs:

• Let ((𝑐1, 𝑓1, pk𝑖 ), . . . , (𝑐𝑁 , 𝑓𝑁 , pk𝑁 )) be adversary A’s challenge query and 𝜉∗ be the challenger’s input to 𝐻2

from Eq. (5.8). Then,

𝜉ind = 𝜉
∗ = (pp, (pk∗

1
, 𝑓 ∗

1
), . . . , (pk∗𝑁 , 𝑓 ∗𝑁 )),

where pk∗𝑖 = (t∗𝑖 , 𝜋∗𝑖 ). Otherwise, the output in both experiments output 0. Moreover, it is also the case that

IsValid(pp, 𝑖, 𝑓 ∗𝑖 , pk
∗
𝑖 ) = 1 for all 𝑖 ∈ [𝑁 ]. To see this, we consider two cases:

– Suppose 𝑐𝑖 ∈ {1, . . . , ctr}. In this case, pk∗𝑖 was obtained as the result of an honest key-generation query

(on index 𝑖 and function 𝑓 ∗𝑖 ). In both experiments, the challenger outputs 0 if IsValid(pp, 𝑖, 𝑓 ∗𝑖 , pk
∗
𝑖 ) = 0.

– Suppose 𝑐𝑖 = ⊥. Then, the challenger in both experiments affirms that IsValid(pp, 𝑖, 𝑓𝑖 , pk∗𝑖 ) = 1. In this

case, the challenger in both experiments sets 𝑓 ∗𝑖 = 𝑓𝑖 . We conclude that IsValid(pp, 𝑖, 𝑓 ∗𝑖 , pk
∗
𝑖 ) = 1.

• For each 𝑖 ∈ [𝑁 ], let A𝑓 ∗
𝑖
= EvalF(A, 𝑓 ∗𝑖 ). It must be the case that there exists some index 𝑖 ∈ [𝑁 ] where

(𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) is not contained in Dsk at the time algorithm A queried 𝐻2 on 𝜉ind. If not, then the challenger’s

behavior in the two experiments is identical. Moreover, one of the following conditions must occur for one

such index 𝑖 ∈ [𝑁 ] where (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) is not contained in Dsk:

– 𝑓 ∗𝑖 (x) ≠ 1; or

– The extracted vector r∗𝑖 = NIZK.Extract(tdNIZK,𝐶valid, (𝑖,A𝑓 ∗
𝑖
, d𝑖 , p,B, t∗𝑖 ), 𝜋∗𝑖 ) satisfies either r∗𝑖 ∉ {0, 1}𝑚

or Br∗𝑖 ≠ t∗𝑖 + A𝑓 ∗
𝑖
G−1 (d𝑖 ) + p.

Suppose | Pr[Hyb(𝑏 )
3
(A) = 1] − Pr[Hyb(𝑏 )

4
(A) = 1] | = 𝜀 for some non-negligible 𝜀. Then, it must be the case that

in an execution of Hyb(𝑏 )
3

, the above conditions hold with probability 𝜀. We consider the two possibilities:

• Suppose there exists some index 𝑖 ∈ [𝑁 ] where (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) is not contained in Dsk and 𝑓

∗
𝑖 (x) ≠ 1. In this case,

the challenger in Hyb(𝑏 )
4

always outputs 0. We claim that this is the case with overwhelming probability in

Hyb(𝑏 )
3

. Recall also that 𝜉ind = 𝜉
∗
. By construction of 𝜉∗, we now have the following:

– Suppose 𝑐𝑖 ∈ {1, . . . , ctr}. In this case, the challenger in Hyb(𝑏 )
3

sets pk∗𝑖 = pk′ where (𝑖′, 𝑓 ′, pk′) = D[𝑐𝑖 ].
By construction, pk∗𝑖 = (t∗𝑖 , 𝜋∗𝑖 ) is the public key the challenger generated when responding to a key-

generation query on index 𝑖 and function 𝑓 ′ = 𝑓 ∗𝑖 . Also, 𝑖 = 𝑖
′
as otherwise, the output in Hyb(𝑏 )

3
is also

0. In Hyb(𝑏 )
3

, the challenger would then add the mapping (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) to Dsk. However, since (𝑖,A𝑓 ∗

𝑖
, t∗𝑖 ) is

not contained in Dsk at the time A made its indth query to 𝐻2, this case can only happen if the challenger

inserted the entry (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) into Dsk after algorithm A queried 𝐻2 on 𝜉ind. This can only happen if

the challenger sampled t∗𝑖 as the public key in one of the subsequent key-generation queries. However,

in a key-generation query, the challenger samples r r← {0, 1}𝑚 and then sets t = Br + A𝑓G−1 (d𝑖 ) + p.
Since 𝑛 ≥ 𝜆, 𝑚 ≥ 2𝑛 log𝑞, and 𝑞 > 2 is prime, the marginal distribution of Br is statistically close to
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uniform over Z𝑛𝑞 . Thus, with overwhelming probability, it will be the case that t ≠ t∗𝑖 . Since the adversary
can make at most a polynomial number of key-generation queries, we conclude by a union bound that

the probability that the challenger samples t∗ in a key-generation query (after A queries 𝐻2 on 𝜉ind) is

negligible so this case occurs with negligible probability.

– Suppose 𝑐𝑖 = ⊥. In this case, the challenger in Hyb(𝑏 )
3

outputs 0 if 𝑓 ∗𝑖 (x) = 1.

We conclude that in this case, the challenger in Hyb(𝑏 )
3

also outputs 0 with overwhelming probability.

• Since the challenger’s behavior inHyb(𝑏 )
3

andHyb(𝑏 )
4

is identical with overwhelming probability when 𝑓 ∗𝑖 (x) = 0,

it must be the case that with probability 𝜀 − negl(𝜆), 𝑓 ∗𝑖 (x) = 1 and the extracted vector r∗𝑖 satisfies either
r∗𝑖 ∉ {0, 1}𝑚 or t∗𝑖 ≠ Br∗𝑖 + A𝑓 ∗

𝑖
G−1 (d𝑖 ) + p. In particular, this means that 𝐶valid ((𝑖,A𝑓 ∗

𝑖
, d𝑖 , p,B, t∗𝑖 ), r∗𝑖 ) = 0. We

show below that this implies an adversary B that can break simulation-extractability of ΠNIZK with the same

advantage 𝜀 − negl(𝜆).

We now use A to construct an adversary B for the simulation-sound extractability game:

• At the beginning of the game, algorithm B receives a common reference string crsNIZK from the simulation-

sound extractability challenger. Algorithm B samples an index ind r← [𝑄ro] and starts running A on input

the security parameter 1
𝜆
, the policy-family parameter 1

𝜏
, and the number of slots 𝑁 .

• Algorithm A outputs the challenge attribute x ∈ {0, 1}ℓ (𝜏 ) . Algorithm B now samples

(B,TB) ← TrapGen(1𝑛, 1𝑚, 𝑞),W r← Z2𝑚2𝑛×𝑚
𝑞

T← SamplePre( [I
2𝑚2 ⊗ B | W],

[ I
2𝑚2⊗TB

0

]
, I
2𝑚2 ⊗ G, 𝜎td)

B0

r← Z𝑛×𝑚𝑞 , p r← Z𝑛𝑞 .

If ∥T∥ >
√
𝑚𝜎td, then algorithm B sets T =

[ I
2𝑚2⊗TB

0

]
. Let ppcom = (B,W, T). Algorithm B gives the public pa-

rameters pp = (crsNIZK, ppcom,B0, p) to A. In addition, whenever A queries 𝐻1 on an index 𝑖 ∈ [𝑁 ], algorithm
B responds with d𝑖

r← Z𝑛𝑞 . Whenever algorithm A queries 𝐻2 on a string 𝜉 ∈ {0, 1}∗, algorithm B responds

with a string 𝛾
r← {0, 1}𝜌 . Finally, algorithm B also initializes an empty dictionary Dsk.

• Whenever A makes a key-generation query on an index 𝑖 ∈ [𝑁 ] and a function 𝑓 , algorithm B increments the

counter ctr = ctr + 1. Then it computes d𝑖 ,Vℓ ,A,A𝑓 according to Eq. (5.7) and samples r r← {0, 1}𝑚 . Algorithm

B computes t = Br+A𝑓 G−1 (d𝑖 ) + p and submits (𝐶valid, (𝑖,A𝑓 , d𝑖 , p,B, t)) to the simulation-sound extractability

challenger and receives a proof 𝜋 . Algorithm B responds to A with the public key pk = (t, 𝜋) and adds the

mapping (𝑖,A𝑓 , t) ↦→ (0, r) to Dsk if such a mapping does not already exist. Finally, algorithm B also checks

if IsValid(pp, 𝑖, 𝑓 , pk) = 0 and outputs 0 if so.

• When A makes its indth query to 𝐻2, algorithm B parses 𝜉ind = (pp∗, (pk∗
1
, 𝑓 ∗

1
), . . . , (pk∗𝑁 , 𝑓 ∗𝑁 )), where pk

∗
𝑖 =

(t∗𝑖 , 𝜋∗𝑖 ). If 𝜉ind does not have this form or pp∗ ≠ pp, then algorithm B outputs ⊥. Otherwise, algorithm B
samples a random index 𝑖∗ r← [𝑁 ] and and outputs (𝐶valid, (𝑖,A𝑓 ∗

𝑖
, d𝑖 , p,B, t∗𝑖∗ ), 𝜋∗𝑖∗ ).

• If A does not make indth queries to 𝐻2 prior to the challenge phase, algorithm B outputs ⊥.

Since the challenger samples (crsNIZK, tdNIZK) ← NIZK.TrapSetup(1𝜆) and constructs the (simulated) proofs 𝜋 as

𝜋 ← NIZK.Sim(tdNIZK,𝐶valid, (𝑖,A𝑓 , d𝑖 , p,B, t)), algorithm B perfectly simulates an execution of Hyb(𝑏 )
3

and Hyb(𝑏 )
4

for A. By assumption, with probability 𝜀 − negl(𝜆), the query 𝜉ind = (pp∗, (pk∗1, 𝑓 ∗1 ), . . . , (pk
∗
𝑁 , 𝑓

∗
𝑁
)) has the property

that there exists an index 𝑖 ∈ [𝑁 ] where

•

(
𝑖,A𝑓 ∗

𝑖
, t∗𝑖

)
∉ Dsk. This means algorithm B did not query for a proof on (𝑖,A𝑓 ∗

𝑖
, d𝑖 , p,B, t∗𝑖 ).

• IsValid(pp∗, 𝑖, 𝑓 ∗𝑖 , pk
∗
𝑖 ) = 1 which means NIZK.Verify

(
crsNIZK, (𝑖,A𝑓 ∗

𝑖
, d𝑖 , p,B, t∗𝑖 ), 𝜋∗

)
= 1.
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• The extracted vector r∗𝑖 = NIZK.Extract(tdNIZK,𝐶valid, (𝑖,A𝑓 ∗
𝑖
, d𝑖 , p,B, t∗𝑖 ), 𝜋∗𝑖 ) satisfies either r∗𝑖 ∉ {0, 1}𝑚 or

t∗𝑖 ≠ Br∗𝑖 + A𝑓 ∗
𝑖
G−1 (d𝑖 ) + p. In particular, this means 𝐶valid ((𝑖,A𝑓 ∗

𝑖
, d𝑖 , p,B, t∗𝑖 ), r∗) = 0.

Observe that these precisely coincide with the winning conditions in the simulation-extractability game. Thus,

whenever 𝑖∗ = 𝑖 , then algorithm B successfully breaks simulation-extractability. Since algorithm B samples 𝑖∗ r← [𝑁 ],
algorithm B breaks simulation-extractability with advantage at least (𝜀 − negl(𝜆))/𝑁 , which is non-negligible since

𝑁 = poly(𝜆). □

Lemma 5.19. Suppose 𝑛 ≥ 𝜆, 𝑚 ≥ 3𝑛 log𝑞, and 𝜎td ≥ 𝑂 (𝑚3
log𝑚). Then, for all 𝑏 ∈ {0, 1}, Hyb(𝑏 )

4
(A) and

Hyb(𝑏 )
5
(A) are statistically indistinguishable.

Proof. The lemma follows from Lemma 3.5. Specifically, the claim follows from Lemma 3.5 as long as

𝜎td ≥ (2𝑚3 +𝑚) log(2𝑚2𝑛) = 𝑂 (𝑚3
log𝑚). □

Lemma 5.20. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞, and 𝑞 > 2 is prime. Then, for all 𝑏 ∈ {0, 1}, Hyb(𝑏 )
5
(A) and Hyb(𝑏 )

6
(A)

are statistically indistinguishable.

Proof. This follows by the leftover hash lemma (Lemma 3.1). First, consider the distribution of B0 in the two exper-

iments. In Hyb(𝑏 )
5

, the challenger samples B0

r← Z𝑛×𝑚𝑞 whereas in Hyb(𝑏 )
6

, the challenger samples R0

r← {0, 1}𝑚×𝑚
and sets B0 = BRB0

− Cx. We claim that these two distributions are statistically close:

• First, suppose we sample B0 = B∗
0
− Cx where B∗

0

r← Z𝑛×𝑚𝑞 . Since B∗
0
is sampled independently of Cx, the

distribution of B0 remains uniform over Z𝑛×𝑚𝑞 .

• By Lemma 3.1, the distributions

(B,BRB0
, eTRB0

) and (B,B∗
0
, eTRB0

)

are statistically indistinguishable when B r← Z𝑛×𝑚𝑞 , RB0

r← {0, 1}𝑚×𝑚 , and B∗
0

r← Z𝑛×𝑚𝑞 .

Combining the above statements, we conclude that the distribution of B0 in the two experiments are statistically

indistinguishable. Next, consider the distribution of p. By Lemma 3.1, the distributions

(B,Brp, eTrp) and (B, p, eTrp)

are statistically indistinguishable when B r← Z𝑛×𝑚𝑞 , rp
r← {0, 1}𝑚 , and p r← Z𝑛𝑞 . The left distribution maps to Hyb(𝑏 )

6

while the right distribution maps to Hyb(𝑏 )
5

. Finally, consider the key-generation queries:

• In Hyb(𝑏 )
5

, the challenger sets t = Br + A𝑓G−1 (d𝑖 ) + p where r r← {0, 1}𝑚 .

• In Hyb(𝑏 )
6

, the challenger sets t = Br + d𝑖 where r r← {0, 1}𝑚 .

By the Lemma 3.1, the distribution of (B,Br) is statistically indistinguishable from (B, t∗) where t∗ r← Z𝑛𝑞 . The claim
now follows via a similar argument as used to analyze B0. □

Lemma 5.21. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞, and 𝜎td ·𝑂 (𝑚25/2𝑁 3) < 𝜎agg < 2
𝜆DGS . Then, for all polynomials 𝜅 = 𝜅 (𝜆)

and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that the statistical distance between Hyb(𝑏 )
6
(A) and

Hyb(𝑏 )
7,𝜅
(A) is at most 1/𝜅 + negl(𝜆).

Proof. By construction, in Hyb(𝑏 )
7,𝜅
(A) and Hyb(𝑏 )

8,𝜅
(A), the challenger samples B r← Z𝑛×𝑚𝑞 and sets T such that

∥T∥ ≤
√
𝑚𝜎td. The claim now follows by Theorem 5.9 (specifically, the explainability property). □

Lemma 5.22. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞, and 𝜎td ·𝑂 (𝑚25/2𝑁 3) < 𝜎agg < 2
𝜆DGS . Then, for all polynomials 𝜅 = 𝜅 (𝜆)

and all 𝑏 ∈ {0, 1}, Hyb(𝑏 )
7,𝜅
(A) and Hyb(𝑏 )

8,𝜅
(A) are statistically indistinguishable.
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Proof. By construction, in Hyb(𝑏 )
7,𝜅
(A) and Hyb(𝑏 )

8,𝜅
(A), the challenger samples B r← Z𝑛×𝑚𝑞 and sets T such that

∥T∥ ≤
√
𝑚𝜎td. The claim now follows by Theorem 5.9 (specifically, the sampling distribution property). □

Lemma 5.23. Suppose 𝑛 ≥ 𝜆, 𝑚 ≥ 2𝑛 log𝑞, and 𝑞 is prime. Then, for all polynomials 𝜅 = 𝜅 (𝜆) and all 𝑏 ∈ {0, 1},
Hyb(𝑏 )

8,𝜅
(A) and Hyb(𝑏 )

9,𝜅
(A) are statistically indistinguishable.

Proof. By construction, the only difference between these two distributions is the distribution of C0 and z0,𝑖 for
𝑖 ∈ [𝑁 ]. We show that these components are statistically indistinguishable:

• Since B r← Z𝑛×𝑚𝑞 and RĈ
r← {0, 1}𝑚×𝑚 , the distribution of BRĈ is statistically close to uniform over Z𝑛×𝑚𝑞 by

the leftover hash lemma (Lemma 3.1). Thus, the distribution of C0 = BRĈ −
∑

𝑗∈[𝑁 ] C∗𝑗 in Hyb(𝑏 )
9,𝜅

is statistically

close to uniform over Z𝑛×𝑚𝑞 , which coincides with the distribution of C0 in Hyb(𝑏 )
8,𝜅

• Consider z0,𝑖 for an index 𝑖 ∈ [𝑁 ] where (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (0, r∗𝑖 ) in Dsk. By construction, this means t∗𝑖 = d𝑖 + Br∗𝑖

where r∗𝑖 ∈ {0, 1}𝑚 . Now,
C0v𝑖 = BRĈv𝑖 −

∑︁
𝑗∈[𝑁 ]

C∗𝑗v𝑖 .

Since C∗𝑗 is a matrix commitment to uT
𝑗 ⊗ t∗𝑗 and Z∗𝑗 is the associated opening, we appeal to Lemma 3.8 to

conclude that

∀𝑗 ≠ 𝑖 : C∗𝑗v𝑖 = −Bz∗𝑗,𝑖
C∗𝑖 v𝑖 = t∗𝑖 − Bz∗𝑖,𝑖

= d𝑖 + Br∗𝑖 − Bz∗𝑖,𝑖

Thus, in Hyb(𝑏 )
9,𝜅

, we have

C0v𝑖 = BRĈv𝑖 − d𝑖 − Br
∗
𝑖 +

∑︁
𝑗∈[𝑁 ]

Bz∗𝑗,𝑖

= −d𝑖 + B ©«RĈv𝑖 − r
∗
𝑖 +

∑︁
𝑗∈[𝑁 ]

z∗𝑗,𝑖
ª®¬ .

In this case, the distribution of z0,𝑖 inHyb
(𝑏 )
9,𝜅

is precisely B−1𝜎agg (−C0v𝑖 ), which matches the distribution inHyb(𝑏 )
8,𝜅

.

• Consider z0,𝑖 for an index 𝑖 ∈ [𝑁 ] where (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (1, r∗𝑖 ) in Dsk. By construction, this means Br∗𝑖 =

t∗𝑖 +A𝑓 ∗
𝑖
G−1 (d𝑖 ) +p and moreover 𝑓 ∗𝑖 (x) = 1. Let Zx = Openmat (ppcom, xT ⊗G). Using the fact that A = −B0Vℓ𝑚 ,

we have

[B | B0 + Cx] ·
[
−Zx
−Vℓ𝑚

]
= −BZx − B0Vℓ𝑚 − CxVℓ𝑚 = A − xT ⊗ G.

Let HA,𝑓 ∗
𝑖
,x = EvalFX(A, 𝑓 ∗𝑖 , x). Using the fact that B0 = BRB0

− Cx, we now have

B[I𝑚 | RB0
] ·

[
−Zx
−Vℓ𝑚

]
· HA,𝑓 ∗

𝑖
,x = (A − xT ⊗ G) · HA,𝑓 ∗

𝑖
,x = A𝑓 ∗

𝑖
− 𝑓 ∗𝑖 (x) · G = A𝑓 ∗

𝑖
− G.

This means we can write

A𝑓 ∗
𝑖
G−1 (d𝑖 ) = d𝑖 + B(−Zx − RB0

Vℓ𝑚)HA,𝑓 ∗
𝑖
,xG−1 (d𝑖 ). (5.9)
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Using the fact that p = Brp, we now have

∀𝑗 ≠ 𝑖 : C∗𝑗v𝑖 = −Bz∗𝑗,𝑖
C∗𝑖 v𝑖 = t∗𝑖 − Bz∗𝑖,𝑖

= Br∗𝑖 + A𝑓 ∗
𝑖
G−1 (d𝑖 ) + p − Bz∗𝑖,𝑖

= Br∗𝑖 + d𝑖 + B(−Zx − RB0
Vℓ𝑚)HA,𝑓 ∗

𝑖
,xG−1 (d𝑖 ) + Brp − Bz∗𝑖,𝑖

= d𝑖 + B(r∗𝑖 − (Zx + RB0
Vℓ𝑚)HA,𝑓 ∗

𝑖
,xG−1 (d𝑖 ) + rp − z∗𝑖,𝑖 ) .

In this case,

C0v𝑖 = BRĈv𝑖 −
∑︁
𝑗∈[𝑁 ]

C∗𝑗v𝑖 = −d𝑖 + B
©«RĈv𝑖 − r

∗
𝑖 + (Zx + RB0

Vℓ𝑚)HA,𝑓 ∗
𝑖
,xG−1 (d𝑖 ) − rp +

∑︁
𝑗∈[𝑁 ]

z∗𝑗,𝑖
ª®¬ .

Thus the distribution of z0,𝑖 in this case in Hyb(𝑏 )
9,𝜅

is precisely B−1𝜎agg (−C0v𝑖 ), which is the distribution in Hyb(𝑏 )
8,𝜅

.

Since the distribution of C0 is statistically indistinguishable between Hyb(𝑏 )
8,𝜅

and Hyb(𝑏 )
9,𝜅

and z0,𝑖 is constructed using

identical procedures, the two distributions are statistically indistinguishable. □

Lemma 5.24. Suppose 𝜎agg > 𝜆𝜔 (1) · 𝜎td ·𝑚𝑂 (𝑑 )
log𝑞 · (𝑁 log𝑁 + log(ℓ𝑚)). Then, for all polynomials 𝜅 = 𝜅 (𝜆) and

all 𝑏 ∈ {0, 1}, Hyb(𝑏 )
9,𝜅
(A) and Hyb(𝑏 )

10,𝜅
(A) are statistically indistinguishable.

Proof. This follows by the Gaussian preimage smudging lemma (Lemma 5.10), as long as 𝜎agg is sufficiently large.

In the following analysis, it suffices to consider the setting where ∥T∥ ≤
√
𝑚𝜎td. Otherwise, the output in both

experiments is 0. In Hyb(𝑏 )
10,𝜅

, each z0,𝑖 can be written as z0,𝑖 = z̃0,𝑖 + z′0,𝑖 . By Lemma 5.10, if 𝜎agg > 𝜆𝜔 (1) ·
√
𝑚∥z′

0,𝑖 ∥,
then the distributions of z0,𝑖 in Hyb(𝑏 )

9,𝜅
(A) and Hyb(𝑏 )

10,𝜅
(A) are statistically indistinguishable. The claim then holds

by a hybrid argument over all 𝑁 = poly(𝜆) indices 𝑖 . It suffices to analyze ∥z′
0,𝑖 ∥ for each 𝑖 ∈ [𝑁 ]:

• Suppose (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (0, r∗𝑖 ) in Dsk. In this case, z′

0,𝑖 = −RĈv𝑖 + r
∗
𝑖 −

∑
𝑗∈[𝑁 ] z∗𝑗,𝑖 . By Lemma 3.8,

∥v𝑖 ∥ ≤ 𝑂 (∥T∥ ·𝑚4
log𝑞) = 𝑂 (𝜎td ·𝑚9/2

log𝑞)z∗𝑗,𝑖 ≤ 𝑂 (∥T∥ ·𝑚7
log𝑞 log𝑁 ) ≤ 𝑂 (𝜎td ·𝑚15/2

log𝑞 log𝑁 ).
(5.10)

Since RĈ ∈ {0, 1}
𝑚×𝑚, r∗𝑖 ∈ {0, 1}𝑚 , we conclude that

∥z′
0,𝑖 ∥ =

−RĈv𝑖 + r
∗
𝑖 −

∑
𝑗∈[𝑁 ] z∗𝑗,𝑖

 ≤ 𝑂 (𝑁𝜎td ·𝑚15/2
log𝑞 log𝑁 ).

• Suppose (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (1, r∗𝑖 ) in Dsk. In this case,

z′
0,𝑖 = −RĈv𝑖 + r

∗
𝑖 − (Zx + RB0

Vℓ𝑚)HA,𝑓 ∗
𝑖
,xG−1 (d𝑖 ) + rp −

∑︁
𝑗∈[𝑁 ]

z∗𝑗,𝑖 .

By Theorem 3.6, ∥HA,𝑓 ∗
𝑖
,x∥ ≤ 𝑚𝑂 (𝑑 )

. By Lemma 3.8,

∥Vℓ𝑚 ∥ ≤ 𝑂 (∥T∥ ·𝑚4
log𝑞) = 𝑂 (𝜎td ·𝑚9/2

log𝑞)
∥Zx∥ ≤ 𝑂 (∥T∥ ·𝑚7

log𝑞 log(ℓ𝑚)) = 𝑂 (𝜎td ·𝑚15/2
log𝑞 log(ℓ𝑚)) .

Next, RB0
∈ {0, 1}𝑚×𝑚 . Combined with Eq. (5.10), we can boundz′

0,𝑖

 ≤ 𝜎td ·𝑚𝑂 (𝑑 )
log𝑞 · (𝑁 log𝑁 + log(ℓ𝑚)).
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If 𝜎agg > 𝜆𝜔 (1) · 𝜎td ·𝑚𝑂 (𝑑 )
log𝑞 · (𝑁 log𝑁 + log(ℓ𝑚)), then 𝜎agg > 𝜆𝜔 (1) ·

√
𝑚∥z0,𝑖′ ∥ for all 𝑖 ∈ [𝑁 ] and the claim

holds. □

Lemma 5.25. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞, 𝑞 is prime, and 𝜎agg > log𝑚. Then, for all polynomials 𝜅 = 𝜅 (𝜆) and all
𝑏 ∈ {0, 1}, Hyb(𝑏 )

10,𝜅
(A) and Hyb(𝑏 )

11,𝜅
(A) are statistically indistinguishable.

Proof. The only difference between these two experiments is the distribution of (z̃0,𝑖 , d𝑖 ) for each 𝑖 ∈ [𝑁 ]. In Hyb(𝑏 )
10,𝜅

,

the challenger samples d𝑖
r← Z𝑛𝑞 and z̃0,𝑖 ← B−1𝜎agg (d𝑖 ) whereas in Hyb(𝑏 )

11,𝜅
, the challenger samples z̃0,𝑖 ← 𝐷𝑚

Z,𝜎agg
and

sets d𝑖 = Bz̃0,𝑖 . Under the given conditions, these two distributions are statistically indistinguishable by Lemma 3.3. □

Lemma 5.26. Suppose 𝑛 ≥ 𝜆, 𝑚 ≥ 2𝑛 log𝑞, 𝑞 is prime, 𝜒 ≥ log𝑚, and 𝜎td ≥ 𝑂 (log𝑚). Then, for all polynomials
𝜅 = 𝜅 (𝜆) and all 𝑏 ∈ {0, 1}, Hyb(𝑏 )

11,𝜅
(A) and Hyb(𝑏 )

12,𝜅
(A) are statistically indistinguishable.

Proof. Follows immediately from Lemmas 3.2 and 3.4. □

Lemma 5.27. Suppose the (2𝑚2, 𝜎td)-succinct LWE assumption with lattice parameters (𝑛,𝑚,𝑞, 𝜒) holds. Then, for all
polynomials 𝜅 = 𝜅 (𝜆) and all 𝑏 ∈ {0, 1}, Hyb(𝑏 )

12,𝜅
(A) and Hyb(𝑏 )

13,𝜅
(A) is computationally indistinguishable.

Proof. Suppose | Pr[Hyb(𝑏 )
12,𝜅
(A) = 1] − Pr[Hyb(𝑏 )

13,𝜅
(A) = 1] | = 𝜀 for some non-negligible 𝜀. We use A to construct

an efficient adversary B for the (2𝑚2, 𝜎td)-succinct LWE assumption:

• Setup phase: At the beginning of the game, algorithm B receives the challenge (B, c̃,W,T). Algorithm B
starts running algorithm A on input 1

𝜆
, 1

𝜏
, and 𝑁 . Algorithm A begins by outputting the attribute x ∈ {0, 1}ℓ .

Algorithm B sets ppcom = (B,W,T) and then samples the following:

(crsNIZK, tdNIZK) ← NIZK.TrapSetup(1𝜆)
Cx = Commat (ppcom, xT ⊗ G)

RĈ,RB0

r← {0, 1}𝑚×𝑚 , rp
r← {0, 1}𝑚

B0 = BRB0
− Cx , p = Brp.

Algorithm B sets pp = (crsNIZK, ppcom,B0, p) and gives pp to A. Algorithm B also initializes a counter ctr = 0,

dictionaries D,Dsk, and samples an index ind r← [𝑄ro].

• Queries to 𝐻1: Whenever A queries 𝐻1 on an index 𝑖 ∈ N, algorithm B samples z̃0,𝑖 ← 𝐷𝑚
Z,𝜎agg

and responds

with 𝐻1 (𝑖) = d𝑖 = Bz̃0,𝑖 .

• Queries to 𝐻2: Whenever A queries 𝐻2 on an input 𝜉 ∈ {0, 1}∗, if this is not the indth query to 𝐻2, algorithm

B responds with 𝛾
r← {0, 1}𝜌 . If it is the indth query, then algorithm B proceeds as follows:

– Algorithm B parses 𝜉ind = (pp∗, (pk∗1, 𝑓 ∗1 ), . . . , (pk
∗
𝑁 , 𝑓

∗
𝑁
)), where pk∗𝑖 = (t∗𝑖 , 𝜋∗𝑖 ). If 𝜉ind does not have this

form or pp∗ ≠ pp, then B outputs 0. If IsValid(pp, 𝑖, 𝑓 ∗𝑖 , pk
∗
𝑖 ) = 0 for any 𝑖 ∈ [𝑁 ], algorithm B outputs 0.

– Algorithm B computes Vℓ𝑚 = Vermat (ppcom, 1ℓ𝑚) and A = −B0Vℓ𝑚 .

– For each 𝑖 ∈ [𝑁 ], algorithm B computes A𝑓 ∗
𝑖

= EvalF(A, 𝑓 ∗𝑖 ). If (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) is not contained in Dsk,

algorithm B checks that 𝑓 ∗𝑖 (x) = 1. If not, it outputs 0. Otherwise, algorithm B computes

r∗𝑖 = NIZK.Extract(tdNIZK,𝐶valid, (𝑖,A𝑓 ∗
𝑖
, d𝑖 , p,B, t∗𝑖 ), 𝜋∗𝑖 ) .

If r∗𝑖 ∉ {0, 1}𝑚 or Br∗𝑖 ≠ t∗𝑖 + A𝑓 ∗
𝑖
G−1 (d𝑖 ) + p, then algorihtm B outputs 0. Otherwise, the challenger adds

the mapping (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (1, r∗𝑖 ) to Dsk.
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– Algorithm B computes V𝑁 = Vermat (ppcom, 1𝑁 ) and parses V𝑁 = [v1 | · · · | v𝑁 ]. Now, for each 𝑖 ∈ [𝑁 ],
algorithm B computes

C∗𝑖 = Commat (ppcom, uT
𝑖 ⊗ t∗𝑖 )

Z∗𝑖 = Openmat (ppcom, uT
𝑖 ⊗ t∗𝑖 )

It parses Z∗𝑖 = [z∗𝑖,1 | · · · | z∗𝑖,𝑁 ] and sets C0 = BRĈ −
∑

𝑗∈[𝑁 ] C∗𝑗 . For each 𝑖 ∈ [𝑁 ], algorithm B defines

z0,𝑖 as follows:

∗ Suppose (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (0, r∗𝑖 ) in Dsk. Then, it sets

z0,𝑖 = z̃0,𝑖 − RĈv𝑖 + r
∗
𝑖 −

∑︁
𝑗∈[𝑁 ]

z∗𝑗,𝑖 .

∗ Suppose (𝑖,A𝑓 ∗
𝑖
, t∗𝑖 ) ↦→ (1, r∗𝑖 ) in Dsk. Then, it computes Zx = Openmat (ppcom, xT ⊗ G) and HA,𝑓 ∗

𝑖
,x =

EvalFX(A, 𝑓 ∗𝑖 , x) and sets

z0,𝑖 = z̃0,𝑖 − RĈv𝑖 + r
∗
𝑖 − (Zx + RB0

Vℓ𝑚)HA,𝑓 ∗
𝑖
,xG−1 (d𝑖 ) + rp −

∑︁
𝑗∈[𝑁 ]

z∗𝑗,𝑖 .

Here, z̃0,𝑖 ∈ Z𝑚𝑞 is the value algorithm B sampled when responding to a query on 𝐻1 (𝑖). If algorithm A
has not yet made a query to 𝐻1 on some index 𝑖 ∈ [𝑁 ], algorithm B samples z̃0,𝑖 ← 𝐷𝑚

Z,𝜎agg
and programs

𝐻1 (𝑖) = d𝑖 = Bz̃0,𝑖 .

– Finally, algorithm B computes

𝛾∗ ← Explain(ppcom, 1𝜆DGS , 1𝜅 , (C0, z0,1, . . . , z0,𝑁 ), 𝜎agg).

It responds to A with 𝐻2 (𝜉ind) = 𝛾∗.

• Key-generation queries: Whenever A makes a key-generation query on an index 𝑖 ∈ [𝑁 ] and a function 𝑓 ,

algorithm B samples r r← {0, 1}𝑚 and sets t = Br + d𝑖 . It also computes A𝑓 = EvalF(A, 𝑓 ) and d𝑖 = 𝐻1 (𝑖). Then,
it generates a (simulated) proof 𝜋 ← NIZK.Sim(tdNIZK,𝐶valid, (𝑖,A𝑓 , d𝑖 , p,B, t)) and responds to A with the

public key pk = (t, 𝜋). Algorithm B adds the mapping ctr ↦→ (𝑖, 𝑓 , t) to D and (𝑖,A𝑓 , t) ↦→ (0, r) to Dsk if such a

mapping does not already exist. In addition, algorithmB checks that IsValid(pp, 𝑖, 𝑓 , pk) = 1 and outputs 0 if not.

• Challenge query: Let ((𝑐1, 𝑓1, pk𝑖 ), . . . , (𝑐𝑁 , 𝑓𝑁 , pk𝑁 )) be algorithm A’s challenge query. For each 𝑖 ∈ [𝑁 ],
algorithm B proceeds as follows:

– If 𝑐𝑖 ∈ {1, . . . , ctr}, then algorithm B looks up (𝑖′, 𝑓 ′, pk′) = D[𝑐𝑖 ] and checks that 𝑖 = 𝑖′. If not, algorithm
B outputs 0. Otherwise, it sets pk∗𝑖 = pk′ = (t𝑖 , 𝜋𝑖 ) and 𝑓 ∗𝑖 = 𝑓 ′.

– If 𝑐𝑖 = ⊥, then algorithm B checks that 𝑓𝑖 (x) = 1. If so, it parses pk𝑖 = (t𝑖 , 𝜋𝑖 ) and checks that

IsValid(pp, 𝑖, 𝑓𝑖 , pk𝑖 ) = 1. If so, algorithm B sets pk∗𝑖 = pk𝑖 and 𝑓
∗
𝑖 = 𝑓𝑖 . Otherwise, it outputs 0.

Let 𝜉∗ = (pp, (pk∗
1
, 𝑓 ∗

1
), . . . , (pk∗𝑁 , 𝑓 ∗𝑁 )). If algorithm A has not made at least ind queries to 𝐻2, then algorithm

B outputs 0. Otherwise, let 𝜉ind be the indth query algorithm A made to 𝐻2. If 𝜉
∗ ≠ 𝜉ind, then algorithm B

outputs 0. Otherwise, algorithm B constructs the challenge ciphertext as follows:

ct =
(
c̃T , c̃TRĈ , c̃

TRB0
, c̃Trp + ⌊𝑞/2⌋ · 𝑏

)
.

The challenger gives ct to A.

• Output: At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which algorithm B also outputs.
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IfA is efficient, then algorithm B is also efficient by construction. By definition, the succinct LWE challenger samples

B r← Z𝑛×𝑚𝑞 ,W r← Z2𝑚2𝑛×𝑚
𝑞 , and T← [I

2𝑚2 ⊗ B | W]−1𝜎 (I2𝑚2 ⊗ G). Thus, algorithm B perfectly simulates the public

parameters pp according to the specification of Hyb(𝑏 )
12,𝜅

and Hyb(𝑏 )
13,𝜅

. The random oracle queries and key-generation

queries are also simulated exactly according to the specification of Hyb(𝑏 )
12,𝜅

and Hyb(𝑏 )
13,𝜅

. Consider now the distribution

of the challenge ciphertext:

• Suppose c̃T = sTB + eT where s r← Z𝑛𝑞 and e← 𝐷𝑚
Z,𝜒 . Observe that when 𝜉ind = 𝜉

∗
, we have that

BRĈ = C0 +
∑︁

𝑖∈[𝑁 ]
C∗𝑖 = Ĉ.

Similarly, by definition of B0 and p, we further have

BRB0
= B0 + Cx

Brp = p.

Then, we can write

c =
(
sTB + eT , sTBRĈ + e

TRĈ , s
TBRB0

+ eTRB0
, sTBrp + eTrp + ⌊𝑞/2⌋ · 𝑏

)
=

(
sTB + eT , sTĈ + eTRĈ , s

T (B0 + Cx) + eTRB0
, sTp + eTrp + ⌊𝑞/2⌋ · 𝑏

)
.

This is the ciphertext distribution in Hyb(𝑏 )
12,𝜅

.

• Suppose c̃ r← Z𝑛𝑝 . Then, the challenge ciphertext is distributed exactly as in Hyb(𝑏 )
13,𝜅

.

We conclude that algorithm B breaks the succinct LWE assumption with the same advantage 𝜀. □

Lemma 5.28. Suppose 𝜎agg > 𝜆𝜔 (1) · 𝜎td ·𝑚𝑂 (𝑑 )
log𝑞 · (𝑁 log𝑁 + log(ℓ𝑚)). Then, for all polynomials 𝜅 = 𝜅 (𝜆) and

all 𝑏 ∈ {0, 1}, Hyb(𝑏 )
13,𝜅
(A) and Hyb(𝑏 )

14,𝜅
(A) are statistically indistinguishable.

Proof. Follows by the same argument as the proof of Lemma 5.25 (via the Gaussian preimage smudging lemma). □

Lemma 5.29. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞, and 𝑞 > 2 is prime. Then, for all polynomials 𝜅 = 𝜅 (𝜆) and all 𝑏 ∈ {0, 1},
Hyb(𝑏 )

14,𝜅
(A) and Hyb(𝑏 )

15,𝜅
(A) are statistically indistinguishable.

Proof. By the leftover hash lemma (Lemma 3.1), the distributions (B, c̃,Arp, c̃Tr𝑝 +𝑏 · ⌊𝑞/2⌋) and (B, c̃, p, 𝑐4 +𝑏 · ⌊𝑞/2⌋)
where B r← Z𝑛×𝑚𝑞 , c̃ r← Z𝑛𝑞 , r𝑝

r← {0, 1}𝑚 , p r← Z𝑛𝑞 , and 𝑐4
r← Z𝑞 are statistically indistinguishable. The first

distribution corresponds to Hyb(𝑏 )
14,𝜅

while the second corresponds to Hyb(𝑏 )
15,𝜅

. □

Completing the proof. To complete the proof of Theorem 5.14, suppose

| Pr[Hyb(0)
0
(A) = 1] − Pr[Hyb(1)

0
(A) = 1] | = 𝜀 (𝜆)

for some non-negligible function. By Lemma 5.15, this means

| Pr[Hyb(1)
1
(A) = 1] − Pr[Hyb(1)

1
(A) = 1] | = 𝜀 (𝜆)

𝑄ro
. (5.11)

Since 𝑄ro = poly(𝜆), the quantity 𝜀 (𝜆)/𝑄ro is also non-negligible. Thus, there exists a polynomial 𝜅′ (𝜆) such that for

infinitely-many 𝜆 ∈ N, 𝜀 (𝜆)/𝑄ro > 1/𝜅′ (𝜆). Let 𝜅 (𝜆) = 3𝜅′ (𝜆). For 𝑖 ≤ 6, we write Hyb(𝑏 )
𝑖,𝜅
(A) to denote Hyb(𝑏 )

𝑖
(A).

Moreover, since the challenger’s behavior in Hyb(𝑏 )
15

is independent of the bit 𝑏 ∈ {0, 1},

Pr[Hyb(0)
15
(A) = 1] = Pr[Hyb(1)

15
(A) = 1] .
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By Lemmas 5.16 to 5.29, we now have for all 𝜆 ∈ N,

| Pr[Hyb(1)
0
(A) = 1] − Pr[Hyb(1)

1
(A) = 1] | ≤

15∑︁
𝑖=1

| Pr[Hyb(0)
𝑖,𝜅
(A) = 1] − Pr[Hyb(0)

𝑖+1,𝜅 (A) = 1] |

+ | Pr[Hyb(0)
15
(A) = 1] − Pr[Hyb(1)

15
(A) = 1] |

+
15∑︁
𝑖=1

| Pr[Hyb(1)
𝑖+1,𝜅 (A) = 1] − Pr[Hyb(1)

𝑖,𝜅
(A) = 1] |

≤ 2/𝜅 (𝜆) + negl(𝜆) .

However, this contradicts Eq. (5.11) which asserts that there are infinitely-many 𝜆 ∈ N where

| Pr[Hyb(1)
1
(A) = 1] − Pr[Hyb(1)

1
(A) = 1] | = 𝜀 (𝜆)

𝑄ro
>

1

𝜅′ (𝜆) =
3

𝜅 (𝜆) .

Hence, we conclude that it must be the case that 𝜀 (𝜆) is negligible, and attribute-selective security holds. □

Parameter instantiation. We now provide one example instantiation of the lattice parameters for Construc-

tion 5.11 so as to satisfy Theorems 5.13 and 5.14. Let 𝜆 be a security parameter and 𝜏 be the policy parameter. Let

𝑑 = 𝑑 (𝜏) and ℓ = ℓ (𝜏) be the bound on the policy depth and the attribute length, respectively. Let 𝑁 ≤ 2
𝜆
be the

number of slots. Let 𝜀 ∈ (0, 1) be a constant. Then, we set

𝑛 = (𝜆𝑑)1/𝜀 · poly(log 𝜆, log𝑑, log ℓ, log𝑁 )
𝑚 = 𝑛𝑑 · poly(log 𝜆, log𝑑, log ℓ, log𝑁 )
𝜒 = poly(𝑛, log𝑑, log ℓ)

𝜎td = 𝑂 (𝑚3
log𝑚)

𝜎agg = 𝜆
𝜔 (1) ·𝑚𝑂 (𝑑 ) · 𝑁 3

log ℓ

𝑞 = 𝜆𝜔 (1) ·𝑚𝑂 (𝑑 ) · poly(𝑛, 𝑁, ℓ, log𝑑)
𝜆DGS = (𝜆 + 𝑑) · poly(log 𝜆, log𝑑, log ℓ)

For this choice of parameters, 𝑞 < 2
𝑛𝜀
. In this case, security relies on the (2𝑚2, 𝜎td)-succinct LWE assumption

with LWE parameters (𝑛,𝑚,𝑞, 𝜒); this corresponds to a sub-exponential modulus-to-noise ratio. We summarize our

instantiation in the following corollary:

Corollary 5.30 (Slotted Key-Policy Registered ABE). Let 𝜆 be a security parameter and 𝑁 ≤ 2
𝜆 be the number of slots.

Let𝑑 ≤ 2
𝜆 be a depth bound and ℓ ≤ 2

𝜆 be an attribute length. Then, under the poly(𝜆, 𝑑)-succinct LWE assumption with a
sub-exponential modulus-to-noise ratio, there exists a slotted key-policy registered ABE scheme with 𝑁 slots where the size
of the public parameters, the size of the individual public/secret keys, and the size of the ciphertext is poly(𝜆, 𝑑, log𝑁, log ℓ).

Remark 5.31 (Transparent Setup via Decomposed LWE). Similar to Remark 4.13, we can replace the matrix commit-

ment scheme in Construction 5.11 with the alternative instantiation from [Wee25, Appendix C] based on decomposed

LWE. This yields a key-policy registered ABE scheme that supports an unbounded number of users with a transparent
setup.
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A The [Wee25] Matrix Commitment Scheme
In this section, we recall the matrix commitment scheme from [Wee25, §3.2]. Let 𝑛,𝑚,𝑞 be lattice parameters where

𝑚 ≥ 2𝑛 log𝑞. In the following, we write

pp = (B,W,T) where [I
2𝑚2 ⊗ B | W] · T = I

2𝑚2 ⊗ G,

where B ∈ Z𝑛×𝑚𝑞 , W ∈ Z2𝑚2𝑛×𝑚
𝑞 , and T ∈ Z(2𝑚

2+1)𝑚×2𝑚3

𝑞 . Next, we define the Split function that takes as input (pp, 𝐿)
where 𝐿 ≤ 2𝑚 and outputs submatrices W𝐿,T𝐿 ofW,T, respectively, such that

[I𝐿𝑚 ⊗ B | W𝐿] · T𝐿 = I𝐿𝑚 ⊗ G.

Specifically, the Split function operates as follows:

• Split(pp, 𝐿): On input pp = (B,W,T) and 𝐿 ≤ 2𝑚, parse

W =


W(1)
.
.
.

W(2𝑚
2 )

 and T =


T(1)
lt

Trt

.

.

.

T(2𝑚
2 )

lt

T
lt

 ,
where W(𝑖 ) ∈ Z𝑛×𝑚𝑞 and T(𝑖 )

lt
,T

lt
∈ Z𝑚×𝐿𝑚2

𝑞 , and Trt ∈ Z(2𝑚
2+1)𝑚×(2𝑚2−𝐿𝑚)𝑚

𝑞 . The split function outputs

W𝐿 :=


W(1)
.
.
.

W(𝐿𝑚)

 ∈ Z𝐿𝑚𝑛×𝑚
𝑞 and T𝐿 :=


T(1)
lt

.

.

.

T(𝐿𝑚)
lt

T
lt

 ∈ Z
(𝐿𝑚+1)𝑚×𝐿𝑚2

𝑞 .

In the following, we parse T𝐿 ∈ Z(𝐿𝑚+1)𝑚×𝐿𝑚
2

𝑞 as T𝐿 :=

[
T𝐿
T𝐿

]
where T𝐿 ∈ Z𝐿𝑚

2×𝐿𝑚2

𝑞 and T
𝐿
∈ Z𝑚×𝐿𝑚2

𝑞 . In addition,

define

bits(M) := vec(G−1 (M)) ∈ Z𝐿𝑚𝑞 .

Let J𝐿 ∈ {0, 1}𝐿𝑚
2×𝐿⌈log𝑞⌉

be the fixed matrix from [Wee25, Lemma 4] where for allM ∈ Z𝑛×𝐿𝑞 ,

(bits(M) ⊗ G) · J𝐿 = M · G𝐿 .

The matrix commitment from [Wee25] is recursive, where the base case corresponds to committing to a matrix

M ∈ Z𝑛×𝐿𝑞 where 𝐿 ≤ 2𝑚. Without loss of generality, when 𝐿 > 2𝑚, we always pad the width of M (with ze-

roes) to a value of 𝐿 where 𝐿 = 2
𝑘 · ℓ , for some 𝑘 ∈ N and ℓ ∈ [2𝑚]. The associated verification matrix and

openings can then be derived by truncating the corresponding matrices for the padded matrix. Specifically, if

C · [Vlt | Vrt] = [Mlt | Mrt] − B · [Zlt | Zrt], then C · Vlt = Mlt − B · Zlt.
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• Commx (pp,M): On input pp = (B,W,T) and M ∈ Z𝑛×𝐿𝑞 :

– If 𝐿 ≤ 2𝑚, output C = (bits(M)T ⊗ I𝑛)W𝐿 ∈ Z𝑛×𝑚𝑞 where (W𝐿,T𝐿) ← Split(pp, 𝐿).

– If 𝐿 = 2
𝑘 · ℓ for 𝑘 ∈ N and ℓ ∈ [2𝑚], parse M = [M0 | M1] where M𝛽 ∈ Z𝑛×𝐿/2𝑞 . For 𝛽 ∈ {0, 1}, compute

C𝛽 = Commx (pp,M𝛽 ) ∈ Z𝑛×𝑚𝑞 . Output C = Commx (pp, [C0, | C1]) ∈ Z𝑛×𝑚𝑞 .

• Vermx (pp, 1𝐿): On input pp = (B,W,T) and 𝐿 ∈ N:

– If 𝐿 ≤ 2𝑚, output V𝐿 = T
𝐿
· J𝐿 ∈ Z𝑚×𝐿⌈log𝑞⌉𝑞 where (W𝐿,T𝐿) ← Split(pp, 𝐿).

– If 𝐿 = 2
𝑘 · ℓ for 𝑘 ∈ N and ℓ ∈ [2𝑚], compute V𝐿/2 = Vermx (pp, 1𝐿/2) and V2𝑚 = Vermx (pp, 12𝑚). Output

V𝐿 = V2𝑚 (I2 ⊗ G−1𝑚 (V𝐿/2)) ∈ Z𝑚×𝐿⌈log𝑞⌉𝑞 .

• Openmx (pp,M): On input pp = (B,W,T) andM ∈ Z𝑛×𝐿𝑞 :

– If 𝐿 ≤ 2𝑚, output Z = (bits(M)T ⊗ I𝑚)T𝐿 · J𝐿 ∈ Z𝑚×𝐿⌈log𝑞⌉𝑞 where (W𝐿,T𝐿) ← Split(pp, 𝐿).

– If 𝐿 = 2
𝑘 · ℓ for 𝑘 ∈ N and ℓ ∈ [2𝑚], parse M = [M0 | M1] where M𝛽 ∈ Z𝑛×𝐿/2𝑞 . For 𝛽 ∈ {0, 1}, compute

Z𝛽 = Openmx (pp,M𝛽 ) and C𝛽 = Commx (pp,M𝛽 ). In addition, compute V𝐿/2 = Vermx (pp, 1𝐿/2). Finally,
compute Z′ = Openmx (pp, [C0 | C1]) and output Z = Z′ · (I2 ⊗ G−1𝑚 (V𝐿/2)) + [Z0 | Z1] ∈ Z𝑚×𝐿⌈log𝑞⌉𝑞 .

A.1 Committing to Sparse Matrices and Supporting Local Openings
In this section, we give a proof of Lemma 3.10 and show that the [Wee25] matrix commitment scheme supports

efficient commitment to sparse matrices, and moreover, there is an efficient algorithm to locally compute the columns

of the verification matrix and the opening matrix.

Committing to sparse matrices. To support commitment to sparse matrices, we first observe that for all

pp = (B,W,T) and all 𝐿 ∈ N, Commx (pp, 0𝑛×𝐿) = 0𝑛×𝑚 . Thus, we can define the ComSparsemat (pp,M) algorithm
as follows:

• ComSparsemat (pp,M): On input pp = (B,W,T) and a sparse matrixM ∈ Z𝑛×𝐿𝑞 :

– If M = 0𝑛×𝐿 , return 0𝑛×𝑚 .

– If 𝐿 ≤ 2𝑚, output C = Commx (pp,M).
– If 𝐿 = 2

𝑘 · ℓ for 𝑘 ∈ N and ℓ ∈ [2𝑚], parse M = [M0 | M1] where M𝛽 ∈ Z𝑛×𝐿/2𝑞 . For 𝛽 ∈ {0, 1}, compute

C𝛽 = ComSparsemat (pp,M𝛽 ) ∈ Z𝑛×𝑚𝑞 . Output C = Commx (pp, [C0, | C1]) ∈ Z𝑛×𝑚𝑞 .

Since Commx (pp, 0𝑛×𝐿) = 0𝑛×𝑚 , we have that ComSparsemat (pp,M) = Commx (pp,M) = Commat (pp,M). It suffices

to analyze the running time of ComSparsemat (pp,M). Take any matrix M ∈ Z𝑛×𝐿𝑞 where M contains at most 𝐾

non-zero columns. Throughout, we assume that the matrix M (and its submatrices) are encoded in a sparse for-

mat (e.g., the description length of M is poly(𝐾,𝑚, log𝑞, log𝐿)). We show that ComSparsemat (pp,M) runs in time

poly(𝐾,𝑚, log𝑞, log𝐿). It suffices to consider the case where 𝐿 > 2𝑚. Write 𝐿 = 2
𝑘 · ℓ where 𝑘 ∈ N and ℓ ∈ [2𝑚].

Without loss of generality, suppose that 2ℓ > 2𝑚 (if not, we can alternatively write 𝐿 = 2
𝑘−1 · (2ℓ)). We now define

a complete binary tree T with height 𝑘 as follows:

• First, parse the matrix M = [M0 | · · · | M2
𝑘−1], whereM𝑖 ∈ Z𝑛×ℓ𝑞 . We associate the 𝑖th leaf node (from left to

right) of T with the sub-matrix M𝑖 .

• With each intermediate node 𝜎 in T , let M𝑖 ,M𝑖+1, . . . ,M𝑗 be the matrices associated with the leaf nodes in the

subtree rooted at 𝜎 (from left to right). We associate the matrixM𝜎 = [M𝑖 | · · · | M𝑗 ] with 𝜎 .
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We now compute the running time of ComSparsemat
. To do so, we associate a value 𝑡𝜎 with each node 𝜎 ∈ T ,

where 𝑡𝜎 is the running time of ComSparsemat (pp,M𝜎 ) and M𝜎 is the (sparse) matrix associated with 𝜎 . First, let 𝑇 =

poly(𝐾,𝑚, log𝑞, log𝐿) be the running time needed to (1) check if M = 0; (2) partition M = [M0 | M1]; and (3) invoke

Commx (pp, ·) on a matrix with width 2𝑚. This corresponds to the non-recursive components of the recursive step.

Note that 𝑇 also bounds the cost of a base case of the recursion. Then, we can define the running times 𝑡𝜎 as follows:

• If 𝜎 is associated with the zero matrix or 𝜎 is a leaf node, then 𝑡𝜎 ≤ 𝑇 .

• If 𝜎 is an internal node associated with a non-zero matrix, let 𝜎lt and 𝜎rt be its left and right children. Then,

𝑡𝜎 ≤ 𝑡𝜎lt + 𝑡𝜎rt +𝑇 .

We now show the following inductive invariant. For a node 𝜎 ∈ T , let 𝐾𝜎 denote the number of leaf nodes in the

sub-tree rooted at 𝜎 that are associated with non-zero matrices, and let ℎ𝜎 denote the height of the sub-tree rooted

at 𝜎 (i.e., the length of the longest path in the sub-tree). Then, for all 𝜎 ∈ T , we show that 𝑡𝜎 ≤ (1 + 2𝐾𝜎ℎ𝜎 )𝑇 . We

show this inductively:

• Consider a leaf node 𝜎 ∈ T . In this case, ℎ𝜎 = 0 and 𝑡𝜎 ≤ 𝑇 = (1 + 2𝐾𝜎ℎ𝜎 )𝑇 .

• Consider an internal node 𝜎 ∈ T that is associated with the zero matrix. Then𝐾𝜎 = 0 and 𝑡𝜎 ≤ 𝑇 = (1+2𝐾𝜎ℎ𝜎 )𝑇 .

• Consider an internal node 𝜎 ∈ T that is associated with a nonzero matrix. This means 𝐾𝜎 ≥ 1 Then,

𝑡𝜎 ≤ 𝑡𝜎lt + 𝑡𝜎rt +𝑇 . By definition, ℎ𝜎lt = ℎ𝜎rt = ℎ𝜎 − 1 and 𝐾𝜎lt + 𝐾𝜎rt = 𝐾𝜎 . Now, by the inductive hypothesis,

𝑡𝜎 ≤ 𝑡𝜎lt + 𝑡𝜎rt +𝑇
≤ (1 + 2𝐾𝜎lt (ℎ𝜎 − 1))𝑇 + (1 + 2𝐾𝜎rt (ℎ𝜎 − 1))𝑇 +𝑇
= (1 + 2𝐾𝜎ℎ𝜎 )𝑇 + 2(1 − 𝐾𝜎 )𝑇
≤ (1 + 2𝐾𝜎ℎ𝜎 )𝑇,

since 1 − 𝐾𝜎 ≤ 0.

By induction on T , we conclude for all 𝜎 ∈ T , 𝑡𝜎 ≤ (1 + 2𝐾𝜎ℎ𝜎 )𝑇 . The running time of ComSparsemat (pp,M) is then
bounded by (1 + 2𝐾𝑘)𝑇 = poly(𝐾,𝑚, log𝑞, log𝐿), as required.

Local access to the verification matrix. Next, we show that given pp and 𝐿, we can compute any single column

of the verification matrix V𝐿 in time poly(𝑚, log𝑞, log𝐿). We first define a local version of Vermx
:

• VerLocalmx (pp, 𝐿, 𝑖): On input the public parameters pp, the length 𝐿 ∈ N in binary, and an index 𝑖 ≤ 𝐿 ⌈log𝑞⌉:

– If 𝐿 ≤ 2𝑚, compute V𝐿 = Vermx (pp, 1𝐿) and output the 𝑖th column v𝐿,𝑖 of V𝐿 .

– If 𝐿 = 2
𝑘 · ℓ for 𝑘 ∈ N and ℓ ∈ [2𝑚], first compute V2𝑚 = Vermx (pp, 12𝑚) ∈ Z𝑚×2𝑚⌈log𝑞⌉𝑞 . Parse

V2𝑚 = [V2𝑚,lt | V2𝑚,rt] where V2𝑚,lt,V2𝑚,rt ∈ Z𝑚×𝑚⌈log𝑞⌉𝑞 . Then output

v𝐿,𝑖 =

{
V2𝑚,lt · G−1𝑚 (v𝐿/2,𝑖 ) 𝑖 ≤ 𝐿 ⌈log𝑞⌉ /2
V2𝑚,rt · G−1𝑚 (v𝐿/2,𝑖−𝐿⌈log𝑞⌉/2) 𝑖 > 𝐿 ⌈log𝑞⌉ /2,

where v𝐿/2,𝑖 = VerLocalmx (pp, 𝐿/2, 𝑖) and v𝐿/2,𝑖−𝐿⌈log𝑞⌉/2 = VerLocalmx (pp, 𝐿/2, 𝑖 − 𝐿 ⌈log𝑞⌉ /2).

First, we analyze the running time of VerLocalmx
. Let 𝑇 (𝑛,𝑚,𝑞, 𝐿) be the running time of VerLocalmx (pp, 𝐿, 𝑖) on any

set of public parameters pp with lattice parameters (𝑛,𝑚,𝑞), length 𝐿, and any index 𝑖 ≤ 𝐿 ⌈log𝑞⌉.

• If 𝐿 ≤ 2𝑚, then 𝑇 (𝑛,𝑚,𝑞, 𝐿) = 𝑝1 (𝑚, log𝑞) for a fixed polynomial 𝑝1.
3

3
Recall that we are only considering public parameters pp where𝑚 ≥ 2𝑛 log𝑞. Thus, any polynomial dependence in the running time on 𝑛

can be absorbed by a poly(𝑚) factor.
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• If 𝐿 > 2𝑚, then the running time is 𝑝2 (𝑚, log𝑞, log𝐿) +𝑇 (𝑛,𝑚,𝑞, 𝐿/2) for some fixed polynomial 𝑝2.

Thus,

𝑇 (𝑛,𝑚,𝑞, 𝐿) ≤ log𝐿 · 𝑝2 (𝑚, log𝑞, log𝐿) + 𝑝1 (𝑚, log𝑞) = poly(𝑚, log𝑞, log𝐿),
as required. It suffices to show that VerLocalmx (pp, 𝐿, 𝑖) is correct. We proceed by (strong) induction on 𝐿.

• If 𝐿 ≤ 2𝑚, correctness holds by construction.

• Suppose 𝐿 > 2𝑚. By definition of Vermx
, this means

V𝐿 = V2𝑚 (I2 ⊗ G−1𝑚 (V𝐿/2)) = [V2𝑚,lt | V2𝑚,rt] ·
[
G−1𝑚 (V𝐿/2) 0

0 G−1𝑚 (V𝐿/2)

]
.

In particular, the 𝑖th column v𝐿,𝑖 of V𝐿 is then

v𝐿,𝑖 =

{
V2𝑚,lt · G−1𝑚 (v𝐿/2,𝑖 ) 𝑖 ≤ 𝐿 ⌈log𝑞⌉ /2
V2𝑚,rt · G−1𝑚 (v𝐿/2,𝑖−𝐿⌈log𝑞⌉/2) 𝑖 > 𝐿 ⌈log𝑞⌉ /2,

where v𝐿/2,𝑖 is the 𝑖th row of V𝐿/2 = Vermx (pp, 𝐿/2) and v𝐿/2,𝑖−𝐿⌈log𝑞⌉/2 is the (𝑖 − 𝐿 ⌈log𝑞⌉ /2)th row of V𝐿/2.
By the inductive hypothesis,

v𝐿/2,𝑖 = VerLocalmx (pp, 𝐿/2, 𝑖)
v𝐿/2,𝑖−𝐿⌈log𝑞⌉/2 = VerLocalmx (pp, 𝐿/2, 𝑖 − 𝐿 ⌈log𝑞⌉ /2)

The claim now follows by (strong) induction on 𝐿.

Given VerLocalmx (pp, 𝐿, 𝑖), it is straightforward to construct the local version of Vermat
:

• VerLocalmat (pp, 𝐿, 𝑖): Output VerLocalmx (pp, 𝐿, (𝑖 − 1) ⌈log𝑞⌉ + 1).

Correctness follows by construction. Namely, Vermat (pp, 𝐿) outputs V𝐿 · G−1𝐿 (I𝐿), where V𝐿 = Vermx (pp, 𝐿). By
construction, the 𝑖th column of G−1

𝐿
(I𝐿) is the unit vector u(𝑖−1) · ⌈log𝑞⌉+1 ∈ Z𝐿⌈log𝑞⌉×𝐿𝑞 . Correspondingly, the 𝑖th column

of V𝐿 · G−1𝐿 (I𝐿) is then the ((𝑖 − 1) · ⌈log𝑞⌉ + 1)th-column of V𝐿 .

Computing local openings. Finally, combining the above two procedures, we obtain an analogous algorithm

for computing any single column of the opening Z = Openmx (pp,M) in time poly(𝐾,𝑚, log𝑞, log𝐿), where 𝐾 is the

number of non-zero columns of M. We start by defining the algorithm OpenLocalmx
:

• OpenLocalmx (pp,M, 𝑖): On input pp = (B,W,T), a sparse matrixM ∈ Z𝑛×𝐿𝑞 , and an index 𝑖 ≤ 𝐿 ⌈log𝑞⌉:

– If 𝐿 ≤ 2𝑚, compute Z = Openmx (pp,M) and output the 𝑖th column z𝑖 of Z.

– If 𝐿 = 2
𝑘 ·ℓ for 𝑘 ∈ N and ℓ ∈ [2𝑚], parseM = [M0 | M1] whereM𝛽 ∈ Z𝑛×𝐿/2𝑞 . Then compute the following:

∗ For 𝛽 ∈ {0, 1}, let C𝛽 = ComSparsemat (pp,M𝛽 ). Then compute Z′ = Openmx (pp, [C0 | C1]). Parse
Z′ = [Z′

lt
| Z′

rt
] where Z′

lt
,Z′

rt
∈ Z𝑚×𝑚⌈log𝑞⌉𝑞 .

∗ Compute the vector v̂ ∈ Z𝑚𝑞 as

v̂ =

{
VerLocalmx (pp, 𝐿/2, 𝑖) 𝑖 ≤ 𝐿 ⌈log𝑞⌉ /2
VerLocalmx (pp, 𝐿/2, 𝑖 − 𝐿 ⌈log𝑞⌉ /2) 𝑖 > 𝐿 ⌈log𝑞⌉ /2.

∗ Compute the vector ẑ ∈ Z𝑚𝑞 as

ẑ =

{
OpenLocalmx (pp,M0, 𝑖) 𝑖 ≤ 𝐿 ⌈log𝑞⌉ /2
OpenLocalmx (pp,M1, 𝑖 − 𝐿 ⌈log𝑞⌉ /2) 𝑖 > 𝐿 ⌈log𝑞⌉ /2.
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Output the vector

z𝑖 =

{
Z′
lt
· G−1𝑚 (v̂) + ẑ 𝑖 ≤ 𝐿 ⌈log𝑞⌉ /2

Z′
rt
· G−1𝑚 (v̂) + ẑ 𝑖 > 𝐿 ⌈log𝑞⌉ /2.

First, we analyze the running time of OpenLocalmx
. Let 𝑇 (𝑛,𝑚,𝑞, 𝐿, 𝐾) be the running time of OpenLocalmx (pp,M, 𝑖)

on any set of public parameters pp with lattice parameters (𝑛,𝑚,𝑞), a matrix M ∈ Z𝑛×𝐿𝑞 with at most 𝐾 non-zero

columns, and any index 𝑖 ≤ 𝐿 ⌈log𝑞⌉.

• If 𝐿 ≤ 2𝑚, then 𝑇 (𝑛,𝑚,𝑞, 𝐿) = 𝑝1 (𝑚, log𝑞) for a fixed polynomial 𝑝1.

• If 𝐿 > 2𝑚, then OpenLocalmx (pp,M, 𝑖) computes the following quantities:

– Computing ComSparsemat (pp,M𝛽 ) for 𝛽 ∈ {0, 1}, requires time poly(𝐾,𝑚, log𝑞, log𝐿). Computing Z′

from C0 and C1 requires time poly(𝑚, log𝑞).
– Computing the vector v̂ requires time poly(𝑚, log𝑞, log𝐿).
– Computing the vector ẑ requires time 𝑇 (𝑛,𝑚,𝑞, 𝐿/2, 𝐾).
– Computing the final output from Z′, v̂, and ẑ requires time poly(𝑚, log𝑞).

The total running time in this case is then 𝑇 (𝑛,𝑚,𝑞, 𝐿/2, 𝐾) = 𝑝2 (𝐾,𝑚, log𝑞, log𝐿) +𝑇 (𝑛,𝑚,𝑞, 𝐿/2, 𝐾), where
𝑝2 is a fixed polynomial.

This means

𝑇 (𝑛,𝑚,𝑞, 𝐿, 𝐾) = log𝐿 · 𝑝2 (𝐾,𝑚, log𝑞, log𝐿) + 𝑝1 (𝑚, log𝑞) = poly(𝐾,𝑚, log𝑞, log𝐿).

To complete the proof, we show that OpenLocalmx (pp,M, 𝑖) is correct. Similar to the previous case, we proceed by

(strong) induction on 𝐿:

• If 𝐿 ≤ 2𝑚, correctness holds by construction.

• Suppose 𝐿 > 2𝑚. Then, the opening algorithm Openmx (pp,M) computes C̃𝛽 = Commx (pp,M𝛽 ) for 𝛽 ∈ {0, 1}.
and Z̃′ = Openmx (pp, [C̃0 | C̃1]). It also computes Z̃𝛽 = Openmx (pp,M𝛽 ) for 𝛽 ∈ {0, 1}, Ṽ𝐿/2 = Vermx (pp, 1𝐿/2),
and finally, sets Z̃ = Z̃′ · (I2 ⊗ ˜G−1𝑚 (V𝐿/2)) + [Z̃0 | Z̃1]. Consider the 𝑖th column z̃𝑖 of Z̃. We can write it as

z̃𝑖 =

{
Z̃′
lt
· G−1𝑚 (ṽ𝐿/2,𝑖 ) + z̃0,𝑖 𝑖 ≤ 𝐿 ⌈log𝑞⌉ /2

Z̃′
rt
· G−1𝑚 (ṽ𝐿/2,𝑖−𝐿⌈log𝑞⌉/2) + z̃1,𝑖−𝐿⌈log𝑞⌉/2 𝑖 > 𝐿 ⌈log𝑞⌉ /2,

where Z̃ = [Z′
lt
| Z̃′

rt
], ṽ𝐿/2,𝑖 denotes the 𝑖th column of Ṽ𝐿/2 and z̃0,𝑖 , z̃1,𝑖 denote the 𝑖th column of Z̃0 and Z̃1,

respectively. Consider now OpenLocalmx (pp,M, 𝑖). By correctness of ComSparsemat
, we have that

C𝛽 = ComSparsemat (pp,M𝛽 ) = Commx (pp,M𝛽 ) = C̃𝛽

for 𝛽 ∈ {0, 1}. This means

Z′ = Openmx (pp, [C0 | C1]) = Openmx (pp, [C̃0 | C̃1]) = Z̃′ .

By correctness of VerLocalmx
, we have

v̂ = VerLocalmx (pp, 𝐿/2, 𝑖) = ṽ𝐿/2,𝑖 if 𝑖 ≤ 𝐿 ⌈log𝑞⌉ /2
v̂ = VerLocalmx (pp, 𝐿/2, 𝑖 − 𝐿 ⌈log𝑞⌉ /2) = ṽ𝐿/2,𝑖−𝐿⌈log𝑞⌉/2 if 𝑖 > 𝐿 ⌈log𝑞⌉ /2

By the inductive hypothesis, we have

ẑ = OpenLocalmx (pp,M0, 𝑖) = z̃0,𝑖 if 𝑖 ≤ 𝐿 ⌈log𝑞⌉ /2
ẑ = OpenLocalmx (pp,M1, 𝑖 − 𝐿 ⌈log𝑞⌉ /2) = z̃1,𝑖−𝐿⌈log𝑞⌉/2 if 𝑖 > 𝐿 ⌈log𝑞⌉ /2.
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Putting the pieces together, we now have

z𝑖 = Z′
lt
· G−1𝑚 (v̂) + ẑ = Z̃′

lt
· G−1𝑚 (ṽ𝐿/2,𝑖 ) + z̃0,𝑖 = z̃𝑖 if 𝑖 ≤ 𝐿 ⌈log𝑞⌉ /2

z𝑖 = Z′
rt
· G−1𝑚 (v̂) + ẑ = Z̃′

rt
· G−1𝑚 (ṽ𝐿/2,𝑖−𝐿⌈log𝑞⌉/2) + z̃1,𝑖−𝐿⌈log𝑞⌉/2 = z̃𝑖 if 𝑖 > 𝐿 ⌈log𝑞⌉ /2.

Thus for all 𝑖 ≤ 𝐿 ⌈log𝑞⌉, we have that z𝑖 = z̃𝑖 , and correctness holds.

Given OpenLocalmx (pp, 𝐿, 𝑖), it is straightforward to construct the local version of Openmat
:

• OpenLocalmat (pp,M, 𝑖): Output OpenLocalmx (pp,M, (𝑖 − 1) ⌈log𝑞⌉ + 1).

Correctness via the same analysis as for VerLocalmat
above. □
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