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Abstract. Random numbers are often used in cryptography algorithms,
protocols, and in several security and non-security applications. Such us-
ages often apply Arithmetic and Boolean operations on pseudorandom
numbers, such as addition, XOR, NOT, bit shifts, and other operations,
in order to achieve the desired amount of entropy and desired level of
security. In this paper, we have reviewed, studied, and analyzed the se-
curity properties of these operations on random numbers: do Arithmetic
and Boolean operations and other related operations on cryptograph-
ically secure pseudorandom numbers lead to cryptographically secure
pseudorandom numbers; do they lead to loss of preservation of entropy?
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1 Introduction

Random numbers are used in cryptography algorithms and protocols, their im-
plementations, and other security scenarios. Sometimes cryptographers as well
as non-cryptographers use Arithmetic and Boolean operations on cryptograph-
ically secure pseudorandom numbers (CSPRN) [14]. They use addition, XOR,
NOT, bit shifts, and other operations in order to achieve the desired amount
of entropy and the desired level of security of CSPRNs in that process. Cryp-
tography protocols such as Skein Hash function [7], ChaCha20 [3] use addition
operations. In other protocols, such as in the IEEE 802.11 standard for Wi-Fi [1],
protocol steps split random numbers from n bits to x < n bits.
The tacit assumption based on which such protocols and implementations some-
times split random numbers, add, subtract, and carry out arithmetic and boolean
operations on random numbers, is that the output of such operations on CSPRNs
remains cryptographically secure and is a CSPRN.
Research Questions: Here are some questions3 in the context of entropy and
random numbers suitable for cryptographic purposes.

3 We assume these are research questions unless and until there is evidence to the
contrary.
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1. Do Arithmetic operations on CSPRNs result in a CSPRN?
2. Do Boolean operations on CSPRNs result in a CSPRN (XOR and NOT are

known to result in a CSPRN; AND, OR do not.)
3. Do Splitting and bit selection on CSPRNs result in a CSPRN?

In this paper, we have attempted to study and review the security properties
of these questions: Do Arithmetic and Boolean operations and other related
operations on cryptographically secure pseudorandom numbers lead to crypto-
graphically secure pseudorandom numbers? What operations lead to insecure
outputs? It is out of scope for this paper to address these questions for pseudo-
randoms that need not be suitable for cryptographic operations but are used
widely across different topics of Statistics and Mathematics.
We have also verified our answers to the above questions with NIST randomness
test suite results.
Quantum Random Numbers: The results in this paper are applicable not
only to classically generated random numbers/entropy but also to quantum ran-
dom numbers/quantum entropy [10,16,18].

Summary of our Contributions: In Table 1, we have summarized the results
of our review on the security of different operations on CSPRNs.

Operation on CSPRNs Is the result a CSPRN? Section
XOR Yes 3.1
NOT Yes 3.2
AND No 3.3
OR No 3.4

Addition (Signed and unsigned) Yes 4.1
Subtraction (Unsigned) Yes 4.2

Multiplication No 4.3
Division No 4.4
Modulo No 4.5
Splitting Yes 5.1

Bit selection Yes 5.2
Table 1. Security of operations on CSRPNs

2 Background

2.1 Notations Used in Our Paper

In the rest of the paper, we use the terms randoms and CSPRNs interchangeably;
the terms randomness, entropy and Shannon’s entropy interchangeably.
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– r is a random number with digits denoted from LSB (r0) to MSB(rn−1) and

ij being bits taken off a constant i. r1 and r2 are also random numbers,
typically used as input variables. r follows a distribution as the output.
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2.2 Entropy an n-bit CSPRN

The notion of cryptographically secure randoms rely on Shannon’s entropy [4].

Theorem 1. The Shannon Entropy of a truly random n-bit number is n.

Theorem 2. The maximum entropy of a discrete random variable with n states
is log2(n), when all states are equally likely.

3 Review of Logic Operations and their Security

In this section, for the sake of completeness, we review known results such as
for bitwise XOR, NOT, AND, and OR. We have provided proofs of the security
claims for each of these operations on CSPRNs.

3.1 Bitwise XOR of Random Numbers

Theorem 3. Bitwise XOR between 2 CSRPNs, as well as between a CSRPN
and an n-bit constant number, preserves entropy and results in a CSRPN.

3.2 Bitwise NOT

Theorem 4. Bitwise NOT operation on a CSRPN results in a CSRPN, and it
preserves entropy.



4 Sharma and Kundu.

Proof. Consider ¬n r. Here, each bit is flipped.

∀j P ((¬nr)j = 1) = P (¬rj = 1) = P (rj = 0) =
1

2

¬rj has only one dependency: rj , implying that all bits of the results are in-
dependently random. This means that all numbers between 0 and 2n − 1 are
still equally likely, all with a probability of 2−n, as also evidenced by the fact
that f(x) = ¬nx is a bijection on the n-bit domain. The entropy as computed
remains n by a similar argument, thus preserving the randomness.

3.3 Bitwise AND

Theorem 5. Bitwise AND between 2 CSRPNs or between a CSRPN and an
n-bit constant number does not preserve entropy.

Proof. Take r = r1 & r2, the bitwise AND. Here,

P (rj = 1) = P (r1j = 1 & r2j = 1) =
1

2
· 1
2
=

1

4

This already hints that all bits are biased towards 0, with only a 25% chance of
being 1. The Shannon entropy is

H[R] = −
2n−1∑
i=0

P (xi) · log2
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4
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∼ 0.811 · n

As evident, the entropy is less than n. Thus, the result of bitwise AND is not
random.
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Let us now consider r = r1 & c, where c is an n-bit constant.

∀j P (rj = 1) =

{
0 , cj = 0 =⇒ rj = 0 This bit is deterministic.
1
2 , cj = 1 =⇒ rj = r1j This bit is random.

Suppose we cut out the ‘deterministic’ zero bits (where cj = 0) and have n1 < n
independent and random bits left over. These are the bits that contribute to
the randomness. There are 2n1 possible values these bits can take, taken all at
a time. All of these are equally likely. This hints at an n1-bit number and an
entropy of n1. Since there is a one-to-one mapping between possible results and
these n1-bit random numbers, we say that the entropy of the result is n1.

This entropy is less than n unless c = 1111..11111 and depends on the value of
c. Therefore, bitwise AND does not preserve Shannon’s entropy.

3.4 Bitwise OR

Theorem 6. Bitwise OR between 2 CSRPNs or between a CSRPN and an n-bit
constant number does not preserve entropy.

Proof. Take r = r1 | r2, the bitwise OR. Here,

P (rj = 0) = P (r1j = 0 & r2j = 0) =
1

2
· 1
2
=

1

4

This already hints that all bits are biased towards 1, with only a 25% chance of
being 0. By an exact argument, as in the case of bitwise AND, the entropy of
the result is around 0.811n, implying a decrease in Shannon entropy.
Let us now consider r = r1 | c, where c is an n-bit constant.

∀j P (rj = 1) =

{
1
2 , cj = 0 =⇒ rj = r1j This bit is random.
1 , cj = 1 =⇒ rj = 1 This bit is deterministic.

Following an identical argument with bitwise AND (except that it is now the
constant ‘1’ bits that are pruned), we conclude that bitwise OR does not not
preserve randomness.

4 Arithmetic Operations and their Security

4.1 Addition of Random Numbers

The objective is to determine that the resultant number on the addition of two
random numbers is also random according to the definition of randomness used
throughout this paper, only for cryptography purposes.
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We define the addition of two numbers r = r1+ r2 in a bitwise manner, with the
help of the full adder [13].

∀j rj = r1j ⊕ r2j ⊕ cj

∀j cj+1 = (r1j & r2j) | (r2j & cj) | (cj & r1j)

c0 = 0

We study the entropy of each bit and, thus, the entire number, assuming both
numbers are random and that any one is random.

Theorem 7. The least significant bit of the result is truly random iff at least
one of the numbers has a random LSB.

Proof. For the LSB,
r0 = r10 ⊕ r20 ⊕ 0 = r10 ⊕ r20

We use Theorem 2 to say that the LSB is computationally indistinguishable from
being random if at least one of r10 and r20 is computationally indistinguishable
from being truly random or even is a truly random bit.

Theorem 8. If at least one of the bits r1j and r2j is random for any index j,
we say, regardless of the value and the entropy of the bit cj, that rj remains
random.

Proof. Without loss of generality, let r1j be the random bit, at least computa-
tionally indistinguishable from being truly random and independent of all other
bits. We treat

tempj = (r2j ⊕ cj)

as a 1-bit number. If p were the probability that tempj were equal to 1, then
the chance that the result bit is 1 is

P (r1j = 1 & tempj = 0) + P (r1j = 0 & tempj = 1) =
1− p

2
+

p

2
=

1

2

P (r1j) =
1

2
+ η =⇒ P (rj = 1) =

1

2
+ (1− 2p)η

not any further from a 50 % chance, by more than the value η (so it does not
matter if p depends on other bits of r2 or not). This means that if at least one of
the two input numbers is computationally indistinguishable from truly random
numbers, so is the result.

Theorem 9. The carry bits cj are not truly random, although they approach a
50 % randomness as the index of the bit increases if both r1 and r2 are random.
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Proof. Let P (cj = 1) = 1/2− e for any e < 1/2. With the help of the inclusion
and exclusion principle applied to P (cj+1 = 1), denoted P (cj+1), we say that

P (cj+1) = P (cj & r1j) + P (r1j & r2j) + P (cj & r2j)− 2P (cj & r1j & r2j)

Without loss of generality, let r1 be truly random. Then, this evaluates to

1/2 (P (r2j) + P (cj))

which could lie anywhere between 0 and 1. If r2 is also truly random, we say
that P (c0) = 0 snf

P (cj+1) = 1/2 (1/2 + P (cj)) =⇒ P (cj = 1) = 1/2
(
1− 2−j

)
In particular, if the result is not kept within the domain of n-bit numbers but is
allowed to take an extra bit (‘BigInteger’ addition), then the nth bit, rn = cn,
while it approaches a random bit as n increases, the sharing of dependencies
with rn−1 on r1,n−1, r2,n−1 and cn−1 makes the pair of bits and as a result, the
entire number not random.

Theorem 10. Addition of 2 CSRPNs, as well as a CSRPN and an n-bit con-
stant number, results in a CSRPN and preserves entropy, provided the result is
truncated to n bits, but BigInteger addition with overflow to the n+1th bit does
not result in a CSRPN.

Proof. For Integer Addition: Without loss of generality, let r1 be the random.
This is a direct consequence of the above three Lemmas. An alternate approach
would be to weigh the chances of each result. Then,

P (r = i) =

2n−1∑
i1=0

P (r1 = i1)P (r2 = i− i1) =
1

2n

2n−1∑
i1=0

P (r2 = i− i1)

Note that f(x) = i− x is a bijection in the n-bit number domain, the same for
x = i2. Meaning: our probability is

P (r = i) = 2−n
2n−1∑
i2=0

P (r2 = i2) = 2−n

This is the probability regardless of the i value. This means that r is truly ran-
dom, and Shannon entropy is preserved in addition and subtraction.

For Unsigned BigInteger Addition: The result would follow a triangular
distribution with

P (r = i) =

min(i,2n−1)∑
i1=max(0,i−2n+1)

P (r1 = i1)P (r2 = i− i1)
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Since i2 is an n-bit number, i2 = i− i1 ≤ 2n−1 =⇒ i1 ≥ i−2n+1 and i1 ≥ 0.
Combining these, we get i1 ≥ max (i− 2n + 1, 0). Likewise, i2 ≥ 0 =⇒ i1 ≤ i
since i1 ≤ 2n − 1, the maximum number in the domain.

P (r = i) =

min(i,2n−1)∑
i1=max(0,i−2n+1)

1

2n
1

2n

=
1

22n
· (min(i+ 1, 2n)−max(0, i− 2n + 1))

P (r = i) =

{
i+ 1, i < 2n

2n+1 − i− 1, i ≥ 2n

This means the distribution is not uniform, and the entropy would be less than
n+1. However, it would be more than n as truncating one bit in the result only
reduces net information (and therefore entropy). So, while entropy increases, the
result is not random.

4.2 Unsigned Integer Subtraction

Theorem 11. Subtraction of 2 CSRPNs, as well as a CSRPN and an n-bit
constant number, results in a CSRPN and preserves entropy, provided overflow
is taken into account.

Proof. Subtracting a number r from any given number x has the same effect of
adding the 2-s complement of r, 2n − r to x; the reason being that

(x− r)%2n = (x+ 2n − r)%2n

From the previous result, if x is truly random, so is the result. If r were random
but x were not, then 2n − r would have and identical but inverted probability
distribution and therefore would be random; so would x+ 2n − r.

4.3 Integer Multiplication

We define the integer product of two numbers r0 = r1 · r2 by these definitions,
taking

r1j = r2j = 0 ∀ j ≥ n

where the two numbers are n-bit – adding zeroes to the left. Note that truncating
the result to n bits would involve ignoring the values of all bits left-shifted
or carried to and beyond the nth place, taking into account the definition of
addition, as described above.

Theorem 12. Multiplication of 2 CSRPNs does not result in a CSRPN, and
the entropy of the result is reduced.
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Proof.

P (r00 = 1) = P (r10 = 1 and r20 = 1) = P (r10 = 1) · P (r20 = 1) =
1

2
· 1
2
=

1

4

This itself disproves the randomness of the product.

Distribution of Probability of Result: Here we do not follow a bitwise
approach, but rather an approach that evaluates the probability distribution
of each n-bit or 2n-bit result, among the domain of n-bit or 2n-bit numbers.
The exact distribution is more haphazard, for prime numbers have a very low
probability, and the likelihood that the result equals any number (for 2n bit
result) is proportional to the number of factors; however, it follows a decreasing
trend which approaches the continuous distribution

fX(x) = −ln(x) [6]

That is, it is more likely for the product to be a small number within the 2n-bit
space. The variance is even more random if the result is truncated to n bits.
Calculated Entropy: With the help of a brute-force algorithm, the entropy
values for multiplying two truly random numbers, with the results truncated to
n bits and the results kept at the full 2n bits, were computed.

n, #bits Entropy of r1, r2 2n− bit product entropy n− bit product entropy
1 1 1.500000 0.811278
2 2 3.077820 1.750000
3 3 4.788910 2.727217
4 4 6.446142 3.718139
5 5 8.267194 4.714364
6 6 10.053356 5.712749
7 7 11.894136 6.712042
8 8 13.754086 7.711729
9 9 15.647446 8.711588
10 10 17.548259 9.711524
11 11 19.461689 10.711494
12 12 21.384701 11.711481

Table 2. Entropy on multiplication of random numbers

Remarks: While it is true that multiplication is repeated addition, when we
perform a∗b, the number of times we add a to itself is dependent on b and is not
fixed. Moreover, a+ a = 2 ∗ a is not as random as just a within an n-bit integer
field, since the least significant bit is 0. Therefore, we cannot say that a ∗ b is as
random as a or b.
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4.4 Integer Division

Theorem 13. Integer Division of 2 CSRPNs does not result in a CSRPN, and
entropy is not preserved.

Proof. Let us consider the floor division r1/r2 or the Python r1//r2 since we
deal with integers. The result is always zero whenever r1 < r2 by magnitude
(minus one in Python if r1 is negative). This means there is an almost 50 %
chance that the result is zero. If we stick to positive (aka unsigned) numbers,
the probability that the result is zero is (2n − 1)/2n+1.
This itself proves that division does not preserve randomness.

For the probability that r = i, Let k = 2n/i, the floor, and 2n = ki + c. The
ordered pairs

(1, i);

(2, 2i); (2, 2i+ 1);

...
(k, ki); (k, ki+ 1); ...(k, ki+ k − 1)

consist of k sequences, with less than or equal to k(k + 1)/2 terms, less than if
some of the second numbers in these ordered pairs go above 2n−1. Each ordered
pair (a, b) represents one possibility for r2 and r1 in this order, where the result,
r1/r2, would be i. Plus, the likelihood of any ordered pair (a, b) is 2−2n. This
means that

P

(
r1
r2

= i

)
≤
(
2n

i

(
2n

i + 1
))

(22n+1)

This gives a probability distribution centered at zero and decreases approxi-
mately quadratically with i, the result. This is not a uniform random distribu-
tion; the entropy is less than n.

4.5 Modulo

Theorem 14. The Modulo (Remainder) of 2 CSRPNs is not a CSRPN, and
entropy is not preserved.

Proof. The modulo operation on randoms behaves differently. For the result
r = r1%r2 = i, the divisor r2 should be greater than i. Let it be i2 > i. Then,
the number of possibilities of i1 to result in modulo i, is⌈

2n − i

i2

⌉



Security of Operations on Random Numbers: A Review 11

These possibilities result from the series i1 = i, i+ i2, i+ 2i2, ...
Summed up across all different values of i2, the number of (i1, i2) pairs is

2n−1∑
j=i+1

⌈
2n − i

j

⌉
One lower bound for this number of ordered pairs is obtained on adding the
fractions, and an upper bound is obtained on adding 1 to each fraction [or adding
2n − i − 1 to the lower bound]. Dividing by the total number of ordered pairs
(i1, i2) possible in the domain of n-bit numbers space gives us the probability
distribution.

No.(r = i) ≥
2n−1∑
j=i+1

2n − i

j

≥
∫ 2n

j=i+1

2n − i

j
dj

Upper bounds on decreasing function rectangle areas

= (2n − i)ln

(
2n

i+ 1

)

No.(r = i) ≤ 2n − i− 1 +

2n−1∑
j=i+1

2n − i

j

≤ 2n − i− 1 +

∫ 2n−1

j=i

2n − i

j
dj

Lower bounds on decreasing function

= 1 + (2n − i)

(
1 + ln

(
2n − 1

i

))
Therefore,

P [r = i] ∈
[
2n − i

22n
ln

(
2n

i+ 1

)
,

1

22n
+

2n − i

22n

(
1 + ln

(
2n − 1

i

))]

This is the required range. The probability decreases with i, the modulo itself,
agreeing with the fact that for the modulo to be a small number, there are many
divisors possible and many dividends for many of these divisors. These numbers
shrink as the remainder needed increases, reducing the number of ‘acceptable’
ordered pairs for the values of r1, r2, and the probability that the result r = i.
Thus, this is not a uniform distribution and the ‘randomness’ of the remainder
is reduced, with entropy less than n.
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5 Splitting and Bit Selection and their Security

5.1 Splitting of CSPRNs

Theorem 15. For a truly random number or number with all bits computation-
ally indistinguishable from truly random numbers, the entropy on splitting the
random number or choosing any k bits out of n remains random.

Proof. Let the k bits be at positions j1, j2, . . . jk. Each of these bits has a 50 %
chance of being 1. This means that of the 2k numbers possible by only those
k bits, each equally likely with a probability of 2−k. The computed Shannon
Entropy is k, meaning the number is truly random.
This holds regardless of the value of k ≤ n and the actual choice of k bits. This
also means splitting a random number into two would result in two random k-
bit numbers and one random n− k-bit number. For the special case k = n

2 , the
number is split into two halves, two equally random numbers.
Caveat: If the pseudorandom number generated is not computationally indis-
tinguishable [9] from a truly random number, a.k.a.

∃ j,polynomial Q(j) such that ∥P (rj = 1)− 0.5∥ >
1

Q(j)

then either the jth bit is dependent on the previous bit or it is simply not random
enough. In these cases, truncating the number could reduce entropy by up to
n−k [for removing n−k bits], but then again, the entropy of the original number
would be less than n.

5.2 Bit Selection from CSPRNs

Selection of bits at random indices of a CSPRN such that the number of such
selected bits is sufficiently large. Entropy extraction has been studied earlier [17].
In the following, we are reviewing the security of this bit selection operation and
providing proof of its security.

Theorem 16. Choosing k random indices between 0 and n − 1 and taking the
corresponding bits off an n-bit random number would give a random number.

Proof. There are
(
n
k

)
possible choices of bits. Multiplied by k!, we get the number

of choices with the order of bits taken into account to form our k-bit number.
Let our permutation be p. Then,

P (p) = 1/

(
k!

(
n

k

))
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And, P (i|p) = 2−n from Theorem 11. From Bayes’ [2] Theorem,

P (i) =
∑
p

P (p)P (i|P ) =
∑
p

(
1

k!
(
n
k

) 1

2k

)
=

1

2k

∑
p

1

k!
(
n
k

) =
1

2k

From this, it follows that ∀i P (r = i) = 2−k and therefore, the obtained number
is truly random.

6 Implementation and Experimental Analysis

With the help of the NIST Test suite [11], we tested the results using 128 bit-
streams of 1.5 million bits per stream taken off the hardware-accelerated random
generator (/dev/random) on an M1 MacBook Air with 8 GB RAM and 256 GB
SSD. The suit consists of 15 types of tests, some repeated many times but with
different hyperparameters involved, totalling around 150 types of tests. 2 types
of results are produced:

– Passing rate: the number of bitstreams that get a P-value more than a
given threshold. This could be around 0.01. If too many bitstreams get P-
values less than the significance level α, then it means that the chances that
(True RNG does better than bitstream) are too high, too many bitstreams
produced are significantly less random according to the test.

– P-value: this reported number ranging from 0.0 to 1.0 is not the average
of P-value or P-value of one bitstream. This is the analysis of the P-values
distribution across bitstreams; if it deviates too much from uniformity (as
against a perfect RNG), then this test reports a failure (low P-value re-
ported). Here, 0.0001 is taken as the threshold; even if all bitstreams indi-
vidually have high P-values, a distribution too far from uniform indicates
that there is something less than random about it, another means of testing.

6.1 Procedure to get Files for Operation Testing

– Open the input file containing random bits.
– Read 128 bits at a time into 2 64-bit numbers a and b.
– Perform the operation like a ⊕ b, a + b, a − b. Write the results as 64 bits

into the corresponding output file. For bitwise NOT, write ¬a and ¬b both,
that is 128 bits.

– Repeat for the entire input file. We get the output file size:
size(output_file) = η · size(input_file), where

η =

{
1, Bitwise NOT and unary operations
0.5, Binary operations like bitwise AND, OR, XOR and +, -, *, /, %
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6.2 Analysis of Experimental Results

Operations Tests passed P-values Inference Corroborates
Analysis?

Operands
All tests passed

bitstreams passed:
≥ 124 / 128, 91 / 94

≥ 0.01 Random Agrees with
Definition

Bitwise NOT
All tests passed

bitstreams passed:
≥ 124 / 128, 90 / 94

≥ 0.03 Random Agrees with
Theorem 4

Bitwise AND
All tests failed

except rank tests
bitstreams passed: 0 / 128

All 0.0 Not Random
Too many 0s

Agrees with
Theorem 5

Bitwise OR
All tests failed

except rank tests
bitstreams passed: 0 / 128

All 0.0 Not random
Too many 1s

Agrees with
Theorem 6

Bitwise XOR
All tests except one passed

Failed test: 122 / 128
threshold: 123 / 128

0.45 for that
‘failed’ test
acceptable
for the rest

Random Agrees with
Theorem 3

Addition

Random Ecursions Variant
one test failed
All other tests:
≥ 123 / 128

bitstreams passed
Random Excursions:
≥ 86 / 88 passed

≥ 0.01 Random Agrees with
Theorem 10

Subtraction

Non-overlapping
Template Matching

one test failed
rest: ≥ 123 / 128

≥ 0.03 Random Agrees with
Theorem 11

Multiplication

Longest run, Rank, Universal,
Linear complexity tests passed

1 / 2 serial tests failed
(71 / 128 bitstreams passed)
many Template matching and

most other tests failed

Several 0.0s Not random Agrees with
Theorem 12

Division All tests failed with
0 / 128 bitstreams passed All 0.0 Not random Agrees with

Theorem 13

Modulo

Longest run, Rank, Universal,
Linear complexity tests passed

1 / 2 serial tests failed
(71 / 128 bitstreams passed)
many Template matching and

most other tests failed

Several 0.0s Not random Agrees with
Theorem 14

Table 3. Summary of Experimental Results
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7 Related Work

Arithmetic operations such as the addition of cryptographically random num-
bers have been used in some form in [3] and [7]. Random variables that need not
support security requirements and their algebraic constructs have been studied
nu Dale [6]. For randoms that are not cryptographically secure, [12] discusses
Arithmetic operations on randoms. XOR operations on randoms support secu-
rity [14]. The proofs used in this paper rely on Shannon’s Entropy, as described
in [4]. We also used the mathematical logic behind the full adder as described
in [13]. The NIST test suite, as described in [11], is used in our experiments.
To the best of our knowledge, we have yet to find a closely related work that
performs a detailed security analysis of a set of arithmetic and boolean operations
on random numbers used for cryptography.

8 Conclusion

In this paper we reviewed the security of Arithmetic, Boolean, Splitting and
Bit Selection operations on CSPRNs. NOT, XOR, ddition and subtraction, with
results truncated to n bit numbers, preserve randomness, but the same cannot
be said for AND, OR, multiplication, division, and modulo of random numbers.
This should be taken into account when designing random number generators;
using XOR or addition with random numbers increases security of pseudo-
random hashing algorithms.
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Appendix:
Proof of Theorem 1:

Proof. There are 2n possible numbers, all of which are equally likely. When
looked at bitwise, each bit is independent of all other bits, be it pairwise, three
at a time, k < n at a time, or all at a time; it has a 50 % chance of being 1,
regardless of the other bit values.

Proof of Theorem 2:

Proof. Let the probabilities of the states x0, x1, . . . xn−1 be p0, p1, . . . pn−1. Then,
the entropy is

H[X] = −
n−1∑
i=0

pi log2(pi) =⇒ 2−H[x] =

n−1∏
i=0

ppi

i

Further,
n−1∑
i=0

pi = 1

https://csrc.nist.gov/pubs/sp/800/22/r1/upd1/final
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Let
f(p) = 2−H[X]

We require a global minimum for f(p), which is continuous in the hypercube
between (0, 0, . . . 0) and (1, 1, . . . 1) on the n-dimensional hyperspace for p, con-
strained by the fact that the sum of probabilities is one.
In particular, let us look at g(p1) in which the value of p0 is filled automatically
by the values of p1, p2, . . . pn, which form the vector p1 and g(p1) = f(p). We
require a global minima for g(p1) which means that ∇g(p1) = 0 and ∇2g(p1) >
0. For each i > 0,

∂

∂pi
g(p1) = g(p1)(1 + ln(pi))− (1 + ln(K − pi))g(p1)

= g(p1)

(
ln(pi)− ln

(
1−

n−1∑
i=1

pi

))

This expression has to be zero for all i, so that the condition for minima ∇g(p1) =
0 is met; which implies that

∀i ln(pi) = ln

(
1−

n−1∑
i=1

pi

)

which is possible only if

p1 = p2 = . . . pn−1 =
1

n

For this point,
∂2

∂p2i
g(p1) = 2ng(p1)

When added for all the i values, we get

∇2g(p1) = 2n(n− 1)g(p1)

which is a positive value, meaning that g has a minima. From this, we also get
p0 = 1/n, which coincides with the obvious, symmetric result – this is the only
minima, and therefore the global minima within the plane.
With all probabilities being 1/n,

f(p) = 2−H[X]

subject to the constraint of total probability being unity, reaches a minimum,
meaning that the entropy reaches a maximum and the only maximum. At this
point, the entropy is

−
n−1∑
i=0

1

n
log2

1

n
= +log2n
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Therefore, this is the maximum possible entropy for the given discrete r.v.
This can also be verified by Jensen’s inequality [8] , with f(x) = − log2(x):

fconvex

(
n−1∑
i=0

λixi

)
≤

n−1∑
i=0

λifconvex(xi)

− log2

(
n−1∑
i=0

pi ·
1

pi

)
≤

n−1∑
i=0

pi ·
(
− log2

(
1

pi

))
=

n−1∑
i=0

pi · log2(pi)

H[X] =

n−1∑
i=0

pi · (− log2(pi)) ≤ log2(n)

Proof of Theorem 3:

Proof. Let the two random numbers be r1 and r2. Once again, we assume they
are truly random and independent. Entropy is maximum when all events are
equally likely, given the number of events. That value equals log2(no. of events),
which equals n, corresponding to a truly random number. If r = r1 ⊕ r2 is the
result of bitwise XOR,

P (rj = 1) = P
(
(r1j = 1 and r2j = 0) or (r1j = 0 and r2j = 1)

)
=

1

4
+

1

4
=

1

2

for all j, due to the mutual exclusiveness of events separated by or.
In the case of one random number r1 and one constant c, consider bit rj .

∀j P (rj = 1) =

{
1
2 , cj = 0 =⇒ rj = r1j This bit is random.
1
2 , cj = 1 =⇒ rj = ¬ r1j This bit is random.

In all these cases, the result bit rj depends only on r1j and r2j/cj ; and is inde-
pendent of any other bit in either of the two random numbers, consequently any
other bit rk∀k ̸= j. All bits are independent, so the likelihood of result i is

P (r = i) =

n−1∏
i=0

P (rj = ij) =

n−1∏
i=0

1

2
= 2−n

Just like the truly random number, the entropy is n.
The case with one constant (the message) and one random number (for the key)
is the principle behind the One Time Pad. [5, 15].
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