
Committed Vector Oblivious Linear Evaluation and Its
Applications

Yunqing Sun∗ Hanlin Liu∗ Kang Yang† Yu Yu‡ Xiao Wang∗

Chenkai Weng§

Abstract

We introduce the notion of committed vector oblivious linear evaluation (C-VOLE), which
allows a party holding a pre-committed vector to generate VOLE correlations with multiple
parties on the committed value. It is a unifying tool that can be found useful in zero-knowledge
proofs (ZKPs) of committed values, actively secure multi-party computation, private set inter-
section (PSI), etc.

To achieve the best efficiency, we design a tailored commitment scheme and matching C-
VOLE protocols, both based on the learning parity with noise assumption. In particular, ex-
ploiting the structures of the carefully designed LPN-based commitment minimizes the cost of
ensuring consistency between the committed vector and VOLE correlation. As a result, we
achieve an 28× improvement over the protocol proposed in prior work (Usenix 2021) that uses
ZKP to prove the correct opening of the commitment. We also apply C-VOLE to design a
PSI protocol that allows one server to run PSI repeatedly with multiple clients while ensuring
that the same set is used across all executions. Compared with the state-of-the-art PSI (CCS
2024) with similar security requirements, our protocol reduces the communication overhead by
a factor of 35×.

1 Introduction

Vector oblivious linear evaluation (VOLE) is a type of protocol that sets up linear correlations
between two parties. It can be viewed as an arithmetic extension of the correlated oblivious
transfer [NNOB12]. By running a VOLE protocol between PA, who has an input vector x ∈ Fm,
and PB, PA would obtain a uniform vector M[x] ∈ Fm as output, and PB would obtain (∆,K[x]) ∈
F × Fm such that they satisfy the correlation M[x] = K[x] + x · ∆. VOLE correlation can be
viewed as an information-theoretic message authentication code (IT-MAC) on PA’s input, hence
serving as a commitment or materials to construct more useful correlations for MPC like Beaver
triples. Therefore, extensive practical applications in zero-knowledge proofs (ZKPs) [BMRS21,
DIO21, WYKW21], multi-party computation [BDOZ11, DILO22a, RS22], private set intersection
(PSI) [RR22a, RS21], etc, have been found recently.

In many VOLE-based protocols, it is often desirable to allow PA to 1) first non-interactively
commit to its input, which can be distributed to all parties easily, and later 2) run VOLE with
other parties while ensuring that PA uses the committed input to the VOLE protocol. Such a
capability enforces PA to use the same input across multiple executions of VOLE, potentially with

∗Northwestern University, {yunqing.sun,hanlin.liu,wangxiao}@northwestern.edu
†State Key Laboratory of Cryptology, yangk@sklc.org
‡Shanghai Jiao Tong University and Shanghai Qi Zhi Institute, yuyu@yuyu.hk
§Arizona State University, Chenkai.Weng@asu.edu

1

different parties. Moreover, the commitment could be pre-distributed to parties offline using cheaper
mechanisms like content distribution networks. In more detail:

1. VOLE-based ZKP [WYKW21, BMRS21, DIO21] is a recent paradigm for constructing lightweight
ZKP protocols. However, they are designated verifier ZK and do not provide a cheap mech-
anism if the statement needs to use a consistent witness across different ZKPs. A recent
work [WYX+21] explored proving the decommitment phase of a symmetric-key-based commit-
ment; however, its performance is fairly limited due to the large size of SHA-256 and AES. Other
works [AGR+16, GKR+21, AAB+20, GKS23] have explored designing ZK-friendly hash func-
tions, but the cost is high as the underlying commitment schemes always require non-black-box
use.

2. Among existing dishonest-majority MPC protocols, the most practical way to achieve malicious
security is to use IT-MACs to authenticate secret shares [BDOZ11, DPSZ12, WRK17, RS22].
These protocols often require running pair-wise VOLE across all parties so that even if all but
one parties are corrupted, the underlying secret sharing is still authenticated. However, a critical
issue is ensuring that every party uses the same input vector for all VOLE executions with every
other party. To achieve that goal, existing MPC protocols require a joint consistency check
among all the parties, which often involves significant computation and communication.

3. Crowd PSI refers to a specific type of PSI protocol involving a server and many clients. The
server has a large set and repeatedly runs a PSI protocol with many individual clients, using
the same set across different PSI executions. It is useful when in services where many clients
need to privately look up some private information on the server side, like password checkup or
private contact discovery. Prior work [SKR+24] in this setting with malicious security requires a
public-key-based pseudorandom function (PRF) and its oblivious evaluation for every element.
To adapt existing VOLE-based PSI protocols [RS21, RR22a], the most performant PSI protocols
right now, to work in this setting, one would need to ensure that the same input vector from
the server is used for all VOLE executions, which in turn ensures consistency in the server’s set
across all executions.

To summarize, the above examples either require PA’s VOLE input vector x to be publicly com-
mitted beforehand or require PA’s VOLE input vector x to remain the same among multiple VOLE
applications with different parties, which can also be ensured if all parties have the same commit-
ment of x. This paper provides a unified approach to solve all these issues efficiently in a modular
way. To this end, we propose committed-VOLE (C-VOLE), which allows the VOLE sender’s input
to be pre-committed non-interactively.

1.1 Our Contribution

In this work, we propose concretely efficient C-VOLE protocols based on the assumption of learning
parity with noise (LPN). Then, we show how C-VOLE can be used in multiple important protocols
and how our new protocols can enhance the efficiency of these applications.

LPN-based C-VOLE protocol. We propose a C-VOLE protocol based on the LPN assumption.
Prior work [WYX+21] proposed a protocol using a commitment scheme based on random oracle and
AES and proved the correct decommitment, which involves computing SHA256 and AES within
ZK. We design an LPN-based commitment scheme specifically for C-VOLE to achieve the best
possible efficiency. Then, we exploit the fact that this commitment scheme and the state-of-the-art
VOLE protocols share a similar structure, i.e., the LPN-like structure, to design a zero-knowledge

2

proof of decommitment with very small communication. As a result, our C-VOLE protocol achieves
significantly better online communication efficiency than the corresponding VOLE protocol, while
requiring 2× the online running time. We show how our protocol can be based on either dual-LPN-
based VOLE or primal-LPN-based VOLE.

C-VOLE applications and their performance. We provided some concrete case studies of
using C-VOLE in prior applications and how it can improve the efficiency of previous works.
Additionally, we implement our C-VOLE protocol and benchmark its practical performance.

For our C-VOLE protocol, the offline commitment is nearly the same size as the data being
committed. The online communication is almost constant, with a running time of about 900 ns
and 420 ns per element in a LAN setting using 4 and 16 threads, respectively, for a vector of
length 226. Note that running VOLE with a chosen input requires essentially the same amount of
communication as the input size to “fix” a random correlation to the chosen input. Therefore, ours
communication overhead is near optimal while most communication is offline. We also investigate
the protocol change and the concrete efficiency when applying our C-VOLE protocol in various
applications.

1. C-VOLE directly enables ZK proof on publicly committed values. Compared to Mystique, we
observe a 28× improvement in running time and 7× improvement in communication cost.

2. Regarding the multi-party VOLE in generic MPC protocols, C-VOLE avoids the final consistency
check, which contains heavy peer-to-peer and broadcast communications. In the context of
multi-party VOLE in dishonest-majority MPC and multi-verifier ZKPs [RS22, HSS20, WRK17,
EPSW24], C-VOLE similarly avoids the costly final consistency check, significantly reducing the
round complexity.

3. By adapting C-VOLE to the VOLE-PSI protocol, we can convert state-of-the-art, actively se-
cure one-shot PSI protocol to the crowd setting without assuming the server’s honest behavior.
The C-VOLE PSI protocol requires around 750 ns per server element for computing one-time
commitment and around 900 ns per server element for the online interaction with each client,
given the server set size of 224. It reduces online communication overhead by 35× compared to
the state-of-the-art PSI protocol in the crowd setting [SKR+24].

Other related notions. Note that a different notion of committing VOLE is recently defined
in [CDKs24] to construct MPC with an input-revealing identifiable abort guarantee. Their focus is
a VOLE variant where parties inputs and outputs are committed so that they can later be opened.
Therefore, their notion does not provide input consistency between different executions of VOLE.
Thus, their notion is more similar to committing OT notation proposed by Jawurek et al. [JKO13].

2 Technical Overview

In this section, we provide some intuition of our constructions.

Prior VOLE constructions Recall that a random VOLE protocol outputs (u,M[u]) ∈ Fm × Fm
to PA and (∆,K[u]) ∈ F× Fm to PB, such that all values are uniform under the constraint that

M[u] = K[u] + u ·∆.

When two parties hold VOLE correlations for vector u like the above, we also write JuK for sim-
plicity. All of the state-of-the-art VOLE protocols [WYKW21, BCG+22, RRT23] compute such

3

random correlation because this kind of correlations can be easily compressed to achieve sublinear
communication and they can be easily derandomized to chosen input. More specifically, if PA wants
to correct u to a designated vector x, it simply sends the difference d = u − x to PB and defines
M[x] = M[u]; PB can define K[x] = K[u] + d ·∆. Now these new values form a correlation

M[x] = M[u] = K[u] + u ·∆ = K[u] + (u− x) ·∆ + x ·∆ = K[x] + x ·∆.

To efficiently construct random VOLE, state-of-the-art protocols follow the pseudorandom cor-
relation generator (PCG) framework [BCGI18]. For example, the dual version of the learning parity
with noise (LPN) assumption states that

(H,u) is computationally indistinguishable from (H, euH),

where H ∈ Fcm×m is a public random but structured matrix and eu ∈ Fcm is a sparse vector. To
allow more efficient constructions, state-of-the-art protocols also assume that eu is regular, meaning
that it partition eu into w number of shorter vectors (e1

u, . . . , e
w
u) each of length 2L such that each

shorter vector is non-zero only at one random location. With this assumption, one can construct
an efficient VOLE by first constructing “simple” VOLE on each eiu’s to obtain JeiuK, following
[BCG+19, BCGI18, BCG+17] with cost O(Lκ), where κ is the computational security parameter.
Then, parties can assemble JeuK = Je1

uK‖ . . . ‖Jewu K locally and further compute JeuHK = JeuK ·H
due to linear homomorphism. As a result the total communication cost is sublinear. However, when
PA interacts with different parties, there is no guarantee that they will use the same randomness
and hence no guarantee about the consistency of PA’s input.

Our main contribution is to design a customized commitment scheme and proof of consistency
to force PA using the same value with every party who holds the commitment.

Blueprint of our protocol. From a high-level view, our protocol functions as follows. First PA,
with an input vector x ∈ Fm, can locally compute a commitment of size roughly m · log |F| bits.
This commitment is distributed to all relevant parties by various means, such as a broadcasting
protocol or public bulletin board, and its genuineness can be verified with a signature, assuming
PKI exists. Because the same commitment is distributed to all parties, it can enjoy network caching
at a reduced cost. Then PA can interact with each individual party acting as PB in VOLE and
execute the online phase of the C-VOLE protocol such that they obtain VOLE correlation about
x while the protocol ensures that PA must use x as its input (otherwise the protocol would abort).
The commitment is used for PA to correct VOLE of random vector to its input x. Different parties
acting as PB all know that PA uses the same input under the pre-distributed commitment.

At the core of the protocol is the online phase, where a consistency check is needed to show that
the committed x is consistent with the x in VOLE. Assuming a commitment scheme Com and a
pseudorandom generator (PRG) PRG, one can convert the problem to ensuring the consistency of
a seed as follows. The commitment to x is now comx = (PRG(r)− x,Com(r)). During the online
phase, two parties obtain the VOLE correlation for r and x; then, they can prove using VOLE-ZK
that r satisfies two properties. First, when fed to the PRG, it yields a vector consistent with the
first value in the commitment comx, i.e.,

PRG(JrK)− JxK = comx[0].

Second, JrK is consistent with Com(r). Parties execute a proof of decommitment to obtain JdecomK =
Open(comx[1]). Then, PA proves that

JdecomK = JrK.

4

Both are statements relevant to VOLE values; thus, VOLE-based ZK only requires one extra
message from PA but the communication complexity is linear to the circuit size of PRG and Open(·).
The rest of this section discusses how to construct PRG and Com so that proving the above two
statements using VOLE-based ZK involves almost no communication.

Commitment based on LPN assumption. Since state-of-the-art VOLE uses LPN assumptions
to generate pseudorandom bits, our goal is to design the commitment for it. Rigorously, the
underlying PRG can be defined as PRG ∈ {0, 1}wL × Fw → {0, 1}m:

PRG(k1, . . . , kw; a1, . . . , aw) = Unary(k1, a1)‖ . . . ‖Unary(kw, aw) ·H,

where H ∈ Fw2L×m is a public matrix and Unary(ki, ai) is defined as an all zero vector with ai at
position ki. The seed of this PRG consists of wL bits and w elements in F, while the output is
a vector of m elements. In practice, to maintain 128-bit computational security, we set w = 224,
L = 23, and m = 228, which means the output is much larger than the input, hence a good PRG.

The next step is to design a commitment scheme for k = (k1, . . . , kw) and a = (a1, . . . , aw). We
propose to use an LPN-based commitment [JKPT12] due to its linearity. For example, to commit
the vector a, one can compute

a ·H1 + r̂ ·H2 + ê,

where H1 and H2 are two public matrices, r̂ is a uniform vector, and ê is a sparse vector, all with
appropriate length. It can be shown that when picking the dimension of the two matrices and the
sparsity of ê appropriately, r̂ ·H2 + ê is pseudorandom and thus provides hiding, while it is still
difficult to find two pairs of (a, r̂, ê) and (a′, r̂′, ê′) that lead to the same value, hence binding.

Proving the consistency is fairly cheap: PA and PB can first run the VOLE protocol with PA

providing k and a. As part of the VOLE protocol, two parties would obtain VOLE on values
eiu = Unary(ki, ai), namely JeiuK for each i ∈ [w]. One can easily check the correct value of ai by
checking ai =

∑
j∈[2L] e

i
u[j], which is free. Checking the sparsity of eiu is no longer free but can

still be done with linear cost by running the binary-to-unary circuit in ZKP from ki ∈ {0, 1}L to
a Boolean vector of length 2L, which takes a total of 2m non-linear gates. The cost is orders of
magnitude better than Mystique, which requires more than 50 non-linear gate per output due to a
large AES circuit.

C-VOLE with sublinear online communication. The above protocol is much faster than prior
work, but the online communication cost is still linear to the vector size. Note that we already
send linear communication as part of the offline commitment, so we ideally want the online phase
to be even smaller. This means the consistency check can only prove a circuit of size sublinear to
the output size!

In the above protocol, the most expensive operation is proof of sparsity; it is required for the
binding property. Our crucial observation is that the VOLE protocol already ensures that each
JeiuK is sparse; we need to prove the binary-to-unary circuit only to ensure that it is consistent with
the committed randomness. To this end, we modify our commitment. Instead of committing to
the seed of the LPN-PRG, we commit to some intermediate values in the PRG, i.e., the structured
sparse vector, directly. More specifically, our commitment scheme no longer handles any input but
only sparse vectors eu:

eu ·H1 + er ·H2,

where H1 and H2 are two public matrices, and er is a sparse vector. We can show that it is
computationally infeasible to obtain two (eu, er) and (e′u, e

′
r) such that the above commitments are

the same and that e′u is also regular with specified sparsity. Note that because the output is much

5

shorter than |eu|, finding a collision is possible if the sparsity is not guaranteed by other means;
but again, in our application, VOLE protocols already ensure it for free.

Now, our protocol is extremely efficient. Two parties obtain JeuK as part of the normal VOLE
protocol. They just need to obtain JerK and check if the JeuK·H1+JerK·H2 matches the commitment.
We show that |er| � |eu|, and thus, this extra communication cost is very small compared to the
cost of the VOLE protocol. In addition to the VOLE protocol, the main computational cost is the
evaluation of JeuK ·H1, which is only a local computation. We provide the detailed description and
analysis of LPN-based commitment in Section 4.1 and Section A.1

Applications to VOLE-ZK, MPC, and MVZK. C-VOLE brings immediate performance im-
provement when used in several recent VOLE-ZK and MPC protocols.

• In VOLE-based ZKP protocols, C-VOLE directly leads to a way to convert public commitments
to VOLE-like authentication ready for VOLE-ZK. Compared to the previous work [WYX+21], it
avoids proving large SHA-256 and AES circuits in ZKP and achieves 28× concrete improvement.

• For generic secure multi-party computation, it can be used to execute multi-party VOLE among
all parties [RS22, HSS20, WRK17]. By using C-VOLE, they no longer require heavy peer-to-
peer and broadcast communication in the final consistency check. MVZK with dishonest-majority
verifiers [EPSW24] also relies on similar consistency checks, which can be avoided by C-VOLE.

We defer the details to Section 6.

Application to crowd PSI. In the crowd PSI setting, we have one server holding a large set X and
a set of clients, each holding a small set Yi, such that each pair want to obtain the intersection X∩Yi.
State-of-the-art PSI protocols based on VOLE [RS21, RR22a] can provide malicious security but
cannot ensure consistency of X. A prior work [SKR+24] works in this setting but uses public-key
based Oblivious PRF (OPRF), which is highly expensive.

We observe that the only place where VOLE-PSI protocols use VOLE is for the server to feed its
input set to the VOLE. The server’s input set is encoded into a vector p, such that Decode(p, x) =
H1(x) for x ∈ X. The server identifies any client’s set elements in the intersection using an OPRF
defined by JpK. Specifically, the client encodes its set elements by F (x) = H2(Decode(K[p], x) + ∆ ·
H1(x), x), where H1 and H2 are two hash functions, and sends the encodings to the server. The
server encodes its set elements by X ′ := {H2(Decode(M[p], x), x)|x ∈ X} and checks for matches
with the client’s encoding. The two encodings match if the client’s set element is located in the
intersection, which satisfies Decode(p, x) = H1(x). In this case, VOLE is utilized as a black-box
component in the VOLE-PSI protocol. Compared to VOLE, C-VOLE enforces the consistency of
p across different VOLE executions with other clients, ensuring consistent use of the server’s set.
Thus, we can prove that if we replace VOLE with C-VOLE, we can obtain a PSI protocol in the
crowd setting.

As a result, we upgrade the state-of-the-art single-client PSI without the set-committing feature
into a crowd PSI. The C-VOLE PSI requires around 900 ns per server element for online compu-
tation and less than 1.64 B per server element for online communication of set size 220, which is
roughly 2× online time consuming but 13× better online communication overhead compared with
VOLE-PSI. Compared with prior work [SKR+24] in the crowd setting, C-VOLE PSI reduces ini-
tialization time with a 8-fold improvement for set size 220. It also decreases online communication
to 1.73 MB with clients having 210 elements, reduced by a factor of 35×.

3 Preliminaries

6

3.1 Notation

Define statistical and computational security parameters λ and κ. We let negl(·) denote a negligible
function, and use log to denote logarithms in base 2. F denotes a finite field. We write x ← F to
denote sampling x uniformly from F. We write [n] = {1, . . . , n}. We use bold upper-case letters
like A for matrices. For A ∈ Fm×n, m denotes the number of rows, and n denotes the number
of columns. We use bold lower-case letters like a for row vectors, and let a[i]/ai denote the ith
component of a (with a[1]/a1 the first entry). aT denotes the transposed vector of a. We use ‖
to represent the concatenation. Define a regular-w vector e as e = (e1‖ . . . ‖ew) ∈ Fw·2L , where

ei ∈ F2L is a unary vector. We also denote e as a multi-point vector and ei as a single-point vector.
We use K[a] to represent K[a1]|| · · · ||K[an], and let M[a] = M[a1]|| · · · ||M[an].

3.2 Learning Parity with Noise

The Learning Parity with Noise (LPN) problem is defined as recovering a secret vector given a
noisy system of linear equations. It has found many applications in cryptography, as it has strong
security guarantees. The hardness definition of primal-LPN and dual-LPN [BFKL94] are presented
in Definition 1 and Definition 2 respectively as follows:

Definition 1. (Primal LPN) Let C be a probabilistic code generation algorithm such that C(N, k,F)
outputs a matrix A ∈ Fk×N . We say that the decisional primal-LPN(N, k, t) problem is (T, ε)-
computationally hard for every probabilistic distinguisher D running in time T if

|Pr[D(A,A · x+ e) = 1]− Pr[D(A,u) = 1]| ≤ ε,

where x← FN , u← Fk, and e← Fk with weight t.

Definition 2. (Dual LPN) Let C⊥ be a probabilistic code generation algorithm such that C⊥(N, k,F)
outputs a matrix H ∈ Fk×N . We say that the decisional dual-LPN(N, k, t) problem is (T, ε)-
computationally hard for every probabilistic distinguisher D running in time T if

|Pr[D(H,H · e) = 1]− Pr[D(H,u) = 1]| ≤ ε,

where e← FN with weight t, and u← Fk.

3.3 Commitment Scheme

A commitment scheme is defined as a sender committing to a chosen value while keeping it hidden
from others and opening the value later to let others verify it.

1. ParamGen: The sender samples public parameter k from a parameter space K and publish k
to other parties.

2. Commit: The sender picks message x← Fm and computes {comx, decomx} ← Com(x), where
decomx ∈ F∗. The sender sends comx to the receiver.

3. Open: The sender sends x and decomx to the receiver. The receiver computes 0/1← Open(comx,
decomx,x)

A commitment scheme with computational hiding and statistical binding is defined as follows.

7

Functionality FC−VOLE

Public Parameters: A public commitment of x, Hcomx. A hybrid commitment scheme HCom(·)
defined in Section 4.2.

1. Upon receiving (init,x,Hdecomx) from PA, and (init) from PB, the functionality stores (x,m = |x|)
and checks whether (Hcomx,Hdecomx) opens to x. If not, sends abort to both parties.

2. Samples K[x]← Fm, ∆← F. If PB is malicious, receives (K[x],∆) ∈ Fm+1 from adversary. Computes
M[x] := K[x]+∆ ·x ∈ Fm. If PA is malicious, receives M[x] ∈ Fm from the adversary, and recomputes
K[x] := M[x]−∆ · x ∈ Fm. Sends M[x] to PA and (∆,K[x]) to PB.

Figure 1: The commited-VOLE functionality.

1. Computational hiding: with overwhelming probability over the choice of k, for every x,x′ ∈
Fm and {comx, decomx} ← Com(x), {com′x, decom′x} ← Com(x′), the distributions of comx and
com′x are computationally indistinguishable.

2. Statistical binding: with overwhelming probability over the choice of k, the following equation
holds with probability negl(λ),

Open(comx, decomx,x) ∧ Open(comx, decom
′
x,x

′) = 1

3.4 Ideal Functionalities

Committed-vector Oblivious Linear Evaluation. Committed-vector oblivious linear evalu-
ation (C-VOLE) is a variant of VOLE that allows two parties to generate VOLE relations for a
pre-committed vector x ∈ Fm. The commitment of x, denoted as Hcomx, is public. The holder of
x serves as PA, while any party knows the public commitment Hcomx can act as PB and execute
the functionality depicted in Figure 1 with PA. The functionality FC−VOLE first checks whether
PA holds the correct (x,Hdecomx) that satisfies the public commitment Hcomx. It then samples a
vector K[x]← Fm and a field element ∆← F to PB and delivers M[x] = K[x] + x ·∆ ∈ Fm to PA,
as the VOLE functionality typically does.

Vector Oblivious Linear Evaluation. Vector Oblivious Linear Evaluation (VOLE) is generating
VOLE relation of a designated vector rather than a random vector. The ideal functionality is shown
in Figure 2. The functionality samples field element ∆← F to PB for initialization. Then, for PA’s
input vector x ∈ Fm, the functionality samples K[x]← Fm to PB and delivers M[x] = K[x]+x ·∆ ∈
Fm to PA. VOLE is typically instantiated from Random VOLE (RVOLE). It also serves as a building
block in the instantiation of FC−VOLE.

Multi-point Vector Oblivious Linear Evaluation. Multi-point Vector Oblivious Linear Eval-
uation (MPVOLE) is a variant of VOLE that generates the VOLE relation of a multi-point vector,
a regular sparse vector formed by concatenating multiple single-point (unary) vectors. Its ideal
functionality is shown in Figure 3 and consists of two phases: the functionality samples field el-
ement ∆ ← F to PB for initialization; Then, for PA’s input multi-point vector eu ∈ Ft·2h , where
t · 2h = n, the functionality samples K[eu] ← Fn to PB and delivers M[eu] = K[eu] + eu ·∆ ∈ Fn
to PA. We provide the construction of MPVOLE in Section A.5, which is a slightly variant
of [BCGI18, WYKW21]. It serves as an important building block in instantiating FC−VOLE.

8

Functionality FVOLE

Initialize: Upon receiving (init) from both PA and PB, sample ∆← F and send it to PB. The function-
ality stores ∆. If PB is malicious, receive ∆ ∈ F from PB.

Extend: Upon receiving (extend,x ∈ Fm,m) from PA and (extend,m) from PB:

1. Samples K[x]← Fm. If PB is malicious, receive K[x] ∈ Fm from adversary.

2. Computes M[x] := K[x] + ∆ ·x ∈ Fm. If PA is malicious, receives M[x] ∈ Fm from the adversary, and
recomputes K[x] := M[x]−∆ · x ∈ Fm

3. Sends M[x] to PA and K[x] to PB.

Figure 2: The VOLE functionality.

Functionality FMPVOLE

Initialize: Upon receiving (init) from both PA and PB, sample ∆ ← F to PB. The functionality stores
∆. If PB is malicious, receive ∆ ∈ F from PB.

Extend: Upon receiving (extend, eu ∈ Ft·2h

, h, t) from PA where eu is a regular sparse vector with t
non-zero elements and n = t · 2h, and (extend, h, t) from PB.

1. Samples K[eu]← Fn. If PB is malicious, receives K[eu] ∈ Fn from adversary.

2. Computes M[eu] := K[eu] + ∆ · eu ∈ Fn. If PA is malicious, receives M[eu] ∈ Fn from the adversary,
and recomputes K[eu] := M[eu]−∆ · eu ∈ Fn.

3. Sends M[eu] to PA and K[eu] to PB.

Selective failure: In the malicious setting, if PB is corrupted, the adversary is allowed to make the
following selective failure query for each extend call:

1. Wait for the adversary to input t sets I1, · · · , It ⊆ [0, n). Let {αi} ∈ [0, n) be the index of the
non-zero entry of ith single-point block eiu.

2. For all αi ∈ Ii for i ∈ [t], send success to PB and continue. Otherwise, send abort to both parties and
abort.

Figure 3: The multi-point VOLE functionality.

Crowd Private Set Intersection. Private set intersection (PSI) allows two distrusted parties to
jointly compute the intersection of their private inputs without revealing any additional information
about those inputs except for the set sizes. Crowd PSI is an extension of PSI involving a server
and multiple clients, where the server executes PSI with each individual client. In Figure 4, we
describe the ideal functionality of crowd PSI, with the server (party P1) acting as the receiver of
the intersection and the clients (party P2, · · · , Pn) functioning as senders. The server sends its
private set to the functionality for initialization. The functionality waiting for any client’s private
set, stores the server’s set, and returns the intersection to the server.

9

Functionality FPSI

There are n parties: P1, · · · , Pn
1. Upon receiving (init, X) from party P1, and (intersect, Y2) from a party P2, where X,Y2 ⊂ U , the

functionality stores X and outputs (X ∩ Y2, setid) to P1. The functionality publishes setid.

2. Upon receiving (init, setid) from party P1, and (intersect, Yj , setid) from a party Pj , where Yj ⊂ U ,
j ∈ [3, n], the functionality outputs X ∩ Yj to P1.

Figure 4: The crowd private set intersection functionality.

4 Commitment from LPN

We introduce the commitment scheme we use, denoted as a hybrid commitment, in the committed-
VOLE construction. As outlined in Section 2, the hybrid commitment scheme relies on the LPN
assumption and consists of two parts: an LPN commitment to an intermediate regular sparse vector
and a correction to the designated committed vector.

We construct the LPN commitment specifically for a regular sparse vector. In Theorem 1, we
prove that with sparse message distribution, the new LPN commitment schemes still satisfy the
requirements of binding and hiding. Then, we add a correction vector to the LPN commitment
to construct a hybrid commitment scheme for a designated vector, specifically designed for the
C-VOLE construction. The proposed hybrid commitment satisfy the binding and hiding property
as detailed in Theorem 2.

4.1 LPN Commitment

Here, we define a commitment scheme Com(·) based on the primal LPN assumption for committing
to a regular-w vector x. This vector x ∈ Fm, for parameters w,L and m = w · 2L, consists of w
blocks, each of size 2L, with each block contains exactly one non-zero element.

• ParamGen. The public commitment parameter is represented by K = {A1,A2}, where A1 ←
C(N,m,F) and A2 ← Fk×N , with N = t ·2L′ . The algorithm C is a probabilistic code generation
algorithm that outputs a matrix A1 ∈ Fm×N .

• Commit. The commitment to a regular-w message x ∈ Fm is expressed as comx = x ·A1 + r ·
A2 + e, where r ← Fk and e is a weight-t regular noise vector of length N . The opening of the
commitment is given by decomx = r.

• Open. Given a commitment comx, a regular-w message x, and randomness decomx, a verifier
accepts if comx − x ·A1 − decomx ·A2 is weight-t regular.

The corresponding dual LPN commitment scheme Com(·) for a regular-w message x ∈ Fm is
described below:

• ParamGen. The public commitment parameter is represented by K
def
= {H1,H2}, where H1 ←

C⊥(n,m,F) and H2 ← FN×n, with N = t · 2L′ . The algorithm C⊥ is a probabilistic code
generation algorithm that outputs a matrix H1 ∈ Fm×n.

• Commit. The commitment to a regular-w message x ∈ Fm is expressed as comx = x·H1+e·H2,
where e is a weight-t regular noise vector of length N . The opening of the commitment is given
by decomx = e.

10

• Open. Given a commitment comx, a regular-w message x, and randomness decomx, a verifier
accepts if decomx is weight-t regular and comx = x ·H1 + decomx ·H2.

Theorem 1. Assume L′, k, t ∈ N such that the decisional primal-LPN(N, k, t) problem (with
secrets of length k and N samples) and the decisional dual-LPN(N,n = N − k, t) problem are
computationally hard, where N = t·2L′. Then the above two commitment schemes are ε-statistically

binding and computationally hiding, where λ = 22wL+2tL′/|F|t·2L
′−k−2w−2t.

Proof. The security properties are proved as follows:

1. Statistically binding.

• For the commitment scheme based on the primal LPN problem. Suppose there exists
a commitment c corresponding to two messages, x1 ∈ Fm and x2 ∈ Fm, with randomness

pairs (r1, e1) and (r1, e2). Define x
def
= x1−x2 ∈ Fm, r

def
= r1−r2 ∈ Fk and e

def
= e1−e2 ∈ FN .

Given that each xi is a weight-w regular vector of length m = w · 2L and each ei is a weight-t
regular vector of length N = t · 2L′ , the probability that x ·A1 + r ·A2 + e = 0 is at most

22wL+2tL′/|F|t·2L
′−2w−2t. A union bound over all possible r ∈ Fk yields the claimed bound

22wL+2tL′/|F|t·2L
′−k−2w−2t.

• For the commitment scheme based on the dual LPN problem. Considering the com-
mitment c associated with two messages, x1 ∈ Fm and x2 ∈ Fm, along with their respective

randomness e1 and e2. Define x
def
= x1−x2 ∈ Fm and e

def
= e1− e2 ∈ FN . Given that each xi

is a weight-w regular vector of length m = w · 2L and each ei is a weight-t regular vector of

length N = t ·2L′ , the probability that x ·H1 +e ·H2 = 0 is at most 22wL+2tL′/|F|t·2L
′−k−2w−2t.

2. Computationally hiding. In the commitment scheme based on the primal LPN problem, we
have c = x ·A1 + r ·A2 + e. In the commitment scheme based on the dual LPN problem, the
commitment is c = x·H1+e·H2. Leveraging the security properties of the primal LPN and dual
LPN problems, the terms r ·A2+e and e·H2 are pseudorandom, ensuring the pseudorandomness
of the respective commitments.

4.2 Hybrid Commitment

We present the hybrid commitment scheme HCom(·), designed for C-VOLE construction for mes-
sages x ∈ Fm, with the following components:

• ParamGen. The public commitment parameter consists of the public commitment parameters
of Com and a matrix HT ← C⊥(N,m,F), where N = w ·2L. The algorithm C⊥ is a probabilistic
code generation algorithm that outputs a matrix H ∈ FN×m.

• Commit. The hybrid commitment to a message x ∈ Fm is expressed as Hcomx = {come, c =
e ·H−x}, where e is regular-w vector of length N and (come, decome)← Com(e). The opening
of the commitment is given by Hdecomx = {e, decome}.

• Open. Given a commitment Hcomx = {come, c}, a message x, and randomness Hdecomx =
{e, decome}, a verifier accepts if {e, come, decome} passes verification of Com, ensuring e is a
weight-w regular vector; and c = e ·H− x.

11

Theorem 2. Assume L,m, t ∈ N such that the decisional dual-LPN(N,m,w) problem, with matrix
HT ← C⊥(N,m,F), is computationally hard, where N = w · 2L. If the commitment scheme Com
is λ-statistically binding and computationally hiding, then the aforementioned hybrid commitment
scheme is also λ-statistically binding and computationally hiding.

Proof. The required security properties are as follows:

1. Statistically binding. e is λ-statistically binding according to the commitment scheme Com.
Given that x = e ·H− c, it follows that x is also λ-statistically binding.

2. Computationally hiding. The hybrid commitment is based on the dual LPN problem, con-
structing the commitment c = e ·H − x. Leveraging the security properties of the dual LPN
problem, the term e ·H is pseudorandom, ensuring the pseudorandomness of the resulting com-
mitment.

5 Committed-VOLE

We construct the committed-VOLE protocol using the hybrid commitment we introduced in Sec-
tion 4.2. The C-VOLE protocol starts from one party PA, generating a hybrid commitment of its
chosen vector x and publishing the commitment to every other party. Then, PA generates VOLE
correlation with any other party PB of the x consistent with the published hybrid commitment.
In the construction of the hybrid commitment, there are two methods to commit the intermedi-
ate vector eu: dual-LPN commitment and primal-LPN commitment. This leads to two ways to
instantiate the protocol: dual-LPN based C-VOLE and primal-LPN based C-VOLE. Here, we use
the dual-LPN based hybrid commitment to PA’s input vector x and provide its corresponding C-
VOLE instantiation in Figure 5. The primal-LPN based C-VOLE is introduced and evaluated in
Section A.2. The concrete performance is provided in performance evaluation in Section 7.

The C-VOLE protocol based on dual-LPN hybrid commitment is constructed as follows: First,
PA commits to its chosen input vector x. PA samples an intermediate regular sparse vector eu and
computes a dual-LPN commitment comeu . PA computes the hybrid commitment Hcomx of x as
Hcomx = {comeu ,x∗ = eu ·H−x},Hdecomx = {eu, decomeu}, where H is a public matrix and x∗

is a correction vector from the intermediate eu to the designated x. Then, to generate the VOLE
correlation of the designated x committed by Hcomx, we let both parties first generate the VOLE
correlation of the intermediate eu committed by comeu (part of Hcomx). Given JeuK is consistent
with comeu , both parties can locally recover JxK, which is consistent with Hcomx, using the publicly
known correction vector x∗ (part of Hcomx) as follows:

Given M[eu] = K[eu] +eu ·∆, where (eu,M[eu]) is held by PA and (K[eu],∆) is held by PB, and
the public correction vector x∗ = eu ·H− x, both parties compute M[x],K[x], respectively, as:

M[x] = M[eu] ·H
K[x] = K[eu] ·H + x∗ ·∆,

such that M[x] = K[x] + x ·∆.
In this way, generating the VOLE correlation for the committed x is reduced to generating the

VOLE correlation for the committed intermediate vector eu. Notice that eu is a regular-w vector
with length N , where N = w · 2L, defined in Section 4.2. Both parties call the multi-point VOLE
functionality FMPVOLE, as depicted in Figure 3, to generate JeuK. The instantiation of FMPVOLE

12

follows the single-point subfield VOLE ΠspsVOLE in [WYKW21] with a slight variation, which is
detailed in Section A.5. In the next step, PA needs to prove to PB that with eu input to FMPVOLE,
the resulted JeuK is consistent with commitment comeu . We construct the proof efficiently leveraging
the linear property of the dual-LPN commitment.

Recall that for dual-LPN commitment of eu, comeu = eu ·H1 + er ·H2 and decomeu = er. We
let both parties call FMPVOLE again with PA input decomeu(er) to generate JerK. Given M[eu] =
K[eu]+eu·∆, where (eu,M[eu]) is held by PA and (K[eu],∆) is held by PB, and M[er] = K[er]+er ·∆,
where (er,M[er]) is held by PA and (K[er]) is held by PB, both parties compute M[comeu] and
K[comeu], respectively:

M[comeu] = M[eu] ·H1 + M[er] ·H2

K[comeu] = K[eu] ·H1 + K[er] ·H2

Since the LPN-commitment comeu is published in the hybrid commitment Hcomx of x, the following
equation (JcomeuK) holds,

M[comeu] = K[comeu] + comeu ·∆

if the JeuK and JerK used in computing M[comeu] and K[comeu] are consistent with the eu and er in
computing comeu . We let PA send H3(M[comeu]) to PB. PB verifies whether JcomeuK holds, thereby
ensuring that a consistent intermediate VOLE correlation JeuK is generated with the intermediate
commitment comeu .

The detailed protocol for instantiating FC−VOLE with a dual-LPN commitment is shown in
Figure 5. We also proved that the dual-LPN commitment based protocol ΠC−VOLE−dual is secure
against any malicious adversary, as established in Theorem 3 with a complete proof.

5.1 Proof of Security

Theorem 3. Protocol ΠC−VOLE−dual in Figure 5 securely instantiates FC−VOLE in Figure 1 in
FMPVOLE-hybrid model against any malicious adversaries.

Proof. Let A be a PPT adversary that corrupt PA or PB. We construct a PPT simulator S with
access to FC−VOLE and simulates the adversary’s view. We will prove that the joint distribution
over the output of A and the honest party in the real world is indistinguishable from the joint
distribution over the output of S and the honest party in the ideal world.

Corrupted PA. Let S access FC−VOLE as an honest PA and interact with A as an honest PB.
S passes all communication between A and environment Z.

1. S holds public commitment of x, that Hcomx = (comeu ,x
∗ = eu ·H−x). S emulates FMPVOLE

and receives (init) from A.

2. S emulates FMPVOLE and receives (extend, e′u ∈ Fw·2L , L, w) from A. S receives M[e′u] ∈ Fw·2L

from A. S computes x′ = e′u ·H− x∗.

3. S emulates FMPVOLE and receives (extend, e′r ∈ Ft·2L
′
, L′, t) from A. S receives M[e′r] ∈ Ft·2L

′

from A. S sends (x′, decom′x = (e′u, e
′
r)) to FC−VOLE. If S receives abort from FC−VOLE, S aborts

at step (4).

4. S receives H3(M[comeu])′ from A. S checks if H3(M[comeu])′ = H3(M[e′u] ·H1 + M[e′r] ·H2). If
not, S aborts.

5. S computes M[x] = M[e′u] ·H and sends M[x] to FC−VOLE. S outputs what A outputs.

13

Protocol ΠC−VOLE−dual

Parameters: A public hybrid commitment of x ∈ Fm defined in Section 4.2, that Hcomx = (comeu ∈
Fn,x∗ = eu · H − x ∈ Fm). A dual LPN commitment scheme defined in Section 4.1 that (comeu

=

eu · H1 + er · H2, decomeu
= er) ← Com(eu), where eu ∈ Fw·2L

, comeu
∈ Fn, decomeu

∈ Ft·2L′

. A
Collision-Resistant Hash Function H3.

Inputs: PA holds vector x ∈ Fm, Hdecomx = (eu ∈ Fw·2L

, er ∈ Ft·2L′

).

Compute:

1. Both PA and PB call FMPVOLE with input (init). PB receives ∆ ∈ F from FMPVOLE.

2. PA calls FMPVOLE with input (extend, eu ∈ Fw·2L

, L, w). PB calls FMPVOLE with input (extend, L, w).

The functionality returns M[eu] ∈ Fw·2L

to PA and K[eu] ∈ Fw·2L

to PB such that M[eu] = K[eu] +

∆ · eu ∈ Fw·2L

. If either party receives abort from FMPVOLE in any of these executions, it aborts.

3. PA calls FMPVOLE with input (extend, er ∈ Ft·2L′

, L′, t). PB calls FMPVOLE with input (extend, L′, t).

The functionality returns M[er] ∈ Ft·2L′

to PA and K[er] ∈ Ft·2L′

to PB such that M[er] = K[er] +

∆ · er ∈ Ft·2L′

. If either party receives abort from FMPVOLE in any of these executions, it aborts.

4. PA computes M[comeu] = M[eu] ·H1 + M[er] ·H2 ∈ Fn and sends H(M[comeu]) to PB. PB computes
K[comeu

] = K[eu] ·H1 +K[er] ·H2 ∈ Fn and value = K[comeu
] + comeu

·∆ ∈ Fn. PB checks whether
H3(M[comeu

]) = H3(value). If not, PB aborts.

5. PA outputs (x,M[x]), where M[x] = M[eu] ·H ∈ Fm. PB outputs (∆,K[x]), where K[x] = K[eu] ·H +
x∗∆ ∈ Fm.

Figure 5: The committed-VOLE protocol based on dual-LPN-based hybrid commitment

We are going to show the simulated execution is indistinguishable from real-world protocol execu-
tion.

Hybrid H0 Same as real-world execution in FMPVOLE-hybrid model.
Hybrid H1 Same as Hybrid H0 except S emulates FMPVOLE. Notice that S does not simulate

any message to A. This hybrid is identical to the previous one.
Hybrid H2 Same as Hybrid H1 except S aborts at step (4) if S receives abort from FC−VOLE

or the received H3(M[comeu])′ 6= H3(M[e′u] ·H1 + M[e′r] ·H2).
In hybrid H1, an honest PB aborts at step (4) if the received H3(M[comeu])′ 6= H3(K[e′u] ·

H1 + K[e′r] · H2 + comeu · ∆). There are the following abort conditions with abort probability
indistinguishable from hybrid H2:

1) A uses e′u 6= eu and e′r 6= er to FMPVOLE. A computes M[comeu]′ honestly from M[e′u] ·
H1 + M[e′r] ·H2. Any (e′u, e

′
r) inconsistent with (eu, er) will result the inequality above with the

probability of statistical binding failure mentioned in Theorem 1. In this hybrid, any inconsistency
will be checked by the FC−VOLE with the same binding failure and result in an abort at step
(4), which is indistinguishable from hybrid H1. 2) A uses e′u 6= eu and e′r 6= er to FMPVOLE.
A samples M[comeu]′ to S. The consistency check passes if and only if A samples M[comeu]′ =
K[e′u] ·H1 + K[e′r] ·H2 + comeu ·∆. However, since K[e′u], K[e′r], ∆ are uniformly distributed over

Fw·2L ,Ft·2L
′

and F, respectively, the consistency check fails with all but negligible probability. In
this hybrid, given inconsistent (e′u, e

′
r) pair, S aborts except the failure probability of binding,

which is also negligible and thus indistinguishable from hybrid H1. 3) A uses e′u = eu and e′r = er
to FMPVOLE. A samples M[comeu]′ to S. The consistency check passes if and only if A samples

14

M[comeu]′ = K[e′u] · H1 + K[e′r] · H2 + comeu · ∆, which is equivalent to checking M[comeu]′ =
M[e′u] ·H1 +M[e′r] ·H2 in this hybrid. Thus, the abort probability is indistinguishable from hybrid
H1.

Therefore, this hybrid is identically distributed as H1.
Corrupted PB. Let S access FC−VOLE as an honest PB and interact with A as an honest PA.

S passes all communication between A and environment Z.

1. S emulates FMPVOLE and receives (init) from A. S holds public commitment of x, Hcomx =
(comeu ,x

∗ = eu ·H− x). S sends (init) to FC−VOLE. S receives ∆ ∈ F from A.

2. S emulates FMPVOLE and receives (extend, L, w) from A. S receives K[eu] ∈ Fw·2L from A.

3. S emulates FMPVOLE and receives (extend, L′, t) from A. S receives K[er] ∈ Ft·2L
′

from A.

4. S computes H3(M[comeu]) = H3(K[eu] ·H1 +K[er] ·H2 + comeu ·∆) and sends it to A. S aborts
if A aborts.

5. S computes K[x] = K[eu] ·H +x∗ ·∆ ∈ Fm and sends (∆,K[x]) ∈ Fm+1 to FC−VOLE. S outputs
what A outputs.

We are going to show the simulated execution is indistinguishable from real-world protocol execu-
tion.

Hybrid H0 Same as real-world execution in FMPVOLE-hybrid model.
Hybrid H1 Same as Hybrid H0 except S emulates FMPVOLE and simulates the messages to A.
S simulates H3(M[comeu]) = H3(K[eu] · H1 + K[er] · H2 + comeu · ∆) and sends it to A. In

the previous hybrid, an honest PA computes M[comeu] = M[eu] ·H1 + M[er] ·H2, which holds the
property that M[eu] = K[eu] + eu · ∆ and M[er] = K[er] + er · ∆. Consequently, the M[comeu]
computed by simulator equals the one computed by honest PA in real world. Thus, this hybrid is
identical to the previous one.

This concludes the proof.

5.2 Complexity Analysis

We give an analysis of the communication efficiency of dual-LPN based C-VOLE instantiation.
As the protocol call FMPVOLE for generating JeuK and JerK, it requires MPVOLE instantiations of

eu ∈ Fw·2L and er ∈ Ft·2L
′
. The protocol also requires a H3(M[comeu]) for consistency check and

publishing a commitment of size n + m. According to the instantiation of MPVOLE protocol in
Section A.5 , we have that for sparse vector of length w · 2L, it requires communication overhead
of wLκ. Thus, the total communication overhead of dual-LPN based C-VOLE protocol is (wL +
tL′)κ+ (n+m) log |F|.

6 Applications of C-VOLE

We present more details of three applications that can benefit from C-VOLE. Our design improves
the overall performance of commit-and-prove VOLE-ZK, simplifies the communication pattern of
VOLE-based generic MPC protocols, and facilitates crowd PSI. They are discussed in the following.

15

6.1 Commit-and-prove VOLE-ZK

VOLE-ZK refers to a category of private-coin interactive zero-knowledge proofs [WYKW21, YSWW21,
DIO21, BMRS21]. One of its extensions is the commit-and-prove VOLE-ZK that proves a statement
over publicly committed data [WYX+21]. To achieve this, [WYX+21] uses a hybrid commitment
scheme that is based on the Merkle tree construction [Mer88]. Additionally, it proposes a proof of
commitment opening by generically re-computing the whole Merkle tree in ZK.

For an arbitrary circuit C(·) and a witness w, define a VOLE-ZK that proves the validity of
C(w) = 1 without revealing any information about w. Additionally, define a Merkle tree-based
commitment scheme MerkleCom(·) that commits to arbitrary messages. Assume that a prover
commits to the witness w by c = MerkleCom(w). Given (c, C), the commit-and-prove VOLE-ZK
can be viewed as proving the possession of witness w such that c = MerkleCom(w) ∧ C(w) = 1.

In [WYX+21], the proof of the first part requires a non-black-box access to the commitment
scheme. Namely, the prover needs to prove the satisfiability of a composition of hash function
circuits, which incurs O(`CHash) communication overhead assuming hash function circuits of size
CHash per block and w ∈ F`. Our C-VOLE protocol reduces its cost to O(κ log `) by replacing the
Merkle tree commitment with the LPN-based commitment HCom(·), which comes with an efficient
proof of opening that facilitates the proof of c = HCom(w) ∧ C(w) = 1. We demonstrate the
concrete performance improvement in Section 7.3.1.

6.2 Multi-Party VOLE in MPC and MVZK

It is common for multi-party protocols to rely on a multi-party VOLE protocol to generate cor-
related randomness. Examples include generic dishonest-majority MPC protocols [RS22, HSS20,
WRK17] and multi-verifier zero-knowledge proofs [EPSW24]. In multi-party VOLE, each pair of
parties (Pi, Pj) need to execute VOLE for the correlation M[xi]ij = K[xi]ji + xi · ∆j . Achieving

malicious security in such protocols requires that Pi uses the same xi across all VOLE instances it
executes with other parties. To ensure this, a costly consistency check is performed at the end of
the multi-party VOLE. In prior works, this check involves n-party joint coin-tossing and multiple
rounds of peer-to-peer communication and broadcasting, which are significantly constrained by
network latency.

Our C-VOLE protocol eliminate this round-heavy consistency check. Namely, Pi first publishes
its commitment to xi. Then, for each j ∈ [n] \ {i}), Pi interacts with Pj to execute committed
VOLE, which ensures the VOLE correlations are consistent with the committed xi. As long as
parties reach consensus on the commitment, there is no need for a final multi-round verification.

6.3 C-VOLE in Crowd PSI

Crowd PSI involves a server executing 2-party PSI with multiple clients in a distributed manner; any
standalone malicious secure 2-party PSI is insufficient, as the server may use different private sets
interacting with different clients. Introducing the C-VOLE could address this issue by building upon
VOLE-based PSI works [RR22a, RS21], the most performant PSI works currently, and extending
them to a C-VOLE based crowd PSI protocol. The protocol is constructed as follows to securely
achieve FPSI in Figure 4. The protocol is shown in Figure 6 and its intuition is detailed as follows:

Initially, P1 computes a vector p by solving a linear system of its private set elements, and
publishes its commitment. Then, any client Pj executes the C-VOLE functionality with P1 to get
a VOLE relation associated with p. Given the VOLE relation, expressed as M[p]j = K[p]j +p ·∆j ,
party Pj uses K[p]j and ∆j to encode its private set elements and then sends the encodings to P1.
P1 uses the corresponding M[p]j to encode its private set elements xi ∈ X, i ∈ [n]. Then, P1 is

16

Protocol ΠPSI

Parameters: Party P1 with a set X = (x1, . . . , xn) ⊂ Fn. Party Pj with a set Yj ⊂ Fn′
. A random

function row : F× {0, 1}κ → {0, 1}m, where m = O(n) +O(λ) as defined by OKVS scheme in [RR22a].
A Decode algorithm Decode : Fm×F×{0, 1}κ → F, defined by [RR22a]. A hybrid commitment scheme
defined in Section 4.2, such that (Hcoma,Hdecoma)← HCom(a), 1← Open(a,Hdecoma,Hcoma), where
a ∈ Fm, Hcoma ∈ FN , Hdecoma ∈ Fm′

. Random oracle H1 : F→ F, H2 : F× F→ {0, 1}out.
Initialize:

1. P1 samples r ← {0, 1}κ and solves the following systems to get p ∈ Fm.row(x1, r)
· · ·

row(xn, r)

pT = (H1(x1), · · · , H1(xn))T

2. P1 computes (Hcomp,Hdecomp)← HCom(p) and publishes Hcomp.

Extend: P1 execute this phase with each party Pj , who possesses set Yj consisting elements (y1, · · · , yn′).

3. Pj samples ws ← F, sends cs := H1(ws) to P1.

4. P1 samples wr ← F, sends wr, r to Pj .

5. P1 calls FC−VOLE with input (init,p,Hdecomp). Pj call FC−VOLE with input (init). The functionality
sends M[p] ∈ Fm to P1 and (∆,K[p]) ∈ Fm+1 to Pj , such that M[p] = K[p] + p ·∆.

6. Pj sends ws to P1. P1 aborts if cs 6= H1(ws). Otherwise, both party computes w = ws + wr.

7. Pj computes eyi = F (yi) = H2(Decode(K[p], yi, r) + H1(yi) ·∆ + w, yi) for each yi ∈ Yj , inserts eyi
to set EY , and sends EY to P1.

8. P1 computes exi = F (xi) = H2(Decode(M[p], xi, r) + w, xi) for each xi ∈ X, inserts exi to set EX.
P1 computes the intersection Z : {xi|xi ∈ X, exi ∈ EX ∩ EY }

Figure 6: Secure crowd PSI protocol.

able to compute the intersection by locally comparing the encodings. By leveraging FC−VOLE and
pre-published commitment of p, this protocol ensures that P1 consistently reuses p in the extend
phase with different Pj .

The correctness of encoding and computing the intersection aligns with the VOLE-based PSI
protocol [RS21]. Each set element xi/yi is mapped to a specific row vector through random function
row. Pj encodes its set elements yi, i ∈ [n′] by applying K[p] to these row vectors to compute the
inner product and then add H(yi) ·∆. P1 encodes its set elements xi, i ∈ [n] by computing the inner
product of M[p] with the row vectors mapped from xi, i ∈ [n]. According to the computation of
p, for each yi′ = xi, i ∈ [n], i′ ∈ [n′], H(xi)/H(yi′) is equivalent to applying the corresponding row
vectors of xi/yi′ to p. Thus, given the VOLE relation of p, both parties are able to encode iden-
tical elements into identical encodings. An enhanced Oblivious Key-Value Store (OKVS) scheme
from [RR22a] is used here to sample the random function row, solve the linear system of p, and
compute the Decode algorithm. We proved that this crowd PSI protocol is maliciously secure in
each distributed two-party PSI computation below. We also want to noted that the coin-flipping
procedure in generating w is not mandatory in this crowd PSI protocol as it is originally used for
achieving the OPRF protocol in [RS21], which requires uniformity of OPRF output.

17

Theorem 4. Protocol ΠPSI in Figure 6 securely instantiated FPSI in (FC−VOLE, H1, H2)-hybrid
model against malicious adversaries.

Proof. The proof is deferred to Section A.10

Additionally, even in semi-honest setting, implementing C-VOLE in crowd PSI could bring the
correction vector, which is computed from the difference between randomized VOLE vector and the
designated vector, to the initialization phase. This optimization ensures the same correction vector
is used for all senders, reduces communication overhead by eliminating the need for individual
correction vectors for each sender.

7 Performance Evaluation

We implement our proposed C-VOLE protocol and the C-VOLE based crowd PSI protocol based
on the work by [RR22a]. We utilize the EMP library [WMK16] for C-VOLE implementation. For
the PSI protocol, we integrate the libOT [RR] and volePSI [RR22b] libraries for Paxos operations.
We instantiate all the protocols with F = F2128 , the computational security parameter κ = 128, and
the statistical security parameter λ = 40. All experiments were executed on AWS EC2 instances
6a.8xlarge with 32vCPU and 128GB memory. We tested our schemes in both the LAN and WAN
networks, where we set the LAN network with 0 ms latency and 1Gbps bandwidth, and WAN
network with 400 ms latency and 50 Mbps bandwidth.

7.1 Parameter Selection of Hybrid Commitment

We explain how to choose parameters for a hybrid commitment Hcomx of x ∈ Fm, which will
influence the performance of C-VOLE as well. Notice that Hcomx = {comeu ,x∗ = eu · H − x}
consists of two parts: the LPN-based commitment comeu of eu ∈ Fw·2L ; and a pseudorandom
correction vector x∗ corrects x from eu. We first select the parameters used for computing x∗,
which hides x with 128-bit security. Our framework is compatible with any LPN coding in the
VOLE context [BCG+22, RRT23]. We use the expand-accumulate (EA) code [BCG+22] to build

the matrix H ∈ Fw·2L×m, where the expansion parameter C corresponds to the “expand” step
in EA coding. This matrix compresses vector eu ∈ Fw·2L into a pseudorandom vector of length
m. Following the conservative constraints in Section 7.1 and [BCG+22], we set the expansion
parameter C = 10 and the code rate R = 1/7 (i.e., 7 ∗ |x| = |eu|). Under these settings, we choose

the (w,L) pair for eu ∈ Fw·2L to achieve 128-bit security. The chosen parameters are shown in
Table 1. Notice that [RRT23]’s attack only applies to the aggressive parameters of EA code but
not the conservative ones we use.1

Given the (w,L) pair form, we fix the structure of eu for each x. Then, we choose parameters for
constructing a commitment comeu with 128-bit security level, where comeu = eu ·H1+er ·H2 for the
commitment from the dual LPN assumption, to achieve statistically binding and computationally
hiding commitment of eu ∈ Fw·2L . According to Theorem 1, we select the (n, t, L′) pair for dual LPN
commitment. For each x ∈ Fm of different lengths, we compute groups of parameters (w,L, n, t, L′)
and select the one that minimizes the communication cost of the C-VOLE protocol from the dual
LPN assumption, mentioned in Section 5.2 for implementation. We give the commitment parameter
selection that achieving 128 bit security for x ∈ {F220 ,F224 ,F228} in Table 1.

1The attack only applies to F2 while our implementation is based on F128
2 . Therefore, we also provide performance

evaluation of C-VOLE under aggressive parameters in Section A.4.

18

Input Intermediate sparse vector Dual LPN commitment

|x| |eu| w L |er| t L′ |comeu |(n)

220 7 ∗ 220 224 15 1456 91 4 696

224 7 ∗ 224 224 19 1472 92 4 710

228 7 ∗ 228 224 23 1488 93 4 723

Table 1: Dual-LPN-based hybrid commitment parameters selection of x with different lengths.
Achieves 128-bit security.

220 222 224 226 228

Input vector length m

0

100

200

300

400

Ti
m

e
C

on
su

m
pt

io
n

(s
)

One-time Commitment 4 threads
Compute (LAN) 4 threads
Compute (WAN) 4 threads
One-time Commitment 16 threads
Compute (LAN) 16 threads
Compute (WAN) 16 threads

One-time Commitment 4 threads
Compute (LAN) 4 threads
Compute (WAN) 4 threads
One-time Commitment 16 threads
Compute (LAN) 16 threads
Compute (WAN) 16 threads

(a) Time consumption in different network.

220 222 224 226 228

Input vector length m

101

102

103

B
an

dw
id

th
C

on
su

m
pt

io
n

(M
B

)

One-time Commitment
Compute

(b) Bandwidth consumption.

Figure 7: Performance of C-VOLE protocol in LAN and WAN setting.

7.2 Efficiency of Committed-VOLE

Our C-VOLE protocol includes two phases: computing a one-time commitment on the VOLE
sender’s side (PA in the protocol) for chosen input vector x and a compute phase that can be
executed between the sender and each individual VOLE receiver (PB in the protocol). We show
the time consumption of the two phases under LAN and WAN with different input vector lengths
m and different threads in Figure 7a. The communication overhead is shown in Figure 7b. The
detailed analysis is as follows.

One-time Commitment: In this phase, the sender, who holds the input vector x, generates an
LPN-based hybrid commitment of x and publishes it to all the parties. We tested this process
using 4 threads and 16 threads. The results show that it takes 0.84 s for m = 220 and 382.39 s for
m = 228 using 4 threads, while it takes 0.33 s for m = 220 and 160.62 s for m = 228 using 16 threads.
The communication overhead in this phase is publishing the hybrid commitment of x, which costs
16.78 MB for m = 220 and 4294.9 MB for m = 228, dominating the entire communication of the C-
VOLE protocol. As the one-time commitment is published and applicable to each individual receiver
interacting with the sender to generate C-VOLE of x, the time consumption for the computation
can be amortized to a very small portion of the overall computation. Additionally, the commitment
computation is computed locally on the sender’s side and is unaffected by network settings.

Compute: We tested the compute phase for the sender generating VOLE of the committed x
with one receiver. Note that the performance of the compute phase is influenced by the parameters
chosen in Section 7.1, specifically the Hamming weight and the block size of the sparse vectors
in executing ΠMPVOLE. For m = 220, the compute phase takes 0.81 s under a LAN network and
9.31 s under a WAN network with a bandwidth of 50 Mbps when using 4 threads. With 16
threads, the compute phase takes 0.62 seconds under LAN network and 8.20 seconds under WAN
network. For m = 228, the compute phase with 4 threads takes 407.6 s under a LAN network and
438.8 s under a WAN network. With 16 threads, the corresponding times are 187.22 s under a

19

Schemes 50 Mbps 200 Mbps 500 Mbps 1 Gbps

C2A [WYX+21] 45µs 45µs 44µs 44µs

C-VOLE 1.61µs 1.59µs 1.57µs 1.53µs

Table 2: Time consumption compared with [WYX+21]. With different network settings, we tested
C-VOLE of 128-bit data block to compare with C2A of 64-bit data block. Both evaluations are
with single thread.

Schemes 220 block 224 block 228 block

C2A [WYX+21] 114.52 MB 1829.42 MB 29317.12 MB

C-VOLE 18.49 MB 270.18 MB 4296.74 MB

Table 3: Bandwidth consumption compared with [WYX+21]. we tested the bandwidth consump-
tion of C-VOLE and C2A under varying input blocks. For each C-VOLE input block, we used a
128-bit data block, while for C2A, a 64-bit data block was employed for comparison.

LAN network and 191.82 s under a WAN network. In terms of communication overhead, which is
dominated by the cost of ΠMPVOLE, the cost is 1.72 MB for m = 220 and 1.78 MB for m = 228.
The communication overhead does not increase significantly with the increase of m, benefiting from
the sublinear online communication of our intermediate structured sparse LPN commitment and
corresponding consistency check construction.

7.3 Comparison with Prior Work

7.3.1 Comparison with C2A Conversion.

We compare the proposed C-VOLE protocol with the public commitment to private authentication
conversion (C2A) in [WYX+21], which is used for commit-and-prove zero-knowledge proofs. The
C2A conversion in [WYX+21] assumes 64-bit data block, while our protocol is evaluated under field
F2128 , implemented as data block of 128-bit. The time consumption and communication overhead
are summarized in Table 2 and Table 3 and are analyzed below.

Wallclock time. C2A conversion is the bottleneck of computing commit-and-prove ZK. As
tested from [WMK16], the C2A takes 45 µs per element while the zero-knowledge proof only takes
less than 0.1 µs per gate [YSWW21]. We tested ours C-VOLE computation time for each block
under different network setting, each result is amortized from the performance of vector of length
224. The results show that our scheme requires 1.61µs computation for 128-bit data block, which
is 28× faster than the 45µs computation for 64-bit data block in [WYX+21]. Note that a follow-
up LPZKv2 [DILO22b] provides at most a 2× improvement over QuickSilver [YSWW21]. The
advantage of C-VOLE compared to Mystique remains significant even if its underlying ZKP is
replaced from QuickSilver to LPZKv2.

Communication overhead. We tested the communication overhead of the C2A conver-
sion and our proposed C-VOLE for input vector length m = {220, 224, 228}. The communication
overhead includes the published commitment, the interactive generation of VOLE, and the proof of
input vector consistency. C2A conversion requires 114.52 MB of communication for 220 blocks while
ours C-VOLE only requires 18.49 MB. For 228 blocks, the C2A consumes 29 GB communication
overhead and ours C-VOLE consumes 4.2 GB. Note that in the C2A conversion, the commitment
size is small, and the proof of consistency dominates the entire communication cost. In contrast,
for our C-VOLE, the commitment size constitutes the majority of the communication overhead.

20

This means that when executing C2A operations multiple times on the same publicly committed
data, ours C-VOLE protocol is much more communication-efficient.

7.3.2 Comparison with CVOLE with Input-revealing Identifiable-abort (IRIA).

We compare the committing VOLE proposed in [CDKs24] with our proposed scheme. The com-
mitting VOLE with input-revealing identifiable-abort is designed having both parties commit to
their input and reveal them to prove consistency in case of an abort. To ensure a fair comparison
with our work, we only require the sender to commit to its input vector and reveal it for consis-
tency checks. Since there is no implementation available for [CDKs24], we analyze and compare its
communication overhead with ours theoretically.

The C-VOLE used in [CDKs24] can be divided into two steps according to their paper: 1)
Generate oblivious transfer (OT) based on PVW OT [PVW08] and extend it to VOLE using OT-
multiplication protocols [DKLs18, Gil99]; 2) Run a sigma protocol to reveal the input to the other
party and prove consistency of the input with previous transferred messages for each OT. For
step 1), each DDH-based PVW OT requires 8 log |G| communication. To extend it to VOLE with
vector length m, the extension [DKLs18] requires m · (log |F| + κ + 2λ) execution of OTs, along
with additional consistency check of the sender’s input for malicious security, which doubles the
the number of OTs. For step 2), each OT requires a communication overhead of 4 log |F|+ 8 log |G|
for the sigma protocol to prove consistency with the commitment (transferred message). The total
communication overhead for the C-VOLE with sender-committed input and revealing is 2 · m ·
(log |F| + κ + 2λ) · (8 log |G| + 4 log |F| + 8 log |G|). In contrast, ours communication overhead is
(wL + tL′)κ + (n + m) log |F| as analyzed in Section 5.2. For m = 220, G with order 128 bits, the
communication cost for [CDKs24] is 225 GB, whereas ours is 16.84 MB.

7.4 Efficiency of C-VOLE based PSI and Comparison

In this section, we evaluate the performance of our proposed C-VOLE based crowd PSI and com-
pare it with the state-of-the-art two party PSI [RR22a] and the state-of-the-art crowd PSI proto-
col [SKR+24].

We integrate C-VOLE into VOLE-based PSI protocol, Blazing PSI [RR22a], which is also the
state-of-the-art two-party PSI protocol, by replacing VOLE with C-VOLE to achieve malicious
security in the crowd setting. As shown in Figure 6, in the C-VOLE based crowd PSI protocol, the
C-VOLE sender acts as the receiver (server) of the crowd PSI protocol and computes a publicly
committed vector p for initialization. The server (receiver) then computes the extend phase of crowd
PSI with each individual client (sender) to get the intersection. The initialization phase includes
a Paxos encoding operation and the computation of a one-time commitment. The extend phase
consists of the following steps: 1) Both the server and the client generate the VOLE correlation of
the committed p; 2) The client sends the encoding of its set elements to the server; 3) The server
performs local encoding of its set and compares the two encodings to determine the intersection
with each client.

7.4.1 Comparison with VOLE based PSI.

The only difference between ours C-VOLE based PSI and the VOLE-based PSI [RR22a] is that we
use committed-VOLE instead of VOLE. Notice that [RR22a] proposed two versions of implemen-
tation, one uses VOLE with slightly faster computational overhead, the other one uses subfield-
VOLE with reduced communication overhead. We compare with the faster version (VOLE-based)
and measure both the computation and the communication overhead by fixing client’s set to 210

21

elements and scaling the server’s set to {220, 222, 224}. The detailed comparison are presented in
Table 4 and Table 5.

Set size (m,n) (220, 210) (222, 210) (224, 210)

Blazing PSI [RR22a] (s) 0.41 2.44 9.89

C-VOLE PSI
Init (s) 0.78 3.34 12.37

Online (s) 1.08 3.51 14.69

Table 4: Time consumption compared with [RR22a]. (m,n) represents the server’s set size m, and
client’s set size n. PSI Init is a one-time computation and PSI online is executed between the server
and each individual client. The experiments are tested with 16 threads.

Set size (m,n) (220, 210) (222, 210) (224, 210)

Blazing PSI [RR22a] (MB) 23.83 92.34 366.55

C-VOLE PSI
Init (MB) 21.94 88.41 353.94

Online (MB) 1.73 1.75 1.76

Table 5: Communication overhead compared with [RR22a]. (m,n) represents the server’s set size
m, and client’s set size n. The experiments are executed with 16 threads.

Compared with Blazing PSI [RR22a], the results show that our C-VOLE based PSI consumes
approximately 2× more online running time but requires significantly less online communication
overhead. This difference can be attributed to the fact that Blazing PSI employs the default
VOLE implementation in the library LibOTe using EC code. In contrast, ours uses EA code with
parameter R = 1

7 , C = 10 and specifically selects the structure of eu and er for both security
and performance in Section 7.1. Moreover, our C-VOLE based PSI has the property of having
the initialization phase performed locally in advance to enhance performance. In the crowd PSI
setting, when a server executes PSI with multiple clients, the initialization can be amortized to a
very small amount of time. The communication can also be managed by other efficient networks
such as CDN or P2P, further enhancing performance.

7.4.2 Comparison with Prior Work in Crowd PSI.

There’s only one prior work that considers PSI in the crowd setting [SKR+24]. In this work, the
server commits to its private input and executes PSI with each individual client using an oblivious
verifiable unpredictable function (OVUF). This work allows the client to obtain the intersection,
whereas our protocol enables the server to obtain the intersection. We compare our work with this
work despite the slight difference in output, as it provides the relevant baseline for performance
in crowd setting. We set the server’s set size to {220, 224, 228} elements and the client’s set size to
{210, 217, 220} elements, and present the performance results below.

Wallclock time. We evaluate the time consumption for executing PSI between a server and
a client using 16 threads. As shown in Table 6, the initialization of both schemes scales linearly
with the server’s set size, as it computes commitment for the server’s private set elements. Ours
C-VOLE PSI requires 465.23 ms for a server with 228 elements, while OVUF-PSI requires 1596.44
ms. For the online phase, our C-VOLE based PSI includes generating the VOLE correlation of
the committed vector (with a length linear to the server set size) and computing the client’s side
encoding to the server. The time consumption scales roughly linearly with the server’s set size,
with a small additional increase as the client set size grows. In contrast, the OVUF-PSI scales

22

Set size (m,n)
C-VOLE PSI OVUF-PSI [SKR+24]

Init (s) Online (s) Init (s) Online (s)

(220, 210) 0.78 1.03 6.24 0.59

(220, 217) 0.79 1.08 6.24 67.36

(220, 220) 0.79 1.23 6.24 538.88

(224, 210) 12.37 14.35 98.14 0.59

(224, 217) 12.37 14.69 98.14 67.36

(224, 220) 458.17 455.55 98.14 538.88

(228, 210) 458.10 499.04 1596.44 0.59

(228, 217) 465.23 523.17 1596.44 67.36

(228, 220) 80.82 87.16 1596.44 538.88

Table 6: Time consumption compared with [SKR+24]. (m,n) represents the server’s set size m,
and the client’s set size n. PSI Init is a one-time computation and PSI Online is executed between
the server and each individual client. All experiments are executed with 16 threads. The online
computation time for [SKR+24] with a client size of 220 is derived from other tested results based
on linear properties.

linearly with the client set size. For a server’s set size of 220, ours C-VOLE PSI requires 1.03 s for
client size 210 and 1.23 s for client size 220. In comparison, OVUF-PSI requires 0.59 s for client size
210 and 538.88 s for client size 220.

Communication overhead. For communication overhead, the initialization phase of both
schemes requires the server to publish the commitment of its set elements. The communication
overhead scales linearly with the server set size. However, in OVUF-PSI, each element in F2128 is
hashed to 64-bit, while ours C-VOLE PSI can not use such hashing. The communication overhead of
our initialization phase scales linearly with the length of p, which is proportional to the server’s set
size. Consequently, our C-VOLE PSI requires roughly 2.6 times more communication overhead than
the OVUF-PSI during initialization. In the online phase, C-VOLE PSI includes generating the C-
VOLE correlation of p and having the client send back its set encodings. The online communication
overhead is dominated by the client’s set size, requires 1.73 MB for a client size of 210 and 18.49 MB
for a client size of 220, with a fixed server size 220. This significantly outperforms the OVUF-PSI
online phase.

Set size (m,n)
C-VOLE PSI OVUF-PSI [SKR+24]

Init (MB) Online (MB) Init (MB) Online (MB)

(220, 210) 21.94 1.73 8.38 63.23

(220, 217) 21.94 3.81 8.38 8091

(220, 220) 21.94 18.49 8.38 64747

(224, 210) 353.94 1.76 134.18 63.23

(224, 217) 353.94 3.84 134.18 8091

(224, 220) 353.94 18.52 134.18 64747

(228, 210) 5671.63 1.79 2147 63.23

(228, 217) 5671.63 3.87 2147 8091

(228, 220) 5671.62 18.55 2147 64747

Table 7: Communication overhead compared with [SKR+24]. (m,n) represents the server’s set size
m, and client’s set size n. The online communication time for [SKR+24] with a client size of 220 is
derived from other tested results based on linear properties.

23

Acknowledgements

The work of Yu Yu is supported by the National Key Research and Development Program of
China (Grant No. 2020YFA0309705), National Natural Science Foundation of China (Grant
Nos. 62125204 and 92270201), Innovation Program for Quantum Science and Technology (No.
2021ZD0302901/2021ZD0302902), and the Major Program of Guangdong Basic and Applied Re-
search (Grant No. 2019B030302008). The work of Xiao Wang is supported by NSF award
#2236819. Yu Yu’s work has also been supported by the New Corner-stone Science Foundation
through the XPLORER PRIZE.

References

[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepie-
niec. Design of symmetric-key primitives for advanced cryptographic protocols. IACR
Trans. Symm. Cryptol., 2020(3):1–45, 2020.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. MiMC: Efficient encryption and cryptographic hashing with minimal mul-
tiplicative complexity. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part I, volume 10031 of LNCS, pages 191–219, Hanoi, Vietnam,
December 4–8, 2016. Springer Berlin Heidelberg, Germany.

[BCG+17] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. Homo-
morphic secret sharing: Optimizations and applications. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
2105–2122, Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators: Silent OT extension and more. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, vol-
ume 11694 of LNCS, pages 489–518, Santa Barbara, CA, USA, August 18–22, 2019.
Springer, Cham, Switzerland.

[BCG+22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch, and
Peter Scholl. Correlated pseudorandomness from expand-accumulate codes. In Yev-
geniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508
of LNCS, pages 603–633, Santa Barbara, CA, USA, August 15–18, 2022. Springer,
Cham, Switzerland.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector
OLE. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, ed-
itors, ACM CCS 2018, pages 896–912, Toronto, ON, Canada, October 15–19, 2018.
ACM Press.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Paterson, ed-
itor, EUROCRYPT 2011, volume 6632 of LNCS, pages 169–188, Tallinn, Estonia,
May 15–19, 2011. Springer Berlin Heidelberg, Germany.

24

[BFKL94] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Crypto-
graphic primitives based on hard learning problems. In Douglas R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 278–291, Santa Barbara, CA, USA, Au-
gust 22–26, 1994. Springer Berlin Heidelberg, Germany.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 337–367, Sofia, Bulgaria, April 26–30, 2015. Springer Berlin Heidelberg,
Germany.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements
and extensions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1292–1303, Vienna,
Austria, October 24–28, 2016. ACM Press.

[BMRS21] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. Mac’n’cheese:
Zero-knowledge proofs for boolean and arithmetic circuits with nested disjunctions.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of
LNCS, pages 92–122, Virtual Event, August 16–20, 2021. Springer, Cham, Switzer-
land.

[CDKs24] Ran Cohen, Jack Doerner, Yashvanth Kondi, and abhi shelat. Secure multiparty
computation with identifiable abort via vindicating release. In Leonid Reyzin and
Douglas Stebila, editors, CRYPTO 2024, Part VIII, volume 14927 of LNCS, pages
36–73, Santa Barbara, CA, USA, August 18–22, 2024. Springer, Cham, Switzerland.

[DILO22a] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Authenticated gar-
bling from simple correlations. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 57–87, Santa Barbara, CA,
USA, August 15–18, 2022. Springer, Cham, Switzerland.

[DILO22b] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Improving line-point
zero knowledge: Two multiplications for the price of one. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 829–841, Los
Angeles, CA, USA, November 7–11, 2022. ACM Press.

[DIO21] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowledge and
its applications. In Stefano Tessaro, editor, ITC 2021, volume 199 of LIPIcs, pages
5:1–5:24, Seattle, WA, USA, July 23–26, 2021. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik.

[DKLs18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party thresh-
old ECDSA from ECDSA assumptions. In 2018 IEEE Symposium on Security and
Privacy, pages 980–997, San Francisco, CA, USA, May 21–23, 2018. IEEE Computer
Society Press.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662, Santa Bar-
bara, CA, USA, August 19–23, 2012. Springer Berlin Heidelberg, Germany.

25

[EPSW24] Daniel Escudero, Antigoni Polychroniadou, Yifan Song, and Chenkai Weng. Multi-
verifier zero-knowledge proofs for any constant fraction of corrupted verifiers. In
Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda, and David Lie, editors, ACM CCS
2024, pages 4092–4106, Salt Lake City, UT, USA, October 14–18, 2024. ACM Press.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions (extended abstract). In 25th FOCS, pages 464–479, Singer Island, Florida, Oc-
tober 24–26, 1984. IEEE Computer Society Press.

[Gil99] Niv Gilboa. Two party RSA key generation. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 116–129, Santa Barbara, CA, USA, Au-
gust 15–19, 1999. Springer Berlin Heidelberg, Germany.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus
Schofnegger. Poseidon: A new hash function for zero-knowledge proof systems. In
Michael Bailey and Rachel Greenstadt, editors, USENIX Security 2021, pages 519–
535. USENIX Association, August 11–13, 2021.

[GKS23] Lorenzo Grassi, Dmitry Khovratovich, and Markus Schofnegger. Poseidon2: A faster
version of the poseidon hash function. In Nadia El Mrabet, Luca De Feo, and Syl-
vain Duquesne, editors, AFRICACRYPT 23, volume 14064 of LNCS, pages 177–203,
Sousse, Tunisia, July 19–21, 2023. Springer, Cham, Switzerland.

[HSS20] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round
MPC combining BMR and oblivious transfer. Journal of Cryptology, 33(4):1732–1786,
October 2020.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 955–966,
Berlin, Germany, November 4–8, 2013. ACM Press.

[JKPT12] Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes. Commitments
and efficient zero-knowledge proofs from learning parity with noise. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 663–680,
Beijing, China, December 2–6, 2012. Springer Berlin Heidelberg, Germany.

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption function.
In Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 369–378, Santa
Barbara, CA, USA, August 16–20, 1988. Springer Berlin Heidelberg, Germany.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
681–700, Santa Barbara, CA, USA, August 19–23, 2012. Springer Berlin Heidelberg,
Germany.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume
5157 of LNCS, pages 554–571, Santa Barbara, CA, USA, August 17–21, 2008. Springer
Berlin Heidelberg, Germany.

26

[RR] Peter Rindal and Lance Roy. libOTe: an efficient, portable, and easy to use Oblivious
Transfer Library. https://github.com/osu-crypto/libOTe.

[RR22a] Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved OKVS
and subfield VOLE. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, ACM CCS 2022, pages 2505–2517, Los Angeles, CA, USA, November 7–11,
2022. ACM Press.

[RR22b] Srinivasan Raghuraman and Peter Rindal. VOLE-PSI. https://github.com/

Visa-Research/volepsi, 2022.

[RRT23] Srinivasan Raghuraman, Peter Rindal, and Titouan Tanguy. Expand-convolute codes
for pseudorandom correlation generators from LPN. In Helena Handschuh and Anna
Lysyanskaya, editors, CRYPTO 2023, Part IV, volume 14084 of LNCS, pages 602–632,
Santa Barbara, CA, USA, August 20–24, 2023. Springer, Cham, Switzerland.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI
from vector-OLE. In Anne Canteaut and François-Xavier Standaert, editors, EU-
ROCRYPT 2021, Part II, volume 12697 of LNCS, pages 901–930, Zagreb, Croatia,
October 17–21, 2021. Springer, Cham, Switzerland.

[RS22] Rahul Rachuri and Peter Scholl. Le mans: Dynamic and fluid MPC for dishonest
majority. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I,
volume 13507 of LNCS, pages 719–749, Santa Barbara, CA, USA, August 15–18, 2022.
Springer, Cham, Switzerland.

[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Dis-
tributed vector-OLE: Improved constructions and implementation. In Lorenzo Caval-
laro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019,
pages 1055–1072, London, UK, November 11–15, 2019. ACM Press.

[SKR+24] Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao
Wang. Actively secure private set intersection in the client-server setting. In Bo Luo,
Xiaojing Liao, Jun Xu, Engin Kirda, and David Lie, editors, ACM CCS 2024, pages
1478–1492, Salt Lake City, UT, USA, October 14–18, 2024. ACM Press.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient Multi-
Party computation toolkit. https://github.com/emp-toolkit, 2016.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty
computation. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, ACM CCS 2017, pages 39–56, Dallas, TX, USA, October 31 – November 2,
2017. ACM Press.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable,
and communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In 2021 IEEE Symposium on Security and Privacy, pages 1074–1091, San Francisco,
CA, USA, May 24–27, 2021. IEEE Computer Society Press.

[WYX+21] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique:
Efficient conversions for zero-knowledge proofs with applications to machine learning.
In Michael Bailey and Rachel Greenstadt, editors, USENIX Security 2021, pages 501–
518. USENIX Association, August 11–13, 2021.

27

https://github.com/osu-crypto/libOTe
https://github.com/Visa-Research/volepsi
https://github.com/Visa-Research/volepsi
https://github.com/emp-toolkit

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: Efficient
and affordable zero-knowledge proofs for circuits and polynomials over any field. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2986–3001, Virtual
Event, Republic of Korea, November 15–19, 2021. ACM Press.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast
extension for correlated OT with small communication. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1607–1626, Vir-
tual Event, USA, November 9–13, 2020. ACM Press.

A Appendix

A.1 Hybrid Commitment Parameters based on EA-Code

Boyle et al. [BCG+22] introduced a method of choosing conservative parameters for EA-code, which
is secure against the current known attacks [RRT23]. They use a random walk on a Markov chain
to determine the minimum distance for the EA code. As all variants of LPN generalize natu-
rally to larger fields [BCG+22], we instantiate our commitment of F2128 based on the conservative
parameters constraints of F2 as follows.

A.1.1 Conservative parameters

Based on [BCG+22, Theorem 3.10], for H← EAGen(n,N, C lnN
N), H achieves a minimum distance

of δN with a probability of at least

η(κ) ≥ 1− 2RN−2β2C+2 = 1− 2nN−2(1/2−δ)2C+1 . (1)

For an error distribution with an expected weight of t, we have

εd ≤ (1− 2t/N)δN/2 ≤ e−2tδ . (2)

We consider two scenarios: a failure probability of at most 0.01 (i.e., η ≥ 0.99). Our chosen failure
probability falls within the range of [0.0000148, 0.174], as indicated in the initial work [BCG+22,
Figure 8], and is deemed reasonable. To achieve 128-bit security against linear tests, we have
− log(εd) = 128− log(N) because computing a dot-product requires N operations [BCG+22]. We
first choose an appropriate value for t and then determine δ using Equation (2), which is δ ≥
128−log(N)

2 log(e)·t . Next, to ensure η ≥ 0.99, we use Equation (1) and choose C such that

log(2n) + log(N) · (−2(1/2− δ)2C + 1) ≤ log(0.01) .

Finally, we check the parameters to satisfy the following conditions from [BCG+22, Theorem 3.10]:

R < min

{
2

ln 2
· 1− e−1

1 + e−1
· β2,

2

e

}
and C >

1

β2
.

shown in Theorem [BCG+22, Theorem 3.10], where β = 1/2− δ.

28

A.1.2 Aggressive parameters

[BCG+22] proposed aggressive parameters by empirically estimating the average minimum row-
weight of H ← EAGen(n,N, `) using exponential regression in log(n), with N = 5n and ` ∈
{7, 9, 11}. Specifically, H achieves a minimum distance of δN , where

δ ≈


0.4646 · e−0.1012·log(n), if ` = 7

0.4415 · e−0.0783·log(n), if ` = 9

0.4337 · e−0.06383·log(n), if ` = 11 .

Then, we determine t using Equation (2), which is t ≥ 128−log(N)
2 log(e)·δ .

A.2 Primal-LPN based C-VOLE

We give primal-LPN based C-VOLE construction in this section. It follows the same idea in
Section 5, except minor changes regarding the format of primal-LPN commitment of vector eu. As
we introduced, generating any C-VOLE of designated vector x is start with generating C-VOLE
of a designated regular-w vector eu. As eu is committed as comeu = eu · A1 + r · A2 + er and
decomeu = {r, er} under primal-LPN commitment in Section 4.1, we generate consistent JeuK as
follows: 1) generate JeuK with PA input eu, 2) generate JerK with PA input er, 3) generate JrK
with PA input r, 4) PA computes H3(M[comeu]) and sends it to PB for consistency check. The
consistency check works as follows:

M[comeu] = M[eu] ·A1 + M[r] ·A2 + M[er]

K[comeu] = K[eu] ·A1 + K[r] ·A2 + K[er]

If JeuK, JerK, and JrK are generated with PA input consistent eu, er, and r used in comeu , JcomeuK
should hold and be checked successfully by PB that H3(M[comeu]) = H3(K[comeu] + comeu ·∆).

Then, we can recover JxK from JeuK under Hcomx as easily as dual-LPN-based C-VOLE does
in Section 5. The detailed protocol is shown in Figure 8. We also prove that the protocol is secure
against malicious adversaries in Theorem 5.

Theorem 5. Protocol ΠC−VOLE−primal in Figure 8 securely instantiated FC−VOLE in Figure 1 in
(FMPVOLE,FVOLE)-hybrid model against any malicious adversaries.

Proof. Let A be a PPT adversary that corrupt PA or PB. We construct a PPT simulator S with
access to FC−VOLE and simulates the adversary’s view. We will prove that the joint distribution
over the output of A and the honest party in the real world is indistinguishable from the joint
distribution over the output of S and the honest party in the ideal world.

Corrupted PA. Let S access FC−VOLE as an honest PA and interact with A as an honest PB.
S passes all communication between A and environment Z.

1. S holds public commitment of x, that Hcomx = (comeu ,x
∗). S emulates FMPVOLE and receives

(init) from A.

2. S emulates FMPVOLE and receives (extend, e′u ∈ Fw·2L , L, w) from A. S receives M[e′u] ∈ Fw·2L

from A. S computes x′ = eu ·H− x∗.

3. S emulates FMPVOLE and receives (extend, e′r ∈ Ft·2L
′
, L′, t) from A. S receives M[e′r] ∈ Ft·2L

′

from A.

29

Protocol ΠC−VOLE−primal

Parameters: A public hybrid commitment of x ∈ Fm defined in Section 4.2, that Hcomx = (comeu
∈

FN ,x∗ = eu ·H − x ∈ Fm). A primal LPN commitment scheme defined in Section 4.1 that (comeu
=

eu ·A1 + r ·A2 + er, decomeu = {r, er})← Com(eu), where eu ∈ Fw·2L

, r ∈ Fk, er ∈ Ft·2L′

, N = t · 2L′
.

A Collision-Resistant Hash Function H3.

Inputs: PA holds vector x ∈ Fm,Hdecomx = (eu ∈ Fw·2L

, r ∈ Fk, er ∈ Ft·2L′

).

Compute:

1. Both PA and PB call FMPVOLE with input (init). PB receives ∆ ∈ F from FMPVOLE.

2. PA calls FMPVOLE with input (extend, eu ∈ Fw·2L

, L, w). PB calls FMPVOLE with input (extend, L, w).

The functionality returns M[eu] ∈ Fw·2L

to PA and K[eu] ∈ Fw·2L

to PB such that M[eu] = K[eu] +

∆ · eu ∈ Fw·2L

. If either party receives abort from FMPVOLE in any of these executions, it aborts.

3. PA calls FMPVOLE with input (extend, er ∈ Ft·2L′

, L′, t). PB calls FMPVOLE with input (extend, L′, t).

The functionality returns M[er] ∈ Ft·2L′

to PA and K[er] ∈ Ft·2L′

to PB such that M[er] = K[er] +

∆ · er ∈ Ft·2L′

. If either party receives abort from FMPVOLE in any of these executions, it aborts.

4. PA calls FVOLE with input (extend, r ∈ Fk, k); PB calls FVOLE with input (extend, k). The functionality
returns M[r] ∈ Fk to PA and K[r] ∈ Fk to PB, such that M[r] = K[r] + r ·∆. If either party receives
abort from FVOLE in any of these executions, it aborts.

5. PA computes M[comeu
] = M[eu] ·A1 +M[r] ·A2 +M[er] and sends H3(M[comeu

]) to PB; PB computes
K[comeu

] = K[eu] ·A1 +K[r] ·A2 +K[er] and value = K[comeu
]+comeu

·∆ ∈ FN . PB checks whether
H3(M[comeu]) = H3(value). If not, PB aborts.

6. PA outputs (x,M[x]), where M[x] = M[eu] ·H ∈ Fm. PB outputs (K[x],∆), where K[x] = K[eu] ·H +
x∗∆ ∈ Fm

Figure 8: The committed-VOLE protocol based on primal-LPN-based hybrid commitment

30

4. S emulates FVOLE and receives (extend, r′ ∈ Fk, k) from A. S receives M[r′] ∈ Fk to A. S sends
(x′, decomx

′ = (e′u, r
′, e′r)) to FC−VOLE. If S receives abort from FC−VOLE, S aborts at step (5).

5. S receivesH3(M[comeu])′ fromA. S checks ifH3(M[comeu])′ = H3(M[e′u]·A1+M[r′]·A2+M[e′r]).
If not, S aborts.

6. S computes M[x′] = M[e′u] ·H and sends M[x′] to FC−VOLE. S outputs what A outputs.

We are going to show the simulated execution is indistinguishable from real-world protocol execu-
tion.

Hybrid H0 Same as real-world execution in FMPVOLE,FVOLE model.
Hybrid H1 Same as Hybrid H0 except S emulates FMPVOLE and FVOLE. Notice that S does

not simulate any message to A.
Hybrid H2 Same as Hybrid H1 except S aborts at step (5) if S receives abort from FC−VOLE

or the received H3(M[comeu])′ 6= H3(M[e′u] ·A1 + M[r′] ·A2 + M[e′r]).
In hybrid H1, an honest PB aborts at step (5) if the received H3(M[comeu])′ 6= H3(K[e′u] ·A1 +

K[r′] · A2 + K[e′r] + comeu · ∆). There are the following abort conditions with abort probability
indistinguishable from hybrid H2:

1) A uses e′u 6= eu, e′r 6= er, and r′ 6= r to FMPVOLE. A computes M[comeu]′ honestly from
M[e′u] ·A1 +M[r′] ·A2 +M[e′r]. Any (e′u, e

′
r, r
′) inconsistent with (eu, er, r) will result the inequality

above with the probability of statistical binding failure mentioned in Theorem 1. In this hybrid,
any inconsistency will be checked by the FC−VOLE with the same binding failure and result in an
abort at step (5), which is indistinguishable from hybrid H1. 2) A uses e′u 6= eu, e′r 6= er, and r′ 6= r
to FMPVOLE. A samples M[comeu]′ to S. The consistency check passes if and only if A samples
M[comeu]′ = K[e′u] ·A1 +K[r′] ·A2 +K[e′r]+comeu ·∆. However, since K[e′u], K[e′r], K[r], and ∆ are

uniformly distributed over Fw·2L ,Ft·2L
′
, Fk and F, respectively, the consistency check fails with all

but negligible probability. In this hybrid, given inconsistent (e′u, e
′
r, r
′) pair, S aborts except the

failure probability of binding, which is also negligible and thus indistinguishable from hybrid H1.
3) A uses e′u = eu, e′r = er, and r′ = vecr to FMPVOLE. A samples M[comeu]′ to S. The consistency
check passes if and only if A samples M[comeu]′ = K[e′u] ·A1 +K[r′] ·A2 +K[e′r] + comeu ·∆, which
is equivalent to checking M[comeu]′ = M[e′u] ·A1 + M[r′] ·A2 + M[e′r] + comeu ·∆ in this hybrid.
Thus, the abort probability is indistinguishable from hybrid H1.

Therefore, this hybrid is identically distributed as H1.
Corrupted PB. Let S access FC−VOLE as an honest PB and interact with A as an honest PA.

S passes all communication between A and environment Z.

1. S emulates FMPVOLE and receives (init) from A. S holds public commitment of x, Hcomx =
(comeu ,x

∗ = eu ·H− x). S sends (init) to FC−VOLE. S receives ∆ ∈ F from A.

2. S emulates FMPVOLE and receives (extend, L, w) from A. S receives K[eu] ∈ Fw·2L from A.

3. S emulates FMPVOLE and receives (extend, L′, t) from A. S receives K[er] ∈ Ft·2L
′

from A.

4. S emulates FVOLE and receives (extend, k) from A. S receives K[r] ∈ Fk from A.

5. S computes H3(M[comeu]) = H3(K[eu] ·A1 + K[r] ·A2 + K[er] + comeu ·∆) and sends it to A.
S aborts if A aborts.

6. S computes K[x] = K[eu] ·H +x∗ ·∆ ∈ Fm and sends (∆,K[x]) ∈ Fm+1 to FC−VOLE. S outputs
what A outputs.

31

Input Random sparse vector Primal LPN commitment

|x| |eu| w L |er| t L′ |r|(k) |comeu |
220 7 ∗ 220 224 15 1272 159 3 433 1272

224 7 ∗ 224 224 19 1296 162 3 434 1296

228 7 ∗ 228 224 23 1296 162 3 434 1296

Table 8: Primal-LPN-based hybrid commitment parameters selection of x with different lengths.
Achieves 128-bit security.

We are going to show the simulated execution is indistinguishable from real-world protocol
execution.

Hybrid H0 Same as real-world execution in FMPVOLE,FVOLE model.
Hybrid H1 Same as Hybrid H0 except S emulates FMPVOLE and FVOLE, and simulate messages

to A.
S simulates H3(M[comeu]) = H3(K[eu] ·A1 +K[r] ·A2 +K[er]+comeu ·∆) and sends it to A. In

the previous hybrid, an honest PA computes M[comeu] = K[eu] ·A1 +K[r] ·A2 +K[er] + comeu ·∆,
which holds the property that M[eu] = K[eu]+eu ·∆, M[er] = K[er]+er ·∆, and M[r] = K[r]+r ·∆.
Consequently, the M[comeu] computed by simulator equals the one computed by honest PA in real
world. Thus, this hybrid is identical to the previous one.

This concludes the proof.

A.3 Performance of Primal-LPN based C-VOLE

Complexity Analysis. The primal-LPN-based C-VOLE protocol requires MPVOLE instantia-

tions of eu ∈ Fw·2L and er ∈ Ft·2L
′
, VOLE instantiation of r ∈ Fk, together with a H(M[comeu])

for consistency check and a commitment with a size of N + m, where N = t · 2L′ . According
to the instantiation of MPVOLE protocol in Section A.5, the sparse vector of length w · 2L re-
quires communication overhead of wLκ. For instantiation of VOLE protocol in Section A.9, it
is dominated by k log |F| for input vector with length k. Thus, the communication complexity is
(wL+ tL′)κ+ (k +N +m) log |F| in total.

Parameter Selection of Hybrid Commitment. Same as the dual-LPN-based hybrid commit-
ment parameter selection, we use EA code to choose the (w,L) pair of eu ∈ Fw·2L for x ∈ Fm with
128-bit security level. Given the (w,L) pair, we fix the structure of eu and select parameters to
construct a 128-bit secure commitment comeu , where comeu = eu ·A1 + r ·A2 + er. According to
Theorem 1, we select the (k, t, L′) parameters for the primal LPN commitment. For each x ∈ Fm
of different lengths, groups of parameters (w,L, k, t, L′) are computed. Based on the complexity
analysis above, we minimize the communication cost for primal-LPN-based C-VOLE protocol and
present the commitment parameters that achieve 128 bit statistically binding and computational
hiding for x ∈ {F220 ,F224 ,F228} in Table 8.

Performance Evaluation. The performance of primal-LPN-based C-VOLE also consists of two
parts: computing the one-time commitment of sender’s input vector x and a online computation
with any individual receiver. The time consumption and communication overhead of these two
phases are shown in Figure 9a and Figure 9b respectively.

For one-time commitment, the sender generates a primal-LPN-based hybrid commitment of
input vector x ∈ Fm and publishes it to all other parties. The computation cost for the sender is
0.59 s for the computation of a vector of length m = 220 and 340.46 s for m = 228 using 4 threads,

32

220 222 224 226 228

Input vector length m

0

100

200

300

400

Ti
m

e
C

on
su

m
pt

io
n

(s
)

One-time Commitment 4 threads
Compute (LAN) 4 threads
Compute (WAN) 4 threads
One-time Commitment 16 threads
Compute (LAN) 16 threads
Compute (WAN) 16 threads

One-time Commitment 4 threads
Compute (LAN) 4 threads
Compute (WAN) 4 threads
One-time Commitment 16 threads
Compute (LAN) 16 threads
Compute (WAN) 16 threads

(a) Time consumption.

220 222 224 226 228

Input vector length m

101

102

103

B
an

dw
id

th
C

on
su

m
pt

io
n

(M
B

)

One-time Commitment
Compute

(b) Bandwidth consumption.

Figure 9: Performance of the C-VOLE protocol based on the primal-LPN assumption
in LAN and WAN settings.

Input Intermediate sparse vector Dual LPN commitment

|x| |eu| w L |er| t L′ |comeu |(n)

220 5 ∗ 220 640 13 1640 165 4 882

224 5 ∗ 224 640 17 2688 168 4 885

228 5 ∗ 228 640 21 2736 171 4 888

Table 9: Dual-LPN-based hybrid commitment parameters selection of x with different lengths.
Using aggressive parameters for EA-code. Commitment achieves 128-bit security level.

while it takes 0.30 s for m = 220 and 151.06 s for m = 228 using 16 threads. The communication
overhead of publishing the primal-LPN-based hybrid commitment is 16.80 MB for m = 220 and
4295.0 MB for m = 228. For m = 220, the compute phase takes 0.83 s under a LAN network
and 9.19 s under a WAN network with a bandwidth of 50 Mbps when using 4 threads. With 16
threads, the compute phase takes 0.61 seconds under LAN network and 8.13 seconds under WAN
network. For m = 228, the compute phase with 4 threads takes 404.11 s under a LAN network and
435.81 s under a WAN network. With 16 threads, the corresponding times are 183.47 s under a
LAN network and 188.56 s under a WAN network. Regarding the online communication overhead,
the cost is 1.73 Mb for m = 220 and 1.79 MB for m = 228.

Comparison with Dual-LPN-based C-VOLE. As we can see from the performance evaluation
of dual-LPN-based C-VOLE and primal-LPN-based C-VOLE, both schemes perform well with the
chosen hybrid commitment parameters. Considering the cumulative effect of both communica-
tion and computation overhead, the scheme based on primal-LPN shows slightly better concrete
performance than the one based on dual-LPN in our experiments.

A.4 Performance Evaluation of C-VOLE with Aggressive EA-code

According to Section A.1.2, we also evaluate the performance of our C-VOLE protocol over field
F128

2 using an aggressive EA-code, which remains secure against attacks [RRT23] applicable only
to F2. We took ` = 9 and compute the hamming weight t = 640. Taking dual-LPN commitment as
an example, Table 9 presents the parameters for commitments that achieve 128 bit security level.

Performance Evaluation. The performance of dual-LPN-based C-VOLE using aggressive EA-
code also shown in two parts: computing the one-time commitment of sender’s input vector x
and a online computation with any individual receiver. The time consumption and communication

33

overhead of these two phases are shown in Figure 10a and Figure 10b respectively.
For one-time commitment, the computation cost for the sender is 0.07 s for the computation

of a vector of length m = 220 and 36.08 s for m = 228 using 4 threads, while it takes 0.07 s for
m = 220 and 20.33 s for m = 228 using 16 threads. The communication overhead of publishing the
commitment is 16.79 MB for m = 220 and 4294.98 MB for m = 228. For m = 220, the compute
phase takes 0.36 s under a LAN network and 9.09 s under a WAN network with a bandwidth of
50 Mbps when using 4 threads. With 16 threads, the compute phase takes 0.26 seconds under
LAN network and 7.84 seconds under WAN network. For m = 228, the compute phase with 4
threads takes 41.16 s under a LAN network and 52.79 s under a WAN network. With 16 threads,
the corresponding times are 27.84 s under a LAN network and 33.89 s under a WAN network.
Regarding the online communication overhead, the cost is 1.99 Mb for m = 220 and 2.16 MB for
m = 228.

220 222 224 226 228

Input vector length m

0

10

20

30

40

50

Ti
m

e
C

on
su

m
pt

io
n

(s
)

One-time Commitment 4 threads
Compute (LAN) 4 threads
Compute (WAN) 4 threads
One-time Commitment 16 threads
Compute (LAN) 16 threads
Compute (WAN) 16 threads

One-time Commitment 4 threads
Compute (LAN) 4 threads
Compute (WAN) 4 threads
One-time Commitment 16 threads
Compute (LAN) 16 threads
Compute (WAN) 16 threads

(a) Time consumption.

220 222 224 226 228

Input vector length m

101

102

103

B
an

dw
id

th
C

on
su

m
pt

io
n

(M
B

)

One-time Commitment
Compute

(b) Bandwidth consumption.

Figure 10: Performance of the C-VOLE protocol based on the dual-LPN assumption
using aggressive EA-code in LAN and WAN settings.

Comparison with Dual-LPN-based C-VOLE with conservative parameters. As we can
see from the performance evaluation, the aggressive parameters result in significantly more efficient
time consumption, which is roughly 10 times better for m = 228, although this comes at the cost
of slightly worse online communication.

A.5 Construction of MPVOLE

Here, we briefly introduce the construction of protocol ΠMPVOLE in Figure 11, which securely
instantiates the FMPVOLE functionality in Figure 3. This protocol is a slightly variation of the single-
point subfield-VOLE protocol from [WYKW21], where the consistency check is slightly adjust to
suit the VOLE protocol. A brief description of the protocol is as follows:

The ΠMPVOLE generates VOLE relation of sparse multi-point vector eu ∈ Ft·2h , n = 2h, which
satisfies a specific form that it is a concatenation of t single-point vectors eiu, i ∈ [t], each with length
n. We let αi to represent the index of non-zero element that αi ∈ [n] and βi to denote the value of
the non-zero element in block eiu, i ∈ [t]. This protocol first utilize FVOLE over field F to generate
VOLE of βi, i ∈ [t], as selected by PA. Then, for each single-point block eiu, i ∈ [t], this protocol
follows the design of [YWL+20]. It first let PB run GGM algorithm [GGM84], which is an algorithm
building pseudorandom function by using a PRG, detailed in Section A.7, to obtain pseudorandom
output vi , PA run GGM’ algorithm, also detailed in Section A.7, to obtain wi, i 6= αi. Then
PB sends di to help PA recover wi. For consistency check, this protocol first generates a random
value r0 ← F and its VOLE relation M[r0] = K[r0] + r0 · ∆. With sampled χi[j], i ∈ [t], j ∈ [n],

34

PA computes linear combination of wi[j], i ∈ [t], j ∈ [n] and PB computes linear combination of
vi[j], i ∈ [t], j ∈ [n]. PA uses r0 to mask the sum of βi · χi[αi], i ∈ [t] and sends the masked value to
PB. Then, the Equation 3 holds if both parties acts honestly.

∑
i∈[t]

n−1∑
j=0

χi[j]wi[j]−M[r0]

=
∑
i∈[t]

n−1∑
j=0

χi[j]vi[j]− K[r0] + (
∑
i∈[t]

βiχi[αi]− r0)∆

(3)

We present the detailed protocol in Figure 11. We also prove the protocol securely instan-
tiate FMPVOLE in (FRVOLE,FVOLE,FOT) hybrid model against malicious adversary in Theorem 6.
Moreover, the construction of ΠVOLE is introduced in Section A.9.

A.6 Security Analysis of MPVOLE

Theorem 6. Protocol ΠMPVOLE in Figure 11 securely instantiated FMPVOLE in Figure 3 in (FRVOLE,
FVOLE, FOT)-hybrid model against malicious adversaries.

Proof. Let A be a PPT adversary that corrupt PA or PB. We construct a PPT simulator S with
access to FMPVOLE and simulates the adversary’s view. We will prove that the joint distribution
over the output of A and the honest party in the real world is indistinguishable from the joint
distribution over the output of S and the honest party in the ideal world.

Corrupted PA. Let S access FMPVOLE as an honest PA and interact with A as an honest PB.
S passes all communication between A and environment Z.

For Initialize phase, S simulates as follows:

1. S emulates FRVOLE and receives (init) from A. S sends (init) to FMPVOLE.

For Extend phase, S simulates as follows:

2. S emulates FRVOLE and receives (extend, 1) from A. S receives r0 ∈ F, M[r0] ∈ F from A.

3. S emulates FVOLE and receives (extend, β, t) from A. S receives M[β] ∈ Ft from A.

4. For each iteration i ∈ [t], S emulates FOT and receives āi[k], k ∈ [h]. S reconstructs αi, i ∈ [t]. S
samples Kk

i,āi[k] ← F, k ∈ [h] and sends them to A. S reconstructs eu and sends (extend, eu, h, t)

to FMPVOLE. S also runs {vi[j]}j 6=αi := GGM′(αi, {Kk
i,āi[k]}k∈[h]).

5. For each iteration i ∈ [t], S samples di ← F and sends it to A. S computes wi[j] := vi[j] for

j 6= αi and wi[αi] := M[βi]−
(
di +

∑
j 6=αi wi[j]

)
.

6. S receives
(
{χi[j]}i∈[t],j∈[n], x

∗) from A. S checks whether x∗ =
∑

i∈[t] βi · χi[αi] − r0. If it is,

S computes VB =
∑

i∈[t]

∑n−1
j=0 χi[j] ·wi[j] −M[r0] and sends H(VB) to A. Otherwise, S sends

H(VB)← F to A.

7. S constructs M[eu] = w1|| · · · ||wt to FMPVOLE. S outputs what A outputs.

We are going to show the simulated execution is indistinguishable from the real protocol exe-
cution.

Hybrid H0 Same as real-world execution in (FRVOLE,FVOLE,FOT) model.

35

Protocol ΠMPVOLE

Parameters: GGM: (v, {Si,0, Si,1}i∈[logN]) ← GGM(N, s), s ← {0, 1}κ,v ∈ FN , Si,0 ∈ {0, 1}κ, Si,1 ∈
{0, 1}κ; GGM’: {wh}h∈[N]/{α} ← GGM ′(α, {Si,ᾱi

}i∈[logN]), wh ∈ {0, 1}κ. Both algorithms are detailed
in Section A.7.

Inputs: For each extend sparse execution, PA holds regular sparse multi-point vector eu ∈ Ft·2h

, n = 2h.

PA partition eu ∈ Ft·2h

into t blocks, that for each block eiu ∈ Fn, i ∈ [t], it has one non-zero element

βi ∈ F at position αi ∈ [n]. PA represents αi as bit vectors, namely ai ∈ {0, 1}h. Both PA and PB have
integers t ∈ N and n = 2h for some h ∈ N.

Initialize:

1. Both PA and PB sends (init) to FRVOLE. PB receives ∆ ∈ F from FRVOLE.

Extend:

2. Both PA and PB call FRVOLE with (extend, 1). The functionality sends r0 ∈ F,M[r0] ∈ F to PA, and
K[r0] ∈ F to PB, such that M[r0] = K[r0] + r0 ·∆.

3. PA call FVOLE with (extend, β, t), where β is a concatenation of βis, and PB call FVOLE with (extend, t).
The functionality sends M[β] ∈ Ft to PA, and K[β] ∈ Ft to PB, such that M[βi] = K[βi] +βi∆ for each
i ∈ [t].

4. For each iteration i ∈ [t], PB samples seed li ← {0, 1}κ, runs GGM(1n, li) to obtain(
{vi[j]}j∈[n], {(Kk

i,0,K
k
i,1)}k∈[h]

)
, and sets vi[j] := vi[j] for j ∈ [n]. For k ∈ [h], PB call FOT

with input (Kk
i,0,K

k
i,1); PA call FOT with input āi[k] and get Kk

i,āi[k]. Then PA runs {vi[j]}j 6=αi :=

GGM′(αi, {Kk
i,āi[k]}k∈[h]).

5. For each iteration i ∈ [t], PB sends di := K[βi] −
∑
j∈[n] vi[j] ∈ F to PA. Then, PA defines wi ∈ Fn

as the vector with wi[j] := vi[j] for j 6= αi and wi[αi] := M[βi] −
(
di +

∑
j 6=αi

wi[j]
)

. Note that

wi = vi + ∆ · eiu.

6. PA and PB check GGM-consistency as follows.

(a) PA samples χi[j]← F for i ∈ [t], j ∈ [n]. PA then computes x∗ :=
∑
i∈[t] βi · χi[αi]− r0 ∈ F and

sends
(
{χi[j]}i∈[t],j∈[n], x

∗) to PB, who computes y := K[r0]−∆ · x∗.

(b) PA computes VA :=
∑
i∈[t]

∑n−1
j=0 χi[j] · wi[j] − M[r0] ∈ F, while PB computes VB :=∑

i∈[t]

∑n−1
j=0 χi[j] · vi[j]− y ∈ F. Then PB sends H(VB) to PA. PA aborts if H(VA) 6= H(VB).

7. PA outputs M[eu] = w1|| · · · ||wt ∈ Ftn and PB outputs K[eu] = v1|| · · · ||vt ∈ Ftn.

Figure 11: Multi-point VOLE protocol.

Hybrid H1 Same as Hybrid H0 except S emulates FRVOLE, FVOLE, FOT and simulate messages
to A.

For step (4), S emulates FOT and sends Kk
i,āi[k] ← F, k ∈ [h] to A. In Hybrid H0, an honest

PB computes Kk
i,āi[k], k ∈ [h] according to GGM algorithm with random seed li ← {0, 1}κ. By

leveraging PRG over random seed li, K
k
i,āi[k], k ∈ [h] are indistinguishable from random value over

F.
For step (5), S samples di ← F, i ∈ [t] to A. In Hybrid H0, an honest PB computes di =

K[βi]−
∑

j∈[n] vi[j] to A. Since K[βi] is unknown to A, di is uniform distributed to A.

For step (6), S receives
(
{χi[j]}i∈[t],j∈[n], x

∗) from A and sends H(VB) to A. S sets H(VB) =

36

H(
∑

i∈[t]

∑n−1
j=0 χi[j] · wi[j] − M[r0]) if x∗ =

∑
i∈[t] βi · χi[αi] − r0. S sets H(VB) ← F if x∗ 6=∑

i∈[t] βi · χi[αi] − r0. In Hybrid H0, an honest PB computes VB =
∑

i∈[t]

∑n−1
j=0 χi[j] · vi[j] − y,

where y = K[r0]−∆ · x∗, and sends H(VB) to A. If x∗ =
∑

i∈[t] βi · χi[αi]− r0 + rand, rand ∈ F,
y = M[r0]−

∑
i∈[t] βi · χi[αi] ·∆− rand ·∆. We have the following equation holds.

VB =
∑
i∈[t]

n−1∑
j=0

χi[j] · vi[j]− y

=
∑
i∈[t]

n−1∑
j=0

χi[j]vi[j]−M[r0] +
∑
i∈[t]

βiχi[αi]∆ + rand∆

=
∑
i∈[t]

n−1∑
j=0

χi[j] ·wi[j]−
∑
i∈[t]

βi · χi[αi] ·∆−M[r0]

+
∑
i∈[t]

βi · χi[αi] ·∆ + rand ·∆

=
∑
i∈[t]

n−1∑
j=0

χi[j] ·wi[j]−M[r0] + rand ·∆

= VA + rand ·∆

If rand = 0, we have VA = VB. Thus, the simulation is identical to the real world protocol
execution. Otherwise, A will receives H(VB) = H(VA + rand ·∆), which is indistinguishable from
a random value in the hybrid of random oracle model.

Thus, this hybrid is identical to the previous one.
Corrupted PB. Let S access FMPVOLE as an honest PB and interact with A as an honest PA.

S passes all communication between A and environment Z. For Initialize phase, S simulates as
follows:

1. S emulates FRVOLE and receives (init) from A. S receives ∆ from A.

For Extend phase, S simulates as follows:

2. S emulates FRVOLE and receives (extend, 1) from A. S receives K[r0]← F from A.

3. S emulates FVOLE and receives (extend, t) from A. S receives K[β] ← Ft from A. S samples
βi, i ∈ [t] and computes M[βi] = K[βi] + βi ·∆, i ∈ [t].

4. For each iteration i ∈ [t], S emulates FOT and receives (Kk
i,0,K

k
i,1), k ∈ [h].

5. For each iteration i ∈ [t], S receives di ← F from A. For each αi ∈ [n], S computes wαi
i as

follows:

(a) Computes {vαii [j]}j 6=αi := GGM′(αi, {Kk
i,āi[k]}k∈[h]) and sets wαi

i [j] = vαii [j] for j 6= αi

(b) Sets wαi
i [αi] := M[βi]−

(
di +

∑
j 6=αi w

αi
i [j]

)
.

6. (a) S samples
(
{χi[j]← F}i∈[t],j∈[n], x

∗ ← F
)

to A.

37

(b) S receives H(VB) from A. S is able to extract VB as S emulate random oracle H for A.

For each {αi ∈ [n]}i∈[t], denoted as α ∈ N t,N := [n], S computes V αA as follows:V αA =∑
i∈[t]

∑n−1
j=0 χi[j]·w

αi
i [j]−M[r0]. Define I := {α ∈ N t|V αA = VB}. We also define I = I1×· · ·×It,

where Ii := {αi ∈ N|V αA = VB}. S aborts if I = ∅.

S chooses an arbitrary α ∈ I and computes vector vi for each i ∈ [t] as follows:

(a) Sets vi[j] := wαi
i [j] for j 6= αi

(b) Sets vi[αi] := K[βi]− di −
∑

j 6=αi vi[j]

S send {I1, · · · , It} to FMPVOLE. If it receives abort, S aborts.

7. S constructs K[eu] = v1|| · · · ||vt to FMPVOLE. S outputs what A outputs.

We are going to show the simulated execution is indistinguishable from the real protocol exe-
cution.

Hybrid H0 Same as real-world execution in (FRVOLE,FVOLE,FOT) model.
Hybrid H1 Same as Hybrid H0 except S emulates FRVOLE, FVOLE, FOT and simulate messages

to A.
For step (6), S samples

(
{χi[j]← F}i∈[t],j∈[n], x

∗ ← F
)

to A. In Hybrid H0, an honest PA

samples {χi[j] ← F}i∈[t],j∈[n], and computes x∗ =
∑

i∈[t] βi · χi[αi] − r0. Since r0 is output by
FVOLE to PA and is uniformly distributed against A, x∗ is uniformly distributed against A, which
is indistinguishable from this hybrid. Thus, this hybrid is identical to the previous one.

Hybrid H2 Same as Hybrid H1 except S aborts at step (6) if I = ∅ or received abort from
FMPVOLE.

For step (6), S extracts set I and send it to FMPVOLE, which is equivalent to A samples selective
failure attack on PA’s chosen non-zero index αi, i ∈ [t]. If S receives abort from FMPVOLE, there
exist i, i ∈ [t], αi /∈ Ii, that is equivalent to α /∈ I. In the real world protocol execution, if VB 6= V αA ,
PA aborts. This is equivalent to α /∈ I. Thus, FMPVOLE aborts if and only if the real world protocol
execution aborts. This hybrid is identical to the previous one.

Then, we will prove the outputs of A and honest party in the real world is indistinguishable
from the outputs of S and honest party in the ideal world.

We will prove that except with probability 1/|F|, all choices of αi ∈ Ii in the above simulation
lead to the same vector vi.

Since V αA = V α
′

A = VB, we have:

V αA = V α
′

A∑
i∈[t]

n−1∑
j=0

χi[j] ·wαi
i [j]−M[r0] =

∑
i∈[t]

n−1∑
j=0

χi[j] ·w
α′i
i [j]−M[r0]

∑
i∈[t]

n−1∑
j=0

χi[j] ·wαi
i [j]− y −

∑
i∈[t]

βiχi[αi]∆ =
∑
i∈[t]

n−1∑
j=0

χi[j] ·w
α′i
i [j]− y −

∑
i∈[t]

βiχi[α
′
i]∆∑

i∈[t]

(∑
j 6=αi,α′i

χi[j](w
αi
i [j]−wα′i

i [j]) + χi[αi](w
αi
i [αi]

−wα′i
i [αi]− βi∆) + χi[α

′
i](w

αi
i [α′i]−w

α′i
i [α′i] + βi∆

)
= 0

38

Since {χi[j]}i∈[t],j∈[n] are uniformly distributed and independent from wαi
i , w

α′i
i , and ∆, we have

except with probability 1/|F|,
wαi
i [j] = w

α′i
i [j], j 6= αi, α

′
i (4)

wαi
i [αi]−w

α′i
i [αi] = w

α′i
i [α′i]−w

αi
i [α′i] = ∆βi (5)

Thus, we are able to obtain for any αi, α
′
i ∈ Ii, v

αi
i [j] = v

α′i
i [j], j 6= {αi, α′i} from Equation 4.

According to wαi
i [αi] = vαii [αi]+∆βi and Equation 5, we are able to get vαii [αi] = w

α′i
i [αi] = v

α′i
i [αi]

and similarly v
α′i
i [α′i] = wαi

i [α′i] = vαii [α′i].

A.7 GGM Algorithm

We detailed the GGM algorithm [BGI15, BGI16, BCG+17] and its evaluation in this section to
help with the construction of ΠMPVOLE.

• GGM(N, s): On input N = 2d for some d ∈ N and s ∈ {0, 1}κ, this algorithm executes as follows:

1. Define s0
0 := s. For i ∈ [1, d) and j ∈ [0, 2i−1) compute

(
si2j , s

i
2j+1

)
:= G(si−1

j), where

G : {0, 1}κ → {0, 1}2κ is a PRG.

2. Compute the leaves as
(
sd2j , s

d
2j+1

)
:= G′(sd−1

j) for j ∈ [0, 2d−1), where G′ : {0, 1}κ → {0, 1}2κ

is another PRG. Define a vector v as vh := sdh−1 for h ∈ [N].

3. For i ∈ [d], compute Si,0 :=
∑

j∈[0,2i−1) s
i
2j and Si,1 :=

∑
j∈[0,2i−1) s

i
2j+1, where for i ∈ [1, d),

the addition is defined over F2κ ; for i = d, the addition is defined over F.

4. Output
(
v, {(Si,0, Si,1)}i∈[d]

)
.

• GGM′(α, {Si,ᾱi}i∈[d]): On input α ∈ [N] and a set {Si,ᾱi}i∈[d] where ᾱi = αi ⊕ 1 ∈ {0, 1} for

i ∈ [d] and α =
∑d

i=1 αi · 2i−1 + 1 ∈ [N], for i ∈ [d], this algorithm does the following:

1. Define an i-bit string α∗i := α1 · · ·αi−1ᾱi.

2. If i = 1, define s1
ᾱ1

:= S1,ᾱ1 .

3. If i ≥ 2, for j ∈ [0, 2i−1), j 6= α1 · · ·αi−1, compute (si2j , s
i
2j+1) := G(si−1

j) if i < d and

(sd2j , s
d
2j+1) := G′(sd−1

j) otherwise.

4. Compute siα∗i
:= Si,ᾱi +

(∑
j∈[0,2i−1),j 6=α1···αi−1

si2j+ᾱi

)
, where the addition is defined over F2κ

if i ∈ [1, d) and over F otherwise.

5. Define wh := sdh−1 for h ∈ [N], h 6= α, and output {wh}h∈[N]\{α}.

A.8 Random VOLE

Random Vector Oblivious Linear Evaluation. Random Vector Oblivious Linear Evaluation
(RVOLE) functionality is a two party functionality that samples a vector x ← Fm to PA, a field
element ∆← F and a vector K[x]← Fm to PB, and delivers M[x] = K[x]+x·∆ ∈ Fm to PA. RVOLE
can be efficiently generated by LPN-based approaches [BCGI18, WYKW21, YWL+20, SGRR19].
This paper takes the functionality of random VOLE depicted in Figure 12 as the fundamental
building block to construct committed VOLE.

39

Functionality FRVOLE

Initialize: Upon receiving (init) from both PA and PB, sample ∆← F and send it to PB. The function-
ality stores ∆. If PB is malicious, receive ∆ ∈ F from PB.

Extend: Upon receiving (extend,m) from both PA and PB:

1. Samples K[x]← Fm. If PB is malicious, receive K[x] ∈ Fm from adversary.

2. Samples x ← Fm and computes M[x] := K[x] + ∆ · x ∈ Fm. If PA is malicious, receives (x ∈
Fm,M[x] ∈ Fm) from the adversary, and recomputes K[x] := M[x]−∆ · x ∈ Fm

3. Sends (x,M[x]) to PA and (K[x]) to PB.

Figure 12: The random VOLE functionality.

A.9 Protocol of VOLE

We present a simple VOLE protocol constructed from FRVOLE. In this protocol, PA holds the
designated input vector b ∈ Fm. After calling FRVOLE on both sides, PA obtains random (r,M[r]) ∈
F2m and PB obtains (∆,K[r]) ∈ Fm+1, such that M[r] = K[r] +r ·∆. Then, PA sends the difference
f between r and b. Consequently, both parties are able to obtain the VOLE correlation of the
designated vector b, where M[b] = M[r] and K[b] = K[r] + f ·∆.

This protocol is able to securely instantiate FVOLE in the FRVOLE hybrid model. A simple proof
sketch is provided here. For corrupted PA, a simulator S emulates FVOLE and receives r ∈ Fm,
M[r] ∈ Fm from A. S receives f ∈ Fm from A. It is able to recover b = r−f , and M[b] = M[r], and
sends M[b] to FVOLE. The simulator does not need to simulate any message to the adversary. For
corrupted PB, S receives K[r] ∈ Fm from A and samples f ← Fm to A, which is indistinguishable
from the f in real protocol. Then, S is able to compute K[b] = K[r] + f∆ to FVOLE. The above
simulation could simulate the view of adversary in real protocol. Also, S output what A outputs
could ensure the same output distribution of the real protocol.

A.10 Proof of Theorem 4

Proof. Let A be a PPT adversary that corrupt P1 or Pj . We construct a PPT simulator S with
access to FPSI and simulates the adversary’s view. We will prove that the joint distribution over the
output of A and the honest party in the real world is indistinguishable from the joint distribution
over the output of S and the honest party in the ideal world.

Corrupted P1. Let S access FPSI as an honest P1 and interact with A as an honest P2. S
passes all communication between A and environment Z.

(1) S emulates random oracle H1 and receives elements xi, i ∈ [n] from A. S samples H1(xi) ←
F, i ∈ [n] and sends them to A.

(2) S receives Hcomp ∈ FN from A.

(3) S samples cs ← F and sends it to A.

(4) S receives wr ∈ F, r ∈ {0, 1}κ from A.

(5) S emulates FC−VOLE and receives (init,p,Hdecomp), where p ∈ Fm, Hdecomp ∈ Fm′ from A. S
checks whether (Hcomp,Hdecomp) opens to p. If not, S sends abort to A. Otherwise, S waits

40

to receive M[p]← Fm from A. S checks whether Decode(p, xi, r) = H(xi). If it is, S inserts xi
to set X. S sends (init, X) to FPSI and waits to receive (setid, Z).

(6) S samples ws ← F and programs random oracle H1 that cs = H1(ws). S sends ws to A. S
computes w = ws + wr.

(7) S samples eyi ← {0, 1}out for each yi ∈ Y and inserts eyi to set EY . S sends EY to A.

(8) S emulates random oracle H2 and receives query (qi, xi) from A. S first checks whether the
query is fresh.

(a) If it is, S checks whether xi ∈ Z and qi = Decode(M[p], xi, r) + w. If it is, S samples exi
from EY/EX and sends it to A. S records the triple (qi, xi, exi) and inserts exi to EX. If
not, S samples exi ← {0, 1}out/(EY ∪EX) to A, records the triple, and inserts exi to EX.

(b) If not, S checks records and sends corresponding exi to A.

S aborts if A aborts and outputs what A outputs.

While S access FPSI as an honest P1 and interact with A as an honest Pj , j ∈ [3, n]. S simulates
the Extend phase. The simulation is same as above except step (5):

(5) S emulates FC−VOLE and receives (init,p,Hdecomp), where p ∈ Fm,Hdecomp ∈ Fm′ from A. S
checks whether (Hcomp, Hdecomp) opens to p. If not, S sends abort to A. Otherwise, S waits
to receive M[p]← Fm from A. S sends (init, setid) to FPSI and waits to receive Z.

We are going to show the simulated execution is indistinguishable from real-world protocol execu-
tion.

Hybrid H0 Same as real-world execution in (FC−VOLE, H1, H2) model.
Hybrid H1 Same as Hybrid H0 except S emulates FC−VOLE, random oracle H1, H2, and sim-

ulates the messages to A as follows:
For step (1), S emulates H1 and samples H1(xi) ← F, i ∈ [n] to A. In Hybrid H0, H1(xi) ←

F, i ∈ [n] are generated and outputted by a random oracle, which is uniform distributed and
indistinguishable from this hybrid.

For step (3), S samples cs ← F to A. In hybrid H0, Random oracle H1 outputs cs, which is
uniformly distributed over F and indistinguishable from this hybrid.

For step (6), S samples ws ← F to A. S also programs random oracle H1 that cs = H1(ws).
In hybrid H0, an honest P2 samples ws ← F and computes cs = H1(ws). The distribution of ws is
indistinguishable from this hybrid.

For step (7), S programs EY to size |Y | with random elements in {0, 1}out. In hybrid H0, an
honest P2 computes eyi from random oracle for each element yi ∈ Y2. Thus, EY is indistinguishable
from this hybrid.

For step (8), S emulates H2 and programs H2 that for xi ∈ Z, qi = Decode(M[p], xi, r) + w, it
sends exi ∈ EY to A. Thus, the output of A is same as interacting with an honest P2.

Thus, this hybrid is identical to the previous one.
Corrupted Pj. Let S access FPSI as an honest Pj and interact with A as an honest P1. S

passes all communication between A and environment Z.

(1-2) S samples Hcomp ← FN . S publishes Hcomp.

(3) S emulates H1 and receives ws from A. S samples cs ← F to A. S receives c′s ← F from A. If
c′s 6= cs, S aborts in step (6).

41

(4) S samples wr ← F, r ← {0, 1}κ and sends them to A.

(5) S emulates FC−VOLE and receives (init) from A. S waits to receive (∆,K[p])← Fm+1 from A.

(6) S receives w′s from A and checks whether w′s = ws. If not, S aborts.

(7) S emulates H1, H2, and receives query as follows:

(a) S receives yi from A. If the query is fresh, S samples H1(yi)← F to A and stores the pair
(yi, H1(yi)). If not, S checks the records and sends corresponding H1(yi) to A.

(b) S receives query (qi, yi) from A. If the query is fresh, S samples eyi ← {0, 1}out to A and
records triple (yi, qi, eyi). If not, S checks the records and sends corresponding eyi to A.

S receives EY from A. For each eyi ∈ EY , S checks whether it is recorded and qi =
Decode(K[p], yi, r) + ∆H1(yi) + w. If it is, S inserts yi to set Y and sends (intersect, Y) to
FPSI. S receives setid from FPSI.

While S access FPSI as an honest Pj and interact with A as an honest P1. S simulates the Extend
phase. The simulation is same as above except: S extracts set Y and sends (intersect, Y, setid) to
FPSI at step (7).

We are going to show the simulated execution is indistinguishable from real-world protocol
execution.

Hybrid H0 Same as real-world execution in (FC−VOLE, H1, H2) model.
Hybrid H1 Same as Hybrid H0 except S emulates FC−VOLE, random oracle H1, H2, and sim-

ulates the messages to A as follows:
For step (1-2), S samples Hcomp ← FN , and publishes it. In Hybrid H0, Hcomp generated from

commitment scheme. According to Theorem 2, Hcomp is computational indistinguishable from
pseudorandom vector over FN , which is indistinguishable from this hybrid.

For step (3), S emulates H1 and samples cs ← F for each ws to A. In hybrid H0, cs is uniformly
distributed over F and indistinguishable from this hybrid.

For step (4), S samples wr ← F, r ← {0, 1}k as an honest P1 does in hybrid H0.
For step (7), S emulates H1, H2, and samples H1(yi) ← F, eyi ← {0, 1}out to A, which is

indistinguishable from the output of a random oracle. S records all the programmed pairs and
triple. S receives EY from A and checks each eyi ∈ EY whether been recorded and the previous
query is computed correctly to extract A’s private set elements and sends them to FPSI. Thus, the
output of S and honest party is same as the output of A and honest party.

Thus, this hybrid is identical to the previous one.
Hybrid H2 Same as Hybrid H1 except S aborts at step (6) if c′s 6= cs or w′s 6= ws. It is

indistinguishable from P1 aborts if cs 6= H1(ws) in hybrid H1. Thus, this hybrid is identical to the
previous one.

This concludes the proof.

42

	Introduction
	Our Contribution

	Technical Overview
	Preliminaries
	Notation
	Learning Parity with Noise
	Commitment Scheme
	Ideal Functionalities

	Commitment from LPN
	LPN Commitment
	Hybrid Commitment

	Committed-VOLE
	Proof of Security
	Complexity Analysis

	Applications of C-VOLE
	Commit-and-prove VOLE-ZK
	Multi-Party VOLE in MPC and MVZK
	C-VOLE in Crowd PSI

	Performance Evaluation
	Parameter Selection of Hybrid Commitment
	Efficiency of Committed-VOLE
	Comparison with Prior Work
	Comparison with C2A Conversion.
	Comparison with CVOLE with Input-revealing Identifiable-abort (IRIA).

	Efficiency of C-VOLE based PSI and Comparison
	Comparison with VOLE based PSI.
	Comparison with Prior Work in Crowd PSI.

	Appendix
	Hybrid Commitment Parameters based on EA-Code
	Conservative parameters
	Aggressive parameters

	Primal-LPN based C-VOLE
	Performance of Primal-LPN based C-VOLE
	Performance Evaluation of C-VOLE with Aggressive EA-code
	Construction of MPVOLE
	Security Analysis of MPVOLE
	GGM Algorithm
	Random VOLE
	Protocol of VOLE
	Proof of Theorem 4

