
Continuous Group-Key Agreement: Concurrent Updates without

Pruning

Benedikt Auerbach∗ 1, Miguel Cueto Noval2, Boran Erol†3, and Krzysztof Pietrzak2

1PQShield
benedikt.auerbach@pqshield.com

2ISTA, Klosterneuburg, Austria
{mcuetono, pietrzak}@ista.ac.at

3UCLA, Los Angeles, USA
boranerol03@gmail.com

June 3, 2025

Abstract

Continuous Group Key Agreement (CGKA) is the primitive underlying secure group messaging. It
allows a large group of N users to maintain a shared secret key that is frequently rotated by the group
members in order to achieve forward secrecy and post compromise security. The group messaging scheme
Messaging Layer Security (MLS) standardized by the IETF makes use of a CGKA called TreeKEM which
arranges the N group members in a binary tree. Here, each node is associated with a public-key, each
user is assigned one of the leaves, and a user knows the corresponding secret keys from their leaf to the
root. To update the key material known to them, a user must just replace keys at log(N) nodes, which
requires them to create and upload log(N) ciphertexts. Such updates must be processed sequentially
by all users, which for large groups is impractical. To allow for concurrent updates, TreeKEM uses
the “propose and commit” paradigm, where multiple users can concurrently propose to update (by just
sampling a fresh leaf key), and a single user can then commit to all proposals at once.

Unfortunately, this process destroys the binary tree structure as the tree gets pruned and some nodes
must be “blanked” at the cost of increasing the in-degree of others, which makes the commit operation, as
well as, future commits more costly. In the worst case, the update cost (in terms of uploaded ciphertexts)
per user can grow from log(N) to Ω(N).

In this work we provide two main contributions. First, we show that MLS’ communication complexity
is bad not only in the worst case but also if the proposers and committers are chosen at random: even if
there’s just one update proposal for every commit the expected cost is already over

√
N , and it approaches

N as this ratio changes towards more proposals.
Our second contribution is a new variant of propose and commit for TreeKEM which for moderate

amounts of update proposals per commit provably achieves an update cost of Θ(log(N)) assuming the
proposers and committers are chosen at random.

∗Benedikt Auerbach conducted part of this work at ISTA.
†Boran Erol conducted part of this work at ISTA.

1



Contents

1 Introduction 3
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 7
2.1 Continuous Group-Key Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Ratchet Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 The Messaging Layer Security Protocol 11

4 The Communication Cost of MLS for Random Sequences of Operations 14
4.1 Considered Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Expected Number of Blanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Lower Bound on Sent Ciphertexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 MLS-Cutoff: an Alternative Method for Update Proposals 22
5.1 Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Upper Bounds on the Update Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Acknowledgment 27

A Omitted Formal Security Definition 31
A.1 Public Key Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.2 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.3 PKI and CGKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

B Omitted Formal Protocol Descriptions 32
B.1 Formal description of MLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
B.2 Formal description of MLS-Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2



1 Introduction

Messaging layer security. In recent years asynchronous secure messaging applications like the What-
sApp, Signal and iMessage have become an important part of every day life with user numbers ranging in
the billions. While deployment of these applications has been a great success for practical cryptography,
the used protocols do not scale well when used to secure the communication of large groups. For example,
Signal limits the group size to 1000 users. Providing efficient secure messaging for large group sizes is the
explicit goal of the IETF’s Messaging Layer Security (MLS) Standard [BBR+23] of 2023. The standard was
developed in a joined effort of industry players and the scientific community and aims to enable asynchronous
and end-to-end encrypted messaging via an untrusted server, admitting group sizes up to 50.000.

TreeKEM [BBR18], the protocol at MLS core is a so called continuous group-key agreement [ACDT20]
(CGKA). As a generalization of continuous key agreement [ACD19] to the group setting, it allows a group
of users to agree on a shared, evolving secret that intuitively will be used to secure the communication
within the group. CGKA is supposed to provide both forward secrecy (FS), meaning that compromising
a user does not reveal past messages, and post-compromise security (PCS), i.e., that the group is able
to recover from compromise by sampling new key material and exchanging protocol messages. MLS has
been taken up with great interest by the community resulting in a vast amount of works analyzing its
security [KPPW+21, ACJM20, CHK21, BCK21, AJM22, WPBB23, CGWZ25] or proving lower bounds
on its communication complexity [BDR20, BDG+22, ANPPP23, AAB+24]. Further works develop protocol
variants making use of an active server [HKP+21, AHKM22, AAN+22] (no longer simply forwarding protocol
messages), being tailored to multiple overlapping groups [AAB+21], or enabling resilience against forking of
users’ protocol views [AMT23]. Yet another line of works is concerned with the security of alternative, not
TreeKEM based, group-messaging protocols [WKHB21, BCG23, CEST24] or analyzes additional properties
of CGKA like secure administration [BCV23] or meta data protection [HKP22].

Ratchet trees. While FS can be achieved essentially by means of symmetric cryptography, PCS requires
the use of public key cryptography. TreeKEM makes use of so called ratchet trees, that can be seen as a
public-key analog of logical key hierarchies [WHA99]. At a high level, a ratchet tree is a balanced binary
tree in which each node has an associated public-key encryption (PKE) key-pair. Each group member is
assigned to a leaf, the corresponding key-pair can be thought of as the user’s personal key, and the one of
the root as the shared group secret. To enable PCS the users will periodically rotate the secret key material
known to them by exchanging protocol messages. While all users have a complete view on all public keys,
throughout the execution of the protocol TreeKEM enforces the so-called tree invariant stating that every
user has access to exactly the secret keys of nodes lying on their update path, i.e., the path from their leaf
to the root.

To update their key material a user u replaces the keys of nodes on their update path by sampling a
fresh key for their leaf, and deriving the remaining keys in a deterministic way from this key. Then every
fresh secret key sk is encrypted under the public key of the node’s co-child, i.e., the child not being part
of u’s update path. Now all users whose update path merges into u’s at the node in question are able to
recover sk by decrypting the ciphertext. They can then derive the remaining secret keys up to the root in a
deterministic way. Note that in total u has to generate only logarithmically many ciphertexts (in the group
size N), making the protocol particularly suited for large groups.

Proposals and Commits. TreeKEM, as described above, requires all updates to be executed in order (i.e.,
a user can only issue an update after it processed all previous updates), which might not be possible in a large
group with frequent updates. To allow for concurrent issuing of protocol messages TreeKEM distinguishes
between proposal messages and commit messages. In the former, a user issuing an update proposal indicates
their goal of updating the key material known to them. However, the message only contains a new personal
leaf public key and, in particular, does not establish a new shared group secret. Similarly, proposals of
adding users to or removing users from the group are handled using proposal messages.

To establish a new group secret and move the group’s state to the next epoch a user can issue a commit

3



u1 u3 u8 u16 u1 u3 u8 u16

Figure 1: Working principle of update proposals and commits in MLS (left) and MLS-Cutoff (right). In
both cases for a fully populated tree users u1, u3, u8 issue an update proposal (depicted in blue) followed
by a commit by user u16 (depicted in orange). Nodes being blanked are depicted as (empty) squares, and
ciphertexts created as part of the commit with orange edges. In the depiction of MLS-Cutoff the blue dashed
line marks the cutoff bound.

to a (potentially empty) set of proposal messages. Essentially, this implements all proposals and updates all
keys on the committing user u’s update path. Note that to preserve the tree-invariant u cannot refresh the
keys on a proposing users’ update paths unless they also lie on their own update path (as u must not learn
the secret key of such nodes). Moreover, keys on u’s co-path might no longer be considered secure, since
the corresponding secret key might lie on the update path of a user issuing a proposal. Thus, TreeKEM
handles update proposal by means of blanking. I.e., the key-pairs of all (non-leaf) nodes on the update path
of proposing users which do not lie on the update path of the committing user are deleted from the ratchet
tree. This has the effect of increasing the indegree of some nodes, and thus the commit operation as well as
future commits require additional ciphertexts, negatively affecting the protocol’s communication complexity.
Removals of users from the group is also handled by means of blanking, while adding users employs the
unmerged leaves technique. For a depiction of proposals and commits in MLS see Figure 1 (left).

Known results on the communication complexity of MLS. As discussed above, for a group of size N
in the best case (in particular if no update proposals are issued at all) the size of a commit message is of or-
der O(log(N)). It is easy to see that in the worst case essentially the whole ratchet tree can end up blank, lead-
ing to a linear worst case communication complexity of order Ω(N). Unfortunately, the latter turns out to be
inherent for CGKA schemes built from ‘natural’ primitives achieving fast PCS [BDR20, BDG+22, ANPPP23]
(i.e., within a single propose-commit round). Accordingly, while different methods of implementing update
proposals have been explored, they either exhibit the same worst-case behavior [KPPW+21] or suffer from
achieving PCS slower [Wei19, AAN+22, AACN+24].

While the worst case performance of TreeKEM is a far shot from the advertised log(N), the known se-
quences causing it are very artificial. Thus, one might still hope that TreeKEM and in turn MLS perform well
for ‘natural’ random sequences of operations, which would be sufficient for practical applications. However,
up to our knowledge there has been very little analysis in this setting so far.

1.1 Our Contributions

The contribution of this work is twofold. We initialize the formal study of MLS’s communication complexity
for random sequences of operations, which models the lack of coordination between users given the asyn-
chronous nature of CGKA schemes. To this end, we derive lower bounds on the size of its commit messages
in an easy to understand model letting randomly chosen users issue update proposals and commits. Our
results indicate that, unfortunately, even very small amounts of update proposals per commit operation have
a substantial negative impact on MLS’s communication complexity.

On the positive side, we propose an alternative way of handling update proposals that provably achieves
a logarithmic communication complexity in our model. The changes required to handling proposals are not

4



too complex, which in our view is a very positive feature, as our proposed method is compatible with the
complex mechanisms employed by MLS to ensure authenticity and consistency.

Lower bounds on MLS’s Average Commit Size. Our main goal is to gain an understanding of the
impact that blanking nodes in the ratchet tree due to update proposals has on the size of commit messages,
for randomly generated sequences of operations. Ideally, one would analyze the communication complexity
of MLS using real-world user data. As such data is unfortunately not available, we opt for a simple model of
communication. The advantage of this being that it, on the one hand, makes the problem of deriving formal
bounds approachable, and, on the other, leads to results that are understandable on an intuitive level.

Our experiment first initializes a group of size N . Then it repeatedly starts issuing update proposals and
commits for rounds t as follows.

1. A set UP consisting of P ∈ N group members is sampled uniformly at random.

2. All users in UP issue an update proposal.

3. A user sampled uniformly at random issues a commit to all update proposals.

4. The size Cost(t) of the commit is recorded.

To also be able to handle the setting where update proposals are only issued every other round, the experiment
is additionally parameterized by C ∈ N. In the case C > 1, the commit to the P proposals is followed by
C − 1 rounds of commits not implementing any proposals. We are interested in the expectation of Cost(t)
after running the experiment for sufficiently many rounds. Informally, our main result regarding this is the
following.

Theorem 4.2 (informal). Let P , C be constant. Then the expected size of a commit generated
according to the sequence described above is of order

E[Cost(t)] ≥ Ω(N log2(1+
P

P+C )).

Moreover, if P = 1 = C, it holds that

E[Cost(t)] ≥ log2(N)/4− log(N)/4,

which is a more relevant bound for small values of N .

We provide some approximate values of the exponent e = log2(1 +
P

P+C ) in the table below. We use C = 1
for P ≥ 1 and for ease of notation write P = 1/c in the case P = 1, C = c.

P 1/5 1/2 1 2 5 10 50

e 0.22 0.42 0.58 0.74 0.87 0.93 0.99

Note that already if a single update proposal is issued per commit the MLS’s communication complexity
devolves to about

√
N , a far shot from log(N). Further, if the number of proposals increases the cost of

commits approaches the worst case of a linear commit cost quite fast, with an exponent of 0.99 for P = 50.
This means that one either must perform almost all updates sequentially, or commits become almost

linear in N . As MLS aims to support groups containing up to N = 50000 members, neither of these options
is very appealing.

Before turning to our alternative proposal of handling update proposals, we give a bit of intuition on the
lower bound’s proof. As the cost of a commit is mainly determined by the blanks in the ratchet tree we first
investigate the expected probability of a fixed node v being blank. We notice that the transition of v’s state
between blank and populated forms a Markov chain, allowing us to determine its stationary distribution.
We obtain that the probability of v being blank, assuming v is of sufficient depth in the tree, is roughly
P/(P + C).

In MLS if a user’s copath contains a node v, then how much v contributes to the communication com-
plexity of a commit by that user depends on whether v is blank. If v is populated, then encrypting to it

5



only requires one ciphertext. If it is blank, a commit in MLS would include ciphertexts encrypted under
the keys of its children and, due to the way MLS works, at least one child must be blank as well meaning
that those ciphertexts would have to be encrypted under some of v’s grandchildren and so on. Intuitively,
this means that the number of ciphertexts needed to encrypt to a blank node v is 1 + P/(P + C) times the
number of ciphertexts needed to encrypt to a child of v provided that both v and its child are blank, where 1
corresponds to the child that must be blank and P/(P +C) to the probability that the other child is blank.
This argument assumes independence (between the events that the left child of v is blank and the right child
of v is blank), which is not justified. However, we show that in expectation the number of ciphertexts does
indeed increase by a factor of 1 + P/(P + C).

An alternate way of performing update proposals. It is known that if too many users, say, for
example, linearly many in the group size, issue concurrent update operations there is no possibility for efficient
CGKA. In fact, Bienstock et al. [BDR20] prove that in this case the communication complexity must be
linear in the group size. While the lower bound discussed above indicates that even a small number of update
proposals per commit operation has a devastating effect on MLS’s communication complexity, it leaves open
the possibility of an alternative CGKA being more viable in this setting. Recall that update proposals
introduce blanks in the tree, as all keys on the updating users’ update paths are removed. A natural idea to
prevent introducing blanks in the tree would be to not only have the user issuing a commit, but also updating
users to re-key their complete update path. In fact this is the approach taken by the continuous group-
key agreement scheme CoCoA [AAN+22] which in this setting has logarithmic communication complexity.
However, proposals can be issued concurrently, meaning users make concurrent modifications to the ratchet
tree. This leads to users encrypting new secrets to outdated keys, i.e., keys concurrently being replaced, and,
as a second point, is not compatible with the mechanisms used by MLS to ensure integrity of the ratchet
tree. As a consequence, CoCoA does achieve PCS slower than MLS, and does not achieve the same strong
security notion of insider security.

The second main contribution of this work is a CGKA we denote MLS-Cutoff with the following features.

• For a constant number P of update proposals per commit operation and random operations as described
above, the size of its proposal and commit messages is bounded by O(log(N))

• It achieves the same strong security notion as the MLS protocol, namely insider security [AJM22] for
the same safety predicate. In a nutshell, the latter says that if all compromised parties issue update
proposals that are in turn committed to the group achieves PCS.

• It requires only small modifications to the MLS design. More precisely, it only modifies how the ratchet
tree’s nodes are blanked or populated by applying update proposals, but keeps other components
required, for example, to ensure consistency and authenticity unchanged.

We provide some intuition on our design. Our main observation is that if the number of update proposals
is not too large and the updating users are randomly distributed, then updating users’ paths merge far up in
the tree. Thus, while in MLS-Cutoff update proposals do rekey the issuing user’s path, we stop the re-key
operation icut steps before reaching the root, where icut is the cutoff parameter of the scheme, that is chosen
as log(log(N)). If no update paths collide before the cutoff point, no secrets are encrypted to keys that are
concurrently being changed. This on one hand, implies PCS at the same speed as MLS, and on the other is
compatible with the tree-integrity mechanisms of tree-hash and parent-hash. In the case that we are unlucky
and two updating user’s paths collide before the cutoff point, the paths are blanked from (and including)
the point where the paths meet. For a depiction on how MLS-Cutoff handles proposals and commits, see
Figure 1 (right).

We point out that the worst-case communication complexity of MLS-Cutoff is Ω(N), as is the case for
MLS. This, however, holds for any CGKA achieving fast PCS [BDR20] constructed from standard primitives.
We consider MLS-Cutoff to be an attractive alternative to MLS in settings where while update proposals
are required their number is not too large. This is a realistic scenario since MLS leaves the update policy to
the implementation and, therefore, a rule which simply triggers an update with some probability for users
that are online (or enforces it if too much time or communication happened since the last update) would

6



lead to a fairly random update pattern if there is no user-to-user coordination and thus good performance
of MLS-Cutoff. We consider it an interesting question for future work to analyze its performance in more
involved settings.

2 Preliminaries

2.1 Continuous Group-Key Agreement

We recall continuous key-agreement schemes (CGKA). As we aim for the security notion of insider security
our syntax follows [AJM22].

Public-key infrastructure. We model the public-key infrastructure (PKI) as consisting of two services:
an authentication service (AS) and a key service (KS). The former allows parties to register their signing
keys and retrieve the signature verification keys of other users, while the latter allows users to register the
key packages that are used by other users to add them to a group.

The authentication service stores pairs of users and signing verification keys, (u, svk), if the key svk has
been register under user identity u. Any user u can register a new key and request to receive the secret
signing keys that correspond to verification keys registered under them. Moreover, a user can also check if a
pair (u, svk) has already been registered and a user can also delete their secrets. We consider the AS as not
trusted and therefore in our security model we will give the adversary the possibility of registering keys as
well as exposing keys registered by the users (provided that they have not been deleted).

The key service stores pairs of users and key packages, (u, kp), which are used by other parties to add
them to a group. Similarly to the case of AS, users are able to register a new key package as well as retrieving
the secret keys sk associated to their key packages and deleting their secret keys. A user can also request a
key package for another party. In our model this is done by forwarding the request to the adversary which
chooses the package received by the user. This reflects that our security model does not trust the KS. The
adversary can also expose the secret keys of a user that have not been deleted.

Syntax. A CGKA scheme allows a group of users to agree on a shared secret evolving over epochs. To this
end, the users exchange proposal messages, proposing changes to the group’s state (as for example adding
or removing users to or from the group), and commit messages, which implement proposals and advance the
group’s state to the next epoch by establishing a new shared secret.

Definition 2.1. An asynchronous continuous group-key agreement protocol consists of a tuple of algorithms
CGKA.Create,CGKA.Prop,CGKA.Com,CGKA.Proc,
CGKA.Join,CGKA.Key, which can interact with a PKI. Additionally, each user maintains an internal state
which we denote by st and is assumed to be an implicit input of all algorithms.

CGKA.Create(svku) is run by user u with signing verification key svku and creates a group with u as its only
member.

CGKA.Prop(op, ad) → pmsg is run by a member who wants to propose an operation op, where op ∈
{‘add’, ‘rem’, ‘upd’}, ad is some additional data that may depend on the operation. It outputs a
proposal message pmsg.

CGKA.Com(PMSG, ad) → (cmsg,wmsg) is run by a member u to commit to a list of proposals PMSG =
(pmsgi)i and it also takes as input some additional data ad. It outputs a commit message cmsg, and a
(potentially empty) welcome message wmsg.

CGKA.Proc(cmsg,PMSG)→ (PropSemantics, v) is run by a client u to process a commit message cmsg and
the corresponding proposal messages PMSG. It outputs some information about the proposals (which
we denote PropSemantics) and the party v that generated the commit c.

7



CGKA.Join(wmsg)→ (roster, v) is run by user u to process a welcome message and join the respective group.
It outputs the set of group members and their signing verification keys (which we refer to as roster)
and the party that generated the commit c

CGKA.Key→ k is run by a member u to obtain the group key associated to their state.

Correctness and security in the UC framework. We follow the work of Alwen et al. ([AJM22] and
[ACJM20]). They define a notion of security based on the UC (universal composability) framework, which
was first introduced by Canetti in [Can01]. We defer the formal description of the ideal CGKA functionality
and the PKI functionalities to Appendix A. In the UC framework one formalizes security of a protocol as
the indistinguishability between the ‘real world’ and an ‘ideal world’. We will refer to the distinguisher as
the environment.

In the real world the environment Z gets to choose the inputs (e.g., an instruction to Alice to add Bob)
of the machines (e.g., the parties in an execution of a CGKA protocol) of the protocol π and receives their
intermediate subroutine-outputs (e.g., a commit generated by Alice). The environment also interacts freely
with an adversary A. A also interacts with the machines of π and A has control over the network in the
communication between the machines of π. The interaction between A and π also captures information
leakage from the protocol execution (e.g., A may have the possibility of corrupting the parties).

In the ideal world the protocol π is substituted by an ideal functionality F and a collection of dummy
machines that relay their inputs to F and the outputs of F to the corresponding machines. The adversary
in the ideal world is denoted by S because it plays the role of a simulator (of the interaction between A and
Z in the real world) and we refer to it as an ideal adversary. The adversary S now communicates with F
and does not interact with the dummy machines. The environment Z interacts with the dummy machines
and the adversary S just as in the real world.

In the UC framework one says that a protocol π securely realizes a functionality F if for all efficient
adversaries A there exists an efficient ideal adversary S such that the output distribution of any efficient
environment Z after interacting with π and A is indistinguishable from the output distribution of Z after
interacting with F and S. This can be understood as representing the idea that an adversary A attacking
the protocol π does not learn more than the ideal adversary (sometimes called simulator) S learns from
interacting with the ideal functionality.

In the work of Alwen et al. [AJM22], whose security notion we use, one has to consider some additional
notions since parties have access to a PKI and certain primitives are modeled as random oracles. We refer
to these as setup functionalities. This is done by considering the so called hybrid models (first introduced
in [CDPW07]). If G is a setup functionality, then the environment Z (as well as π, A and S) is allowed
to interact with G. And one says that the a protocol π securely realizes a functionality F in the G-hybrid
model if the real world and ideal world are indistinguishable even if Z is allowed to interact with G.

Ideal functionality for CGKA. The definition of the ideal functionality FCGKA already takes correctness
into account. In order to do this certain checks are included in FCGKA and the environment rather than the
adversary is given control over the network. Now we focus our attention on defining security for CGKA fol-
lowing [AJM22]. They consider two more constrains on the quantification of the notion of security described
in the previous paragraph. We restrict ourselves to admissible environments, i.e., those that can only corrupt
parties at certain times. This is defined as part of the ideal functionality which specifies some conditions that
cannot be violated by the environment except with negligible probability. The second condition consists in
not considering all possible adversaries but instead only corruption preserving adversaries, i.e., adversaries
that trigger a corruption if and only if prompted by the environment.1 This is done to prevent the ideal
adversary from triggering a disallowed corruption since this would make security trivial in the sense that all
environments would be disqualified.

In order to define the ideal functionality FCGKA we consider the history graph which keeps track of the
evolution of the group. Intuitively, the nodes of the graph correspond to the operations done by the users

1Recall that an arbitrary adversary can choose when to corrupt a party without this being determined by the environment.

8



and the edges capture the order in which they are issued. The history graph [ACDT21] is an acyclic directed
graph which consists of two kinds of nodes, proposal nodes and commit nodes. The edges of the graph
capture the notion of how new epochs are derived. Additionally, each node is associated with a collection
of attributes (Node[c] for commit nodes c and Prop[p] for proposal nodes p) related to the operations of a
CGKA protocol. We list these attributes in the following table (divided into three groups: those that all
nodes have, those that only proposal nodes have and those that only commit nodes have).

.orig the party that triggers the creation of the node

.par the parent commit node

.stat good for secure nodes, bad for nodes created with adversarially chosen
randomness (the adversary knows the secrets associated to this node)

or adv for nodes that correspond to messages injected by the adversary
Prop[p].act indicates the kind of action and some additional information

(upd, svk) if it is an update performed by a party with key svk
(add, v, svkv) if party v with key svkv is added

(rem, v) if party v is being removed
Node[c].pro the list of proposals associated to commit c
Node[c].mem list of pairs of members and their signing verification keys
Node[c].chall true if the corresponding application secret is chosen at random

and false if chosen adversarially
Node[c].exp pairs (u, true/false) of corrupted parties u and a boolean value

expressing whether the application secret also leaked to adversary

The ideal functionality just keeps track of the evolution of the history graph. It starts building the history
graph with just one node root0 when the group is created. Additionally FCGKA stores a value called pointer
Ptr[u] for each party u that maps u to the last commit it processed. When a party u makes a proposal p,
FCGKA creates a proposal node Prop[p] whose parent in the history graph is Node[Ptr[u]] and u is the origin
of the proposal Prop[p].orig. The functionality also stores information about the kind of operation associated
to p in Prop[p].act. If u makes a commit c to some proposals P , FCGKA creates a commit node Node[c] whose
parent in the history graph is Node[Ptr[u]], Node[c].pro is set to P and Node[c].orig is set to u. And if a party
v processes c, the functionality just moves v’s pointer to c.

As mentioned before, the ideal functionality imposes certain restrictions on the behaviour of the environ-
ment. This is done by including two predicates, namely, safe(c) and inj-allowed(c, u) that regulate when an
adversary can corrupt a user and when it can inject a commit on behalf of a user, respectively.

In order to guarantee that the only application secrets that can be learned by an adversary in the real
world are the ones trivially derived from secrets of exposed users, we let the simulator choose these ‘unsafe’
secrets in the ideal world while the remaining ones are chosen at random by the ideal functionality. Thus,
predicate safe(c) evaluates to false if and only if at least one of the following is true:

(a) Node[c].exp ̸= ∅ and the application secret has been leaked to the adversary, or

(b) the adversary can process c using the secrets of exposed users and the exposed signing
keys (in particular this captures the secret keys associated to key packages generated with
exposed signing keys or corrupted randomness) of its ancestors.

Analogously, predicate inj-allowed(c, u) guarantees that in the real world authenticity is only broken when
the adversary can trivially forge messages on behalf of a user by restricting when injections are possible in
the ideal world. Predicate inj-allowed(c, u) evaluates to true if and only if u’s signing key in Node[c] has
been exposed (i.e., Node[c].mem[u] ∈ Exposed) and at least one of the following two holds:

(a) Node[c].exp ̸= ∅,
(b) the adversary can process c using the secrets of exposed users and the exposed signing

keys (in particular this captures the secret keys associated to key packages generated with
exposed signing keys or corrupted randomness) of its ancestors.

The reader may find the precise definition of the predicates safe(c) and inj-allowed(c, u) in Figure 17.

9



2.2 Ratchet Trees

We introduce some basic terminology. We use the word tree to refer to a directed acyclic graph T = (V,E)
with a root, i.e., a node r such that for every node v there exists a unique directed path between r and v. Said
path is denoted by path(v). As in the MLS specification we use the convention that path = (v1, . . . , vℓ = r)
is ordered ascending to the root, i.e., in reverse direction of the edges, and does not include v.

Let u and v be two different nodes of some tree T = (V,E). We say that u is a parent of v if there exists
an edge (u, v) ∈ E. We say that u is a child of v if and only if v is a parent of u. We denote the set of
children by child(v). We say that u is an ancestor of v if there exists a directed path from u to v. The set
of ancestors is denoted by ancs(u). We say that v is an descendant of u if and only if u is an ancestor of v.
We say that u and v are siblings if they are children of the same node. We say that a node is a leaf if it has
no children. Thus we have three different kinds of nodes; the root, the leaves and the remaining elements in
V which we call intermediate nodes.

In this work we consider complete binary trees with N = 2n many nodes. Thus each non-leaf node v
has exactly two children which we refer to as the left child, denoted by left(v), and the right child, right(v).
Every node v other than the root has one parent, denoted by par(v), and a sibling, sib(v). The depth of a
node v is the length of the path from the root to v and we denote it by depth(v).

A notion closely related to how MLS re-keys users’ paths is that of co-path of a node. The co-path of a
node v is defined as the set of children of the nodes in v’s path that do not belong to v’s path, namely,

co-path(v) = ∪u∈path(v){w | w ∈ {left(u), right(u)} \ (path(v) ∪ {v})}.

Node states. CGKA schemes like MLS make use of a ratchet tree, i.e., a complete binary tree T = (V,E)
with each group member being associated to one of the tree’s leaves. Every node v ∈ E has as associated
data a so called public and private state. Its public state contains

• a PKE public key v.pk,

• a list v.unm of so called unmerged leaves,

• a parent-hash value v.pHash,

• a signature verification key v.svk (only if the node is a leaf), and

• a credential v.cred (only if the node is a leaf).

The private state of the node is v.sk the secret key associated to v.pk. MLS, as well as the variant defined
in this work, enforce the so called tree-invariant stating that v.sk is known by exactly the user whose leaves
have v as an ancestor. Further, a node can be blank, meaning that all associated values are empty. We use
function blank(v) to blank a node, i.e., to set all its associated data to ⊥.

Resolution and filtered path. The existence of blank nodes leads to the notion of resolution Res(v) of
a node v which, intuitively, corresponds to the smallest covering of the set of descendants of v by non-blank
nodes. We define it formally as follows;

• If v is a populated node, its resolution is Res(v) = {v}.
• If v is a blank leaf, its resolution is Res(v) = ∅.
• If v is a blank internal node, its resolution is defined recursively as

Res(v) = ∪u∈child(v)Res(u).

If X is a set of nodes, we use the notation Res(X) to denote ∪v∈XRes(v).
A leaf v’s filtered path fil-path is the update path after removing all nodes the co-child of which has

an empty resolution (and unmerged leafs set). I.e., if path(v) = (v1, . . . , vℓ = r) then using the convention
v0 = v we define

fil-path(v) = (vi, i ∈ {1, . . . , ℓ} | (Res(sib(vi−1)) ∪ sib(vi−1).unm) ̸= ∅).

10



Finally, we sometimes have to identify the node in which two leaves’ filtered paths meet. Consider leaves u, v ∈
V of the same depth with filtered paths (u1, . . . , uℓ = r) ← fil-path(u) and (v1, . . . , vℓ′ = r) ← fil-path(v),
respectively. We define their least common ancestor lca(u, v) as the node ui in path(u) where i is minimal
such that ui ∈ path(v). Counting from the root we define the index ind-lca of their least common ancestor
as

ind-lca(u, v) = max(a | uℓ−a = vℓ′−a, a ∈ 0, . . . , ℓ− 1).

2.3 Auxiliary Results

Lemma 2.2 (Bernoulli’s Inequality). For all x ≥ −1 and r ∈ R \ (0, 1) it holds that

(1 + x)r ≥ 1 + rx.

3 The Messaging Layer Security Protocol

We defer the formal description of the MLS protocol2 [BBR+23] to Appendix B.1. In this section we provide
an overview on its working principle. As the goal of this work is to investigate the protocol’s communication
complexity which is largely determined by the distribution of blank nodes in the underlying ratchet tree,
our exposition mainly focuses on the mechanisms leading to the addition of blanks to the tree, or removal
of blanks, respectively. For ease of exposition in this section we treat the key-packages kp (consisting of the
corresponding user’s PKE pk, signature verification key svk, and leaf credential cred) assigned to leaves in
the ratchet tree as public key pk, and, similarly, assign the tree’s root a key pair which is not the case in the
full protocol (see Figure 19).

Protocol state. The cryptographic state st each user of MLS keeps track of is conceptually divided as
follows.

The underlying ratchet tree T. In this simplified exposition we identify users u with their associated leaf,
simply writing vu. As discussed in Section 2 every user u has a complete view of the tree’s public part,
but only has access to the secret keys v.sk of nodes that lie on their update path vu. Sometimes when
operating on ratchet trees we require the identity of the user running the algorithm, which we denote
by u-own.

The key schedule collects a number of secrets used for different purposes. These include, for example, the
shared group secret referred to as the application secret, the initialization secret that is combined with
the randomness obtained from re-keying a path to advance the key schedule to the next epoch, and a
membership key used in combination with the user’s signature key to authenticate protocol messages.

Further, the protocol employs consistency mechanism ensuring that all users have the same view of the
protocol’s state. This includes the transcript hash that essentially encodes the complete history of the
group including all operations processed so far, as well as so-called tree-hash and parent-hash values
that ensure consistency of the ratchet tree. We will discuss the latter two in a bit more detail at the
end of this section.

Generating proposal and commit messages. Users issue proposal messages to add or remove user to
or from the group, respectively, as well as to update the personal key pair located at their leaf. In more
detail, proposal messages

pmsg = (‘type’, ad)

consist of ‘type’ indicating the type of proposal, as well as some associated data. In case of an update
proposal ‘upd’ the latter contains a new public key to be included at the issuing user’s leaf, in case of

2Formally, in this work we consider the CGKA underlying MLS. Thus, our exposition ignores the secret tree scheduling keys
used to encrypt and authenticate payload messages.

11



an addition ‘add’ the associated data ad = pk is the added party’s personal key, and finally in case of a
removal ‘rem’ it indicates the removed user’s leaf. In case of an update proposal the issuing user stores the
secret key sk corresponding to pk as a pending update in a list pendUpd.

To prevent unauthorized parties from issuing proposals pmsg has to be framed. Essentially, this means
the proposal message and group context are signed by the issuing user as well as MACed using a key only
available to group members. When processing proposal messages users unframe the message by verifying
the authenticity of pmsg before recovering ((‘type’, ad), u-snd). Here u-snd denotes the user issuing the
message.

A user u can commit to a (potentially empty) list PMSG of proposals, implementing the proposed changes,
advancing the group to the next epoch, and establishing a new application secret. This is done by executing
the following steps.

1. Verify every proposal pmsg ∈ PMSG.

2. Create a copy T′ of ratchet tree st.T and

(a) call apply-props(PMSG) to apply the proposed changes to T′,

(b) call rekey-path(vu-own, 0) to rekey u-own’s update path in T′ and generate an UpdPath
object used to communicate the changes to the other group members.

3. Compute the new key schedule based on T′.

4. Authenticate UpdPath and bind it to PMSG.

5. Construct a welcome message if necessary.

6. Store the resulting state st′ (containing T′) as a pending commit and return the correspond-
ing, framed, commit message cmsg, which, in particular, contains UpdPath.

The largest component of cmsg is UpdPath which itself is comprised of public keys and ciphertexts. The
number of ciphertexts that have to be generated depends on the blanks present in T′.

To process a commit message issued by u users essentially follow the same sequence of operations. More
precisely, they recover T′ by first applying the proposals PMSG to their current view of the tree, and then
recovering the new keys on the committing user’s update path from UpdPath. They update the key schedule
and verify that all changes were properly authenticated. If the latter is the case, the new key schedule and
ratchet tree replace the ones stored in the user’s state. If the processing user is the one issuing the commit
operation, they can simply update their state to the one stored as a pending commit.

Applying proposals and path rekeying. When issuing (or processing) a commit operation, blanks are
introduced in the ratchet tree by calling apply-props in step 2a and removed from it when calling rekey-path
(or applying the re-key operation) in step 2b. For an overview of the two functions see Figures 2 and 3.

apply-props on input a copy T′ of the current ratchet tree and list PMSG of proposals applies changes to
the ratchet tree as follows. For pmsg ∈ PMSG of type ‘upd’ the issuing user u-snd’s leaf key is replaced by
the one contained in pmsg. Then u-snd’s update path is blanked. If pmsg proposes removing user u-rem,
leaf vu-rem as well as the removed user’s update path are blanked. If the removal results in the right half of
the tree not having any populated leaves its size is halved using function truncate. If pmsg proposes adding
user u-add to the group, they get assigned the leftmost unpopulated leaf in the tree, doubling the tree size
in the process (by adding blank nodes) if no such leaf exists. The leaf is assigned the public key contained
in ad, and added to the set of unmerged leaves for every node in its update path.

To replace the keys on their path the committing user u calls rekey-path. It takes as input T′, u’s leaf vu,
and, in our presentation, an additional index icut that allows stopping the rekeying icut steps early. While
MLS uses icut = 0, looking ahead, it will be used in proposed alternative method of issuing update proposals.
Denoting v0 = vu and (v1, . . . , vℓ) = fil-path(v0) the function samples seed s0 and iteratively generates seed
si using a key-derivation function, in our presentation written as hash function H1. It then generates key
pairs (pki, ski)← Pke.Gen(H2(si)), H2 being another hash function, to replace the keys associated to vi.

12



Algorithm apply-props(T′,PMSG)
00 for pmsg ∈ PMSG:
01 parse ((‘type’, ad), u-snd)← pmsg
02 if (‘type’, ad) = (‘upd’, pk):
03 assign-kp(T′, vu-snd, pk) \\replace u-snd’s leaf pk

04 for v ∈ fil-path(vu-snd) \\blank u-snd’s path

05 blank(v)
06 if u-own = u-snd \\own update proposal

07 fetch sk← pendUpd(pmsg)
08 vu-own.sk← sk
09 else if (‘type’, ad) = (‘rem’, u-rem):
10 blank-leaf(T′, vu-rem) \\blank u-rem’s leaf

11 for v ∈ path(vu-rem) \\blank u-rem’s path

12 blank(v)
13 T′ ← truncate(T′) \\truncate tree if necessary

14 else if (‘type’, ad) = (‘add’, (u-add, pk)):
15 add-leaf(T′, u-add, pk) \\assign u-add a leaf

16 for v ∈ path(vu-add) \\set vu-add as unmerged

17 v.unm←∪ {vu-add}
18 return T′

Figure 2: High-level overview on function apply-props for MLS. The function’s formal description is in
Figure 23.

In order to enable the other group members to recover the secret keys they should have access to, for all
j ∈ {1, . . . , ℓ} the co-child vsib with respect to vu’s update path is computed. Then the seed sj is encrypted
under all public keys associated to nodes contained in Res(vsib), as well as the ones of unmerged leaves
resulting in a collection Cj of ciphertexts. The update path object consists of

UpdPath← (pk0, (pk1, C1), . . . , (pkℓ, Cℓ)).

A user processing a commit message issued by u-snd replaces the public keys on u-snd’s path by the ones
contained in UpdPath. Then, by computing where their own and u-snd’s update paths meet (say for index j)
they are able to determine node vsib relevant to them, and using the secret key in Res(vsib) ∪ vsib.unm they
have access to decrypt one of the ciphertexts contained in Cj to recover sj . In turn they are able to recover
the secret keys skj , . . . , skℓ that they should have access to according to the tree invariant by applying H1,
H2, and Pke.Gen.

Consistency mechanisms w.r.t the ratchet tree. MLS employs tree-hashes and parent-hashes (see
Figure 21) to ensure consistent views of the tree and provide improved security guarantees for users joining
an existing group. The former essentially is a commitment to the entire public state of the ratchet tree, and
is computed as a Merkle commitment. I.e., a node’s tree hash corresponds to a hash of the node’s public
values and the tree-hashes of its children.

The parent hash captures information on how the tree’s nodes were populated during the protocol exe-
cution. Parent hash values are computed as part of a user’s commit, along the user’s update path, however
in reverse order, i.e., from root to leaf. Essentially, a node’s parent hash attests to its parent’s public key, as
well as the tree hash of the sub-tree rooted at its co-child. It plays an important role in preventing malicious
insiders from being able to successfully invite users to malformed groups.

13



Algorithm rekey-path(vu, icut)
00 v0 ← vu
01 s0 ←$ {0, 1}λ \\generate leaf seed

02 (v0.pk, v0.sk)← Pke.Gen(H2(s0))\\sample leaf key pair

03 (v1, . . . , vℓ)← fil-path(vu)
04 for j = 1, . . . , ℓ− icut:
05 sj ← H1(sj−1) \\generate seed

06 (vj .pk, vj .sk)← Pke.Gen(H2(sj)) \\sample key pair

07 Cj ← ()
08 vsib ← sib(vj−1) \\determine co-child

09 for w ∈ Res(vsib) ∪ vsib.unm: \\encrypt seed

10 Cj ←∪ Pke.Enc(w.pk, sj)
11 UpdPath← (pk0, (pk1, C1), . . . , (pkℓ, Cℓ))
12 for v ∈ path(vu) \\merge leaves

13 v.unm← ∅
14 return (T′,UpdPath)

Figure 3: High-level overview on function rekey-path for MLS. The function’s formal description is in Fig-
ure 22.

4 The Communication Cost of MLS for Random Sequences of
Operations

We investigate the communication complexity of MLS. Section 4.1 defines a simple experiment used to
generate random sequences of operations. We then proceed to compute bounds on the amount of blank
nodes the MLS ratchet tree will have on average for such sequences (in Section 4.2) before computing a
lower bound on the communication cost of commit operations (in Section 4.3).

4.1 Considered Scenario

As discussed in the introduction MLS exhibits a communication complexity that is logarithmic (in the
number of users) in the best case, but can devolve to being linear in the worst case. In fact, the latter must
be the case for any protocol that is built from standard primitives and achieves PCS as fast as MLS [BDR20,
ANPPP23, BDG+22]. Beyond this, very little is known about MLS’s performance in practice.

We initiate the study of MLS’s communication cost under randomized sequences of operations. While
ideally, one would evaluate the performance for sequences of operations obtained from real-world user data,
such data is unfortunately, up to our knowledge, not publicly available. As a consequence, in this work
we take a pragmatic approach and consider sequences determined by a simple experiment. Essentially, we
generate a fixed number of update proposals per commit operation, the users performing the operations
being sampled uniformly at random. While we do not claim this realistically reflects user behavior, on the
one hand, it makes the problem of computing lower bounds approachable, and, on the other, provides simple
intuition on the impact that blanking has that is not obscured by technical details of a more complicated
model.

We define experiment Exp-Prop-Com in Figure 4. It is parameterized by the group size N = 2n ∈ N,
integers P,C, and the number of rounds t. Essentially, it initializes a group of N users and then for t rounds
generates update-proposal and commit operations as follows. First, in every round P users UP are chosen
uniformly at random from the group [N ] and issue an update proposal. This is followed by an uniformly
random user UC issuing a commit, which leads to the group moving to the next epoch and ends the round.
To allow for the more general scenario that proposals are only issued every couple epochs, we allow for a
number of epochs in between sending update proposal in which a commit, but no proposals, is issued. This
is done by instead of sampling a single committer to end the round, to sample C committers uniformly at
random. To analyze the communication cost of operation sequences generated in this way we record the size

14



Experiment Exp-Prop-Com(n, P,C, t)
00 N ← 2n

01 CGKA.Createu1(svk) \\ initialize group

02 PMSG← ∅
03 for u in {u2, . . . , uN}:
04 pmsg← CGKA.Propu1

(‘add’, u)
05 PMSG←∪ pmsg
06 (cmsg,wmsg)← CGKA.Comu1(PMSG)
07 CGKA.Procu1(cmsg,PMSG)
08 for u in {u2, . . . , uN}:
09 CGKA.Joinu(wmsg)
10 initialize Cost = ()
11 for i from 1 to t: \\ issue rounds

12 UP ←$ {S ⊆ [N ] : |UP | = P}
13 UC ←$ {S ⊆ [N ] : |UC | = C}
14 Cost←∪ Round(Up, UC)
15 return Cost

Round(Up, UC)
16 cost← ()
17 PMSG← ∅
18 for k ∈ UP :
19 pmsg← CGKA.Propuk

(‘upd’,⊥)
20 PMSG←∪ pmsg
21 for k ∈ UC :
22 (cmsg, ·)← CGKA.Comuk

(PMSG)
23 cost←∪ |cmsg|
24 for m ∈ [N ]:
25 CGKA.Procum

(cmsg,PMSG)
26 PMSG← ∅
27 return cost

Figure 4: Experiment Exp-Prop-Com with respect to group size N = 2n and numbers of proposals P and
commits C executed over t rounds. We use subscripts u to denote that an algorithm is executed by user u,
and omit algorithm outputs not relevant to the experiment.

of each commit message generated during the experiment in an array Cost.
Our goal is to compute a lower bound on the expected value of Cost(t) after running the experiment

for sufficiently many rounds. Recall that the amount of MACs, signatures, and public keys contained in
commit messages is at most logarithmic in N . Thus, Cost(t) is dominated by the number of ciphertexts
that have to be generated when calling rekey-path (see Figure 2) to communicate the new secret keys on the
committer u-snd’s path to the other users. Accordingly, we can bound the communication cost from below
by

Cost(t) ≥
∑

vi∈co-path(vu-snd)

|Res(vi)|,

the sum of resolution sizes on the committer’s co-path, and in our analysis it suffices to derive a bound for
this expression.

4.2 Expected Number of Blanks

Recall that the resolution of a node is determined by which of its descendants are blank. In this section we
compute the expected probability of nodes at a certain depth being blank in the ratchet tree generated by
experiment Exp-Prop-Com.

Expressing blanks as a Markov chain. Consider the sequence (Ti)
t
i=1 of ratchet trees generated by

experiment Exp-Prop-Com, where Ti is the tree all users store as part of their state after the ith call to round
function Round. For a fixed internal node v we can define a random variable (Bi(v))

t
i=0 taking values in

{0, 1} where 0 corresponds to being a populated node and 1 to v being blank. We write Bi instead of Bi(v)
when there is no ambiguity. We observe that (Bi)

t
i=0 forms a Markov chain. Indeed, v transitioning from

blank to populated or vice versa only depends on the choice of the user UP and UC issuing proposals or
commits in the current round. Since the chain is clearly irreducible, it has a unique stationary distribution.
Denoting by pb→b′ the probability of the node switching from state Bi = b to Bi+1 = b′, the transition
matrix of (Bi)

t
i=0 with respect to state vector (0, 1)⊤ is given by

M =

(
p0→0 p1→0

p0→1 p1→1

)
.

15



The eigenvalues of M are given by p0→0 − p1→0 and 1 and an eigenvector of one-norm 1 with eigenvalue 1,
corresponding to the stationary distribution, is given by(

p1→0

p1→0 + p0→1
,

p0→1

p1→0 + p0→1

)⊤

. (1)

Analyzing the stationary distribution of (Bi)
t
i=0. Consider the state Bi of node v at the end of

round i. If Bi = 1 (i.e., v is blank at the end of round i), then after the proposals UP and commits UC of
round i+ 1 have happened Bi+1 will remain blank exactly if none of the users in UC have v as an ancestor.
Further, if Bi = 0 (i.e., v is a populated node at the end of round i), then Bi+1 will remain non-blank unless
at least one of the users in UP has v as an ancestor while none of the users in UC do. Thus, if we denote

pP := Pr[v ∈ ancs(UP )] and pC := Pr[v ∈ ancs(UC)]

we have that p1→0 = pC and by independence of the choice of proposer and committer that p0→1 = (1−pC)pP .
By Equation 1 we obtain that the stationary distribution of a node being blank is given by

blanksMLS :=

(
pC

pC + pP (1− pC)
,

pP (1− pC)

pC + (1− pC)pP

)⊤

∈ [0, 1]2. (2)

We now compute the probability of v being an ancestor of a proposing or committing leaf, respectively.
Assume v is at depth depth(v) = d. Then T has N2−d many leaves that are in ancs(v). Therefore there are
N(1− 2−d) many leaves that are not in ancs(v) which implies that

pP = Pr[v ∈ ancs(UP )] = 1− Pr[v /∈ ancs(UP )] = 1−
(
N(1−2−d)

P

)(
N
P

) .

Analogously,

pC = Pr[v ∈ ancs(UC)] = 1− Pr[v /∈ ancs(UC)] = 1−
(
N(1−2−d)

C

)(
N
C

) .

Using Equation 2 we have shown the following.

Lemma 4.1. For an execution of experiment Exp-Prop-Com and internal node v of depth depth(v) = d let
(Bi)i = (Bi(v))i be defined as above. Then the probability that v is blank in the stationary distribution B =
blanksMLS is

E[B(v) = 1] =

(
1− (N(1−2−d)

P )
(NP )

)
(N(1−2−d)

C )
(NC)

1− (N(1−2−d)
C )
(NC)

(N(1−2−d)
P )
(NP )

. (3)

Before turning to computing a lower bound on the expected commit size in experiment Exp-Prop-Com
we look at some simple cases:

When P = 1 = C, we have that pP = 2−d = pC . Therefore,

E[B(v) = 1] = (1− 2−d)/(2− 2−d) ≈ 1/2 for d large enough.

If P + C = O(1),

E[B(v) = 1] ≈ (1− (1− 2−d)P )(1− 2−d)C

1− (1− 2−d)P (1− 2−d)C

≈ (1− (1− P2−d))(1− C2−d)

1− (1− (P + C)2−d)

≈ P

P + C
for d large enough. (4)

In both examples we see a constant probability that a node is blank which, intuitively, means that a
commit should have a high upload cost. We formalize this in the next section.

16



4.3 Lower Bound on Sent Ciphertexts

In this section we prove a lower bound on MLS’s communication cost for sequences of operations generated
by Exp-Prop-Com. As it turns out, already a constant number of proposals per commit leads to commits
being exponential in n = log(N), a far shot from the best case communication complexity. More precisely
we will prove the following.

Theorem 4.2. If P+C = O(1) and t > 2N2 log(N), then there exists a constant ε > 0 such that the expected
cost of a commit after Experiment Exp-Prop-Com(n, P,C, t) (Figure 4) satisfies the following inequality:

E[Cost(t)] ≥ Ω(N log2(1+(1−ε) P
P+C )).

Before proving this result, we show a weaker result that already gives some of the main ideas used
in the proof of Theorem 4.2. We start by studying the size of the resolution of a node vd at depth d ∈
{1, . . . , log(N)− 1}:

E[|Res(vd)|] ≥ E[|Res(vd)| | B(vd) = 0] Pr[B(vd) = 0]

+ E[|Res(vd)| | B(vd) = 1] Pr[B(vd) = 1]

= Pr[B(vd) = 0]

+ E[|Res(right(vd))|+ |Res(left(vd))| | B(vd) = 1] Pr[B(vd) = 1]

= Pr[B(vd) = 0]

+ 2E[|Res(left(vd))| | B(vd) = 1] Pr[B(vd) = 1].

One can show that
E[|Res(left(vd))| | B(vd) = 1] ≥ E[|Res(left(vd))|]. (5)

This implies that for a node vd at depth d ∈ {1, . . . , log(N)− 1},

E[|Res(vd)|] ≥ Pr[B(vd) = 0] + 2E[|Res(left(vd))|] Pr[B(vd) = 1].

A recursive application of this inequality yields

E[|Res(vd)|] ≥ 1 +

log(N)−d−1∑
i=0

2i
i∏

j=0

Pr[B(vd+j) = 1].

Now let’s assume that P = 1 = C. We know that for d ≥ 3, E[B(v) = 1] ≈ 1/2. Therefore we obtain
that

E[Cost(t)] ≥
log(N)∑
d=3

(1 +

log(N)−d−1∑
i=0

1/2)

= log(N)− 2 +

log(N)∑
d=3

(log(N)− d)/2

= log(N)− 2 + (log(N)− 3)(log(N)− 2)/4

≊ log2(N)/4− log(N)/4.

A similar computation when P + C = O(1) and P > C shows E[Cost(t)] = Ω(N log2(
2P

P+C )).
The gap between these bounds and the one stated in Theorem 4.2 is due to Equation 5 being non-tight.

This is solved by studying how the size of the resolution of a node grows when several of its ancestors are
blank.

17



Proof of Theorem 4.2. In order to prove the theorem we first establish some helpful results. Let’s
consider the random variable |Res(v)| that denotes the size of the resolution of a node v. This corresponds to
the number of ciphertexts that have to be uploaded when a commit includes a fresh key for v’s parent. The
central idea of the lower bound is to relate the expected resolution size of a node to the expected resolution
size of its children, and iterate this expectation in order to get a lower bound that’s exponential in log(N).
In the proof, we keep conditioning on an increasingly complicated event, and only consider the probability
of a node being blank conditioned on this event. This allows us to argue using a local property whereas the
resolution size of a node depends on the entire subtree of the node.

We now introduce some notation. Let Anc-blt(d, v) be the event that all ancestors of v up to depth d are
blank after the experiment ends. We usually drop the subindex t as we do with the other random variables
considered in this section. When the node v is clear from context, we write Anc-bl(d). Let va denote the
ancestor of v such that depth(va) = d. We use Tsub to denote the full binary subtree with root va and leaves
the nodes in T that have va as an ascendant and have the same depth as v. Let n′ be the number of leaves
in Tsub. Notice that n′ = 2depth(v)−d.

Lemma 4.3. Let X ∼ Geo(q) be distributed according to the geometric distribution with q ∈ (0, 1) and let
Z = X mod (P +C). Let i, j ∈ {1, 2, . . . , P +C}. Let s be an integer multiple of P +C, i.e. s = m(P +C)
for some m > 0. Then,

Pr[Z = i | X ≤ s] ≥ (1− q)P+C−1 Pr[Z = j | X ≤ s].

Proof. This is an almost immediate consequence of some elementary computation with finite geometric series.
Let i, j ∈ {1, 2, . . . , P + C}. Notice that

Pr[Z = i | X ≤ s] =
1

1− (1− q)s

m−1∑
h=0

(1− q)(P+C)h+i−1q

=
1

1− (1− q)s
(1− q)i−1q

m−1∑
h=0

(1− q)(P+C)h.

Now, notice that the only factor that depends on i is (1 − q)i. The result follows from the observation
that (1− q)i−j ≥ (1− q)P+C−1.

We now introduce the event All-act. Intuitively, All-act simply states that all users in Tsub acted relatively
recently. We’ll later show that All-act happens with overwhelming probability. More precisely, All-act simply
states that if we look at the last 2N2 logN actions in T, ordered from the most recent to the least recent,
there’s a new user from Tsub in every at most 2N logN steps.

In other words, we’re conditioning on the following event: Let Xi be the random variable denoting how
many actions it takes for the ith user to appear after the (i− 1) previous users already did. All these users
must be different. We’re assuming that Xi ≤ 2N logN for every i ∈ {1, 2, . . . , n′}. More formally, we’ll
condition on Xi being less than some s ≥ 2N logN that is a multiple of P + C, but we omit this since it
doesn’t affect the proof and introduces unnecessary notation.

Now, we analyze that the probability of v being blank conditioned on all of its ancestors up to depth d
being blank and All-act.

Lemma 4.4. Let ε > 0 and d ∈ N such that ε ≥ 2depth(v)−d+1(P + C − 1)/N where v is a node at depth
depth(v) > d. Then,

Pr[B(v) = 1 | All-act,Anc-bl(d)] ≥ 1

2
(1 + (1− ε)

P

P + C
).

Proof. We describe an experiment that will help us determine the probabilities of possible states of Tsub.
For i ∈ [n′], let Xi ∼ Geo(qi) where qi = n′−i+1

N ≤ 2depth(v)−d/N . Intuitively, Xi corresponds to the
number of actions that occurred after the action corresponding to Xi−1 until a “new” member acted on the
tree.

18



Define Yi :=
∑i

k=1 Xk mod (P+C). By linearity, we have that Yi = Xi+Yi−1 mod (P+C). Intuitively,
the Yi’s help us track whether this action was a commit or a proposal. More formally, notice that if Yi ≤ C,
then the user that acted ith from last committed, and if C + 1 ≤ Yi ≤ P + C the user proposed. We also
have that the Yi’s form a Markov chain, i.e. Yi conditioned on Yi−1 is independent of the previous Yk’s.

Moreover, we sample a uniformly random string of length n′ elements in order to assign each leaf node
to a position. For example, σ = 312 (σ(1) = 3, σ(2) = 1, σ(3) = 2) would mean that the leftmost user was
the first to act, the ‘central’ user was last to act and the third user acted second. Notice that σ(1) tells us
the position in which v acted and σ(2) tells us the position in which sib(v) acted. For example, σ(1) = 2
would imply that the action on node v was second to last on Tsub. Notice that σ cannot repeat elements.
Now we study the probability that v is blank conditioned on the events All-act and Anc-bl(d):

Pr[B(v) = 1 | All-act,Anc-bl(d)]

= Pr[B(v) = 1 | All-act,Anc-bl(d), σ(1) < σ(2)] Pr[σ(1) < σ(2) | All-act,Anc-bl(d)]

+ Pr[B(v) = 1 | All-act,Anc-bl(d), σ(1) > σ(2)] Pr[σ(1) > σ(2) | All-act,Anc-bl(d)].

We have that Pr[σ(1) < σ(2) | All-act,Anc-bl(d)] = 1
2 , as which node comes later is clearly independent of

All-act,Anc-bl(d) due to symmetry. Moreover, if σ(1) < σ(2), i.e. v acts later than sib(v), we have that v is
blank since p(v) is blank as we’re conditioning on Anc-bl(d). Thus, we have that

Pr[B(v) = 1 | All-act,Anc-bl(d)]

=
1

2
(1 + Pr[B(v) = 1 | All-act,Anc-bl(d), σ(1) > σ(2)]).

For the rest of the proof, we’ll prove that

Pr[B(v) = 1 | All-act,Anc-bl(d), σ(1) > σ(2)] ≥ (1− ε)
P

P + C

Before we get into the details, let’s explain the intuition behind the proof. The proof rests on the observation
that if Xk ∼ Geo(q) for small q, Xk mod (P +C) is close to a uniform random variable. Moreover, Xk and
Yk−1 are independent, so Yk = Xk + Yk−1 mod (P +C) is also close to being a uniform distribution. Thus,
no matter what complicated event we’re conditioning on, the probability that 1 + C ≤ Y ≤ P + C will be
approximately P

P+C .
Let f(y1, y2, . . . , yn′ , σ) be a predicate that returns 1 if the assignment is compatible with Anc-bl(d), σ(1) >

σ(2) and 0 otherwise. Let Z = Pr[All-act,Anc-bl(d), σ(1) > σ(2)]. For notational simplicity, we’ll write
∑

instead of
n′∑
k=1

∑
σ∈Sn′
σ(1)=k

P+C∑
y1=1

P+C∑
y2=1

. . .

P+C∑
yk−1=1

P+C∑
yk+1=1

. . .

P+C∑
yn′=1

in what follows. Also for notational convenience, we omit the conditioning on All-act, even though it’s
implicit in every probability we write. Then, we have that Pr[B(v) = 1 | All-act,Anc-bl(d), σ(1) > σ(2)] is
equal to

1

Z

∑ P+C∑
yk=1+C

f(y1, y2, . . . , yn′ , σ)
1

(n− 1)!
Pr[Y1 = y1]

n′∏
l=2

Pr[Yl = yl | Yl−1 = yl−1], (6)

where we used the Markov property of the Yk’s. Also notice that since we’re interested in the probability
of v being blank, we’re only summing up the values in the support of Yk that start from C + 1, so we are
ignoring the first C values. Again, for notation simplicity, we introduce a new variable

ρ := Pr[Y1 = y1]
∏

l>1,l ̸=k,l ̸=k+1

Pr[Yl = yl | Yl−1 = yl−1].

19



Rearranging Equation 6, we get

1

Z

∑ 1

(n− 1)!
ρf(y1, y2, . . . , yn′ , σ)

·
C+P∑

yk=1+C

Pr[Yk+1 = yk+1 | Yk = yk] Pr[Yk = yk | Yk−1 = yk−1]

Let’s now argue why it was possible to take f(y1, y2, . . . , yn′ , σ) out of the sum, i.e. why it’s independent of
Yσ(1). If σ(1) < σ(2), f(y1, y2, . . . , yn′ , σ) = 0 no matter what Yk is. If σ(1) > σ(2), σ(1) has no effect on its
ancestors, so Yk doesn’t matter for Anc-bl(d). Now, notice that if we instead sum all values in the support
of Yk, we have by the law of total probability that

1 =
1

Z

∑ 1

(n− 1)!
ρf(y1, y2, . . . , yn′ , σ)

·
P+C∑
yk=1

Pr[Yk+1 = yk+1 | Yk = yk] Pr[Yk = yk | Yk−1 = yk−1]

Moreover, using the Markov property of the Yi, we have that

Pr[Yk+1 = yk+1 | Yk−1 = yk−1]

=

P+C∑
yk=1

Pr[Yk+1 = yk+1 | Yk = yk, Yk−1 = yk−1] Pr[Yk = yk | Yk−1 = yk−1]

=

P+C∑
yk=1

Pr[Yk+1 = yk+1 | Yk = yk] Pr[Yk = yk | Yk−1 = yk−1] (7)

Thus, it suffices to show that

P+C∑
yk=1+C

Pr[Yk+1 = yk+1 | Yk = yk] Pr[Yk = yk | Yk−1 = yk−1]

≥ (1− ε)
P

P + C
Pr[Yk+1 = yk+1 | Yk−1 = yk−1].

Let tmax := argmaxt Pr[Yk+1 = yk+1 | Yk = t] Pr[Yk = t | Yk−1 = yk−1]. Notice that

Pr[Yk+1 = yk+1 | Yk = tmax] Pr[Yk = tmax | Yk−1 = yk−1]

≥ 1

P + C
Pr[Yk+1 = yk+1 | Yk−1 = yk−1] (8)

which follows from Equation 7. Then, by Lemma 4.3 (observe that Xk is bounded because of the event
All-act), for any 1 + C ≤ t ≤ P + C, we have that

Pr[Yk+1 = yk+1 | Yk = t] Pr[Yk = t | Yk−1 = yk−1]

≥ Pr[Yk+1 = yk+1 | Yk = tmax] Pr[Yk = tmax | Yk−1 = yk−1](1− q)2(P+C−1)

≥ (1− 2q(P + C − 1))
1

P + C
Pr[Yk+1 = yk+1 | Yk−1 = yk−1]

≥ (1− ε)
1

P + C
Pr[Yk+1 = yk+1 | Yk−1 = yk−1]

20



where the second inequality follows from Lemma 2.2 and Equation 8. The last inequality follows from the
assumption that ε ≥ 2depth(v)−d+1(P + C − 1)/N and the fact that q ≤ 2depth(v)−d/N . Thus,

P+C∑
t=1+C

Pr[Yk+1 = yk+1 | Yk = t] Pr[Yk = t | Yk−1 = yk−1]

≥ (1− ε)
P

P + C
Pr[Yk+1 = yk+1 | Yk−1 = yk−1].

We thus conclude the proof.

We have two more lemmata left to prove before moving onto combining our results.

Lemma 4.5. Assuming at least 2N2 log(N) actions took place, Pr[All-act] ≥ 1− 1
N .

Proof. Notice that for any i ∈ {1, . . . , N},

Pr[Xi > 2N logN ] ≤ (1− 1

N
)2N logN ≤ exp(−2 log(N)) = N−2.

Then, Pr[All-act] ≥ 1− 1
N by the union bound over all the Xi .

Lemma 4.6. Let ε > 0 and d ∈ N such that ε ≥ 2−d(P + C − 1) and consider a node v such that
log(N)− 1 ≥ depth(v) > d. Then, we have that

E[|Res(v)| | All-act,Anc-bl(d)]

≥ (1 + (1− ε)
P

P + C
)E[|Res(left(v))| | All-act,Anc-bl(d, left(v))].

Proof. Observe that ε ≥ 2depth(v)−d+1(P + C − 1)/N since log(N)− 1 ≥ depth(v). By Lemma 4.4, we have
that

E[|Res(v)| | All-act,Anc-bl(d, v)]

≥ E[|Res(v)| | All-act,Anc-bl(d, v), B(v) = 1]·
· Pr[B(v) = 1 | All-act,Anc-bl(d, v)]

≥ E[|Res(v)| | All-act,Anc-bl(d, v), B(v) = 1]
1

2
(1 + (1− ε)

P

P + C
)

= 2E[|Res(left(v))| | All-act,Anc-bl(d, v), B(v) = 1]
1

2
(1 + (1− ε)

P

P + C
)

= E[|Res(left(v))| | All-act,Anc-bl(d, left(v))](1 + (1− ε)
P

P + C
).

We are now ready to prove the section’s main theorem.

Proof of Theorem 4.2. Let v be any node at depth d(v) = d and let ε > 0 be a small constant such that
ε ≥ 2−d(P + C − 1). The fact that such d and ε exist follows from the assumption that P + C = O(1). We

show that the expected resolution size of v is Ω(N log2(1+(1−ε) P
P+C )). Since any commit will have a node of

said depth in its copath, this is sufficient for the proof. We start with the simple observation that

E[|Res(v)|] ≥ E[|Res(v)| | All-act, B(v) = 1] Pr[All-act, B(v) = 1]

= 2E[|Res(left(v))| | All-act,Anc-bl(d, left(v))] Pr[All-act, B(v) = 1].

21



We use Lemma 4.5 in order to obtain that

Pr[All-act, B(v) = 1] ≥ Pr[B(v) = 1]− Pr[¬All-act]

≥ Pr[B(v) = 1]− 1

N
.

It follows from repeatedly applying Lemmata 4.6 and 4.1 that

E[|Res(v)|]

≥ 2(Pr[B(v) = 1]− 1

N
)E[|Res(left(v))| | All-act,Anc-bl(d, left(v))]

≥ 2(Pr[B(v) = 1]− 1

N
)(1 + (1− ε)

P

P + C
)log2 N−d(left(v))

≥ Ω



(
1− (N(1−2−d)

P )
(NP )

)
(N(1−2−d)

C )
(NC)

1− (N(1−2−d)
C )
(NC)

(N(1−2−d)
P )
(NP )

− 1

N

(1 + (1− ε)
P

P + C

)log2 N−d

.

We make use of Equation 4 and the expression above simplifies to E[Cost(t)] ≥ Ω(N log2(1+(1−ε) P
P+C )), as

desired.

The proof above does not explicitly state the constant that appears in the lower bound of E[Cost(t)] =
Ω(N log2(1+(1−ε) P

P+C )). However, one can obtain an explicit constant from the proof. For instance if P = 1 =
C, one can take ε = 1/8 and then for a node v3 at depth 3 and a node v4 at depth 4, the proof shows that

E[|Res(v3)|] ≥ 2 · 1/2 · (1 + (1− 1/8) · 1/2)log2 N−3−1

E[|Res(v4)|] ≥ 2 · 1/2 · (1 + (1− 1/8) · 1/2)log2 N−4−1.

This implies that

E[Cost(t)] ≥ E[|Res(v3)|] + E[|Res(v4)|]
≊ 0.39 ·N0.52.

For small values of N the previously shown bound of log2(N)/4− log(N)/4 is more relevant.

5 MLS-Cutoff: an Alternative Method for Update Proposals

We introduce MLS-Cutoff a protocol variant of MLS that achieves better communication complexity under
random sequences of operations as defined in experiment Exp-Prop-Com. As discussed in the previous section,
blanking the path of users issuing an update proposals already for a small constant number of proposals leads
to a constant fraction of the tree’s node being blank on expectation, which in turn substantially negatively
impacts the size of commit messages.

To prevent introducing blanks in the tree, one could have users perform a rekey-path operation with every
update proposal. In fact, this is the approach taken by the continuous group-key agreement scheme Co-
CoA [AAN+22]. However, taking this approach has two downsides, both due to the fact that proposals can
be issued concurrently, meaning users make concurrent modifications to the ratchet tree.

1. If two users u1, u2 rekey their path concurrently, u1 will encrypt a path secret sj under a public known
to u2 that is supposed to be replaced by u2’s rekey operation. As a consequence CoCoA suffers from
slower PCS. In MLS, if every compromised user issues an update proposal and another user commits
to the proposals, then the new application secret will be secure. In CocoA, on the other hand, it can
take up to depth(T) rounds to recover from compromise.

22



2. Concurrently rekeying paths prevents users to compute and sign parent hashes, as they cannot an-
ticipate which keys will be placed in the sub-trees rooted at their co-path nodes. (Recall that the
parent-hash value of node v is computed with respect to the tree-hash of its sibling sib(v).) As a con-
sequence, CoCoA only achieves semi-active but neither active [ACJM20] nor insider security [AJM22].

We observe that the issues above only occur from the point on where u1 and u2’s update paths meet. Further,
if the number of issued update proposals is small, with high probability the users’ update paths merge high
up in the tree. Our protocol MLS-Cutoff makes use of this observation by having update proposals only
re-key the path up to a certain point. Looking ahead, proposals do not affect the log(depth(T)) topmost
levels of the tree. Still, when applying the proposals it can be the case that a node is affected by more than
one rekey operation if the issuing users are situated close enough in the tree. In this case we have to resort
to blanking the node. This turns out to be sufficient to prevent the two issues outlined above.

5.1 Protocol Description

In this section we discuss the modifications MLS-Cutoff makes to the MLS protocol and defer its formal
description to Appendix B.2. MLS-Cutoff differs in two aspects from MLS, namely how update proposal
messages pmsg are generated, and how proposals are applied to the ratchet tree using apply-props.

The protocol is parameterized by a cutoff parameter icut. CGKA.Prop works the same as before for
removals or additions of users. When issuing an update, however, the user creates a copy T′ of the ratchet
tree and calls the path rekeying function (see Figure 3) to obtain

(T′,UpdPath)← rekey-path(vu, icut).

The proposal message pmsg = (‘upd’,UpdPath) is framed and communicated to the rest of the group, and
T′ stored as a pending update.

Commit operations work in the same way as in MLS, except for using a modified subroutine apply-props in
step 2a. For an overview on apply-props see Figure 5). The function modifies the copied tree T′ and processes
removals and additions in the same way as MLS, i.e., by blanking the leaf and path of removed users and
adding added users as unmerged leaves. Update proposals (‘upd’,UpdPath) from issuing user u-snd are
processed by first updating the keys of affected nodes. More precisely, the public keys pk0, . . . , pkℓ−icut
contained in UpdPath are used to replace the ones on u-snd’s update path (v1, . . . , vℓ) = path(v0), where
v0 = vu-snd. Further, the processing user u recovers all secret keys they should have access to, i.e., the ones
from the least common ancestor vj of vu and vu-snd up to vℓ−icut (if the vj is above vℓ−icut no secret keys are
recovered), and assigns them to the corresponding nodes. This is abstracted as helper function recover-sks
in Figure 5 that takes as input T′ and ciphertext collection Cj and returns the updated view of T′ with
replaced secret keys.

After the keys of nodes affected by pmsg have been updated, apply-props blanks nodes if necessary. I.e., all
nodes (vℓ−icut+1, . . . , vℓ) on u-snd’s update path after the cutoff point are blanked. Further, nodes affected
by at least two update proposals are blanked as well. To this end the function keeps track of a set Vcol

containing all nodes the keys of which have been replaced so far, that is updated at the end of processing
pmsg.

After having executed the alternative version of apply-props in step 2a the commit algorithm CGKA.Com
proceeds in the same way as MLS. In particular, in step 2b the committing user issues a full path rekey
operation rekey-path(u, 0), which establishes a new root secret.

Commits to a collection of proposals are processed in the analog way to MLS,i.e, the only difference being
the use of the modified apply-props function.

5.2 Security

MLS-Cutoff achieves the same level of security as MLS. More formally in Appendix B.2 we prove the following
theorem

23



Algorithm apply-props(T′,PMSG)
00 if exists ((‘upd’, ad), u-own) = pmsg ∈ PMSG \\own proposal

01 T′ ← pendUpd(pmsg) \\recover corresponding tree

02 Vcol ← ∅ \\set collecting potential collisions

03 for pmsg ∈ PMSG:
04 parse ((‘type’, ad), u-snd)← pmsg
05 if (‘type’, ad) = (‘upd’,UpdPath)
06 if u-snd = u-own \\own proposal already handled

07 skip to next pmsg
08 \\rekey nodes
09 parse (pk0, (pk1, C1), . . . , (pkℓ−icut , Cℓ−icut)← UpdPath
10 v0 ← vu-snd
11 (v1, . . . , vℓ)← path(v0)
12 for j = 0, . . . , ℓ− icut
13 vj .pk← pkj
14 if vj = lca(vu-own, vu-snd) \\ least common ancestor

15 T′ ← recover-sks(T′, Cj) \\recover secret keys

16 \\blank nodes
17 for j ∈ {1, . . . , ℓ− icut}
18 if vj ∈ Vcol \\blank collisions

19 blank(vj)
20 for j ∈ {ℓ− icut + 1, . . . , ℓ} \\blank remainder of path

21 blank(vj)
22 Vcol ← {v1, . . . , vℓ} \\update collision set

23 \\process removes, adds as before
24 else if (‘type’, ad) = (‘rem’, u-rem):
25 blank-leaf(T′, vu-rem) \\blank u-rem’s leaf

26 for v ∈ path(vu-rem) \\blank u-rem’s path

27 blank(v)
28 T′ ← truncate(T′) \\truncate tree if necessary

29 else if (‘type’, ad) = (‘add’, (u-add, pk)):
30 add-leaf(T′, u-add, pk) \\assign u-rem leaf

31 for v ∈ path(vu-add) \\set vu-add as unmerged

32 v.unm←∪ {vu-add}
33 return T′

Figure 5: Applying proposal messages in MLS-Cutoff. The function’s formal description is in Figures 23.
We assume PMSG is ordered with update proposals followed by removals, followed by adds.

Theorem 5.1. If Pke is IND-CCA2 secure, Sig is SEUF-CMA secure and calls to H1,H2, H and Mac
are replaced by calls to a random oracle G, then MLS-Cutoff securely realizes (F I

AS,F I
KS,FCGKA) in the

(FAS,FKS,G)-hybrid model.

We provide some intuition on why the result holds. As MLS-Cutoff closely resembles MLS we are able
to largely rely of the security proof of [AJM22]. The recent work of Cremers et al. [CGWZ25] shows that
the signature scheme used must be SEUF-CMA secure rather than just EUF-CMA secure as originally
stated in [AJM22], though their security proof already made use of SEUF-CMA security implicitly. We
note that while in MLS-Cutoff update proposals lead to modifications to ratchet tree nodes beyond users’
personal leaves, it preserves the following property. For an update issuing user u denote their leaf by v0,
consider their update path (v1, . . . , vℓ), and assume that the keys of nodes v1, . . . , vk have been replaced
after processing a commit to the update proposal and vk+1, . . . , vℓ have been blanked. Then all sub-trees
rooted at the nodes sib(v0), ..., sib(vk) must be in the same state as they were when the update proposal
was issued. Indeed, would this not be the case for one of the nodes, then it would have caused a collision
of update proposals and been blanked. This has the consequence that, on the one hand, keys being added
to the tree cannot be encrypted under a public key that was concurrently being replaced, and, on the other
hand, that the added nodes are compatible with the parent hash mechanism.

24



5.3 Upper Bounds on the Update Cost

We compute an upper bound on the communication complexity of MLS-Cutoff for sequences of operations
as produces in experiment Exp-Prop-Com. We focus on the case C = 1, as the performance for C ≥ 1 is even
better.

Expected number of blanks in MLS-Cutoff’s ratchet tree. LetN = 2n, t ∈ N, C = 1, and let P ∈ N be
constant. Consider an execution of Exp-Prop-Com(n, P,C, t) with respect to CGKA MLS-Cutoff. As in Sec-
tion 4.2 consider the sequence (Ti)

t
i=1 of ratchet trees generated after the ith application of Exp-Prop-Com’s

round function. For a fixed internal node v we can define a random variable (Bi(v))
t
i=0 taking values in

{0, 1} where 0 corresponds to being a populated node and 1 to v being blank. We write Bi instead of Bi(v)
when there is no ambiguity. We note that all users have filtered paths of length n.

Now consider a node v below the cutoff bound icut, meaning that v’s dept d = depth(v) ≥ icut, which
implies that v is re-keyed if one of its descendant leaves issues an update proposal. We observe that, again,
(Bi)i forms a Markov chain, since the node switching from blank or vice versa only depends on the question,
whether it is affected by update proposals and/or commits.

More precisely v moves from blank to populated if it is affected by the commit or by exactly one update
proposal, and from populated to blank if it is not affected by the commit and at least two update proposals.

p1→0 = Pr[v ∈ ancs(UC) ∨ |{u ∈ UP : v ∈ ancs(vu)}| = 1]

p0→1 = Pr[v /∈ ancs(UC) ∧ |{u ∈ UP : v ∈ ancs(vu)}| ≥ 2].

Thus, we have

p1→0 = Pr[v ∈ ancs(UC)] + Pr[|{u ∈ UP : v ∈ ancs(vu)}| = 1]

− Pr[v ∈ ancs(UC) ∧ |{u ∈ UP : v ∈ ancs(vu)}| = 1]

= 1−
(
N(1−2−d)

C

)(
N
C

) + P (1− 2−d)P−12−d − (1−
(
N(1−2−d)

C

)(
N
C

) )P (1− 2−d)P−12−d

= 1 + (P (1− 2−d)P−12−d − 1)

(
N(1−2−d)

C

)(
N
C

) ,

and

p0→1 = Pr[v /∈ ancs(UC)] Pr[|{u ∈ UP : v ∈ ancs(vu)}| ≥ 2]

=

(
N(1−2−d)

C

)(
N
C

) (1− (1− 2−d)P − P2−d(1− 2−d)P−1).

Observe that for C = 1 and d sufficiently large this simplifies to

p1→0 ≊ 1− (1− 2−d) = 2−d

and

p0→1 ≊ 1− (1− 2−d)P − P2−d(1− 2−d)P−1 ≊ P (P − 1)2−2d

By Equation 1 we obtain that the probability of v being blank in the stationary distribution (when
d = depth(v) ≥ icut) is given by

E[B(v) = 1] =
p0→1

p1→0 + p0→1
≊

P 22−2d

2−d + P 22−2d
≊

P 22−d

1 + P 22−d
∈ O

(
P 2

2d

)
. (9)

25



As a consequence, the ratchet tree exhibits on expectation a constant amount of about P 2 blank nodes on
level d.

Now consider a node v above the cutoff bound icut, i.e., d = depth(v) < icut This implies that v changes
from populated to blank if and only if (at least) one of its descendant leaves issues an update proposal and
none of them issue a commit, whereas v changes from populated to blank if and only if at least one of them
issues a commit. Using similar arguments to previous ones, we obtain that

p1→0 = Pr[v ∈ ancs(UC)] = 1−
(
N(1−2−d)

C

)(
N
C

)
and

p0→1 = Pr[v /∈ ancs(UC) ∧ v ∈ ancs(UP )] =

(
N(1−2−d)

C

)(
N
C

) (
1−

(
N(1−2−d)

P

)(
N
P

) )
.

If C = 1 this simplifies to

p1→0 = 2−d,

p0→1 ≊ (1− 2−d)(1− (1− 2−d)P ) ≊ (1− 2−d)P2−d.

By Equation 1 we obtain that the probability of v being blank in the stationary distribution (when d =
depth(v) < icut) is given by

E[B(v) = 1] =
p0→1

p1→0 + p0→1
≊

(1− 2−d)P2−d

2−d + (1− 2−d)P2−d
∈
[
0,

P

1 + P

]
. (10)

Bounding |Res(v)|. The size of the resolution of a node v can be bounded by the number of blank nodes
in the subtree rooted at v plus one. If C = 1, we use this simple fact and Equations 9 and 10 in order to
obtain that for nodes of d = depth(v) ≥ icut

E[|Res(v)|] ≤ 1 +

d+1∑
d′=log(N)

2d
′−d P (P − 1)2−d′

1 + P (P − 1)2−d′

≤ 1 + P (P − 1)2−d(log(N)− d)

and for nodes of d = depth(v) < icut

E[|Res(v)|] ≤ 1 +

icut∑
d′=log(N)

2d
′−d P (P − 1)2−d′

1 + P (P − 1)2−d′ +
d+1∑

d′=icut−1

2d
′−d P

1 + P

≤ 1 + P (P − 1)2−d(log(N)− icut) + 2−d 2
d − 2icut

1− 2

≤ P (P − 1)2−d(log(N)− icut) + 2icut−d

Bounding |pmsg| and |cmsg|. To compute a bound on the communication complexity of MLS-Cutoff
for random sequences of operations, recall that by definition of rekey-path(T′, id, i), if the v0 = vid and
(v1, . . . , vℓ) = path(v0), the amount of ciphertexts is given by

|CTXT| =
ℓ−icut−1∑

j=0

|Res(sib(vi))|.

26



We make use the previous bounds on the size of the resolution of a node and obtain that

E[|CTXT|] =
log(N)∑
d=1

E[|Res(vd)|]

≤
icut−1∑
d=1

(P (P − 1)2−d(log(N)− icut) + 2icut−d)

+

log(N)∑
d=icut

(1 + P (P − 1)2−d(log(N)− d))

≤ P (P − 1)(log(N)− icut) + 2icut + log(N)− icut + 1.

If we set icut = log(n) = log(log(N)), we obtain that

E[|CTXT|] ≤ log(N) + (P (P − 1) + 1) log(N/ log(N)) + 1.

We have shown the following.

Lemma 5.2. Let C = 1, and let P ∈ N be constant. Let t be sufficiently large. For N = 2n set icut =
log(n). Then, on expectation, proposal messages pmsg and commit messages cmsg output by MLS-Cutoff
for sequences of operations as defined by Exp-Prop-Com satisfy

E[|pmsg|] ≤ E[|cmsg|] ∈ O(log(N)).

We point out that the amount of proposals per commit needs to be small compared to the group size N
in order to guarantee a logarithmic communication complexity. Observe that Lemma 5.2 gives a bound
that is asymptotic in N while P is assumed to be constant. If P becomes too large compared to the group
size, the probability of blanks being introduced in the ratchet tree grows. In the extreme case of all users
issuing update proposals, for example, the whole tree is blanked just as in MLS. We point out, that a linear
communication complexity is, however, inherent for this type of ‘massive’ concurrency (Compare, e.g., the
lower bounds of [BDR20]). As a second point, experiment Exp-Prop-Com does not remove users from the
group, which would introduce blanks as well. However, observe that these blanks would be removed at a
faster pace in MLS-Cutoff compared to MLS due to the additional path rekeying in update proposals.

Summing up, we see MLS-Cutoff as an attractive alternative to how update proposals are handled
in MLS, that provides the same security properties, but has an improved communication complexity for
moderate numbers of concurrent update proposals. We consider it an interesting open question to evaluate
its performance in more realistic models.

6 Acknowledgment

We are very grateful to Guillermo Pascual Perez for the helpful conversations on MLS, its different versions
and its consistency mechanisms.

27



References

[AAB+21] Joël Alwen, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval, Karen Klein, Guillermo
Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. Grafting key trees: Efficient key man-
agement for overlapping groups. In Kobbi Nissim and Brent Waters, editors, TCC 2021,
Part III, volume 13044 of LNCS, pages 222–253. Springer, Cham, November 2021.

[AAB+24] Michael Anastos, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval, Matthew Kwan,
Guillermo Pascual-Perez, and Krzysztof Pietrzak. The cost of maintaining keys in dynamic
groups with applications to multicast encryption and group messaging. In Elette Boyle and
Mohammad Mahmoody, editors, TCC 2024, Part I, volume 15364 of LNCS, pages 413–443.
Springer, Cham, December 2024.

[AACN+24] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo Pascual-Perez,
and Krzyzstof Pietrzak. Decaf: Decentralizable cgka with fast healing. In Clemente Galdi and
Duong Hieu Phan, editors, Security and Cryptography for Networks, pages 294–313, Cham,
2024. Springer Nature Switzerland.

[AAN+22] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo Pascual-Perez,
Krzysztof Pietrzak, and Michael Walter. CoCoA: Concurrent continuous group key agreement.
In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume
13276 of LNCS, pages 815–844. Springer, Cham, May / June 2022.

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security notions, proofs,
and modularization for the Signal protocol. In Yuval Ishai and Vincent Rijmen, editors, EU-
ROCRYPT 2019, Part I, volume 11476 of LNCS, pages 129–158. Springer, Cham, May 2019.

[ACDT20] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security analysis and
improvements for the IETF MLS standard for group messaging. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 248–277.
Springer, Cham, August 2020.

[ACDT21] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Modular design of
secure group messaging protocols and the security of MLS. In Giovanni Vigna and Elaine Shi,
editors, ACM CCS 2021, pages 1463–1483. ACM Press, November 2021.

[ACJM20] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Continuous group key agree-
ment with active security. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II,
volume 12551 of LNCS, pages 261–290. Springer, Cham, November 2020.

[AHKM22] Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk. Server-aided continuous
group key agreement. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors,
ACM CCS 2022, pages 69–82. ACM Press, November 2022.

[AJM22] Joël Alwen, Daniel Jost, and Marta Mularczyk. On the insider security of MLS. In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages
34–68. Springer, Cham, August 2022.

[AMT23] Joël Alwen, Marta Mularczyk, and Yiannis Tselekounis. Fork-resilient continuous group key
agreement. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part IV,
volume 14084 of LNCS, pages 396–429. Springer, Cham, August 2023.

[ANPPP23] Benedikt Auerbach, Miguel Cueto Noval, Guillermo Pascual-Perez, and Krzysztof Pietrzak.
On the cost of post-compromise security in concurrent continuous group-key agreement. In
Guy N. Rothblum and Hoeteck Wee, editors, TCC 2023, Part III, volume 14371 of LNCS,
pages 271–300. Springer, Cham, November / December 2023.

28



[BBR18] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM: Asynchronous De-
centralized Key Management for Large Dynamic Groups. https://mailarchive.ietf.org/

arch/attach/mls/pdf1XUH6o.pdf, May 2018.

[BBR+23] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad Omara, and
Katriel Cohn-Gordon. The Messaging Layer Security (MLS) Protocol. RFC 9420, July 2023.

[BCG23] David Balbás, Daniel Collins, and Phillip Gajland. WhatsUpp with sender keys? Analysis,
improvements and security proofs. In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023,
Part V, volume 14442 of LNCS, pages 307–341. Springer, Singapore, December 2023.

[BCK21] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Cryptographic security of the MLS
RFC, draft 11. Cryptology ePrint Archive, Report 2021/137, 2021.

[BCV23] David Balbás, Daniel Collins, and Serge Vaudenay. Cryptographic administration for secure
group messaging. In Joseph A. Calandrino and Carmela Troncoso, editors, USENIX Security
2023, pages 1253–1270. USENIX Association, August 2023.

[BDG+22] Alexander Bienstock, Yevgeniy Dodis, Sanjam Garg, Garrison Grogan, Mohammad Hajiabadi,
and Paul Rösler. On the worst-case inefficiency of CGKA. In Eike Kiltz and Vinod Vaikun-
tanathan, editors, TCC 2022, Part II, volume 13748 of LNCS, pages 213–243. Springer, Cham,
November 2022.

[BDR20] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler. On the price of concurrency in group
ratcheting protocols. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume
12551 of LNCS, pages 198–228. Springer, Cham, November 2020.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security
with global setup. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 61–85.
Springer, Berlin, Heidelberg, February 2007.

[CEST24] Kelong Cong, Karim Eldefrawy, Nigel P. Smart, and Ben Terner. The key lattice framework
for concurrent group messaging. In Christina Pöpper and Lejla Batina, editors, ACNS 24In-
ternational Conference on Applied Cryptography and Network Security, Part II, volume 14584
of LNCS, pages 133–162. Springer, Cham, March 2024.

[CGWZ25] Cas Cremers, Esra Günsay, Vera Wesselkamp, and Mang Zhao. ETK: External-operations
TreeKEM and the security of MLS in RFC 9420. Cryptology ePrint Archive, Paper 2025/229,
2025.

[CHK21] Cas Cremers, Britta Hale, and Konrad Kohbrok. The complexities of healing in secure group
messaging: Why cross-group effects matter. In Michael Bailey and Rachel Greenstadt, editors,
USENIX Security 2021, pages 1847–1864. USENIX Association, August 2021.

[HKP+21] Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas Prest, and Bas West-
erbaan. A concrete treatment of efficient continuous group key agreement via multi-recipient
PKEs. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1441–1462. ACM
Press, November 2021.

[HKP22] Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest. How to hide metadata in mls-like
secure group messaging: Simple, modular, and post-quantum. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’22, page 1399–1412,
New York, NY, USA, 2022. Association for Computing Machinery.

29

https://mailarchive.ietf.org/arch/attach/mls/pdf1XUH6o.pdf
https://mailarchive.ietf.org/arch/attach/mls/pdf1XUH6o.pdf


[KPPW+21] K. Klein, G. Pascual-Perez, M. Walter, C. Kamath, M. Capretto, M. Cueto, I. Markov, M. Yeo,
J. Alwen, and K. Pietrzak. Keep the Dirt: Tainted TreeKEM, Adaptively and Actively Secure
Continuous Group Key Agreement. In 2021 IEEE Symposium on Security and Privacy (SP),
pages 268–284, Los Alamitos, CA, USA, may 2021. IEEE Computer Society.

[Wei19] Matthew A. Weidner. Group Messaging for Secure Asynchronous Collaboration. Master’s
thesis, University of Cambridge, June 2019.

[WHA99] D. Wallner, E. Harder, and R. Agee. Key management for multicast: Issues and architectures.
Request for Comments: 2627, Internet Engineering Task Force, 1999.

[WKHB21] Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and Alastair R. Beresford. Key
agreement for decentralized secure group messaging with strong security guarantees. In Gio-
vanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2024–2045. ACM Press, November
2021.

[WPBB23] Théophile Wallez, Jonathan Protzenko, Benjamin Beurdouche, and Karthikeyan Bhargavan.
TreeSync: Authenticated group management for messaging layer security. In Joseph A. Ca-
landrino and Carmela Troncoso, editors, USENIX Security 2023, pages 1217–1233. USENIX
Association, August 2023.

30



Supplementary material

A Omitted Formal Security Definition

A.1 Public Key Encryption

Definition A.1. A public-key encryption (PKE) scheme is a tuple of efficient algorithms Pke = (Pke.Gen,
Pke.Enc,Pke.Dec) formed by

• a probabilistic key generation algorithm (pk, sk)← Pke.Gen() that outputs a pair formed by a public key
and a secret key,

• a probabilistic encryption algorithm that on input a public key pk and a message m outputs a ciphertext
c← Pke.Enc(pk,m),

• a deterministic decryption algorithm that on input a ciphertext c and a secret key sk outputs a message
m← Pke.Dec(sk, c) or an error value ⊥.

We say it is correct if for all (pk, sk)← Pke.Gen() and all messages m it holds that

Pke.Dec(sk,Pke.Enc(pk,m)) = m.

Now we proceed to define security. For an adversary A and a PKE scheme Pke we consider the following
experiment ExpAPke:

1. sample b ∈←$ {0, 1},
2. sample (pk, sk)←$ Pke.Gen() and give pk to A,
3. A is allowed to make decryption queries in which it sends a ciphertext c and receives Pke.Dec(sk, c),

4. A sends a pair of messages (m0,m1) and receives a challenge ciphertext c∗ ← Pke.Enc(pk,mb)

5. A is allowed to make decryption queries in which it sends a ciphertext c with the condition that c ̸= c∗

and receives Pke.Dec(sk, c),

6. A outputs a bit b′,

7. the output of the experiment ExpAPKE is 1 if b = b′ and 0 otherwise.

Definition A.2. We say that a PKE scheme Pke is IND-CCA2 secure if for all efficient adversaries A

|Pr[ExpAPke = 1]− 1

2
|

is negligible.

A.2 Digital Signatures

Definition A.3. A digital signature is a tuple of efficient algorithms Sig = (GenS,Sign,Vrfy) formed by

• a probabilistic key generation algorithm (svk, ssk) ← GenS() that outputs a pair formed by a public
verification key and a secret signing key,

• a probabilistic encryption algorithm that on input a secret signing key ssk and a message m outputs a
signature σ ← Sign(ssk,m),

• a deterministic verification algorithm that on input a message signature pair (m,σ) and a verification
key svk outputs a boolean value b← Vrfy(svk,m, σ).

31



We say it is correct if for all (svk, ssk)← GenS() and all messages m it holds that

Vrfy(svk,Sign(ssk,m)) = 1.

For an adversary A and a signature scheme Sig we consider the following experiment ExpASig:

1. sample (svk, ssk)← GenS() and give svk to A,
2. A is allowed to make signing queries in which it sends a message mi and receives σi ← Sign(ssk,mi),

3. A outputs a message-signature pair (m∗, σ∗),

4. the output of ExpASig is 1 if for all queries i it holds that (m∗, σ∗) ̸= (mi, σi) and Vrfy(svk,m∗, σ∗) = 1.
Otherwise the output is 0.

Definition A.4. We say that a signature scheme Sig is SEUF-CMA secure if for all efficient adversaries A

|Pr[ExpASig = 1]− 1

2
|

is negligible.

A.3 PKI and CGKA

For the definition of the PKI functionalities see Figures 6 and 7. The reader may find a pseudo-code
description of the ideal functionality FCGKA in Figures 8, 9, 10 and 11. The helpers used to describe
FCGKA can be found in Figures 12, 13, 14, 15 and 16. The reader may find the definition of the
predicates safe(c) and inj-allowed(c, u) in Figure 17.

B Omitted Formal Protocol Descriptions

B.1 Formal description of MLS

In this section we provide pseudocode for the CGKA underlying MLS. Our protocol description closely
follows the one of [AJM22], more precisely the one of protocol ITK, a CGKA introducing fixes to a prior
draft of the MLS protocol that were later adapted into the standard. As the focus on this work is on the
impact of blanking on the protocol’s communication complexity, makes the same simplifying assumptions.
I.e., we focus on the CGKA part of the protocol and do not include its secure messaging layer, assume
a fixed protocol version and cipher suite, and omit features like meta data protection and the additional
proposal types PreSharedKey, ReInit, ExternalInit, GroupContextExtensions and external proposals. As a
minor difference we use the parent hash mechanism as defined in the IETF standard [BBR+23] that slightly
differs from the one used by ITK.

The protocol is defined with respect to public-key encryption scheme Pke = (Gen,Enc,Dec) with key
pairs (pk, sk), signature scheme Sig = (GenS,Sign,Vrfy) with key pairs (svk, ssk), MACMac = (Mac.Tag,Mac.Ver),
key-derivation function the use of which is modeled as hash functions H1,H2, and hash function H.

Protocol state. We list the content of users’ states, as well as the intuition behind additional values
computed throughout the protocol execution in Table 1.

Interaction with KS and AS. Users interact with the key service and authentication service via the
following.

fetch-ssk-if-nec is used to retrieve (and potentially update) a user’s secret signing key (see Figure 18).

get-sks is used to fetch the secret keys of key packages when joining a group (see Figure 7).

fetch-kp: fetches a user’s key package from the KS (See Figure 7).

validate-kp is used to validate key packages (See Figure 18).

Gen-kp generates a key package (Figure 18).

32



state

st.groupID the group identifier
st.ep the current epoch
st.id the user’s leaf identifier
st.T the user’s view of the ratchet tree
st.tHash tree hash of st.T
st.ssk the user’s current secret signing key
st.cert-SPks the signature verification keys associated to each user’s id
st.pendUpd a list of pending updates
st.pendComm a list of pending commits

key schedule stored in state

st.appSec the current epoch’s CGKA group key
st.interim-tranHash the interim transcript hash for the following epoch
st.memKey membership key used to frame protocol messages
st.initSec the next epoch’s initialization secret

additional values

comSec commit secret generated by rekey-path
joinerSec secret for added group members, derived from initSec, comSec
confKey key to tag confirmed transcript hash
conf-TransHash hash encoding operations performed so far

Table 1: Users’ state in MLS.

Ratchet tree state and modifications. The state of nodes in the protocol’s underlying ratchet tree
is listed in Table 2. The table further list functions returning particular properties of the tree, as well as
functions implementing changes to the ratchet tree.

Protocol algorithms. The group creation, commit, process, join and key-recovery algorithms of MLS can
be found in Figure 19. Its proposal algorithm, contrasted against the one of MLS-Cutoff, is in Figure 20. The
algorithms make use of helper functionalities rekey-path, apply-rekey (both in Figure 22), and apply-props.
The latter is in Figure 23, contrasted against its MLS-Cutoff variant.

Further, the protocol employs several additional helper functionalities. While these play an important
role in deriving the key schedule and ensuring consistency and authenticity of protocol messages, they do
not play a role in modifications to ratchet tree’s state, which is the main focus of this work. Thus for formal
definitions of these functions we refer to [AJM22], providing only an overview on their roles below.

init-epoch on input a user’s state st returns a copy st′ of the state with incremented epoch st′.ep = st.ep+1
and empty list of pending updates and commits.

derive-keys on input state st, pending state st′ and commit secret comSec first computes the joiner se-
cret joinerSec from comSec and initSec. From this it computes confirmation key confKey, application
secret appSec, membership key memKey, and updated initialization secret initSec. The latter three are
stored in st′, and the function’s output is (st′, confKey).

derive-epochKeys on input pending state st′ and joiner secret joinerSec computes confKey, appSec, memKey,
and initSec in the same way as derive-keys and returns (st′, confKey, joinerSec).

sign-commit receives as input the state st and value C that contains hashes of the applied commits and the
UpdPath object. It returns a signature σ on the concatenation of C with the group context, id, epoch,
committer leaf id.

33



public state of node v

v.index index of the node
v.pk public PKE key
v.pHash parent hash value
v.unm unmerged leaves
v.svk signature verification key (if v is leaf)
v.cred credential (if v is leaf)
v.kp key package v.kp = (v.pk, v.svk, v.cred) (if v is leaf)

private state of node v

v.sk secret PKE key

tree state

root(T) root of the tree
leaves(T) returns the leaves of T
T.public public part of the ratchet tree
vid leaf associated to leaf identity id
id(v) leaf identity of node v
path(v) direct path from v to the root
fil-path(v) filtered direct path from v0 to the root
lca(u, v) least common ancestor w.r.t filtered paths of leaves u, v
ind-lca(u, v) index (from root) of the least common ancestor w.r.t filtered paths of leaves u, v
Res(v) resolution of node v
roster(T) returns list of leaf IDs

modifications to tree

init-tree creates ratchet tree of size 1
assign-kp(T, id, kp) assigns leaf associated to id key package kp
add-leaf(T, id) assign id leftmost free leaf, doubles size of T if necessary
truncate(T) removes right half of T if it contains no populated leaves
blank-leaf(T, v) sets blank(v) for leaf v
blank-path(T, v, i) calls blank(vj) for vj ∈ path(v) with j ≥ i
set-as-unmerged(T, v0) sets v.unm←∪ {v0} for all v ∈ path(v0)
merge-leaves(T, v0) sets v.unm← ∅ for all v ∈ path(v0)

Table 2: Ratchet tree state and functions modifying the ratchet tree.

34



set-int-transHash on input pending state st′ and confirmation tag confTag computes the interim transcript
hash interim-tranHash as a hash of the confirmed transcript hash stored in st′ and confTag. It stores
the resulting value in st′.

set-conf-trans-hash on input state st, pending state st′, sender id id-snd, C, and signature σ as above
computes the confirmed transcript hash conf-TransHash as a hash of the latter three values and the
interim transcript hash stored in st′. The confirmed transcript hash conf-TransHash is stored in st′.

compute-confTag on input pending state st′ and confirmation key confKey returns a MAC confTag of the
confirmed transcript hash conf-TransHash contained in st′.

verify-confTag on input pending statest′, confirmation key confKey, and confirmation tag confTag verifies
the tag.

frame-prop frames proposal P = (‘type’, ad) by signing and MACing (under the membership key memKey)
P together with group context, group id, epoch, leaf id of the sender.

unframe-prop on input state st and framed proposal pmsg, verifies signature and MAC tag and returns P
as well as the sender id.

frame-comm on input state st, confirmation tag confTag, signature σ (as in sign-commit), and membership
tag memTag frames the commit by appending group id, epoch, and id of the committer.

unframe-comm on input state st and framed commit cmsg, verifies the contained signature and MAC tag.
If both verify it returns the sender’s id, C, the confirmation tag, signature, and the membership tag.

B.2 Formal description of MLS-Cutoff

We provide a formal description of protocol MLS-Cutoff. It is defined with respect to public key encryption
scheme Pke, Signature scheme Sign, message authentication code Mac, hash function H, and a key-derivation
function the use of which is denoted by H1 and H2. The protocol is parameterized by cutoff parameter icut.
The protocol shares most algorithms with MLS differing only in two aspects:

MLS-Cutoff generates proposal messages in a different way. Its proposal algorithm CGKA.Propcan be found
in Figure 20 (right).

MLS-Cutoff uses a different method of applying proposals to the ratchet tree. I.e., algorithms CGKA.Com
and CGKA.Proc make use of the subroutine apply-props of Figure 23 (right).

All remaining aspects are handled as in MLS. I.e., the protocol has the same user state (except for storing
the cutoff bound in st.icut that remains unchanged throughout the protocol execution), uses CGKA.Create,
CGKA.Com, CGKA.Proc, CGKA.Join, and CGKA.Key as defined in Figure 19, and makes use of the subroutines
listed in Appendix B.1 and Figures 22 and 18. Note that when rekeying paths while applying updates
MLS-Cutoff calls apply-rekey with option copySt = True. This means the parent hashes contained in each
update proposal are verified with respect to a tree resulting from applying the modifications to st.T instead of
the pending tree T′. Thus, the contained key package verifies if the update message was honestly generated,
which implies the parent hash was computed with respect to such a tree.

Security of MLS-Cutoff.

Proof of Theorem 5.1. We are able to closely follow the security proof for ITK in [AJM22]. The proof is
divided into two parts. First a sequence of hybrids shows that a version of the MLS protocol (MLS∗) that has
a different parent hash securely realizes FCGKA with a slightly different version of the safe predicate denoted
safe∗. The second step consists in showing that using the actual parent hash guarantees and the actual safe
predicate satisfy the following property: if safe(c) = true, then no node in the ratchet tree of the epoch that
corresponds to c contains an exposed key pk.

We argue that both steps can be adapted to the case of MLS-Cutoff. We consider the following hybrids:

35



• Hybrid H0: Real world.

• HybridH1: Instead of the protocol as in the real world, now we consider a dummy functionality FDummy

that simply routs its inputs and outputs through a simulator S1 that executes the protocol.

• HybridH2: FDummy is substituted by the ideal functionalities FAS,FKS and FCGKA with the only change
that FCGKA uses as predicates safe(c) = false and inj-allowed(c, id) = true. The simulator S2 still
executes the actual protocol.

• Hybrid H3: now FCGKA uses the actual predicate safe∗. The simulator S3 proceeds as before except
that it only sets applications secrets when safe∗(c) = false.

• Hybrid H4: Ideal world. The difference with the previous hybrid consists in also using the actual
predicate inj-allowed. The simulator S4 is the same as S3.

Clearly the first two hybrids are indistinguishable. Let’s argue that H1 and H2 are indistinguishable.
Despite the fact that in MLS-Cutoff update proposals are created differently, we still frame the proposals in
the same way and this guarantees consistency by the same argument as in the proof for MLS.

Concerning H2 and H3 the only change in the argument that has to be made corresponds to the fact that
rekey-path is also used in proposals. Therefore the GSD graph also contains nodes and edges corresponding
to these new keys just as is the case for commits in [AJM22].

The indistinguishability of hybrids H3 and H4 follows from the argument made in [AJM22]. Therefore it
just remains to show that: if safe(c) = true, then no node in the ratchet tree of the epoch that corresponds
to c contains an exposed key pk. Here we make use of the fact that keys ending up in the ratchet tree after
processing commits to update proposals were never encrypted under keys being concurrently updated. In
the inductive step we have to consider an additional case, namely, that in which the node v for which v.pk
has been exposed is set as part of proposal that is included in some commit c and the user who generated
the commit is a user outsider v’s subtree (in the ratchet tree T that corresponds to that commit). We denote
by idc the leaf of the party that generated the commit c.

It may be the case that the parent hash of v, pHashv, cannot be verified by using the parent hash of
its parent v.par in T as it would be the case when v.par is blanked. However, all nodes contained in the
ratchet tree are parent hash valid, as defined in the MLS standard, which uses a slightly modified parent
hash definition compared to ITK.

However the node at which the path of v to the root and the path of idc to the root merge contains a
commitment to the value of pHashv (by definition of par-hash-cochild) which can be verified and this is done
by verify-treeState.

36



Initialization
00 Registered,Exposed← ∅,SSK[∗, ∗]← ⊥,RndCor[∗]← good

Input register-spk from a party u

01 if RndCor[u] = good then (svk, ssk)←$ GenS()

02 else

03 send rnd to the adversary and receive r

04 (svk, ssk)← GenS(r)

05 send (sample-ssk, u) to the adversary and receive (svk, ssk)

06 if RndCor[u] ̸= good then Exposed←∪ {svk}
07 SSK[u, svk]← ssk
08 Registered←∪ {(u, svk)}
09 send (register-spk, u, svk) to the adversary
10 send svk to u
Input (verify-cert, v, svk) from a party u
11 Send (v, svk) ∈ Registered to u
Input (get-ssk, svk) from a party u
12 Send SSK[u, svk] to u
Input (delete-ssk, svk) from a party u
13 SSK[u, svk]← ⊥
Input (register-spk, u, svk) from the adversary

14 if (∗, svk) /∈ Registered then Exposed←∪ {svk}
15 Registered←∪ {(u, svk)}
Input (expose, u) from the adversary

16 Exposed←∪ {svk | SSK[u, svk] ̸= ⊥}
17 Send SSK[u, ∗] to the adversary
Input (CorrRand, u, b) from the adversary where b ∈ {good, bad}
18 RndCor[u]← b
Input (exposed, u, svk) from FKS

19 Exposed←∪ {svk}
20 Send SSK[u, svk] to the adversary
Input (has-ssk, svk, u) from FCGKA

21 Send SSK[u, svk] ̸= ⊥ to FCGKA

Figure 6: Functionality FAS (parametrized by a key generation algorithm for a signature scheme GenS) and
the ideal functionality F I

AS. Yellow lines (•) are only executed by FAS while cyan lines (•) are only executed
by F I

AS.

37



Initialization
00 SK[∗, ∗],SVK← ⊥,RndCor[∗]← good

Input (register-kp, svk, ssk) from a party u

01 if RndCor[u] = good then (kp, sk)←$ Gen-kp()

02 if kp ̸= ⊥ then return

03 else

04 send rnd to the adversary and receive r

05 (kp, sk)← Gen-kp(r)

06 if kp ̸= ⊥ then return

07 send (exposed, u, svk) to FAS

08 send ssk to the adversary

09 send (sample-sk, u, svk, ssk) to the adversary and receive (kp, sk, ack)

10 if ¬ack then return

11 if RndCor[u] ̸= good then

12 send (exposed, u, svk) to FAS

13 SK[u, kp]← sk,SVK[u, kp]← svk
14 send (register-kp, u, svk, kp) to the adversary
15 send kp to u
Input get-sks from a party u
16 Send {(kp,SK[u, kp]) | SK[u, kp] ̸= ⊥} to u
Input (fetch-kp, v) from a party u
17 send (fetch-kp, u, v) to the adversary and receive kp
18 sendkp to u
Input (delete-sk, svk) from a party u
19 SK[u, kp]← ⊥
Input (expose, u) from the adversary
20 Send SK[u, ∗] to the adversary
Input (CorrRand, u, b) from the adversary where b ∈ {good, bad}
21 RndCor[u]← b

Figure 7: Functionality FKS (parametrized by a key generation algorithm for key packages Gen-kp) and the
ideal functionality F I

KS. Yellow lines (•) are only executed by FKS while cyan lines (•) are only executed by
F I

KS.

38



Initialization
00 Ptr[∗],Node[∗],Prop[∗],Wel[∗]← ⊥
01 RndCor[∗]← good

02 HasKey[∗]← false

03 rootCtr← 0
Input (create, svk) from ucreator \\Used only once

04 req Node[root0] = ⊥
05 req valid-vsk(ucreator, svk)
06 orig← ucreator

07 mem← {(ucreator, svk)}
08 Node[root0]← create-root(orig,mem,RndCor[orig])
09 HasKey[ucreator]← true

10 Ptr[ucreator]← root0

Figure 8: Initialization of FCGKA.

39



Input (propose, act) from u
00 req Ptr[u] ̸= ⊥
01 send (propose, u, act) to the adversary and receive (p, svkv, ack)
02 if ¬req-correct-prop(u, act) then req ack
03 if act = (upd, svk) then assert valid-vsk(u, svk)
04 if act = (add, v) then act← (add, v, svkv)
05 if Prop[p] = ⊥ then
06 Prop[p]← create-prop(Ptr[u], u, act,RndCor[u])
07 else consistent-prop(p, u, act,RndCor[u])
08 if RndCor[u] = bad then send (exposed, u, svk) to FAS

09 return p
Input (commit, P, svk) from u
10 req Ptr[u] ̸= ⊥
11 send (commit, u, P, svk) to the adversary and receive (c, w, ack, rt)
12 if ¬req-correct-commit(u, P, svk) then req ack
13 fill-props(u, P )
14 assert valid-vsk(u, svk)
15 mem← members(c, u, P, svk)
16 assert mem ̸= ⊥ ∧ (u, svk) ∈ mem
17 if Node[c] = ⊥ ∧ rt = ⊥ then
18 Node[c]← create-child(Ptr[u], u, P,mem,RndCor[u])
19 else
20 if Node[c] = ⊥ then c′ ← rootrt
21 else c′ ← c
22 consistent-commit(c′, u, P,mem)
23 if c ̸= c′ then attach(c, c′, u, P )
24 assert w ̸= ⊥ if and only if ∃p ∈ P : Node[p].act = (add, ∗)
25 if w ̸= ⊥ then
26 assert Wel[w] ∈ {⊥, c}
27 Wel[w]← c
28 assert cons-invariant ∧ auth-invariant
29 if RndCor[u] = bad then send (exposed, u,Node[u].mem[u]) to FAS

30 return (c, w)

Figure 9: Proposals, commits and process of FCGKA.

40



Input (process, c, P ) from u
00 send (process, u, c, P ) to the adversary and receive (rt, orig′, svk′, ack)
01 if ¬req-correct-proc(u, c, P ) then req ack
02 fill-props(u, P )
03 if Node[c] = ⊥ ∧ rt = ⊥ then
04 mem← members(Ptr[u], orig′, P, svk′)
05 assert mem ̸= ⊥ ∧ inj-allowed(Ptr[u], u)
06 else
07 if Node[c] = ⊥ then c′ ← rootrt
08 else c′ ← c
09 v ← Node[c′].orig
10 svkv ← Node[c′].mem[v]
11 mem← members(Ptr[u], v, P, svkv)
12 assert mem ̸= ⊥
13 valid-succesor(c′, u, P,mem)
14 if c ̸= c′ then attach(c, c′, u, P )
15 if ∃p ∈ P : Prop[p].act = (rem, u) then Ptr[u]← ⊥
16 else
17 assert u ∈ Node[c].mem
18 Ptr[u]← c
19 HasKey[u]← true

20 assert cons-invariant ∧ auth-invariant
21 (∗,PropSemantics)← apply-props(c,Node[c].pro)
22 return (Node[c].orig,PropSemantics)
Input (join, w) from u
23 send (join, u, w) to the adversary and receive (c′, orig′,mem′, ack)
24 req ack
25 c←Wel[w]
26 if c = ⊥ then
27 if Node[c′] ̸= ⊥ then c← c′

28 else
29 rootCtr← rootCtr + 1
30 c← rootrootCtr
31 Node[c]← create-root(orig′,mem′, adv)
32 Wel[w]← c
33 Ptr[u]← c
34 HasKey[u]← true

35 assert u ∈ Node[c].mem ∧ cons-invariant ∧ auth-invariant
36 return (Node[c].mem,Node[c].orig)
Input key from u
37 req Ptr[u] ̸= ⊥ ∧ HasKey[u]
38 if Node[u].key = ⊥ then set-key(Ptr[u])
39 HasKey[u]← false

40 return Node[Ptr[u]].key

Figure 10: Process, join and key in FCGKA.

41



Input (expose, u) from the adversary
00 This input is not allowed if ∃c such that Node[c].chall ∧ ¬safe(c)
01 if Ptr[u] ̸= ⊥ then
02 Node[Ptr[u]].exp←∪ {(u,HasKey[u])}
03 update-stat-after-exp(u)
04 send (exposed, u,Node[u].mem[u]) to FAS

05 send get-sks to FKS and receive SK and SVK.
06 for each kp such that SK[u, kp] ̸= ⊥ ∧ SVK[u, kp] = svk do
07 for each c such that ∃p ∈ Node[c].pro : Prop[p].act = (add, u, svk) do
08 Node[c].exp←∪ {(u, true)}
Input (CorrRand, u, b) from the adversary where b ∈ {good, bad}
09 RndCor[u]← b

Figure 11: Corruptions in FCGKA.

Helper create-root(u,mem, stat)
00 return new node with par← ⊥, orig← u, pro← ⊥,mem← mem, stat← stat
Helper create-prop(c, u, act, stat)
01 return new proposal node with par← c, orig← u, act← act, stat← stat
Helper create-child(c, u, P,mem, stat)
02 return new node with par← c, orig← u, pro← P,mem← mem, stat← stat
Helper fill-props(u, P )
03 for p ∈ P such that Prop[p] = ⊥ do
04 send (propose, p) to the adversary and receive (orig, act)
05 Prop[p]← create-prop(Ptr[u], orig, act, adv)

Figure 12: Helpers for creating new nodes in FCGKA.

42



Helper valid-vsk(u, svk′)
00 svk← Node[Ptr[u]].mem[u]
01 if svk ̸= ⊥ ∧ svk = svk′ then return true

02 send (has-ssk, svk′, u) to FAS and receive ack
03 return ack
Helper set-key(c)
04 if ¬safe(c) then
05 send (key, u) to the adversary and receive K
06 Node[c].key← K,Node[c].chall← false

07 else Node[c].key←$ K,Node[c].chall← true

Helper update-stat-after-exp(u)
08 for each p such that Prop[p] ̸= ⊥ and
09 Prop[p].par = Ptr[u] and
10 Prop[p].orig = u and
11 Prop[p].act = upd
12 do Prop[p].stat← bad

13 for each c such that Node[c] ̸= ⊥ and
14 Node[c].par = Ptr[u] and
15 Node[c].orig = u
16 do Node[c].stat← bad

Helper members(c, u, P, svk)
17 (G, ∗)← apply-props(c, u, P, svk)
18 if (G, ∗) = ⊥ then return ⊥
19 else return G

Helper apply-props(c, u, P, svk)
20 req Node[c] ̸= ⊥ ∧ (u, ∗) ∈ Node[c].mem
21 req ∀p ∈ P : Prop[p] ̸= ⊥ ∧ Prop[p].par = c
22 G← Node[c].mem
23 G← G \ {(u, ∗)}
24 G←∪ {(u, svk)}
25 L← {u}
26 for each p ∈ P such that Prop[p].act = (upd, ∗) do
27 (v, (upd, svk′))← (Prop[p].orig,Prop[p].act)
28 req v ∈ G \ L
29 G← G \ {(v, ∗)}
30 G←∪ {(v, svk′)}
31 L←∪ {v}
32 for each p ∈ P such that Prop[p].act = (rem, ∗) do
33 (v, (rem, v′))← (Prop[p].orig,Prop[p].act)
34 req v ∈ G ∧ v′ ∈ G \ L
35 G← G \ {(v′, ∗)}
36 for each p ∈ P such that Prop[p].act = (add, ∗) do
37 (v, (add, v′, svkv′))← (Prop[p].orig,Prop[p].act)
38 req v ∈ G ∧ v′ /∈ G
39 G←∪ {(v′, svkv′)}
40 PropSemantics← ((Prop[p].orig,Prop[p].act) : p ∈ P )
41 return (G,PropSemantics)

Figure 13: Other helpers for FCGKA.

Helper consistent-prop(p, u, act, stat)
00 assert Prop[p].orig = u ∧ Prop[p].act = act ∧ Prop[p].par = Ptr[u]
Helper valid-succesor(c, u, P,mem)
01 Node[c] ̸= ⊥ ∧ Node[c].mem = mem ∧ Node[c].pro ∈ {⊥, P} ∧ Node[c].par ∈ {⊥,Ptr[u]}
Helper consistent-commit(c, u, P,mem)
02 assert valid-succesor(c, u, P,mem)
03 assert RndCor[u] ̸= good ∧ Node[c].orig = u
Helper attach(c, c′, u, P )
04 assert c′ ̸= root0
05 Node[c′].par← Ptr[u],Node[c′].pro← P,Node[c]← Node[c′],Node[c′]← ⊥
06 for each w such that Wel[w] = c′ do Wel[c]← c

Figure 14: Consistency helpers for FCGKA.

43



Helper req-correct-prop(u, act)
00 if act = (rem, v) then
01 return v ∈ Node[Ptr[u]].mem
02 else if act = (upd, svk) then
03 return valid-vsk(u, svk)
04 else return false

Helper req-correct-commit(u, P, svk)
05 return apply-props(u, P, svk) ̸= ⊥ ∧ valid-vsk(u, svk)
Helper req-correct-proc(u, c, P )
06 return Node[c] ̸= ⊥ ∧ Node[c].par = Ptr[u] ∧ Node[c].pro = P ∧
07 Node[c].stat ̸= adv ∧ ∀p ∈ P : Prop[p].stat ̸= adv

Figure 15: Correctness helpers for FCGKA.

Helper auth-invariant
00 return true iff
01 ∀c if Node[c].stat = adv then inj-allowed(Node[c].par,Node[c].orig) and
02 ∀p if Prop[p].stat = adv then inj-allowed(Prop[p].par,Prop[p].orig)
Helper cons-invariant
03 return true iff
04 ∀c such that Node[c].par ̸= ⊥ it holds that
05 Node[c].pro ̸= ⊥ and ∀p ∈ Node[c].pro : Prop[p].par = Node[c].par
06 and ∀u such that Ptr[u] ̸= ⊥ : u ∈ Node[Ptr[u]].mem
07 and the history graph contains no cycles

Figure 16: Invariant helpers for FCGKA.

44



safe(c)
00 safe(c) = true if and only if ¬((∗, true) ∈ Node[c].exp ∨ can-traverse(c))
inj-allowed(c, u)
01 safe(c) = true if and only if Node[c].exp ∈ Exposed ∧ know(c, ‘ep′))
know(c, u) = true if and only if
02 1) state-directly-leaks(c, u) ∨
03 2) (Node[c].par ̸= ⊥ ∧ ¬secrets-replaced(c, u) ∧ know(Node[c].par, u)) ∨
04 3) ∃c′ : (Node[c′].par = c ∧ ¬secrets-replaced(c′, u) ∧ know(c′, u))
state-directly-leaks(c, u) = true if and only if
05 1) (u, ∗) ∈ Node[c].exp ∨
06 2) ∃rootCtr : (rootrootCtr is ancestor of c ∧ ∃svk ∈ Exposed : (u, svk) ∈ Node[c].mem) ∨
07 3) (u, ∗) ∈ Node[c].mem ∧ secrets-injected(c, u)
secrets-injected(c, u) = true if and only if
08 1) (Node[c].orig = u ∧ Node[c].stat ̸= good) ∨
09 2) ∃p ∈ Node[c].pro : (Prop[p].act = (add, u, svk) ∧ svk ∈ Exposed) ∨
10 3) ∃p ∈ Node[c].pro : (Prop[p].act = (upd, ∗) ∧ Prop[p].orig = u ∧ Prop[p].stat ̸= good)
secrets-replaced(c, u) = true if and only if
11 Node[c].orig = u ∨ (∃p ∈ Node[c].pro :
12 Prop[p].act ∈ {(add, u), (rem, u)} ∨ (Prop[p].act = (upd, ∗) ∧ Prop[p].orig = u))
know(c, ‘ep′) = true if and only if
13 Node[c].exp ̸= ∅ ∨ can-traverse(c)
can-traverse(c) = true if and only if
14 1) (Node[c].par = ⊥ ∧ ∃svk ∈ Exposed : (∗, svk) ∈ Node[c].mem) ∨
15 2) ∃p ∈ Node[c].pro : (Prop[p].act = (add, u, svk) ∧ svk ∈ Exposed) ∨
16 3) leaf-welcome-key-reuse(c) ∨
17 4) (know(c, ∗) ∧ (c = root∗ ∨ know(Node[c].par, ‘ep′)))
leaf-welcome-key-reuse(c) = true if and only if
18 ∃u ∃p ∈ Node[c].pro :
19 1) Prop[p].act = (add, u) ∧
20 2) ∃c′ : c is ancestor of c′ ∧ (u, ∗) ∈ Node[c′].exp ∧
21 (∄c′′ in the path between c and c′ such that secrets-replaced(c′′, u))

Figure 17: Predicates safe(c) and inj-allowed(c, u).

45



Helper fetch-ssk-if-nec(st, svk)
00 if vst.id.svk ̸= svk then
01 send (get-ssk, svk) to FAS and receive ssk
02 else ssk← st.ssk
03 return ssk
Helper validate-kp(st, kp, id, pHash)

04 parse (id′, pk, svk, pHash′, σ)← kp
05 req id = id′ ∧ pHash = pHash′

06 if svk /∈ st.cert-SPks[id] then
07 send (verify-cert, id, svk) to FAS and receive b
08 req b
09 st.cert-SPks[id]←∪ {svk}
10 req Vrfy(svk, σ, (id′, pk, svk, pHash′, σ))
11 return st

Helper Gen-kp(id, svk, ssk)
12 (pk, sk)←$ Pke.Gen()
13 σ ← Sign(ssk, (id, pk, svk, pHash))
14 kp← (id, pk, svk, pHash, σ)
15 return (kp, sk)

Figure 18: Helper functions for the interaction with KS and AS.

46



Algorithm CGKA.Create(svk)
00 require st = ⊥ ∧ u = ucreator

01 st.T← init-tree
02 st.groupID←$ {0, 1}κ
03 st.appSec←$ {0, 1}κ
04 st.ep← 0
05 st.interim-tranHash← ε
06 try st.ssk← fetch-ssk-if-nec(st, svk)
07 (kp, sk)← Gen-kp(svk, ssk)
08 id(leaves(T))← H(pk)
09 assign-kp(T, vid, kp)
10 vid.sk← sk

Algorithm CGKA.Com(st,PMSG)
11 st′ ← init-epoch(st)
12 T′ ← st′.T
13 try (st′,upd, rem, add)← apply-props(st,PMSG)
14 require (st.id, ·, ·) /∈ rem ∧ (st.id, ·, ·) /∈ upd
15 try (st′, comSec,UpdPath, pathSec)

← rekey-path(st′, st.id, vid.svk, 0)
16 propIds← ()
17 for pmsg ∈ PMSG:
18 propIds←∪ H(pmsg)
19 C ← (propIds,UpdPath)
20 σ ← sign-commit(st, C)
21 st′ ← set-conf-trans-hash(st, st′, st.id, C, σ)
22 (st′, confKey, joinerSec)← derive-keys(st, st′, comSec)
23 confTag← compute-confTag(st′, confKey)
24 if rem ̸= ()
25 memTag← Mac.Tag(st.memKey, C)
26 else memTag← ⊥
27 cmsg← frame-comm(st, confTag, σ,memTag)
28 if add ̸= ()
29 (st′,wmsg)← comp-wmsg(st′,

, add, joinerSec, pathSec, confTag)
30 else wmsg← ⊥
31 st′ ← set-int-transHash(st′, confTag)
32 st.pendComm(cmsg)← (st′,PMSG,upd, rem, add)
33 return (cmsg,wmsg)

Algorithm CGKA.Key
34 (k, st.appSec)← (st.appSec,⊥)
35 return k

Algorithm CGKA.Proc(cmsg,PMSG)
36 (id-snd, C, confTag, σ,memTag)← unframe-comm(st, cmsg)
37 if id-com = st.id
38 (st′,PMSG′,upd, rem, add)← st.pendComm(cmsg)
39 require PMSG′ = PMSG
40 st← st′

41 return
42 parse (propIds,UpdPath)← C
43 require propIds(i) = H(PMSG(i)) for all i
44 st′ ← init-epoch(st)
45 try (st′,upd, rem, add)← apply-props(st,PMSG)
46 require id-com /∈ rem ∧ id-com /∈ upd
47 if st.id ∈ rem
48 require Mac.Ver(st.memKey,memTag)
49 st← ⊥
50 else
51 (st′, comSec)← apply-rekey(st, st′, id-com,UpdPath, 0, False)
52 st′ ← set-conf-trans-hash(st, st′, id-com, C, σ)
53 (st′, confKey, joinerSec)← derive-keys(st, st′, comSec)
54 require verify-confTag(st′, confKey, confTag)
55 st′ ← set-int-transHash(st′, confTag)
56 st← st′

57 return ((upd, rem, add), id-snd)

Algorithm CGKA.Join(wmsg)
58 parse (encGrpSec,GrpInfo)← wmsg
59 parse (GrpInfoTBS, σ)← GrpInfo
60 parse (st.groupID, st.ep, st.tHash, st.conf-TransHash,

st.interim-tranHash, st.confTag, id-com)← GrpInfoTBS
61 require Sig.Vrfy(vid-com.svk, σ,GrpInfoTBS)
62 try verify-treeState(st)
63 try fetch-ssk-if-nec(st, vst.id.svk)
64 kbs← get-sks
65 (joinerSec, pathSec)← (⊥,⊥)
66 for e ∈ encGrpSec
67 parse (h, c)← e
68 for (kp, sk) ∈ kbs
69 if h = H(kp)
70 v.sk← sk
71 require vst.id.kp = kp
72 parse (joinerSec, pathSec)← Pke.Dec(sk, c)
73 if sj = pathSec ̸= ⊥
74 a← st.T.ind-lca(vst.id, vid-com)
75 (v1, . . . , vℓ)← fil-path(v)
76 for i ∈ {ℓ− a, . . . , ℓ− 1}
77 (pk, vi.sk)← Pke.Gen(H2(si))
78 require pk = vi.pk
79 si+1 ← H1(si)
80 (st, confKey)← derive-epochKeys(st, joinerSec)
81 require verify-confTag(st, confKey, confTag)
82 return (roster(T), st.id)

Figure 19: Algorithms CGKA.Create, CGKA.Com, CGKA.Proc, CGKA.Join, CGKA.Key shared between MLS
and MLS-Cutoff. For subroutines rekey-path, apply-props, comp-wmsg, see Figure 22, 23, 18, respectively.

47



Algorithm CGKA.Prop(op, ad) (used in MLS)
00 T← st.T
01 if op = ‘upd’:
02 try st.ssk← fetch-ssk-if-nec(st, svk)

03

04 (kp, sk)← Gen-kp(svk, ssk)

05 pmsg← frame-prop(st, (‘upd’, kp))

06 st.pendUpd(pmsg)← (ssk, sk)

07 if op = (‘add’):
08 parse u← ad
09 require u /∈ roster(T)
10 send (fetch-kp, u) to FKS and get kpa
11 try validate-kp(kpa)
12 pmsg← frame-prop(st, (‘add’, kpa))
13 if op = ‘rem’:
14 parse u← ad
15 require u ∈ roster(T)
16 pmsg← frame-prop(st, (‘rem’, id-rem))
17 return pmsg

Algorithm CGKA.Prop(op, ad) (used in MLS-Cutoff)
18 T← st.T
19 if op = ‘upd’:
20 try st.ssk← fetch-ssk-if-nec(st, svk)

21 st′ ← init-epoch(st)

22 (id-own, svk)← (st′.id-own, vid-own.svk)

23 try (st′, ·,UpdPath, pathSec)← rekey-path(st′, id-own, svk, st.icut)

24 pmsg← frame-prop(st, (‘upd’,UpdPath))

25 st.pendUpd(pmsg)← (ssk, v′id-own.sk, pathSec)

26 if op = (‘add’):
27 parse u← ad
28 require u /∈ roster(T)
29 send (fetch-kp, u) to FKS and get kpa
30 try validate-kp(kpa)
31 pmsg← frame-prop(st, (‘add’, kpa))
32 if op = ‘rem’:
33 parse u← ad
34 require u ∈ roster(T)
35 pmsg← frame-prop(st, (‘rem’, id-rem))
36 return pmsg

Figure 20: Generating proposals in MLS (left) and protocol variant MLS-Cutoff (right). Differences between
the protocols are marked in yellow (•) and cyan (•). In line 25 v′id-own is to be understood as the issuing
user’s leaf with respect to st′.

48



Algorithm set-tHash(st′)
00 T′ ← st′.T
01 st′.tHash← tree-hash(T′, root(T′))

Algorithm tree-hash(T′, v)
02 if v is leaf
03 return H(v.index, v.kp)
04 else
05 lHash← tree-hash(T′, left(v))
06 rHash← tree-hash(T′, right(v))
07 return H(v.index, v.pk,

v.unm, v.pHash, lHash, rHash)

Algorithm set-pHash(st′, id)
08 T′ ← st.T
09 v0 ← vid
10 parse (v1, . . . , vℓ)← fil-path(v0)
11 vℓ.pHash← ε
12 for j = ℓ− 1, . . . , 0
13 vj .pHash← par-hash-cochild(vj+1, sib(vj))
14 return st′

Algorithm par-hash-cochild(T′, v, u)
15 oriRes← Res(u) ∪ (u.unm \ v.unm)
16 copy T′ to T′′

17 for v′′ ∈ v.unm
18 blank-path(T′′, v′′)
19 for w ∈ path(v′′)
20 w.unm← w.unm \ {v′′}
21 origSibTreeHash← tree-hash(T′′, u)
22 return H(v.pk, v.pHash, origSibTreeHash)

Algorithm verify-treeState(st′)
23 T′ ← st′.T
24 require st′.tHash = tree-hash(T′, root(T′))
25 for v ∈ T′.V
26 if v not blank ∧ v not leaf
27 l← par-hash-cochild(v, left(v))
28 r ← par-hash-cochild(v, right(v))
29 require (left(v) not blank ∧ left(v).pHash = r) ∨ . . .

· · · ∨ (right(v) not blank ∧ right(v).pHash = l)
30 M ← ()
31 for v ∈ T′.V
32 if v not blank ∧ v is leaf
33 require id(v) /∈M
34 M ←∪ {id(V )}
35 try st′ ← validate-kp(st′, v.kp, id(v), v.pHash)
36 return st′

Figure 21: Helper functions set-tHash, set-pHash, and verify-treeState, used authenticate the ratchet tree’s
state.

49



Algorithm rekey-path(st′, id, svk, i)
00 T′ ← st′.T
01 UpdPathNodes← ()
02 pathSec← ()
03 (v1, . . . , vℓ)← fil-path(vid)
04 s0 ←$ {0, 1}λ
05 for j = 1, . . . , ℓ− i:
06 sj ← H1(sj−1)
07 if j < ℓ:
08 (vj .pk, vj .skj)← Gen(H2(sj))
09 C ← ()
10 vsib ← sib(vj−1)
11 for w ∈ Res(vsib) ∪ vsib.unm:
12 C ←∪ cw := Pke.Enc(w.pk, sj)
13 UpdPathNodes←∪ (vj .pk, C)
14 pathSec←∪ (sj)
15 if i = 0
16 comSec← sℓ
17 else comSec = ⊥
18 merge-leaves(T′, vid)
19 set-pHash(T′, vid)
20 try fetch-ssk-if-nec(T′, svk)
21 (kp, sk)← Gen-kp(id, svk, ssk, v.pHash; s0)
22 require vH(kp) = ⊥
23 id(vid)← H(kp)
24 assign-kp(T′,H(kp), kp)
25 vid.sk← sk
26 set-tHash(T′)
27 UpdPath← (UpdPathNodes, kp)
28 return (T′, comSec,UpdPath, pathSec)

Algorithm comp-wmsg(st′, add, joinerSec, pathSec, confTag)
29 tbs← (st′.groupID, st′.ep, st′.tHash,

st.conf-TransHash, st′.interim-tranHash,
st′.T.public, st′.confTag, st′.id)

30 σ ← Sign(st′.ssk, tbs)
31 GrpInfo← (tbs, σ))
32 encGrpSec← ()
33 for (·, id-add, svk) ∈ add
34 a← ind-lca(vst′.id, vid-add)
35 c← Pke.Enc(vid-add.pk, (joinerSec, pathSec(ℓ− a)))
36 encGrpSec←∪ (H(vid-add.kp), c)
37 return (st′,wmsg)

Algorithm apply-rekey(st, st′, id-snd,UpdPath, i, copySt)
38 T′ ← st′.T
39 parse (UpdPathNodes, kp)← UpdPath
40 (v1, . . . , vℓ)← fil-path(T′, vst.id)
41 (v′1, . . . , v

′
ℓ′)← fil-path(T′, vid-snd)

42 parse ((pk1, C1), . . . , (pkm, Cm))← UpdPathNodes
43 for i ∈ {1, . . . ,m}
44 v′i.pk← pki
45 a← ind-lca(vst.id, vid-snd)
46 if i > a:
47 comSec← ⊥
48 else
49 parse (cw)w ← Cℓ−a

50 if v′0 ∈ v′ℓ′−a−1.unm:
51 w ← v′0
52 else:
53 m← max(m′ ∈ {0, . . . , ℓ′ − a} | v′m′ not blank)
54 w ← v′m
55 sℓ−a ← Pke.Dec(skw, cw)
56 for j = ℓ′ − a+ 1, . . . , ℓ′ − i:
57 sj ← H1(sj−1)
58 if j < ℓ
59 (pkj , skj)← Gen(H2(sj))
60 v′j .sk← skj
61 require v′j .pk = pkj
62 if i = 0
63 comSec← sℓ
64 else comSec = ⊥
65 merge-leaves(T′, vid)
66 st′ ← set-pHash(T′, vid)
67 if copySt = False

68 try validate-kp(st′′, kp, id-snd, st′′.pHash)
69 else
70 st′′ ← init-epoch(st)
71 T′′ ← st′′.T
72 (v′′1 , . . . , v

′′
ℓ′)← fil-path(T′′, vid-snd)

73 for i ∈ {1, . . . ,m}
74 v′′i .pk← pki
75 merge-leaves(T′′, vid)
76 st′′ ← set-pHash(T′′, vid)
77 try validate-kp(st′′, kp, id-snd, st′′.pHash)
78 require vH(kp) = ⊥
79 id(vid-snd)← H(kp)
80 assign-kp(T′,H(kp), kp)
81 set-tHash(T′)
82 return (st′, comSec)

Figure 22: Helper functions rekey-path and apply-rekey used to rekey users’ paths.

50



Algorithm apply-props(st, st′,PMSG) (used in MLS)
00 (upd, rem, add)← ((), (), ())
01 fetch T′ ← st′.T
02 for pmsg ∈ PMSG:
03 ((‘type’, ad), id-snd)← unframe-prop(st, pmsg)
04 if ‘type’ = ‘upd’:
05 require (id-snd, ·) /∈ upd ∧ rem = () ∧ add = ()

06 try validate-kp(st′, ad, id-snd, ε)

07 assign-kp(T′, vid-snd, ad)

08 if st′.id = id-snd

09 parse (ssk, sk)← pendUpd(pmsg)

10 vid-snd.sk← sk
11 st′.ssk← ssk

12 blank-path(T′, vid-snd, 1)

13 svk← leaf(T′, id-snd).svk
14 require vH(kp) = ⊥
15 id(vid-snd)← H(kp)
16 upd←∪ (id-snd, ‘upd’, svk)
17 else if ‘type’ = ‘rem’:
18 require id-rem := ad ̸= id-snd ∧ vid-rem ̸= ⊥
19 require (ad, ·) /∈ upd ∧ add = ()
20 blank-leaf(T′, vid-rem)
21 blank-path(T′, vid-rem, 1)
22 T′ ← truncate(T′)
23 rem←∪ (id-snd, ‘rem’, id-rem)
24 else if ‘type’ = ‘add’:
25 try st′ ← validate-kp(st′, ad, unew, ε)
26 id-add← H(ad)
27 add-leaf(T′, id-add)
28 set-as-unmerged(T′, id-add)
29 add←∪ (id-snd, ‘add’, vid-add.svk)
30 else return ⊥
31 return (st′,upd, rem, add)

Algorithm apply-props(st, st′,PMSG) (used in MLS-Cutoff)
32 (upd, rem, add)← ((), (), ())
33 fetch T′ ← st′.T
34 for pmsg ∈ PMSG:
35 ((‘type’, ad), id-snd)← unframe-prop(st, pmsg)
36 if ‘type’ = ‘upd’:
37 require (id-snd, ·) /∈ upd ∧ rem = () ∧ add = ()

38 if st′.id ̸= id-snd

39 (st′, ·)← apply-rekey(st, st′, id-snd, ad, st.icut, True)

40 if st′.id = id-snd
41 parse ((pk1, ·), . . . , (pkℓ−icut , ·), kp)← ad

42 assign-kp(T′, vid-snd, kp)

43 parse (ssk, sk, pathSec)← pendUpd(pmsg)

44 vid-snd.sk← sk
45 st′.ssk← ssk
46 parse (v1, . . . , vℓ)← path(id-snd)

47 for j = 1, . . . , ℓ− st.icut

48 (vj .pk, vj .sk)← (pkj , pathSec(j))

49 blank-path(T′, vid-snd, ℓ− st.icut + 1)

50 parse (v1, . . . , vℓ)← path(vid-snd)

51 for j = 1, . . . , ℓ− st.icut

52 if vj ∈ Vcol

53 blank(vj)

54 Vcol ←∪ {vj}
55 svk← leaf(T′, id-snd).svk
56 require vH(kp) = ⊥
57 id(vid-snd)← H(kp)
58 upd←∪ (id-snd, ‘upd’, svk)
59 else if ‘type’ = ‘rem’:
60 require id-rem := ad ̸= id-snd ∧ vid-rem ̸= ⊥
61 require (ad, ·) /∈ upd ∧ add = ()
62 blank-leaf(T′, vid-rem)
63 blank-path(T′, vid-rem, 1
64 T′ ← truncate(T′)
65 rem←∪ (id-snd, ‘rem’, id-rem)
66 else if ‘type’ = ‘add’:
67 try st′ ← validate-kp(st′, ad, unew, ε)
68 id-add← H(ad)
69 add-leaf(T′, id-add)
70 set-as-unmerged(T′, id-add)
71 add←∪ (id-snd, ‘add’, vid-add.svk)
72 else return ⊥
73 return (st′,upd, rem, add)

Figure 23: Helper function apply-props for MLS (left) and MLS-Cutoff (right). Differences between the
protocols are marked in yellow (•) and cyan (•).

51


	Introduction
	Our Contributions

	Preliminaries
	Continuous Group-Key Agreement
	Ratchet Trees
	Auxiliary Results

	The Messaging Layer Security Protocol
	The Communication Cost of MLS for Random Sequences of Operations
	Considered Scenario
	Expected Number of Blanks
	Lower Bound on Sent Ciphertexts

	MLSCutoff: an Alternative Method for Update Proposals
	Protocol Description
	Security
	Upper Bounds on the Update Cost

	Acknowledgment
	Omitted Formal Security Definition
	Public Key Encryption
	Digital Signatures
	PKI and CGKA

	Omitted Formal Protocol Descriptions
	Formal description of MLS
	Formal description of MLSCutoff


