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Abstract. GIFT, including GIFT-64 and GIFT-128, is a family of lightweight
block ciphers with outstanding implementation performance and high se-
curity, which is a popular underlying primitive chosen by many AEADs
such as SUNDAE-GIFT. Currently, differential cryptanalysis is the best key-
recovery attack on both ciphers, but they have stuck at 21 and 27 rounds
for GIFT-64 and GIFT-128, respectively. Recently, Beyne and Rijmen pro-
posed the quasidifferential transition matrix for differential cryptanalysis
at CRYPTO 2022 and showed that the fixed-key probability of a differ-
ential (characteristic) can be expressed as the sum of correlations of all
quasidifferential trails corresponding to this differential (characteristic).
As pointed out by Beyne and Rijmen in their paper, the quasidifferential
methodology is useful in identifying weak-key differential attacks.
In this paper, we apply Beyne and Rijmen’s method to GIFT. Some dif-
ferential characteristics with small (average) probabilities can have much
larger probabilities when weak-key conditions hold. Improved weak-key
differential attacks on GIFT-64 and GIFT-128 are thus obtained. For GIFT-
64, the probability of a 13-round differential is improved from 2−62.06 to
2−57.82 with 4 bits of weak-key conditions, then an improved differential
key-recovery attack on 21-round GIFT-64 is obtained with 2117.42/264

time/data complexities; the probability of a 13-round multiple differen-
tial (containing 33 characteristics) is improved from 2−58.96 to 2−55.67

with 4 bits of weak-key conditions, then an improved multiple differen-
tial key-recovery attack on 21-round GIFT-64 is obtained with 2123.27/264

time/data complexities. For GIFT-128, the probability of a 20-round dif-
ferential is improved from 2−121.83 to 2−114.77 with 6 bits of weak-key
conditions; the probability of a 21-round multiple differential (contain-
ing 2 differentials) is improved from 2−128.38 to 2−122.77 with 4 bits
of weak-key conditions. Improved (multiple) differential weak-key key-
recovery attacks are obtained for 27 and 28 rounds of GIFT-128 with
2115.77/2115.77 and 2123.77/2123.77 time/data complexities, respectively.
As far as we know, this is the first time that a (weak-key) key-recovery
attack can reach 28 rounds of GIFT-128.
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Additionally, as an independent interest, we perform the first differential
attack on SUNDAE-GIFT. The differential used in this attack is checked
with quasidifferential trails, thus the probability is reliable. Our attack
is nonce-respecting and has significantly better complexities than the
currently best attack.

Keywords: Quasidifferential · Differential · Weak-Key · GIFT.

1 Introduction

Differential cryptanalysis is one of the most fundamental methods to analyze
the security of block ciphers, which was proposed by Biham and Shamir [6] at
CRYPTO 1990 to attack the block cipher DES. The core concept of the differ-
ential attack is to construct the probabilistic transition from an input difference
to an output difference for iterated ciphers. This involves choosing plaintext
pairs that satisfy the input difference, tracing the difference transitions of the
iterated block cipher throughout the multi-round encryption process, and find-
ing high-probability differentials over a large number of rounds. The differential
transition that traces the large number of rounds is usually converted to tracing
intermediate differences, the calculation of the differential probability of long
rounds can be estimated heuristically as the product of multiple probabilities
of intermediate differences, and Lai et al. [14] showed that it yields the correct
value of the key-averaged probability for Markov ciphers. In addition, Lai et al.
introduced an additional assumption, which is called the hypothesis of stochastic
equivalence, to deal with the problem that the actual probability may be differ-
ent from key-averaged probability, which is caused by the fixed-key throughout
a differential attack. This assumption states that the probability for each key is
close to the average probability.

At CRYPTO 2022, Beyne and Rijmen [5] proposed the quasidifferential tran-
sition matrix in differential cryptanalysis, and established the connection be-
tween the correlation matrix in linear cryptanalysis [11] and the quasidifferential
transition matrix in differential cryptanalysis. The quasidifferential transition
matrix satisfies similar properties to the correlation matrix in linear cryptanal-
ysis. One such property is that the fixed-key probability of a differential can
be expressed as the sum of the correlations of all its quasidifferential trails,
without any assumption. Given one differential (characteristic), correlations of
its corresponding quasifferentials are heavily affected by keys. Thus, differential
probability in different key spaces can be analyzed relatively more easily now. It
is not surprising that in some key spaces, the differential probability would be
significantly larger than others.

GIFT [4] is a lightweight block cipher with two versions: GIFT-64 and GIFT-
128. The outstanding implementation performance and high security make GIFT
be a popular underlying primitive for many Authenticated Encryptions with As-
sociated Data (AEADs) such as SUNDAE-GIFT [2], GIFT-COFB [3], and HyENA [9].
In the security evaluation of GIFT, differential cryptanalysis is currently the most
effective attack compared with other attacks. At CT-RSA 2019, Zhu et al. [24]
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proposed the first third-party cryptanalysis on GIFT, which includes a 19-round
attack on GIFT-64 and a 22-round attack on GIFT-128, respectively. Sasaki et al.
[17] improved the meet-in-the-middle (MitM) attack on 15-round GIFT-64. The
20-round and 21-round differential attacks on GIFT-64 were proposed by Chen
et al. [10] at ICISC 2019 using the full codebook. Chen et al. [10] also performed
the 20-round differential key-recovery attack on GIFT-64 without the full code-
book. Li et al. [15] proposed the 26-round differential attack on GIFT-128, and
the 26-round attack is improved by Ji et al. [13] at SAC 2021. At FSE 2021,
Zong et al. [26] proposed the key-recovery-attack friendly distinguishers, gave
a 27-round differential key-recovery attack and a 22-round linear key-recovery
attack on GIFT-128, respectively. For the linear cryptanalysis of GIFT, Sun et
al. [20] proposed a 19-round linear attack on GIFT-64 at SAC 2021, and a 24-
round linear attack on GIFT-128 at FSE 2021 [21]. After that, Sun et al. [22]
gave a 25-round linear attack on GIFT-128 at FSE 2022, and improved the 25-
round linear attack to increase the success probability by using more data and
higher time complexity. Antonio Flórez-Gutiérrez et al. [12] further improved
the complexity and success probability of the 25-round linear key-recovery at-
tack on GIFT-128 at EUROCRYPT 2024. In addition, Wang et al. [23] proposed
the differential-linear attacks on 18-round GIFT-64 and on 19-round GIFT-128 at
CIC 2024. All the above attacks are under the single-key setting. In the relate-
key setting, Liu et al. [16] proposed a 21-round boomerang attack on GIFT-128,
and Ji et al. [13] proposed a 23-round rectangle attack on GIFT-128 at SAC 2021.

Although extensive cryptanalysis from the community has been applied to
GIFT, the security of GIFT is still strong. All attacks stuck at 21 and 27 rounds
for GIFT-64 and GIFT-128 in the single-key setting, respectively. Considering
the importance of GIFT (as mentioned, GIFT-128 is the underlying primitive of
three NIST LWC candidates), a better evaluation on GIFT’s security is always
warranted, even in the extreme scenarios such as under the weak-key settings.

On the other hand, Beyne and Rijmen’s quasidifferential approach has been
successfully applied to RECTANGLE, KNOT, SPECK, and SIMON, and new weak-key
attacks are presented. However, few works tried to extend their attacks to more
ciphers, to the best of our knowledge. In this paper, we aim to bridge the gap
by studying how to utilize the quasidifferential method to analyze the security
of GIFT.

Our contributions. This paper applies Beyne and Rijmen’s quasidifferential ap-
proach [5] to GIFT, studying the differential attacks in the weak-key setting.
Some differential characteristics with small probabilities that are infeasible in a
normal differential attack can be used now in a weak-key setting, by putting some
weak-key conditions. The best attacks on GIFT-64 and GIFT-128 are provided,
in terms of the complexity or the number of rounds.

Concretely, by diving deep into the linear key-schedule of GIFT, we extract
linear equations for round-key bits, based on the signs of correlations of quasid-
ifferential trails, and convert them to equations for master-key bits. Then the
weak-key space of master-key bits is obtained, and the probability of the differ-
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Table 1. Summary of the attack results on GIFT-64, GIFT-128 and SUNDAE-GIFT, re-
spectively. SK stands for single-key setting. RK stands for related-key setting.

Algorithm Attack Type Rounds Scenario # Keys Time Data Memory PS Reference

GIFT-64

Boomerang 23 RK‡ 2128 2126.60 263.30 - - [16]

Rectangle 24 RK‡ 2128 2106.00 263.78 264.10 - [13]

Rectangle 25 RK‡ 2128 2120.92 263.78 264.10 - [13]

Differential 26 RK‡ 2128 2123.23 260.96 2102.86 - [19]

Differential 26 RK‡ 2128 2115.96 260.96 2102.86 - [8]

Differential-Linear 18 SK 2128 2124.61 261.57 - - [23]

Linear 19 SK 2128 2127.11 262.96 260 60% [20]
Differential 19 SK 2128 2112 263 280 - [24]

Multiple Differential 20 SK 2128 2112.68 262 2112 - [10]
Differential 20 SK 2128 2101.68 264 296 - [10]

Multiple Differential 21 SK 2124 2123.27 264 2112 99.9% Sect. 5.1
Differential 21 SK 2128 2121.66† 264 296 51.60%† [10]

Differential 21 SK 2124 2117.42 264 296 81.06% Sect. 5.1
Differential 21 SK 2124 2120.60 264 296 99.41% Sect. 5.1

GIFT-128

Boomerang 21 RK‡ 2128 2126.6 2126.6 2126.6 - [16]

Rectangle 23 RK‡ 2128 2126.89 2121.31 2121.63 - [13]

Differential-Linear 19 SK 2128 2121.53 2122.51 - - [23]

Differential 22 SK 2128 2120 2120 286 - [25]
Linear 22 SK 2128 2117 2117 278 - [26]

Linear 24 SK 2128 2124.45 2122.55 2105 80.01% [21]

Linear 25 SK 2128 2126.77 2124.75 296 50% [22]
Linear 25 SK 2128 2127.77 2125.75 296 75% [22]
Linear 25 SK 2128 2124.61 2123.02 2112 80% [12]

Differential 26 SK 2128 2124.415 2109 2124.415 - [15]
Differential 26 SK 2128 2123.245 2123.245 2109 - [13]

Differential 27 SK 2128 2124.83 2123.53 280 - [26]
Differential 27 SK 2122 2115.77 2115.77 292 99.9% Sect. 5.2

Multiple Differential 28 SK 2124 2123.77 2123.77 296 86.5% Sect. 5.2

SUNDAE-GIFT
Linear 16 Nonce-respecting 2128 291.20 260.00 296 - [26]

Linear 17 Nonce-respecting 2128 2123.38 261.51 249 80.01% [21]
Differential 17 Nonce-respecting 2128 275.37 262.5 266 99.9% Sect. 6

† The 21-round differential key-recovery attack on GIFT-64 presented by [10] with 2107.61/264/296 time/data/memory
complexities, which is the combination of the 1-round attack and the 20-round attack, is not accurate, we reevaluate
the complexities and success probability by the successive 21-round attack.

‡ Note that there is no security claim of GIFT under the related-key setting, the results under the related-key setting
are shown in grey.

ential characteristic in this weak-key space is improved. Furthermore, in order
to use the differential to amplify the probability, we introduce a method to de-
rive the best weak-key conditions from all the characteristics of the differential.
These analyses are based on a reasonable assumption that the exact probability
of a differential characteristic can be approximated by the sum of correlations of
those trails whose absolute correlation is equal to the average probability of the
characteristic. We have done experiments on GIFT-64 and GIFT-128 to verify the
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validity of the assumption, and the experimental results are exactly consistent
with our assumption.

After applying the quasidifferential cryptanalysis to GIFT, we present im-
proved (multiple) differential attacks on GIFT-64 and GIFT-128 in the weak-key
settings, respectively. For GIFT-64, the probability of a 13-round differential is
improved from 2−62.06 to 2−57.82 with 4-bit conditions of master-key, which can
mount a 21-round differential attack with 2117.42/264 time/data complexities.
The probability of a 13-round multiple differential of GIFT-64 is improved from
2−58.96 to 2−55.67 with 4-bit conditions of master-key, which can boost the mul-
tiple differential attack on GIFT-64 from 20-round to 21-round with 2123.27/264

time/data complexities. For GIFT-128, the probability of a 20-round differen-
tial is improved from 2−121.83 to 2−114.77 with 6-bit conditions of master-key,
and the probability of a 21-round multiple differential is improved from 2−128.38

to 2−122.77 with 4-bit conditions of master-key. The 27-round and the first 28-
round improved (multiple) differential attacks on GIFT-128 are obtained with
2115.77/2115.77 and 2123.77/2123.77 time/data complexities, respectively.

Finally, an 11-round differential characteristic whose probability is 2−60 with-
out conditions of master-key can be utilized to launch the first differential attack
on 17-round SUNDAE-GIFT with 275.37/262.5 time/data complexities. The related
results and our attacks are summarized in Table 1.

All source code and results of this paper are provided at https://github.
com/ccc53021/quasidifferential-gift.

Outline. In Sect. 2, we briefly describe the differential cryptanalysis, linear crypt-
analysis, and quasidifferential proposed in [5], define some notations, recall the
description of GIFT. In Sect. 3, we revisit and discuss the roles of the keys in the
exact probability of a characteristic. In Sect. 4, we introduce how to apply the
quasidifferential cryptanalysis to GIFT, derive weak-key differential (character-
istic) distinguishers, and make some experiments on GIFT. Sect. 5 presents the
weak-key (multiple) differential attacks on GIFT-64 and GIFT-128, respectively,
and the attack on SUNDAE-GIFT is given in Sect. 6. Sect. 7 concludes this paper.

2 Preliminaries and Related Works

In this section, we first recall the differential cryptanalysis and linear crypt-
analysis, and introduce the quasidifferential proposed by Beyne and Rijmen [5],
which shows that the fixed-key probability of a differential can be expressed as
the sum of the correlations of its quasidifferential trails. In addition, we define
the notations used in this paper and briefly review the description of GIFT and
SUNDAE-GIFT with GIFT-128 as an underlying primitive.

2.1 Review of Differential Cryptanalysis in Fixed-Key Model

Differential Cryptanalysis. Differential cryptanalysis [6] is used to analyze the
propagation of differences through the function F : Fn

2 → Fm
2 , and find a differ-

https://github.com/ccc53021/quasidifferential-gift
https://github.com/ccc53021/quasidifferential-gift
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ential with high probability to attack the cipher. The target of the adversary is
to find a differential (a, b) ∈ Fn

2 × Fm
2 that maximizes the number of solutions x

to the difference equation

F(x⊕ a)⊕ F(x) = b. (1)

The difference distribution table of F, denoted as DDTF, is a 2n × 2m table with
rows and columns indexed by input and output differences. The corresponding
entries are equal to the number of solutions x for a particular differential (a, b):

DDTF(a,b) = |{x ∈ Fn
2 |F(x⊕ a)⊕ F(x) = b}| . (2)

Differential cryptanalysis typically focuses on functions F structured as composi-
tions F = Fr◦Fr−1◦· · ·◦F1, where individual functions Fi exhibit differentials with
relatively high probability, making them more suitable for analysis. Thus, it is
possible to estimate the probability of differential (a1, ar+1) based on character-
istics. A characteristic is a sequence (a1, a2, . . . , ar+1) of compatible differences
between intermediate inputs and outputs through each Fi. The estimation of
characteristic probabilities frequently relies on the assumption of independence
among intermediate differentials:

Pr[∧ri=1Fi(xi ⊕ ai)⊕ Fi(xi) = ai+1] ≈
r∏

i=1

Pr[Fi(xi ⊕ ai)⊕ Fi(xi) = ai+1]. (3)

When functions F1, . . . , Fr are dependent on keys k1, . . . , kr, the heuristic
proposed in Eq. (3) can be justified by applying the Markov cipher assumption
[14]. Specifically, it has been demonstrated that if all round keys are uniformly
random and independent, the key-averaged probability of a characteristic aligns
with the product of intermediate key-averaged probabilities.

Quasidifferential. Beyne and Rijmen [5] proposed the quasidifferential frame-
work by introducing the quasidifferential transition matrices as a differential
analog of correlation matrices [11] to achieve a more complete understanding of
differential cryptanalysis.

Definition 1 (Quasidifferential basis [5]). Let n be a positive integer. For
any u, a ∈ Fn

2 , the function βu,a : Fn
2 × Fn

2 → R is defined by

βu,a(x, y) = χu(x)δa(x+ y). (4)

The set of all βu,a is called the quasidifferential basis for R[Fn
2 × Fn

2 ].

The functions δx such that δx(y) = 1 if y = x and zero elsewhere, and the func-
tions χx such that χu(x) = (−1)uTx with u ∈ Fn

2 . The functions βu,a are not
only linearly independent but also orthogonal. Similar to the Fourier transforma-
tion, Beyne and Rijmen define the change-of-basis operator Qn : R[Fn

2 × Fn
2 ]→

R[Fn
2 × Fn

2 ] by (Qnf)(u, a) = ⟨βu,a, f⟩. The definition of the quasidifferential
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transition matrix using the change-of-basis operator Qn and the transition ma-
trix for pairs of values is in Definition 2. The Kronecker (or tensor) product
T F ⊗ T F is defined as a 22m × 22n matrix with coordinates

(T F ⊗ T F)(y1,y2),(x1,x2) = T F
y1,x1

T F
y2,x2

= δy1
(F(x1))δy2

(F(x2)). (5)

Definition 2 (Quasidifferential transition matrix [5]). Let n and m be two
positive integers and F : Fn

2 → Fm
2 a function. The quasidifferential transition

matrix DF is defined as the matrix-representation of T F⊗T F with respect to the
quasidifferential basis defined in Definition 1. That is, DF = Qm(T F⊗ T F)Q−1

n .

As described in [5], the coordinates of DF are pairs (u, a) ∈ Fn
2 × Fn

2 and
(v, b) ∈ Fm

2 × Fm
2 . By the orthogonality of the quasidifferential basis, it holds

that Q−1
n = QT

n/2
n and consequently

DF
(v,b),(u,a) = ⟨δ(v,b),Qn(T

F ⊗ T F)QT
nδ(u,a)⟩/2n = ⟨βv,b, (T

F ⊗ T F)βu,a⟩/2n

=
1

2n

∑
(x,y)∈Fn

2 ×Fn
2

χu(x)χv(F(x))δa(x+ y)δb(F(x) + F(y))

=
1

2n

∑
x∈Fn

2

F(x+a)=F(x)+b

(−1)u
Tx+vTF(x).

(6)

For u = v = 0, Eq. (6) reduces to the probability of the differential with input
difference a and output difference b, that is, DF

(0,b),(0,a) = 2−nDDTF
(a,b). For

a = b = 0, the coordinates of the correlation matrix of F can be obtained.
In particularly, DF

(v,0),(u,0) = CF
v,u. Overall, the coordinates of DF express the

correlations of probabilistic linear relations (“linear approximations”) between
the input and output values of the right pairs.

Motivated by the notion of linear trails, Beyne and Rijmen propose the def-
inition of quasidifferential trails in Definition 3, and show that exact expression
for the probabilities of differentials can be given in terms of the correlations of
quasidifferential trails in Theorem 1. For key-alternating ciphers, the expressions
are shown in Theorem 2.
Definition 3 ([5]). A quasidifferential trail for a function F = Fr ◦ · · · ◦ F1 is a
sequence ω1, . . . , ωr+1 of mask-difference pairs ωi = (ui, ai). The correlation of
this quasidifferential trail is defined as

∏r
i=1 D

Fi
ωi+1,ωi

.

Theorem 1 ([5]). Let F : Fn
2 → Fm

2 be a function such that F = Fr ◦ · · · ◦ F1.
The probability of a characteristic with differences a1, . . . , ar+1 is equal to the
sum of the correlations of all quasidifferential trails with the same intermediate
differences:

Pr[∧ri=1Fi(xi + ai) = Fi(xi) + ai+1] =
∑

u2,··· ,ur

r∏
i=1

DFi

(ui+1,ai+1),(ui,ai)
, (7)

with u1 = ur+1 = 0, xi = Fi−1(xi−1) for i = 2, . . . , r and x1 uniform random on
Fn
2 .
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Table 2. Notations used in describing the attacks on GIFT.

Xi the input state of the round i
Xi[j] the j-th bit of the state Xi, j = 0, . . . , 127, Xi[127] is the most significant bit of Xi

Xi[j · · · k] the j-th bit, . . ., k-th bit of the state Xi

Xi[jn−1 ∼ j0] consecutive n bits from jn−1-th to j0-th bit of the state Xi

XS
i the state after the operation SubCells of round i

XP
i the state after the operation PermBits of round i

Xi+1 the state after the operation AddRoundKeys of round i
∆X the difference in state X
RKi the round key of the round i

RKi[j] the j-th bit of the i-th round key RKi

ki the 16-bit word of the master key, i = 0, . . . 7

kj
i the j-th bit of a 16-bit word ki of the master-key

>>> circular right shift
P the plaintext
C the ciphertext
T the tag of the output of encryption for SUNDAE-GIFT

RK′
i is equal to PermBits−1(RKi)

X
′P
i is equal to Xi+1

Theorem 2 ([5]). Let F = Fr ◦ · · · ◦ F1 with Fi(x) = Gi(x) + ki. If k =
(k1, . . . ,kr) is a uniform random variable on a set K, then

Pr[F(x+ a) = F(x) + b] =
∑

u2,...,ur
a2,...,ar

(u2,...,ur)⊥K

r∏
i=1

DGi

(ui+1,ai+1),(ui,ai)
, (8)

where u1 = ur+1 = 0 and the probability is over a uniform random x and over
the keys k1, . . . ,kr. In particular, for K = Fn

2 , only quasidifferential trails with
zero masks contribute to the key-averaged probability of the differential.

2.2 Description of GIFT Family

GIFT. To describe the attacks on GIFT, notations in Table 2 are used. Proposed
by Banik et al. at CHES 2017 [4], GIFT has two versions: GIFT-64 and GIFT-128.
GIFT adopts an SPN structure, with a 64-bit input for GIFT-64 and a 128-bit
input for GIFT-128, both using a 128-bit key. The round numbers for GIFT-64
and GIFT-128 are 28 and 40, respectively. The function for each round is the
same for both versions, composed of three operations: SubCells, PermBits, and
AddRoundKey.
SubCells. Both versions of GIFT use the same invertible 4-bit S-box GS. The
S-box is applied to every nibble of the internal state and is given in Appendix
A, Table 9.
PermBits. The bit permutation maps bits from bit position i of the internal
state to bit position P (i): bP (i) ← bi, i ∈ {0, 1, . . . , 63} for GIFT-64, and i ∈
{0, 1, . . . , 127} for GIFT-128. Two tables of bit permutation used in GIFT-64 and
GIFT-128 are given in Appendix A, Table 10 and Table 11, respectively.
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AddRoundKey. For GIFT-64, the 32-bit round key RK = U ||V = u15 · · ·u0||v15 · · · v0,
and is XORed with the internal state in the following way:

b4i+1 ← b4i+1 ⊕ ui, b4i ← b4i ⊕ vi, i ∈ {0, 1, · · · , 15}.

For GIFT-128, the 64-bit round key RK = U ||V = u31 · · ·u0||v31 · · · v0, and is
XORed with the internal state in the following way:

b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi, i ∈ {0, 1, . . . , 31}.

AddRoundConstants. The round constants are given in Appendix A, Table 12.
Key Schedule. The 128-bit master key is initialized as k7||k6|| · · · ||k1||k0, where
ki is 16-bit. For GIFT-64, two 16-bit words of the key state are extracted as the
round key RK = U ||V . U ← k1, V ← k0. For GIFT-128, four 16-bit words of the
key state are extracted as the round key RK = U ||V . U ← k5||k4, V ← k1||k0.

The key state is then updated as follows:

k7||k6 · · · ||k1||k0 ← (k1 >>> 2)||(k0 >>> 12)|| · · · ||k3||k2.

SUNDAE-GIFT. SUNDAE-GIFT is based on the mode of operation SUNDAE [1] at
ToSC 2019, and the underlying block cipher is GIFT-128. The encryption al-
gorithm takes as input an encryption key K ∈ {0, 1}128, an associated data
A ∈ {0, 1}∗, and a message M ∈ {0, 1}128. A nonce N with fixed length for
variants is prepended on and regarded as a part of the associated data A. The
output of the encryption is a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}128.
The operation “×” denotes the multiplication by 2 or 4 depending on the length
of the last blocks of A and M .

3 Revisiting and Discussion on the Weak-Key Conditions
with Quasidifferential Approach [5]

This section provides a brief description of how to use the quasidifferential to
derive the weak-key conditions for a key-alternating cipher, as given in [5]. We
also discuss the assumptions implicitly used in this approach.

In the normal differential cryptanalysis, an r-round differential characteristic
of a function F = Fr ◦ · · · ◦ F1 with Fi = Gi + ki is a sequence

ε = {a1, a2, . . . , ar+1},

where ai is the input differences of the i-th round. In the quasidifferential crypt-
analysis, according to Beyne and Rijmen [5], an r-round quasidifferential trail
corresponding to the above characteristic ε is the following sequence,

t = {(u1, a1), (u2, a2), . . . , (ur+1, ar+1)},

where (ui, ai) is the input mask-difference pair of the i-th round.
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The correlation of a quasidifferential trail can be calculated by the quasidif-
ferential transition matrix DGi of Gi, which is

cor =

r∏
i=1

(−1)u
T
i+1kiDGi

(ui+1,ai+1),(ui,ai)

Let c =
∏r

i=1 D
Gi

(ui+1,ai+1),(ui,ai)
, we have

cor = (−1)K · c = (−1)K · (−1)b · |c|, (9)

where K =
∑r

i=1 u
T
i+1ki, |c| is the absolute value of c, and b represents the sign

of c, i.e., when b = 1, c < 0, otherwise, c > 0.

It is easy to check, the correlation cor > 0 under a condition K = b, and
cor < 0 under a condition K = b + 1. According to Theorem 1, given a differ-
ential characteristic ε with key-averaged probability, denoted by pavg, the exact
probability of ε, denoted by p, is equal to the sum of correlations of all its
corresponding quasidifferential trails. By Eq. (9),

p =
∑
i

cori =
∑
i

(−1)Ki · ci =
∑
i

(−1)Ki · (−1)bi · |ci|. (10)

Unfortunately, the number of quasidifferential trails is too enormous to ex-
haust, thus, we actually cannot collect all quasidifferential trails, so we can only
approximate the exact p by considering a fraction of the trails. For example,
in [5], Beyne and Rijmen consider the quasidifferential trails with |c| = pavg for
the analysis of KNOT and RECTANGLE, and |c| = 20 · pavg to |c| = 2−4 · pavg for
the analysis of SPECK-32.

This paper follows a similar strategy in that we only consider those trails
that have a significant contribution to the exact p. Divide all quasidifferential
trails corresponding to ε into two parts according to |c| = pavg and |c| < pavg,
we have

p = p|c|=pavg
+p|c|<pavg

=
∑

i,|ci|=pavg

(−1)Ki ·(−1)bi ·|ci|+
∑

j,|cj |<pavg

(−1)Kj ·(−1)bj ·|cj |.

(11)

Assumption 1 The probability of a differential characteristic ε whose average
probability is pavg is dominated by those quasidifferential trails with |c| = pavg.

Based on the Assumption 1, we approximate that

p ≈ p|c|=pavg
=

∑
i,|ci|=pavg

(−1)Ki · (−1)bi · |ci|. (12)

Remark. Assumption 1 is intuitive. However, it is similar to the cases in the
traditional differential and linear cryptanalysis, where dominating trails are used
to approximate the real probabilities or correlations. For our applications in
this paper, we have done experiments to verify Assumption 1 on GIFT-64 and
GIFT-128 in Sect. 4.4, the experimental results are exactly consistent with our
assumption, showing that Assumption 1 works well.
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4 Derive Weak-Key Distinguishers of GIFT

In this section, we introduce how to apply the quasidifferential cryptanalysis and
derive weak-key distinguishers for GIFT. In Sect. 3, we have revisited the roles of
the keys in the exact probability of a differential characteristic. In our analysis of
GIFT, we tend to use the differential (multiple differential characteristics sharing
the same input and output differences) to amplify the probability. Therefore, the
method in Sect. 3 cannot be trivially used as needs to handle more quasidiffer-
ential trails simultaneously. In Sect. 4.1, we introduce a method how to obtain
the weak-key conditions for a differential and choose a good weak-key space. In
Sect. 4.2 and 4.3, we obtain the weak-key distinguishers on GIFT-64 and GIFT-
128, respectively. Finally, we verify Assumption 1 experimentally on GIFT-64 and
GIFT-128 in Sect. 4.4, respectively, the experimental results are consistent with
our assumption.

4.1 Obtain a Good Weak-Key Space for a Differential

According to Sect. 3, if a characteristic with pavg has m quasidifferential trails
satisfying |c| = pavg, then p ≤ m · |c| (under Assumption 1). The “=” case holds
only if we can add m conditions such that

Ki = bi, i = 1, . . . ,m.

Each condition above corresponds to an equation of keys, thus the m conditions
lead to a weak-key space. Furthermore, there might be redundancy among the
m conditions, i.e., the rank of the m conditions might be smaller than m, which
we denote by ℓ. Thus, the size of this weak-key space is of size 2n−ℓ (n is the
length of the key). When a key falls into this weak-key space, p = m · pavg.

As mentioned, we want to use the differential to enhance our attack. If a
differential contains d differential characteristics, denoted by ε1, . . . , εd, respec-
tively. According to Theorem 2 and Eq. (12), the probability p of this differential
can be expressed as

p =

d∑
i=1

pεi =

d∑
i=1

∑
j

|cij |=pi
avg

(−1)K
i
j · (−1)b

i
j · |cij |. (13)

For each characteristic εi above, suppose its average probability is piavg, i =
1, . . . , d. By applying ℓi equations to the keys, we can make the probability of
εi be maximum, i.e., mi · piavg. The corresponding weak-key space is denoted by
Wi.

Not all Wi are compatible. A good weak-key space should satisfy two points:
(a) the number of key conditions should be as small as possible; (b) the proba-
bility of the differential in this weak-key space should be as large as possible. To
choose a good weak-key space, we choose the Wi with the maximum log2(p)−ℓi.
The algorithm procedure pseudo-code is shown in Appendix B, Algorithm 1.
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4.2 Weak-Key Distinguishers for GIFT-64

In this subsection, we automate the search for quasidifferential trails following
[5], and obtain weak-key conditions for distinguishers of GIFT-64 according to
the discussion in Sect. 4.1. The probability of the 13-round differential of GIFT-
64 in [10], which is used to launch the known best published 21-round differential
attack on GIFT-64, is improved from 2−62.06 to 2−57.82 with 4-bit conditions of
master-key, and is close to zero in some fraction of master-key. The probability of
a 13-round multiple differentials of GIFT-64, which has the same input difference
patterns and same output difference, is improved from 2−58.96 to 2−55.67 with
4-bit conditions of master-key. The details of the analysis are as follows.

The 13-round differential of GIFT-64. For the dominant characteristic with
average probability pavg = 2−64, denoted by ε1, of the 13-round differential
of GIFT-64 presented in [10], we search and find 64 quasidifferential trails with
|c| = pavg corresponding to ε1. Take one of 64 trails, denoted by t1, corresponding
to ε1 as an example. The ε1 and t1 are both listed in Table 3. The function for
each round is Fi = Gi+rki for i = 1, . . . , r, where Gi is the PermBits ◦ SubCells
operation, and rki is the AddRoundKey operation. According to Eq. (9), we have
the correlation for t1 is that

cor1 = (−1)
∑r

i=1 uT
i+1rki ·(−1)

∑r
i=1 bi ·

r∏
i=1

|DGi

(ui+1,ai+1),(ui,ai)
| = (−1)K1 ·(−1)0·2−64,

(14)
whereK1 = rk01+rk161 +rk23+rk173 +rk05+rk165 +rk27+rk177 +rk09+rk169 +rk211+rk1711.
Thus, a weak-key condition K1 = 0 for t1 is obtained to ensure that cor1 > 0.
After performing a similar analysis for the other 63 trails, a total of 64 conditions
are obtained.

It is easy to convert the 64 conditions about round-key bits into conditions
about master-key bits as the linear key-schedule of GIFT. We get 4-bit conditions
of the master-key after the Gaussian elimination of the 64 conditions. Suppose
that four rounds are added before the 13-round distinguisher to launch the key-
recovery attack, we get a weak-key space with 4-bit conditions of master-key,
denoted by W1:

k40 + k120 = 0, k54 + k134 = 0, k00 + k80 = 0, k14 + k94 = 0. (15)

The size of the weak-key space W1 is 2128−4 = 2124. In the weak-key space W1,
the probability of characteristic ε1 is increased from 2−64 to 26 ·2−64 = 2−58, and
the probability of the differential 0x0000000000000202 13-r−→ 0x0000000500000005
is improved from 2−62.06 to 2−57.82 after applying Algorithm 1.

The 13-round multiple differentials of GIFT-64. According to the 13-
round multiple differentials in [10], we search for all 13-round characteristics
with pavg ≥ 2−64 satisfying the output difference 0x0000000000001010, and find
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Table 3. A quasidifferential trail t1 corresponding to a differential characteristic ε1.

r ar, SubCell(ar) in ε1, t1 pravg ur, SubCell(ur) in t1 cr = DGr
(ur+1,ar+1),(ur,ar)

(−1)u
T
r+1rkr br

1
0x0000000000000202

2−4
0x0000000000000000

DG1
(5,5),(0,2)D

G1
(5,5),(0,2) = 2−4

(−1)rk
0
1+rk16

1 0
0x0000000000000505 0x0000000000000505

2
0x0000000500000005

2−6
0x0000000500000005

DG2
(0,2),(5,5)D

G2
(0,2),(5,5) = 2−6 0

0x0000000200000002 0x0000000000000000

3
0x0000000002020000

2−4
0x0000000000000000

DG3
(5,5),(0,2)D

G3
(5,5),(0,2) = 2−4

(−1)rk
2
3+rk17

3 0
0x0000000005050000 0x0000000005050000

4
0x0000005000000050

2−6
0x0000005000000050

DG4
(0,2),(5,5)D

G4
(0,2),(5,5) = 2−6 0

0x0000002000000020 0x0000000000000000

5
0x0000000000000202

2−4
0x0000000000000000

DG5
(5,5),(0,2)D

51
(5,5),(0,2) = 2−4

(−1)rk
0
5+rk16

5 0
0x0000000000000505 0x0000000000000505

6
0x0000000500000005

2−6
0x0000000500000005

DG6
(0,2),(5,5)D

G6
(0,2),(5,5) = 2−6 0

0x0000000200000002 0x0000000000000000

7
0x0000000002020000

2−4
0x0000000000000000

DG7
(5,5),(0,2)D

G7
(5,5),(0,2) = 2−4

(−1)rk
2
7+rk17

7 0
0x0000000005050000 0x0000000005050000

8
0x0000005000000050

2−6
0x0000005000000050

DG8
(0,2),(5,5)D

G8
(0,2),(5,5) = 2−6 0

0x0000002000000020 0x0000000000000000

9
0x0000000000000202

2−4
0x0000000000000000

DG9
(5,5),(0,2)D

G9
(5,5),(0,2) = 2−4

(−1)rk
0
9+rk16

9 0
0x0000000000000505 0x0000000000000505

10
0x0000000500000005

2−6
0x0000000500000005

DG10
(0,2),(5,5)D

G10
(0,2),(5,5) = 2−6 0

0x0000000200000002 0x0000000000000000

11
0x0000000002020000

2−4
0x0000000000000000

DG11
(5,5),(0,2)D

G11
(5,5),(0,2) = 2−4

(−1)rk
2
11+rk17

11 0
0x0000000005050000 0x0000000005050000

12
0x0000005000000050

2−6
0x0000005000000050

DG12
(0,2),(5,5)D

G12
(0,2),(5,5) = 2−6 0

0x0000002000000020 0x0000000000000000

13
0x0000000000000202

2−4
0x0000000000000000

DG13
(0,5),(0,2)D

G13
(0,5),(0,2) = 2−4 0

0x0000000000000505 0x0000000000000000

196 characteristics with pavg = 2−64. Furthermore, we find 33 of the 196 charac-
teristics having the same input difference patterns and the same weak-key space,
which are listed in Appendix C, Table 13. Suppose that three rounds are added
before the 13-round multiple differential distinguisher to launch the key-recovery
attack, we get a weak-key space with 4-bit conditions of master-key, denoted by
W2:

k12 + k92 = 0, k52 + k132 = 0, k06 + k86 = 0, k46 + k126 = 0. (16)

The size of W2 is 2124. In W2, the probability of the 13-round multiple differen-
tials, which contains 33 characteristics, is improved from 2−58.96 to 2−55.67.
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4.3 Weak-Key Distinguishers for GIFT-128

Similarly, we find that for GIFT-128, the probability of the 20-round differential
(presented in [26]) is improved from 2−121.83 to 2−114.77 with 6-bit conditions of
master-key, and the probability of a 21-round multiple differentials of GIFT-128
is improved from 2−128.38 to 2−122.77 with 4-bit conditions of master-key.

The 20-round differentials of GIFT-128. For the 8 20-round differentials
proposed in [26] (Table 7), which are used to launch the known best published
27-round differential attack on GIFT-128, a similar analysis is performed to obtain
the weak-key spaces and probabilities. We find that the probability of differen-
tial 2 (0x000000000000000000000000000000a0 20-r−→ 0x0000000000000000200000
0210000001), which contains 8 characteristics, is improved from 2−121.83 to 2−114.77

with 6-bit conditions of master-key. The size of the weak-key space is 2122. The
details are listed in Appendix D, Table 16. Suppose that four rounds are added
before the 20-round distinguisher to launch the key-recovery attack, we get a
weak-key space with 6-bit conditions of master-key, denoted by W3:

k90 +k71 = 0, k110 +k91 = 0, k54 +k15 = 0, k96 +k117 = 0, k116 +k137 = 0, k152 = 1. (17)

The 21-round differentials of GIFT-128. We search for 21-round differentials
that satisfy only one active S-box in the input difference, the output difference
∆OUT satisfies ∆OUT [127 ∼ 64] = 0 or ∆OUT [63 ∼ 0] = 0, and find 18
21-round differentials, which are listed in Appendix E, Table 19. Similarly, the
quasidifferential trails for these differentials are searched, and the weak-key con-
ditions for each differential are obtained. After that, we find 2 (differential 9
and 10 in Table 19) of the 18 differentials having the same input difference with
the same 4-bit conditions of master-key. The details are listed in Appendix E,
Table 20. Suppose that four rounds are added before the 21-round multiple dif-
ferential distinguisher to launch the key-recovery attack, we get a weak-key space
with 4-bit conditions of master-key, denoted by W4:

k44 + k05 = 0, k86 + k107 = 0, k106 + k127 = 0, k12 = 1. (18)

The size of W4 is 2124, and the probability of the 21-round multiple differentials,
which contains 2 differentials, is improved from 2−128.38 to 2−122.77 in W4.

4.4 Experiments

In Sect. 3 Assumption 1, we suppose that quasidifferential trails satisfying |c| =
pavg are dominant for the probability of a characteristic. However, take the
characteristic ε1 in Table 3 as an example, when |c|

pavg
≤ 2−6, a large number

of quasidifferential trails exist. The number of quasidifferential trails of ε1 from
|c|

pavg
= 20 to |c|

pavg
= 2−9 are listed in Table 4. To verify the effect of quasidiffer-

ential trails with |c| < pavg on the probability of characteristic can be ignored,
we have done experimental verification on GIFT-64 and GIFT-128, respectively.
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Table 4. The numbers of trails (denoted by # t) from |c|
pavg

= 20 to |c|
pavg

= 2−9.

− log2
|c|

pavg
0 1 2 3 4 5 6 7 8 9

# t 64 0 0 0 0 0 1024 0 1536 ≥ 5856

Table 5. Experimental results of GIFT-64.

round pavg pairsexp

Cases of key in the encryption

Random round-key Random master-key Fixed master-key

pairsright pexp pairsright pexp pairsright pexp

1 to 4 2−20 225 3325 2−19.95 3385 2−19.92 12786 2−18.00

5 to 8 2−20 225 3252 2−19.98 3564 2−19.84 12668 2−18.01

9 to 13 2−24 229 3204 2−24.00 2842 2−24.17 12805 2−22.00

Experiments on GIFT-64. The 13-round characteristic ε1 (listed in Table 3) is
divided into two consecutive 4-rounds and one consecutive 5-round to experiment
with the probability in the weak-key space W1.

For each consecutive round, we conduct experiments under three cases: (1)
round-key bits of each round are randomly generated, corresponding to the key-
averaged probability for Markov ciphers; (2) the 128-bit master-key used in the
key-schedule is randomly generated, corresponding to the key space of size 2128;
(3) the 128-bit master-key used in the key-schedule satisfies 4-bit conditions of
W1 (Eq. (15)), corresponding to the weak-key space of size 2124.

In each case, 100 times are performed. Each time, plaintext pairs satisfy-
ing the input difference are randomly generated, the number of corresponding
consecutive rounds is encrypted, and the number of right pairs (satisfying all
intermediate differences) is counted. The experimental results are listed in Table
5. pairsexp represents the number of randomly generated plaintext pairs in each
time. pairsright represents the number of right pairs counted by 100 times, and
pexp =

pairsright

pairsexp
.

From the results in Table 5, the probabilities pexp of case (3) in the weak-key
space W1 are much higher than case (2). The experimental probability of the
characteristic ε1 can be expressed as the product of two consecutive 4-rounds
and one consecutive 5-round, i.e., p ≈ 2−58.01, which is close to 2−58 and exactly
consistent with Assumption 1.

The numbers of right pairs of each experiment for three cases are shown in
Fig. 1. In each subfigure, the lower triangles in yellow, the squares in blue, and
the stars in red represent case (1), case (2), and case (3), respectively. It shows
that the number of right pairs of case (2) is zero for some fraction of keys.

Experiments on GIFT-128. We also perform the experiments for six consecutive
2-rounds for the two dominant 21-round characteristics, which are listed in Ap-
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(a) round 1 to 4

(b) round 5 to 8

(c) round 9 to 13

Fig. 1. Numbers of right pairs of 100 times for three cases of the key of GIFT-64.

Table 6. Experimental results of GIFT-128.

round pavg pairsexp

Cases of key in the encryption

Random round-key Random master-key Fixed master-key

pairsright pexp pairsright pexp pairsright pexp

5 to 6 2−19 225 6468 2−18.99 7238 2−18.81 12690 2−18.00

8 to 9 2−9 215 12854 2−8.00 12698 2−8.00 12696 2−8.00

10 to 11 2−21 225 1525 2−21.07 1098 2−21.54 6394 2−19.00

13 to 14 2−9 215 12704 2−8.00 12916 2−7.98 12608 2−8.00

16 to 17 2−20 225 3233 2−19.98 3432 2−19.90 6340 2−19.01

19 to 20 2−9 215 9577 2−8.42 9578 2−8.42 9687 2−8.40

pendix E, Table 21, to verify that the probability in the weak-key space W4. The
results are listed in Table 6, showing that Assumption 1 is reasonable.
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5 Improved Weak-Key Key-Recovery Attacks on GIFT

In this section, we mount and reevaluate the attacks on GIFT-64, and GIFT-128,
by the differentials in the weak-key spaces proposed in Sect. 4, respectively.

5.1 Weak-Key Key-Recovery Attacks on GIFT-64

The 21-round differential attack on GIFT-64. By adding four rounds before
and four rounds after the 13-round differential distinguisher, which is presented
in Sect. 4.2 with probability 2−57.82 in the weak-key space W1, we launch a
21-round weak-key key-recovery attack on GIFT-64. The key-recovery process is
shown in Fig. 2.

To facilitate representation and simplify the process, we perform an equiv-
alent substitution for the AddRoundkey operation in the bottom of the distin-
guisher, and move it before the PermBits operation. The RK ′ is equals to the
inverse of PermBits of RK, i.e., RK ′ = PermBits−1(RK). Additionally, accord-
ing to the key schedule of GIFT-64, the round key RKi and RKj involve the
same 32-bit master key when i ≡ j mod 4.

Data collection. GIFT’s structure allows us to freely extend one round because
there is no whitening key at the beginning. Specifically, the structure can be con-
structed at XP

1 , while the plaintext P can be obtained by applying the inverse
operation of PermBits (PermBits−1) and SubCell (SubCell−1) to XP

1 . Then
encrypt the plaintext and obtain the corresponding ciphertext. By iterating all
64-bit in XP

1 , i.e., 264 plaintexts, we can generate about
(
264

2

)
≈ 2127 plaintext

pairs.

Key Recovery Phase. Suppose that after data collection, we have 2n plaintext
pairs and corresponding ciphertext pairs. The corresponding bits of the master-
key that need to be guessed during the key-recovery phase are listed in Table
7. The time complexity of each step with initial 2n pairs is listed in Table 8.
The detailed analysis of guessing keys and filtering to get the right pairs is given
below. ? represents one bit of undetermined difference.

1). Guess 32-bit of RK1: Guess 2-bit value of RK1[1, 0], make the SubCell
operation on the first S-box, remain the pairs satisfying

SubCell(XP
1 [3 ∼ 0]⊕RK1[1, 0])⊕ SubCell(XP

1 [3 ∼ 0]⊕RK1[1, 0]) = 00?0,

and about 2n × 2−3 pairs left. Similarly, for the other 30-bit value of RK1,
i.e., RK1[31 ∼ 2], guess each 2-bit RK1 and perform a 3-bit filtering, around
the right candidate pairs remain. The similar procedures are performed 16
times in total. Step 1) guesses 32-bit RK1 in total, and about 2n−48 pairs
left.
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Table 7. Involved keys in the 21-round differential attack on GIFT-64 of the 13-round
differential. The keys in blue represent the bits that do not repeat the guess.

RK1 k15
1 k15

0 k14
1 k14

0 k13
1 k13

0 k12
1 k12

0 k11
1 k11

0 k10
1 k10

0 k9
1k

9
0 k8

1k
8
0 k7

1k
7
0 k6

1k
6
0 k5

1k
5
0 k4

1k
4
0 k3

1k
3
0 k2

1k
2
0 k1

1k
1
0 k0

1k
0
0

RK2 k7
3k

7
2 k6

3k
6
2 k5

3k
5
2 k4

3k
4
2

RK3 k9
5k

9
4 k1

5k
1
4

RK4

RK′
18 k14

3 k2
2 k12

3 k0
2

RK′
19 k7

5k
11
4 k15

5 k3
4 k6

5k
10
4 k14

5 k2
4 k5

5k
9
4 k13

5 k1
4 k4

5k
8
4 k12

5 k0
4

RK′
20 k3

7k
7
6 k7

7k
11
6 k11

7 k15
6 k15

7 k3
6 k2

7k
6
6 k6

7k
10
6 k10

7 k14
6 k14

7 k2
6 k1

7k
5
6 k5

7k
9
6 k39

7 k13
6 k13

7 k1
6 k0

7k
4
6 k4

7k
8
6 k8

7k
12
6 k12

7 k0
6

RK′
21 k5

1k
3
0 k9

1k
7
0 k13

1 k11
0 k1

1k
15
0 k4

1k
2
0 k8

1k
6
0 k12

1 k10
0 k0

1k
14
0 k3

1k
1
0 k7

1k
5
0 k11

1 k9
0 k15

1 k13
0 k2

1k
0
0 k6

1k
4
0 k10

1 k8
0 k14

1 k12
0

2). Guess 8-bit of RK2: Guess 2-bit value of RK2[9, 8], make SubCell on the
5-th S-box, remain the pairs satisfying

SubCell(XP
2 [18 ∼ 15]⊕RK2[9, 8])⊕SubCell(XP

2 [18 ∼ 15]⊕RK2[9, 8]) = 010?,

and about 2n−48 × 2−3 pairs left. Guess RK2[13, 12], and perform a similar
3-bit filtering. Guess RK2[11, 10], make SubCell on the 6-th S-box, and
discard the pairs that do not satisfy ∆XS

3 [23 ∼ 20] =?0?0. Then a 2-bit
filtering is performed. Similarly, guess RK15,14 and perform a 2-bit filtering.
Step 2) guess 8-bit RK2 in total, and about 2n−58 pairs left.

3). Guess 4-bit RK3: For each of the 2 active S-boxes in ∆XP
3 , guess the cor-

responding 2-bit RK3, make SubCell, and perform a 3-bit filtering. Step 3)
guesses 4-bit RK3 in total, and about 2n−64 pairs left.

4). Guess 32-bit RK ′
21: Note that all 32-bit subkeys of RK ′

21 are already guessed
in Step 1), thus, for each of the 16 active S-boxes in ∆X

′P
21 , make SubCell−1

on the corresponding S-box. Step 4) does not perform the filtering, and about
2n−64 pairs left.

5). Guess 32-bit RK ′
20: Guess 2-bit RK ′

20[1, 0], make SubCell−1, remain the
pairs satisfying

SubCell−1(X
′P
20 [3 ∼ 0]⊕RK ′

20[1, 0])⊕SubCell−1(X
′P
20 [3 ∼ 0]⊕RK ′

20[1, 0]) = 0?0?,

and about 2n−64 × 2−2 pairs left. For the other 15 active S-boxes in ∆X
′P
20 ,

2-bit filtering is performed for each 2-bit RK ′
20 is guessed. The similar pro-

cedures are performed 16 times, and 32 bits RK ′
20 are guessed in Step 5) in

total. After this step, there are about 2n−96 pairs left.
6). Guess 16-bit RK ′

19: Similarly, for each one of 8 active S-boxes in ∆X
′P
19 ,

guess the corresponding 2-bit RK ′
19, make SubCell−1, and perform a 3-bit

filtering. Step 6) guesses 16-bit RK ′
19, and about 2n−120 pairs left.

7). Guess 4-bit RK ′
18: Guess RK ′

18[1, 0] and RK ′
18[17, 16], make SubCell−1,

perform a 8-bit filtering in total. Step 7) guesses 4-bit RK ′
18, and about

2n−128 pairs left.

Complexity and Success Probability. For the right key guesses, there are about
2n−64−57.82 pairs left, while for the wrong key guesses, about 2n−128 pairs left.
We set n = 121.82 to ensure that at least one pair is remained for the right key
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Fig. 2. 21-Round differential attack on GIFT-64. Each square represents one bit. The
squares in white stand for the values of difference bits are ‘0’. The squares in green
stand for the values of difference bits are ‘1’. The squares in grey stand for the values of
difference bits that are indeterminate. The squares in orange stand for the bits of key
are need to be guessed. The squares in blue stand for the bits of key that are omitted.
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Table 8. Time complexity of the 21-round differential attack on GIFT-64 in each step.

Step RK # Key Time(S-box operations) Filtering probability # Remaining pairs
1. RK1 232 2× 2n × 23 2−3×16 2n−48

2. RK2 28 2× 232 × 2n−48 × 23 2−3×2−2×2 2n−58

3. RK3 24 2× 240 × 2n−58 × 23 2−3×2 2n−64

4. RK′
21 - 2× 244 × 2n−64 × 16 - 2n−64

5. RK′
20 232 2× 244 × 2n−64 × 26 2−2×16 2n−96

6. RK′
19 216 2× 276 × 2n−96 × 23 2−3×8 2n−120

7. RK′
18 24 2× 292 × 2n−120 × 22.32 2−4×2 2n−128

guesses, while about 2−6.18 pairs are remained for the wrong key guesses. There-
fore, the data complexity is about 264 chosen-plaintexts, the time complexity is
dominated by Step 1), and about 2125.82 · 1

16 ·
1
21 ≈ 2117.42 21-round operations,

the memory complexity is about 296-bit. We use the formula presented by Selçuk
in [18] to evaluate the success probability PS :

PS = Φ

(√
µSN − Φ−1(1− 2−a)√

SN + 1

)
, (19)

where p is the probability of the differential, N is the plaintext-ciphertext pairs,
µ = pN , SN is the signal-to-noise, and a is an a-bit or higher advantage. We
have SN = 26.18. For n = 121.82, µ = 1, a = 5, PS ≈ 81.06%. For n = 125,
µ = 23.18, a = 15, PS ≈ 99.41%, and time complexity is about 2120.6 21-round
operations.
Remark. The calculation of the time complexity of the 21-round differential
attack proposed in [10], which is the combination of the 1-round attack and the
20-round, is not accurate, we reevaluate the time complexity utilizing their 13-
round differential with average probability 2−62.06 based on the above analysis.
Then SN = 2n−64−62.06

2n−128 = 21.94. For n = 126.06 to ensure that at least one right
pair left, µ = 1, PS ≈ 51.60% for a = 5, and the time complexity is about
2121.66 21-round operations. Our attack improves the success probability and
complexity in the weak-key space W1 compared to [10].

The 21-round multiple differential attack on GIFT-64. Based on the 13-
round multiple differentials proposed in Sect. 4.2 with probability 2−55.67 in
the weak-key space W2, we add three rounds before and five rounds after the
distinguisher to mount the 21-round multiple differential attack on GIFT-64 in
Appendix C. Thanks to increasing the probability of the 13-round multiple differ-
ential distinguisher in the weak-key space W2, it allows us to boost the multiple
differential attack on GIFT-64 from 20 to 21 rounds.

Complexity and Success Probability. The data complexity is 264 chosen-plaintexts,
the time complexity is about 2123.27 21-round operations, the memory complex-
ity is about 2112-bit, and the success probability is about 99.9%.
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5.2 Weak-Key Key Recovery Attacks on GIFT-128

The 27-round differential attack on GIFT-128. Using the 20-round differ-
ential with probability 2−114.77 in the weak-key space W3, which is presented in
Sect. 4.3, we launch the differential attack on 27-round GIFT-128 by adding four
rounds before and three rounds after the distinguisher in Appendix D.

Complexity and Success Probability. The data complexity is about 2115.77 chosen-
plaintexts, the time complexity is about 2110.85 27-round operations, the memory
complexity is about 292-bit, and the success probability is about 99.9%. Com-
pared to the 27-round differential attack in [26], the complexity is reduced by
about 23.06 in a weak-key setting.

The 28-round differential attack on GIFT-128. Similarly, by adding four
rounds before and three rounds after, the first 28-round multiple differential
attack on GIFT-128 is launched based on the 21-round multiple differentials with
probability 2−122.77 in the weak-key space W4, which is proposed in Sect. 4.3.
The details of the attack are presented in Appendix E.

Complexity and Success Probability. The data complexity is about 2123.77 chosen-
plaintexts, the time complexity is about 2123.77 28-round operations, the memory
complexity is about 296-bit, and the success probability is about 86.5%.

6 Distinguisher and Attack on SUNDAE-GIFT

We attack the initialization phase without plaintext data of version SUNDAE-GIFT-
96 of SUNDAE-GIFT family with a 96-bit nonce, which is the primary member
satisfying the requirements set by NIST. Our restriction for searching distin-
guishers is that the difference of the plaintext is only active in the high 96 bits
by adding a certain number of rounds before the distinguisher. Then we find two
11-round differential characteristics, which are listed in Appendix F, Table 25
with average probability 2−60, can be utilized to launch a 17-round differential
attack by adding three rounds before and three rounds after the distinguisher.
Similarly, we search for quasidifferential trails satisfying |c| = pavg and find only
one quasidifferential trail with all-zero masks for each characteristic, thus, there
are no weak-key conditions for these two characteristics.

The first 17-round differential attack on SUNDAE-GIFT utilizing the 11-round
differential characteristic with probability 2−60 is proposed in Appendix F.

Complexity and Success Probability : The data complexity is about 262.5 chosen-
plaintexts, the time complexity is about 275.37 17-round operations, the memory
complexity is about 266-bit, and the success probability is about 99.9%.
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7 Conclusion

In this paper, we continue the work on the quasidifferential transition matrix in
differential cryptanalysis proposed by Beyne and Rijmen at CRYPTO 2022 and
apply their approach to GIFT. By holding some conditions of master-key, the
probabilities of some differential characteristics with small probabilities can be
improved in a weak-key setting. Then the weak-key (multiple) differential key-
recovery attacks on GIFT are obtained based on the weak-key distinguishers. For
GIFT-64, the multiple differential attack can be boosted from 20 to 21 rounds,
and the 21-round differential attack can be improved in terms of complexity. For
GIFT-128, the complexity of the 27-round differential attack can be improved,
and the first 28-round (multiple) differential attack is obtained. Finally, after
checking the 11-round differential characteristic with quasidifferential trails, we
mount the first differential attack on the 17-round SUNDAE-GIFT.
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A Tables of GIFT

Table 9. 4-bit invertible S-box in GIFT.

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf
GS(x) 0x1 0xa 0x4 0xc 0x6 0xf 0x3 0x9 0x2 0xd 0xb 0x7 0x5 0x0 0x8 0xe

Table 10. Bit permutation of GIFT-64.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P64(i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P64(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P64(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P64(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

Table 11. Bit permutation of GIFT-128.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P64(i) 0 33 66 99 96 1 34 67 64 97 2 35 32 65 98 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P64(i) 4 37 70 103 100 5 38 71 68 101 6 39 36 69 102 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P64(i) 8 41 74 107 104 9 42 75 72 105 10 43 40 73 106 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P64(i) 12 45 78 111 108 13 46 79 76 109 14 47 44 77 110 15

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
P64(i) 16 49 82 115 112 17 50 83 80 113 18 51 48 81 114 19

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
P64(i) 20 53 86 119 116 21 54 87 84 117 22 55 52 85 118 23

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
P64(i) 24 57 90 123 120 25 58 91 88 121 26 59 56 89 122 27

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
P64(i) 28 61 94 127 124 29 62 95 92 125 30 63 60 93 126 31
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Table 12. The values of the round constants in GIFT.

Rounds Constants
1− 16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E
17− 32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38
33− 48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

B Algorithm for Obtain a Good Weak-Key Space and
Probability for a Differential

Algorithm 1 Obtain a good weak-key space and probability p for a differential.
Require: A given r-round differential, which contains d differential characteristics, denoted as

ε1, ε2, · · · , εd, respectively;
Ensure: A weak-key space, and the probability p of the differential in this weak-key space;
1: Initialize an empty set S;
2: Initializes two linear systems Mi

c and Mi
a as empty;

3: for i = 1, 2, · · · , d do
4: pi = 0;
5: εi is a differential characteristic with average probability pi

avg in the differential;
6: Search for all quasidifferential trails of εi that satisfy |ci| = pi

avg , and denoted as ti;
7: len(ti) represents the number of trails;
8: for j = 1, 2, · · · , len(ti) do

9: corij = (−1)
Ki

j+bij · |cij | is the correlation of the j-th trail ti[j];
10: lbij : Ki

j is a linear combination of round-key bits, which is derived by Ki
j ;

11: Mi
c = Mi

c ∪ {lbij};
12: leij : Ki

j = bij is a linear equation of round-key bits, which is derived by corij > 0;
13: Mi

a = Mi
a ∪ {leij};

14:
15: if rank(Mi

c) = rank(Mi
a) and len(ti) > 2M

i
a then

16: ℓi = rank(M
′i
a ) and M

′i
a is Mi

a after Gaussian elimination;
17: Wi with ℓi linear equations is a valid weak-key space;
18: pi = pi + len(ti) · pi

avg ;
19: for i′ = 1, · · · , d and i′ ̸= i do
20: εi′ is a characteristic with average probability pi′

avg ;
21: Search for all quasidifferential trails of εi′ satisfying |ci′ | = pi′

avg , and denoted as ti′ ;
22: for j = 1, 2, · · · , len(ti′ ) do
23: if Ki′

j is a linear combination of ℓi equations and the value is vi′
j then

24: pi = pi + (−1)
vi′
j +bi

′
j

25: S = S ∪ (log2(p
i) − ℓi);

26: else
27: break
28: Take the maximum value in set S, suppose that the corresponding index of characteristic is i;
29: Wi is chosen as the weak-key space for the differential;
30: pi is the probability of the differential in the weak-key space Wi;

C Multiple Differential Attack on 21-Round GIFT-64

For the 13-round multiple differentials (33 characteristics are listed in Table
13) presented in Sect. 4.2 with probability 2−55.67 in the weak-key space W2,
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Table 13. 13-Round characteristics of GIFT-64 that have the common output difference
0x0000000000001010, both with pavg = 2−64. # t represents the number of quasidif-
ferential trails satisfying |c| = pavg corresponding to each characteristic.

# t Index Input difference Index Input difference Index Input difference

16

1 0x000000f0000000f0 2 0x000000c0000000c0 3 0x000000c0000000f0
4 0x000000c0000000d0 5 0x000000d0000000f0 6 0x000000f0000000e0
7 0x000000c0000000e0 8 0x000000e0000000c0 9 0x000000e0000000f0
10 0x000000e0000000d0 11 0x000000d0000000e0 12 0x000000d0000000c0
13 0x000000f0000000d0 14 0x000000d0000000d0 15 0x000000f0000000c0
16 0x000000e0000000e0

4

1 0x000000c0000000c0 2 0x000000c0000000d0 3 0x000000c0000000f0
4 0x000000e0000000c0 5 0x000000d0000000c0 6 0x000000c0000000e0
7 0x000000f0000000c0 8 0x000000d0000000e0 9 0x000000e0000000d0
10 0x000000e0000000f0 11 0x000000f0000000d0 12 0x000000d0000000d0
13 0x000000e0000000e0 14 0x000000f0000000e0 15 0x000000d0000000f0
16 0x000000f0000000f0

1 1 0x000000f0000000d0

Table 14. Involved master-keys in the 21-round key-recovery attack on GIFT-64 of the
13-round multiple differential distinguisher. The keys in blue represent the bits that
do not repeat the guess.
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Table 15. Time complexity of the 21-round multiple differential attack on GIFT-64 in
each step.

Step RK # Key Time(S-box operations) Filtering probability # Remaining pairs
1. RK1 232 2× 2n × 23 2−3×16 2n−48

2. RK2 28 2× 232 × 2n−48 × 24 2−4×4 2n−64

3. RK ′
21 - 2× 240 × 2n−64 × 16 - 2n−64

4. RK ′
20 232 2× 240 × 2n−64 × 232.41 - 2n−64

5. RK ′
19 232 2× 272 × 2n−64 × 23 2−3×16 2n−112

6. RK ′
18 28 2× 2104 × 2n−112 × 24 2−2×4 2n−120

7. RK ′
17 - 2× 2112 × 2n−120 × 20.08 2−4×2 2n−128
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we mount the 21-round multiple differential attack on GIFT-64 by adding three
rounds before and five rounds after the distinguisher. The master-keys involved
in the key-recovery attack are listed in Table 14. The time complexity of each
step with initial 2n pairs is listed in Table 15.
Complexity and Success Probability. For the right key guesses, there are about
2n−64−55.67 pairs left, while for the wrong key guesses, about 2n−128 · 33 pairs
left. We set n = 119.67 to expect that at least one pair remains for the right key
guesses, while about 2−3.28 pairs remain for the wrong key guesses. Therefore, the
data complexity is about 264 chosen-plaintexts, the time complexity is dominated
by Step 5), and about 2131.67 · 1

16 ·
1
21 ≈ 2123.27 21-round operations, the memory

complexity is about 2112-bit.
We use the following formula proposed by Blondeau et al. [7] to evaluate the

success probability PS :

PS ≈ 1−G∗[G
−1(1− l − 1

2nk − 2
)− 1

Ns
], (20)

where nk is the number of key candidates, l is the size of the list to keep, G
is defined by G−1(y) = min{x|G(x) ≥ y}, and Ns is the number of samples.
Please refer to [7] for more details of the functions G, G∗, and the analysis. For
nk = 112, l = 291, and Ns = 264, the success probability PS ≈ 99.9%.

D Differential Cryptanalysis of 27-Round GIFT-128

For the 20-round differentials (weak-key space and details are listed in Table
16) presented in Sect. 4.3 with probability 2−114.77 in the weak-key space W3,
which has input difference 0x0000000000000000000000000 00000a0 and output
difference 0x00000000000000002000000210000001, we launch the 27-round differ-
ential attack on GIFT-128. The master-keys involved in the key-recovery attack
are listed in Table 17. The time complexity of each step with initial 2n pairs is
listed in Table 18. Suppose that there are 2n pairs to perform the attack.
Complexity and Success Probability. For the right key guesses, there are about
2n−64−114.77 pairs left, while for the wrong key guesses, about 2n−64−128 pairs
left. We set n = 178.77 to expect that at least one pair remains for the right key
guesses, while about 2−13.23 pairs remain for the wrong key guesses. One struc-
ture contains 264 plaintexts, and can generate 2127 pairs, thus, about 2178.77−127 =
251.77 structures are required. Therefore, the data complexity is about 251.77+64 =
2115.77 chosen-plaintexts, the time complexity is about 2120.61 · 1

32 ·
1
27 ≈ 2110.85

27-round operations, the memory complexity is about 292-bit.
We use the formula in Eq. (19) to evaluate the success probability PS . When

SN is very large, PS ≈ Φ(
√
µ). For SN = 213.23, µ = pN = 2−114.77 · 2178.77, PS

is about 99.9%.

E Multiple Differential Attack on 28-Round GIFT-128
For the 21-round multiple differentials (2 differentials listed in Table 20) proposed
in Sect. 4.3 with probability 2−122.77 in the weak-key space W4, the 28-round key-
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Table 16. The details of the 20-round differential of GIFT-128 proposed in [26] (Table
7), differential 2. # t is the number of quasidifferential trails, and # valid t is the
number of valid quasidifferential trails in the weak-key space W3.

differential index characteristic index pavg # t # valid t p weak-key space

2

1 2−124 256 256

2−114.77

k9
0 + k7

1 = 0
k11
0 + k9

1 = 0
k5
4 + k1

5 = 0
k9
6 + k11

7 = 0
k11
6 + k13

7 = 0
k15
2 = 1

2 2−124 256 128
3 2−125 512 128
4 2−125 512 64
5 2−125 512 64
6 2−125 512 128
7 2−126 1024 64
8 2−126 1024 32

Table 17. Involved mater-keys in the 27-round differential key-recovery attack on GIFT
128. The keys in blue represent the bits that will not repeat the guess.

RK1
k15
5 k15

1 k14
5 k14

1 k13
5 k13

1 k12
5 k12

1 k11
5 k11

1 k10
5 k10

1 k9
5k

9
1 k8

5k
8
1 k7

5k
7
1 k6

5k
6
1 k5

5k
5
1 k4

5k
4
1 k3

5k
3
1 k2

5k
2
1 k1

5k
1
1 k0

5k
0
1

RK2
k15
7 k15

3 k14
7 k14

3 k13
7 k13

3 k12
7 k12

3 k7
7k

7
3 k6

7k
6
3 k5

7k
5
3 k4

7k
4
3

RK3
k3
0k

7
4 k1

0k
5
4

RK4

RK′
25

k7
5k

15
1 k14

5 k2
0 k5

5k
13
1 k12

5 k0
0

RK′
26

k10
7 k2

3 k14
6 k10

3 k6
6k

14
2 k2

7k
6
2 k8

7k
0
3 k12

6 k8
3 k4

6k
12
2 k0

7k
4
2

k6
7k

14
3 k10

6 k6
3 k2

6k
10
2 k14

7 k2
2 k4

7k
12
3 k8

6k
4
3 k0

6k
8
2 k12

7 k0
2

RK′
27

k11
0 k11

5 k5
1k

7
4 k10

0 k10
5 k4

1k
6
4 k9

0k
9
5 k3

1k
5
4 k8

0k
8
5 k2

1k
4
4

k7
0k

7
5 k1

1k
3
4 k6

0k
6
5 k0

1k
2
4 k5

0k
5
5 k15

1 k1
4 k4

0k
4
5 k14

1 k0
4

Table 18. The time complexity and filtering probability of the 20-round differential
to attack 27-round GIFT-128 in each step with 2n pairs.

Step RK # Key Time(S-box operations) Filtering probability Remaining pairs
1. RK1 232 2n−64+5.32 2−3×2−2×14 = 2−34 2n−98

2. RK2 216 2n−64+1.99 2−3×7−2 = 2−23 2n−121

3. RK3 24 2n−64−5.91 2−4−3 = 2−7 2n−128

4. RK ′
27 214 2n−64−6.09 - 2n−128

5. RK ′
26 224 2n−64+3.73 2−3×16 = 2−48 2n−176

6. RK ′
25 22 2n−64−20.9 2−4×4 = 2−16 2n−192



30 C. Chang et al.

Table 19. The 18 21-round differentials of GIFT-128.

differential Input difference Output difference Pr
1 0x000000000000000000000000000000a0 0x00000000000000002000000210000001 2−128.64

2 0x000000000000000000000000000000a0 0x00000000000000000000002200000011 2−128.64

3 0x000000000000000000000000000000a0 0x00000000000000000000004100000028 2−128.59

4 0x000000000000000000000000000000a0 0x00000014000000820000000000000000 2−128.59

5 0x00000000000000000000000000000a00 0x00000000000000000022000000110000 2−128.64

6 0x00000000000000000000000000000a00 0x00000000000000000002200000011000 2−128.64

7 0x00000000000000000000000000000a00 0x00044000000220000000000000000000 2−129.64

8 0x00000000000000000000000000000a00 0x00000000000000008020000000100000 2−130.75

9 0x00000000000000000000000000000a00 0x00140000008200000000000000000000 2−128.59

10 0x00000000000000000000000000000a00 0x0050400000a020000000000000000000 2−131.29

11 0x00000000000000000000000000a00000 0x00000000000000000000002200000011 2−128.64

12 0x00000000000000000000000000a00000 0x00000000000000000000000408000002 2−129.64

13 0x00000000000000000000000000a00000 0x00000000000000000000001008000080 2−130.75

14 0x0000000000000000000000000a000000 0x00000000000000000022000000110000 2−128.64

15 0x0000000000000000000000000a000000 0x00000000000000000020020000100100 2−128.64

16 0x0000000000000000000000000a000000 0x00400400002002000000000000000000 2−129.64

17 0x0000000000000000000000000a000000 0x00410000002800000000000000000000 2−128.59

18 0x0000000000000000000000000a000000 0x00010400000802000000000000000000 2−130.75

recovery attack on GIFT-128 is launched by adding four rounds before and three
rounds after the distinguisher. The master-keys involved in the key-recovery
attack are listed in Table 22 and Table 23. The time complexity of each step
with initial 2n pairs is listed in Table 24.
Complexity and Success Probability. For the right key guesses, there are about
2n−64−122.77 pairs left, while for the wrong key guesses, about 2n−64−128 · 2
pairs left. We set n = 186.77 to expect that at least one pair remains for the
right key guesses, while about 2−4.23 pairs remain for the wrong key guesses.
One structure contains 264 plaintexts, and can generate 2127 pairs, thus, about
2186.77−127 = 259.77 structures are required. Therefore, the data complexity is
about 259.77+64 = 2123.77 chosen-plaintexts, the time complexity is about 2128.07 ·
1
32 ·

1
28 ≈ 2118.27 28-round operations, the memory complexity is about 296-bit.

We use the formula in Eq. (20) to evaluate the success probability PS . For
nk = 96, l = 291, and Ns = 2123.77, the success probability PS ≈ 86.5%.

Note that the time complexity of the attack is dominated by encrypting
plaintexts, so the time complexity of guessing the key reduced by the weak-key
space is negligible.

F Differential Cryptanalysis of 17-Round SUNDAE-GIFT

For SUNDAE-GIFT-96, we target the initial phase without plaintext data in Fig.
3, and only one associated data block, which is the 96-bit nonce after padding.
We observe that the initial block IV is a constant, therefore, the EK(IV ) is
determined by the K. We treat EK(IV ) as a 128-bit whitening key based on
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Table 20. The details of the two 21-round differentials of GIFT-128 in Table 19,
differential 9 and 10, respectively. # t is the number of quasidifferential trails, and
# valid t is the number of the valid quasidifferential trails in the weak-key space W4.

differential index characteristic index pavg # t # valid t p weak-key space

9

1 2−130 64 64

2−123.11

k4
4 + k0

5 = 0
k8
6 + k10

7 = 0
k10
6 + k12

7 = 0
k1
2 = 1

2 2−131 128 32
3 2−131 128 32
4 2−132 256 16
5 2−133 256 68
6 2−134 512 34
7 2−134 512 64
8 2−134 512 34
9 2−135 1024 32
10 2−135 1024 32
11 2−135 1024 17

10

1 2−133 128 128

2−125.04

2 2−134 128 64
3 2−134 256 64
4 2−134 256 64
5 2−135 256 32
6 2−135 256 32
7 2−135 512 32
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Table 21. Two primary 21-round differential characteristics of GIFT-128. One is in
differential 9 characteristic 1 with average probability 2−130, the other is in differential
10 characteristic 1 with average probability 2−133 in Table 20, respectively.

r ∆Xr of differential 9 characteristic 1 pavg ∆Xr of differential 10 characteristic 1 pavg

1 0x00000000000000000000000000000a00 2−0 0x00000000000000000000000000000a00 2−0

2 0x00000000000000010000000000000000 2−2 0x00000000000000010000000000000000 2−2

3 0x00080000000000000000000000000000 2−5 0x00080000000000000000000000000000 2−5

4 0x00000000000000002000000010000000 2−7 0x00000000000000002000000010000000 2−7

5 0x00004040000020200000000000000000 2−12 0x00004040000020200000000000000000 2−12

6 0x05050000000000000505000000000000 2−20 0x05050000000000000505000000000000 2−20

7 0x0000000000000000a000a00000000000 2−32 0x0000000000000000a000a00000000000 2−32

8 0x00000000000000000000110000000000 2−36 0x00000000000000000000110000000000 2−36

9 0x00000000000000000000080000000800 2−42 0x00000000000000000000080000000800 2−42

10 0x00000202000001010000000000000000 2−46 0x00000202000001010000000000000000 2−46

11 0x00000000050500000000000005050000 2−56 0x00000000050500000000000005050000 2−56

12 0x000000000000000000a000a000000000 2−68 0x000000000000000000a000a000000000 2−68

13 0x00001100000000000000000000000000 2−72 0x00001100000000000000000000000000 2−72

14 0x0000000000000000080000000c000000 2−78 0x0000000000000000080000000c000000 2−78

15 0x00002020000010000000000000000000 2−82 0x00002020000010000000000000000000 2−82

16 0x050400000a0200000000000000000000 2−90 0x050400000a0200000000000000000000 2−90

17 0x00000000505000000000000050100000 2−99 0x00000000505000000000000050100000 2−99

18 0x0000000000a000a00000000000000000 2−111 0x0000000000a000a00000000000000000 2−111

19 0x00110000000000000000000000000000 2−115 0x00110000000000000000000000000000 2−115

20 0x00000000c00000006000000000000000 2−121 0x80000000c00000000000000000000000 2−121

21 0x00000000002020000000000000000000 2−125 0x00000000202000001000000000000000 2−125

22 0x00140000008200000000000000000000 2−130 0x0050400000a020000000000000000000 2−133

Table 22. Involved keys in the 28-round multiple differential key-recovery attack on
GIFT-128 of the 21-round differential 9 in Table 20.

RK1
k15
5 k15

1 k14
5 k14

1 k13
5 k13

1 k12
5 k12

1 k11
5 k11

1 k10
5 k10

1 k9
5k

9
1 k8

5k
8
1 k7

5k
7
1 k6

5k
6
1 k5

5k
5
1 k4

5k
4
1 k3

5k
3
1 k2

5k
2
1 k1

5k
1
1 k0

5k
0
1

RK2
k15
6 k15

2 k14
6 k14

2 k13
6 k13

2 k12
6 k12

2 k7
6k

7
2 k6

6k
6
2 k5

6k
5
2 k4

6k
4
2

RK3
k7
0k

11
4 k5

0k
9
4

RK4

RK′
26

k9
7k

9
3 k8

7k
8
3 k1

7k
1
3 k0

7k
0
3

RK′
27

k13
1 k11

5 k11
1 k9

5 k5
1k

3
5 k3

1k
1
5

k3
0k

7
4 k1

0k
5
4 k11

0 k15
4 k9

0k
13
4

RK′
28

k13
3 k11

7 k11
3 k9

7 k9
3k

7
7 k7

3k
5
7 k5

3k
3
7 k3

3k
1
7 k1

3k
15
7 k15

3 k13
7

k3
2k

7
6 k1

2k
5
6 k15

2 k3
6 k13

2 k1
6 k11

2 k15
6 k9

2k
13
6 k7

2k
11
6 k5

2k
9
6
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Table 23. Involved keys in the 28-round differential key recovery attack on GIFT-128
of the 21-round differential 10 in Table 20.

RK1
k15
5 k15

1 k14
5 k14

1 k13
5 k13

1 k12
5 k12

1 k11
5 k11

1 k10
5 k10

1 k9
5k

9
1 k8

5k
8
1 k7

5k
7
1 k6

5k
6
1 k5

5k
5
1 k4

5k
4
1 k3

5k
3
1 k2

5k
2
1 k1

5k
1
1 k0

5k
0
1

RK2
k15
6 k15

2 k14
6 k14

2 k13
6 k13

2 k12
6 k12

2 k7
6k

7
2 k6

6k
6
2 k5

6k
5
2 k4

6k
4
2

RK3
k7
0k

11
4 k5

0k
9
4

RK4

RK′
26

k9
7k

9
3 k7

7k
7
3 k1

7k
1
3 k15

7 k15
3

RK′
27

k13
1 k11

5 k12
1 k10

5 k11
1 k9

5 k10
1 k8

5 k5
1k

3
5 k4

1k
2
5 k3

1k
1
5 k2

1k
0
5

k3
0k

7
4 k2

0k
6
4 k1

0k
5
4 k0

0k
4
4 k11

0 k15
4 k10

0 k14
4 k9

0k
13
4 k8

0k
12
4

RK′
28

k13
3 k11

7 k11
3 k9

7 k9
3k

7
7 k7

3k
5
7 k5

3k
3
7 k3

3k
1
7 k1

3k
15
7 k15

3 k13
7

k3
2k

7
6 k1

2k
5
6 k15

2 k3
6 k13

2 k1
6 k11

2 k15
6 k9

2k
13
6 k7

2k
11
6 k5

2k
9
6

Table 24. The time complexity and filtering probability of 21-round differential to
attack 28-round GIFT-128 in each step with 2n pairs.

Step RK # Key Time(S-box operations) Filtering probability Remaining pairs
1. RK1 232 2n−64+5.3 2−2×3−14×2 = 2−34 2n−34

2.
RK2 216

2n−64−1.95 2−7×3−6−4×3−8×2 = 2−55 2n−89

RK′
28 224

3.
RK3 24

2n−64−13.68 2−4−3−5×2−3×3 = 2−26 2n−115

RK′
27 28

4.
RK4 -

2n−64−26.68 2−4−2−3−4 = 2−13 2n−128

RK′
26 24
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Table 25. Two 11-round differential characteristics of SUNDAE-GIFT.

r ∆Xr in differential characteristic 1 p ∆Xr in differential characteristic 2 p

1 0x00000000000000000000000000000a00 2−0 0x00000000000000000000000000000e00 2−0

2 0x00000000000000010000000000000000 2−2 0x00000000000000010000000000000000 2−2

3 0x00080000000000000000000000000000 2−5 0x00080000000000000000000000000000 2−5

4 0x00000000000000002000000010000000 2−7 0x00000000000000002000000010000000 2−7

5 0x00004040000020200000000000000000 2−12 0x00004040000020200000000000000000 2−12

6 0x05050000000000000505000000000000 2−20 0x05050000000000000505000000000000 2−20

7 0x0000000000000000a000a00000000000 2−32 0x0000000000000000a000a00000000000 2−32

8 0x00000000000000000000110000000000 2−36 0x00000000000000000000110000000000 2−36

9 0x00000600000000000000090000000000 2−42 0x00000600000000000000090000000000 2−42

10 0x02000000000001000000000000000000 2−47 0x02000000000001000000000000000000 2−47

11 0x00000000100000000008000040000000 2−52 0x00000000100000000008000040000000 2−52

12 0x00000000000000000000201000801080 2−60 0x00000000000000000000201000801080 2−60

Fig. 3. SUNDAE-GIFT encryption without plaintext data.

the structure that there is no whitening key at the beginning of GIFT, and write
it as IK. In addition, the multiplication “×” is a linear operation, the order
of operation “×” and (pad(N) ⊕ IK) can be swapped, we have ×(pad(N) ⊕
IK) = ×(pad(N))⊕×(IK)), where pad(N) is a 128-bit state after padding, i.e.,
pad(N) = N ||032. The ×(pad(N)) and ×(IK) are denoted by G(N) and IK ′,
respectively.

According to the differential attack in Fig. 4. The structures are constructed
in G(N) by choosing nonce. One structure has a 64-bit traversal value and 64-bit
constant and can generate about 2127 pairs. Before performing the subsequent
key recovery, the partial value of the IK ′ needs to be recovered. For a 4-bit S-box,
we make a precomputation table to record solutions by traversing all input pairs
with given input difference and output difference. The 4-bit IK ′ corresponding
to an S-box can be squeezed out by precomputation-table lookup. For the GIFT’s
4-bit S-box, the average number of solutions is 78×2+18×4+2×6

78+18+2 ≈ 2.4 according
to the difference distribution table (DDT). As a result, there are about 2.416 ≈
220.16 possible values for the IK ′[127 ∼ 64]. After that, the key recovery attack
can be performed by guessing key and filtering pairs for each possible value of
IK ′[127 ∼ 64], and the procedure is similar to the 21-round differential attack
on GIFT-64, which is omitted.
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Table 26. Involved keys in the 17-round differential key-recovery attack on
SUNDAE-GIFT of the 11-round differential characteristic 1 in Table 25. The keys in
blue represent the bits that do not repeat the guess.

RK1
k15
4 k15

0 k14
4 k14

0 k13
4 k13

0 k12
4 k12

0 k7
4k

7
0 k6

4k
6
0 k5

4k
5
0 k4

4k
4
0

RK2
k10
7 k10

3 k8
7k

8
3

RK3

RK′
15

k2
1k

8
5 k10

0 k6
4 k9

0k
5
4 k0

1k
6
5 k8

0k
4
4

RK′
16

k6
2k

4
7 k14

2 k10
6 k14

3 k2
6 k4

2k
2
7 k12

2 k8
6 k12

3 k0
6

k2
2k

0
7 k10

2 k6
6 k10

3 k14
6 k0

2k
14
7 k8

2k
4
6 k8

3k
12
6

RK′
17

k7
4k

7
1 k15

5 k15
0 k6

4k
6
1 k14

5 k14
0 k5

4k
5
1 k13

5 k13
0 k4

4k
4
1 k12

5 k12
0

k3
4k

3
1 k11

5 k11
0 k2

4k
2
1 k10

5 k10
0 k1

4k
1
1 k9

5k
9
0 k0

4k
0
1 k8

5k
8
0

Table 27. The time complexity and filtering probability of the 11-round differential
characteristic to attack 17-round SUNDAE-GIFT in each step with 2n−64 pairs. The 64-
bit IK′ in step 1. yields about 220.16 possible values.

Step RK # Key Time(S-box operations) Filtering probability Remaining pairs
1. K′ 264 2n−64+20.16 - 2n−64

2. RK1 216 2n−64+24.16 2−7×3−2 = 2−23 2n−87

3. RK2 24 2n−64+16.48 2−4−3 = 2−7 2n−94

4. RK ′
17

28 2n−64+15.16 2−8×1 = 2−8 2n−102

216 2n−64+21.16 2−8×1 = 2−8 2n−110

5. RK′
16 222 2n−64+20.89 2−4×2−3×4−2×6 = 2−32 2n−142

6. RK′
15 21 2n−64+9.25 2−4×3−2×2 = 2−16 2n−158

The keys involved in the key recovery attack are listed in Table 26. Suppose
that there are 2n pairs to perform the attack. The time complexity details of
each step with 2n−64 pairs satisfying the pattern of 64 inactive bits in ∆T are
listed in Table 27.
Complexity and Success Probability. For the right key guesses, there are about
2n−64−60 = 2n−124 pairs will be left, while for the wrong key guesses, about
2n−64−94 = 2n−158 pairs will be left. We set n = 124, that is, about 262.5 nonce
are required. Thus, the data complexity is about 262.5 chosen-nonces, the time
complexity is about 284.46 · 132 ·

1
17 ≈ 275.37 17-round encryptions, and the memory

complexity is about 266-bit.
We use the formula in Eq. (19) to evaluate the success probability PS . When

SN is very large, PS ≈ Φ(
√
µ). For SN = 243, µ = pN = 2−60 · 2124, PS is about

99.9%.
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Fig. 4. 17-round differential attack on SUNDAE-GIFT.
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