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Abstract. GIFT, including GIFT-64 and GIFT-128, is a family of lightweight
block ciphers with outstanding implementation performance and high se-
curity, which is a popular underlying primitive chosen by many AEADs
such as SUNDAE-GIFT. Currently, differential cryptanalysis is the best key-
recovery attack on both ciphers, but they have stuck at 21 and 27 rounds
for GIFT-64 and GIFT-128, respectively. Recently, Beyne and Rijmen pro-
posed the quasidifferential transition matrix for differential cryptanalysis
at CRYPTO 2022 and showed that the fixed-key probability of a differ-
ential (characteristic) can be expressed as the sum of correlations of all
quasidifferential trails corresponding to this differential (characteristic).
As pointed out by Beyne and Rijmen in their paper, the quasidifferential
methodology is useful in identifying weak-key differential attacks.

In this paper, we apply Beyne and Rijmen’s method to GIFT. Some dif-
ferential characteristics with small (average) probabilities can have much
larger probabilities when weak-key conditions hold. Improved weak-key
differential attacks on GIFT-64 and GIFT-128 are thus obtained. For GIFT-
64, the probability of a 13-round differential is improved from 27529 to
275782 with 4 bits of weak-key conditions, then an improved differential
key-recovery attack on 21-round GIFT-64 is obtained with 2117'42/264
time/data complexities; the probability of a 13-round multiple differen-
tial (containing 33 characteristics) is improved from 27°8:9¢ o 275567
with 4 bits of weak-key conditions, then an improved multiple differen-
tial key-recovery attack on 21-round GIFT-64 is obtained with 2'23-27 /264
time/data complexities. For GIFT-128, the probability of a 20-round dif-
ferential is improved from 2712183 to 271477 with 6 bits of weak-key
conditions; the probability of a 21-round multiple differential (contain-
ing 2 differentials) is improved from 27'28-38 to 2712277 with 4 bits
of weak-key conditions. Improved (multiple) differential weak-key key-
recovery attacks are obtained for 27 and 28 rounds of GIFT-128 with
QUIB-TT JUBTT and 212377 /212377 time/data complexities, respectively.
As far as we know, this is the first time that a (weak-key) key-recovery
attack can reach 28 rounds of GIFT-128.
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Additionally, as an independent interest, we perform the first differential
attack on SUNDAE-GIFT. The differential used in this attack is checked
with quasidifferential trails, thus the probability is reliable. Our attack
is nonce-respecting and has significantly better complexities than the
currently best attack.

Keywords: Quasidifferential - Differential - Weak-Key - GIFT.

1 Introduction

Differential cryptanalysis is one of the most fundamental methods to analyze
the security of block ciphers, which was proposed by Biham and Shamir [6] at
CRYPTO 1990 to attack the block cipher DES. The core concept of the differ-
ential attack is to construct the probabilistic transition from an input difference
to an output difference for iterated ciphers. This involves choosing plaintext
pairs that satisfy the input difference, tracing the difference transitions of the
iterated block cipher throughout the multi-round encryption process, and find-
ing high-probability differentials over a large number of rounds. The differential
transition that traces the large number of rounds is usually converted to tracing
intermediate differences, the calculation of the differential probability of long
rounds can be estimated heuristically as the product of multiple probabilities
of intermediate differences, and Lai et al. [14] showed that it yields the correct
value of the key-averaged probability for Markov ciphers. In addition, Lai et al.
introduced an additional assumption, which is called the hypothesis of stochastic
equivalence, to deal with the problem that the actual probability may be differ-
ent from key-averaged probability, which is caused by the fixed-key throughout
a differential attack. This assumption states that the probability for each key is
close to the average probability.

At CRYPTO 2022, Beyne and Rijmen [5] proposed the quasidifferential tran-
sition matrix in differential cryptanalysis, and established the connection be-
tween the correlation matrix in linear cryptanalysis [11] and the quasidifferential
transition matrix in differential cryptanalysis. The quasidifferential transition
matrix satisfies similar properties to the correlation matrix in linear cryptanal-
ysis. One such property is that the fixed-key probability of a differential can
be expressed as the sum of the correlations of all its quasidifferential trails,
without any assumption. Given one differential (characteristic), correlations of
its corresponding quasifferentials are heavily affected by keys. Thus, differential
probability in different key spaces can be analyzed relatively more easily now. It
is not surprising that in some key spaces, the differential probability would be
significantly larger than others.

GIFT [4] is a lightweight block cipher with two versions: GIFT-64 and GIFT-
128. The outstanding implementation performance and high security make GIFT
be a popular underlying primitive for many Authenticated Encryptions with As-
sociated Data (AEADs) such as SUNDAE-GIFT [2]|, GIFT-COFB [3], and HyENA [9].
In the security evaluation of GIFT, differential cryptanalysis is currently the most
effective attack compared with other attacks. At CT-RSA 2019, Zhu et al. [24]
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proposed the first third-party cryptanalysis on GIFT, which includes a 19-round
attack on GIFT-64 and a 22-round attack on GIFT-128, respectively. Sasaki et al.
[17] improved the meet-in-the-middle (MitM) attack on 15-round GIFT-64. The
20-round and 21-round differential attacks on GIFT-64 were proposed by Chen
et al. [10] at ICISC 2019 using the full codebook. Chen et al. [10] also performed
the 20-round differential key-recovery attack on GIFT-64 without the full code-
book. Li et al. [15] proposed the 26-round differential attack on GIFT-128, and
the 26-round attack is improved by Ji et al. [13] at SAC 2021. At FSE 2021,
Zong et al. [26] proposed the key-recovery-attack friendly distinguishers, gave
a 27-round differential key-recovery attack and a 22-round linear key-recovery
attack on GIFT-128, respectively. For the linear cryptanalysis of GIFT, Sun et
al. [20] proposed a 19-round linear attack on GIFT-64 at SAC 2021, and a 24-
round linear attack on GIFT-128 at FSE 2021 [21]. After that, Sun et al. [22]
gave a 25-round linear attack on GIFT-128 at FSE 2022, and improved the 25-
round linear attack to increase the success probability by using more data and
higher time complexity. Antonio Florez-Gutiérrez et al. [12] further improved
the complexity and success probability of the 25-round linear key-recovery at-
tack on GIFT-128 at EUROCRYPT 2024. In addition, Wang et al. [23] proposed
the differential-linear attacks on 18-round GIFT-64 and on 19-round GIFT-128 at
CIC 2024. All the above attacks are under the single-key setting. In the relate-
key setting, Liu et al. [16] proposed a 21-round boomerang attack on GIFT-128,
and Ji et al. [13] proposed a 23-round rectangle attack on GIFT-128 at SAC 2021.

Although extensive cryptanalysis from the community has been applied to
GIFT, the security of GIFT is still strong. All attacks stuck at 21 and 27 rounds
for GIFT-64 and GIFT-128 in the single-key setting, respectively. Considering
the importance of GIFT (as mentioned, GIFT-128 is the underlying primitive of
three NIST LWC candidates), a better evaluation on GIFT’s security is always
warranted, even in the extreme scenarios such as under the weak-key settings.

On the other hand, Beyne and Rijmen’s quasidifferential approach has been
successfully applied to RECTANGLE, KNOT, SPECK, and SIMON, and new weak-key
attacks are presented. However, few works tried to extend their attacks to more
ciphers, to the best of our knowledge. In this paper, we aim to bridge the gap
by studying how to utilize the quasidifferential method to analyze the security
of GIFT.

Our contributions. This paper applies Beyne and Rijmen’s quasidifferential ap-
proach [5] to GIFT, studying the differential attacks in the weak-key setting.
Some differential characteristics with small probabilities that are infeasible in a
normal differential attack can be used now in a weak-key setting, by putting some
weak-key conditions. The best attacks on GIFT-64 and GIFT-128 are provided,
in terms of the complexity or the number of rounds.

Concretely, by diving deep into the linear key-schedule of GIFT, we extract
linear equations for round-key bits, based on the signs of correlations of quasid-
ifferential trails, and convert them to equations for master-key bits. Then the
weak-key space of master-key bits is obtained, and the probability of the differ-
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Table 1. Summary of the attack results on GIFT-64, GIFT-128 and SUNDAE-GIFT, re-
spectively. SK stands for single-key setting. RK stands for related-key setting.

Algorithm Attack Type Rounds Scenario # Keys Time Data Memory Ps  Reference
Boomerang 23 RK 2128 9126.60 - - [16]
Rectangle 24 RK 2128 9106.00 264.10 - 13
Rectangle 25 RK 2128 912092 963.78 = 964.10 - [13]
Differential 26 RK 2128 212323 96096 9102.86 - (19]
Differential 26 RK' 2128 9115.96 960.96  9102.86 - 8
GIFT-64 8
Differential-Linear 18 SK 2128 9l24.61  961.57 - - [23]
Linear 19 SK 2128 gl2T1L 96296 960 60% [20]
Differential 19 SK 2128 gliz 963 280 - [24]
Multiple Differential 20 SK 2128 gll2.68 962 2112 - [10]
Differential 20 SK 2128 10168 964 29 - [10]
Multiple Differential 21 SK 2124 2128.27 964 212 99.9% Sect. 5.1
Differential 21 SK 2128 9121661 964 29 51.60%"  [10]
Differential 21 SK 2124 211742 964 296 81.06% Sect. 5.1
Differential 21 SK 2124 2120.60 264 29 99.41% Sect. 5.1
3Joomerang 21 RK 2128 g126:6 9126.6 9126.6 - [16]
Rectangle 23 RK? 2128 12689 9l21.31 9121.63 - [13]
Differential-Linear 19 SK 2128 9l21.53 912251 - - [23]
Differential 22 SK 2128 9120 9120 286 - [25]
Linear 22 SK o128 glT - glI7 278 - [26]
GIFT-128 Linear 24 SK 2128 912445 912255 9105 80 01%  [21]
Linear 25 SK 2128 912677 912475 996 50% 22]
Linear 25 SK Q128 912777 912575 996 5% 22]
Linear 25 SK 2128 912461 9123.02  gli2 80% [12]
Differential 26 SK o128 9124415 9109 9124.415 - [15]
Differential 26 SK 2128 9128.245 123.245 9109 - [13]
Differential 27 SK 2128 gl2483 9123.53 980 - [26]
Differential 27 SK 2122 lIB.TT olI5.TT 292 99.9% Sect. 5.2
Multiple Differential 28 SK 2124 2123.77 9123.77 296 86.5% Sect. 5.2
Linear 16 Nonce-respecting ~ 2'2%  291:20 26000 99 - [26]
SUNDAE-GIFT Linear 17 Nonce-respecting ~ 2'28 212338 96151 949 80,01% [21]
Differential 17 Nonce-respecting 228 275:37 2625 296 99.9% Sect. 6

T The 21-round differential key-recovery attack on GIFT-64 presented by [10] with 2'°7-61 /264 /295 time/data/memory
complexities, which is the combination of the 1-round attack and the 20-round attack, is not accurate, we reevaluate
the complexities and success probability by the successive 21-round attack.

 Note that there is no security claim of GIFT under the related-key setting, the results under the related-key setting
are shown in grey.

ential characteristic in this weak-key space is improved. Furthermore, in order
to use the differential to amplify the probability, we introduce a method to de-
rive the best weak-key conditions from all the characteristics of the differential.
These analyses are based on a reasonable assumption that the exact probability
of a differential characteristic can be approximated by the sum of correlations of
those trails whose absolute correlation is equal to the average probability of the
characteristic. We have done experiments on GIFT-64 and GIFT-128 to verify the
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validity of the assumption, and the experimental results are exactly consistent
with our assumption.

After applying the quasidifferential cryptanalysis to GIFT, we present im-
proved (multiple) differential attacks on GIFT-64 and GIFT-128 in the weak-key
settings, respectively. For GIFT-64, the probability of a 13-round differential is
improved from 276296 to 275782 with 4-bit conditions of master-key, which can
mount a 21-round differential attack with 211742/264 time/data complexities.
The probability of a 13-round multiple differential of GIFT-64 is improved from
275896 5 275567 with 4-bit conditions of master-key, which can boost the mul-
tiple differential attack on GIFT-64 from 20-round to 21-round with 2123:27 /264
time/data complexities. For GIFT-128, the probability of a 20-round differen-
tial is improved from 2712183 to 2711477 with 6-bit conditions of master-key,
and the probability of a 21-round multiple differential is improved from 2712838
to 2712277 with 4-bit conditions of master-key. The 27-round and the first 28-
round improved (multiple) differential attacks on GIFT-128 are obtained with
QUBTT J9U15.TT and 2123.77 /212377 time /data complexities, respectively.

Finally, an 11-round differential characteristic whose probability is 2760 with-
out conditions of master-key can be utilized to launch the first differential attack
on 17-round SUNDAE-GIFT with 275-37 /2625 time/data complexities. The related
results and our attacks are summarized in Table 1.

All source code and results of this paper are provided at https://github.
com/cccb3021/quasidifferential-gift.

Outline. In Sect. 2, we briefly describe the differential cryptanalysis, linear crypt-
analysis, and quasidifferential proposed in [5], define some notations, recall the
description of GIFT. In Sect. 3, we revisit and discuss the roles of the keys in the
exact probability of a characteristic. In Sect. 4, we introduce how to apply the
quasidifferential cryptanalysis to GIFT, derive weak-key differential (character-
istic) distinguishers, and make some experiments on GIFT. Sect. 5 presents the
weak-key (multiple) differential attacks on GIFT-64 and GIFT-128, respectively,
and the attack on SUNDAE-GIFT is given in Sect. 6. Sect. 7 concludes this paper.

2 Preliminaries and Related Works

In this section, we first recall the differential cryptanalysis and linear crypt-
analysis, and introduce the quasidifferential proposed by Beyne and Rijmen [5],
which shows that the fixed-key probability of a differential can be expressed as
the sum of the correlations of its quasidifferential trails. In addition, we define
the notations used in this paper and briefly review the description of GIFT and
SUNDAE-GIFT with GIFT-128 as an underlying primitive.

2.1 Review of Differential Cryptanalysis in Fixed-Key Model

Differential Cryptanalysis. Differential cryptanalysis [6] is used to analyze the
propagation of differences through the function F : Fy — F5*, and find a differ-
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ential with high probability to attack the cipher. The target of the adversary is
to find a differential (a,b) € F§ x F5* that maximizes the number of solutions x
to the difference equation

F(x ®a) ®F(x) = b. (1)

The difference distribution table of F, denoted as DDTF, is a 2" x 2™ table with
rows and columns indexed by input and output differences. The corresponding
entries are equal to the number of solutions z for a particular differential (a, b):

DDT(Fa,b) = {z € F¥|F(z @ a) @ F(z) = b}]. 2)

Differential cryptanalysis typically focuses on functions F structured as composi-
tions F = F,.oF,_jo0---oF;, where individual functions F; exhibit differentials with
relatively high probability, making them more suitable for analysis. Thus, it is
possible to estimate the probability of differential (a1, a,11) based on character-
istics. A characteristic is a sequence (ay,as, ..., a,41) of compatible differences
between intermediate inputs and outputs through each F;. The estimation of
characteristic probabilities frequently relies on the assumption of independence
among intermediate differentials:

Pr{A7_ Fi(2; ® a;) © Fi(i) = aip] = [ [ PriFi(z: @ a;) @ i) = aiga]. (3)
i=1

When functions Fq,...,F, are dependent on keys ki,..., k., the heuristic
proposed in Eq. (3) can be justified by applying the Markov cipher assumption
[14]. Specifically, it has been demonstrated that if all round keys are uniformly
random and independent, the key-averaged probability of a characteristic aligns
with the product of intermediate key-averaged probabilities.

Quasidifferential. Beyne and Rijmen [5] proposed the quasidifferential frame-
work by introducing the quasidifferential transition matrices as a differential
analog of correlation matrices [11] to achieve a more complete understanding of
differential cryptanalysis.

Definition 1 (Quasidifferential basis [5]). Let n be a positive integer. For
any u,a € Fy, the function B, . : F§ X F§ — R is defined by

ﬂu,a(x7 y) = Xu(x)éa(z + y) (4)
The set of all By.q s called the quasidifferential basis for R[Fy x F2].

The functions é, such that §,(y) = 1 if y = « and zero elsewhere, and the func-
tions x, such that y,(z) = (—1)“TI with v € 3. The functions 3, , are not
only linearly independent but also orthogonal. Similar to the Fourier transforma-
tion, Beyne and Rijmen define the change-of-basis operator 2,, : R[Fy x F3] —
R[F3 x F5] by (2,,f)(u,a) = {Bu,q, f). The definition of the quasidifferential
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transition matriz using the change-of-basis operator 2,, and the transition ma-
trix for pairs of values is in Definition 2. The Kronecker (or tensor) product
TF @ TF is defined as a 22™ x 22" matrix with coordinates

(TF ® TF)(y17y2)7(x17;52) = T Y1 mlT:;:Q Ty 5y1(F(xl))5yz(F(x2)) (5)

Definition 2 (Quasidifferential transition matrix [5]). Let n and m be two
positive integers and F : F§ — F5' a function. The quasidifferential transition
matriz DY is defined as the matriz-representation of T ® TF with respect to the
quasidifferential basis defined in Definition 1. That is, DF = 2, (TF @ TF) 2.

As described in [5], the coordinates of DF are pairs (u,a) € F§ x F% and
(v,b) € F4* x F5*. By the orthogonality of the quasidifferential basis, it holds
that 2.1 = 27 /2" and consequently

DEll,h)a('lL,d) = <5(v,b)a QH(TF & TF)QI(;(%G)WQ" = <Bv,b7 (TF Y TF)ﬂU,a>/2n

= Y @ F@) + )R (FE) +FW)

(2y)€Fg xF3 (6)

_ 2% Z (71)uTz+vTF(aj)'
z€Fy
F(z+a)=F(z)+b

For u = v = 0, Eq. (6) reduces to the probability of the differential with input
difference a and output difference b, that is, DE:O,b),(O@) = 2_"DDT'(:a7b). For
= b = 0, the coordinates of the correlation matrix of F can be obtained.
In particularly, D(Fu,o),(u,o) = C’Eyu. Overall, the coordinates of DF express the
correlations of probabilistic linear relations (“linear approximations”) between

the input and output values of the right pairs.

Motivated by the notion of linear trails, Beyne and Rijmen propose the def-
inition of quasidifferential trails in Definition 3, and show that exact expression
for the probabilities of differentials can be given in terms of the correlations of
quasidifferential trails in Theorem 1. For key-alternating ciphers, the expressions
are shown in Theorem 2.

Definition 3 ([5]). A quasidifferential trail for a function F=F.o0---0F; isa
sequence w1, . ..,wr41 of mask-difference pairs wl = (ui,a;). The correlation of
this quaszdzﬁerentwl trail is defined as [];_,

WL+17W1

Theorem 1 ([5]). Let F : FY — F5* be a function such that F = F,.o0---oFy.
The probability of a characteristic with differences ay,...,a,41 is equal to the
sum of the correlations of all quasidifferential trails with the same intermediate
differences:

Pr[Al_ Fi(@ 4 a;) = Fi(zi) + aiy1] = Z H e a7

yup =1

with uy = upp1 =0, 2; = Fi_q(x-1) fori=2,...,r and x1 uniform random on
F/’L
.
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Table 2. Notations used in describing the attacks on GIFT.

X the input state of the round ¢

Xilj] the j-th bit of the state X;, j =0,...,127, X;[127] is the most significant bit of X;

Xilj---k] |the j-th bit, ..., k-th bit of the state X;
Xi[jn—1 ~ jo]|consecutive n bits from j,—1-th to jo-th bit of the state X;

X7 the state after the operation SubCells of round i
xF the state after the operation PermBits of round

Xit1 the state after the operation AddRoundKeys of round 4
AX the difference in state X

RK; the round key of the round 7

RK;[j] the j-th bit of the i-th round key RK;

ki the 16-bit word of the master key, i =0,...7

kf the j-th bit of a 16-bit word k; of the master-key
> circular right shift

P the plaintext

C the ciphertext

T the tag of the output of encryption for SUNDAE-GIFT
RK] is equal to PermBits ™' (RK;)
X;P is equal to X1

Theorem 2 ([5]). Let F = F,. o0 --- 0o Fy with Fj(x) = Gi(z) + k;. If k =

(k1,..., k) is a uniform random variable on a set IC, then
G;
PI‘[F(JZ + a) = F(x) + b] - Z H D(qu,aHl),(ui,aqy)’ (8)
U2,y Ur =1
(uzr ) LK

where u1 = ur4+1 = 0 and the probability is over a uniform random x and over
the keys k1, ..., k.. In particular, for K = F%, only quasidifferential trails with
zero masks contribute to the key-averaged probability of the differential.

2.2 Description of GIFT Family

GIFT. To describe the attacks on GIFT, notations in Table 2 are used. Proposed
by Banik et al. at CHES 2017 [4], GIFT has two versions: GIFT-64 and GIFT-128.
GIFT adopts an SPN structure, with a 64-bit input for GIFT-64 and a 128-bit
input for GIFT-128, both using a 128-bit key. The round numbers for GIFT-64
and GIFT-128 are 28 and 40, respectively. The function for each round is the
same for both versions, composed of three operations: SubCells, PermBits, and
AddRoundKey.

SubCells. Both versions of GIFT use the same invertible 4-bit S-box GS. The
S-box is applied to every nibble of the internal state and is given in Appendix
A, Table 9.

PermBits. The bit permutation maps bits from bit position ¢ of the internal
state to bit position P(i): bpgy < bs,i € {0,1,...,63} for GIFT-64, and i €
{0,1,...,127} for GIFT-128. Two tables of bit permutation used in GIFT-64 and
GIFT-128 are given in Appendix A, Table 10 and Table 11, respectively.
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AddRoundKey. For GIFT-64, the 32-bit round key RK = U||V = w35 - - - ug||v1s - - - vo,
and is XORed with the internal state in the following way:

bait1 < bait1 D wi, by; < by D vy, 1€ {0,1,---,15}.

For GIFT-128, the 64-bit round key RK = U||V = ugy - - ugl||vsy - - - vo, and is
XORed with the internal state in the following way:

baivo < baita ® ui, bajqp1 < baiyr Dy, € {0,1,...,31}.

AddRoundConstants. The round constants are given in Appendix A, Table 12.

Key Schedule. The 128-bit master key is initialized as k7||kg]|| - - - ||k1||ko, where

k; is 16-bit. For GIFT-64, two 16-bit words of the key state are extracted as the

round key RK = U||V. U <« k1, V < k. For GIFT-128, four 16-bit words of the

key state are extracted as the round key RK = U||V. U + ks||ks, V + k1]|ko.
The key state is then updated as follows:

kr||ke - - - [|k1|[ko <= (k1 >> 2)|[(ko >> 12)]| - - - |[ks][ k2.

SUNDAE-GIFT. SUNDAE-GIFT is based on the mode of operation SUNDAE [1] at
ToSC 2019, and the underlying block cipher is GIFT-128. The encryption al-
gorithm takes as input an encryption key K € {0,1}'2%) an associated data
A € {0,1}*, and a message M € {0,1}'?®. A nonce N with fixed length for
variants is prepended on and regarded as a part of the associated data A. The
output of the encryption is a ciphertext C' € {0,1}/! and a tag T € {0,1}'25.
The operation “x” denotes the multiplication by 2 or 4 depending on the length
of the last blocks of A and M.

3 Revisiting and Discussion on the Weak-Key Conditions
with Quasidifferential Approach [5]

This section provides a brief description of how to use the quasidifferential to
derive the weak-key conditions for a key-alternating cipher, as given in [5]. We
also discuss the assumptions implicitly used in this approach.

In the normal differential cryptanalysis, an r-round differential characteristic
of a function F =F, o--- 0o F; with F;, = G; + k; is a sequence

€= {a17a27"'7a’F+1}7

where a; is the input differences of the i-th round. In the quasidifferential crypt-
analysis, according to Beyne and Rijmen [5], an r-round quasidifferential trail
corresponding to the above characteristic ¢ is the following sequence,

t= {(u17a1)7 (u27a2)7 R (u7'+17a7'+1)}’

where (u;, a;) is the input mask-difference pair of the i-th round.
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The correlation of a quasidifferential trail can be calculated by the quasidif-
ferential transition matrix D% of G;, which is

T

cor = H(—l)”hlk"DGi

(wit1,ai41),(us,a:)
i=1

_TI" G;
Let c=T[,_, D(?L+1,ai+1),(ui,ai)’ we have

cor = (=1)F-e= (=) (=1)" - Ie], (9)

where K& = 37, u], 1 k;, |c| is the absolute value of ¢, and b represents the sign
of ¢, i.e., when b = 1, ¢ < 0, otherwise, ¢ > 0.

It is easy to check, the correlation cor > 0 under a condition K = b, and
cor < 0 under a condition K = b + 1. According to Theorem 1, given a differ-
ential characteristic ¢ with key-averaged probability, denoted by pg.g, the exact
probability of €, denoted by p, is equal to the sum of correlations of all its
corresponding quasidifferential trails. By Eq. (9),

p=> cory=» (=) ;= (=) (1)’ - e (10)
K3 3 1

Unfortunately, the number of quasidifferential trails is too enormous to ex-
haust, thus, we actually cannot collect all quasidifferential trails, so we can only
approximate the exact p by considering a fraction of the trails. For example,
in [5], Beyne and Rijmen consider the quasidifferential trails with |¢| = pq.4 for
the analysis of KNOT and RECTANGLE, and |c| = 20 - payg to |¢| = 27 - pgyq for
the analysis of SPECK-32.

This paper follows a similar strategy in that we only consider those trails
that have a significant contribution to the exact p. Divide all quasidifferential
trails corresponding to ¢ into two parts according to |¢| = pavg and |c| < Paugs
we have

p= p‘clzpavg+p|c|<pavg = Z (_1)1Cz‘,(_1)bi, Ci|+ Z (_1)]C'7'(—1)b-j'|0j|.

i,|ci|=Pavg Jilej|<Pavg
(11)

Assumption 1 The probability of a differential characteristic € whose average
probability is pavg is dominated by those quasidifferential trails with |c| = paug-

Based on the Assumption 1, we approximate that

PR Diepun, = O, (DS (=1 ai]. (12)

i,]ci|=Pavg

Remark. Assumption 1 is intuitive. However, it is similar to the cases in the
traditional differential and linear cryptanalysis, where dominating trails are used
to approximate the real probabilities or correlations. For our applications in
this paper, we have done experiments to verify Assumption 1 on GIFT-64 and
GIFT-128 in Sect. 4.4, the experimental results are exactly consistent with our
assumption, showing that Assumption 1 works well.



Quasidifferential Saves Infeasible Differential 11

4 Derive Weak-Key Distinguishers of GIFT

In this section, we introduce how to apply the quasidifferential cryptanalysis and
derive weak-key distinguishers for GIFT. In Sect. 3, we have revisited the roles of
the keys in the exact probability of a differential characteristic. In our analysis of
GIFT, we tend to use the differential (multiple differential characteristics sharing
the same input and output differences) to amplify the probability. Therefore, the
method in Sect. 3 cannot be trivially used as needs to handle more quasidiffer-
ential trails simultaneously. In Sect. 4.1, we introduce a method how to obtain
the weak-key conditions for a differential and choose a good weak-key space. In
Sect. 4.2 and 4.3, we obtain the weak-key distinguishers on GIFT-64 and GIFT-
128, respectively. Finally, we verify Assumption 1 experimentally on GIFT-64 and
GIFT-128 in Sect. 4.4, respectively, the experimental results are consistent with
our assumption.

4.1 Obtain a Good Weak-Key Space for a Differential

According to Sect. 3, if a characteristic with pg.y has m quasidifferential trails
satisfying |c| = pavg, then p < m - |¢| (under Assumption 1). The “=" case holds
only if we can add m conditions such that

’Ci:bi, i:l,...,m.

Each condition above corresponds to an equation of keys, thus the m conditions
lead to a weak-key space. Furthermore, there might be redundancy among the
m conditions, i.e., the rank of the m conditions might be smaller than m, which
we denote by £. Thus, the size of this weak-key space is of size 2"~ (n is the
length of the key). When a key falls into this weak-key space, p = m - payg-

As mentioned, we want to use the differential to enhance our attack. If a
differential contains d differential characteristics, denoted by €1, ..., &4, respec-
tively. According to Theorem 2 and Eq. (12), the probability p of this differential
can be expressed as

d d
P=_pe =Y, Y, (DN -(=1)%-|dl. (13)
i=1 i=1  j
|5 1=PGug

For each characteristic €; above, suppose its average probability is pfwg, 1 =
1,...,d. By applying ¢; equations to the keys, we can make the probability of
g; be maximum, i.e., m; - p’,, ¢+ The corresponding weak-key space is denoted by
W;.
Not all W; are compatible. A good weak-key space should satisfy two points:
(a) the number of key conditions should be as small as possible; (b) the proba-
bility of the differential in this weak-key space should be as large as possible. To
choose a good weak-key space, we choose the W; with the maximum log, (p) —¥;.
The algorithm procedure pseudo-code is shown in Appendix B, Algorithm 1.
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4.2 Weak-Key Distinguishers for GIFT-64

In this subsection, we automate the search for quasidifferential trails following
[5], and obtain weak-key conditions for distinguishers of GIFT-64 according to
the discussion in Sect. 4.1. The probability of the 13-round differential of GIFT-
64 in [10], which is used to launch the known best published 21-round differential
attack on GIFT-64, is improved from 276206 to 275782 with 4-bit conditions of
master-key, and is close to zero in some fraction of master-key. The probability of
a 13-round multiple differentials of GIFT-64, which has the same input difference
patterns and same output difference, is improved from 275896 to 275567 with
4-bit conditions of master-key. The details of the analysis are as follows.

The 13-round differential of GIFT-64. For the dominant characteristic with
average probability ps.g = 2764 denoted by ey, of the 13-round differential
of GIFT-64 presented in [10], we search and find 64 quasidifferential trails with
|c| = pavg corresponding to e1. Take one of 64 trails, denoted by ¢, corresponding
to g1 as an example. The €; and t; are both listed in Table 3. The function for
each round is F; = G;+7k; fori = 1,...,r, where G; is the PermBits o SubCells
operation, and rk; is the AddRoundKey operation. According to Eq. (9), we have
the correlation for ¢; is that

.
T ek T b, Gs -
cory = (_1)21:1u”lrkl'(_l)zq':l bl'H |D(u¢+1,ai+1)7(ui,ai)| = (_1)K1'(_1)0'2 64,
=1

(14)
where K1 = rk{+rkiS+rk3+rki"+rkQ+rkiS+rk2+rkiT+rk§+rkdS+rk? +rkil.
Thus, a weak-key condition 1 = 0 for ¢; is obtained to ensure that cor; > 0.
After performing a similar analysis for the other 63 trails, a total of 64 conditions
are obtained.

It is easy to convert the 64 conditions about round-key bits into conditions
about master-key bits as the linear key-schedule of GIFT. We get 4-bit conditions
of the master-key after the Gaussian elimination of the 64 conditions. Suppose
that four rounds are added before the 13-round distinguisher to launch the key-
recovery attack, we get a weak-key space with 4-bit conditions of master-key,
denoted by Wi:

kg 4+ k2 =0k} + kP =0,k + k5 =0,k} + k) =0. (15)

The size of the weak-key space W is 2128=4 = 2124 In the weak-key space W7,
the probability of characteristic ¢; is increased from 2764 to 26.2764 = 2758 and
the probability of the differential 0x0000000000000202 B 0x0000000500000005

is improved from 276206 to 275782 after applying Algorithm 1.

The 13-round multiple differentials of GIFT-64. According to the 13-
round multiple differentials in [10], we search for all 13-round characteristics
with pawg > 27% satisfying the output difference 0x0000000000001010, and find
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Table 3. A quasidifferential trail ¢; corresponding to a differential characteristic 1.

r |a,, SubCell(a,) in £1,t

-
Pavg

Uy, SubCell(u,) in t1

¢ =D

G
(Upg1,ar41),(ur,ar) (_1)“

T
r17kr b,

10

11

12

13

0x0000000000000202
0x0000000000000505
0x0000000500000005
0x0000000200000002
0x0000000002020000
0x0000000005050000
0x0000005000000050
0x0000002000000020
0x0000000000000202
0x0000000000000505
0x0000000500000005
0x0000000200000002
0x0000000002020000
0x0000000005050000
0x0000005000000050
0x0000002000000020
0x0000000000000202
0x0000000000000505
0x0000000500000005
0x0000000200000002
0x0000000002020000
0x0000000005050000
0x0000005000000050
0x0000002000000020
0x0000000000000202
0x0000000000000505

94

2—6

2—4

2—6

2—4

2—4

2—6

2—4

0x0000000000000000
0x0000000000000505
0x0000000500000005
0x0000000000000000
0x0000000000000000
0x0000000005050000
0x0000005000000050
0x0000000000000000
0x0000000000000000
0x0000000000000505

.| 0x0000000500000005

0x0000000000000000
0x0000000000000000
0x0000000005050000
0x0000005000000050
0x0000000000000000
0x0000000000000000
0x0000000000000505
0x0000000500000005
0x0000000000000000
0x0000000000000000
0x0000000005050000
0x0000005000000050
0x0000000000000000
0x0000000000000000
0x0000000000000000

D%

(5,5),(0‘2)D

G1
(5,5),(0,2)

DG

©2),6.9) P

Go
(0,2),(5,5)

D D

G3
(5,5),(0,2)

DS

02,6, D@,

D D

Gs
(5,5),(0,2)

G A
D@55,

D D

Gr
(5,5),(0,2)

DG

©2),6,9) D

D D

Go
(5,5),(0,2)

DS1o

025,50

D D

G11
(5,5),(0,2)

G
D&3),5.5 0,

D D

Gi13
(0,5),(0,2)

Gg _
(5,5),(0,2)
G _
(0,2),(5,5)
51 —_
(5,5),(0,2)
Ge _
(0,2),(5,5)
G _
(5,5),(0,2)
Gg —
(0,2),(5,5)
Gg _
(5,5),(0,2)
Gig —
(0,2),(5,5)
G11 _
(5,5),(0,2)
Gi2 _
(0,2),(5,5)

Gi3 _
(0,5),(0,2)

—94

(__1)rk?+rk}6 0

(_1)rk§+rk§7 0

(__1)rkg+rk§5 0

(__1)rk$+rk;7 0

(__1)rk3+rk;5 0

C_l)rk%l+Tk{Z 0

196 characteristics with pyg = 27%4. Furthermore, we find 33 of the 196 charac-
teristics having the same input difference patterns and the same weak-key space,
which are listed in Appendix C, Table 13. Suppose that three rounds are added
before the 13-round multiple differential distinguisher to launch the key-recovery
attack, we get a weak-key space with 4-bit conditions of master-key, denoted by
WQI

EY 4+ k) =0,k5 4+ ki® =0,k + k5 =0,k + k2 =0.

(16)

The size of Wy is 224, In W, the probability of the 13-round multiple differen-
tials, which contains 33 characteristics, is improved from 275896 o 25567
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4.3 Weak-Key Distinguishers for GIFT-128

Similarly, we find that for GIFT-128, the probability of the 20-round differential
(presented in [26]) is improved from 2712183 to 271477 with 6-bit conditions of
master-key, and the probability of a 21-round multiple differentials of GIFT-128
is improved from 2712838 to 2712277 with 4-bit conditions of master-key.

The 20-round differentials of GIFT-128. For the 8 20-round differentials
proposed in [26] (Table 7), which are used to launch the known best published
27-round differential attack on GIFT-128, a similar analysis is performed to obtain
the weak-key spaces and probabilities. We find that the probability of differen-
tial 2 (0x000000000000000000000000000000a0 2% 0x0000000000000000200000
0210000001), which contains 8 characteristics, is improved from 27121-83 {o 211477
with 6-bit conditions of master-key. The size of the weak-key space is 2'?2. The
details are listed in Appendix D, Table 16. Suppose that four rounds are added
before the 20-round distinguisher to launch the key-recovery attack, we get a
weak-key space with 6-bit conditions of master-key, denoted by Wi:

kS + k] =0,k + k) = 0,5 + ki = 0,k) + k3 = 0,k + k13 =0,k = 1. (17)

The 21-round differentials of GIFT-128. We search for 21-round differentials
that satisfy only one active S-box in the input difference, the output difference
AOUT satisfies AOUT[127 ~ 64] = 0 or AOUT[63 ~ 0] = 0, and find 18
21-round differentials, which are listed in Appendix E, Table 19. Similarly, the
quasidifferential trails for these differentials are searched, and the weak-key con-
ditions for each differential are obtained. After that, we find 2 (differential 9
and 10 in Table 19) of the 18 differentials having the same input difference with
the same 4-bit conditions of master-key. The details are listed in Appendix E,
Table 20. Suppose that four rounds are added before the 21-round multiple dif-
ferential distinguisher to launch the key-recovery attack, we get a weak-key space
with 4-bit conditions of master-key, denoted by Wy:

ki + k) =0,k§ + k30 =0,k + k3% = 0,k3 = 1. (18)

The size of W, is 2124, and the probability of the 21-round multiple differentials,
which contains 2 differentials, is improved from 2712838 to 2712277 ip WW,.

4.4 Experiments

In Sect. 3 Assumption 1, we suppose that quasidifferential trails satisfying |c| =
Davg are dominant for the probability of a characteristic. However, take the

p[ig < 276 a large number
of quasidifferential trails exist. The number of quasidifferential trails of 1 from
% =20 to % = 279 are listed in Table 4. To verify the effect of quasidiffer-
ential trails with |c| < pavg on the probability of characteristic can be ignored,

we have done experimental verification on GIFT-64 and GIFT-128, respectively.

characteristic ; in Table 3 as an example, when ——=-
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Table 4. The numbers of trails (denoted by # t) from —<L =20 to <L — 29,

Pavg Pavg

—log, 1 012345 6 7 8 9

Pavg

#t 64000001024 0 1536 > 5856

Table 5. Experimental results of GIFT-64.

Cases of key in the encryption

round Pavg pairscep Random round-key Random master-key Fixed master-key

pairsright pezp pairsm'ght pezp pairsright pezp

ltod 2720 22 3325 27199 3385 271992 19786 2718.00
5to8 2720 2% 3252 271998 3564 271984 19568 271801
9to 1327 929 3204 9—24.00 2842 9—24.17 12805 9—22:00

Experiments on GIFT-64. The 13-round characteristic £; (listed in Table 3) is
divided into two consecutive 4-rounds and one consecutive 5-round to experiment
with the probability in the weak-key space Wj.

For each consecutive round, we conduct experiments under three cases: (1)
round-key bits of each round are randomly generated, corresponding to the key-
averaged probability for Markov ciphers; (2) the 128-bit master-key used in the
key-schedule is randomly generated, corresponding to the key space of size 2!28;
(3) the 128-bit master-key used in the key-schedule satisfies 4-bit conditions of
W1 (Eq. (15)), corresponding to the weak-key space of size 2124,

In each case, 100 times are performed. Each time, plaintext pairs satisfy-
ing the input difference are randomly generated, the number of corresponding
consecutive rounds is encrypted, and the number of right pairs (satisfying all
intermediate differences) is counted. The experimental results are listed in Table
5. pairsesp represents the number of randomly generated plaintext pairs in each

time. pairs,;gn: represents the number of right pairs counted by 100 times, and
__ Pairsright
Peap = PAiTSexp

From the results in Table 5, the probabilities pes; of case (3) in the weak-key
space W7 are much higher than case (2). The experimental probability of the
characteristic €1 can be expressed as the product of two consecutive 4-rounds
and one consecutive 5-round, i.e., p &~ 27%8-91 which is close to 27°® and exactly
consistent with Assumption 1.

The numbers of right pairs of each experiment for three cases are shown in
Fig. 1. In each subfigure, the lower triangles in yellow, the squares in blue, and
the stars in red represent case (1), case (2), and case (3), respectively. It shows
that the number of right pairs of case (2) is zero for some fraction of keys.

Ezxperiments on GIFT-128. We also perform the experiments for six consecutive
2-rounds for the two dominant 21-round characteristics, which are listed in Ap-
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(c) round 9 to 13

Fig. 1. Numbers of right pairs of 100 times for three cases of the key of GIFT-64.

Table 6. Experimental results of GIFT-128.

Cases of key in the encryption

round. Pavg pairsecy Random round-key Random master-key Fixed master-key

PAITSright  Pexp  DOITSright  Pexp  PUITSright Pexp
5to6 2719 22 6468 271899 7238 271881 19690 271800
8to9 279 215 12854 27890 19698 27800 12696 27800
10 to 11 2728 2% 1525 272107 1098 92154 6394 271900
13t0 14 279 215 12704 27899 12916  277%® 12608 27800
16 to 17 2720 225 3233 271998 3432 2~ 19.90 6340 271901
19to20 27° 2% 9577 27842 9578 9842 9687 27840

pendix E, Table 21, to verify that the probability in the weak-key space Wy. The
results are listed in Table 6, showing that Assumption 1 is reasonable.
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5 Improved Weak-Key Key-Recovery Attacks on GIFT

In this section, we mount and reevaluate the attacks on GIFT-64, and GIFT-128,
by the differentials in the weak-key spaces proposed in Sect. 4, respectively.

5.1 Weak-Key Key-Recovery Attacks on GIFT-64

The 21-round differential attack on GIFT-64. By adding four rounds before
and four rounds after the 13-round differential distinguisher, which is presented
in Sect. 4.2 with probability 27°782 in the weak-key space Wi, we launch a
21-round weak-key key-recovery attack on GIFT-64. The key-recovery process is
shown in Fig. 2.

To facilitate representation and simplify the process, we perform an equiv-
alent substitution for the AddRoundkey operation in the bottom of the distin-
guisher, and move it before the PermBits operation. The RK’ is equals to the
inverse of PermBits of RK,i.e., RK' = PermBits~!(RK). Additionally, accord-
ing to the key schedule of GIFT-64, the round key RK; and RK; involve the
same 32-bit master key when ¢ = j mod 4.

Data collection. GIFT’s structure allows us to freely extend one round because
there is no whitening key at the beginning. Specifically, the structure can be con-
structed at X{', while the plaintext P can be obtained by applying the inverse
operation of PermBits (PermBits~!) and SubCell (SubCell~1!) to X{. Then
encrypt the plaintext and obtain the corresponding ciphertext. By iterating all
64-bit in X, i.e., 264 plaintexts, we can generate about (2;4) ~ 2127 plaintext
pairs.

Key Recovery Phase. Suppose that after data collection, we have 2™ plaintext
pairs and corresponding ciphertext pairs. The corresponding bits of the master-
key that need to be guessed during the key-recovery phase are listed in Table
7. The time complexity of each step with initial 2™ pairs is listed in Table 8.
The detailed analysis of guessing keys and filtering to get the right pairs is given
below. ? represents one bit of undetermined difference.

1). Guess 32-bit of RK;: Guess 2-bit value of RK;[1,0], make the SubCell
operation on the first S-box, remain the pairs satisfying

SubCell(X{[3 ~ 0] ® RK;[1,0]) @ SubCell(X{[3 ~ 0] ® RK;[1,0]) = 0070,

and about 27 x 273 pairs left. Similarly, for the other 30-bit value of RKj,
i.e., RK;[31 ~ 2], guess each 2-bit RK; and perform a 3-bit filtering, around
the right candidate pairs remain. The similar procedures are performed 16
times in total. Step 1) guesses 32-bit RK; in total, and about 2"~*® pairs
left.
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Table 7. Involved keys in the 21-round differential attack on GIFT-64 of the 13-round
differential. The keys in blue represent the bits that do not repeat the guess.

RE KPR KRS kPR BPPREE KEGY R1Ok° KUK TR KTKD KSKG KIKS  kikg KIKS KPR K1KG DAY

RK, kiks kSKS K3kS  kiks

RK3 kSRS kik;

RK4

RKg kAk3 kA2ED
RK, klki! kLK kSkL0 kYE3 k2kS kLKL k2 kS k12K

REG| Kk§ kTks' ki'hs® kikd KZKE KEke® ki%ks' k'K kikd R2KE KPke® ki'ke KOKG kik§ KPks® ki’kg
RE | kTkG KRG ki*ko' Kiko® Kikd KRG ki*ko” kPko" kiko KRG Ki'kd ki’ko® KRG KRG ki%KG ki'ko®

2). Guess 8-bit of RK5: Guess 2-bit value of RK3[9,8], make SubCell on the
5-th S-box, remain the pairs satisfying

SubCell (X' [18 ~ 15]@RK>[9, 8])®SubCell (X4 [18 ~ 15|®RK[9,8]) = 0107,

and about 2"~*® x 273 pairs left. Guess RK>[13,12], and perform a similar
3-bit filtering. Guess RK>[11,10], make SubCell on the 6-th S-box, and
discard the pairs that do not satisfy AX5[23 ~ 20] =?070. Then a 2-bit
filtering is performed. Similarly, guess RK15 14 and perform a 2-bit filtering.
Step 2) guess 8-bit RK3 in total, and about 2" =% pairs left.

3). Guess 4-bit RK3: For each of the 2 active S-boxes in AXY, guess the cor-
responding 2-bit RK3, make SubCell, and perform a 3-bit filtering. Step 3)
guesses 4-bit RK3 in total, and about 2”54 pairs left.

4). Guess 32-bit RK};: Note that all 32-bit subkeys of RK}, are already guessed
in Step 1), thus, for each of the 16 active S-boxes in AX,, make SubCell ™
on the corresponding S-box. Step 4) does not perform the filtering, and about
2n=64 pairs left.

5). Guess 32-bit RK},: Guess 2-bit RK},[1,0], make SubCell™!, remain the
pairs satisfying

SubCell ™ (X,F'[3 ~ 0]@RK),[1,0])@SubCell (X5 [3 ~ 0]@RK),[1,0]) = 070,

and about 27764 x 272 pairs left. For the other 15 active S-boxes in AX,5,
2-bit filtering is performed for each 2-bit RKY, is guessed. The similar pro-
cedures are performed 16 times, and 32 bits RK), are guessed in Step 5) in
total. After this step, there are about 276 pairs left.

6). Guess 16-bit RK{4: Similarly, for each one of 8 active S-boxes in AX;{; ,
guess the corresponding 2-bit RK},, make SubCell~! and perform a 3-bit
filtering. Step 6) guesses 16-bit RK},, and about 2"~ 12° pairs left.

7). Guess 4-bit RK/}g: Guess RK/g[1,0] and RK/4[17,16], make SubCell™ !
perform a 8-bit filtering in total. Step 7) guesses 4-bit RKjg, and about
27128 pairs left.

Complexity and Success Probability. For the right key guesses, there are about
on—64=57.82 Kairs left, while for the wrong key guesses, about 2”128 pairs left.
We set n = 121.82 to ensure that at least one pair is remained for the right key
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Fig. 2. 21-Round differential attack on GIFT-64. Each square represents one bit. The
squares in white stand for the values of difference bits are ‘0. The squares in green
stand for the values of difference bits are ‘1’. The squares in grey stand for the values of
difference bits that are indeterminate. The squares in orange stand for the bits of key
are need to be guessed. The squares in blue stand for the bits of key that are omitted.
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Table 8. Time complexity of the 21-round differential attack on GIFT-64 in each step.

Step| RK |# Key|Time(S-box operations)|Filtering probability |# Remaining pairs
1. |RK;| 2% 2 x 2" x 2° 27 8x16 on—48
2. |RK,| 28 9 % 932 3 gn—48 y 93 9—3x2-2x2 gn—58
3. |RK;| 2° 2 x 240 x 27758 x 23 2732 gn—64
4. |RKY| - 2 x 2% x 2"76% x 16 - on—64
5. |RKS,| 232 9 5 944y gn—64 y 96 9—2x16 9n—96
6. |RKy| 2 9 % 976 5 9n—96 o 93 9—3x8 gn—120
7. RK{S 24 2 % 292 % 2n—120 X 22.32 2—4><2 2n—128

guesses, while about 27%1® pairs are remained for the wrong key guesses. There-

fore, the data complexity is about 264 chosen-plaintexts, the time complexity is
dominated by Step 1), and about 212°82. L. L ~ 91742 91 round operations,
the memory complexity is about 2°6-bit. We use the formula presented by Selcuk

in [18] to evaluate the success probability Ps:
2‘“))

ViSy — &1 -
VSN +1

where p is the probability of the differential, IV is the plaintext-ciphertext pairs,
@ = pN, Sy is the signal-to-noise, and a is an a-bit or higher advantage. We
have Sy = 2618 For n = 121.82, u = 1, a = 5, Ps ~ 81.06%. For n = 125,
p =238 a =15, Py ~ 99.41%, and time complexity is about 2'2°-6 21-round
operations.

Remark. The calculation of the time complexity of the 21-round differential
attack proposed in [10], which is the combination of the 1-round attack and the
20-round, is not accurate, we reevaluate the time complexity utilizing their 13-
round differential with average probability 276296 based on the above analysis.
Then Sy = 2";4,# = 2194 For n = 126.06 to ensure that at least one right
pair left, u = 1, Ps =~ 51.60% for a = 5, and the time complexity is about
2121.66 91_round operations. Our attack improves the success probability and
complexity in the weak-key space Wy compared to [10].

(19)

PS:gb(

The 21-round multiple differential attack on GIFT-64. Based on the 13-
round multiple differentials proposed in Sect. 4.2 with probability 27°%67 in
the weak-key space W5, we add three rounds before and five rounds after the
distinguisher to mount the 21-round multiple differential attack on GIFT-64 in
Appendix C. Thanks to increasing the probability of the 13-round multiple differ-
ential distinguisher in the weak-key space Ws, it allows us to boost the multiple
differential attack on GIFT-64 from 20 to 21 rounds.

Complexity and Success Probability. The data complexity is 25 chosen-plaintexts,
the time complexity is about 2!23-27 21-round operations, the memory complex-
ity is about 2''2-bit, and the success probability is about 99.9%.
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5.2 Weak-Key Key Recovery Attacks on GIFT-128

The 27-round differential attack on GIFT-128. Using the 20-round differ-
ential with probability 2711477 in the weak-key space W3, which is presented in
Sect. 4.3, we launch the differential attack on 27-round GIFT-128 by adding four
rounds before and three rounds after the distinguisher in Appendix D.

Complexity and Success Probability. The data complexity is about 2'1°77 chosen-

plaintexts, the time complexity is about 2'10-85 27-round operations, the memory
complexity is about 292-bit, and the success probability is about 99.9%. Com-
pared to the 27-round differential attack in [26], the complexity is reduced by
about 23:% in a weak-key setting.

The 28-round differential attack on GIFT-128. Similarly, by adding four
rounds before and three rounds after, the first 28-round multiple differential
attack on GIFT-128 is launched based on the 21-round multiple differentials with
probability 2712277 in the weak-key space W, which is proposed in Sect. 4.3.
The details of the attack are presented in Appendix E.

Complezity and Success Probability. The data complexity is about 212377 chosen-
plaintexts, the time complexity is about 212377 28-round operations, the memory
complexity is about 276-bit, and the success probability is about 86.5%.

6 Distinguisher and Attack on SUNDAE-GIFT

We attack the initialization phase without plaintext data of version SUNDAE-GIFT-
96 of SUNDAE-GIFT family with a 96-bit nonce, which is the primary member
satisfying the requirements set by NIST. Our restriction for searching distin-
guishers is that the difference of the plaintext is only active in the high 96 bits
by adding a certain number of rounds before the distinguisher. Then we find two
11-round differential characteristics, which are listed in Appendix F, Table 25
with average probability 2769, can be utilized to launch a 17-round differential
attack by adding three rounds before and three rounds after the distinguisher.
Similarly, we search for quasidifferential trails satisfying |c| = pqvg and find only
one quasidifferential trail with all-zero masks for each characteristic, thus, there
are no weak-key conditions for these two characteristics.

The first 17-round differential attack on SUNDAE-GIFT utilizing the 11-round
differential characteristic with probability 276° is proposed in Appendix F.

Complexity and Success Probability : The data complexity is about 262 chosen-

plaintexts, the time complexity is about 27°-37 17-round operations, the memory
complexity is about 2%6-bit, and the success probability is about 99.9%.
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7 Conclusion

In this paper, we continue the work on the quasidifferential transition matrix in
differential cryptanalysis proposed by Beyne and Rijmen at CRYPTO 2022 and
apply their approach to GIFT. By holding some conditions of master-key, the
probabilities of some differential characteristics with small probabilities can be
improved in a weak-key setting. Then the weak-key (multiple) differential key-
recovery attacks on GIFT are obtained based on the weak-key distinguishers. For
GIFT-64, the multiple differential attack can be boosted from 20 to 21 rounds,
and the 21-round differential attack can be improved in terms of complexity. For
GIFT-128, the complexity of the 27-round differential attack can be improved,
and the first 28-round (multiple) differential attack is obtained. Finally, after
checking the 11-round differential characteristic with quasidifferential trails, we
mount the first differential attack on the 17-round SUNDAE-GIFT.
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A Tables of GIFT

Table 9. 4-bit invertible S-box in GIFT.

z  |0x0]|0x1|0x2[0x3|0x4|0x5|0x6|0x7|0x8|0x9|0xa |0xb| O0xc |0xd|Oxe| Oxf
GS(z)|0x1|0xa|0x4 |0xc|0x6 | 0xf |0x3|0x9|0x2|0xd |0xb|0x7|0x5 | 0x0 | 0x8| Oxe

Table 10. Bit permutation of GIFT-64.

1 0(1(2(3|4|5|6]|7|8]|9(10(11|12|13|14|15
Psa(2)| 017(34(51|48| 1 |18(35[32(49| 2 |19(16|33|50| 3
1 |16]17|18]|19]20|21|22|23|24|25|26|27|28|29|30|31
Psa(1)| 4 121|38(55|52| 5 |22(39(36(53| 6 |23|20(37|54| 7
1 32(33|34|35|36|37(38|39(|40(41(42|43|44|45|46|47
Psa(1)| 8 125(42(59|56| 9 |26(43]40(57|10|27|24]41|58|11
1 |48]49|50|51(52|53|54|55|56|57|58|59|60(61|62|63
Ps4(4)[12|29]46|63]60|13|30(47|44(61|14|31|28|45(62(15

Table 11. Bit permutation of GIFT-128.

) 01123 |4|5]6|7|8[9]10(11|12]13|14|15
Ps4(3)] 0 [ 33|66[99|96| 1 [34|67(64|97| 2 [35(32|65|98]| 3
7 16 |17 |18 19120 (2122|2324 (25|26 |27 (2829|3031
Psy4(4)| 4 | 37|70 (103|100 5 |38 |71 |68 |101| 6 [39|36 |69 |102| 7
i 3233 |34(35(36|37|38[39|40 |41 (42|43 |44 |45 |46 |47
Ps4(i)| 8 | 41|74 |107|104| 9 |42 |75 |72 |105| 10 | 43 | 40 | 73 |106| 11
) 4814950 |51 (52|53 |54|55|56|57|58]|59|60|61]|62]|63
Psy(3)| 12|45 | 78 |111]|108| 13 | 46 | 79 | 76 |109| 14 | 47 | 44 | 77 |110| 15
) 64 | 65|66 |67 |68|69|70 |71 |72|73|74|75|76 |77 |78|79
Ps4(7)] 16 | 49 | 82 |115|112| 17 | 50 | 83 | 80 [113| 18 | 51 | 48 | 81 |114| 19
) 80|81 |82[83|84|85|86|87|88|89[90(91|92|93|94]95
Ps4(4)| 20 | 53 | 86 |119]|116| 21 | 54 | 87 | 84 |117| 22 | 55| 52 | 85 {118 23
) 96 | 97|98 | 99 {100|101/102{103|104|105/106{107|108|109(110{111
Ps4(4)] 24 | 57 | 90 {123]|120| 25 | 58 | 91 | 88 {121| 26 | 59 | 56 | 89 |122| 27
1 [112(113|114|115|116{117|118|119|120{121|122|123|124|125|126|127
Ps4(7)] 28 | 61 | 94 {127]124| 29 | 62 | 95 | 92 |125]| 30 | 63 | 60 | 93 |126] 31
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Table 12. The values of the round constants in GIFT.

Rounds Constants

1-16 |01,03,07,0F,1F,3E, 3D, 3B,37,2F, 1E, 3C, 39,33,27,0E
17 — 32|1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C, 38
33 — 48/31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

B Algorithm for Obtain a Good Weak-Key Space and
Probability for a Differential

Algorithm 1 Obtain a good weak-key space and probability p for a differential.

Require: A given r-round differential, which contains d differential characteristics, denoted as
£1,€2, -+ ,E4, respectively;

Ensure: A weak-key space, and the probability p of the differential in this weak-key space;

1: Initialize an empty set S; ) )

2: Initializes two linear systems M? and M_ as empty;

3: for i=1,2,---,d do
4 p’ = 0; ,
5 e; is a differential characteristic with average probability pZ’wg in the differential;
6 Search for all quasidifferential trails of e; that satisfy |c;| = pfwy, and denoted as t;;
7 len(t;) represents the number of trails;
8 for j =1,2,--- ,len(t;) do
9: cor;- = (-1)ithi . \cj\ is the correlation of the j-th trail ¢;[j];
10 lb; : )C; is a linear combination of round-key bits, which is derived by )Cj.;
1 M= MU {ibj}; ‘
12 le; : IC77 = b;- is a linear equation of round-key bits, which is derived by cor_;'- > 0;
13: M, = M; U {lej};
14: i
15: if rank(M_) = rank(M_) and len(t;) > 2Ma then
16: l; = rank(M;i) and ]\/[;i is M! after Gaussian elimination;
17: W; with £; linear equations is a valid weak-key space;
18: Pt =p' Flen(ti) - Pygs
19: for i =1,---,d and i’ # i do
v

20: g, is a characteristic with average probability pZ’wg;
21: Search for all quasidifferential trails of €;/ satisfying |c;/| = pfl/vg, and denoted as t,/;
22: for j =1,2,--- ,len(t;;) do
23: if IC;, is a linear combination of ¢; equations and the value is v;l then

o/ s
24: p=pt (1) T
25: S =S U (loga(p?) — £:);
26: else
27: break

28: Take the maximum value in set S, suppose that the corresponding index of characteristic is i;
29: W, is chosen as the weak-key space for the differential;
30: p’ is the probability of the differential in the weak-key space Wi;

C Multiple Differential Attack on 21-Round GIFT-64

For the 13-round multiple differentials (33 characteristics are listed in Table
13) presented in Sect. 4.2 with probability 27567 in the weak-key space W,
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Table 13. 13-Round characteristics of GIFT-64 that have the common output difference
0x0000000000001010, both with pauy = 275%. # t represents the number of quasidif-
ferential trails satisfying |c| = pavg corresponding to each characteristic.

# t|Index Input difference |Index Input difference |Index Input difference
1 0x000000f0000000f0 | 2  0x000000c0000000c0| 3  0x000000c0000000{0
4 0x000000c0000000d0| 5  0x000000d0000000f0| 6  0x000000f0000000e0
16 7 0x000000c0000000e0| 8  0x000000e0000000cO0| 9  0x000000e0000000£0
10 0x000000e0000000d0| 11 0x000000d0000000e0| 12 0x000000d0000000cO
13 0x000000f0000000d0| 14 0x000000d0000000d0| 15 0x000000f0000000cO
16 0x000000e0000000e0
1 0x000000c0000000cO0| 2 0x000000c0000000d0| 3  0x000000c0000000{f0
4 0x000000e0000000cO0| 5 0x000000d0000000cO| 6  0x000000c0000000e0
4 7 0x000000f0000000cO0| 8  0x000000d0000000e0| 9  0x000000e0000000d0
10 0x000000€0000000f0 | 11  0x000000f0000000d0| 12 0x000000d40000000d0
13 0x000000e0000000e0| 14  0x000000f0000000e0 | 15 0x000000d0000000f0
16 0x000000£f0000000£0
1 1 0x000000f0000000d0

Table 14. Involved master-keys in the 21-round key-recovery attack on GIFT-64 of the
13-round multiple differential distinguisher. The keys in blue represent the bits that
do not repeat the guess.

RE KPR R KRS K2R KT R1ORE KRG RSRS KK KSR KSR Kk KRS KBRS K1KE KDAD
RK> kik3 kSkS K3K3 kikd
RK3
RK}; ki ko Kk
RK'g ks®k3 ks'k3 k3*k) k3®k3
REGe| k3ki kIki' k3'ki® ks®ki kEKS KSKi® ks®ki* ki3 kski kSRR kSKI® ks®ki koki Rk kSki® ks®kQ
RKGo| K3kl kiks' ki'ke® ki°kd KTk KGhe® Ri'kd* ki'kd Rk KPR KTk Ri°kd KOKG KRG KPRG® Ri°kQ
REG | Koks  kik§ kike' kiks® kiks  KPkG ki*ko® kko* kiko kiko ki'ko ki”ko® KPkQ kiko ki’ks ki'ks®
Table 15. Time complexity of the 21-round multiple differential attack on GIFT-64 in
each step.
Step| RK |# Key| Time(S-box operations) |Filtering probability |# Remaining pairs
1. |RK,| 2% 2 x 2" x 23 23x16 gn—48
2. |RK,| 28 2 x 282 x onT8 x 2t 2 4x4 gn—64
3. |RKb| - 2 x 240 x 964 16 - gn—64
4. |RK}g| 252 |2 x 240 x 9n764 x 93241 - gn—64
5. |[RKjg| 2%% | 2x27 x 2775 x 23 273x16 2n— 112
6. |RK!s| 2° 9 ¢ 9104 o on—112 |, o4 9—2x4 9n—120
7. |RKL,| - |2 x 2112 x 9n—120 5 9008 g—4x2 gn—128
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we mount the 21-round multiple differential attack on GIFT-64 by adding three
rounds before and five rounds after the distinguisher. The master-keys involved
in the key-recovery attack are listed in Table 14. The time complexity of each
step with initial 2" pairs is listed in Table 15.

Complexity and Success Probability. For the right key guesses, there are about
on—64=55.67 1airs left, while for the wrong key guesses, about 27128 . 33 pairs
left. We set n = 119.67 to expect that at least one pair remains for the right key
guesses, while about 27328 pairs remain for the wrong key guesses. Therefore, the
data complexity is about 264 chosen-plaintexts, the time complexity is dominated
by Step 5), and about 213167 % . % ~ 2123-27 21_round operations, the memory
complexity is about 2'12-bit.

We use the following formula proposed by Blondeau et al. [7] to evaluate the
success probability Pg:

-1 1
2mk — 2) NS]7
where nj is the number of key candidates, [ is the size of the list to keep, G
is defined by G~1(y) = min{z|G(z) > y}, and Ny is the number of samples.
Please refer to [7] for more details of the functions G, G, and the analysis. For
ne = 112, 1 = 291, and N, = 254, the success probability Ps = 99.9%.

Ps~1—G.[G 1 -

(20)

D Differential Cryptanalysis of 27-Round GIFT-128

For the 20-round differentials (weak-key space and details are listed in Table
16) presented in Sect. 4.3 with probability 2711477 in the weak-key space WS,
which has input difference 0x0000000000000000000000000 00000a0 and output
difference 0x00000000000000002000000210000001, we launch the 27-round differ-
ential attack on GIFT-128. The master-keys involved in the key-recovery attack
are listed in Table 17. The time complexity of each step with initial 2™ pairs is
listed in Table 18. Suppose that there are 2" pairs to perform the attack.

Complexity and Success Probability. For the right key guesses, there are about
on—64—114.77 1airg left, while for the wrong key guesses, about 27647128 pairs
left. We set n = 178.77 to expect that at least one pair remains for the right key
guesses, while about 271323 pairs remain for the wrong key guesses. One struc-
ture contains 2% plaintexts, and can generate 2'27 pairs, thus, about 2178-77—127 —

25177 structures are required. Therefore, the data complexity is about 25177764 =
21577 chosen-plaintexts, the time complexity is about 2120-61 . 3% . % A 211085

27-round operations, the memory complexity is about 272-bit.

We use the formula in Eq. (19) to evaluate the success probability Ps. When
Sy is very large, Ps &~ ®(\/jt). For Sy = 21323 |y = pN = 2711477 . 917877 " pg
is about 99.9%.

E Multiple Differential Attack on 28-Round GIFT-128

For the 21-round multiple differentials (2 differentials listed in Table 20) proposed
in Sect. 4.3 with probability 2712277 in the weak-key space Wy, the 28-round key-
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Table 16. The details of the 20-round differential of GIFT-128 proposed in [26] (Table
7), differential 2. # ¢ is the number of quasidifferential trails, and # wvalid t is the
number of valid quasidifferential trails in the weak-key space Ws.

differential index

characteristic index pavg

# t # valid t P

weak-key space

1

0 N O Ut ok W N

2—124
2—124
27125
27125
27125
27125
2—126

2—126

256 256
256 128 Kk =0
512 128 kP + k=0
512 64 9—114.77 ki + k?% =0
512 64 kg + kit =
512 128 ke' + ki =0
15
1024 64 k" =1
1024 32

Table 17. Involved mater-keys in the 27-round differential key-recovery attack on GIFT
128. The keys in blue represent the bits that will not repeat the guess.

RE RSOk k3t kP RES kE2R1Z RETKEY REOKEO RORY KSR KIRT RSKS REED KAk K2R K2R KERD KORD
1
ki°ks® kr'ks* kPR3 k37RS® kiky kSkS k3k3 Kiki
RK>
RK: .
3 K3k kK3
RK4
RK3; 5 5
| kIkL kY3 k3L k32 kS
RK! N O K3KS ke*kS kgkd® ROK3
26 s s b 5 y P .
ESkAt RgOkS R2RAC kK2 EAk3? kSKS ROKS KL%RS
REL ko' kst kS k] kg ks? kikg kak3 A k§kS kiki
2 kkI kK3 kSKS KOk2 kSkS K15kl kikd kKD

Table 18. The time complexity and filtering probability of the 20-round differential
to attack 27-round GIFT-128 in each step with 2" pairs.

Step| RK |# Key|Time(S-box operations)|Filtering probability| Remaining pairs
L. | RK,| 2% on—64+5.32 9—3x2-2x14 _ 5—34 on—98
2. | RK,| 2% on—64+1.99 9—3XT—2 _ 923 on—121
3 | RKs| 2° on—64-5.91 9—4-3 _ 97 on—128
4 |RKh| 2™ 9n—64-6.09 } on—128
5. |RKbs| 22 on—64+3.73 9—3x16 _ 9—48 on—176
6. |RKhs| 22 on—64-20.9 9—4x4 _ 5-16 on—192
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Table 19. The 18 21-round differentials of GIFT-128.
differential Input difference Output difference Pr
1 0x00000000000000000000000000000020 |0x00000000000000002000000210000001 |2~ 12864
2 |0x000000000000000000000000000000a0|0x00000000000000000000002200000011 | 2~ 125:64
3 0x00000000000000000000000000000020 |0x00000000000000000000004100000028 |2~ 12859
4 0x000000000000000000000000000000a0 |0x00000014000000820000000000000000 |2~ 12859
5 |0x00000000000000000000000000000200|0x00000000000000000022000000110000|2 2564
6 0x00000000000000000000000000000a00 |0x00000000000000000002200000011000|2 12864
7 |0x00000000000000000000000000000200|0x00044000000220000000000000000000 |2~ 29-64
8 0x00000000000000000000000000000200 |0x00000000000000008020000000100000|2~130-75
9 0x00000000000000000000000000000a00 |0x00140000008200000000000000000000 |2~ 128-59
10 0x00000000000000000000000000000a00 |0x00504000002020000000000000000000 |2~ 13129
11 0x00000000000000000000000000a00000 |0x00000000000000000000002200000011 |2~ 12864
12 |0x00000000000000000000000000200000|0x00000000000000000000000408000002|2~2%64
13 0x00000000000000000000000000200000 |0x00000000000000000000001008000080|2~130-75
14 0x00000000000000000000000002000000|0x00000000000000000022000000110000| 2~ 12864
15 0x00000000000000000000000002000000 |0x00000000000000000020020000100100|2 12864
16 0x00000000000000000000000002000000 |0x00400400002002000000000000000000 |2~ 12964
17 |0x00000000000000000000000002000000|0x00410000002800000000000000000000|2 2859
18 0x00000000000000000000000002000000 |0x00010400000802000000000000000000|2~130-75

recovery attack on GIFT-128 is launched by adding four rounds before and three
rounds after the distinguisher. The master-keys involved in the key-recovery
attack are listed in Table 22 and Table 23. The time complexity of each step
with initial 2™ pairs is listed in Table 24.

Complezity and Success Probability. For the right key guesses, there are about
Qn—64—122.77 1airs left, while for the wrong key guesses, about 27 64-128 . 9
pairs left. We set n = 186.77 to expect that at least one pair remains for the
right key guesses, while about 27423 pairs remain for the wrong key guesses.
One structure contains 254 plaintexts, and can generate 2'27 pairs, thus, about
QI86.77—127 — 959.77 gtryctures are required. Therefore, the data complexity is
about 25977164 = 2123.77 chogen-plaintexts, the time complexity is about 2128:07.
3+ 35 ~ 21827 28 round operations, the memory complexity is about 2%-bit.

We use the formula in Eq. (20) to evaluate the success probability Ps. For
ng =96, 1 = 2°1, and N, = 212377 the success probability Ps ~ 86.5%.

Note that the time complexity of the attack is dominated by encrypting
plaintexts, so the time complexity of guessing the key reduced by the weak-key
space is negligible.

F Differential Cryptanalysis of 17-Round SUNDAE-GIFT

For SUNDAE-GIFT-96, we target the initial phase without plaintext data in Fig.
3, and only one associated data block, which is the 96-bit nonce after padding.
We observe that the initial block IV is a constant, therefore, the Ex(IV) is
determined by the K. We treat Fx (IV) as a 128-bit whitening key based on



Quasidifferential Saves Infeasible Differential 31

Table 20. The details of the two 21-round differentials of GIFT-128 in Table 19,
differential 9 and 10, respectively. # t is the number of quasidifferential trails, and
# walid t is the number of the valid quasidifferential trails in the weak-key space Wj.

differential index|characteristic index pavg # t # valid t P weak-key space

1 27130 64 64
2 27131 198 32
3 27131 1928 32
4 27132 956 16
5 27133 256 68

9 6 27134 512 34 2—123.11
7 27134 519 64
8 271 512 34 k0 =0
9 27131024 32 k§ +k1° =0
10 97135 1024 32 ke’ + k1> =0
11 27135 1024 17 ke =1
1 27133 198 128
2 27134 198 64
3 27134 956 64

10 4 27134 956 64  |27120:04
5 27135 256 32
6 27135 256 32
7 27135 512 32
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Table 21. Two primary 21-round differential characteristics of GIFT-128. One is in
differential 9 characteristic 1 with average probability 273, the other is in differential

10 characteristic 1 with average probability 2733 in Table 20, respectively.

AX, of differential 9 characteristic 1

AX, of differential 10 characteristic 1

0x00000000000000000000000000000200
0x00000000000000010000000000000000
0x00080000000000000000000000000000
0x00000000000000002000000010000000
0x00004040000020200000000000000000
0x05050000000000000505000000000000
0x00000000000000002000200000000000
0x00000000000000000000110000000000
0x00000000000000000000080000000800
0x00000202000001010000000000000000
0x00000000050500000000000005050000
0x00000000000000000020002000000000
0x00001100000000000000000000000000
0x0000000000000000080000000c000000
0x00002020000010000000000000000000
0x050400000a0200000000000000000000
0x00000000505000000000000050100000
0x00000000002000200000000000000000
0x00110000000000000000000000000000
0x00000000c00000006000000000000000
0x00000000002020000000000000000000
0x00140000008200000000000000000000

© 0 N U W N =R

| N R o B e R e
N = O © 00 J O Ut = W N~ O

 |0x00000000050500000000000005050000

0x00000000000000000000000000000200
0x00000000000000010000000000000000
0x00080000000000000000000000000000
0x00000000000000002000000010000000
0x00004040000020200000000000000000
0x05050000000000000505000000000000
0x00000000000000002000200000000000
0x00000000000000000000110000000000
0x00000000000000000000080000000800
0x00000202000001010000000000000000

0x00000000000000000020002000000000
0x00001100000000000000000000000000
0x0000000000000000080000000c000000
0x00002020000010000000000000000000
0x05040000020200000000000000000000
0x00000000505000000000000050100000
0x00000000002000200000000000000000
0x00110000000000000000000000000000
0x80000000c00000000000000000000000
0x00000000202000001000000000000000
0x0050400000a020000000000000000000

27115
2—121
27125

2—133

Table 22. Involved keys in the 28-round multiple differential key-recovery attack on
GIFT-128 of the 21-round differential 9 in Table 20.

Ric, Bk kst ke ket kst kOki® KSKY RSKT kil KSKT K3k RSk RSKD RSKT kski kSKY
1
RK: I - P e e
* R8RS kR kSRS R%hS? keks kikS keks kks
RK: 5
’ kgki' k3kS
RK4
kS KSES kil kKD
RKéﬁ T3 73 T3 T7h3
, kK k1'kS kPk3 Kk
RK3; 3.7 11.5 117,15 97,13
k3K] kik3 kgt ki kOk}
ric |F5 kT k3' k3 k3k7 kiks k3k3 K3kt k3ky® k3 kY
| k3kE k3kS k3K k3K RS RSEE kIR k3K
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Table 23. Involved keys in the 28-round differential key recovery attack on GIFT-128
of the 21-round differential 10 in Table 20.

e, [FERE RERET KBRS KPR AR KRS RORY RERT ATAT RSKY ASAT KAKT RZRT AZAT RERD RSRY
1
RK> 157,15 114714 713713 11212 717 1676 1515 1414
ko ka” kg™ ky” ke"ka” kg”ka koks koka kgks koks
RK: -
’ Kk kG
RK4
R, KIKS K7k K3k KR
Rice [FURST BRs” ki'kS ki%KS kKD kik3 Kiks KPkS
7| kEkG k3K kekG  KSki R
NG Gl CEENNT KRR KR
RK3s 3.7 115 157.3 137.1 117,15 97.13 177,11 57.9
kyke kakg ko kg k2°kg k2 kg kskg kokg kokg

Table 24. The time complexity and filtering probability of 21-round differential to
attack 28-round GIFT-128 in each step with 2" pairs.

Step| RK |# Key|Time(S-box operations)| Filtering probability —|Remaining pairs
L. |RE,| 2% on—64+5.3 9—2X3-14x2 _ 534 on—34
9. g}f((; ;:i gn—64-1.95 9—TX3—6-4x3-8X2 _ 9—55 gn—89
3. }1:[}(237 ;: gn—64-13.68 9—4-3-5x2-3x3 _ 5—26 gn—115
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Table 25. Two 11-round differential characteristics of SUNDAE-GIFT.

AX, in differential characteristic 1 P AX, in differential characteristic 2 p
0x00000000000000000000000000000a00| 2~° [0x00000000000000000000000000000e00| 2~°
0x00000000000000010000000000000000| 22 |0x00000000000000010000000000000000| 22
0x00080000000000000000000000000000| 2~° |0x00080000000000000000000000000000| 2~°
0x00000000000000002000000010000000| 2~ |0x00000000000000002000000010000000| 2™~
0x00004040000020200000000000000000|2 2 [0x00004040000020200000000000000000| 2~ *2
0x05050000000000000505000000000000|2~2° |0x05050000000000000505000000000000| 2 ~2°
0x0000000000000000a000200000000000|2~32|0x00000000000000002000200000000000 |2 ™32
0x00000000000000000000110000000000|2 ™3¢ [0x00000000000000000000110000000000| 2 3¢
0x00000600000000000000090000000000|2~*? |0x00000600000000000000090000000000| 2 ~*2
0x02000000000001000000000000000000|2~*7 [0x02000000000001000000000000000000|2~*"
0x00000000100000000008000040000000|2 % [0x00000000100000000008000040000000| 22
0x00000000000000000000201000801080|2~°° [0x00000000000000000000201000801080|2~%°

© 00 N O U R W N =R

_ = =
N = O

Fig. 3. SUNDAE-GIFT encryption without plaintext data.

the structure that there is no whitening key at the beginning of GIFT, and write
it as IK. In addition, the multiplication “x” is a linear operation, the order
of operation “x” and (pad(N) ® IK) can be swapped, we have x(pad(N) @
IK) = x(pad(N))® X (IK)), where pad(N) is a 128-bit state after padding, i.e.,
pad(N) = N||032. The x(pad(N)) and x(IK) are denoted by G(N) and IK’,
respectively.

According to the differential attack in Fig. 4. The structures are constructed
in G(N) by choosing nonce. One structure has a 64-bit traversal value and 64-bit
constant and can generate about 2'27 pairs. Before performing the subsequent
key recovery, the partial value of the I K’ needs to be recovered. For a 4-bit S-box,
we make a precomputation table to record solutions by traversing all input pairs
with given input difference and output difference. The 4-bit I K’ corresponding
to an S-box can be squeezed out by precomputation-table lookup. For the GIFT’s
4-bit S-box, the average number of solutions is W ~ 2.4 according
to the difference distribution table (DDT). As a result, there are about 2.416 ~
220-16 possible values for the TK'[127 ~ 64]. After that, the key recovery attack
can be performed by guessing key and filtering pairs for each possible value of
IK'[127 ~ 64], and the procedure is similar to the 21-round differential attack
on GIFT-64, which is omitted.
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Table 26. Involved keys in the 17-round differential key-recovery attack on
SUNDAE-GIFT of the 1l-round differential characteristic 1 in Table 25. The keys in
blue represent the bits that do not repeat the guess.

RK [ 5,5
U IRISRE® KRS IR RI2RS2 KIKD KSKS k3KS Kikd
. CI T
RK3
RK] , . . : )
e K3kS kS K3k Kk Kkt
- KSkT k3R k3R T
16
R3RD KIOKS KRS RORES KSKE KSKL
REC kIkT kLo kge ESkS kLAt P EL3rg3 kit kL2gg2
v Kkt R Lo ROk kikL kSRS k9K kEKS

Table 27. The time complexity and filtering probability of the 11-round differential
characteristic to attack 17-round SUNDAE-GIFT in each step with 2"~%* pairs. The 64-
bit K’ in step 1. yields about 22°16 possible values.

Step| RK |# Key|Time(S-box operations)| Filtering probability |Remaining pairs

1 | K 564 on—64+20.16 B gn—64

2. | RK, | 2'¢ on—64+24.16 9—Tx3-2 _ 923 on—87

3. | RK, | 2% on—64+16.48 9—4-3 _ 97 gn—94

98 on—64+15.16 9—8x1 _ 9-8 on—102

4. |RKi7 16 64+21.16 8X1 8 110
2 A 278 =2~ 2"

5. |RK|5| 222 on—64+20.89 5—4x2-3x4-2x6 _ 9—32 on—142

RK|.| 2! on—64+9.25 9—1X3-2x2 _ 916 on—158

The keys involved in the key recovery attack are listed in Table 26. Suppose
that there are 2" pairs to perform the attack. The time complexity details of
each step with 2764 pairs satisfying the pattern of 64 inactive bits in AT are
listed in Table 27.

Complezity and Success Probability. For the right key guesses, there are about
gn—64-60 — 9n—124 pairs will be left, while for the wrong key guesses, about
2n—64-94 — 9n—158 pairs will be left. We set n = 124, that is, about 252 nonce
are required. Thus, the data complexity is about 2625 chosen-nonces, the time
complexity is about 284-46. L. L ~ 275-37 17.round encryptions, and the memory
complexity is about 2%6-bit.

We use the formula in Eq. (19) to evaluate the success probability Ps. When
Sy is very large, Ps ~ ®(,/u). For Sy = 2%, = pN = 2760. 2124 Pg is about
99.9%.
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Fig. 4. 17-round differential attack on SUNDAE-GIFT.
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