
Malicious Security in Collaborative zk-SNARKs:
More than Meets the Eye

Sanjam Garg∗ Aarushi Goel† Abhishek Jain‡ Bhaskar Roberts§ Sruthi Sekar¶

Abstract

Collaborative zk-SNARKs (Ozdemir and Boneh, USENIX’22) are a multiparty variant of zk-
SNARKs where multiple, mutually distrustful provers, each holding a private input, jointly com-
pute a zk-SNARK using their combined inputs. A sequence of works has proposed efficient con-
structions of collaborative zk-SNARKs using a common template that involves designing secure
multiparty computation (MPC) protocols to emulate a zk-SNARK prover without making non-
black-box use of cryptography. To achieve security against malicious adversaries, these works
adopt compilers from the MPC literature that transform semi-honest MPC into malicious-secure
MPC.

In this work, we revisit this design template.
• Pitfalls: We demonstrate two pitfalls in the template, which can lead to a loss of input pri-

vacy. We first show that it is possible to compute collaborative proofs on invalid witnesses,
which in turn can leak the inputs of honest provers. Next, we show that using state-of-the-
art malicious security compilers as-is for proof computation is insecure, in general. Finally,
we discuss mitigation strategies.

• Malicious Security Essentially for Free: As our main technical result, we show that in
the honest-majority setting, one can forego malicious security checks performed by state-
of-the-art malicious security compilers during collaborative proof generation of several
widely used zk-SNARKs. In other words, we can avoid the overheads of malicious security
compilers, enabling faster proof generation.

To the best of our knowledge, this is the first example of non-trivial computations where
semi-honest MPC protocols achieve malicious security. The observations underlying our positive
results are general and may have applications beyond collaborative zkSNARKs.

∗UC Berkeley. Email: sanjamg@berkeley.edu
†Purdue University. Email: aarushi@purdue.edu
‡NTT Research and Johns Hopkins University. Email: abhishek@cs.jhu.edu
§UC Berkeley. Email: bhaskarr@eecs.berkeley.edu
¶IIT Bombay. Email: sruthi@cse.iitb.ac.in

1

Contents

1 Introduction 3
1.1 Our Results . 3

1.1.1 Results I: Pitfalls . 4
1.1.2 Results II: Malicious Security for Free . 5

1.2 Related Work . 6

2 Technical Overview 6
2.1 Additive Attack Paradigm [GIP+14] . 6
2.2 Malicious Security for Free in Honest Majority: Starting Ideas 7

2.2.1 Application: Collaborative Groth16 Proof Generation 9
2.3 Malicious Security for Free in Honest Majority: Reactive Functions 9

2.3.1 Application: Collaborative Bulletproofs Generation 11
2.4 Malicious Security for Free in Honest Majority: Randomized Computations 12

2.4.1 Special Randomized Functions . 13
2.4.2 Randomized Encoding . 13
2.4.3 Application: Collaborative Plonk [GWC19] Proof Generation 13

3 Preliminaries 15
3.1 Multiparty Computation (MPC) Functionalities . 15
3.2 Collaborative zk-SNARKs . 16

4 Pitfalls in Existing Approaches for Achieving Malicious Security 18
4.1 Pitfall 1: Insider and Outsider Attacks . 18

4.1.1 Outsider Attack . 18
4.1.2 Insider Attack . 20

4.2 Pitfall 2: Computing Reactive Functionalities Requires Multiple Consistency Checks. 21

5 General Compiler for Malicious Security in Collaborative Proof Generation 22

6 Collaborative zk-SNARK Based On Bulletproofs 26
6.1 The Collaborative Bulletproof Protocol . 27
6.2 Malicious Security of Collaborative Bulletproofs . 29

7 Collaborative zk-SNARK Based On Plonk 33
7.1 The Collaborative Plonk Protocol . 34
7.2 𝑡-Zero-Knowledge Against Malicious Provers . 38

A Multiparty Computation Functionalities and Sub-Protocols 63
A.1 Standard Honest-Majority MPC Functionalities . 63
A.2 Multiplying two secret shared polynomials . 64

2

1 Introduction

Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs) [Kil92, Mic94,
BCC+17] enable a prover to demonstrate the correctness of a large computation without revealing
any secrets used in the computation. Recently, Ozdemir and Boneh [OB22] introduced the notion
of collaborative zk-SNARKs – a multi-party variant of zk-SNARKs where multiple participants, each
holding private inputs, collaborate to jointly compute a zk-SNARK that proves the correctness of
a computation over their inputs. Collaborative zk-SNARKs enable many applications such as au-
ditable secure multiparty computation (MPC) [BDO14] and verifiable distributed computation of
private statistics (e.g., credit scores and healthcare statistics) [OB22].

General Design Template for Collaborative-zk-SNARKs. Ozdemir and Boneh [OB22] pre-
sented an efficient approach for constructing collaborative zk-SNARKs based on several widely-used
zk-SNARKs, such as Groth16 [Gro16] and Plonk [GWC19], in which the proof generation time is
nearly the same as when the proof is computed by a single prover. Building on this approach, sub-
sequent works have presented new constructions either with the aim of achieving even faster proof
generation times [GGJ+23, LZW+24b, LZW+24a], or adding support for other zk-SNARKs used in
practice [BKb, LZW+24b, LZW+24a].

We now outline the general template for constructing collaborative zk-SNARKs [OB22]. The
high level idea is to implement the prover algorithm of the zk-SNARK using MPC [Yao86, CCD88,
GMW87, BGW88]. The design proceeds in three steps:

• Step I (Generate the ExtendedWitness): Suppose we want to prove the correctness of some
computation described by an arithmetic circuit 𝐶 . In the first step, the parties run a standard
MPC protocol using their private inputs to compute secret shares of the “extended witness”,
namely, the wire values of the arithmetic circuit evaluated over the inputs.

• Step II (Compute The Proof)1: Next, the parties run a special-purpose MPC that takes as
input the shares of the extended witness and computes a zk-SNARK proof by emulating the zk-
SNARK prover algorithm. This MPC is designed to avoid non-black-box use of cryptography.
Typically, we start by designing an MPC that is only secure against semi-honest adversaries.

• Step III (Upgrade to Malicious Security): Finally, we compile the semi-honest protocol
into a protocol that is secure against fully malicious adversaries. For this step, prior works
employ state-of-the-art compilers from the MPC literature [DPSZ12, CGH+18, GIP+14, LN17,
NV18, FL19, GSZ20, BBC+19, BGIN19, BGIN20, BGIN21, DEN24]. Importantly, these compilers
preserve the black-box nature of the underlying custom semi-honest protocol.

1.1 Our Results

We revisit this design template and present the following results:

• Pitfalls. We demonstrate several pitfalls of the design template by presenting concrete attacks
that violate input privacy of the honest parties. We also provide mitigation strategies.

• Malicous Security Essentially for Free. We show that step III of the design template can
be omitted for several widely-used zk-SNARKs. More specifically, we show that with minor
changes, existing semi-honest MPC protocols for proof computation of Groth16, Bulletproofs,
and Plonk are already secure against malicious adversaries; therefore, the malicious security
compiler is not needed. Our results hold in the honest majority setting. To the best of our

1[OB22] refers to Step II here as collaborative zk-SNARKs. We refer to collaborative zk-SNARKs as the complete process
involving the extended witness generation and the proof generation.

3

knowledge, these are the first examples of non-trivial functionalities where semi-honest MPC
protocols achieve malicious security.

We now elaborate on these results.

1.1.1 Results I: Pitfalls

We demonstrate two pitfalls of the existing design template via attacks on input privacy that exploit
proofs computed on invalid witnesses, or the reactive nature of proof computation.

Attack #1. The key idea of our first attack is that standard zk-SNARKs do not guarantee input
privacy for invalid witnesses, whereas collaborative zk-SNARKs must provide input privacy for both
valid and invalid witnesses. Due to this mismatch in security, it is possible for an attacker to violate
the input privacy of a collaborative zk-SNARK if the proof is computed using an invalid witness.

Let us elaborate. Collaborative zk-SNARKs must satisfy the 𝑡-zero-knowledge property, which
guarantees that a corrupted subset of at most 𝑡 provers learn nothing about the honest parties’ inputs
except for a bit indicating whether the combined inputs of all parties constitute a valid witness.
Unlike standard zero knowledge that only guarantees security for true statements, 𝑡-zero-knowledge
guarantees security even when the combined witness is invalid. This stronger guarantee is necessary,
since unlike standard zero knowledge where the validity of a witness can be determined locally by
an honest prover, the parties in collaborative zk-SNARKs can only determine this jointly.

As part of our attack, we design a distinguisher that receives as input a Groth16 [Gro16] zk-
SNARK proof computed on one of two invalid witnesses, and correctly identifies which witness was
used (thus breaking 𝑡-zero-knowledge). We next show how to use this distinguisher to launch two
attacks on collaborative zk-SNARK computation of Groth16 proofs:

• Outsider Attack: Consider a two-prover collaborative zkSNARK for Groth16 proofs. Suppose
that the joint input held by the provers corresponds to one of two possible invalid witnesses.
If the provers compute a proof using this witness, then anyone can run the distinguisher al-
gorithm on the final proof to determine the (invalid) witness used by the provers.

This attack can be mitigated by checking whether the witness is invalid during Step I, and abort-
ing if this is the case.

• Insider Attack: Now consider the case where one of the provers is dishonest. Let us suppose
that the provers hold a valid witness, and the honest prover’s input has one of two possible
values. We show that the dishonest prover can learn the honest prover’s input by modifying
the witness to be invalid and then inspecting the resulting proof as follows: The dishonest
prover behaves honestly during Step I, and at the end of this step, the provers obtain secret
shares of the (valid) extended witness. However, before the start of Step II, the dishonest
prover locally modifies its share so that the reconstructed value corresponds to an invalid
extended witness. This is possible, for example, in the case of additive secret sharing.2 Next,
the corrupted prover behaves honestly during step II. Then given the final proof, it runs the
distinguisher algorithm to determine the input of the honest prover.

To prevent the second attack, we must ensure input consistency between Steps I and II. For in-
stance, this could be achieved using robust secret sharing based on AMD codes [CDF+08]. To the

2We note that this does not work in the honest majority setting if the parties obtain a threshold secret sharing of the
the extended witness. This is because, in threshold secret sharing, if the adversary locally modifies their shares, that will
only result in the parties collectively holding an invalid sharing, which in turn will result in the protocol aborting during
reconstruction.

4

best of our understanding, prior work treats the implementation of Steps I and II as independent
tasks. The above attack demonstrates that this methodology is not sound.

Attack #2. The state-of-the-art compilers for malicious security in MPC (see section 1.2) are de-
signed for semi-honest protocols that achieve privacy against malicious adversaries up to the out-
put reconstruction round. Most secret-sharing based MPC protocols enjoy this privacy property
[GIP+14]. To achieve full malicious security, these compilers perform an aggregate “MAC check” on
the computation prior to the output reconstruction round. This prevents an adversary from learning
the output if it behaved maliciously earlier in the protocol.

To the best of our understanding, prior work on collaborative zk-SNARKS [OB22, LZW+24b,
LZW+24a, BKb, BKa, OB] uses these compilers as-is to achieve malicious security. We observe that
this approach is not secure, in general. This is because many zk-SNARKs constitute a stateful, reactive
functionality that produces several outputs. In this setting, a single aggregate MAC check before the
release of the final output is insufficient. Specifically, we show a simple reactive functionality where
this leads to loss of input privacy. Finally, we describe a simple, fail-safe compiler for achieving
malicious security.

1.1.2 Results II: Malicious Security for Free

Surprisingly, we show that for some of the most widely-used zk-SNARKs, the semi-honest MPC
for proof generation is already maliciously secure, so step III of the design template (compiling the
semi-honest protocol into a maliciously secure protocol) is not required. We now give more details.

• Groth16 and Bulletproofs: With a minor change, we can use the existing semi-honest MPC
protocols for Groth16 [Gro16] (as described in [OB22]), and Bulletproofs [BBB+18] (as pre-
sented in [BKb]). Our change only concerns with the way secret shares of random values are
generated in these protocols; see section 2 for details.

• Plonk: For the Plonk proof system [GWC19], we can use a specific instantiation of the
semi-honest MPC protocol presented in [OB22]. Our instantiation crucially uses Bar-Ilan and
Beaver’s constant-round protocol [BIB89] for iterated multiplication. We also use the modified
randomness generation procedure mentioned above and add a constant-time check to the final
round. For more details, see section 2.

Discussion. To the best of our knowledge, our positive results provide the first example of a non-
trivial functionality — specifically, zk-SNARK proof generation — that can be securely computed
without requiring any additional consistency checks during the computation. Prior to our work, it
was unclear whether this was even possible. Since the underlying properties that we leverage are
common to many zk-SNARKs, we believe our results could extend to other zk-SNARK constructions
as well, presenting an interesting avenue for future research. More broadly, many of our observations
about the types of functionalities for which semi-honest protocols remain secure against malicious
adversaries are general and not specific to zk-SNARKs, and may therefore be of independent interest
with potential for wider applications.

As an example, the primary motivation behind the popular Bar-Ilan–Beaver [BIB89] protocol
for iterated multiplication is efficiency improvement; namely, achieving a constant-round protocol.
We show, surprisingly, that the use of randomness in this protocol not only helps in reducing the
multiplication depth, but also in achieving security against malicious adversaries. In fact, if one were
to instead use a standard multiplication protocol composed iteratively for iterated multiplications,
not only would it be less efficient, it would render our Plonk-based collaborative zk-SNARK insecure
in the absence of a consistency check. We refer the reader to section 2 for details.

5

1.2 Related Work

Collaborative zk-SNARKs. Following the introduction of collaborative zk-SNARKs [OB22], sev-
eral follow-up works [GGJ+23, LZW+24b, LZW+24a] have focused on improving the efficiency of
proof generation. In [GGJ+23], the authors introduce and instantiate the notion of zk-SNARKs-
as-a-service (zkSaaS) for the same underlying zk-SNARKs as in [OB22] (i.e., Groth16 [Gro16],
Plonk [GWC19], and Marlin [CHM+20]), which improves the communication and computation cost
of the prover parties. In [LZW+24b, LZW+24a], the authors extend collaborative zk-SNARKs to two
new zk-SNARKs, Libra [XZZ+19] and Hyperplonk [CBBZ23], and show that communication and
computation costs can be fully distributed among the prover parties. Towards expanding the li-
brary of efficient collaborative zk-SNARKs, [BKb] builds collaborative zk-SNARKs based on Bullet-
proofs [BBB+18].

Malicious Security Compilers in MPC. A long series of work over the last decade has focused
on designing efficient compilers that can transform a semi-honest secure MPC to withstand secu-
rity against malicious adversaries. Several of these works [DPSZ12, CGH+18, GIP+14, LN17, NV18]
involve running two (or more)3 parallel executions of the semi-honest protocol, some recent works
[FL19, GSZ20, BBC+19, BGIN19, BGIN20, BGIN21, DEN24] show that maliciously secure MPC can be
achieved at nearly the same (amortized) communication cost as semi-honest MPC. [FL19] achieves
this by relying on a two-thirds honest majority assumption, while [GSZ20, BGIN19, BGIN20] operate
in the standard honest majority setting (i.e., tolerating up to half corruptions) and [BBC+19, BGIN21]
in the dishonest majority setting. However, these techniques introduce additional rounds that grow
logarithmically with the size of the function, slowing down the protocol. Dalskov et al. [DEN24]
recently reduced this round overhead to a constant, but at the cost of increased computation and
communication complexity in the preprocessing phase of the MPC protocol.

2 Technical Overview

In this section, we discuss the main ideas underlying the result that malicious security comes essen-
tially for free. For details on the pitfalls and the general compiler for malicious security, we refer the
reader to section 4.

2.1 Additive Attack Paradigm [GIP+14]

The starting point of our techniques is the influential additive attack paradigm of [GIP+14], which
roughly says that when a malicious adversary participates in a semi-honest-secure MPC protocol,
they can only introduce “additive” errors. This idea underlies the design of most state-of-the-art MPC
compilers for transforming semi-honest MPC to maliciously-secure MPC.

Typical MPC protocols represent the target function as an arithmetic circuit and evaluate it gate-
by-gate over secret-shared inputs. While addition gates can be computed non-interactively, multipli-
cation gates require interaction among parties, providing an opportunity for a malicious adversary
to influence the computation.

However, Genkin et al. [GIP+14] demonstrated that the scope for such attacks remains quite
limited in most secret-sharing-based MPC protocols. For a typical semi-honest-secure MPC protocol
based on secret sharing in the honest majority setting, if the protocol is executed in the presence of
a malicious adversary, the following observations are true:

3Two repetitions suffice when working over a large field (exponential in the security parameter). This is indeed the
case for zk-SNARK computations – the focus of this work. For small fields, these compilers can require running many
parallel executions.

6

1. Obs 1: Arbitrary Additive Errors: When multiplying two secret shared values 𝑎 and 𝑏, a
malicious adversary can only introduce an arbitrary error term 𝜖 , such that the parties even-
tually obtain secret shares of 𝑎 ·𝑏 +𝜖 instead of 𝑎 ·𝑏. Crucially, while the adversary can choose
𝜖 freely, it cannot make 𝜖 dependent on 𝑎 or 𝑏.

2. Obs 2: Privacy Until Reconstruction: Moreover, the MPC protocol maintains privacy
against malicious adversaries, except during the final round when the output is reconstructed.

These observations are formalized by showing that the view of a malicious adversary in all-but-
the-last round can be simulated in the ideal world. Moreover, the simulator can extract the value of
𝜖 .

The above observations hold either when the adversary corrupts exactly 𝑛/2 − 1 parties or if all
secret shares of any random values used in the protocol are guaranteed to be honestly generated.
Throughout this section, we will assume that one of these conditions is met and refer to such MPC
protocols as MPC secure up to additive attacks.
Design of Maliciously Secure MPC. We can use the above observations to compile semi-honest
MPC protocols into maliciously secure protocols. The compiler just has to detect additive errors,
and if errors are detected, it aborts the protocol before reconstructing the final output. The way to
detect additive errors involves runing two parallel instances of the semi-honest protocol (up until
the last round) and verifying consistency between them. This roughly doubles the computational
overhead compared to the semi-honest version. This design template was used in all prior works on
maliciously secure collaborative zk-SNARKs [OB22, LZW+24b, LZW+24a, BKb, BKa, OB].

We seek to show that it is not necessary to run two parallel copies of the semi-honest protocol
for the specific task of generating a zk-SNARK proof. This is because either (1) the additive errors do
not allow the adversary to violate input privacy, so there is no need to detect them, or (2) additive
errors can be detected much more efficiently by repurposing the proof’s verifiability to check for
additive errors.

2.2 Malicious Security for Free in Honest Majority: Starting Ideas

In this section, we explore some initial ideas for identifying scenarios where a semi-honest, honest
majority MPC protocol (in particular, an MPC secure up to additive attacks) can also remain secure
against malicious adversaries. Towards the end, in section 2.2.1 we demonstrate how these initial
ideas are sufficient to show that a semi-honest collaborative Groth16 [Gro16] Proof generation is
also maliciously secure.

As noted above, the two observations in [GIP+14] hold when either the adversary corrupts ex-
actly 𝑛/2 − 1 parties or all random values in the protocol are honestly generated. Since we build
on their observations, throughout this discussion, we assume one of these conditions are met when
referring to a semi-honest MPC or an MPC that is secure up to additive attacks.
Recap: Malicious Security in MPC. Before delving into our ideas, let us review what it means for
an MPC protocol computing function 𝑓 to be secure against a malicious adversary. In the real-ideal
world paradigm, this requires the existence of a polynomial-time simulator – with oracle access to
an ideal functionality F computing the target function 𝑓 – that can simulate the adversary’s view in
such a way that the following two distributions are indistinguishable: The joint distribution of the
adversary’s view and the output of the honest parties in the real world, and the joint distribution of
the simulated view and the output of the honest parties computed by the ideal functionality. Here
the “output of the honest parties” is included in the joint distribution to ensure correctness of the
computed output.

However, since we are working with an MPC where the adversary can inject additive errors
during the computation of multiplication gates, achieving correctness in the traditional sense is in-
feasible. This might suggest that the above definition is too strong to guarantee for any MPC secure

7

up to additive attacks. However, recall that our primary goal is to establish that collaborative proof
generation for various zk-SNARKs using a semi-honest MPC also achieves security against malicious
adversaries. Since zk-SNARKs are self-verifying, correctness of the computed proof does not need
to be enforced by the MPC itself; instead, correctness can be verified by checking whether the proof
successfully verifies.

Thus, we relax the definition of malicious security to allow the adversary to maul the output. Due
to the self-verification property of proof systems, an MPC computing a zk-SNARK while achieving
this weaker notion of security effectively implies an MPC achieving strong malicious security (i.e.,
the original definition).

𝐿-Malicious Security. We introduce a relaxed notion of malicious security, which we call 𝐿-
malicious security. Here, the ideal functionality F ′ takes as input the inputs of all corrupt and
honest parties (say ®𝑥). Additionally, it receives a linear function 𝐿 from the adversary and sends as
output 𝐿(𝑓 (®𝑥)) to all parties. Note that this relaxation only affects the correctness of output, but not
privacy. Allowing the adversary to modify the output via a linear function does not reveal any addi-
tional information about the honest parties’ inputs beyond what is already implied by the “correct”
output of 𝑓 , thereby preserving privacy. For the remainder of this discussion, we focus on proving
that for certain functions, an MPC secure up to additive attacks also satisfies 𝐿-malicious security.
To do so, we must demonstrate the existence of an appropriate simulator.

How to Simulate? From [GIP+14], we know there exists a simulator, S<last, that can generate an
indistinguishable view for the adversary in all but the final round while extracting the corrupt parties’
initial inputs and any injected additive errors. The challenge is extending this simulator to construct
SF′ , which must also simulate an indistinguishable view in the final round, where the output is
reconstructed. To prove security, we need to show that the joint distribution of the adversary’s
simulated view and the output computed by F ′ is indistinguishable from that in the real protocol.

How can we hope to achieve this? Since the output is reconstructed in the final round, SF′

must use the ideal functionality F ′ to simulate it. However, due to adversarially injected additive
errors during multiplication gates, the computation of 𝑓 may be altered in ways that are not always
representable as a linear function of the correct output. Even when such a linear representation
exists, the simulator may not have enough information to determine it solely from the extracted
inputs and additive errors.

Using this observation as our starting point, we consider two simple functions where adversarial
additive errors do result in a final mauled output that is effectively a linear function of the correct
output. Let 𝑥,𝑦, 𝑧 be secret shared inputs.

Affine Functions over Secret Shared Inputs: The simplest kind of functions to compute are affine
functions of the form 𝑓 (𝑥,𝑦) = 𝐴 · 𝑥 + 𝐵 · 𝑦 +𝐶 , where 𝐴, 𝐵,𝐶 are some public constants. According
to the first observation in [GIP+14], in an MPC protocol secure against additive attacks, a malicious
adversary can only introduce errors during the multiplication of two secret-shared values. Since
an affine function does not involve any such multiplications, the adversary has no opportunity to
introduce additive errors when using such an MPC to compute this function.

Then, given S<last, designing an extended simulator SF′ that also simulates the output in the
final round is straightforward. The simulator can simply query the ideal functionality F ′ using
the adversary’s initially extracted inputs (which can be extracted by S<last) and setting 𝐿 to be the
identity function. Since 𝐿 in this case is always the identity function, an MPC secure up to additive
attacks is trivially secure against malicious adversaries for such functions.

Degree-Two Computations over Secret Shared Inputs: The next kind of functions that we con-
sider are degree-2 or depth-1 computations, e.g., 𝑓 (𝑥,𝑦, 𝑧) = 𝑥 · 𝑦 + 𝐴 · 𝑧 + 𝐵, where 𝐴, 𝐵 are public
constants. From the first observation in [GIP+14], we know that when using an MPC secure up to
additive attacks to compute 𝑓 , the adversary can an inject arbitrary additive error 𝜖 during the com-

8

putation of 𝑥 · 𝑦. In other words, the final output of this computation in the presence of a malicious
adversary could be 𝑥 · 𝑦 +𝐴 · 𝑧 + 𝐵 + 𝜖 .

Given S<last, we can extend this simulator to simulate the final output. Since SF′ can use S<last
to extract the adversary’s initial inputs and the injected error 𝜖 , it can query the ideal functionality
F ′ on the initially extracted inputs and 𝐿 such that 𝐿(𝑥) = 𝑥 + 𝜖 . Finally, it can use the output sent
by the ideal functionality to simulate the adversary’s view in the last round. Thus, we have shown
that an MPC secure up to additive attacks will also be 𝐿-maliciously secure for such functions.

While these functions may appear simplistic with no standalone applications, we demonstrate
their practical utility in the generation of zk-SNARKs.

Difference Between Standard Malicious Security and 𝑡-Zero-Knowledge. Before presenting
an example of such a zk-SNARK that can be computed using just affine or degree-2 computations, we
first review the definition of malicious security for a collaborative zk-SNARK protocol. As discussed
in section 1, [OB22] define a notion of 𝑡-zero-knowledge for collaborative zk-SNARKs, ensuring that
malicious provers cannot learn the witnesses of honest provers. This is formalized by requiring a
simulator that, given a bit indicating whether the honest and corrupt party’s joint witness is valid,
can simulate an indistinguishable view for the adversary.

Note that, this differs from standard maliciously secure MPC, where the simulator has oracle
access to an ideal functionality computing the target function. Here, the simulator only receives
information about the validity of the combined witnesses, without access to an ideal functionality
computing the proof. This difference is because 𝑡-zero-knowledge is designed to capture both zero-
knowledge of the proof and malicious security of the MPC used to generate the proof. If the simulator
had access to an ideal proof-generating functionality, we would need a separate argument to ensure
that the proof itself does not leak any meaningful information about the honest parties’ witnesses
beyond their validity.

2.2.1 Application: Collaborative Groth16 Proof Generation

The computation of Groth16 zk-SNARKs [Gro16] can be expressed as a degree-2 computation over
the extended witness. Consequently, any semi-honest MPC protocol that is secure against additive
attacks for computing Groth16 proofs inherently achieves 𝐿-malicious security. Furthermore, due
to the self-verifiability of zk-SNARK proofs, such an MPC protocol also achieves standard malicious
security. In other words, there exists a simulator S that, given oracle access to an ideal functionality
computing the Groth16 proof, can generate a view for the adversary that is indistinguishable from
its view in the actual protocol.

To further demonstrate that such an MPC satisfies the above notion of 𝑡-zero-knowledge against
malicious adversaries, we modify S such that, instead of querying the ideal functionality computing
the Groth16 proof, it invokes the simulatorSzk of the Groth16 proof system (whose existence follows
from the zero-knowledge property of Groth16). Szk can simulate a proof using only the information
about whether the combined witness is valid or not. This modification to S allows us to establish
that a semi-honest MPC for computing Groth16 proofs constitutes a collaborative zk-SNARK that
achieves 𝑡-zero-knowledge against malicious adversaries. Since this proof follows easily from the
above observations, we omit a formal proof.

2.3 Malicious Security for Free in Honest Majority: Reactive Functions

In the previous section, we discussed two simple types of non-reactive functionalities – affine and
degree-two computations – where the function processes the input in a single step to produce the
output. The computation of Groth16 zk-SNARKs was an example of a non-reactive degree-two com-
putation.

9

However, many zk-SNARKs used in practice are derived by applying the Fiat-Shamir transform
[FS87] to interactive proofs, making their proof computation a reactive functionality. Here, the func-
tion iteratively computes intermediate outputs, which are then used to determine subsequent in-
puts until the final output is obtained. For instance, given initial inputs 𝑥1, 𝑦1, the parties compute
𝑧1 = 𝑓1(𝑥1, 𝑦1), reconstruct 𝑧1, and use it to determine the next inputs 𝑥2, 𝑦2. They then compute
𝑧2 = 𝑓2(𝑧1, 𝑥1, 𝑦1, 𝑥2, 𝑦2), reconstruct 𝑧2, and proceed similarly with 𝑥3, 𝑦3 to compute the final output:
𝑧3 = 𝑓3(𝑧1, 𝑧2, 𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3).

In this section, we first revisit the observations from the previous section in the context of re-
active functionalities. Then, in section 2.3.1, we demonstrate how these ideas can be used to show
that a semi-honest collaborative Bulletproofs generation [BBB+18] is inherently secure even against
malicious adversaries. However, the initial discussion in this section alone is not sufficient; in sec-
tion 2.3.1, we also make another interesting observation about the structure of bulletproofs which
helps us establish this result.

MPC Secure up to Additive Attacks for Reactive Functions. Recall that the observations from
[GIP+14], discussed in section 2.1, apply specifically to semi-honest MPC protocols computing non-
reactive functionalities. Indeed, the second observation in [GIP+14] states that certain semi-honest
MPC protocols remain private against malicious adversaries until the final output reconstruction –
assuming the entire output is revealed only in the last round.

However, when computing a reactive functionality, as discussed above, the parties need to re-
construct intermediate outputs at various steps. Consequently, we can only guarantee that each
individual sub-function computation remains private against a malicious adversary until its corre-
sponding output is reconstructed. Effectively, the computation of such reactive functions can be
seen as a sequence of multiple sub-MPC protocols – one for each sub-function computation – each
independently satisfying the two observations made in [GIP+14].

𝐿-Malicious Security for MPC Computing Reactive Functions. We extend the notion of 𝐿-
malicious security to MPC protocols computing reactive functionalities, considering an ideal func-
tionality F ′ that, before sending each intermediate output, receives an arbitrary linear function from
the adversary. For the example above, F ′ receives three linear functions (denoted 𝐿1, 𝐿2, 𝐿3) from the
adversary at different stages and computes the outputs as follows:

𝑧1 = 𝐿1(𝑓1(𝑥1, 𝑦1)), 𝑧2 = 𝐿2(𝑓2(𝑧1, 𝑥1, 𝑦1, 𝑥2, 𝑦2)),

𝑧3 = 𝐿3(𝑓3(𝑧1, 𝑧2, 𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3)).
This definition ensures that adversarial influence remains constrained to linear modifications of in-
termediate and final results while preserving the privacy guarantees of the protocol.

We now explore some generic examples of reactive functions composed of affine and degree-2
sub-functions. And then discuss whether a semi-honest, honest majority MPC (satisfying the above
properties) for computing such reactive functions can also be shown to be inherently 𝐿-maliciously
secure.

Reactive Functions Composed of Affine and Degree-Two Sub-Functions. Consider a reactive
functionality similar to the previous example, where the sub-functions are defined as follows: (1)
𝑓1 is an affine function over 𝑥1, 𝑦1, (2) 𝑓2 is a degree-2 computation over 𝑥1, 𝑦1, 𝑥2, 𝑦2 and (3) 𝑓3 is an
affine function over 𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3

4. Here 𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3 are all secret shared inputs. Next, we
analyze whether an MPC of the above form for computing this reactive function is also 𝐿-maliciously
secure.

Let S1
<last,S

2
<last,S

3
<last be the simulators corresponding to the three sub-MPC protocols, guaran-

teed by the observations in [GIP+14], that simulate an indistinguishable view for the adversary in all
4Note that we do not need to specify whether these sub-functions are affine or degree-2 over 𝑧1 and 𝑧2 as these values

are publicly reconstructed and can thus be treated as public constants.

10

but the final round of each sub-protocol. To establish security against a malicious adversary for the
overall protocol, our goal is to construct a new simulator SF′ that leverages these simulators and,
with oracle access to an ideal functionality F ′, produces an indistinguishable view of the adversary
across the entire protocol.

• Since 𝑓1 is an affine function, we can use S1
<last along with the techniques from section 2.2 to

simulate the entire first sub-MPC, including output reconstruction. Moreover, as 𝑓1 is affine,
no adversarial errors are introduced in this step and hence the linear function sent to F ′ by
the simulator at this point will be the identity function.

• Next, for the degree-2 function 𝑓2, we similarly utilize S2
<last and the ideas from section 2.2 to

simulate the adversary’s view throughout the second sub-protocol. This includes determining
the effective linear function for mauling the output, which will be sent to F ′.

• Finally, the adversary’s view during the computation of 𝑓3 can be simulated in a manner similar
to how we did it for 𝑓1.

Hence, we have shown that an MPC secure up to additive attacks, when computing this reactive
functionality, also achieves 𝐿-malicious security. Importantly, these ideas can be extended to any
reactive function composed of an arbitrary composition of affine and degree-2 computations.

2.3.1 Application: Collaborative Bulletproofs Generation

Bulletproofs [BBB+18] is a popular succinct proof system that is used in platforms such as Renegade,
Monero, Halo2, for BLS signature aggregation in ethereum, etc. Recently, Renegade, a blockchain
startup, proposed a collaborative zk-SNARK based on Bulletproofs in their white paper [BKb]. The
semi-honest version of their protocol is an MPC secure up to additive attacks. We now discuss the
main observations that help us show that this semi-honest protocol is also inherently maliciously
secure. Finally, we will discuss why this constitutes a collaborative zk-SNARK achieving 𝑡-zero-
knowledge against malicious adversaries.

Bulletproofs is an example of a zk-SNARK that is obtained by transforming an interactive proof
system into a non-interactive one in the random oracle model. The non-interactive variant of Bul-
letproofs is an example of a reactive function comprising the following sub-functions:

1. First Sub-Function. Only requires affine computations over the extended witness.

2. Second Sub-Function. After the first message is computed, computing the second message only
requires some additional degree-two computations over the extended witness.

3. Third Sub-Function. Only requires some affine operations over the extended witness after the
first and second messages have been computed.

This mirrors the previous example. From that discussion and the self-verifiability of Bulletproofs, it
follows that a semi-honest MPC protocol, secure against additive attacks for computing the above
version of Bulletproofs, is inherently secure against a malicious adversary. However, this only es-
tablishes the existence of a simulator that can generate an indistinguishable view for the adversary,
assuming oracle access to an ideal functionality computing the above reactive functionality (i.e., the
Bulletproof).

Similar to our discussion of collaborative Groth16 proof generation in the previous section, to
further demonstrate that this MPC is a collaborative zk-SNARK achieving 𝑡-zero-knowledge against
malicious adversaries, we need to slightly modify this simulator. Specifically, instead of giving the
simulator oracle access to an ideal functionality computing the Bulletproof, we instead allow it to

11

https://renegade.fi/

simulate the Bulletproof itself – which is possible due to the zero-knowledge property of Bulletproofs.
The simulator then uses this simulated proof to generate an indistinguishable view of the adversary
throughout the protocol.

Last Step in Bulletproofs. We note that the Bulletproofs protocol does not end here. Specifically,
the output of the third sub-function above is not succinct, as it includes two long vectors, l and r,
along with a scalar 𝑡 , which must satisfy the relation ⟨l, r⟩ = 𝑡 , if the witness is valid. Instead of di-
rectly sending l and r to the verifier, Bulletproofs’ prover employs a succinct inner-product argument
to prove that the inner product of these vectors – committed inside two compressing commitments
– equals 𝑡 . This inner-product argument is a logarithmic-round interactive protocol, which can be
made non-interactive using the Fiat-Shamir paradigm in the random oracle model, effectively consti-
tuting a reactive functionality comprising logarithmically-many sub-functions. The work of [BKb]
proposes a collaborative version of Bulletproofs, requiring the proof generation algorithm – includ-
ing this inner-product argument – to be computed within an MPC protocol.

Collaborative Generation of Succinct Bulletproofs. We now examine whether a semi-honest
MPC protocol, secure against additive attacks (such as the one used in [BKb]) for computing the
Bulletproofs – including the inner-product argument – also achieves 𝑡-zero-knowledge against ma-
licious adversaries. To establish this, we construct a simulator S that receives a bit 𝑏 indicating
whether the combined witnesses of all parties are valid, as follows:

• Recall that the above three-round, non-succinct variant of Bulletproofs is a zero-knowledge
proof system. Consequently, there exists a simulatorSzk, corresponding to the zero-knowledge
property of this proof system, which can simulate the non-succinct version of Bulletproofs
without knowledge of the witness. This simulated Bulletproof must also include the values
l, r, 𝑡 . Using 𝑏 and Szk, S first simulates a non-succinct Bulletproof.

• Next, S uses this simulated proof to simulate the adversary’s view during the computation of
the first two sub-functions, as discussed earlier.

• The third sub-function in the above description is replaced with a reactive functionality (i.e.,
the inner-product argument) consisting of logarithmically many sub-functions. Observe that,
regardless of the computations performed in these sub-functions, since S already knows l, r, 𝑡
– the only inputs to the inner-product argument – it can honestly emulate the adversary’s
view during the collaborative generation of the inner-product argument using any semi-honest
MPC protocol secure against additive attacks. Because this computation is performed using
such an MPC, the simulator can also extract any additive errors introduced during the inner-
product argument. However, since S has complete knowledge of the inputs, it can fully sim-
ulate all intermediate computations and final output reconstruction steps within this reactive
functionality. As a result, the adversary’s view during the collaborative generation of the entire
inner-product argument remains simulatable.

This concludes the discussion on why the semi-honest variant of collaborative Bulletproofs [BKb]
also achieves 𝑡-zero-knowledge against a malicious adversary. We refer the reader to section 6.2 for
a detailed proof.

2.4 Malicious Security for Free in Honest Majority: Randomized Computations

So far, we have not explicitly leveraged the fact that the generation of zero-knowledge SNARKs
inherently involves randomized computations. Now: (1) in section 2.4.1, we first examine whether
the above observations extend to more complex non-reactive functions that also take random values
as input; (2) then, in section 2.4.2, we show that these observations can similarly be extended to
certain randomized encodings of deterministic non-reactive functionalities. Finally, in section 2.4.3,

12

we apply these two ideas to establish that semi-honest secure collaborative Plonk [GWC19] proof
generation is also inherently secure against malicious adversaries.

2.4.1 Special Randomized Functions

We consider arbitrary-depth randomized functions that satisfy the following two properties: (1) the
honestly computed output of the function is uniformly distributed; (2) Even if the adversary injects
arbitrary additive errors during the computation of multiplication gates, the cumulative error in the
final output will be uniformly distributed.

A simple example of a randomized function that satisfies both properties is 𝑓 (𝑥,𝑦; 𝑟) = 𝑟 · (𝑥 ·𝑦),
where, all three inputs 𝑥,𝑦, 𝑟 are assumed to be secret-shared, but 𝑟 is uniformly distributed. If the
adversary does not introduce any errors, the final output 𝑟 · (𝑥 · 𝑦) remains uniformly distributed.
Moreover, if the adversary introduces an error 𝜖1 during the computation of 𝑥 · 𝑦 and an error 𝜖2
during the subsequent multiplication with 𝑟 , the resulting output becomes 𝑟 (𝑥 · 𝑦) + 𝑟𝜖1 + 𝜖2. Since
𝑟 is uniformly distributed, the error 𝑟𝜖1 is also uniformly distributed.

When computing such functions using an MPC protocol secure against additive attacks, the final
output remains uniformly distributed regardless of any errors introduced by a malicious adversary.
Consequently, the adversary’s view in the final round is straightforward for the simulator to simulate.
Therefore, a semi-honest MPC secure up to additive attacks for computing such functions remains
secure against malicious adversaries.

2.4.2 Randomized Encoding

Next we consider deterministic functions that are essentially sequential multiplications of the form
𝑥1 · 𝑥2 · 𝑥3 · . . ., where each 𝑥𝑖 is a secret-shared input. While this does not fall into any of the three
types of non-reactive functions we have discussed so far, we focus on how it is computed in the
protocol described in [OB22].

Instead of performing these sequential multiplications over secret-shared values 𝑥𝑖 in multiple
rounds of interaction, [OB22] employs Bar-Ilan and Beaver’s [BIB89] constant-round MPC protocol.
This protocol first reduces the sequential multiplications to𝑂 (𝑛) parallel randomized multiplications
over secret-shared values. The final value of 𝑥1 ·𝑥2 ·𝑥3 · . . . is then obtained by multiplying the recon-
structed outputs of the parallel multiplications and performing some additional linear operations.

Using such an MPC to compute the above sub-function effectively transforms the computation
process into a special randomized function, allowing a simulator to simulate the view of an adversary
throughout the entire computation of this sub-function. We note that this is possible because, for
the three types of non-reactive functions we have discussed so far, we only placed restrictions on
the computation done over secret-shared values, not on the complexity of the actual function being
computed.

2.4.3 Application: Collaborative Plonk [GWC19] Proof Generation

Next, we turn our attention to another widely used zk-SNARK – Plonk [GWC19]. Similar to Bullet-
proofs, Plonk is derived by transforming an interactive proof system into a non-interactive one using
the Fiat-Shamir transform. Consequently, its computation can be modeled as a reactive functionality
composed of the following sub-functions:

1. First Sub-Function. Only requires linear operations.

2. Second Sub-Function. The second sub-function essentially consists of linear operations and se-
quential multiplications of the form 𝑥1 · 𝑥2 · 𝑥3 ·

3. Third Sub-Function. This can be viewed as a special randomized function.

13

4. Fourth Sub-Function. This can be computed using only linear operations.

5. Fifth Sub-Function. This can also be computed using only linear operations.

Simulating the Plonk Reactive Functionality. Given the above observation, let us now revisit
whether we can simulate an adversary’s view during the computation of the Plonk reactive func-
tionality. Following the ideas from section 2.3, we can show that it is possible to simulate the entire
view of an adversary during the computation of the first two sub-functions. Moreover, errors from
the second message do not influence the output distribution of the third sub-function and hence the
adversary’s view during its computation can be simulated. However, while the fourth and fifth mes-
sages involve only linear operations, it is less clear whether we can simulate them due to potential
errors introduced during the computation of the second sub-function.

In section 7.2, we show that while the output of the fourth sub-function can indeed be simu-
lated, the fifth one cannot. To address this, we propose a slight modification to the semi-honest
collaborative Plonk protocol. In particular, we show that it suffices for the parties to check whether
a specific wire value during the computation of the fifth message equals zero and to reconstruct
the final output (i.e., the fifth message) only if this condition holds. We then demonstrate that the
semi-honest collaborative Plonk protocol, with this simple additional constant-sized check, is secure
against malicious adversaries. Finally, using similar observations as in the previous subsections, we
establish that such an MPC constitutes a collaborative zk-SNARK that achieves 𝑡-zero-knowledge
against malicious adversaries.

Remark. As discussed above, computations of the form 𝑥1 · 𝑥2 · 𝑥3 · . . . can be performed either
through sequential calls to the multiplication subroutine or by using Bar-Ilan and Beaver’s constant-
round protocol. The computation of the second message in Plonk involves two types of sequential
multiplication: one in which the number of terms to be multiplied depends on the size of the NP
relation and the other in which only three values need to be multiplied together. Although the Bar-
Ilan and Beaver protocol is clearly a better choice for multiplying a large number of terms, the same
is not true when only a small, constant number of values are involved. This is because, in order
to multiply 𝑛 terms, the Bar-Ilan and Beaver protocol makes 2(𝑛 − 1) calls to the multiplication
subroutine. When𝑛 = 3, this requires 4 calls to a multiplication subroutine, whereas a naive approach
will only require making 2 calls to the multiplication subroutine. The round complexity for 𝑛 = 3 is
also similar in both methods.

In the collaborative Plonk presented in [OB22], it wasn’t clear whether they suggested using the
Bar-Ilan and Beaver protocol for multiplying the 3 terms together or just use the naive approach.
We opted to use the Bar-Ilan and Beaver protocol for this step because that allowed us to prove that
the output of the second sub-function is simulatable. If instead, we had used the naive approach, the
computation of the second sub-function would not constitute a special randomized function. In that
case, we would have had to introduce additional consistency checks before reconstructing the second
output to detect errors. Using generic approaches to perform these checks would have doubled the
number of calls that we made previously to the multiplication subroutine when computing the second
message, leading to higher communication overhead compared to our approach.

Dishonest Majority Setting. We note that these observations about the semi-honest collaborative
zk-SNARKs for Bulletproofs, Plonk and Groth16 apply only in the honest majority setting and do
not extend to the dishonest majority setting. This is because the nature of additive attacks in the
dishonest majority setting is slightly different. In that setting, a malicious adversary can also inject
additive errors during the computation of addition gates. As a result, we can no longer argue that
that the adversary cannot introduce errors during the computation of linear gates.

14

3 Preliminaries

Notations. For any 𝑛 ∈ N, we use [𝑛] to denote the set {1, · · · , 𝑛}. Let 𝜆 be the security parameter.
Let F be a large field whose size is prime and superpolynomial (|F| = 𝜆𝜔 (1)). Our polynomials will be
defined over F. Let 𝐻 = {1, 𝜔, . . . , 𝜔𝑛−1} be the 𝑛th roots of unity in F. I.e. H is a cyclic multiplicative
subgroup of F of order 𝑛 that is generated by 𝜔 .

We now define a few polynomials and some polynomial algorithms that will be used in our
protocols. Let Z𝐻 (𝑋) = 𝑋𝑛 − 1, the vanishing polynomial over 𝐻 . Note that Z𝐻 (𝑥) = 0 if and only
if 𝑥 ∈ 𝐻 , and note that Z𝐻 (𝑋𝜔) = Z𝐻 (𝑋). A Lagrange basis {L𝑖 (𝑋)}𝑖∈[𝑛] satisfies the property that
for each 𝑖 ∈ [𝑛], and each 𝑗 ∈ [𝑛]\{𝑖}, L𝑖 (𝜔𝑖) = 1 and L𝑖 (𝜔 𝑗) = 0. Particularly, L𝑖 (𝑋) = 𝜔𝑖 · (𝑋𝑛−1)

𝑛 · (𝑋−𝜔𝑖) .
Given two polynomials a(𝑋), b(𝑋) such that b(𝑋) ≠ 0, we denote the quotient and remainder

polynomials obtained from dividing a(𝑋) by b(𝑋) by Qt
(
a(𝑋)
b(𝑋)

)
and Rd

(
a(𝑋)
b(𝑋)

)
, respectively. I.e.

a(𝑋) = Qt
(
a(𝑋)
b(𝑋)

)
· b(𝑋) + Rd

(
a(𝑋)
b(𝑋)

)
.

3.1 Multiparty Computation (MPC) Functionalities

In this section, we will define some standard honest majority MPC functionalities and some specific
functionalities that are invoked in our main protocols.

Secret Sharing. We will use a 𝑡-out-of-𝑛 secret sharing5. For 𝑥 ∈ F, we use [𝑥] to denote the
𝑡-out-of-𝑛 shares of 𝑥 . We use [𝑥]𝑖 to denote party 𝑃𝑖 ’s share, and [𝑥]𝑆 to denote shares held
by a subset 𝑆 of parties. We use the function share (𝑥) to compute shares of 𝑥 , and the function
share

(
𝑥, {𝑥 ′𝑗 } 𝑗∈ 𝐽

)
, for 𝐽 ⊂ [𝑛] with |𝐽 | ≤ 𝑡 , to generate shares of 𝑥 such that [𝑥] 𝐽 = {𝑥 ′𝑗 } 𝑗∈ 𝐽 .

The function open ([𝑥], 𝑡) reconstructs shares, such that: if [𝑥] is the correct sharing of 𝑥 , then
open ([𝑥], 𝑡) outputs 𝑥 or ⊥ (if some dishonest parties deviate from the protocol) and if incorrect,
then it outputs⊥with overwhelming probability. In all the secret-sharing schemes we use, the value
of𝑥 can be reconstructed from any 𝑡+1 shares of [𝑥] by applying a public linear function to the shares.

Some standard MPC functionalities. Our protocol will make use of some standard sub-protocols
from [CGH+18], which are represented by the following ideal functionalities: Finput is used to gener-
ate secret shares of 𝑀 inputs; Frand is used to generate secret shares of a random field element; Fcoin
is a used to generate a random field element; FcheckZero is used to check if 𝑥 = 0 or not, given the
shares [𝑥] (false negatives and positives are possible); Fmult is used to multiply secret shares [𝑥] and
[𝑦], where a malicious adversary is allowed to specify an additive error 𝜀 and Fmult outputs [𝑥 ·𝑦+𝜀].
Detailed definitions of these functionalities are given in appendix A.
Frand as described in appendix A assumes that this ideal functionality picks a random value 𝑟 and

then deals an “honest” sharing of 𝑟 to all honest parties, which can be instantiated using a maliciously
secure sub-protocol [LN17]. We describe all our protocols in the Frand-hybrid model for ease of
exposition6. Furthermore, we can always assume that all the random sharings needed throughout
the protocol can be generated in an offline phase along with the extended witness generation using
a maliciously secure generic MPC.

However, we note that Frand can also be instantiated using a semi-honest subprotocol [DN07]
if the number of corrupted parties is exactly 𝑁 /2 − 1. But the semi-honest subprotocols for fewer
corruptions result in a slightly modified functionality F ′rand: in particular, the adversary can also
inject additive errors into secret shares of the random value that F ′rand computes. We conjecture

5See [CGH+18] for more detail.
6Most prior work on maliciously secure MPC, discussed in section 1.2, also assume that the underlying semi-honest

MPC works in the Frand-hybrid model.

15

that our current proof for the malicious security of the semi-honest collaborative zk-SNARK in the
Frand-hybrid model can be extended to the F ′rand-hybrid model7. We leave a formal proof of this for
the future.

MPC In The Exponent. In protocols such as Plonk, we represent some secret values “in the
exponent” of a group element. It is possible to secret-share these values and to use them as inputs
to simple multiparty computations. Prior works [ST19, OB22] have explored generalizations of
polynomial-based secret-sharing schemes for group operations. Let G1 be a group of order 𝑝 , with
generator 𝑔1, such that each element 𝑋 ∈ G1 can be represented as 𝑔𝑥1 , where 𝑥 ∈ Z𝑝 . The main idea
in these works is to first compute secret shares of 1: [1] = (𝑎1, . . . , 𝑎𝑛) and then compute shares of
[𝑥]1 := 𝑔𝑥1 as [[𝑥]1] := (

(
𝑔𝑥1

)𝑎1 , . . . ,
(
𝑔𝑥1

)𝑎𝑛). This allows us to perform arithmetic field operations
in the exponent which can be used for group exponentiation and for multiplying group elements.
An example of simple multiparty computations in the exponent that we can compute is as follows:
given three types of secret inputs [𝑥] = (𝑥1, . . . , 𝑥𝑛), [𝑦]1 = 𝑔

𝑦

1 , [[𝑧]1] = (𝑔𝑧1
1 , . . . , 𝑔

𝑧𝑛
1), and

public coefficients 𝛼, 𝛽 ∈ F, [[𝛼 · 𝑥 · 𝑦 + 𝛽 · 𝑧]1] can be computed locally by every party (and hence
is immune from additive attacks).

MPCThat Acts On Polynomials. We now give notations and descriptions of a few functionalities
that capture MPC operations on secret shares of polynomials. The shares of a polynomial a(𝑋) of
degree ≤ 𝑑𝑎 are denoted by [a(𝑋)] (which are the shares of its coefficients). Using only local op-
erations on shares of [a(𝑋)] and [b(𝑋)], the parties can compute the following simple operations
on polynomials: multiplying [a(𝑋)] by a public polynomial b(𝑋) to obtain [a(𝑋) · b(𝑋)]; dividing
[a(𝑋)] by a public polynomial b(𝑋) to obtain

[
Qt

(
a(𝑋)
b(𝑋)

)]
and

[
Rd

(
a(𝑋)
b(𝑋)

)]
; taking a linear combi-

nation of [a(𝑋)] and [b(𝑋)] to obtain [𝑥 · a(𝑋) + 𝑦 · b(𝑋)]; evaluation at a point 𝑥 to get [a(𝑥)];
evaluation in the exponent given ([a(𝑋)], [1]1, [𝑥]1, . . . , [𝑥𝑑𝑎]1) to get [[a(𝑥)]1].

We additionally define a functionality to multiply two secret-shared polynomials (up to additive
attacks), denoted by FpolyMult. It takes as input two secret shared polynomials [a(𝑋)] and [b(𝑋)]
and combines all the additive errors specified by the adversary to output [a(𝑋) · b(𝑋) + 𝜀 (𝑋)]. The
detailed functionality description and a sub-protocol to realize it is given in appendix A.2.

3.2 Collaborative zk-SNARKs

A collaborative zk-SNARK is a non-interactive proof system in which multiple mutually distrustful
provers compute a proof from their combined witnesses in a way that preserves zero-knowledge
against an adversarial subset of ≤ 𝑡 provers. Unless otherwise indicated, the definitions in this
section come almost verbatim from [OB22].

Relation: [AB09, Gol01] For any language 𝐿 in NP, a relationℜ𝐿 for 𝐿 is a set of instance-witness
pairs (X,wtn) such that X ∈ 𝐿, and wtn is a witness for X. Furthermore, there is a polynomial-time
function 𝑉ℜ to verify the witness. For all (X,wtn) ∈ ℜ: 𝑉ℜ (X,wtn) = 1. And for all X ∉ 𝐿, there
does not exist a wtn such that𝑉ℜ (X,wtn) = 1. Finally, the size of the relation, |ℜ|, is the time needed
to compute 𝑉ℜ (X,wtn) (or the size of the circuit that computes it).

Random oracle: Let p(𝜆) be a polynomial upper bound on the total communication of the proof
system. Let U(𝜆) := {𝐻 |𝐻 : {0, 1}≤p(𝜆) → {0, 1}𝜆}. A random oracle 𝐻 is a function sampled
uniformly at random from U(𝜆). 𝐻 can be reprogrammed on certain inputs. The reprogrammed
oracle is written as 𝐻 [𝜇], where 𝜇 specifies the reprogrammed points. Specifically, 𝜇 is a partial

7The instantiation of Fmult in [CGH+18] is also designed in the Frand-hybrid model. When switching to F ′rand, the
Fmult functionality also changes to F ′mult, allowing the adversary to inject additive errors on the shares received by the
honest parties.

16

function whose domain is a subset of Domain(𝐻). 𝐻 [𝜇] maps 𝑥 to 𝜇 (𝑥) if 𝑥 ∈ Domain(𝜇) and maps
𝑥 to 𝐻 (𝑥) if 𝑥 ∉ Domain(𝜇).
Protocol Syntax: A collaborative zk-SNARK in the random oracle model is a protocol among 𝑁

provers ®P = (P1, . . . ,P𝑁) and a verifier V . Each prover P𝑖 has a witness fragment wtn𝑖 , and the
witness fragments combine to form the witness: wtn = (wtn1, . . . ,wtn𝑁). The protocol consists of
the following phases:

• Setup𝐻 (1𝜆,ℜ) → pp: Generates the public parameters pp.

• Prove𝐻 (pp,X,wtn) → {𝜋,⊥}: If (X,wtn) ∈ ℜ, then it outputs a proof 𝜋 . Otherwise, it outputs
⊥. Prove is run by the provers.

• Verify𝐻 (pp,X, 𝜋) → {0, 1}: Verifies 𝜋 . It outputs 1 to indicate acceptance and 0 to indicate
rejection. Verify is run by the verifier.

Each phase can query the random oracle 𝐻 . Also, the Prove phase can be subdivided into two steps:
extended witness generation and proof generation.

Definition 3.1 (Collaborative zk-SNARK [OB22]). In the random oracle model, a collaborative zk-
SNARK (Setup𝐻 , Prove𝐻 ,Verify𝐻) for a relation ℜ secure against 𝑡 malicious provers satisfies the
following properties:
Completeness: For any (X,wtn) ∈ ℜ, the verifier will accept the proof with overwhelming prob-
ability. In other words, for any (X,wtn) ∈ ℜ, there is a negligible function 𝜀 (𝜆) such that:

Pr
[
Verify𝐻 (pp,X, 𝜋) = 0 :

𝐻
$←U(𝜆)

pp←Setup𝐻 (1𝜆,ℜ)
𝜋←Prove𝐻 (pp,X,wtn)

]
= 𝜀 (𝜆)

Knowledge Soundness: Informally, knowledge soundness says that if the provers can convince the
verifier to accept with some probability, then there is an extractor that can extract from the provers
a valid witness wtn, with similar probability.

Formally, the protocol has knowledge soundness if for any X and any efficient provers ®P =

(P1, . . . ,P𝑁), there exists an efficient extractor Ext with the following properties: Ext gets oracle
access to 𝐻 . Ext can run the provers multiple times, reprogramming 𝐻 each time, and Ext receives
only the provers’ final output from each run. This is denoted as Ext𝐻, ®P𝐻 . Finally, there exists a
negligible function 𝜀 (𝜆) such that:

Pr
[
(X,wtn) ∈ ℜ :

𝐻
$←U(𝜆)

pp←Setup𝐻 (1𝜆,ℜ)
wtn←Ext𝐻, ®P𝐻 (pp,X)

]
≥ Pr

[
Verify𝐻 (pp,X, 𝜋) = 1 :

𝐻
$←U(𝜆)

pp←Setup𝐻 (1𝜆,ℜ)
𝜋← ®P𝐻 (pp,X)

]
− 𝜀 (𝜆)

Succinctness: The size of 𝜋 and the runtime of Verify𝐻 (pp,X, 𝜋) are 𝑜 (|ℜ|).
𝑡-Zero-Knowledge: 𝑡-zero-knowledge ensures that no subset of 𝑡 parties or fewer will learn any-
thing about the witnesses of the other parties, except whether the combined witness is valid. For-
mally, a collaborative zk-SNARK satisfies 𝑡-zero-knowledge if for any PPT malicious adversary A
controlling 𝑘 ≤ 𝑡 provers (P𝑖1, . . . , P𝑖𝑘), there exists an efficient simulator Sim such that for all
(X,wtn), and for all efficient distinguishers 𝐷 , there is a negligible function 𝜀 (𝜆) such that:������Pr

𝐷𝐻 [𝜇] (tr) = 1 :
𝐻

$←U(𝜆)
pp←Setup𝐻 (1𝜆,ℜ)

𝑏←𝑉ℜ (X,wtn) ∈{0,1}
(tr,𝜇)←Sim𝐻 (pp,X,wtn𝑖1 ,...,wtn𝑖𝑘 ,𝑏)

 − Pr
[
𝐷𝐻 (tr) = 1 :

𝐻
$←U(𝜆)

pp←Setup𝐻 (1𝜆,ℜ)
tr←View𝐻

A [X,wtn]

] ������ = 𝜀 (𝜆)

Here, tr is the protocol transcript, which lists the messages sent among the parties. And
View𝐻

A [X,wtn] is A’s view of the protocol.

17

4 Pitfalls in Existing Approaches for Achieving Malicious Security

As discussed in section 1.1, there are two major pitfalls in the existingmaliciously secure collaborative
zk-SNARK design template. In this section, we formally describe these attacks. The first pitfall results
from running the collaborative proof generation on invalid witnesses. As discussed in section 1.1,
this can be due to an insider attack (which can be launched in the dishonest majority setting), or
an outsider attack. In section 4.1, we show that a vulnerability in Groth16 [Gro16] – a widely-used,
state-of-the-art zk-SNARK leads to an attack showing that a natural collaborative zk-SNARK based
on Groth16 does not automatically hide invalid witnesses. Towards the end of that section, we discuss
some potential mitigation strategies to address this pitfall. Next, we describe the second pitfall in
section 4.2. In particular, we show that if the protocol only does a consistency check in the final round
of a multi-round functionality, then an adversary can learn part of the witness, by injecting additive
errors in round 1 and observing the output of that round – thereby breaking 𝑡-zero-knowledge.

In section 5, we propose a mitigation strategy to address pitfall 2, by designing a general com-
piler for transforming semi-honest collaborative proof generation to a maliciously secure one. This
compiler assumes that the parties hold the shares of a valid combined witness and that pitfall 1 has
been mitigated.

4.1 Pitfall 1: Insider and Outsider Attacks

The typical zero-knowledge guarantee in (single prover) proof systems states that if the witness is
valid, then the resulting proof can be simulated without the knowledge of the witness. Nothing is
guaranteed about proofs generated using invalid witnesses. In fact, a Groth16 proof generated using
an invalid witness does not hide the witness. In this section, we show that an adversary can learn
which of the two invalid witnesses was used to generate a Groth16 proof by simply inspecting it.
This attack does not even require the adversary to inject errors into the prover’s computation.

While not an issue in the single prover setting, this attack poses a significant issue in the multi-
prover setting. In particular, recall that collaborative zk-SNARKs require a stronger form of zero-
knowledge (called 𝑡-zero-knowledge) that ensures privacy of the honest parties’ inputs even when
the combined witness is invalid. In other words, 𝑡-zero-knowledge guarantees that for any combined
witness (valid or not), the resulting proof can be simulated without knowledge of the honest par-
ties’ witnesses using only the witnesses of the adversary and a bit indicating whether the combined
witness is valid.

4.1.1 Outsider Attack

A naı̈ve approach for designing a collaborative zk-SNARK using an existing zk-SNARK would be to
compute zk-SNARK proof as-is (i.e., without modifications), using a maliciously secure MPC. As dis-
cussed earlier, prior works on collaborative zk-SNARK essentially design a custom MPC for comput-
ing such zkSNARKs in a privacy-preserving distributed manner. In light of our attack, it is essential
for the distributed provers to first check validity of the extended witness before computing the proof
and only run the collaborative proof generation, if the extended witness is valid. We note that this
attack works both in the honest and dishonest majority settings.

In the following theorem, we show an attack in which the use of an invalid witness in collab-
orative proof generation can leak the honest parties’ witness fragment, even if no errors are in-
troduced during the protocol itself. This attack works on a natural collaborative zk-SNARK based
on Groth16 [Gro16] – a widely-used, state-of-the-art zk-SNARK. Prior work on collaborative zk-
SNARKs [OB22, GGJ+23, LZW+24b, LZW+24a, BKb] does not explicitly address the need for verifying
the extended witness during the witness extension step.

18

Theorem 4.1. There is a collaborative zk-SNARK based on Groth16, such that if the protocol is modified
so that the provers do not verify the validity of the extended witness before generating the proof, then
the protocol no longer satisfies 𝑡-zero-knowledge.

Proof. The collaborative zk-SNARK takes an extended witness, expressed as a rank-1 constraint sys-
tem (R1CS), and generates a Groth16 proof using maliciously secure MPC. If the collaborative zk-
SNARK does not verify validity of the extended witness before proceeding with collaborative proof
generation, then we show that there is an attack that breaks 𝑡-zero-knowledge. We now describe the
feature of Groth16 that allows us to launch an attack.

Rank 1 Constraint System (R1CS). Groth16 [Gro16] represents the NP relation to be verified
as a rank-1 constraint system (R1CS), which is a generalization of arithmetic circuits. Let Z𝑝 be
the finite field over which the NP relation is defined. The R1CS system consists of three matrices
𝐴, 𝐵,𝐶 ∈ Z𝑛×𝑚𝑝 , such that for a valid statement-witness vector 𝑍 ∈ Z𝑚×1

𝑝 , the following holds:

(𝐴 · 𝑍) × (𝐵 · 𝑍) = (𝐶 · 𝑍)

where 𝑛,𝑚 are some parameters that depend on the size of the NP relation, and × is the element-wise
product.

Overview of vulnerability in Groth16. Groth16 zk-SNARKs rely on bilinear pairings and operate
in the common reference string (CRS) model, which encodes the matrices 𝐴, 𝐵 and 𝐶 . Given group
generators 𝑔1 ∈ G1 and 𝑔2 ∈ G2, the prover computes three group elements 𝑔𝜋1

1 , 𝑔𝜋2
2 , and 𝑔

𝜋3
1 and

sends them to the verifier. The verifier checks if 𝑒 (𝑔𝜋1
1 , 𝑔

𝜋2
2) = 𝑒 (𝑔𝜋3

1 , crs1) + 𝑓 (crs), where 𝑒 denotes
the bilinear pairing operation, 𝑐𝑟𝑠1 denotes some group element in the CRS and 𝑓 (crs) some publicly
computable function over the CRS.

For simplicity, assume that 𝑛 = 2 and𝑚 = 3. The R1CS system can be re-written as:(
𝑎1 𝑎2 𝑎3
𝑎4 𝑎5 𝑎6

) ©«
𝑧1
𝑧2
𝑧3

ª®¬ ×
(
𝑏1 𝑏2 𝑏3
𝑏4 𝑏5 𝑏6

) ©«
𝑧1
𝑧2
𝑧3

ª®¬ =

(
𝑐1 𝑐2 𝑐3
𝑐4 𝑐5 𝑐6

) ©«
𝑧1
𝑧2
𝑧3

ª®¬ +
(
𝑦1
𝑦2

)
where (𝑦1, 𝑦2) = (0, 0) if and only if 𝑍 = (𝑧1, 𝑧2, 𝑧3) is a valid statement-witness vector.

We observe that if the collaborative Groth16 zk-SNARK is computed using an invalid 𝑍 , then
the verification check can leak 𝑦1 and 𝑦2, which in turn can reveal the values of 𝑧1, 𝑧2, 𝑧3. In partic-
ular, given 𝑔

𝜋1
1 , 𝑔𝜋2

2 , and 𝑔
𝜋3
1 computed using an invalid 𝑍 , an adversary can compute 𝑒 (𝑔𝜋1

1 , 𝑔
𝜋2
2) −

𝑒 (𝑔𝜋3
1 , crs1) − 𝑓 (crs). This value will be equal to 𝑞(𝑦1, 𝑦2, crs), where 𝑞 can be deterministically com-

puted given 𝑦1, 𝑦2 and the CRS.

Concrete Attack on 𝑡-zero-knowledge. Consider an NP relation with statement 𝑧1 = 1 and
honest-party witness 𝑧2 = ℎ and corrupted-party witness 𝑧3 = 1 that must satisfy the following:
𝑧2 + 𝑧3 = 𝑧1 and 𝑧2 · 𝑧3 = 𝑧2. This relation can be represented in R1CS as:

𝐴 =

(
1 0 0
0 1 0

)
𝐵 =

(
0 1 1
0 0 1

)
𝐶 =

(
1 0 0
0 1 0

)
The statement-witness vector 𝑍 = (1, ℎ, 1) satisfies the following:(

1 0 0
0 1 0

) ©«
1
ℎ

1

ª®¬ ×
(
0 1 1
0 0 1

) ©«
1
ℎ

1

ª®¬ =

(
1 0 0
0 1 0

) ©«
1
ℎ

1

ª®¬ +
(
ℎ

0

)
Note that the extended witness is valid if and only if ℎ = 0.

19

𝑡-zero-knowledge requires that for any two invalid witnesses, for which the corrupted party’s
inputs are the same, the corresponding outputs of the collaborative zk-SNARK will be indistinguish-
able to the corrupted party. However, in this example, it is easy to distinguish proofs generated from
ℎ = 1 and ℎ = 2.

Observe that the values of 𝑦1 and 𝑦2 in this example depend only on the honest party’s witness.
An adversary can simply compute 𝑞(ℎ, 0, crs) for ℎ = 1 and ℎ = 2 and determine which ℎ-value
matches the result of 𝑒 (𝑔𝜋1

1 , 𝑔
𝜋2
2) − 𝑒 (𝑔

𝜋3
1 , crs1) − 𝑓 (crs). This allows the adversary to extract ℎ from

an invalid proof.

4.1.2 Insider Attack

While the previous attack was effective only when the parties began with an invalid combined wit-
ness, in this section we reveal a more serious vulnerability in the dishonest majority setting. In
particular, in this setting, we show that even if the provers start with a valid combined witness,
the adversary can modify their shares of the extended witness such that the resulting sharing cor-
responds to that of an invalid witness. It can then then learn the honest party’s witness fragment
using an attack similar to the one discussed above. To mitigate this attack, the protocol should detect
whether the adversary has changed the secret-shared value at any stage of the protocol.

Theorem 4.2. There is a collaborative zk-SNARK based on Groth16, such that if the protocol is modified
so that the witness extension step outputs a regular additive sharing of the extended witness, then the
protocol no longer satisfies 𝑡-zero-knowledge.

Proof. Consider an NP relation with statement 𝑧1 = 1, honest-party witness (𝑧2, 𝑧3) = (ℎ,ℎ′), and
corrupted-party witness 𝑧4 = 𝑐 that must satisfy the following: 𝑧2 + 𝑧3 + 𝑧4 = 𝑧1 and 𝑧3 · 𝑧4 = 𝑧3. This
relation can be represented in R1CS as:

𝐴 =

(
1 0 0 0
0 0 1 0

)
𝐵 =

(
0 1 1 1
0 0 0 1

)
𝐶 =

(
1 0 0 0
0 0 1 0

)
The statement-witness vector 𝑍 = (1, ℎ, ℎ′, 𝑐) satisfies the following:

(
1 0 0 0
0 0 1 0

) ©«
1
ℎ

ℎ′

𝑐

ª®®®¬ ×
(
0 1 1 1
0 0 0 1

) ©«
1
ℎ

ℎ′

𝑐

ª®®®¬ =

(
1 0 0 0
0 0 1 0

) ©«
1
ℎ

ℎ′

𝑐

ª®®®¬ +
(
ℎ + ℎ′ + 𝑐 − 1
ℎ′ · 𝑐 − ℎ′

)
Note that the extended witness is valid if 𝑐 = 1 and ℎ + ℎ′ = 0.

Let us say that the extended witness is either (ℎ,ℎ′, 𝑐) = (0, 0, 1) or (ℎ,ℎ′, 𝑐) = (−1, 1, 1). In both
cases, the extended witness is valid, and the corrupted party’s witness fragment is the same: 𝑐 = 1.

The corrupted party can learn which of the two witnesses was used in the protocol as follows.
After the witness extension step, when the parties jointly hold an additive sharing [𝑐], the corrupted
party adds 1 to its share so that the sharing represents [𝑐 + 1]. Then the corrupted party participates
honestly in the proof generation protocol. Since 𝑐 was replaced with 𝑐 + 1, then (𝑦1, 𝑦2) = (1, ℎ′).
The adversary computes 𝑞(1, ℎ′, crs) for ℎ′ = 0 and ℎ′ = 1 and determines for which ℎ′-value does 𝑞
match the result of 𝑒 (𝑔𝜋1

1 , 𝑔
𝜋2
2) − 𝑒 (𝑔

𝜋3
1 , crs1) − 𝑓 (crs). This allows the adversary to learn ℎ′.

Mitigation. To mitigate this attack, we must ensure that the adversary cannot modify their shares
of the extended witness between the witness extension and proof generation steps. This could be
achieved using robust secret sharing based on AMD codes [CDF+08], which will detect if the adver-
sary modifies the secret-shared value. A detailed mitigation of this attack is beyond the scope of our

20

work. We just highlight here that in the dishonest majority setting, the witness extension and proof
generation phases should not be considered independently, as was done in prior works. From here
on, our focus is on the honest majority setting.

4.2 Pitfall 2: Computing Reactive Functionalities Requires Multiple Consistency
Checks.

As discussed in section 2.1, recent works on maliciously secure MPC have used the additive at-
tack paradigm [GIP+14] to achieve malicious security efficiently. The technique entails running two
copies of a semi-honest MPC and detecting additive errors in a consistency check before reconstruct-
ing the final output. This works well for non-reactive functionalities, which only open their outputs
at the end of the protocol. In particular, for zk-SNARKs that do not use an underlying interactive
proof, such as Groth16, we can apply this technique without modifications. However, for many
zk-SNARKs (obtained from multi-round proofs), such as Plonk [GWC19], the prover is naturally ex-
pressed as a reactive functionality, i.e., they open the outputs of intermediate rounds before starting
the next round.

In such cases, it may seem acceptable to defer the consistency check to the final round of the
protocol, and at that point to check for errors in all previous rounds. However, this check comes too
late to prevent the adversary from violating input privacy. In this section, we show that there exists
a collaborative zk-SNARK, where the adversary can learn part of the witness if they are allowed to
inject additive errors in the first round and observe the resulting output of the first round. If we wait
until the final round to do the consistency check, then although we will detect the errors injected
in the first round, it will be too late to prevent the adversary from learning part of the witness. We
prove this formally through an attack in the following theorem.

Theorem 4.3. There exists a collaborative zk-SNARK such that if the adversary is allowed to inject
additive errors in the first round and observe the output of the first round, then the protocol no longer
satisfies 𝑡-zero-knowledge.

Proof. Let wtn0 and wtn1 be two accepting witnesses, defined as follows:

wtn0 = (𝑎0, 𝑏0, 𝑐0) = (0, 0, 0)
wtn1 = (𝑎1, 𝑏1, 𝑐1) = (0, 0, 1)

The only difference between them is the value of 𝑐 .
Now consider a zk-SNARK derived from an interactive proof system in the random oracle model.

Let this zk-SNARK be such that in the first round, the prover computes 𝑑 = 𝑎 · 𝑏 · 𝑐 and outputs 1 if
𝑑 = 0, and otherwise it outputs 0. Both wtn0 and wtn1 will result in 𝑑 = 0 if the adversary does not
introduce any errors.

The collaborative computation of this step involves computing:

FcheckZero(Fmult(Fmult([𝑎], [𝑏]), [𝑐]))

Let us also assume that the collaborative zk-SNARK for such a proof system only checks for errors
in the final round.

When using a semi-honest secure MPC to do this computation, a malicious adversary can add
additive errors on each multiplication. Let our adverary introduce an error of 𝜀 = 1 when 𝑎 and 𝑏

are multiplied. Then the output will be different for the two witnesses:

𝑑0 = (𝑎0 · 𝑏0 + 1) · 𝑐0 = 𝑎0 · 𝑏0 · 𝑐0 + 𝑐0 = 0
𝑑1 = (𝑎1 · 𝑏1 + 1) · 𝑐1 = 𝑎1 · 𝑏1 · 𝑐1 + 𝑐1 = 1

21

The adversary then observes the output of round 1. If the output is 1 (i.e., 𝑑 = 0), the adversary infers
that wtn0 was used in the computation,. Otherwise, it infers that wtn1 was used.

If the error detection check is only performed in the final round, then the error 𝜀 = 1 will be
detected, but by this point, the adversary has already learned which witness was used, so the privacy
of the honest parties’ inputs are compromised.

5 General Compiler for Malicious Security in Collaborative Proof
Generation

In this section, we show a compiler that takes any collaborative proof generation algorithm that is
secure against semi-honest adversaries and generically adds security against malicious adversaries
in the honest-majority setting. This helps to mitigate pitfall 2 against the zkSNARKs with reactive
proof generation. Following the approach in [CGH+18], the maliciously secure protocol runs two
copies of the semi-honest protocol but randomizes the wire values in one of the copies. Then before
opening any values, the protocol does a consistency check between the two copies to detect whether
the adversary has introduced any errors. It is important to note that the consistency check must be
done at the end of every round before opening the round’s outputs, and the randomization value
cannot be reused across rounds.

Let Π = (Π1, . . . ,Π𝑅) be an 𝑅-round protocol for a collaborative proof system that computes the
Prove function. Each Π𝑖 computes round 𝑖 of the protocol. Π𝑖 takes several inputs (in1, . . . , in𝐼) and
secret-shares them using Finput. Then Π𝑖 applies the following basic arithmetic operations on the
secret-shared values – addition, scalar multiplication, and calls to Fmult – and may also make calls
to a random oracle. Finally Π𝑖 opens some secret-shared values (out1, . . . , out𝑂) at the end of the
round. Also let 𝑀 be the number of multiplication gates in Π𝑖 , and let gate 𝑘 ∈ [𝑀] map inputs
[x𝑘], [y𝑘] to output [z𝑘].

Let Π satisfy 𝑡-zero-knowledge for semi-honest adversaries. Then we will use Π to construct a
new protocol Σ = (Σ1, . . . , Σ𝑅) that is secure against malicious adversaries in the honest-majority
setting. Σ works in the (Finput,Fmult, Frand, Fcoin, FcheckZero)-hybrid model. Note that typical protocols
for multiplying secret-shared values in the presence of semi-honest adversaries securely realize Fmult
against malicious adversaries in the honest-majority setting.

Protocol Σ𝑖

1. Input sharing: For each input 𝑗 ∈ [𝐼], run Finput on in𝑗 to generate the shares [in𝑗] and
distribute them among the parties.

2. Randomize the inputs: Call Frand to obtain [r] for r $← F. Then compute:

[rin𝑗] = Fmult([r], [in𝑗])

3. Σ𝑖 follows in order the steps of Π𝑖 that compute addition, scalar multiplication, calls to
Fmult, and calls to the random oracle. For each intermediate variable [z] that Π𝑖 computes,
Σ𝑖 computes [z] and [rz] as follows:

(a) Addition: Whenever Π𝑖 adds two secret-shared values [x] and [y], Σ𝑖 computes

[z] = [x] + [y]
[rz] = [rx] + [ry]

22

Note that Σ𝑖 has computed [rx] and [ry] from previous steps.
(b) Scalar Multiplication: Whenever Π𝑖 multiplies a secret-shared value [x] by a pub-

lic scalar 𝑠 , Σ𝑖 computes:

[z] = 𝑠 · [x]
[rz] = 𝑠 · [rx]

(c) Calls to Fmult: For each multiplication gate 𝑘 ∈ [𝑀], Σ𝑖 has computed x𝑘 , y𝑘 , rx𝑘
from prior steps. Then Σ𝑖 computes the following:

[z𝑘] = Fmult([x𝑘], [y𝑘])
[rz𝑘] = Fmult([rx𝑘], [y𝑘])

(d) Calls to the random oracle: Σ𝑖 computes the calls to the random oracle as pre-
scribed by Π𝑖 .

4. Consistency Check: After Σ𝑖 has completed all the addition, multiplication, and scalar
multiplication steps of Π𝑖 but before opening the outputs, Σ𝑖 does the following consis-
tency check.

(a) Call Fcoin 𝐼 +𝑀 times to obtain [𝛼 𝑗] 𝑗∈[𝐼] and [𝛽𝑘]𝑘∈[𝑀] .
(b) Compute 𝑟 = open([𝑟]).
(c) Compute:

[𝑢] :=
∑︁
𝑗∈[𝐼]

𝛼 𝑗 · ([rin𝑗] − r · [in𝑗]) +
∑︁

𝑘∈[𝑀]
𝛽𝑘 · ([rz𝑘] − r · [z𝑘])

(d) Compute FcheckZero([𝑢]). If the result is reject (𝑢 ≠ 0), then output ⊥ and abort the
computation. Otherwise, continue.

5. Open: For every output ℓ ∈ [𝑂], compute outℓ = open([outℓ]) and output it.

Theorem 5.1. If Π is a collaborative proof generation for a relation ℜ, against 𝑡 < 𝑁 /2 semi-honest
provers, then Σ is a collaborative proof generation for a relation ℜ against 𝑡 malicious provers in the
(Finput,Fmult, Frand, Fcoin, FcheckZero)-hybrid model.

Proof. The completness, knowledge soundness and succinctness of Σ follow directly from the corre-
sponding properties of Π. We now prove the 𝑡-zero-kowledge property for Σ against 𝑡 corruptions,
by first describing the simulator as follows.

The Simulator: Let A be an efficient malicious adversary controlling 𝑘 ≤ 𝑡 provers. The only
difference between malicious and semi-honest adversaries in this setting is that malicious adversaries
can specify an additive error 𝜀 whenever Fmult is called. Let A′ be a semi-honest adversary that
behaves the same as the malicious adversary A, except that A′ doesn’t output any additive errors
𝜀. We can construct A′ by having it run A internally and ignore any 𝜀-values that A produces.

Next, since Π satisfies 𝑡-zero-knowledge against semi-honest adversaries, that means that there
exists a simulator SimΠ that simulates the view of A′ in Π.

Now let us construct the simulator SimΣ for protocol Σ:

23

Simulator SimΣ

Setup:

1. SimΣ receives as input the public parameters pp, the instance X, the corrupted provers’
witness fragments (wtn𝑖1, . . . ,wtn𝑖𝑘), a bit 𝑏 indicating whether the combined witness is
accepting or rejecting, and query access to a random oracle 𝐻 .

2. SimΣ runs Sim𝐻
Π (pp,X,wtn𝑖1, . . . ,wtn𝑖𝑘 , 𝑏) until it outputs (tr′, 𝜇).

3. SimΣ initializesA on (pp,X,wtn𝑖1, . . . ,wtn𝑖𝑘) and runsA internally throughout the sim-
ulation.

Main Protocol: For each round 𝑖 ∈ [𝑅], SimΣ simulates Σ𝑖 as follows:

1. Input sharing: SimΣ receives from A the corrupted parties’ inputs as well as the cor-
rupted parties’ shares of every input: ([in1]C, . . . , [in𝐼]C). SimΣ stores these values and
sends ([in1]C, . . . , [in𝐼]C) back to the adversary.

2. Frand: SimΣ receives from A the corrupted parties’ shares {𝜌 𝑗 }∀ 𝑗∈C of [𝑟] and stores
these values. SimΣ samples 𝑟 ← F and computes [𝑟] = share(𝑟, {𝜌 𝑗 }∀ 𝑗∈C).

3. SimΣ simulates each step of Σ𝑖 that involves addition, scalar multiplication, calls to Fmult,
or calls to the random oracle. At each step, SimΣ computes the shares of the result that
the corrupted parties would hold if they followed the protocol honestly.

(a) Calls to Fmult: To multiply two values (𝑎, 𝑏), SimΣ sends toA the corrupted parties’
shares [𝑎]C and [𝑏]C , which the simulator has computed from prior steps. Next,A
sends to SimΣ the additive error 𝜀 as well as the corrupted parties’ shares of the
output [𝑐]C . SimΣ stores these values.

4. Consistency Check:

(a) To simulate a call to Fcoin, SimΣ samples a random value 𝑣 ∈ F uniformly at random
and sends it to A.

(b) open([𝑟]): SimΣ publishes [𝑟]H and receives from C the corrupted parties’ shares
of 𝑟 . If the corrupted parties’ shares do not match [𝑟]C that were computed earlier,
then SimΣ halts and outputs ⊥.

(c) If on any call to Fmult during Σ𝑖 , the adversary sent an additive error 𝜀 ≠ 0, then
SimΣ sets 𝑢 ≠ 0. Otherwise, SimΣ sets 𝑢 = 0.

(d) FcheckZero([𝑢]): If 𝑢 = 0, then SimΣ sends 0 toA. A responds with accept or reject,
and SimΣ forwards A’s response to the honest parties.
If 𝑢 ≠ 0, then:

i. With probability 1
|F | , SimΣ sends accept to all parties.

ii. With probability 1 − 1
|F | , SimΣ sends reject to all parties.

(e) If the result of FcheckZero([𝑢]) is reject, then SimΣ outputs ⊥ and halts. Otherwise,
SimΣ continues.

5. Open: To open the outputs of round 𝑖 , SimΣ uses the following procedure. For each
ℓ ∈ [𝑂]:

24

(a) SimΣ has already computed the shares of [outℓ] that the corrupted parties would
hold if they followed the protocol honestly. Let us call those shares (𝛼 𝑗)∀ 𝑗∈C . Next,
SimΣ reads the plaintext value outℓ from tr′.

(b) SimΣ computes: (
𝛼 𝑗

)
∀ 𝑗∈[𝑁] = share(outℓ , (𝛼 𝑗)∀ 𝑗∈C)

(c) SimΣ sends
(
𝛼 𝑗

)
𝑗∈H to A, and A sends the corrupted parties’ shares to SimΣ. If

any of the corrupted parties’ shares do not match
(
𝛼 𝑗

)
𝑗∈C , then SimΣ outputs ⊥ and

halts.

6. If SimΣ reaches the end of the simulation of Σ without halting, then SimΣ outputs (tr′, 𝜇).

Analysis: If the adversary introduces a non-zero additive error during some call to Fmult during
some round 𝑖 , then with overwhelming probability, 𝑢 ≠ 0. This follows from lemma 5.1. Next, if
𝑢 ≠ 0, then with overwhelming probability, FcheckZero([𝑢]) outputs reject, and Σ𝑖 will be aborted
before the outputs of round 𝑖 are opened. The simulator simulates this behavior correctly.

Next, if the adversary does not introduce any additive errors, then SimΣ correctly simulates the
view of the adversary.

Let us imagine running protocol Π with adversaryA′, which runsA internally, and ignores any
𝜀 values thatA produces. Let us condition on the event thatA outputs 𝜀 = 0 for every call to Fmult.
Then the view of A is the same as if A were running in protocol Σ.

The output of SimΣ, conditioned on the event that the output is not ⊥ is the view of A running
in protocol Σ, conditioned on the event that A outputs 𝜀 = 0 for every call to Fmult.

Lemma 5.1. If the adversary introduces a non-zero additive error during any call to Fmult in Σ𝑖 , then
with overwhelming probability, 𝑢 ≠ 0.

Proof. Let us define the additive errors that the adversary can introduce in Σ𝑖 . For each 𝑗 ∈ [𝐼], let
𝜀 𝑗,1 be the error introduced during Fmult([r], [in𝑗]). Then:

rin𝑗 = r · in𝑗 + 𝜀 𝑗,1
Next, for each 𝑘 ∈ [𝑀], let 𝜀𝑘,2 be the error introduced during Fmult([x𝑘], [y𝑘]), and let 𝜀𝑘,3 be

the error introduced during Fmult([rx𝑘], [y𝑘]). Then:

z𝑘 = x𝑘 · y𝑘 + 𝜀𝑘,2
rz𝑘 = rx𝑘 · y𝑘 + 𝜀𝑘,3

Note that all of the additive errors are chosen independently of r because they are chosen before
[r] is opened, and the perfect secrecy of the secret-sharing scheme hides r.

Lemma 5.2 shows that if for some 𝑗 ∈ [𝐼], 𝜀 𝑗,1 ≠ 0, then with overwhelming probability 𝑢 ≠ 0.
This is because 𝜀 𝑗,1 = rin𝑗 − r · in𝑗 .

Next, let us assume that rx𝑘 = r · x𝑘 for all 𝑘 ∈ [𝑀] because otherwise, 𝑢 ≠ 0 with overwhelming
probability. Then rz𝑘 − r · z𝑘 has the following simple description:

rz𝑘 − r · z𝑘 = rx𝑘 · y𝑘 + 𝜀𝑘,3 − r · x𝑘 · y𝑘 − r · 𝜀𝑘,2
= r · x𝑘 · y𝑘 + 𝜀𝑘,3 − r · x𝑘 · y𝑘 − r · 𝜀𝑘,2
= 𝜀𝑘,3 − r · 𝜀𝑘,2

If 𝜀𝑘,2 ≠ 0 or 𝜀𝑘,3 ≠ 0, then with overwhelming probability over r,

𝜀𝑘,3 − r · 𝜀𝑘,2 ≠ 0

In this case, rz𝑘 − r · z𝑘 ≠ 0, and by lemma 5.2, 𝑢 ≠ 0 with overwhelming probability.

25

Lemma 5.2. If there exists an input 𝑗 ∈ [𝐼] such that rin𝑗 ≠ r · in𝑗 or if there exists a multiplication gate
𝑘 ∈ [𝑀] such that rx𝑘 = r · x𝑘 or rz𝑘 = r · z𝑘 , then with overwhelming probability over the randomness
of the 𝛼 𝑗 - and 𝛽𝑘 -values, 𝑢 ≠ 0.

Proof. We will prove this inductively. Every input to round 𝑖 satisfies the invariant rin𝑗 = r · in𝑗

or else 𝑢 ≠ 0 with overwhelming probability. Next, for every intermediate gate (addition, scalar
multiplication, and Fmult), if the inputs satisfy the invariant rx = r · x and ry = r · y, then the outputs
do too – rz = r · z – or else 𝑢 ≠ 0 with overwhelming probability. Then by induction, the inputs
and outputs to every Fmult gate satisfy the invariant: rx𝑘 = r · x𝑘 and rz𝑘 = r · z𝑘 or else 𝑢 ≠ 0 with
overwhelming probability.

Base Case: If for any 𝑗 ∈ [𝐼], rin𝑗 ≠ r · in𝑗 , then with overwhelming probability, 𝑢 ≠ 0. This
is because 𝛼 𝑗 · (rin𝑗 − r · in𝑗) is the only term of 𝑢 that depends on 𝛼 𝑗 , and the coefficient of 𝛼 𝑗 –
(rin𝑗 − r · in𝑗) – is non-zero. Then with overwhelming probability over the randomness of 𝛼 𝑗 , 𝑢 ≠ 0.

Inductive Case (Fmult): Likewise, for any multiplication gate 𝑘 ∈ [𝑀], if the output does not
satisfy the invariant – rz𝑘 ≠ r · z𝑘 – then with overwhelming probability, 𝑢 ≠ 0. This is because
𝛽𝑘 · (rz𝑘 − r · z𝑘) is the only term of 𝑢 that depends on 𝛽𝑘 , and the coefficient of 𝛽𝑘 is non-zero. Then
with overwhelming probability over the randomness of 𝛽𝑘 , 𝑢 ≠ 0.

Inductive Case (Addition and Scalar Multiplication): For any addition gate, if rx = r · x and
ry = r · y, then

rz = r · (x + y)
= r · z

For any scalar multiplication gate, if rx = r · x, then

rz = 𝑠 · r · x
= r · z

By induction, the inputs and outputs of every Fmult must satisfy the invariant – rx𝑘 = r · x𝑘 and
rz𝑘 = r · z𝑘 – or else 𝑢 ≠ 0 with overwhelming probability.

6 Collaborative zk-SNARK Based On Bulletproofs

In this section, we describe and prove that the semi-honest protocol for collaborative proof gen-
eration based on Bulletproofs [BBB+18] is, in fact, secure against malicious provers, in the honest
majority setting. We begin by describing some notations used in this section and describe the collab-
orative zk-SNARK protocol for Bulletproofs in section 6.1 using standard MPC functionalities from
section 3.1. We prove the malicious security of this protocol in theorem 6.1.
Notation. For the underlying Bulletproofs zk-SNARK protocol, we refer the reader to [BBB+18,
Section 5]. We use the same notations in our collaborative zk-SNARK protocol, which are described
as follows. The inputs to the Bulletproofs protocol include an instance X and witness wtn:
Common Preprocessed Inputs: The following group elements are sampled independently and
uniformly at random: 𝑔, ℎ ∈ G; g, h ∈ G𝑛 .
Instance X (held by the provers andV): V ∈ G𝑚 ; W𝐿,W𝑅,W𝑂 ∈ Z𝑄×𝑛𝑝 ;W𝑉 ∈ Z𝑄×𝑚𝑝 ; c ∈ Z𝑄𝑝 .
Witness wtn (distributed among the provers): a𝐿, a𝑅, a𝑂 ∈ Z𝑛𝑝 ; v,𝜸 ∈ Z𝑚𝑝
RelationℜBP: {(X,wtn) : 𝑉𝑗 = 𝑔𝑣𝑗ℎ𝛾 𝑗∀𝑗 ∈ [𝑚]∧a𝐿◦a𝑅 = a𝑂∧(W𝐿 ·a𝐿+W𝑅 ·a𝑅+W𝑂 ·a𝑂 = W𝑉 ·v+c)}
Collaborative Extended Witness Generation. Recall that in collaborative zk-SNARKs, each
prover holds a witness fragment wtn𝑖 , which needs to be compiled into a valid witness wtn. We

26

formally define the following functionality for witness extension below. This functionality can be
realized using maliciously secure MPC techniques, the details of which are beyond the scope of this
work.

Functionality FBP-WE: Bulletproofs Witness Extension
1: Inputs: FBP-WE receives the instanceX and each party’s witness fragment (wtn1, . . . ,wtn𝑁).

It also receives from the adversary the corrupted parties’ shares of the combined witness:
[wtn]C .

2: The functionality verifies the witness by checking that𝑉 (X, (wtn1, . . . , wtn𝑁)) = 1. If veri-
fication fails, the functionality sends ⊥ to all parties and halts. Otherwise, the functionality
continues.

3: The functionality uses (wtn1, . . . ,wtn𝑁) to compute the combined witness wtn = (a𝐿, a𝑅,
a𝑂 ,𝜸) and the sharing of wtn:

[wtn] = share(wtn, [wtn]C)

4: The functionality sends each party 𝑗 ∈ {1, . . . , 𝑁 } their share [wtn] 𝑗 .

6.1 The Collaborative Bulletproof Protocol

In this section, we describe the collaborative zk-SNARK protocol for Bulletproofs. The protocol
begins by running the witness extension by invoking FBP-WE, and then generates the proof of Bul-
letproof from [BBB+18, Section 5], by running a combination of two MPC functionalities: Frand and
Fmult. We describe the four rounds of the protocol in detail below.

Round 1 : The Bulletproof prover computes Pedersen commitments to the vector of left inputs a𝐿 ,
right inputs a𝑅 , and the outputs a𝑂 . The prover chooses binding vectors s𝐿 and s𝑅 and generates
their Pedersen commitments. In collaborative Bulletproof, all these computations are done locally
on the shares of these vectors by the provers.

Round 1: The prover parties do the following:
1: Witness Extension: Send X and (wtn1, . . . ,wtn𝑁) to FBP-WE. If FBP-WE outputs ⊥, then

abort the protocol. Otherwise, FBP-WE outputs: [a𝐿], [a𝑅], [a𝑂], [𝜸]
2: Call Frand 2𝑛 + 3 times to obtain [𝛼], [𝛽], [𝜌], [s𝐿], [s𝑅], where 𝛼, 𝛽, 𝜌 ∈ Z𝑝 and s𝐿, s𝑅 ∈ Z𝑛𝑝 .
3: Compute:

[𝐴𝐼] = ℎ [𝛼] ·
𝑛∏
𝑖=1

g[(a𝐿)𝑖]
𝑖

·
𝑛∏
𝑖=1

h[(a𝑅)𝑖]
𝑖

; [𝐴𝑂] = ℎ [𝛽] ·
𝑛∏
𝑖=1

g[(a𝑂)𝑖]
𝑖

[𝑆] = ℎ [𝜌] ·
𝑛∏
𝑖=1

g[(s𝐿)𝑖]
𝑖

·
𝑛∏
𝑖=1

h[(s𝑅)𝑖]
𝑖

4: Run open on [𝐴𝐼], [𝐴𝑂], [𝑆] to obtain (𝐴𝐼 , 𝐴𝑂 , 𝑆) and send it toV .

Round 2 : The Bulletproof prover computes polynomials ℓ (𝑋), r(𝑋) and t(𝑋) along with their
commitments. These polynomials contain the input and output wire values such that in Rounds
3 and 4, the goal of the prover reduces to proving that ℓ (𝑋), r(𝑋), t(𝑋) are well-formed and that
⟨ℓ (𝑋), r(𝑋)⟩ = t(𝑋). In the collaborative Bulletproofs protocol, these computations can all be done
with invocations to Fmult and local computations by the provers.

Round 2: V samples 𝑦, 𝑧 $← Z∗𝑝 independently and uniformly at random and sends (𝑦, 𝑧) to the
provers. Then the provers do the following:

27

1: Compute:

y𝑛 = (1, 𝑦,𝑦2, . . . , 𝑦𝑛−1) ∈ Z𝑛𝑝
y−𝑛 = (1, 𝑦−1, 𝑦−2, . . . , 𝑦−(𝑛−1)) ∈ Z𝑛𝑝
z𝑄+1[1:] = (𝑧, 𝑧

2, . . . , 𝑧𝑄) ∈ Z𝑄𝑝
𝛿 (𝑦, 𝑧) = ⟨y−𝑛 ◦ (z𝑄+1[1:] ·W𝑅), z𝑄+1[1:] ·W𝐿⟩

2: Compute:

[l1] = [a𝐿] + y−𝑛 ◦ (z𝑄+1[1:] ·W𝑅); [l2] = [a𝑂]; [l3] = [s𝐿]
[ℓ (𝑋)] = [l1] · 𝑋 + [l2] · 𝑋 2 + [l3] · 𝑋 3

r0 = −y𝑛 + z𝑄+1[1:] ·W𝑂 ; [r1] = y𝑛 ◦ [a𝑅] + z𝑄+1[1:] ·W𝐿 ; [r3] = y𝑛 ◦ [s𝑅]
[r(𝑋)] = r0 + [r1] · 𝑋 + [r3] · 𝑋 3

[w] = W𝐿 · [a𝐿] +W𝑅 · [a𝑅] +W𝑂 · [a𝑂]

[𝑡1] =
𝑛∑︁
𝑖=1
[(l1)𝑖] · (r0)𝑖 ; [𝑡2] =

𝑛∑︁
𝑖=1
Fmult

(
[(l1)𝑖], [(r1)𝑖]

)
+ [(l2)𝑖] · (r0)𝑖

[𝑡3] =
𝑛∑︁
𝑖=1
Fmult

(
[(l2)𝑖], [(r1)𝑖]

)
+ [(l3)𝑖] · (r0)𝑖

[𝑡4] =
𝑛∑︁
𝑖=1
Fmult

(
[(l1)𝑖], [(r3)𝑖]

)
+

𝑛∑︁
𝑖=1
Fmult

(
[(l3)𝑖], [(r1)𝑖]

)
[𝑡5] =

𝑛∑︁
𝑖=1
Fmult

(
[(l2)𝑖], [(r3)𝑖]

)
; [𝑡6] =

𝑛∑︁
𝑖=1
Fmult

(
[(l3)𝑖], [(r3)𝑖]

)
[t(𝑋)] =

6∑︁
𝑖=1
[𝑡𝑖] · 𝑋 𝑖

3: Call Frand 5 times to obtain ([𝜏1], [𝜏3], [𝜏4], [𝜏5], [𝜏6]), where 𝜏𝑖 ∈ Z𝑝 , ∀𝑖 ∈ [6], and compute:

[𝑇1] = 𝑔[𝑡1] · ℎ [𝜏1] ; [𝑇3] = 𝑔[𝑡3] · ℎ [𝜏3] ; [𝑇4] = 𝑔[𝑡4] · ℎ [𝜏4]

[𝑇5] = 𝑔[𝑡5] · ℎ [𝜏5] ; [𝑇6] = 𝑔[𝑡6] · ℎ [𝜏6]

4: Call open on ([𝑇1], [𝑇3], [𝑇4], [𝑇5], [𝑇6]) and send (𝑇1,𝑇3,𝑇4,𝑇5,𝑇6) toV .

Round 3 : The Bulletproof prover computes the evaluations of ℓ (𝑋) and r(𝑋) at the random point 𝑥
sent byV , the inner product of these evaluations, 𝑡 , and the blinding values that the verifier needs to
check the commitments to all these three values. In collaborative Bulletproofs, this requires invoking
Fmult and some local computations by the provers.

Round 3: V samples 𝑥 $← Z∗𝑝 and sends 𝑥 to the provers. Then the provers do the following:

28

1: Compute:

[l] = [ℓ (𝑥)] = [l1] · 𝑥 + [l2] · 𝑥2 + [l3] · 𝑥3;

[r] = [r(𝑥)] = r0 + [r1] · 𝑥 + [r3] · 𝑥3; [𝑡] =
𝑛∑︁
𝑖=1
Fmult

(
[(l)𝑖], [(r)𝑖]

)
[𝜏𝑥] =

∑︁
𝑖∈{1,...,6}\{2}

[𝜏𝑖] · 𝑥𝑖 + 𝑥2 ·
𝑄∑︁
𝑖=1

𝑧𝑖 · (W𝑉 · [𝜸])𝑖 ;

[𝜇] = [𝛼] · 𝑥 + [𝛽] · 𝑥2 + [𝜌] · 𝑥3

2: Run open on ([𝜏𝑥], [𝜇], [𝑡], [l], [r]) and sends (𝜏𝑥 , 𝜇, 𝑡, l, r) toV .

Note that the output of round 3 is not succinct, but we can make it succinct using the inner product
argument from Bulletproofs. Looking ahead, our zero knowledge simulator can simply compute the
inner product argument directly, as it knows l and r.
Round 4 is the same in Bulletproofs and collaborative Bulletproofs. V verifies the correctness of
the inner product computed by the prover.

Round 4: V verifies the proof according to the procedure in [BBB+18, Protocol 3], lines 83-94.
In the end,V outputs accept or reject.

The Final Protocol: The interactive protocol described above can be converted to a non-
interactive protocol in the random oracle model. In particular, to make random oracle queries on
parts of the transcript, the provers reconstruct the shares of the transcript and query the random
oracle locally.

6.2 Malicious Security of Collaborative Bulletproofs

Theorem 6.1. The final protocol described in section 6.1 is a collaborative proof generation based on
Bulletproofs, i.e., for relationℜBP, against 𝑡 < 𝑁 /2 malicious provers in the (FBP-WE, Frand, Fmult)-hybrid
model.

Proof. The completeness, knowledge soundness, and succinctness properties directly follow from
the corresponding properties of Bulletproofs.

We will prove the 𝑡-zero-knowledge property for the protocol, in the (FBP-WE, Frand, Fmult)-hybrid
model against a malicious adversary that controls at most 𝑡 < 𝑁 /2 provers. We show that even
though this protocol is based on semi-honest techniques that allow a malicious adversary to intro-
duce additive errors, the additive errors turn out to be simulatable.
The Simulator. We begin by describing the simulator S, based on the zero-knowledge simulator in
[BBB+18, Appendix D].S simultates the malicious adversary’s view of the collaborative Bulletproofs
protocol.

Simulator S

1. Round 1:

(a) Inputs: S receives from A the corrupted parties inputs (wtn𝑗) 𝑗∈C as well as the cor-
rupted parties’ shares of the combined witness ([a𝐿]C , [a𝑅]C, [a𝑂]C, [𝜸]C). S also re-
ceives from the 𝑡-zero-knowledge challenger a bit 𝑏 ← 𝑉ℜ (X,wtn) indicating whether
the witness is valid. S stores all the inputs for later.

(b) Witness Extension: If 𝑏 = 0 (meaning the witness is invalid), then S sends

29

⊥ to all parties and halts. Otherwise, S continues and sends to A the shares
([a𝐿]C, [a𝑅]C, [a𝑂]C, [𝜸]C).

(c) Calls to Frand: Whenever Round 1 calls Frand, S does the following: S receives fromA
the values (𝑟 𝑗) 𝑗∈C , which represent the corrupted parties’ shares of the random value,
and S stores these shares.

(d) Local Computations: The protocol for computing ([𝐴𝐼], [𝐴𝑂], [𝑆]) in Round 1 does
not require communication among the parties. Such computations are called local. To
simulate these local computations, S simply computes the shares of ([𝐴𝐼], [𝐴𝑂], [𝑆])
that the corrupted parties would hold if they followed the protocol honestly. S can do
this because they have the corrupted parties’ shares of ([a𝐿], [a𝑅], [a𝑂], [𝛼], [𝛽], [𝜌],
[s𝐿], [s𝑅]), which are the inputs to the local computation.

(e) Output: S samples: (𝑥,𝑦, 𝑧) $← Z∗𝑝 × Z∗𝑝 × Z∗𝑝 , (𝐴𝐼 , 𝐴𝑂)
$← G × G, (l, r) $← Z𝑛𝑝 × Z𝑛𝑝 and

𝜇
$← Z𝑝 and computes:

𝑆 =

(
𝐴−𝑥𝐼 · 𝐴

−𝑥2

𝑂 · ℎ𝜇 · gl−𝑥 ·y
−𝑛◦

(
z𝑄+1[1:] ·W𝑅

)

· hy
−𝑛◦

(
r+y𝑛−z𝑄+1[1:] · (𝑥 ·W𝐿+W𝑂)

)) (𝑥−3)
(1)

(f) Opening: S opens [𝐴𝐼] to 𝐴𝐼 using the following procedure.
i. S has already computed the shares of [𝐴𝐼] that the corrupted parties would hold if

they followed the protocol honestly. Let us call those shares (𝛼 𝑗) 𝑗∈C .
ii. S computes: (

𝛼 𝑗

)
𝑗∈[𝑁] = share(𝐴𝐼 , (𝛼 𝑗) 𝑗∈C)

iii. S sends
(
𝛼 𝑗

)
𝑗∈H toA, andA sends the corrupted parties’ shares to S. If any of the

corrupted parties’ shares do not match
(
𝛼 𝑗

)
𝑗∈C , then S outputs abort and aborts

the protocol.
(g) S also opens [𝐴𝑂] to 𝐴𝑂 and [𝑆] to 𝑆 using essentially the same procedure as the one

for 𝐴𝐼 .

2. Round 2:

(a) S outputs (𝑦, 𝑧) on behalf of the verifier.
(b) S follows the steps of Round 2 and computes the shares of each variable that the

corrupted party would hold if they followed the protocol honestly. S handles local
computations and calls to Frand the same way it did for round 1. The local computa-
tions include the computation of (y𝑛, z𝑄+1[1:] , 𝛿 (𝑦, 𝑧), [ℓ (𝑋)]C, [r(𝑋)]C, [w]C, [𝑇1]C, [𝑇3]C ,
[𝑇4]C, [𝑇5]C, [𝑇6]C).

(c) Calls to Fmult:
i. Whenever Round 2 calls Fmult, S does the following: The call has the form
Fmult

(
[(l𝑗)𝑖], [(r𝑘)𝑖]

)
. Then S sends to A the corrupted parties’ shares of the inputs

[(l𝑗)𝑖]C and [(r𝑘)𝑖]C , which the simulator has computed from prior steps. Next, A
sends to S the additive error 𝜀𝑖, 𝑗,𝑘 as well as the corrupted parties’ shares of the output
[𝛼]C . S stores these values.

30

ii. S computes

𝜀2 =
∑︁
𝑖∈[𝑛]

𝜀𝑖,1,1, 𝜀3 =
∑︁
𝑖∈[𝑛]

𝜀𝑖,2,1, 𝜀4 =
∑︁
𝑖∈[𝑛]

𝜀𝑖,1,3 + 𝜀𝑖,3,1,

𝜀5 =
∑︁
𝑖∈[𝑛]

𝜀𝑖,2,3, 𝜀6 =
∑︁
𝑖∈[𝑛]

𝜀𝑖,3,3

(d) S samples: (𝑇3,𝑇4,𝑇5,𝑇6)
$← G × G × G × G and 𝜏𝑥

$← Z𝑝 and computes:

𝑇1 =

(
ℎ𝜏𝑥 · 𝑔⟨l,r⟩−𝑥

2 ·
(
𝛿 (𝑦,𝑧)+⟨z𝑄+1[1:] ,c⟩

)
· V−𝑥

2 ·
(
z𝑄+1[1:] ·W𝑉

)

·
6∏

𝑖=3
(𝑇𝑖 · 𝑔−𝜀𝑖)−(𝑥

𝑖)
) (𝑥−1)

(2)

(e) S opens ([𝑇1], [𝑇3], [𝑇4], [𝑇5], [𝑇6]) to (𝑇1,𝑇3,𝑇4,𝑇5,𝑇6) using the Opening procedure
from the simulation of round 1.

3. Round 3:

(a) S outputs 𝑥 on behalf of the verifier.
(b) S handles local computations the same way it did for Rounds 1 and 2, which includes

the computation of ([l]C, [r]C, [𝜏𝑥]C , [𝜇]C).
(c) Calls to Fmult: For each call to Fmult, which has the form Fmult([(l)𝑖], [(r)𝑖]), S han-

dles this the same way it handled calls to Fmult in Round 2. This includes recording the
adversary’s additive error 𝜀𝑖 .

(d) S computes: 𝜀 =
∑

𝑖∈[𝑛] 𝜀𝑖 and 𝑡 = ⟨l, r⟩ + 𝜀.
(e) S opens ([𝜏𝑥], [𝜇], [𝑡], [l], [r]) to (𝜏𝑥 , 𝜇, 𝑡, l, r) using the Opening procedure from the

simulation of Round 1.

We now prove that S correctly simulates the view of the malicious provers in the real execution
of the protocol in section 6.1. Firstly, if the witness is rejecting, then S outputs ⊥, which the real
protocol also does. Therefore, we can assume that the witness is accepting.

Now, the adversary can only introduce additive errors when Fmult is called, which only occurs
in the computation of ([𝑡2], [𝑡3], [𝑡4], [𝑡5], [𝑡6]) in Round 2 and in the computation of [𝑡] in Round 3.
For example, with an additive error, 𝑡3 gets modified as follows: the adversary specifies several error
values

(
𝜀𝑖,2,1

)
𝑖∈[𝑛] , and we let 𝜀3 =

∑𝑛
𝑖=1 𝜀𝑖,2,1. Thus,

𝑡3 =

(
𝑛∑︁
𝑖=1
(l2)𝑖 · (r1)𝑖 + 𝜀𝑖,2,1

)
+ ⟨l3, r0⟩ = ⟨l2, r1⟩ + ⟨l3, r0⟩ + 𝜀3

𝜀3 is simply added to the correct value of 𝑡3: ⟨l2, r1⟩ + ⟨l3, r0⟩. The errors work similarly for
(𝑡2, 𝑡4, 𝑡5, 𝑡6, 𝑡):

𝑡2 = ⟨l1, r1⟩ + ⟨l2, r0⟩ + 𝜀2; 𝑡4 = ⟨l1, r3⟩ + ⟨l3, r1⟩ + 𝜀4; 𝑡5 = ⟨l2, r3⟩ + 𝜀5;
𝑡6 = ⟨l3, r3⟩ + 𝜀6; 𝑡 = ⟨l, r⟩ + 𝜀

which gives: ⟨ℓ (𝑋), r(𝑋)⟩ = 𝑡1 · 𝑋 +
∑6

𝑖=2(𝑡𝑖 − 𝜀𝑖) · 𝑋 𝑖 .
The following claim completes the proof by showing that if the witness is accepting, then variables
output by S are identically distributed as in the real protocol.

31

Claim. If the witness is accepting, then the variables (𝐴𝐼 , 𝐴𝑂 , 𝑆 ;𝑦, 𝑧;𝑇1,𝑇3,𝑇4, 𝑇5,𝑇6;𝑥 ;𝜏𝑥 , 𝜇, 𝑡, l, r)
output by S have the same distribution as they do in the real protocol.

Proof. We prove that the distribution of each of the variables listed is identical in the simulated and
real worlds. Firstly, in the real protocol, the following variables are sampled independently and
uniformly at random over their respective sample spaces:

𝛼, 𝛽, 𝜌, 𝑥,𝑦, 𝑧, 𝜏1, 𝜏3, 𝜏4, 𝜏5, 𝜏6, l, r

Due to the randomness of the variables above, the following variables are independent and uniformly
random over their respective sample spaces, as long as 𝑥,𝑦 ≠ 0:

𝐴𝐼 , 𝐴𝑂 , 𝜇, 𝑥,𝑦, 𝑧, 𝜏𝑥 ,𝑇3,𝑇4,𝑇5,𝑇6, s𝐿, s𝑅

More specifically, the randomness of (𝛼, 𝛽, 𝜌) makes (𝐴𝐼 , 𝐴𝑂 , 𝜇) uniformly random and indepen-
dent; the randomness of (𝜏1, 𝜏3, 𝜏4, 𝜏5, 𝜏6) makes (𝜏𝑥 ,𝑇3,𝑇4,𝑇5,𝑇6) uniformly random and independent;
the randomness of (s𝐿, s𝑅) makes (l, r) uniformly random and independent.

Now consider 𝑆 from Round 1(e). It can be computed by eq. (1) since it is uniquely determined
by the values above – (𝛼, 𝛽, 𝜌, 𝑥,𝑦, 𝑧, 𝜏1, 𝜏3, 𝜏4, 𝜏5, 𝜏6, l, r) and (𝐴𝐼 , 𝐴𝑂 , 𝜇, 𝜏𝑥 ,𝑇3,𝑇4,𝑇5, 𝑇6, s𝐿, s𝑅). This
computation of 𝑆 can be done as shown below, which matches eq. (1):(

−y𝑛 + z𝑄+1[1:] ·W𝑂

)
+ 𝑥 ·

(
y𝑛 ◦ a𝑅 + z𝑄+1[1:] ·W𝐿

)
+ 𝑥3 · (y𝑛 ◦ s𝑅) = r

r + y𝑛 − z𝑄+1[1:] · (𝑥 ·W𝐿 +W𝑂) = 𝑥 · y𝑛 ◦ a𝑅 + 𝑥3 · (y𝑛 ◦ s𝑅)

y−𝑛 ◦
(
r + y𝑛 − z𝑄+1[1:] · (𝑥 ·W𝐿 +W𝑂)

)
= 𝑥 · a𝑅 + 𝑥3 · s𝑅

𝐴𝑥
𝐼 · 𝐴

𝑥2

𝑂 · 𝑆
𝑥3

= (ℎ𝑥 ·𝛼 · g𝑥 ·a𝐿 · h𝑥 ·a𝑅) ·
(
ℎ𝑥

2 ·𝛽 · g𝑥2 ·a𝑂
)
·
(
ℎ𝑥

3 ·𝜌 · g𝑥3 ·s𝐿 · h𝑥3 ·s𝑅
)

=

(
ℎ𝛼 ·𝑥+𝛽 ·𝑥

2+𝜌 ·𝑥3
)
·
(
g𝑥 ·a𝐿+𝑥

2 ·a𝑂+𝑥3 ·s𝐿
)
·
(
h𝑥 ·a𝑅+𝑥

3 ·s𝑅
)

= ℎ𝜇 · gl−𝑥 ·y
−𝑛◦

(
z𝑄+1[1:] ·W𝑅

)
· hy

−𝑛◦
(
r+y𝑛−z𝑄+1[1:] · (𝑥 ·W𝐿+W𝑂)

)
𝑆 =

(
𝐴−𝑥𝐼 · 𝐴

−𝑥2

𝑂 · ℎ𝜇 · gl−𝑥 ·y
−𝑛◦

(
z𝑄+1[1:] ·W𝑅

)
· hy

−𝑛◦
(
r+y𝑛−z𝑄+1[1:] · (𝑥 ·W𝐿+W𝑂)

)) (𝑥−3)

Next, consider𝑇1 from eq. (2). We show below that it is uniquely determined by the values above,
and hence can be computed correctly.
If the witness is valid, then (V)𝑖 = 𝑔 (v)𝑖 · ℎ (𝜸)𝑖 , ∀𝑖 ∈ [𝑚], a𝐿 ◦ a𝑅 = a𝑂 and W𝑉 · v + c = W𝐿 · a𝐿 +
W𝑅 · a𝑅 +W𝑂 · a𝑂 . Therefore, we have

⟨ℓ (𝑋), r(𝑋)⟩ = 𝑡1 · 𝑋 +
6∑︁

𝑖=2
(𝑡𝑖 − 𝜀𝑖) · 𝑋 𝑖

⟨l, r⟩ = ⟨ℓ (𝑥), r(𝑥)⟩ = 𝑡1 · 𝑥 +
6∑︁

𝑖=2
(𝑡𝑖 − 𝜀𝑖) · 𝑥𝑖

This implies that:

𝑡2 − 𝜀2 = ⟨l1, r1⟩ + ⟨l2, r0⟩

=

(
⟨a𝐿, a𝑅 ◦ y𝑛⟩ − ⟨a𝑂 , y𝑛⟩

)
+

(
⟨z𝑄+1[1:] ·W𝑅, a𝑅⟩

+ ⟨z𝑄+1[1:] ·W𝐿, a𝐿⟩ + ⟨z𝑄+1[1:] ·W𝑂 , a𝑂⟩
)
+ 𝛿 (𝑦, 𝑧)

= ⟨(a𝐿 ◦ a𝑅 − a𝑂), y𝑛⟩ + ⟨z𝑄+1[1:] , (W𝐿 · a𝐿 +W𝑅 · a𝑅 +W𝑂 · a𝑂)⟩ + 𝛿 (𝑦, 𝑧)

= ⟨z𝑄+1[1:] , (W𝑉 · v + c)⟩ + 𝛿 (𝑦, 𝑧) = ⟨z𝑄+1[1:] ,W𝑉 · v⟩ + ⟨z𝑄+1[1:] , c⟩ + 𝛿 (𝑦, 𝑧)

32

which further implies that:

𝑇 𝑥
1 ·

6∏
𝑖=3
(𝑇𝑖 · 𝑔−𝜀𝑖) (𝑥

𝑖) = 𝑔𝑡1 ·𝑥 · ℎ𝜏1 ·𝑥 ·
6∏

𝑖=3

(
𝑔 (𝑡𝑖−𝜀𝑖) ·𝑥

𝑖 · ℎ𝜏𝑖 ·𝑥𝑖
)

= 𝑔𝑡1 ·𝑥+
∑6

𝑖=3 (𝑡𝑖−𝜀𝑖) ·𝑥𝑖 · ℎ𝜏1 ·𝑥+
∑6

𝑖=3 𝜏𝑖 ·𝑥𝑖

= 𝑔⟨l,r⟩−(𝑡2−𝜀2) ·𝑥2 · ℎ𝜏𝑥−𝑥
2 ·⟨z𝑄+1[1:] ,W𝑉 ·𝜸 ⟩

= 𝑔
⟨l,r⟩−𝑥2 ·

(
⟨z𝑄+1[1:] ,W𝑉 ·v⟩+⟨z𝑄+1[1:] ,c⟩+𝛿 (𝑦,𝑧)

)
· ℎ𝜏𝑥−𝑥

2 ·⟨z𝑄+1[1:] ,W𝑉 ·𝜸 ⟩

= ℎ𝜏𝑥 · 𝑔⟨l,r⟩−𝑥
2 ·

(
⟨z𝑄+1[1:] ,c⟩+𝛿 (𝑦,𝑧)

)
·
(
𝑔
−𝑥2 ·⟨z𝑄+1[1:] ,W𝑉 ·v⟩ · ℎ−𝑥

2 ·⟨z𝑄+1[1:] ,W𝑉 ·𝜸 ⟩
)

= ℎ𝜏𝑥 · 𝑔⟨l,r⟩−𝑥
2 ·

(
⟨z𝑄+1[1:] ,c⟩+𝛿 (𝑦,𝑧)

)
·
(
V−𝑥

2 ·z𝑄+1[1:] ·W𝑉

)
∴ 𝑇1 =

(
ℎ𝜏𝑥 · 𝑔⟨l,r⟩−𝑥

2 ·
(
𝛿 (𝑦,𝑧)+⟨z𝑄+1[1:] ,c⟩

)
· V−𝑥

2 ·z𝑄+1[1:] ·W𝑉 ·
6∏

𝑖=3
(𝑇𝑖 · 𝑔−𝜀𝑖)−(𝑥

𝑖)
) (𝑥−1)

Finally, note that in the real protocol and the simulated protocol, 𝑡 = ⟨l, r⟩ + 𝜀.

7 Collaborative zk-SNARK Based On Plonk

In this section, we describe and prove that the semi-honest protocol for collaborative proof gen-
eration based on Plonk [GWC19] is, with a minor change, secure against malicious provers in the
honest majority setting. We begin by describing some notations used in this section and describe
the collaborative zk-SNARK protocol for Plonk in section 7.1 using standard MPC functionalities
from section 3.1. We prove the malicious security of this protocol in section 7.2.

Notation. For the underlying Plonk zk-SNARK protocol, we refer the reader to [GWC19, Section
8]. We use the same notations in our collaborative zk-SNARK protocol, which are described as
follows. Common variables used: 𝑛 ∈ N, the number of gates in the arithmetic circuit; ℓ ∈ N,
the number of public input wires to the circuit; (𝑤𝑖)𝑖∈[3𝑛] are the wires of the arithmetic cir-
cuit; (𝑤𝑖)𝑖∈[ℓ] are the public input wires;

(
𝑞𝑀𝑖 , 𝑞𝐿𝑖 , 𝑞𝑅𝑖 , 𝑞𝑂𝑖 , 𝑞𝐶𝑖

)
𝑖∈[𝑛] ∈ (F5)𝑛 define the arith-

metic circuit; q𝑀 (𝑋), q𝐿 (𝑋), q𝑅 (𝑋), q𝑂 (𝑋), q𝐶 (𝑋) ∈ F[𝑋] are selector polynomials that encode(
𝑞𝑀𝑖 , 𝑞𝐿𝑖 , 𝑞𝑅𝑖 , 𝑞𝑂𝑖 , 𝑞𝐶𝑖

)
𝑖∈[𝑛] ; 𝜔 ∈ F is an 𝑛th root of unity; 𝐻 = {1, 𝜔, . . . , 𝜔𝑛−1}; 𝑘1, 𝑘2 ∈ F have

the property that 𝐻,𝑘1 ·𝐻,𝑘2 ·𝐻 are distinct cosets of 𝐻 ; 𝐻 ′ = 𝐻 ∪ (𝑘1 ·𝐻) ∪ (𝑘2 ·𝐻); 𝜎∗ : [3𝑛] → 𝐻 ′

is a one-to-one function; S𝜎1(𝑋), S𝜎2(𝑋), S𝜎3(𝑋) ∈ F[𝑋]: encode 𝜎∗; RO : {0, 1}∗ → F is a random
oracle; 𝑥 $← F. The inputs to the Plonk protocol include some common preprocessed inputs, public
instance X and witness wtn:
Common Preprocessed Inputs:

• 𝑛,
(
[𝑥]1, . . . , [𝑥𝑛+5]1

)
,
(
𝑞𝑀𝑖 , 𝑞𝐿𝑖 , 𝑞𝑅𝑖 , 𝑞𝑂𝑖 , 𝑞𝐶𝑖

)
𝑖∈[𝑛] , 𝜎

∗

• q𝑀 (𝑋), q𝐿 (𝑋), q𝑅 (𝑋), q𝑂 (𝑋), q𝐶 (𝑋)

• S𝜎1(𝑋), S𝜎2(𝑋), S𝜎3(𝑋)

Instance X (held by the provers andV): ℓ, (𝑤𝑖)𝑖∈[ℓ]
Witness wtn (distributed among the provers): wtn = (𝑤𝑖)𝑖∈[3𝑛]
Relation ℜPlonk: {(X,wtn) : ∀𝑖 ∈ [𝑛] (𝑞𝑀𝑖𝑤𝑖𝑤𝑛+𝑖 + 𝑞𝐿𝑖𝑤𝑖 + 𝑞𝑅𝑖𝑤𝑛+𝑖 + 𝑞𝑂𝑖𝑤2𝑛+𝑖 + 𝑞𝐶𝑖 = 0) ∧ (∀𝑖 ∈

33

[3𝑛] 𝑤𝑖 = 𝑤𝜎∗ (𝑖))}

Collaborative Extended Witness Generation. Recall that in collaborative zk-SNARKs, each
prover holds a witness fragment wtn𝑖 , which needs to be compiled into a valid witness wtn. We
formally define the following functionality for witness extension below. This functionality can be
realized using maliciously secure MPC techniques, the details of which are beyond the scope of this
work.

Functinality FPlonk-WE: Plonk Witness Extension
1: Inputs: FPlonk-WE receives the instance X and each party’s witness fragment (wtn1, . . . ,

wtn𝑁). It also receives from the adversary the corrupted parties’ shares of the wire val-
ues: (𝑤 𝑗

1, . . . ,𝑤
𝑗

3𝑛)∀ 𝑗∈C .
2: The functionality verifies the witness by checking that𝑉 (X, (wtn1, . . . , wtn𝑁)) = 1. If veri-

fication fails, the functionality sends ⊥ to all parties and halts. Otherwise, the functionality
continues.

3: The functionality uses (wtn1, . . . ,wtn𝑁) to compute the corresponding wire values (𝑤1, . . . ,
𝑤3𝑛) for the Plonk arithmetic circuit.

4: The functionality computes the shares of the wire values for each party as follows. For each
𝑖 ∈ {1, . . . , 3𝑛}, the functionality computes:

(𝑤1
𝑖 , . . . ,𝑤

𝑁
𝑖) = share(𝑤𝑖 , (𝑤 𝑗

𝑖
)∀ 𝑗∈C)

5: The functionality sends each party 𝑗 ∈ {1, . . . , 𝑁 } their shares of the wire values:

(𝑤 𝑗

1, . . . ,𝑤
𝑗

3𝑛)

7.1 The Collaborative Plonk Protocol

In this section, we describe the collaborative zk-SNARK protocol for Plonk. The protocol begins
by running the witness extension by invoking FPlonk-WE, and then generates the Plonk proof from
[GWC19, Section 8] by running a combination of MPC functionalities: Finput, Frand, Fcoin, FcheckZero,
Fmult, and FpolyMult. We describe the five rounds of the protocol in detail below. There is only a
small modification to the semi-honest collaborative Plonk protocol to adapt to the honest-majority
malicious security setting in Round 5 (highlighted in green).

Round 1 : The Plonk prover computes random blinding scalars and computes the wire polynomials
a(𝑋), b(𝑋) and c(𝑋). In collaborative Plonk, all these computations are done locally on the shares
of these vectors by the provers.

Round 1: The provers do the following:
1: Witness Extension: Send the inputs (wtn1, . . . ,wtn𝑁) to FPlonk-WE. If FPlonk-WE outputs
⊥, then abort the protocol. Otherwise, FPlonk-WE outputs: ([𝑤1], . . . , [𝑤3𝑛])

2: Call Frand 9 times to generate blinding scalars in secret-shared form: ([𝑏1], . . . , [𝑏9]).

34

3: Compute the wire polynomials:

[a(𝑋)] = ([𝑏1]𝑋 + [𝑏2]) · 𝑍𝐻 (𝑋) +
𝑛∑︁
𝑖=1
[𝑤𝑖] · 𝐿𝑖 (𝑋)

[b(𝑋)] = ([𝑏3]𝑋 + [𝑏4]) · 𝑍𝐻 (𝑋) +
𝑛∑︁
𝑖=1
[𝑤𝑛+𝑖] · 𝐿𝑖 (𝑋)

[c(𝑋)] = ([𝑏5]𝑋 + [𝑏6]) · 𝑍𝐻 (𝑋) +
𝑛∑︁
𝑖=1
[𝑤2𝑛+𝑖] · 𝐿𝑖 (𝑋)

4: Evaluate each polynomial at 𝑥 in the exponent to compute [[a(𝑥)]1], [[b(𝑥)]1], [[c(𝑥)]1].
5: Compute: [a(𝑥)]1 = open ([[a(𝑥)]1]), [b(𝑥)]1 = open ([[b(𝑥)]1]) and [c(𝑥)]1 =

open ([[c(𝑥)]1]) Here, parties publish their shares and reconstruct.
6: Output [a(𝑥)]1, [b(𝑥)]1, [c(𝑥)]1.

Round 2 : The Plonk prover computes the permutation challenges by running the random oracle RO
and then computes the permutation polynomial z(𝑋). This involves computing𝑛−1 partial products,
with each term of the partial product involving three multiplications divided by three multiplications.
This polynomial captures the permutation check for the wires. In the collaborative Plonk protocol,
we use the Bar-Ilan and Beaver technique [BIB89] (implicit in the description below) to mask the
terms of the partial product in a way that the partial product computation can be done in the clear
on the masked values, with just 4 rounds of communication between the provers.

Round 2: The provers do the following:
1: Let transcript be a tuple of the common preprocessed inputs, the public inputs, and the

outputs of round 1, ([a(𝑥)]1, [b(𝑥)]1, [c(𝑥)]1). Then compute 𝛽 = RO(transcript, 0) and
𝛾 = RO(transcript, 1).

2: Factors of the partial products: For each 𝑖 ∈ [𝑛 − 1], compute the following factors:

[𝑒𝑖,1] = [𝑤𝑖] + 𝛽𝜔𝑖 + 𝛾 ; [𝑒𝑖,2] = [𝑤𝑛+𝑖] + 𝛽𝑘1𝜔
𝑖 + 𝛾

[𝑒𝑖,3] = [𝑤2𝑛+𝑖] + 𝛽𝑘2𝜔
𝑖 + 𝛾 ; [𝑒𝑖,4] = [𝑤𝑖] + 𝜎∗(𝑖) · 𝛽 + 𝛾

[𝑒𝑖,5] = [𝑤𝑛+𝑖] + 𝜎∗(𝑛 + 𝑖) · 𝛽 + 𝛾 ; [𝑒𝑖,6] = [𝑤2𝑛+𝑖] + 𝜎∗(2𝑛 + 𝑖) · 𝛽 + 𝛾

3: Sample random masks: For each 𝑘 ∈ {0, 1, . . . , 6 · (𝑛 − 1)}, call Frand twice to generate
[𝑟𝑘] and [𝑠𝑘]. For each 𝑘 such that 𝑘 = 0 or 𝑘 ≠ 0 mod 3, compute:

[𝑡𝑘] = Fmult ([𝑟𝑘], [𝑠𝑘])

and for each 𝑖 ∈ [𝑛 − 1], compute:

[𝑢𝑖] = Fmult ([𝑠0], [𝑟6·𝑖])

4: Mask the factors: ∀(𝑖, 𝑗) ∈ [𝑛 − 1] × [3], 𝑘 = 6 · (𝑖 − 1) + 𝑗 , compute:

[𝑓𝑖, 𝑗] = Fmult
(
Fmult

(
[𝑟𝑘−1], [𝑒𝑖, 𝑗]

)
, [𝑠𝑘]

)
and ∀(𝑖, 𝑗) ∈ [𝑛 − 1] × {4, 5, 6}, 𝑘 = 6 · (𝑖 − 1) + 𝑗 , compute:

[𝑓𝑖, 𝑗] = Fmult
(
Fmult

(
[𝑠𝑘−1], [𝑒𝑖, 𝑗]

)
, [𝑟𝑘]

)

35

5: Open the 𝑡𝑘s and 𝑓𝑖, 𝑗s: ∀𝑘 ∈ {0, . . . , 6 · (𝑛 − 1)} such that 𝑘 = 0 or 𝑘 ≠ 0 mod 3, compute:
𝑡𝑘 = open ([𝑡𝑘]) and ∀(𝑖, 𝑗) ∈ [𝑛 − 1] × [6], compute: 𝑓𝑖, 𝑗 = open

(
[𝑓𝑖, 𝑗]

)
.

6: Combine the factors: Let ℎ0 = 1 and PP0 = 1. Then for each 𝑖 ∈ [𝑛 − 1] and 𝑘 = 6 · (𝑖 − 1),
compute the following:

𝑔𝑖 =
𝑓𝑖,1 · 𝑓𝑖,2 · 𝑓𝑖,3
𝑓𝑖,4 · 𝑓𝑖,5 · 𝑓𝑖,6

· 𝑡𝑘+4 · 𝑡𝑘+5
𝑡𝑘+1 · 𝑡𝑘+2

; ℎ𝑖 = ℎ𝑖−1 · 𝑔𝑖 ; [PP𝑖] =
ℎ𝑖

𝑡0
· [𝑢𝑖]

7: Compute the permutation polynomial [z(𝑋)]:

[z(𝑋)] =
(
[𝑏7]𝑋 2 + [𝑏8]𝑋 + [𝑏9]

)
· Z𝐻 (𝑋) +

𝑛∑︁
𝑖=1
[PP𝑖−1] · L𝑖 (𝑋)

8: Evaluate [z(𝑋)] at 𝑥 in the exponent to compute [[z(𝑥)]1].
9: Compute open([[z(𝑥)]1]) and output [z(𝑥)]1.

Round 3 : The Plonk prover computes the random oracle output on the transcript to get the quotient
challenge. It then computes a quotient polynomial t(𝑋) that essentially combines all the checks (gate
and wire) needed into a single polynomial and computes the quotient on division by the vanishing
polynomial. For optimization, the Plonk prover also splits this huge polynomial into three polyno-
mials of degree at most 𝑛 + 5 each. The collaborative Plonk provers compute this by invoking the
FpolyMult functionality, along with local computations.

Round 3: The provers do the following:
1: Append [z(𝑥)]1, the output of round 2, to the end of transcript and compute 𝛼 =

RO(transcript).
2: Compute the following polynomials:

[a′(𝑋)] := [a(𝑋)] + 𝛽𝑋 + 𝛾 ; [b′(𝑋)] := [b(𝑋)] + 𝛽𝑘1𝑋 + 𝛾 ;
[c′(𝑋)] := [c(𝑋)] + 𝛽𝑘2𝑋 + 𝛾 ; [a′′(𝑋)] := [a(𝑋)] + 𝛽𝑆𝜎1(𝑋) + 𝛾 ;
[b′′(𝑋)] := [b(𝑋)] + 𝛽𝑆𝜎2(𝑋) + 𝛾 ; [c′′(𝑋)] := [c(𝑋)] + 𝛽𝑆𝜎3(𝑋) + 𝛾

3: Compute [t(𝑋)] as follows:

[line1(𝑋)] = FpolyMult ([a(𝑋)], [b(𝑋)]) · q𝑀 (𝑋)
+ [a(𝑋)] · 𝑞𝐿 (𝑋) + [b(𝑋)] · 𝑞𝑅 (𝑋) + [c(𝑋)] · 𝑞𝑂 (𝑋) + 𝑃𝐼 (𝑋) + 𝑞𝐶 (𝑋)
[line2(𝑋)] = FpolyMult ([a′(𝑋)], [b′(𝑋)])
[line′2(𝑋)] = FpolyMult ([line2(𝑋)], [c′(𝑋)])
[line′′2 (𝑋)] = FpolyMult

(
[line′2(𝑋)], [z(𝑋)]

)
· 𝛼

[line3(𝑋)] = FpolyMult ([a′′(𝑋)], [b′′(𝑋)])
[line′3(𝑋)] = FpolyMult ([line3(𝑋)], [c′′(𝑋)])
[line′′3 (𝑋)] = FpolyMult

(
[line′3(𝑋)], [z(𝑋𝜔)]

)
· (−𝛼)

[line4(𝑋)] = ([z(𝑋)] − 1) · 𝐿1(𝑋) · 𝛼2

[t(𝑋)] = Qt
([line1(𝑋)] + [line′′2 (𝑋)] + [line′′3 (𝑋)] + [line4(𝑋)]

Z𝐻 (𝑋)

)

36

4: Split [t(𝑋)] into three polynomials [t′lo(𝑋)], [t
′
mid(𝑋)], [t

′
hi(𝑋)] such that

[t(𝑋)] = [t′lo(𝑋)] + 𝑋
𝑛 · [t′mid(𝑋)] + 𝑋

2𝑛 · [t′hi(𝑋)]

and deg
(
t′lo(𝑋)

)
≤ 𝑛 − 1, deg

(
t′mid(𝑋)

)
≤ 𝑛 − 1, deg

(
t′hi(𝑋)

)
≤ 𝑛 + 5.

5: Call Frand twice to obtain secret sharings of two blinding scalars, [𝑏10], [𝑏11].
6: Compute the following polynomials:

[tlo(𝑋)] = [t′lo(𝑋)] + [𝑏10] · 𝑋𝑛 ; [tmid(𝑋)] = [t′mid(𝑋)] − [𝑏10] + [𝑏11] · 𝑋𝑛

[thi(𝑋)] = [t′hi(𝑋)] − [𝑏11]

7: Evaluate [tlo(𝑋)], [tmid(𝑋)], [thi(𝑋)] at 𝑥 in the exponent to compute:

[[tlo(𝑥)]1], [[tmid(𝑥)]1], [[thi(𝑥)]1]

8: Compute and output the openings: [tlo(𝑥)]1 = open([[tlo(𝑥)]1]), [tmid(𝑥)]1 =

open([[tmid(𝑥)]1]) and [thi(𝑥)]1 = open([[thi(𝑥)]1]).

Round 4 : The Plonk prover computes the evaluation challenge using RO and then computes the
opening evaluations. The collaborative Plonk provers only need to perform local computations for
this.

Round 4: The parties do the following:
1: Concatenate to the end of transcript the output of round 3, ([tlo(𝑥)]1, [tmid(𝑥)]1, [thi(𝑥)]1)

and compute 𝔷 = RO(transcript).
2: Evaluate the following polynomials at 𝔷:

[𝑎] := [a(𝔷)], [𝑏] := [b(𝔷)], [𝑐] := [c(𝔷)],
s𝜎1 := S𝜎1(𝔷), s𝜎2 := S𝜎2(𝔷), [𝑧𝜔] := [z(𝔷𝜔)]

3: Call open on each secret-shared value to obtain (𝑎,𝑏, 𝑐, 𝑧𝜔).
4: Output (𝑎,𝑏, 𝑐, s𝜎1, s𝜎2, 𝑧𝜔).

Round 5 : The Plonk prover computes the opening challenge using RO, the linearization polynomial
r(𝑋), and the opening proof polynomials W𝔷 (𝑋) and W𝔷𝜔 (𝑋). Finally, it evaluates these polynomials
in the exponent at 𝑥 and sends them to the verifier. The collaborative Plonk provers can compute
all these values locally. The only addition we make to the protocol is an additional check if the
numerator of the opening proof polynomial W𝔷 (𝑋) is divisible by (𝑋 − 𝔷) or not. The reason we
do this one check is to catch the additive errors that the malicious provers could have introduced in
any of the previous rounds. If they did indeed, then we prove that this remainder will not be a zero
polynomial.

Round 5: The parties do the following:
1: Concatenate to the end of transcript the output of round 4, (𝑎,𝑏, 𝑐, s𝜎1, s𝜎2, 𝑧𝜔) and compute

𝑣 = RO(transcript).

37

2: Compute the polynomial [r(𝑋)] as follows:

[r(𝑋)] = 𝑎𝑏 · 𝑞𝑀 (𝑋) + 𝑎 · 𝑞𝐿 (𝑋) + 𝑏 · 𝑞𝑅 (𝑋) + 𝑐 · 𝑞𝑂 (𝑋) + 𝑃𝐼 (𝔷)
+ 𝑞𝐶 (𝑋) + (𝑎 + 𝛽𝔷 + 𝛾) · (𝑏 + 𝛽𝑘1𝔷 + 𝛾) · (𝑐 + 𝛽𝑘2𝔷 + 𝛾) · [z(𝑋)] · 𝛼
− (𝑎 + 𝛽s𝜎1 + 𝛾) · (𝑏 + 𝛽s𝜎2 + 𝛾) · (𝑐 + 𝛽S𝜎3(𝑋) + 𝛾) · 𝑧𝜔 · 𝛼 + ([z(𝑋)]
− 1) · 𝐿1(𝔷) · 𝛼2 − Z𝐻 (𝔷) ·

(
[tlo(𝑋)] + 𝔷𝑛 [tmid(𝑋)] + 𝔷2𝑛 [thi(𝑋)]

)
3: Compute the polynomials [W𝔷 (𝑋)] and [W𝔷𝜔 (𝑋)] as follows:

[num(𝑋)] = [r(𝑋)] + 𝑣 ([a(𝑋)] − 𝑎) + 𝑣2([b(𝑋)] − 𝑏) + 𝑣3([c(𝑋)] − 𝑐)
+ 𝑣4([S𝜎1(𝑋)] − s𝜎1) + 𝑣5([S𝜎2(𝑋)] − s𝜎2)

[W𝔷 (𝑋)] = Qt
(
[num(𝑋)]
𝑋 − 𝔷

)
; [W𝔷𝜔 (𝑋)] = Qt

(
[z(𝑋)] − 𝑧𝜔
𝑋 − 𝔷𝜔

)
4: Verify the following:

1. Compute [𝑉] := Rd
(
[num(𝑋)]

𝑋−𝔷

)
.

2. Compute FcheckZero([𝑉]). If the check passes, continue. Otherwise, output⊥ and abort
the computation.

5: Evaluate [W𝔷 (𝑋)] and [W𝔷𝜔 (𝑋)] at 𝑥 in the exponent to compute [[W𝔷 (𝑥)]1] and
[[W𝔷𝜔 (𝑥)]1].

6: Compute and output [W𝔷 (𝑥)]1 = open
(
[[W𝔷 (𝑥)]1]

)
and [W𝔷𝜔 (𝑥)]1 = open

(
[[W𝔷𝜔 (𝑥)]1]

)
.

The verification checks are the same as the original Plonk protocol [GWC19, Section 8] Note that the
above protocol is non-interactive and just describes the prover computations in five separate rounds
along with theRO queries on parts of the transcript. Our communication cost for the honest-majority
malicious protocol above is almost identical to the semi-honest setting.

Theorem 7.1. The protocol described in Section section 7.1 is a collaborative proof genera-
tion based on Plonk, i.e., for relation ℜPlonk, against 𝑡 < 𝑁 /2 malicious provers in the
(FPlonk-WE, Finput, Frand, Fcoin, FcheckZero, Fmult, FpolyMult)-hybrid model.

Proof. The completeness, knowledge soundness, and succinctness properties directly follow from the
corresponding properties of Plonk. We will prove the 𝑡-zero-knowledge property for the protocol
in the (FPlonk-WE, Finput, Frand, Fcoin, FcheckZero, Fmult, FpolyMult)-hybrid model against a malicious
adversary that controls at most 𝑡 < 𝑁 /2 provers in section 7.2 below.

7.2 𝑡-Zero-Knowledge Against Malicious Provers

In this section, we prove that the protocol in section 7.1 satisfies 𝑡-zero-knowledge against 𝑡 < 𝑁 /2
malicious provers. We show that even though this protocol is based on semi-honest techniques8 that
allow a malicious adversary to introduce additive errors, the additive errors turn out to be simulat-
able.
The Simulator. The first job of the simulator is to keep track of the shares the adversary would
hold if they followed the protocol honestly. This allows the simulator to simulate the messages
sent to the adversary during the protocol and to decide whether to abort the open procedure if the
adversary produces incorrect shares. The second job of the simulator is to sample the output of each
round from the correct distribution. We show that for rounds 1,2,3 and 4, the simulator can pick the
outputs uniformly (and independently) at random.

8except for the one verification check that we add in Round 5.

38

Simulator S for Plonk

1. Round 1:

(a) Inputs: S receives from A the corrupted parties inputs (wtn𝑗)∀ 𝑗∈C as well as the cor-
rupted parties’ shares of every wire value: (𝑤 𝑗

1, . . . , 𝑤
𝑗

3𝑛)∀ 𝑗∈C . S also receives from the
𝑡-zero-knowledge challenger a bit 𝑏 ← ℜ(X,wtn) indicating whether the witness is
valid. S stores all the inputs for later.

(b) Witness Extension: If 𝑏 = 0 (meaning the witness is invalid), thenS sends⊥ to all par-
ties and halts. Otherwise, S continues. Then S sends toA the values (𝑤 𝑗

1, . . . ,𝑤
𝑗

3𝑛)∀ 𝑗∈C .
(c) Calls to Frand: Whenever Round 1 calls Frand, S does the following: S receives fromA

the values (𝑣 𝑗)∀ 𝑗∈C , which represent the corrupted parties’ shares of the random value,
and S stores these shares.

(d) Local Computations: The protocol for computing

([a(𝑋)], [b(𝑋)], [c(𝑋)], [[a(𝑥)]1], [[b(𝑥)]1], [[c(𝑥)]1])

in Round 1 does not require communication between parties (local computations). S
computes the shares of ([a(𝑋)], [b(𝑋)], [c(𝑋)], [[a(𝑥)]1], [[b(𝑥)]1], [[c(𝑥)]1]) that the
corrupted parties would hold if they followed the protocol honestly using the corrupted
parties’ shares of (𝑏1, . . . , 𝑏6,𝑤1, . . . ,𝑤3𝑛).

(e) Output: S samples (𝐴, 𝐵,𝐶) $← G3
1.

(f) Opening: S opens [[a(𝑥)]1] to 𝐴 using the following procedure.
i. S has already computed the shares of [[a(𝑥)]1] that the corrupted parties would

hold if they followed the protocol honestly. Let us call those shares (𝛼 𝑗)∀ 𝑗∈C .
ii. S computes: (

𝛼 𝑗

)
∀ 𝑗∈[𝑁] = share(𝐴, (𝛼 𝑗)∀ 𝑗∈C)

iii. S sends
(
𝛼 𝑗

)
𝑗∈H toA, andA sends the corrupted parties’ shares to S. If any of the

corrupted parties’ shares do not match
(
𝛼 𝑗

)
𝑗∈C , then S outputs abort and aborts

the protocol.
(g) S also opens [[b(𝑥)]1] to 𝐵 and [[c(𝑥)]1] to𝐶 using the same procedure as in the Open-

ing step for [[a(𝑥)]1].

2. Round 2:

(a) S handles local computations and calls to Frand the same way it did for round 1. The
local computations include computing transcript, calling RO to compute 𝛽 and 𝛾 , and
computing the 𝑔𝑖 and ℎ𝑖 values.

(b) Calls to Fmult: Whenever Round 2 calls Fmult, S does the following:
To multiply two values (𝑥,𝑦), S sends toA the corrupted parties’ shares [𝑥]C and [𝑦]C ,
which the simulator has computed from prior steps. Next, A sends to S the additive
error 𝜀 as well as the corrupted parties’ shares of the output [𝑧]C . S stores these values.

(c) Open the 𝑡𝑘s and 𝑓𝑖, 𝑗s: For each 𝑘 ∈ {0, . . . , 6 · (𝑛 − 1)} such that 𝑘 = 0 or 𝑘 ≠ 0 mod 3,
S samples 𝑡𝑘

$← F uniformly at random and then opens [𝑡𝑘] to 𝑡𝑘 using the Opening

39

procedure from the simulation of round 1. For each (𝑖, 𝑗) ∈ [𝑛 − 1] × [6], S samples
𝑓𝑖, 𝑗

$← F uniformly at random and then opens [𝑓𝑖, 𝑗] to 𝑓𝑖, 𝑗 using the Opening procedure
from the simulation of round 1.

(d) Output: S samples 𝑍 $← G1 and then opens [z(𝑥)]1 to 𝑍 using the Opening procedure
from the simulation of round 1.

3. Round 3:

(a) S handles local computations and calls to Frand the same way it did for the previous
rounds.

(b) Polynomial Multiplication: Whenever round 3 calls FpolyMult, S does the following:
To multiply two polynomials (p(𝑋), q(𝑋)), S sends to A the corrupted parties’ shares
[p(𝑋)]C and [q(𝑋)]C , which the simulator has computed from prior steps. Next, A
sends to S the additive error 𝜀 (𝑋) as well as the corrupted parties’ shares of the output
[r(𝑋)]C . S stores these values.
Let (𝜀1(𝑋), . . . , 𝜀7(𝑋)) be the error polynomials introduced in round 3 each time
PolyMult is called.

(c) Output: S samples (𝑇lo,𝑇mid,𝑇hi)
$← G3

1.
(d) S opens ([tlo(𝑥)]1, [tmid(𝑥)]1, [thi(𝑥)]1) to the values (𝑇lo,𝑇mid,𝑇hi) using the Opening

procedure from the simulation of round 1.

4. Round 4:

(a) S handles local computations the same way it did for the previous rounds.
(b) S computes s𝜎1 = S𝜎1(𝔷) and s𝜎2 = S𝜎2(𝔷) honestly.

(c) Output: S samples
(
𝐴, 𝐵,𝐶, 𝑍𝜔

) $← F4.

(d) S opens
(
[𝑎], [𝑏], [𝑐], [s𝜎1], [s𝜎2], [𝑧𝜔]

)
to the values

(
𝐴, 𝐵,𝐶, s𝜎1, s𝜎2, 𝑍𝜔

)
the Opening

procedure from the simulation of round 1.

5. Round 5:

(a) S handles local computations the same way as before.
(b) Verification:

i. S checks the following conditions:
Conditions:
A. In round 2, every call to Fmult has an additive error of 𝜀 = 0.
B. 0 = 𝜀2(𝑋) = 𝜀3(𝑋) = 𝜀5(𝑋) = 𝜀6(𝑋).
C. Qt

(
𝜀1 (𝑋) ·q𝑀 (𝑋)+𝜀4 (𝑋) ·𝛼+𝜀7 (𝑋) ·𝛼

Z𝐻 (𝑋)

)
= 0

If A, B and C hold, then S sets 𝑉 = 0. Otherwise, S sets 𝑉 ≠ 0.
(c) S simulates FcheckZero([𝑉]) as follows. If 𝑉 = 0, then S sends 0 to A. A responds with

accept or reject, and S forwards A’s response to the honest parties.
If 𝑉 ≠ 0, then:

i. With probability 1
|F | , S sends accept to all parties.

ii. With probability 1 − 1
|F | , S sends reject to all parties.

40

If FcheckZero([𝑉]) rejects, then S outputs ⊥ and aborts the protocol. Otherwise, S con-
tinues.

(d) Output: S computes:

[r(𝑥)]1 = 𝑎𝑏 · [q𝑀 (𝑥)]1 + 𝑎 · [q𝐿 (𝑥)]1 + 𝑏 · [q𝑅 (𝑥)]1 + 𝑐 · [q𝑂 (𝑥)]1
+ 𝑃𝐼 (𝔷) + [q𝐶 (𝑥)]1 + (𝑎 + 𝛽𝔷 + 𝛾) · (𝑏 + 𝛽𝑘1𝔷 + 𝛾) · (𝑐 + 𝛽𝑘2𝔷 + 𝛾)
· 𝑍 · 𝛼 − (𝑎 + 𝛽s𝜎1 + 𝛾) · (𝑏 + 𝛽s𝜎2 + 𝛾) · (𝑐 + 𝛽 [S𝜎3(𝑥)]1 + 𝛾)
· 𝑧𝜔 · 𝛼 + (𝑍 − 1) · 𝐿1(𝔷) · 𝛼2 − Z𝐻 (𝔷) ·

(
𝑇lo + 𝔷𝑛𝑇mid + 𝔷2𝑛𝑇hi

)
[num(𝑥)]1 = [r(𝑥)]1 + 𝑣 (𝐴 − 𝑎) + 𝑣2(𝐵 − 𝑏) + 𝑣3(𝐶 − 𝑐)
+ 𝑣4([S𝜎1(𝑥)]1 − s𝜎1) + 𝑣5([S𝜎2(𝑥)]1 − s𝜎2)

𝑊𝔷 := [num(𝑥)]1
𝑥 − 𝔷 ; 𝑊𝔷𝜔 := 𝑍 − [𝑧𝜔]1

𝑥 − 𝔷𝜔

For this step, S will use the fact that they know 𝑥 in the clear.
(e) S opens

(
[[W𝔷 (𝑥)]1], [[W𝔷𝜔 (𝑥)]1]

)
to

(
𝑊𝔷,𝑊𝔷𝜔

)
using the Opening procedure from the

simulation of round 1.

We now prove that the output of S is statistically close to the view of the malicious provers in the
real execution of the protocol in section 7.1.

Key ideas in the proof. Note that the adversary cannot introduce additive errors into rounds
1, 4, and 5 because these rounds do not call Fmult or FpolyMult. All computations in these rounds are
local. Rounds 2 and 3 are the only rounds in which additive errors are possible. The key idea is
to prove two claims: first, in round 2, because we use the random masking from the Bar-Ilan and
Beaver technique, it helps in arguing that in the actual round 2, the simulator can pick the output of
the round 2 at random, and can store the additive errors introduced through the Fmult calls (formally
proved in lemma 7.4). It can do the same for round 3 due to other independent random maskings
(lemma 7.1) in the protocol (formally proved in lemma 7.5). The second crucial step is to prove that
the simple verification check added in round 5 detects whether the additive errors were added or not.
Specifically, we show that if errors were added, then the numerator of the opening proof polynomial
will not be divisible by (𝑋 − 𝔷) (formally proved in lemma 7.7 and lemma 7.8). This is captured by
condition C in 5b) in the simulator.

We need the following lemma that proves the randomness of the blinding scalars, which helps
us to prove that the simulator can generate the output of rounds 1-3 uniformly at random.

Lemma 7.1. Let us assume that 𝑥, 𝔷 satisfy the following conditions: 𝑥 ≠ 𝔷, 𝑥 ≠ 𝔷 · 𝜔, 𝑥 ∉ 𝐻 ∪
{0}, 𝔷 ∉ 𝐻 ∪ {0}9. Then, over the randomness of (𝑏1, . . . , 𝑏11), the following 11 values are independent
and uniformly random in F:
𝑎1 := 𝑏1 · 𝑥 + 𝑏2, 𝑎2 := 𝑏1 · 𝔷 + 𝑏2, 𝑎3 := 𝑏3 · 𝑥 + 𝑏4, 𝑎4 := 𝑏3 · 𝔷 + 𝑏4, 𝑎5 := 𝑏5 · 𝑥 + 𝑏6, 𝑎6 := 𝑏5 · 𝔷 + 𝑏6,
𝑎7 := 𝑏7 · 𝑥2 +𝑏8 · 𝑥 +𝑏9, 𝑎8 := 𝑏7 · (𝑥𝜔)2 +𝑏8 · (𝑥𝜔) +𝑏9, 𝑎9 := 𝑏7 · (𝔷𝜔)2 +𝑏8 · (𝔷𝜔) +𝑏9, 𝑎10 := 𝑏10 · 𝑥𝑛 ,
and 𝑎11 := −𝑏11.

Proof. For fixed values of 𝑥 and 𝔷, the function that maps (𝑏1, . . . , 𝑏11) to (𝑎1, . . . , 𝑎11) is a full-rank lin-
ear function. Since (𝑏1, . . . , 𝑏11) is uniformly random over F11, (𝑎1, . . . , 𝑎11) is also uniformly random
over F11.

9This indeed holds with high probability as 𝑥, 𝔷 are sampled independently and uniformly from F.

41

Now we analyze each round and show that the distribution output by the simulator is statistically
close to the real view.

Round 1. The adversary cannot introduce additive errors in round 1 because Fmult and FpolyMult are
not called in this round. Next, note that:

a(𝑥) = 𝑎1 · 𝑍𝐻 (𝑥) +
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝐿𝑖 (𝑥); b(𝑥) = 𝑎3 · 𝑍𝐻 (𝑥) +
𝑛∑︁
𝑖=1

𝑤𝑛+𝑖 · 𝐿𝑖 (𝑥)

c(𝑥) = 𝑎5 · 𝑍𝐻 (𝑥) +
𝑛∑︁
𝑖=1

𝑤2𝑛+𝑖 · 𝐿𝑖 (𝑥)

By lemma 7.1, since (𝑎1, 𝑎3, 𝑎5) are random, therefore, given any wtn, (a(𝑥), b(𝑥), c(𝑥)) are indepen-
dent and uniformly random in F.

Round 2. If the adversary introduces no additive errors in round 2, then round 2 correctly computes
the partial products (eq. (3)) and the polynomial z(𝑋). This is formally proved in lemma 7.2. Next,
even if the adversary introduces additive errors, the outputs of round 2 will be uniformly random
and independent values, the same distribution that the simulator outputs. Finally, if the adversary
introduces an additive error, then with overwhelming probabilities, at least one of the partial prod-
ucts PP𝑖 will not satisfy eq. (3) (proved formally in lemma 7.3). Looking ahead, this will cause the
protocol to abort in round 5 with overwhelming probability.

Lemma 7.2 (Correctness). If the adversary does not introduce any additive errors during round 2, then
for every 𝑖 ∈ [𝑛 − 1], PP𝑖 is equal to∏

𝑖′∈[𝑖]

(
𝑤𝑖′ + 𝛽𝜔𝑖′ + 𝛾

)
·
(
𝑤𝑛+𝑖′ + 𝛽𝑘1𝜔

𝑖′ + 𝛾
)
·
(
𝑤2𝑛+𝑖′ + 𝛽𝑘2𝜔

𝑖′ + 𝛾
)

(𝑤𝑖′ + 𝜎∗ (𝑖′) · 𝛽 + 𝛾) · (𝑤𝑛+𝑖′ + 𝜎∗ (𝑛 + 𝑖′) · 𝛽 + 𝛾) · (𝑤2𝑛+𝑖′ + 𝜎∗ (2𝑛 + 𝑖′) · 𝛽 + 𝛾)
(3)

Proof. The following computations show the correctness. For every 𝑘 ∈ {0, . . . , 6 · (𝑛 − 1)} such that
𝑘 = 0 or 𝑘 ≠ 0 mod 3: 𝑡𝑘 = 𝑟𝑘 · 𝑠𝑘 . For every 𝑖 ∈ [𝑛 − 1] and 𝑘 = 6 · (𝑖 − 1):

42

𝑔𝑖 =
𝑓𝑖,1 · 𝑓𝑖,2 · 𝑓𝑖,3
𝑓𝑖,4 · 𝑓𝑖,5 · 𝑓𝑖,6

· 𝑡𝑘+4 · 𝑡𝑘+5
𝑡𝑘+1 · 𝑡𝑘+2

=

(
𝑟𝑘 · 𝑒𝑖,1 · 𝑠𝑘+1

)
·
(
𝑟𝑘+1 · 𝑒𝑖,2 · 𝑠𝑘+2

)
·
(
𝑟𝑘+2 · 𝑒𝑖,3 · 𝑠𝑘+3

)(
𝑠𝑘+3 · 𝑒𝑖,4 · 𝑟𝑘+4

)
·
(
𝑠𝑘+4 · 𝑒𝑖,5 · 𝑟𝑘+5

)
·
(
𝑠𝑘+5 · 𝑒𝑖,6 · 𝑟𝑘+6

) · 𝑟𝑘+4 · 𝑠𝑘+4 · 𝑟𝑘+5 · 𝑠𝑘+5
𝑟𝑘+1 · 𝑠𝑘+1 · 𝑟𝑘+2 · 𝑠𝑘+2

= 𝑟𝑘 ·
𝑒𝑖,1 · 𝑒𝑖,2 · 𝑒𝑖,3
𝑒𝑖,4 · 𝑒𝑖,5 · 𝑒𝑖,6

· 𝑟−1
𝑘+6

= 𝑟6· (𝑖−1) ·
𝑒𝑖,1 · 𝑒𝑖,2 · 𝑒𝑖,3
𝑒𝑖,4 · 𝑒𝑖,5 · 𝑒𝑖,6

· 𝑟−1
6·𝑖

ℎ𝑖 =
∏
𝑖′∈[𝑖]

𝑔𝑖′

=
∏
𝑖′∈[𝑖]

(
𝑟6· (𝑖′−1) ·

𝑒𝑖′,1 · 𝑒𝑖′,2 · 𝑒𝑖′,3
𝑒𝑖′,4 · 𝑒𝑖′,5 · 𝑒𝑖′,6

· 𝑟−1
6·𝑖′

)
= 𝑟0 ·

©«
∏
𝑖′∈[𝑖]

𝑒𝑖′,1 · 𝑒𝑖′,2 · 𝑒𝑖′,3
𝑒𝑖′,4 · 𝑒𝑖′,5 · 𝑒𝑖′,6

ª®¬ · 𝑟−1
6·𝑖

PP𝑖 =
ℎ𝑖

𝑡0
· 𝑢𝑖

= 𝑟0 · ©«
∏
𝑖′∈[𝑖]

𝑒𝑖′,1 · 𝑒𝑖′,2 · 𝑒𝑖′,3
𝑒𝑖′,4 · 𝑒𝑖′,5 · 𝑒𝑖′,6

ª®¬ · 𝑟−1
6·𝑖 ·

𝑠0 · 𝑟6·𝑖
𝑟0 · 𝑠0

=
∏
𝑖′∈[𝑖]

𝑒𝑖′,1 · 𝑒𝑖′,2 · 𝑒𝑖′,3
𝑒𝑖′,4 · 𝑒𝑖′,5 · 𝑒𝑖′,6

=
∏
𝑖′∈[𝑖]

(
𝑤𝑖′ + 𝛽𝜔𝑖′ + 𝛾

)
·
(
𝑤𝑛+𝑖′ + 𝛽𝑘1𝜔

𝑖′ + 𝛾
)
·
(
𝑤2𝑛+𝑖′ + 𝛽𝑘2𝜔

𝑖′ + 𝛾
)

(𝑤𝑖′ + 𝜎∗ (𝑖′) · 𝛽 + 𝛾) · (𝑤𝑛+𝑖′ + 𝜎∗ (𝑛 + 𝑖′) · 𝛽 + 𝛾) · (𝑤2𝑛+𝑖′ + 𝜎∗ (2𝑛 + 𝑖′) · 𝛽 + 𝛾)

Lemma 7.3. If a non-zero additive error is introduced in round 2 during some call to Fmult, then for
some 𝑖 ∈ [𝑛 − 1],

PP𝑖 ≠
∏
𝑖′∈[𝑖]

(
𝑤𝑖′ + 𝛽𝜔𝑖′ + 𝛾

)
·
(
𝑤𝑛+𝑖′ + 𝛽𝑘1𝜔

𝑖′ + 𝛾
)
·
(
𝑤2𝑛+𝑖′ + 𝛽𝑘2𝜔

𝑖′ + 𝛾
)

(𝑤𝑖′ + 𝜎∗ (𝑖′) · 𝛽 + 𝛾) · (𝑤𝑛+𝑖′ + 𝜎∗ (𝑛 + 𝑖′) · 𝛽 + 𝛾) · (𝑤2𝑛+𝑖′ + 𝜎∗ (2𝑛 + 𝑖′) · 𝛽 + 𝛾)

with overwhelming probability.

Proof. We begin by listing all the additive errors that the adversary can introduce in round 2. For
each 𝑘 ∈ {0, . . . , 6 · (𝑛 − 1)} such that 𝑘 = 0 or 𝑘 ≠ 0 mod 3: 𝑡𝑘 = 𝑟𝑘 · 𝑠𝑘 + 𝜀1,𝑘 .
For each 𝑖 ∈ [𝑛 − 1]: 𝑢𝑖 = 𝑠0 · 𝑟6·𝑖 + 𝜀2,𝑖

For each 𝑖 ∈ [𝑛 − 1] and 𝑗 ∈ {1, 2, 3} and 𝑘 = 6 · (𝑖 − 1) + 𝑗 :

𝑓𝑖, 𝑗 = 𝑟𝑘−1 · 𝑒𝑖, 𝑗 · 𝑠𝑘 + 𝜀3,𝑖, 𝑗 · 𝑠𝑘 + 𝜀4,𝑖, 𝑗

For each 𝑖 ∈ [𝑛 − 1] and 𝑗 ∈ {4, 5, 6} and 𝑘 = 6 · (𝑖 − 1) + 𝑗 :

𝑓𝑖, 𝑗 = 𝑠𝑘−1 · 𝑒𝑖, 𝑗 · 𝑟𝑘 + 𝜀3,𝑖, 𝑗 · 𝑟𝑘 + 𝜀4,𝑖, 𝑗

Now, we show how to express these as multiplicative errors. For each 𝑘 ∈ {0, 1, . . . , 6 · (𝑛 − 1)} such
that 𝑘 = 0 or 𝑘 ≠ 0 mod 3: 𝑡𝑘 = 𝑟𝑘 · 𝑠𝑘 · 𝛿1,𝑘 , for 𝛿1,𝑘 = 1 + 𝜀1,𝑘

𝑟𝑘 ·𝑠𝑘 .

43

For each 𝑖 ∈ [𝑛 − 1]: 𝑢𝑖 = 𝑠0 · 𝑟6·𝑖 · 𝛿2,𝑖 , for 𝛿2,𝑖 = 1 + 𝜀2,𝑖
𝑠0 ·𝑟6·𝑖

.
For each 𝑖 ∈ [𝑛 − 1], 𝑗 ∈ {1, 2, 3}, and 𝑘 = 6 · (𝑖 − 1) + 𝑗 :

𝑓𝑖, 𝑗 = 𝑟𝑘−1 · 𝑒𝑖, 𝑗 · 𝑠𝑘 · 𝛿3,𝑖, 𝑗 , for 𝛿3,𝑖, 𝑗 = 1 +
𝜀3,𝑖, 𝑗

𝑟𝑘−1 · 𝑒𝑖, 𝑗
+

𝜀4,𝑖, 𝑗

𝑟𝑘−1 · 𝑒𝑖, 𝑗 · 𝑠𝑘
For each 𝑖 ∈ [𝑛 − 1], 𝑗 ∈ {4, 5, 6}, and 𝑘 = 6 · (𝑖 − 1) + 𝑗 :

𝑓𝑖, 𝑗 = 𝑠𝑘−1 · 𝑒𝑖, 𝑗 · 𝑟𝑘 · 𝛿3,𝑖, 𝑗 , for 𝛿3,𝑖, 𝑗 = 1 +
𝜀3,𝑖, 𝑗

𝑠𝑘−1 · 𝑒𝑖, 𝑗
+

𝜀4,𝑖, 𝑗

𝑠𝑘−1 · 𝑒𝑖, 𝑗 · 𝑟𝑘
Now we prove in the following claim that the 𝛿 errors contribute the following multiplicative error
Δ𝑖 to each PP𝑖 for 𝑖 ∈ [𝑛 − 1]:

Δ𝑖 =
𝛿2,𝑖
𝛿1,0
·
∏
𝑖′∈[𝑖]

(
𝛿3,𝑖′,1 · 𝛿3,𝑖′,2 · 𝛿3,𝑖′,3
𝛿3,𝑖′,4 · 𝛿3,𝑖′,5 · 𝛿3,𝑖′,6

·
𝛿1,6· (𝑖′−1)+4 · 𝛿1,6· (𝑖′−1)+5
𝛿1,6· (𝑖′−1)+1 · 𝛿1,6· (𝑖′−1)+2

)

Claim 7.1. For each 𝑖 ∈ [𝑛 − 1]: PP𝑖 = Δ𝑖 ·
∏

𝑖′∈[𝑖]
𝑒𝑖′,1 ·𝑒𝑖′,2 ·𝑒𝑖′,3
𝑒𝑖′,4 ·𝑒𝑖′,5 ·𝑒𝑖′,6

Proof. The following calculations prove the claim. For every 𝑖 ∈ [𝑛 − 1] and 𝑘 = 6 · (𝑖 − 1):

𝑔𝑖 =
𝑓𝑖,1 · 𝑓𝑖,2 · 𝑓𝑖,3
𝑓𝑖,4 · 𝑓𝑖,5 · 𝑓𝑖,6

· 𝑡𝑘+4 · 𝑡𝑘+5
𝑡𝑘+1 · 𝑡𝑘+2

= 𝑟6· (𝑖−1) ·
𝑒𝑖,1 · 𝑒𝑖,2 · 𝑒𝑖,3
𝑒𝑖,4 · 𝑒𝑖,5 · 𝑒𝑖,6

· 𝑟−1
6·𝑖 ·

𝛿3,𝑖,1 · 𝛿3,𝑖,2 · 𝛿3,𝑖,3
𝛿3,𝑖,4 · 𝛿3,𝑖,5 · 𝛿3,𝑖,6

·
𝛿1,𝑘+4 · 𝛿1,𝑘+5
𝛿1,𝑘+1 · 𝛿1,𝑘+2

ℎ𝑖 =
∏
𝑖′∈[𝑖]

𝑔𝑖′

=
∏
𝑖′∈[𝑖]

(
𝑟6· (𝑖′−1) ·

𝑒𝑖′,1 · 𝑒𝑖′,2 · 𝑒𝑖′,3
𝑒𝑖′,4 · 𝑒𝑖′,5 · 𝑒𝑖′,6

· 𝑟−1
6·𝑖′ ·

𝛿3,𝑖′,1 · 𝛿3,𝑖′,2 · 𝛿3,𝑖′,3
𝛿3,𝑖′,4 · 𝛿3,𝑖′,5 · 𝛿3,𝑖′,6

·
𝛿1,6· (𝑖′−1)+4 · 𝛿1,6· (𝑖′−1)+5
𝛿1,6· (𝑖′−1)+1 · 𝛿1,6· (𝑖′−1)+2

)
= 𝑟0 ·

©«
∏
𝑖′∈[𝑖]

𝑒𝑖′,1 · 𝑒𝑖′,2 · 𝑒𝑖′,3
𝑒𝑖′,4 · 𝑒𝑖′,5 · 𝑒𝑖′,6

· 𝛿3,𝑖′,1 · 𝛿3,𝑖′,2 · 𝛿3,𝑖′,3
𝛿3,𝑖′,4 · 𝛿3,𝑖′,5 · 𝛿3,𝑖′,6

·
𝛿1,6· (𝑖′−1)+4 · 𝛿1,6· (𝑖′−1)+5
𝛿1,6· (𝑖′−1)+1 · 𝛿1,6· (𝑖′−1)+2

ª®¬ · 𝑟−1
6·𝑖

PP𝑖 =
ℎ𝑖

𝑡0
· 𝑢𝑖 =

ℎ𝑖

𝑟0 · 𝑠0 · 𝛿1,0
· 𝑠0 · 𝑟6·𝑖 · 𝛿2,𝑖 = Δ𝑖 ·

∏
𝑖′∈[𝑖]

𝑒𝑖′,1 · 𝑒𝑖′,2 · 𝑒𝑖′,3
𝑒𝑖′,4 · 𝑒𝑖′,5 · 𝑒𝑖′,6

Now, for any 𝑖 ∈ [𝑛 − 1], Δ𝑖 depends on the following multiplicative errors:

• 𝛿1,𝑘 for all 𝑘 < 6 · 𝑖 such that 𝑘 = 0 or 𝑘 ≠ 0 mod 3

• 𝛿2,𝑖

• 𝛿3,𝑖′, 𝑗 for all 𝑖′ ≤ 𝑖 and 𝑗 ∈ [6]

Every multiplicative error 𝛿1,𝑘 , 𝛿2,𝑖′, or 𝛿3,𝑖′, 𝑗 is a factor in some Δ𝑖 .

If the adversary introduces a non-zero error 𝜖 , it will cause one of the 𝛿 errors to be statistically
close to uniformly random, and most of the 𝛿 errors will be independent of each other. We analyze
four cases below and show that one of the 𝛿 values will be statistically close to uniformly random in
each case.

Let us assume that for all 𝑘 , 𝑟𝑘 ≠ 0 and 𝑠𝑘 ≠ 0, and for all (𝑖, 𝑗), 𝑒𝑖, 𝑗 ≠ 0. This occurs with
overwhelming probability over the randomness of the (𝑟𝑘 , 𝑠𝑘)-values and 𝛾 .

44

1. For any 𝑘 ∈ {0, . . . , 6 · (𝑛 − 1)} such that 𝑘 = 0 or 𝑘 ≠ 0 mod 3, if 𝜀1,𝑘 ≠ 0 then 𝛿1,𝑘 will be
uniformly random over F\{1} due to the randomness of 𝑟𝑘 . This is because for any 𝛿1,𝑘 ∈ F\{1},
there is a unique value of 𝑟𝑘 that will produce that 𝛿1,𝑘 -value:

𝑟𝑘 =
𝜀1,𝑘

𝑠𝑘 · (𝛿1,𝑘 − 1)

We can also show that 𝛿1,𝑘 will be uniformly random over F\{1} due to the randomness of
𝑠𝑘 . This is because for any 𝛿1,𝑘 ∈ F\{1}, there is a unique value of 𝑠𝑘 that will produce that
𝛿1,𝑘 -value:

𝑠𝑘 =
𝜀1,𝑘

𝑟𝑘 · (𝛿1,𝑘 − 1)

2. For any 𝑖 ∈ [𝑛 − 1]: if 𝜀2,𝑖 ≠ 0, then 𝛿2,𝑖 will be uniformly random over F\{1} due to the
randomness of 𝑟6·𝑖 . This is because for any 𝛿2,𝑖 ∈ F\{1}, there is a unique value of 𝑟6·𝑖 that will
produce that 𝛿2,𝑖-value:

𝑟6·𝑖 =
𝜀2,𝑖

𝑠0 · (𝛿2,𝑖 − 1)

3. For each 𝑖 ∈ [𝑛 − 1], 𝑗 ∈ {1, 2, 3}, and 𝑘 = 6 · (𝑖 − 1) + 𝑗 : if 𝜀3,𝑖, 𝑗 ≠ 0 or 𝜀4,𝑖, 𝑗 ≠ 0, then with
overwhelming probability, 𝛿3,𝑖, 𝑗 ≠ 1. The only way that 𝛿3,𝑖, 𝑗 = 1 is if:

𝑠𝑘 = −
𝜀4,𝑖, 𝑗

𝜀3,𝑖, 𝑗

But 𝑠𝑘 is uniformly random and independent of 𝜀4,𝑖, 𝑗 and 𝜀3,𝑖, 𝑗 , so 𝛿3,𝑖, 𝑗 ≠ 1 with overwhelming
probability.
Next, 𝛿3,𝑖, 𝑗 will be uniformly random over F\{1} due to the randomness of 𝑟𝑘−1. This is because
for any 𝛿3,𝑖, 𝑗 ∈ F\{1}, there is a unique value of 𝑟𝑘−1 that will produce that 𝛿3,𝑖, 𝑗 -value:

𝑟𝑘−1 =
𝜀3,𝑖, 𝑗

(𝛿3,𝑖, 𝑗 − 1) · 𝑒𝑖, 𝑗
+

𝜀4,𝑖, 𝑗

(𝛿3,𝑖, 𝑗 − 1) · 𝑒𝑖, 𝑗 · 𝑠𝑘

4. For each 𝑖 ∈ [𝑛 − 1], 𝑗 ∈ {4, 5, 6}, and 𝑘 = 6 · (𝑖 − 1) + 𝑗 , if 𝜀3,𝑖, 𝑗 ≠ 0 or 𝜀4,𝑖, 𝑗 ≠ 0, then 𝛿3,𝑖, 𝑗 ≠ 1
with overwhelming probability.
Furthermore, 𝛿3,𝑖, 𝑗 will be uniformly random over F\{1} due to the randomness of 𝑠𝑘−1.

Using the above conclusions, we now prove that for some 𝑖 ∈ [𝑛 − 1], Δ𝑖 ≠ 1 with overwhelming
probability.

Claim 7.2. Let 𝑖 be the smallest value in [𝑛 − 1] for which at least one of the following is true:

• 𝛿1,𝑘 ≠ 0 for some 𝑘 < 6 · 𝑖 for which 𝑘 = 0 or 𝑘 ≠ 0 mod 3

• 𝛿2,𝑖 ≠ 0

• 𝛿3,𝑖, 𝑗 ≠ 0 for some 𝑖′ ≤ 𝑖 and 𝑗 ∈ [6]

Then with overwhelming probability, Δ𝑖 ≠ 1.

Proof. Δ𝑖 depends on the following 𝛿 errors, at least one of which is ≠ 1.

• 𝛿1,𝑘 for some 𝑘 < 6 · 𝑖 for which 𝑘 = 0 or 𝑘 ≠ 0 mod 3

45

• 𝛿2,𝑖

• 𝛿3,𝑖, 𝑗 for some 𝑗 ∈ [6]

We showed in the four cases above that the 𝛿 errors that are ≠ 1 are uniformly and independently
random over F\{1}. Particularly, we showed that:

• For every 𝑘 < 6 · 𝑖 for which 𝑘 = 0 or 𝑘 mod 6 ∈ {1, 2}, if 𝛿1,𝑘 ≠ 1, then it is uniformly random
due to the randomness of 𝑠𝑘 .

• For every 𝑘 < 6 · 𝑖 for which 𝑘 mod 6 ∈ {4, 5}, if 𝛿1,𝑘 ≠ 1, then it is uniformly random due to
the randomness of 𝑟𝑘 .

• If 𝛿2,𝑖 ≠ 1, then it is uniformly random due to the randomness of 𝑟6·𝑖 .

• If any of (𝛿3,𝑖,1, 𝛿3,𝑖,2, 𝛿3,𝑖,3) are ≠ 1, then they are uniformly random due to the randomness of
(𝑟6· (𝑖−1) , 𝑟6· (𝑖−1)+1, 𝑟6· (𝑖−1)+2), respectively.

• If any of (𝛿3,𝑖,4, 𝛿3,𝑖,5, 𝛿3,𝑖,6) are ≠ 1, then they are uniformly random due to the randomness of
(𝑠6· (𝑖−1)+3, 𝑠6· (𝑖−1)+4, 𝑠6· (𝑖−1)+5), respectively.

Since Δ𝑖 is the product and quotient of 𝛿-values that are either 1 or independent and uniformly ran-
dom over F\{1}, then Δ𝑖 is statistically close to uniform, and the probability that Δ𝑖 = 1 is negligible.

Finally, claim 7.1 and claim 7.2 imply that the desired inequality holds for some 𝑖 ∈ [𝑛 − 1] with
overwhelming probability if the adversary introduces some additive error 𝜀 ≠ 0 during a call to Fmult
in round 2.

We finally use lemma 7.1 to prove that the output distribution of round 2 output by the simulator
is statistically close to the real output in round 2.

Lemma 7.4. The simulated view of round 2 is statistically close to the view of the malicious provers in
round 2 of the real execution.

Proof. The view of the malicious provers in round 2 include:

• 𝑡𝑘 , for all 𝑘 ∈ {0, . . . , 6 · (𝑛 − 1)} such that 𝑘 = 0 or 𝑘 ≠ 0 mod 3

• 𝑓𝑖, 𝑗 for all (𝑖, 𝑗) ∈ [𝑛 − 1] × [6]

• [z(𝑥)]1

The simulator samples independent and uniformly random values for these outputs. We will show
that in the real protocol as well, these values are independent and uniformly random.

For every 𝑘 ∈ {0, . . . , 6 · (𝑛−1)} such that 𝑘 = 0 or 𝑘 mod 6 ∈ {1, 2}, 𝑡𝑘 = 𝑟𝑘 ·𝑠𝑘 +𝜀1,𝑘 is uniformly
random over F due to the randomness of 𝑠𝑘 . Furthermore, for every 𝑘 ∈ {0, . . . , 6 · (𝑛 − 1)} such that
𝑘 mod 6 ∈ {4, 5}, 𝑡𝑘 is uniformly random over F due to the randomness of 𝑟𝑘 .
For each 𝑖 ∈ [𝑛 − 1] and 𝑗 ∈ {1, 2, 3} and 𝑘 = 6 · (𝑖 − 1) + 𝑗 :

𝑓𝑖, 𝑗 = 𝑟𝑘−1 · 𝑒𝑖, 𝑗 · 𝑠𝑘 + 𝜀3,𝑖, 𝑗 · 𝑠𝑘 + 𝜀4,𝑖, 𝑗

Again by randomness of 𝑟𝑘−1, 𝑓𝑖, 𝑗 is uniformly random over F.
For each 𝑖 ∈ [𝑛 − 1] and 𝑗 ∈ {4, 5, 6} and 𝑘 = 6 · (𝑖 − 1) + 𝑗 :

𝑓𝑖, 𝑗 = 𝑠𝑘−1 · 𝑒𝑖, 𝑗 · 𝑟𝑘 + 𝜀3,𝑖, 𝑗 · 𝑟𝑘 + 𝜀4,𝑖, 𝑗

46

𝑓𝑖, 𝑗 is uniformly random over F due to the randomness of 𝑠𝑘−1.
Finally, [z(𝑥)]1 is uniformly random over G1 due to the randomness of 𝑎7, since

z(𝑥) = (𝑏7 · 𝑥2 + 𝑏8 · 𝑥 + 𝑏9) · Z𝐻 (𝑥) +
𝑛∑︁
𝑖=1

PP𝑖−1 · L𝑖 (𝑥)

= 𝑎7 · Z𝐻 (𝑥) +
𝑛∑︁
𝑖=1

PP𝑖−1 · L𝑖 (𝑥),

and the value of 𝑎7 is independent of [a(𝑥)]1, [b(𝑥)]1, [c(𝑥)]1, (𝑟𝑘 , 𝑠𝑘)𝑘 (by lemma 7.1). Therefore, the
value of [z(𝑥)]1 is uniformly random in G1 and independent of all previous outputs of the protocol.

We have shown that the outputs of round 2 – (𝑡𝑘)𝑘 , (𝑓𝑖, 𝑗)𝑖, 𝑗 , [z(𝑥)]1 – are uniformly random due
to independent sources of randomness: (𝑟𝑘 , 𝑠𝑘)𝑘 , 𝑎7. Therefore, these outputs will be independently
random. This is the same distribution of outputs that the simulator generates, so the simulator cor-
rectly simulates round 2.

Round 3. In round 3, the adversary can introduce 7 error polynomials, one for each call to FpolyMult.
We prove in lemma 7.5 that the randomness of 𝑎10, 𝑎8, and 𝑎11 (guaranteed by lemma 7.1) ensures
that the simulated view in round 3 is statistically close to uniformly random and independent of the
simulated transcript so far.

Looking ahead, we also need to prove that in the evaluation for t(𝑋), 𝑎8 is multiplied by a non-
zero value (to be able to use this random mask for correct simulation in future). In lemma 7.6, we
prove this assuming that the computational Diffie-Hellman (CDH) assumption holds in G1. Specifi-
cally, 𝑎8 is multiplied by:

𝛼 · (a′′(𝑥) · b′′(𝑥) · c′′(𝑥) + 𝜀5(𝑥) · c′′(𝑥) + 𝜀6(𝑥)) (4)

While it is possible that 𝑒𝑞. (4) equals zero if the adversary chooses 𝜀5(𝑋) and 𝜀6(𝑋) cleverly, we
show that if that happens, then this adversary can be used to break CDH. We formally state and
prove these lemmas below.

Lemma 7.5. The simulated view of round 3 – ([tlo(𝑥)]1, [tmid(𝑥)]1, [thi(𝑥)]1) – is statistically close to
uniform over F3, and independent of the simulated transcript until round 2.

Proof. The randomness of
(
tlo(𝑥), tmid(𝑥), thi(𝑥)

)
is due to the randomness of (𝑎8, 𝑎10, 𝑎11), which

are independent of the transcript so far. Now, the adversary may add an error polynomial 𝜀 (𝑋)
wherever two secret-shared polynomials are multiplied. We can express t(𝑋), with the adversary’s
errors included, as follows:

Let s(𝑋) := (a(𝑋) · b(𝑋) + 𝜀1 (𝑋)) · q𝑀 (𝑋)
+ a(𝑋) · q𝐿 (𝑋) + b(𝑋) · q𝑅 (𝑋) + c(𝑋) · q𝑂 (𝑋) + 𝑃𝐼 (𝑋) + q𝐶 (𝑋)
+ (a′ (𝑋) · b′ (𝑋) · c′ (𝑋) + 𝜀2 (𝑋) · c′ (𝑋) + 𝜀3 (𝑋)) · z(𝑋) · 𝛼 + 𝜀4 (𝑋) · 𝛼

− (a′′ (𝑋) · b′′ (𝑋) · c′′ (𝑋) + 𝜀5 (𝑋) · c′′ (𝑋) + 𝜀6 (𝑋)) · z(𝑋𝜔) · 𝛼 + 𝜀7 (𝑋) · 𝛼
+ (z(𝑋) − 1) · 𝐿1 (𝑋) · 𝛼2

Then t(𝑋) = Qt
(
s(𝑋)
Z𝐻 (𝑋)

)

47

In the formula for t(𝑥), 𝑎8 is multiplied by 𝛼 · (a′′ (𝑥) · b′′ (𝑥) · c′′ (𝑥) + 𝜀5 (𝑥) · c′′ (𝑥) + 𝜀6 (𝑥)) . Now,
consider for s′(𝑋) = (a′′(𝑋) · b′′(𝑋) · c′′(𝑋) + 𝜀5(𝑋) · c′′(𝑋) + 𝜀6(𝑋)) ,

s′′ (𝑋) = s(𝑋) − s′ (𝑋) · z(𝑋𝜔) · 𝛼
= (a(𝑋) · b(𝑋) + 𝜀1 (𝑋)) · q𝑀 (𝑋)
+ a(𝑋) · q𝐿 (𝑋) + b(𝑋) · q𝑅 (𝑋) + c(𝑋) · q𝑂 (𝑋) + 𝑃𝐼 (𝑋) + q𝐶 (𝑋)
+ (a′ (𝑋) · b′ (𝑋) · c′ (𝑋) + 𝜀2 (𝑋) · c′ (𝑋) + 𝜀3 (𝑋)) · z(𝑋) · 𝛼 + 𝜀4 (𝑋) · 𝛼
+ 𝜀7 (𝑋) · 𝛼
+ (z(𝑋) − 1) · 𝐿1 (𝑋) · 𝛼2,

and z0(𝑋) =
∑𝑛

𝑖=1 PP𝑖−1 · L𝑖 (𝑋), we have:

z(𝑋) = (𝑏7 · 𝑋 2 + 𝑏8 · 𝑋 + 𝑏9) · Z𝐻 (𝑋) + z0 (𝑋)
s(𝑋) = s′′ (𝑋) + s′ (𝑋) · z(𝑋𝜔) · 𝛼
= s′′ (𝑋) + s′ (𝑋) ·

(
(𝑏7 · (𝑋𝜔)2 + 𝑏8 · (𝑋𝜔) + 𝑏9) · Z𝐻 (𝑋𝜔) + z0 (𝑋𝜔)

)
· 𝛼

=

(
s′′ (𝑋) + s′ (𝑋) · z0 (𝑋𝜔) · 𝛼

)
+

(
s′ (𝑋) · (𝑏7 · (𝑋𝜔)2 + 𝑏8 · (𝑋𝜔) + 𝑏9) · Z𝐻 (𝑋) · 𝛼

)
Note that Z𝐻 (𝑋𝜔) = Z𝐻 (𝑋) = 𝑋𝑛 − 1, therefore we have:

t(𝑋) = Qt
(
s(𝑋)
Z𝐻 (𝑋)

)
= Qt

(
s′′ (𝑋) + s′ (𝑋) · z0 (𝑋𝜔) · 𝛼

Z𝐻 (𝑋)

)
+

(
s′ (𝑋) · (𝑏7 · (𝑋𝜔)2 + 𝑏8 · (𝑋𝜔) + 𝑏9) · 𝛼

)
t(𝑥) = Qt

(
s′′ (𝑋) + s′ (𝑋) · z0 (𝑋𝜔) · 𝛼

Z𝐻 (𝑋)

)
(𝑥) + (𝛼 · s′ (𝑥) · 𝑎8)

Note that 𝑎8 is multiplied by 𝛼 · s′(𝑥).

Looking ahead, we will show that in the formula for t(𝑥), the first term –
Qt

(
s′′ (𝑋)+s′ (𝑋) ·z0 (𝑋𝜔) ·𝛼

Z𝐻 (𝑋)

)
(𝑥) – is independent of 𝑎8, and in the second term, the coefficient

𝛼 · s′(𝑥) is non-zero and independent of 𝑎8. Therefore, over the randomness of 𝑎8, t(𝑥) is uniformly
random.

When we evaluate t(𝑋) at 𝑋 = 𝑥 , then z(𝑥𝜔) is the only part of the expression that depends on
𝑎8:

z(𝑥𝜔) = 𝑎8 · Z𝐻 (𝑥𝜔) +
𝑛∑︁
𝑖=1

PP𝑖−1 · L𝑖 (𝑥𝜔)

For any given (PP1, . . . , PP𝑛−1), z(𝑥𝜔) is uniformly random in F, due to the randomness of 𝑎8.
Furthermore, the adversary’s error polynomials (𝜀1(𝑋), . . . , 𝜀7(𝑋)) are independent of 𝑎8 because

the perfect secrecy of the secret sharing hides the value of 𝑎8 from the adversary.
If the CDH problem in G1 is hard for all PPT adversaries, then with overwhelming probability,

the adversary will choose 𝜀5(𝑋) and 𝜀6(𝑋) such that

𝑠′(𝑥) = a′′(𝑥) · b′′(𝑥) · c′′(𝑥) + 𝜀5(𝑥) · c′′(𝑥) + 𝜀6(𝑥) ≠ 0

See lemma 7.6 for the proof. In this case, z(𝑥𝜔) is multiplied by a non-zero value, so the value of t(𝑥)
will be uniformly random in F, due to the randomness of 𝑎8. Finally, (tlo(𝑥), tmid(𝑥), thi(𝑥)) will be
statistically close to independent and uniformly random in F due to the randomness of (𝑎8, 𝑎10, 𝑎11).

48

First, the protocol in round 3 derives three polynomials (t′lo(𝑋), t
′
mid(𝑋), t

′
hi(𝑋)) and computes:

tlo(𝑥) = 𝑎10 + t′lo(𝑥)
thi(𝑥) = 𝑎11 + t′hi(𝑥)

For any values of (t′lo(𝑥), t
′
hi(𝑥)), the values of (tlo(𝑥), thi(𝑥)) will be uniformly random and inde-

pendent in F, due to the randomness of (𝑎10, 𝑎11).
Next, the protocol also computes tmid(𝑥), which satisfies:

tmid(𝑥) = 𝑥−𝑛 ·
(
t(𝑥) − tlo(𝑥) − 𝑥2𝑛 · thi(𝑥)

)
Then for any values of (tlo(𝑥), thi(𝑥)), tmid(𝑥) is uniformly random, due to the randomness of t(𝑥)
and 𝑎8.

Lemma 7.6. If CDH inG1 is hard for the adversary, then with overwhelming probability, the adversary
will choose 𝜀5(𝑋), 𝜀6(𝑋) such that

a′′(𝑥) · b′′(𝑥) · c′′(𝑥) + 𝜀5(𝑥) · c′′(𝑥) + 𝜀6(𝑥) ≠ 0

Proof. Let us assume toward contradiction that there is some adversary A such that with non-
negligible probability in 𝜆, A outputs polynomials 𝜀5(𝑋), 𝜀6(𝑋) such that

a′′(𝑥) · b′′(𝑥) · c′′(𝑥) + 𝜀5(𝑥) · c′′(𝑥) + 𝜀6(𝑥) = 0 (5)

Now we’ll useA to construct an adversary that wins the computational Diffie-Hellman (CDH) game
with non-negligible probability in 𝜆:

1. The CDH adversary is given ([1]1, [𝐴]1, [𝐵]1) where (𝐴, 𝐵) $← F2.

2. The CDH adversary samples 𝑥 $← F and 𝐶
$← F and uses 𝑥 to prepare the common prepro-

cessed input for Plonk. Then they run the simulator for round 1 of Plonk and they force the
output of round 1 to be:

[a(𝑥)]1 = [𝐴]1
[b(𝑥)]1 = [𝐵]1
[c(𝑥)]1 = [𝐶]1

3. In round 2 of Plonk, the CDH adversary computes 𝛽,𝛾 . Then they sample 𝑍
$← F and force

the output of round 2 of Plonk to be:

[z(𝑥)]1 = [𝑍]1

4. In round 3 of Plonk, the Plonk adversary outputs polynomials 𝜀5(𝑋), 𝜀6(𝑋).

5. The CDH adversary defines the following polynomial:

p(𝑋) := −𝜀5(𝑋) − 𝜀6(𝑋) ·
1

c(𝑋) + 𝛽S𝜎3(𝑋) + 𝛾
− b(𝑋) · (𝛽S𝜎1(𝑋) + 𝛾) − a(𝑋) · (𝛽S𝜎2(𝑋) + 𝛾) − (𝛽S𝜎1(𝑋) + 𝛾) · (𝛽S𝜎2(𝑋) + 𝛾)

and computes [p(𝑥)]1 using 𝑥,𝐶, [𝐴]1, [𝐵]1, 𝛽, 𝛾 . Finally, the CDH adversary’s output is
[p(𝑥)]1.

49

We will show that if eq. (5) is satisfied, then [p(𝑥)]1 = [𝐴 · 𝐵]1. If eq. (5) is satisfied, then:

a′′(𝑥) · b′′(𝑥) = −𝜀5(𝑥) − 𝜀6(𝑥) ·
1

c′′(𝑥)

[a(𝑥) + 𝛽S𝜎1(𝑥) + 𝛾] · [b(𝑥) + 𝛽S𝜎2(𝑥) + 𝛾] = −𝜀5(𝑥) − 𝜀6(𝑥) ·
1

c′′(𝑥)

a(𝑥) · b(𝑥) = −𝜀5(𝑥) − 𝜀6(𝑥) ·
1

c′′(𝑥) − b(𝑥) · (𝛽S𝜎1(𝑥) + 𝛾)

− a(𝑥) · (𝛽S𝜎2(𝑥) + 𝛾) − (𝛽S𝜎1(𝑥) + 𝛾) · (𝛽S𝜎2(𝑥) + 𝛾) = p(𝑥)
𝐴 · 𝐵 = p(𝑥)

Then [p(𝑥)]1 = [𝐴 · 𝐵]1. We have shown that the CDH adversary wins the CDH game with non-
negligible probability. This is a contradiction so the original assumption must have been false. In
fact, with overwhelming probability, A will output polynomials 𝜀5(𝑋), 𝜀6(𝑋) such that

a′′(𝑥) · b′′(𝑥) · c′′(𝑥) + 𝜀5(𝑥) · c′′(𝑥) + 𝜀6(𝑥) ≠ 0

Round 4. In round 4, the adversary cannot introduce additive errors because Fmult and FpolyMult
are not called in this round. The simulated view of round 4 – (𝑎,𝑏, 𝑐, 𝑧𝜔) – will be uniformly random
in F and independent of all previous outputs, due to the randomness of (𝑎2, 𝑎4, 𝑎6, 𝑎9) (lemma 7.1).
(𝑎,𝑏, 𝑐, 𝑧𝜔) satisfy the following equations:

𝑎 = a(𝔷) = (𝑏1 · 𝔷 + 𝑏2) · 𝑍𝐻 (𝔷) +
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝐿𝑖 (𝔷) = 𝑎2 · 𝑍𝐻 (𝔷) +
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝐿𝑖 (𝔷)

𝑏 = b(𝔷) = (𝑏3 · 𝔷 + 𝑏4) · 𝑍𝐻 (𝔷) +
𝑛∑︁
𝑖=1

𝑤𝑛+𝑖 · 𝐿𝑖 (𝔷) = 𝑎4 · 𝑍𝐻 (𝔷) +
𝑛∑︁
𝑖=1

𝑤𝑛+𝑖 · 𝐿𝑖 (𝔷)

𝑐 = c(𝔷) = (𝑏5 · 𝔷 + 𝑏6) · 𝑍𝐻 (𝔷) +
𝑛∑︁
𝑖=1

𝑤2𝑛+𝑖 · 𝐿𝑖 (𝔷) = 𝑎6 · 𝑍𝐻 (𝔷) +
𝑛∑︁
𝑖=1

𝑤2𝑛+𝑖 · 𝐿𝑖 (𝔷)

𝑧𝜔 = z(𝔷𝜔) =
(
𝑏7 · (𝔷𝜔)2 + 𝑏8 (𝔷𝜔) + 𝑏9

)
· Z𝐻 (𝔷𝜔) +

𝑛∑︁
𝑖=1

PP𝑖−1 · L𝑖 (𝔷𝜔)

= 𝑎9 · Z𝐻 (𝔷𝜔) +
𝑛∑︁
𝑖=1

PP𝑖−1 · L𝑖 (𝔷𝜔)

Due to the randomness of (𝑎2, 𝑎4, 𝑎6, 𝑎9), (𝑎,𝑏, 𝑐, 𝑧𝜔) are uniformly random and independent of the
previous outputs of the protocol.
Finally, s𝜎1 = S𝜎1(𝔷) and s𝜎2 = S𝜎2(𝔷) are computed the same way in the real protocol as in the
simulated protocol.

Round 5. In round 5, the protocol computes 𝑉 = Rd
(
num(𝑋)
𝑋−𝔷

)
, and the simulator handles this by

setting 𝑉 = 0 if and only if the following conditions are all satisfied:

Definition 7.1 (Conditions).

1. In round 2, every call to Fmult has an additive error of 𝜀 = 0.

2. 0 = 𝜀2(𝑋) = 𝜀3(𝑋) = 𝜀5(𝑋) = 𝜀6(𝑋)

3. 0 = Qt
(
𝜀1 (𝑋) ·q𝑀 (𝑋)+𝜀4 (𝑋) ·𝛼+𝜀7 (𝑋) ·𝛼

Z𝐻 (𝑋)

)
50

In lemma 7.7 (with the help of several observations formalized in lemma 7.8-lemma 7.12), we
formally prove that the simulator handles this step correctly because in the real protocol, except
with negligible probability, 𝑉 = 0 if and only if the conditions of definition 7.1 are satisfied.
To complete the proof, in lemma 7.13, we finally show that if FcheckZero([𝑉]) accepts, then the sim-
ulator computes the correct values of [W𝔷 (𝑥)]1 and [W𝔷𝜔 (𝑥)]1:

W𝔷 (𝑥) =
num(𝑥)
𝑥 − 𝔷 ; W𝔷𝜔 (𝑥) =

z(𝑥) − 𝑧𝜔
𝑥 − 𝔷𝜔

Lemma 7.7. With overwhelming probability, 𝑉 = 0 if and only if the conditions of definition 7.1 are
satisfied.

Proof. First, let us split s(𝑋) into the terms e(𝑋) that depend on the errors (𝜀1(𝑋), . . . , 𝜀7(𝑋)) and
the terms s̃(𝑋) that do not:

s̃(𝑋) = a(𝑋) · b(𝑋) · q𝑀 (𝑋) + a(𝑋) · q𝐿 (𝑋) + b(𝑋) · q𝑅 (𝑋)
+ c(𝑋) · q𝑂 (𝑋) + 𝑃𝐼 (𝑋) + q𝐶 (𝑋) + a′(𝑋) · b′(𝑋) · c′(𝑋) · z(𝑋) · 𝛼
− a′′(𝑋) · b′′(𝑋) · c′′(𝑋) · z(𝑋𝜔) · 𝛼 + (z(𝑋) − 1) · 𝐿1(𝑋) · 𝛼2

e(𝑋) = 𝜀1(𝑋) · q𝑀 (𝑋) + 𝜀4(𝑋) · 𝛼 + 𝜀7(𝑋) · 𝛼
+ (𝜀2(𝑋) · c′(𝑋) + 𝜀3(𝑋)) · z(𝑋) · 𝛼
− (𝜀5(𝑋) · c′′(𝑋) + 𝜀6(𝑋)) · z(𝑋𝜔) · 𝛼

Then, s(𝑋) = s̃(𝑋) + e(𝑋) and r(𝔷) = s̃(𝔷) − Z𝐻 (𝔷) · t(𝔷). We prove in lemma 7.8 that, with over-
whelming probability, 𝑉 = 0 if and only if

0 = Rd
(
s̃(𝑋)
Z𝐻 (𝑋)

)
and 0 = Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
Now consider the following exhaustive cases, which prove the lemma.

1. Case 1: Condition 1 is not satisfied (some call to Fmult in round 2 has an additive error of 𝜀 ≠ 0).
Then with overwhelming probability, Rd

(
s̃(𝑋)
Z𝐻 (𝑋)

)
≠ 0 (lemma 7.9), so 𝑉 ≠ 0.

2. Case 2: Condition 2 is not satisfied (at least one of 𝜀2(𝑋), 𝜀3(𝑋), 𝜀5(𝑋), or 𝜀6(𝑋) is non-zero).
Then with overwhelming probability, Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
≠ 0 (lemma 7.11), so 𝑉 ≠ 0.

3. Case 3: Condition 2 is satisfied, but condition 3 is not satisfied:

0 = 𝜀2(𝑋) = 𝜀3(𝑋) = 𝜀5(𝑋) = 𝜀6(𝑋)

0 ≠ Qt
(
𝜀1(𝑋) · q𝑀 (𝑋) + 𝜀4(𝑋) · 𝛼 + 𝜀7(𝑋) · 𝛼

Z𝐻 (𝑋)

)
Then

Qt
(
e(𝑋)
Z𝐻 (𝑋)

)
= Qt

(
𝜀1(𝑋) · q𝑀 (𝑋) + 𝜀4(𝑋) · 𝛼 + 𝜀7(𝑋) · 𝛼

Z𝐻 (𝑋)

)
≠ 0

by lemma 7.10. Then 𝑉 ≠ 0.

51

4. Case 4: Conditions 1, 2, and 3 are satisfied. Then Rd
(

s̃(𝑋)
Z𝐻 (𝑋)

)
= 0 (lemma 7.9), and

Qt
(
e(𝑋)
Z𝐻 (𝑋)

)
= Qt

(
𝜀1(𝑋) · q𝑀 (𝑋) + 𝜀4(𝑋) · 𝛼 + 𝜀7(𝑋) · 𝛼

Z𝐻 (𝑋)

)
= 0

by lemma 7.10. Then 𝑉 = 0.

Now, we formally prove the equivalent conditions for 𝑉 = 0, used in the proof above.

Lemma 7.8. Except with negligible probability, 𝑉 = 0 if and only if

0 = Rd
(
s̃(𝑋)
Z𝐻 (𝑋)

)
and 0 = Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
Proof.

1. 𝑉 = num(𝔷). Recall that𝑉 = Rd
(
num(𝑋)
𝑋−𝔷

)
. The remainder is a polynomial of degree 0 because

the divisor, 𝑋 − 𝔷, is a polynomial of degree 1. Furthermore, num(𝑋) −𝑉 is divisible by 𝑋 − 𝔷.
Therefore 𝑉 = num(𝔷).

2. 𝑉 = s̃(𝔷) − Z𝐻 (𝔷) · t(𝔷).

𝑉 = num(𝔷)
= r(𝔷) + 𝑣 (a(𝔷) − 𝑎) + 𝑣2(b(𝔷) − 𝑏) + 𝑣3(c(𝔷) − 𝑐)
+ 𝑣4(S𝜎1(𝔷) − s𝜎1) + 𝑣5(S𝜎2(𝔷) − s𝜎2)

= r(𝔷)
= s̃(𝔷) − Z𝐻 (𝔷) · t(𝔷)

3. 𝑉 = Rd
(

s̃(𝑋)
Z𝐻 (𝑋)

)
(𝔷) − Z𝐻 (𝔷) · Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
(𝔷). This is because:

t(𝑋) = Qt
(
s(𝑋)
Z𝐻 (𝑋)

)
= Qt

(
s̃(𝑋)
Z𝐻 (𝑋)

)
+Qt

(
e(𝑋)
Z𝐻 (𝑋)

)

s̃(𝑋) − Z𝐻 (𝑋) · t(𝑋) = s̃(𝑋) − Z𝐻 (𝑋) · Qt
(
s̃(𝑋)
Z𝐻 (𝑋)

)
− Z𝐻 (𝑋) · Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
= Rd

(
s̃(𝑋)
Z𝐻 (𝑋)

)
− Z𝐻 (𝑋) · Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
𝑉 = s̃(𝔷) − Z𝐻 (𝔷) · t(𝔷)

= Rd
(
s̃(𝑋)
Z𝐻 (𝑋)

)
(𝔷) − Z𝐻 (𝔷) · Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
(𝔷)

52

4. With overwhelming probability over the randomness of 𝔷, 𝑉 = 0 if and only if Rd
(

s̃(𝑋)
Z𝐻 (𝑋)

)
−

Z𝐻 (𝑋) · Qt
(

e(𝑋)
Z𝐻 (𝑋)

)
= 0.

First, if Rd
(

s̃(𝑋)
Z𝐻 (𝑋)

)
− Z𝐻 (𝑋) · Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
= 0, then

𝑉 = Rd
(
s̃(𝑋)
Z𝐻 (𝑋)

)
(𝔷) − Z𝐻 (𝔷) · Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
(𝔷)

= 0

Second, if the polynomial Rd
(

s̃(𝑋)
Z𝐻 (𝑋)

)
− Z𝐻 (𝑋) · Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
≠ 0, then with overwhelming

probability,

𝑉 = Rd
(
s̃(𝑋)
Z𝐻 (𝑋)

)
(𝔷) − Z𝐻 (𝔷) · Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
(𝔷) ≠ 0

This is because the functions s̃(𝑋),Z𝐻 (𝑋), e(𝑋) are determined by the end of round 3, but 𝔷 is
not sampled until round 4, so 𝔷 is independently random from s̃(𝑋),Z𝐻 (𝑋), e(𝑋). Evaluating
a non-zero polynomial at a random input will produce 0 with only negligible probability.

5. Rd
(

s̃(𝑋)
Z𝐻 (𝑋)

)
− Z𝐻 (𝑋) · Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
= 0 if and only if Rd

(
s̃(𝑋)
Z𝐻 (𝑋)

)
= 0 and Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
= 0.

This is because if
Rd

(
s̃(𝑋)
Z𝐻 (𝑋)

)
− Z𝐻 (𝑋) · Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
= 0

then

Rd
(
s̃(𝑋)
Z𝐻 (𝑋)

)
= Z𝐻 (𝑋) · Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
By definition, Rd

(
s̃(𝑋)
Z𝐻 (𝑋)

)
is not divisible by Z𝐻 (𝑋) unless Rd

(
s̃(𝑋)
Z𝐻 (𝑋)

)
= 0. Since Z𝐻 (𝑋) ·

Qt
(

e(𝑋)
Z𝐻 (𝑋)

)
is divisible by Z𝐻 (𝑋), then

0 = Rd
(
s̃(𝑋)
Z𝐻 (𝑋)

)
0 = Z𝐻 (𝑋) · Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
0 = Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
Conversely, if Rd

(
s̃(𝑋)
Z𝐻 (𝑋)

)
= 0 and Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
= 0, then Rd

(
s̃(𝑋)
Z𝐻 (𝑋)

)
−Z𝐻 (𝑋) ·Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
= 0.

6. In summary: with overwhelming probability over the randomness of 𝔷, 𝑉 = 0 if and only if:

0 = Rd
(
s̃(𝑋)
Z𝐻 (𝑋)

)
and 0 = Qt

(
e(𝑋)
Z𝐻 (𝑋)

)

53

Lemma 7.9. With overwhelming probability, Rd
(

s̃(𝑋)
Z𝐻 (𝑋)

)
= 0 if and only if every call to Fmult in round

2 has an additive error of 𝜀 = 0.

Proof.

1.

s̃(𝑋) = a(𝑋) · b(𝑋) · q𝑀 (𝑋) + a(𝑋) · q𝐿 (𝑋) + b(𝑋) · q𝑅 (𝑋) + c(𝑋) · q𝑂 (𝑋) + 𝑃𝐼 (𝑋) + q𝐶 (𝑋)
+ a′(𝑋) · b′(𝑋) · c′(𝑋) · z(𝑋) · 𝛼
− a′′(𝑋) · b′′(𝑋) · c′′(𝑋) · z(𝑋𝜔) · 𝛼
+ (z(𝑋) − 1) · 𝐿1(𝑋) · 𝛼2

2. The first line of s̃(𝑋) does not contribute to Rd
(

s̃(𝑋)
Z𝐻 (𝑋)

)
. Since the witness is accepting:

0 = Rd
(
a(𝑋) · b(𝑋) · q𝑀 (𝑋) + a(𝑋) · q𝐿 (𝑋) + b(𝑋) · q𝑅 (𝑋) + c(𝑋) · q𝑂 (𝑋) + 𝑃𝐼 (𝑋) + q𝐶 (𝑋)

Z𝐻 (𝑋)

)
3. The fourth line of s̃(𝑋) does not contribute to Rd

(
s̃(𝑋)
Z𝐻 (𝑋)

)
. Since z(𝜔1) = 1:

0 = Rd
(
(z(𝑋) − 1) · 𝐿1(𝑋)

Z𝐻 (𝑋)

)
4. Then Rd

(
s̃(𝑋)
Z𝐻 (𝑋)

)
only depends on the second and third lines of s̃(𝑋).

Rd
(
s̃(𝑋)
Z𝐻 (𝑋)

)
= Rd

(
a′ (𝑋) · b′ (𝑋) · c′ (𝑋) · z(𝑋) − a′′ (𝑋) · b′′ (𝑋) · c′′ (𝑋) · z(𝑋𝜔)

Z𝐻 (𝑋)

)
· 𝛼

5. If every call to Fmult in round 2 has an additive error of 𝜀 = 0, then Rd
(

s̃(𝑋)
Z𝐻 (𝑋)

)
= 0. This is

because for every 𝑖 ∈ [𝑛 − 1]:

PP𝑖 =
∏
𝑖′∈[𝑖]

(
𝑤𝑖′ + 𝛽𝜔𝑖′ + 𝛾

)
·
(
𝑤𝑛+𝑖′ + 𝛽𝑘1𝜔

𝑖′ + 𝛾
)
·
(
𝑤2𝑛+𝑖′ + 𝛽𝑘2𝜔

𝑖′ + 𝛾
)

(𝑤𝑖′ + 𝜎∗ (𝑖′) · 𝛽 + 𝛾) · (𝑤𝑛+𝑖′ + 𝜎∗ (𝑛 + 𝑖′) · 𝛽 + 𝛾) · (𝑤2𝑛+𝑖′ + 𝜎∗ (2𝑛 + 𝑖′) · 𝛽 + 𝛾)

Then for every 𝑖 ∈ [𝑛],

z(𝜔𝑖+1) =
(
𝑤𝑖 + 𝛽𝜔𝑖 + 𝛾

)
·
(
𝑤𝑛+𝑖 + 𝛽𝑘1𝜔

𝑖 + 𝛾
)
·
(
𝑤2𝑛+𝑖 + 𝛽𝑘2𝜔

𝑖 + 𝛾
)

(𝑤𝑖 + 𝜎∗ (𝑖) · 𝛽 + 𝛾) · (𝑤𝑛+𝑖 + 𝜎∗ (𝑛 + 𝑖) · 𝛽 + 𝛾) · (𝑤2𝑛+𝑖 + 𝜎∗ (2𝑛 + 𝑖) · 𝛽 + 𝛾)
· z(𝜔𝑖)

z(𝜔𝑖+1) = a′ (𝜔𝑖) · b′ (𝜔𝑖) · c′ (𝜔𝑖)
a′′ (𝜔𝑖) · b′′ (𝜔𝑖) · c′′ (𝜔𝑖) · z(𝜔

𝑖)

0 = a′ (𝜔𝑖) · b′ (𝜔𝑖) · c′ (𝜔𝑖) · z(𝜔𝑖)
− a′′ (𝜔𝑖) · b′′ (𝜔𝑖) · c′′ (𝜔𝑖) · z(𝜔𝑖+1)

Therefore,

0 = Rd
(
a′(𝑋) · b′(𝑋) · c′(𝑋) · z(𝑋) − a′′(𝑋) · b′′(𝑋) · c′′(𝑋) · z(𝑋𝜔)

Z𝐻 (𝑋)

)
= Rd

(
s̃(𝑋)
Z𝐻 (𝑋)

)
54

6. It remains to show that if a non-zero additive error is introduced in round 2 during some call
to Fmult, then Rd

(
s̃(𝑋)
Z𝐻 (𝑋)

)
≠ 0.

If a non-zero additive error is introduced in round 2 during some call to Fmult, then there is
some 𝑖 ∈ [𝑛 − 1], such that

PP𝑖 ≠
∏
𝑖′∈[𝑖]

(
𝑤𝑖′ + 𝛽𝜔𝑖′ + 𝛾

)
·
(
𝑤𝑛+𝑖′ + 𝛽𝑘1𝜔

𝑖′ + 𝛾
)
·
(
𝑤2𝑛+𝑖′ + 𝛽𝑘2𝜔

𝑖′ + 𝛾
)

(𝑤𝑖′ + 𝜎∗(𝑖′) · 𝛽 + 𝛾) · (𝑤𝑛+𝑖′ + 𝜎∗(𝑛 + 𝑖′) · 𝛽 + 𝛾) · (𝑤2𝑛+𝑖′ + 𝜎∗(2𝑛 + 𝑖′) · 𝛽 + 𝛾)
(6)

with overwhelming probability (lemma 7.3).

7. Let us pick 𝑖 to be the smallest value in [𝑛 − 1] for which eq. (6) holds. Then:

PP𝑖 ≠

(
𝑤𝑖 + 𝛽𝜔𝑖 + 𝛾

)
·
(
𝑤𝑛+𝑖 + 𝛽𝑘1𝜔

𝑖 + 𝛾
)
·
(
𝑤2𝑛+𝑖 + 𝛽𝑘2𝜔

𝑖 + 𝛾
)

(𝑤𝑖 + 𝜎∗ (𝑖) · 𝛽 + 𝛾) · (𝑤𝑛+𝑖 + 𝜎∗ (𝑛 + 𝑖) · 𝛽 + 𝛾) · (𝑤2𝑛+𝑖 + 𝜎∗ (2𝑛 + 𝑖) · 𝛽 + 𝛾)
· PP𝑖−1

z(𝜔𝑖+1) = a′ (𝜔𝑖) · b′ (𝜔𝑖) · c′ (𝜔𝑖)
a′′ (𝜔𝑖) · b′′ (𝜔𝑖) · c′′ (𝜔𝑖) · z(𝜔

𝑖)

0 = a′ (𝜔𝑖) · b′ (𝜔𝑖) · c′ (𝜔𝑖) · z(𝜔𝑖)
− a′′ (𝜔𝑖) · b′′ (𝜔𝑖) · c′′ (𝜔𝑖) · z(𝜔𝑖+1)

8. Since 𝜔𝑖 is a root of Z𝐻 (𝑋), that means:

0 ≠ Rd
(
a′(𝑋) · b′(𝑋) · c′(𝑋) · z(𝑋) − a′′(𝑋) · b′′(𝑋) · c′′(𝑋) · z(𝑋𝜔)

Z𝐻 (𝑋)

)
0 ≠ Rd

(
a′(𝑋) · b′(𝑋) · c′(𝑋) · z(𝑋) − a′′(𝑋) · b′′(𝑋) · c′′(𝑋) · z(𝑋𝜔)

Z𝐻 (𝑋)

)
· 𝛼

0 ≠ Rd
(
s̃(𝑋)
Z𝐻 (𝑋)

)

Lemma 7.10. If 0 = 𝜀2(𝑋) = 𝜀3(𝑋) = 𝜀5(𝑋) = 𝜀6(𝑋), then

Qt
(
e(𝑋)
Z𝐻 (𝑋)

)
= Qt

(
𝜀1(𝑋) · q𝑀 (𝑋) + 𝜀4(𝑋) · 𝛼 + 𝜀7(𝑋) · 𝛼

Z𝐻 (𝑋)

)
Proof.

e(𝑋) = 𝜀1(𝑋) · q𝑀 (𝑋) + 𝜀4(𝑋) · 𝛼 + 𝜀7(𝑋) · 𝛼
+ (𝜀2(𝑋) · c′(𝑋) + 𝜀3(𝑋)) · z(𝑋) · 𝛼
− (𝜀5(𝑋) · c′′(𝑋) + 𝜀6(𝑋)) · z(𝑋𝜔) · 𝛼

If 0 = 𝜀2(𝑋) = 𝜀3(𝑋) = 𝜀5(𝑋) = 𝜀6(𝑋), then

e(𝑋) = 𝜀1(𝑋) · q𝑀 (𝑋) + 𝜀4(𝑋) · 𝛼 + 𝜀7(𝑋) · 𝛼

Qt
(
e(𝑋)
Z𝐻 (𝑋)

)
= Qt

(
𝜀1(𝑋) · q𝑀 (𝑋) + 𝜀4(𝑋) · 𝛼 + 𝜀7(𝑋) · 𝛼

Z𝐻 (𝑋)

)

55

Lemma 7.11. If at least one of 𝜀2(𝑋), 𝜀3(𝑋), 𝜀5(𝑋), or 𝜀6(𝑋) is non-zero, then with overwhelming prob-
ability, 0 ≠ Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
.

Proof.

1. Next, let’s define some random variables. As before, let

• 𝑎6 := 𝑏5 · 𝔷 + 𝑏6

• 𝑎9 := 𝑏7 · (𝔷𝜔)2 + 𝑏8 · (𝔷𝜔) + 𝑏9

In addition, let

• 𝑎12 = 𝑏7 · 𝔷2 + 𝑏8 · 𝔷 + 𝑏9

We claim that over the randomness of (𝑏5, . . . , 𝑏9, 𝔷), (𝑎6, 𝑎9, 𝑎12) are statistically close to inde-
pendent and uniformly random over F. This is because for any 𝔷 ≠ 0 the function that maps
(𝑏5, . . . , 𝑏9) to (𝑎6, 𝑎9, 𝑎12) is a rank-3 linear function. Since (𝑏5, . . . , 𝑏9) are uniformly random
and independent, (𝑎6, 𝑎9, 𝑎12) are uniformly random and independent as well.

2. The round-3 error polynomials (𝜀1, . . . , 𝜀7) are independent of (𝑎6, 𝑎9, 𝑎12, 𝔷). This is because
the adversary must specify (𝜀1, . . . , 𝜀7) during round 3 based on the values they have seen so
far, and none of the values output so far depend on (𝑎6, 𝑎9, 𝑎12, 𝔷).

3. z(𝔷) is uniformly random due to the randomness of 𝑎12, and z(𝔷𝜔) is uniformly random due to
the randomness of 𝑎9.

Let z0(𝑋) =
𝑛∑︁
𝑖=1

PP𝑖−1 · L𝑖 (𝑋)

z(𝑋) = (𝑏7 · 𝑋 2 + 𝑏8 · 𝑋 + 𝑏9) · Z𝐻 (𝑋) + z0(𝑋)
z(𝔷) = 𝑎12 · Z𝐻 (𝔷) + z0(𝔷)

z(𝔷𝜔) = 𝑎9 · Z𝐻 (𝔷𝜔) + z0(𝔷𝜔)

Note that 𝔷, Z𝐻 (𝔷), and z0(𝔷) are independent of (𝑎9, 𝑎12), so z(𝔷) and z(𝔷𝜔) are uniformly
random due to the randomness of 𝑎12 and 𝑎9 respectively.

4. If at least one of 𝜀2(𝑋), 𝜀3(𝑋), 𝜀5(𝑋), or 𝜀6(𝑋) is non-zero, then e(𝔷) is statistically close to
uniformly random, due to the randomness of (𝑎6, 𝑎9, 𝑎12, 𝔷).
First, let us expand the expression of e(𝔷) to show 𝑎9 and 𝑎12:

e(𝔷) = 𝜀1(𝔷) · q𝑀 (𝔷) + 𝜀4(𝔷) · 𝛼 + 𝜀7(𝔷) · 𝛼
+ (𝜀2(𝔷) · c′(𝔷) + 𝜀3(𝔷)) · z(𝔷) · 𝛼
− (𝜀5(𝔷) · c′′(𝔷) + 𝜀6(𝔷)) · z(𝔷𝜔) · 𝛼

= 𝜀1(𝔷) · q𝑀 (𝔷) + 𝜀4(𝔷) · 𝛼 + 𝜀7(𝔷) · 𝛼
+ (𝜀2(𝔷) · c′(𝔷) + 𝜀3(𝔷)) · (𝑎12 · Z𝐻 (𝔷) + z0(𝔷)) · 𝛼
− (𝜀5(𝔷) · c′′(𝔷) + 𝜀6(𝔷)) · (𝑎9 · Z𝐻 (𝔷𝜔) + z0(𝔷𝜔)) · 𝛼

= 𝜀1(𝔷) · q𝑀 (𝔷) + 𝜀4(𝔷) · 𝛼 + 𝜀7(𝔷) · 𝛼
+ (𝜀2(𝔷) · c′(𝔷) + 𝜀3(𝔷)) · Z𝐻 (𝔷) · 𝛼 · 𝑎12 + (𝜀2(𝔷) · c′(𝔷) + 𝜀3(𝔷)) · z0(𝔷) · 𝛼
− (𝜀5(𝔷) · c′′(𝔷) + 𝜀6(𝔷)) · Z𝐻 (𝔷𝜔) · 𝛼 · 𝑎9 − (𝜀5(𝔷) · c′′(𝔷) + 𝜀6(𝔷)) · z0(𝔷𝜔) · 𝛼

56

Second, the only term that depends on 𝑎12 is

(𝜀2(𝔷) · c′(𝔷) + 𝜀3(𝔷)) · Z𝐻 (𝔷) · 𝛼 · 𝑎12

Furthermore, if at least one of 𝜀2(𝑋) or 𝜀3(𝑋) is non-zero, then

(𝜀2(𝔷) · c′(𝔷) + 𝜀3(𝔷)) · Z𝐻 (𝔷) · 𝛼 ≠ 0

with overwhelming probability over the randomness of 𝑎6 and 𝔷. This follows from lemma 7.12.
In this case, 𝑎12 has a non-zero coefficient, so e(𝔷) is uniformly random due to the randomness
of 𝑎12.
Third, the only term that depends on 𝑎9 is

− (𝜀5(𝔷) · c′′(𝔷) + 𝜀6(𝔷)) · Z𝐻 (𝔷𝜔) · 𝛼 · 𝑎9

Furthermore, if at least one of 𝜀5(𝑋) or 𝜀6(𝑋) is non-zero, then

− (𝜀5(𝔷) · c′′(𝔷) + 𝜀6(𝔷)) · Z𝐻 (𝔷𝜔) · 𝛼 ≠ 0

with overwhelming probability over the randomness of 𝑎6 and 𝔷. This follows from lemma 7.12.
In this case, 𝑎9 has a non-zero coefficient, so e(𝔷) is uniformly random due to the randomness
of 𝑎9.

5. Rd
(

e(𝑋)
Z𝐻 (𝑋)

)
is independent of (𝑎6, 𝑎9, 𝑎12, 𝔷).

Rd
(
e(𝑋)
Z𝐻 (𝑋)

)
=

∑︁
𝑖∈[𝑛]

L𝑖 (𝑋) · e(𝜔𝑖)

For any 𝑖 ∈ {0, . . . , 𝑛 − 1},

e(𝜔𝑖) = 𝜀1(𝜔𝑖) · q𝑀 (𝜔𝑖) + 𝜀4(𝜔𝑖) · 𝛼 + 𝜀7(𝜔𝑖) · 𝛼
+

(
𝜀2(𝜔𝑖) · (𝑤2𝑛+𝑖 + 𝛽 · 𝑘2 · 𝜔𝑖 + 𝛾) + 𝜀3(𝜔𝑖)

)
· PP𝑖−1 · 𝛼

−
(
𝜀5(𝜔𝑖) · (𝑤2𝑛+𝑖 + 𝛽 · S𝜎 3(𝜔𝑖) + 𝛾) + 𝜀6(𝜔𝑖)

)
· PP𝑖 · 𝛼

Here, we used the fact that z(𝜔𝑖) = PP𝑖−1.
Note that every component of the formula for e(𝜔𝑖) is fixed by the end of round 3, before 𝔷 is
chosen, and is independent of (𝑎6, 𝑎9, 𝑎12, 𝔷). Therefore, e(𝜔𝑖) is independent of (𝑎6, 𝑎9, 𝑎12, 𝔷)
and so is Rd

(
e(𝑋)
Z𝐻 (𝑋)

)
.

6. Qt
(

e(𝑋)
Z𝐻 (𝑋)

)
(𝔷) is statistically close to uniformly random due to the randomness of

(𝑎6, 𝑎9, 𝑎12, 𝔷).

e(𝑋) = Qt
(
e(𝑋)
Z𝐻 (𝑋)

)
· Z𝐻 (𝑋) + Rd

(
e(𝑋)
Z𝐻 (𝑋)

)
Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
(𝔷) = 1

Z𝐻 (𝔷)
·
(
e(𝔷) − Rd

(
e(𝑋)
Z𝐻 (𝑋)

)
(𝔷)

)
We know that e(𝔷) is statistically close to uniformly random due to the randomness of
(𝑎6, 𝑎9, 𝑎12, 𝔷), and Rd

(
e(𝑋)
Z𝐻 (𝑋)

)
(𝔷) is independent of (𝑎6, 𝑎9, 𝑎12, 𝔷). Therefore, Qt

(
e(𝑋)
Z𝐻 (𝑋)

)
(𝔷) is

statistically close to uniformly random due to the randomness of (𝑎6, 𝑎9, 𝑎12, 𝔷).

57

7. With overwhelming probability, Qt
(

e(𝑋)
Z𝐻 (𝑋)

)
(𝔷) ≠ 0. That implies that

Qt
(
e(𝑋)
Z𝐻 (𝑋)

)
(𝑋) ≠ 0

Lemma 7.12.

1. If at least one of 𝜀2(𝑋) or 𝜀3(𝑋) is non-zero, then

𝜀2(𝔷) · c′(𝔷) + 𝜀3(𝔷) ≠ 0

with overwhelming probability over the randomness of 𝑎6 and 𝔷.

2. Likewise, if at least one of 𝜀5(𝑋) or 𝜀6(𝑋) is non-zero, then

𝜀5(𝔷) · c′′(𝔷) + 𝜀6(𝔷) ≠ 0

with overwhelming probability over the randomness of 𝑎6 and 𝔷.

Proof.

1. We will just prove the first item because the proof of the second item is similar.

2. If 𝜀2(𝑋) = 0 and 𝜀3(𝑋) ≠ 0, then

𝜀2(𝔷) · c′(𝔷) + 𝜀3(𝔷) = 𝜀3(𝔷)

With overwhelming probability over the randomness of 𝔷, 𝜀3(𝔷) ≠ 0.

3. Next, if 𝜀2(𝑋) ≠ 0, then with overwhelming probability over the randomness of 𝔷, 𝜀2(𝔷) ≠ 0.
Then the only way that 𝜀2(𝔷) · c′(𝔷) + 𝜀3(𝔷) = 0 is if

c′(𝔷) = −𝜀3(𝔷)
𝜀2(𝔷)

4. c′(𝔷) is uniformly random due to the randomness of 𝑎6.

c′(𝔷) = c(𝔷) + 𝛽𝑘2𝔷 + 𝛾
= (𝑏5 · 𝔷 + 𝑏6) · Z𝐻 (𝔷) +

∑︁
𝑖∈[𝑛]

𝑤2𝑛+𝑖 · L𝑖 (𝔷) + 𝛽𝑘2𝔷 + 𝛾

= 𝑎6 · Z𝐻 (𝔷) +
∑︁
𝑖∈[𝑛]

𝑤2𝑛+𝑖 · L𝑖 (𝔷) + 𝛽𝑘2𝔷 + 𝛾

Since Z𝐻 (𝔷) ≠ 0, c′(𝔷) is uniformly random, over the randomness of 𝑎6.

5. Over the randomness of 𝑎6,

Pr
[
c′(𝔷) = −𝜀3(𝔷)

𝜀2(𝔷)

]
=

1
|F| = negl(𝜆)

6. In summary, if 𝜀2(𝑋) ≠ 0 or 𝜀3(𝑋) ≠ 0, then with overwhelming probability, 𝜀2(𝔷) · c′(𝔷) +
𝜀3(𝔷) ≠ 0.

58

Lemma 7.13. In the real protocol, if 𝑉 = 0, then:

W𝔷 (𝑥) =
num(𝑥)
𝑥 − 𝔷

W𝔷𝜔 (𝑥) =
z(𝑥) − 𝑧𝜔
𝑥 − 𝔷𝜔

Proof. We know that 𝑉 = num(𝔷) (from the proof of lemma 7.8). If 𝑉 = 0, then num(𝔷) = 0, so
num(𝑋) is divisible by (𝑋 − 𝔷). Therefore:

W𝔷 (𝑋) = Qt
(
num(𝑋)
𝑋 − 𝔷

)
=
num(𝑋)
𝑋 − 𝔷

W𝔷 (𝑥) =
num(𝑥)
𝑥 − 𝔷

Next, since z(𝔷𝜔) = 𝑧𝜔 , z(𝑋) − 𝑧𝜔 is divisible by (𝑋 − 𝔷𝜔), so

W𝔷𝜔 (𝑋) = Qt
(
z(𝑋) − 𝑧𝜔
𝑋 − 𝔷𝜔

)
=
z(𝑋) − 𝑧𝜔
𝑋 − 𝔷𝜔

W𝔷𝜔 (𝑥) =
z(𝑥) − 𝑧𝜔
𝑥 − 𝔷𝜔

This completes the proof of 𝑡-zero-knowledge against 𝑡 < 𝑁 /2 malicious provers.

Acknowledgements

S. Garg was supported in part by the AFOSR Award FA9550-24-1-0156 and research grants from
the Bakar Fund, J. P. Morgan Faculty Research Award, Supra Inc., Sui Foundation, and the Stellar
Development Foundation. A. Jain was supported in part by NSF CAREER 1942789, Johns Hopkins
University Catalyst award, JP Morgan Faculty Award, and research gifts from Ethereum Foundation,
Stellar Development Foundation, and Cisco.

59

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, USA, 1st edition, 2009.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. pages 315–
334, 2018.

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-
knowledge proofs on secret-shared data via fully linear PCPs. pages 67–97, 2019.

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Ru-
binstein, and Eran Tromer. The hunting of the SNARK. J. Cryptol., 30(4):989–1066,
2017.

[BDO14] Carsten Baum, Ivan Damgård, and Claudio Orlandi. Publicly auditable secure multi-
party computation. pages 175–196, 2014.

[BGIN19] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Practical fully secure three-party
computation via sublinear distributed zero-knowledge proofs. pages 869–886, 2019.

[BGIN20] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient fully secure computation
via distributed zero-knowledge proofs. pages 244–276, 2020.

[BGIN21] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Sublinear GMW-style compiler for
MPC with preprocessing. pages 457–485, 2021.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). pages
1–10, 1988.

[BIB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in con-
stant number of rounds of interaction. pages 201–209, 1989.

[BKa] Christopher Bender and Joseph Kraut. Implementation of renegade.

[BKb] Christopher Bender and Joseph Kraut. Renegade whitepaper.

[CBBZ23] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk: Plonk with
linear-time prover and high-degree custom gates. pages 499–530, 2023.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols (abstract) (informal contribution). page 462, 1988.

[CDF+08] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. Detection
of algebraic manipulation with applications to robust secret sharing and fuzzy extrac-
tors. pages 471–488, 2008.

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell,
and Ariel Nof. Fast large-scale honest-majority MPC for malicious adversaries. pages
34–64, 2018.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS.
pages 738–768, 2020.

60

[DEN24] Anders P. K. Dalskov, Daniel Escudero, and Ariel Nof. Fully secure MPC and zk-FLIOP
over rings: New constructions, improvements and extensions. pages 136–169, 2024.

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty
computation. pages 572–590, 2007.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. pages 643–662, 2012.

[FL19] Jun Furukawa and Yehuda Lindell. Two-thirds honest-majority MPC for malicious ad-
versaries at almost the cost of semi-honest. pages 1557–1571, 2019.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. pages 186–194, 1987.

[GGJ+23] Sanjam Garg, Aarushi Goel, Abhishek Jain, Guru-Vamsi Policharla, and Sruthi Sekar.
zkSaaS: Zero-knowledge SNARKs as a service. pages 4427–4444, 2023.

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Circuits
resilient to additive attacks with applications to secure computation. pages 495–504,
2014.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. pages 218–229, 1987.

[Gol01] Oded Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. pages 305–326,
2016.

[GSZ20] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery comes free in
honest majority MPC. pages 618–646, 2020.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953, 2019.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). pages 723–732, 1992.

[LN17] Yehuda Lindell and Ariel Nof. A framework for constructing fast MPC over arithmetic
circuits with malicious adversaries and an honest-majority. pages 259–276, 2017.

[LZW+24a] Xuanming Liu, Zhelei Zhou, Yinghao Wang, Jinye He, Bingsheng Zhang, Xiaohu Yang,
and Jiaheng Zhang. Scalable collaborative zk-SNARK and its application to efficient
proof outsourcing. Cryptology ePrint Archive, Paper 2024/940, 2024.

[LZW+24b] Xuanming Liu, Zhelei Zhou, Yinghao Wang, Bingsheng Zhang, and Xiaohu Yang. Scal-
able collaborative zk-SNARK: Fully distributed proof generation and malicious security.
Cryptology ePrint Archive, Paper 2024/143, 2024.

[Mic94] Silvio Micali. CS proofs (extended abstracts). pages 436–453, 1994.

[NV18] Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in honest-
majority MPC by batchwise multiplication verification. pages 321–339, 2018.

[OB] Alexander Ozdemir and Dan Boneh. Implementation of collaborative zksnarks.

61

[OB22] Alex Ozdemir and Dan Boneh. Experimenting with collaborative zk-SNARKs: Zero-
knowledge proofs for distributed secrets. pages 4291–4308, 2022.

[ST19] Nigel P. Smart and Younes Talibi Alaoui. Distributing any elliptic curve based protocol.
pages 342–366, 2019.

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn
Song. Libra: Succinct zero-knowledge proofs with optimal prover computation. pages
733–764, 2019.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). pages
162–167, 1986.

62

A Multiparty Computation Functionalities and Sub-Protocols

We now give a complete description of the MPC functionalities described in section 3.1.

A.1 Standard Honest-Majority MPC Functionalities

In this section, we give a formal definition of some standard MPC ideal functionalities from
[CGH+18], which also gave protocols that securely compute these functionalities with abort in the
presence of malicious adversaries in the honest-majority setting.
Finput: This functionality allows the parties to secret-share𝑀 inputs. It is formally described below.

Functionality Finput
For each input 𝑖 ∈ [𝑀]:

1: Finput receives 𝑣𝑖 ∈ F from one of the parties.
2: Finput receives from the adversary the values {𝛼 𝑗

𝑖
}∀ 𝑗∈C , which represent the corrupted par-

ties’ shares of [𝑣𝑖].
3: Finput sets [𝑣𝑖]C = {𝛼 𝑗

𝑖
}∀ 𝑗∈C and computes:

[𝑣𝑖] = (𝑣1
𝑖 , . . . , 𝑣

𝑛
𝑖) = share (𝑣𝑖 , [𝑣𝑖]C)

4: Finput sends to each party 𝑗 ∈ [𝑛] its share 𝑣 𝑗
𝑖
.

Frand: This functionality generates secret shares of a random value. It is formally described below.

Functionality Frand
1: The adversary sends to Frand the values {𝛼 𝑗 }∀ 𝑗∈C .
2: Frand samples 𝑟 $← F.
3: Frand sets [𝑟]C = {𝛼 𝑗 }∀ 𝑗∈C and computes:

[𝑟] = share (𝑟, [𝑟]C)

4: Frand sends each honest party 𝑗 ∈ H their share 𝑟 𝑗 .

Figure 1: Functionality Frand

Fcoin: This functionality generates a random field element. It is formally described below.

Functionality Fcoin
1: Fcoin samples 𝑟 $← F and sends 𝑟 to all parties.

FcheckZero: This functionality is given [𝑥] and determines if 𝑥 = 0. False negatives and false positives
are possible.

Functionality FcheckZero
1: FcheckZero receives [𝑥]H from the honest parties, and uses this to reconstruct 𝑥 .
2: If 𝑥 = 0, then FcheckZero sends 0 to the adversary. The adversary responds with accept or

reject, and FcheckZero forwards the adversary’s response to the honest parties.
3: If 𝑥 ≠ 0, then:

1. With probability 1
|F | , FcheckZero sends accept to all parties.

63

2. With probability 1 − 1
|F | , FcheckZero sends reject to all parties.

Figure 2: Functionality FcheckZero

Fmult: This functionality is used to multiply two secret-shared values [𝑥] and [𝑦]. However, a
malicious adversary is allowed to specify an additive error 𝜀. In the end, Fmult actually computes
[𝑥 · 𝑦 + 𝜀]. Although Fmult is defined for malicious adversaries, the protocol that computes Fmult in
[CGH+18] is a standard semi-honest-secure protocol for multiplication.

Functionality Fmult

1: Fmult receives [𝑥]H and [𝑦]H from the honest parties and uses the shares to reconstruct 𝑥
and 𝑦.

2: Fmult computes the shares for all parties:

[𝑥] = share(𝑥, [𝑥]H)
[𝑦] = share(𝑦, [𝑦]H)

and sends [𝑥]C and [𝑦]C to the adversary.
3: The adversary responds with an additive error 𝜀 ∈ F and the corrupted parties’ shares of

the output, {𝛼 𝑗 }∀ 𝑗∈C .
4: Fmult sets [𝑧]C = {𝛼 𝑗 }∀ 𝑗∈C and computes:

𝑧 = 𝑥 · 𝑦 + 𝜀
[𝑧] = share (𝑧, [𝑧]C)

5: Fmult sends to each honest party 𝑗 ∈ H its share 𝑧 𝑗 .

Figure 3: Functionality Fmult

A.2 Multiplying two secret shared polynomials

We first formally define the functionality FpolyMult, which takes two secret-shared polynomials
[a(𝑋)] and [b(𝑋)] of degree 𝑑𝑎 and 𝑑𝑏 , respectively, and outputs the shares of their product (up
to additive attacks), i.e., [a(𝑋) · b(𝑋) + 𝜀 (𝑋)].

Functionality FpolyMult

1: FpolyMult receives [a(𝑋)]H and [b(𝑋)]H from the honest parties and uses the shares to
reconstruct a(𝑋) and b(𝑋).

2: FpolyMult computes the corrupted parties’ shares – [a(𝑋)]C and [b(𝑋)]C – and sends them
to S.

3: S responds with a polynomial 𝜀 (𝑋) ∈ F[𝑋] for which deg (𝜀 (𝑋)) ≤ 𝑑𝑎 + 𝑑𝑏 , as well as the
corrupted parties’ shares of the output, [c(𝑋)]C .

4: FpolyMult computes:

c(𝑋) = a(𝑋) · b(𝑋) + 𝜀 (𝑋)
[c(𝑋)] = share (c(𝑋), [c(𝑋)]C)

5: FpolyMult sends to each honest party 𝑗 ∈ H its share of [c(𝑋)].

64

The protocol that realizes FpolyMult is defined in fig. 4. The protocol calls Fmult (𝑑𝑎 +𝑑𝑏 + 1) times,
and each time, the adversary can specify an additive error. The combined effect is that the adversary
adds an error polynomial 𝜀 (𝑋) of degree ≤ 𝑑𝑎 + 𝑑𝑏 , and the output is [a(𝑋) · b(𝑋) + 𝜀 (𝑋)].

Protocol PolyMult
1: Inputs: [a(𝑋)] =

(
[𝛼0], . . . , [𝛼𝑑𝑎]

)
and [b(𝑋)] =

(
[𝛽0], . . . , [𝛽𝑑𝑏]

)
2: Let 𝑅 = {1, 𝜌, 𝜌2, . . . , 𝜌𝑑𝑎+𝑑𝑏 } be the (𝑑𝑎 + 𝑑𝑏 + 1)-th roots of unity in F. Use the FFT to

compute the evaluations of a(𝑋) and b(𝑋) on 𝑅. For each 𝑗 ∈ {0, . . . , (𝑑𝑎 + 𝑑𝑏)},

[a(𝜌 𝑗)] =
∑︁

𝑖∈{0,...,𝑑𝑎 }
[𝛼𝑖] · 𝜌𝑖 · 𝑗 (7)

[b(𝜌 𝑗)] =
∑︁

𝑖∈{0,...,𝑑𝑏 }
[𝛽𝑖] · 𝜌𝑖 · 𝑗 (8)

3: For each 𝑗 ∈ {0, . . . , (𝑑𝑎 + 𝑑𝑏)}, compute:

[c(𝜌 𝑗)] = Fmult([a(𝜌 𝑗)], [b(𝜌 𝑗)])

4: Use the inverse FFT to compute the coefficients of [c(𝑋)]: ([𝛾0], . . . , [𝛾𝑑𝑎+𝑑𝑏]). For each
𝑘 ∈ {0, . . . , 𝑑𝑎 + 𝑑𝑏}:

[𝛾𝑘] =
∑︁

𝑗∈{0,...,(𝑑𝑎+𝑑𝑏) }
|𝑅 |−1 · [c(𝜌 𝑗)] · 𝜌−𝑘 · 𝑗 (9)

5: Output [c(𝑋)].

Figure 4: Protocol PolyMult

Theorem A.1. The protocol in fig. 4 securely computes the functionality FpolyMult with abort in the
Fmult-hybrid model in the presence of malicious adversaries who control 𝑡 < 𝑁 /2 parties.

Proof. Let A be the real-world adversary, and let us construct the ideal-world simulator S, which
runs A internally, as follows:

Simulator S

1. S receives [a(𝑋)]C and [b(𝑋)]C from FpolyMult.

2. Fmult: For each 𝑗 ∈ {0, . . . , (𝑑𝑎 + 𝑑𝑏)}, S simulates Fmult([a(𝜌 𝑗)], [b(𝜌 𝑗)]) as follows:

(a) S computes

[a(𝜌 𝑗)]C =
∑︁

𝑖∈{0,...,𝑑𝑎 }
[𝛼𝑖]C · 𝜌𝑖 · 𝑗

[b(𝜌 𝑗)]C =
∑︁

𝑖∈{0,...,𝑑𝑏 }
[𝛽𝑖]C · 𝜌𝑖 · 𝑗

(b) S sends [a(𝜌 𝑗)]C and [b(𝜌 𝑗)]C to A.
(c) S receives from A the error 𝜀 𝑗 and the corrupted parties’ shares of the output
[c(𝜌 𝑗)]C .

65

3. S computes:

𝜀 (𝑋) =
∑︁

𝑗,𝑘∈{0,...,(𝑑𝑎+𝑑𝑏) }
|𝑅 |−1 · 𝜀 𝑗 · 𝜌−𝑘 · 𝑗 · 𝑋𝑘

4. For each 𝑘 ∈ {0, . . . , (𝑑𝑎 + 𝑑𝑏)}, S computes:

[𝛾𝑘]C =
∑︁

𝑗∈{0,...,(𝑑𝑎+𝑑𝑏) }
|𝑅 |−1 · [c(𝜌 𝑗)]C · 𝜌−𝑘 · 𝑗

and sets [c(𝑋)]C =
(
[𝛾0]C, . . . , [𝛾𝑑𝑎+𝑑𝑏]C

)
.

5. S sends 𝜀 (𝑋) and [c(𝑋)]C to FpolyMult.

S sends the correct values of [a(𝜌 𝑗)]C and [b(𝜌 𝑗)]C toA because it simply computes [a(𝜌 𝑗)]C and
[b(𝜌 𝑗)]C based on the formulas (eqs. (7) and (8)) used in the real-world protocol.

Next, the real and simulated protocols compute the same c(𝑋). In fig. 4, let 𝜀 𝑗 be the additive
error introduced during the computation of Fmult([a(𝜌 𝑗)], [b(𝜌 𝑗)]), and let

𝜀 (𝑋) =
∑︁

𝑗,𝑘∈{0,...,(𝑑𝑎+𝑑𝑏) }
|𝑅 |−1 · 𝜀 𝑗 · 𝜌−𝑘 · 𝑗 · 𝑋𝑘

Claim A.1. In the protocol given in fig. 4, c(𝑋) = a(𝑋) · b(𝑋) + 𝜀 (𝑋)

Proof.

c(𝑋) =
∑︁

𝑘∈{0,...,(𝑑𝑎+𝑑𝑏) }
𝛾𝑘 · 𝑋𝑘 =

∑︁
𝑘∈{0,...,(𝑑𝑎+𝑑𝑏) }

©«
∑︁

𝑗∈{0,...,(𝑑𝑎+𝑑𝑏) }
|𝑅 |−1 · c(𝜌 𝑗) · 𝜌−𝑘 · 𝑗ª®¬ · 𝑋𝑘

=
∑︁
𝑗,𝑘

|𝑅 |−1 ·
(
a(𝜌 𝑗) · b(𝜌 𝑗) + 𝜀 𝑗

)
· 𝜌−𝑘 · 𝑗 · 𝑋𝑘

=
∑︁
𝑗,𝑘

|𝑅 |−1 · ©«©«
∑︁

𝑖∈{0,...,𝑑𝑎 }

∑︁
𝑖′∈{0,...,𝑑𝑏 }

𝛼𝑖 · 𝜌𝑖 · 𝑗 · 𝛽𝑖′ · 𝜌𝑖
′ · 𝑗ª®¬ + 𝜀 𝑗ª®¬ · 𝜌−𝑘 · 𝑗 · 𝑋𝑘

=
©«

∑︁
𝑖,𝑖′, 𝑗,𝑘

|𝑅 |−1 · 𝛼𝑖 · 𝛽𝑖′ · 𝜌 (𝑖+𝑖
′−𝑘) · 𝑗 · 𝑋𝑘ª®¬ + ©«

∑︁
𝑗,𝑘

|𝑅 |−1 · 𝜀 𝑗 · 𝜌−𝑘 · 𝑗 · 𝑋𝑘ª®¬
=

(∑︁
𝑖,𝑖′,𝑘

𝛼𝑖 · 𝛽𝑖′ · 𝑋𝑘 ·
(∑︁

𝑗

|𝑅 |−1 · 𝜌 (𝑖+𝑖′−𝑘) · 𝑗
))
+ 𝜀 (𝑋)

=
∑︁
𝑖,𝑖′

𝛼𝑖 · 𝛽𝑖′ · 𝑋 𝑖+𝑖′ + 𝜀 (𝑋) =
(∑︁

𝑖

𝛼𝑖 · 𝑋 𝑖

)
·
(∑︁

𝑖′
𝛽𝑖′ · 𝑋 𝑖′

)
+ 𝜀 (𝑋)

= a(𝑋) · b(𝑋) + 𝜀 (𝑋)

We used the fact that ∑︁
𝑗∈{0,...,(𝑑𝑎+𝑑𝑏) }

|𝑅 |−1 · 𝜌 (𝑖+𝑖′−𝑘) · 𝑗 =
{

1, 𝑘 = 𝑖 + 𝑖′

0, otherwise
(10)

Finally, simulator S computes the shares [c(𝑋)]C that the corrupted parties would hold if they
computed eq. (9) honestly. Then FpolyMult chooses [c(𝑋)]H to be consistent with c(𝑋) and [c(𝑋)]C .
This distribution of [c(𝑋)]H is the same as in the real world.

66

	Introduction
	Our Results
	Results I: Pitfalls
	Results II: Malicious Security for Free

	Related Work

	Technical Overview
	Additive Attack Paradigm STOC:GIPST14
	Malicious Security for Free in Honest Majority: Starting Ideas
	Application: Collaborative Groth16 Proof Generation

	Malicious Security for Free in Honest Majority: Reactive Functions
	Application: Collaborative Bulletproofs Generation

	Malicious Security for Free in Honest Majority: Randomized Computations
	Special Randomized Functions
	Randomized Encoding
	Application: Collaborative Plonk EPRINT:GabWilCio19 Proof Generation

	Preliminaries
	Multiparty Computation (MPC) Functionalities
	Collaborative zk-SNARKs

	Pitfalls in Existing Approaches for Achieving Malicious Security
	Pitfall 1: Insider and Outsider Attacks
	Outsider Attack
	Insider Attack

	Pitfall 2: Computing Reactive Functionalities Requires Multiple Consistency Checks.

	General Compiler for Malicious Security in Collaborative Proof Generation
	Collaborative zk-SNARK Based On Bulletproofs
	The Collaborative Bulletproof Protocol
	Malicious Security of Collaborative Bulletproofs

	Collaborative zk-SNARK Based On Plonk
	The Collaborative Plonk Protocol
	t-Zero-Knowledge Against Malicious Provers

	Multiparty Computation Functionalities and Sub-Protocols
	Standard Honest-Majority MPC Functionalities
	Multiplying two secret shared polynomials

