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Abstract. As quantum technology advances, developing cryptographic
solutions resistant to quantum attacks is crucial. Post-Quantum Cryp-
tography (PQC) provides a practical approach by running on classical
computers. They rely on hard mathematical problems, with lattice-based
being one of the National Institute of Standards and Technology (NIST)-
recognized schemes known for its small key sizes. Hardware implemen-
tation of these schemes faces challenges due to the computational inten-
sity of operations like polynomial multiplication, especially for resource-
constrained devices. This paper proposes a novel Modular Tiled Toeplitz
Matrix-Vector Polynomial Multiplication (MT-TMVP) for lattice-based
PQC algorithms and presents a resource-optimized Field Programmable
Gate Array (FPGA) architecture. The proposed implementation signifi-
cantly reduces resource utilization and Area-Delay Product (ADP) com-
pared to state-of-the-art polynomial multipliers. It utilizes 99.68% and
84.22% fewer Look-Up Tables (LUTs) on Artix-7 and Zynq Ultrascale+
FPGAs, respectively, and achieves 99.94% and 80.02% ADP improve-
ments on these FPGAs compared to the best results in the literature.
By leveraging Block RAM (BRAM), the proposed architecture offers
robustness against timing-based Side-Channel Attacks (SCAs), and the
design is modular and scalable to any polynomial degree.

Keywords: Polynomial multiplication · TMVP · Tile · KEM · Lattice-
based Post-Quantum Cryptography (PQC) · Resource-constrained de-
vices · FPGA · Timing Side-Channel Attack (SCA).

1 Introduction

Cryptography is essential to ensure the confidentiality and integrity of infor-
mation and guarantee the security of sensitive data during communication [27].
Quantum computing is a threat to the security of classical public-key cryptogra-
phy, such as Rivest–Shamir–Adleman (RSA) and Elliptic Curve Cryptography
(ECC). Shor’s algorithm [33] can potentially break these encryption methods,
which makes it crucial to develop quantum-resistant algorithms. To mitigate
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quantum computing threats, two strategies have emerged. The first leverages
quantum mechanics to create theoretically unbreakable encryption [10], but
it requires costly new infrastructure. The second, Post-Quantum Cryptogra-
phy (PQC), develops cryptographic algorithms that run on classical computers,
without requiring major infrastructure changes [23]. Several PQC methods exist
based on the hardness of mathematical problems, including lattices [20], coding
theory [4], multivariate quadratic equations [35], hash functions [8], and isoge-
nies [21]. The National Institute of Standards and Technology (NIST) has an
important role in standardizing PQC public-key encryption algorithms [26].

Among these approaches, lattice-based stands out for its smaller key sizes,
which makes it suitable for practical implementation, specifically for deployment
on resource-constrained devices such as Internet of Things (IoT) and embedded
systems. NTRU [13] is a candidate in the NIST PQC competition [6], upon
which several research efforts have been built. In the NTRUPrime project, mod-
ifications have been recommended to enhance NTRU’s security [30]. FALCON,
a NIST-standardized digital signature, is based on the hardness assumption of
NTRU [5]. Additionally, a public-key KEM, NTRU+PKE, was introduced by
Kim et al. [16], leveraging the NTRU structure. Furthermore, NTRU+ is a
KEM that is standardized in the Korean PQC (KPQC) standardization pro-
cess. In addition, Saber is a lattice-based candidate based on the hardness of
Module Learning-With-Error (MLWR) and is IND-CCA secure [7]. These two
schemes are the focus of this paper due to their polynomial ring structure.

Lattice-based PQC primitives depend on polynomial multiplication, a com-
putationally intensive operation, especially on resource-constrained devices. Op-
timizing this operation is crucial for efficient implementations [37]. Among vari-
ous multiplication methods like Schoolbook [31], Karatsuba [1], Toom-Cook [14],
Number Theoretic Transform (NTT) [38], and Toeplitz Matrix-Vector Product
(TMVP) [9], we focus on TMVP-based approach as it allows polynomial reduc-
tion within the multiplication step [28], unlike Toom-Cook and Karatsuba, which
require an additional reduction phase [36]. NTT is limited in direct applicability
for NTRU and Saber, which use non-NTT-friendly polynomial rings and spe-
cific modulus q requirements [28]. Recent studies have implemented TMVP for
PQC on FPGAs [12,34] and explored its use in software [29,28]. However, to the
best of our knowledge, no resource-optimized FPGA implementation of TMVP-
based multiplier targeting resource-constrained devices exists. To address this
gap, this paper proposes and implements a novel Modular Tiled TMVP-based
(MT-TMVP) polynomial multiplier focusing on resource utilization and Area-
Delay Product (ADP) efficiency over state-of-the-art FPGA implementations.

Contributions. The key contributions of this paper are outlined as follows:

• A novel MT-TMVP polynomial multiplication algorithm is proposed, which
uses a TMVP-based approach with a tiling technique optimized for lattice-
based PQC schemes, which reduces the computational complexity of this
fundamental operation in cryptographic protocols.
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• The MT-TMVP design is implemented in a modular and parametric archi-
tecture, such that adjustments to matrix dimensions and tile sizes in the
top-level module are systematically reflected across all modules. Therefore,
this design allows flexible dimension scaling.

• An architecture for the proposed MT-TMVP algorithm is designed and
implemented on FPGA platforms recommended by NIST in its call-for-
proposals. Comprehensive evaluations confirm its practicality, for real-world
PQC applications, particularly on resource-constrained devices such as
IoT systems and embedded platforms. The design also uses Block RAMs
(BRAMs) to ensure security against timing Side-Channel Attacks (SCAs).

• Optimization techniques used to achieve minimal resource utilization and
the best ADP compared to state-of-the-art hardware implementations for
polynomial multiplication.

• The implementation of the proposed MT-TMVP algorithm is available upon
request via a GitHub repository link.

Paper Structure. Section 2 reviews multiplier implementations in PQC. Sec-
tion 3 covers TMVP and lattice-based PQC. Section 4 details the proposed
MT-TMVP algorithm and FPGA implementation. Results and comparison are
presented in Section 5, followed by conclusion and future work in Section 6.

2 Related Work

This section reviews existing studies on polynomial multiplication implementa-
tions in lattice-based PQC. Given the limitations of other multiplier approaches
(Section 1), the focus is on TMVP-based designs, along with a brief review of
other multiplier techniques. Software-based TMVP implementations have been
studied to enhance performance on ARM Cortex-M4 [29,28] and GPUs [11].
Some studies have explored hardware/software co-design to accelerate TMVP-
based polynomial multiplication [22]. This work focuses on hardware imple-
mentation targeting resource-constrained devices. Tu et al. [34] implemented
a Lookup Table (LUT)-based pointwise TMVP-based multiplication accelerator
for the NTRU-based FALCON PQC scheme on FPGAs, aiming to enhance mul-
tiplication speed; however, it consumes significant resources. Cui et al. [7] imple-
mented a TMVP-based multiplier for Saber on FPGA, focusing on throughput
optimization. They redesigned the accumulation phase of Schoolbook by lever-
aging the properties of the Toeplitz matrix. He et al. [12] implemented TMVP
for Saber to achieve high performance. Allam et al. [1] implemented NTT for
NTRU on FPGA, using a newly defined NTT-compatible prime Q > n · q2,
where n is the polynomial degree and q the modulus. This approach is limited
by specific requirements for q. Qin et al. [31] implemented Schoolbook in hard-
ware for NTRU, Dang et al. [9] explored a Toom-Cook multiplier for NTRU,
and Tu et al. [34] used Schoolbook for FALCON. Additionally, Li et al. [19] im-
plemented Schoolbook for Saber in hardware. However, these implementations
do not prioritize resource optimization for hardware and are not well-suited



4 S. Neisarian and E. B. Kavun

for resource-constrained devices. While previous works offer valuable insights
into software and hardware multiplier implementations, they still consume sig-
nificant area. Building on these studies, this paper proposes a new MT-TMVP
polynomial multiplication algorithm that reduces computational complexity and
is suitable for resource-constrained devices. By leveraging the tile property with
TMVP-2 [12,7,34], this approach aims to achieve minimum resource utilization
and the best ADP compared to state-of-the-art multiplier implementations. To
the best of the authors’ knowledge, this is the first resource-optimized TMVP-
based multiplier for lattice-based PQC that applies tiling.

3 Preliminaries

This section provides the background on TMVP multiplication and lattice-based
PQC schemes needed to understand the proposed algorithm.

3.1 Toeplitz Matrix-Vector Product (TMVP)

The Toeplitz matrix-vector product, abbreviated as TMVP, is used in cryptog-
raphy as a polynomial multiplier technique. The multiplication is conducted in
the ring R = Z[x]/⟨xn + 1⟩. When the polynomial coefficients are in the range
[0, q), the ring is represented as Rq = Zq[x]/⟨xn + 1⟩, where n represents the
polynomial degree and q is the modulus. A Toeplitz matrix, denoted as A, is
structured as an m × n matrix where the element located at the junction of
the i-th row and j-th column is described by the equation Ai,j = Ai−1,j−1, for
i = 2, . . . ,m and j = 2, . . . , n. Let A be a square (m = n) Toeplitz matrix and
B be a vector of dimension n × 1 represented in Eq. (1). The multiplication of
A and B results in a vector W of dimension n× 1, given by Eq. (2).

A =


a0 a1 · · · an−1

an a0 · · · an−2

...
...

. . .
...

a2n−2 a2n−3 · · · a0

 , B =


b0
b1
...

bn−1

 (1)

W = [w0, w1, . . . , wn−1]
⊤ = A×B (2)

In TMVP-2, the matrix A is segmented into four submatrices, each of size n
2 ×

n
2 .

The MT-TMVP uses TMVP-2 in combination with tiling to reduce computa-
tional complexity and optimize resource utilization. The TMVP-2 formulas are
presented in Eq. (3)-Eq. (4). As can be seen, TMVP-2 requires three multiplica-
tions. If the dimension of matrix A is large, traditional Schoolbook multiplication
becomes inefficient. In such cases, it is more practical to use TMVP [28].[

W0

W1

]
=

[
A0 A2

A1 A0

] [
B0

B1

]
=

[
s1 + s2
s1 + s3

]
(3)

s1 = A0(B0 +B1), s2 = (A2 −A0)B1, s3 = (A1 −A0)B0 (4)
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3.2 Lattice-based Post-Quantum Cryptography (PQC)

Traditional public-key encryption, such as RSA [32] and ECC [17], which depend
on integer factorization and discrete logarithms, are vulnerable to quantum at-
tacks [33]. To address this challenge, PQC is being developed, which uses math-
ematically hard problems to secure data against quantum threats. Lattice-based
PQC is well-known for its small key sizes. They rely on solving hard mathemat-
ical problems in grids of points. At the core of lattice-based PQC is the Shortest
Vector Problem (SVP), which involves finding the shortest vector in a lattice that
is nearest to the origin yet distinct from it [20]. Several lattice-based schemes
are presented in the following, each of which relies on polynomial multiplication.

NTRU, developed by Hoffstein et al. [13], integrates concepts from NTRU-
Encrypt and NTRU-HRSS-KEM. Its parameters n, p, and q dictate polynomial
operations, where n sets the polynomial length, and p and q are used for modulo
calculations in encryption. Optimal parameter choices enhance both efficiency
and security [29]. Another NIST finalist, FALCON, offers a compact and efficient
lattice-based signature scheme based on the Short Integer Solution (SIS) prob-
lem in NTRU lattices, achieving a strong balance of security and performance
[25]. Polynomial multiplication is critical in FALCON, performed over the ring
Zq/(x

n+1), which distinguishes it from NTRU’s use of Zq/(x
n−1). Saber, also a

finalist, is based on the Module Learning With Rounding (MLWR) problem and
includes three variants corresponding to NIST security levels [24]. Polynomial
multiplication is vital in Saber, yet the scheme avoids NTT due to its reliance
on power-of-2 moduli, which sets a restriction on its modulus. Saber employs
alternative techniques as well such as Karatsuba, Toom-Cook, and TMVP [12].

4 Implementation

This section presents the proposed MT-TMVP polynomial multiplication al-
gorithm and provides details of the resource-optimized hardware architec-
ture, which targets lattice-based PQC on FPGAs and is suitable for resource-
constrained devices. The algorithm calculates the product of a Toeplitz matrix
and a vector across three dimensions, supporting both encryption and decryp-
tion phases in PQC. The design is modular and flexible, with parameter adjust-
ments made through the top module. Section 5 evaluates the effectiveness of
MT-TMVP for PQC, including benchmarks and comparisons that demonstrate
its suitability for embedded applications. The core design concept is to utilize
tiled matrix multiplication. By leveraging the symmetry of the Toeplitz matrix,
the product is computed with fewer multiplication operations than standard
methods. The tile sizes are flexible, with a typical approach dividing a Toeplitz
matrix into four submatrices, each with dimensions half the size of the original
matrix. With this tile size, calculations are performed more efficiently using the
proposed method. As shown in Eq. (3), the calculation requires 3 multiplications
instead of 4, resulting in a 25% reduction in the number of operations. While
this approach decreases the number of multiplications, it uses BRAMs to store
the results of each multiplication. This setup enables multiplication through a
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Fig. 1: MT-TMVP for N=512

straightforward method that requires no precalculation, though it results in a
larger total number of multiplications.

4.1 Algorithmic Steps for Hardware Implementation

The proposed MT-TMVP is represented in Algorithm 1. The goal is to imple-
ment the multiplication of four square matrices and vectors with dimensions
of 509, 677, 701, and 821 (using NTRU parameter sets as a case study). The
modulus q is set to 256, which defines the size of the matrix elements as 8-
bit integer values. The multiplication implementation does not require explicit
modulo reduction since the power-of-two structure can be exploited using bitwise
operations. The aforementioned matrices will be zero-padded to new dimensions
of 512, 720, 720, and 864, making them divisible by 16. The Toeplitz matrix
and vector are generated from the first row and first column of the matrix in
MATLAB. To perform the multiplication, the tiling and TMVP are combined
to take advantage of both approaches. The final multiplication step follows Eq.
(3). To prepare for this step, each matrix is divided into submatrices of the size
required for the final calculation. For instance, when N = 512, the dimension for
the last step is 32, which is double the tile size of 16 used in the classic matrix-
vector product method. This results in 16 × 16 submatrices, where Eq. (5) is
first applied, followed by Eq. (6) for the full block-matrix calculation, where,
the first row of the Toeplitz matrix A is [A15, A14, . . . , A0], and the last row is
[A30, A29, . . . , A16]. The vector B is given by B = [B0, B1, . . . , B15]

⊤. Fig. 1 visu-
alizes the general idea of the algorithm. This process is the same for other values
of N . For N = 720, the final dimension is 20, and for N = 864, the dimension is
24, both resulting in 36× 36 submatrices.[

W0

W1

]
=

[
A0 A2

A1 A0

] [
B0

B1

]
=

[
A0B0 +A2B1

A1B0 +A0B1

]
(5)

[
W0, . . . ,W15

]⊤
=

[∑15
i=0 A15−iBi,

∑15
i=0 A16−iBi, . . . ,

∑15
i=0 A30−iBi

]⊤
(6)

A top module manages the padding algorithm and discards extra elements
from the result based on matrix dimensions. It is important to highlight that
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Algorithm 1 MT-TMVP Polynomial Multiplier

1: Input: Matrix T ∈ RN×N , Vector v ∈ RN×1

2: Step 1: Zero-pad matrix T and vector v to dimensions divisible by 16:
3: Set padded dimension m based on N :
4: If N = 509, pad to m = 512
5: If N = 701 or N = 677, pad to m = 720
6: If N = 821, pad to m = 864
7: Pad T to form Am×m and v to form Bm×1 with zeros
8: Step 2: Divide T into tiles for TMVP-based multiplication:
9: Set tile size t based on N :

10: t = 16 for N = 512, t = 10 for N = 720, t = 12 for N = 864
11: Define TMVP tile size as 2× t
12: Step 3: TMVP reduction on each 2×t tile til final reduced dimensions are reached
13: Step 4: Schoolbook multiplication for reduced matrix of size t× t with vector B
14: Step 5: Block Matrix Addition using:
15: Eq. (5) for 2× 2 structure and Eq. (6) for full block-matrix combination
16: Output: Result of T × v mod (xn − 1) with padding removed

only the first row and first column of the Toeplitz matrix need to be retained
to access all its elements. This property reduces the amount of data that must
be stored while still enabling efficient reconstruction of the entire matrix. The
design is explained from the top layer of the hierarchy, systematically moving
down through each underlying module. This approach provides a detailed view
of the interconnections and functions of each module, providing a thorough un-
derstanding of the entire design architecture. The design follows a hierarchical
structure where Top TMVP serves as the top-level wrapper module. It instan-
tiates MainMultiplier, which contains TMVP-2, and the innermost module is
the MatrixVectorMultiplier. According to N , which defines the matrix dimen-
sion, certain aspects of each module’s design change. Each section will address
these changes in detail. The MainMultiplier module implements the straight-
forward multiplication algorithm described in Eq. (6). Meanwhile, the TMVP-2
module computes the matrix-vector product using Eq. (3), while the MatrixVec-
torMultiplier is designed as a simple module for matrix-vector multiplication.
This layered approach reflects the modular organization of the hardware im-
plementation. The explanation starts with the most fundamental module and
describes how it is used in the higher-level modules. This process continues until
it reaches the Top_TMVP module. The match between the MATLAB results
and hardware output confirms the correctness of the MT-TMVP design.

MatrixVectorMultiplier. This module is the fundamental component of the
design, tasked with computing the product of a matrix and a vector. Given that
the matrix is Toeplitz, loading the elements becomes more straightforward. After
loading the first row and the vector, the next row can be prepared by shifting the
current row elements to the right and reading the element from the first column.
By employing this method, there will be no pause or delay in calculating the
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result vector. The tree structure used for calculating the summation of the prod-
uct results varies with different values of N . However, what remains consistent
is that there will be no more than three operands for the summation at each
step. Fig. 2 illustrates how this module is implemented. It should be noted that
a pipelining technique is employed in the addition of the products of element
multiplications, that enabled the use of higher frequencies in the design.

TMVP-2. This module implements the algorithm outlined in Eq. (3). In this
algorithm, three multiplications are required, as detailed in Eq. (4). Since s1
is a common component in both parts of the result, it is calculated first, and
the result is stored in RESULT_RAM. After calculating s1, the process proceeds
with the calculation of s2, which, along with the stored value, produces the first
part of the result. The same process applies to s3 to complete the final part of
the result. Fig. 3 shows the implementation of this module. The Finite State
Machine (FSM) within the control unit manages the flow of the module. The
address generator generates the addresses needed to access the required data.
Referring to Eq. 3, one can identify the order in which the matrix elements should
be read. The same applies to the addresses for accessing vector data. Once the
data is read, it undergoes some precalculations before being ready to enter the
MatrixVectorMultiplier module. As shown in Fig. 3, there are two adders and
two multiplexers involved in this process. s2 and s3 are quite similar, so their
preprocessing is the same, though they use different input data. It is important
to note that the only effect of parameter N is on the counters and addresses; it
does not introduce any significant structural differences.

MainMultiplier. This module is designed to implement the tiled matrix-
vector multiplication algorithm. To accumulate intermediate results from indi-
vidual matrix-vector multiplications, a BRAM, denoted as [RESULT_RAM ],
is used for data storage. Once all calculations are completed and stored in
[RESULT_RAM ], the results can be accessed from the RAM and made avail-
able at the module’s output. An FSM controls the process within this module. A
key component of the control unit is the address modifier. Due to the symmetric
properties of the Toeplitz matrix, there are only 2n − 1 distinct submatrices,
where n represents the quotient of the matrix dimension divided by the subma-
trix dimension. Submatrices with the same difference between row and column
indices are identical. Therefore, to determine which data to access, the focus is
on the difference between the row and column indices. Based on this difference,
the addresses generated by TMVP-2 are modified and sent to the top module
(Top TMVP). The architecture of this module is illustrated in Fig. 4. There
are only three possible multiplicands corresponding to the dimensions of the
submatrix. Therefore, we implement the multiplication in the address modifier
using shifts and additions. This approach eliminates the need for Digital Signal
Processing (DSP) resources, resulting in lower resource consumption, a shorter
critical path, and higher operating frequencies.
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Control_Unit

FSM
validity 

producer

m_axis_tvalid

s_axis_tvalid

row shift register

row[0] row[1] row[n-1]row[n-2]row[0] row[1] row[n-1]row[n-2]

row shift register

row[0] row[1] row[n-1]row[n-2]

vec shift register

vec[0] vec[1] vec[n-1]vec[n-2]vec[0] vec[1] vec[n-1]vec[n-2]

vec shift register

vec[0] vec[1] vec[n-1]vec[n-2]

en vec shift register

vec[0] vec[1] vec[n-1]vec[n-2]

en vec shift register

vec[0] vec[1] vec[n-1]vec[n-2]

en

s_axis_tdata_vec

s_axis_tdata_row

× 

+

× 

× 

× 

+

... ... ... +

+

+

m_axis_tdata

...

...

...

Fig. 2: MatrixVectorMultiplier’s Architecture

Top TMVP. The Top TMVP module is designed to manage the flow of op-
erations involved in reading coefficients from external sources, using one of the
vectors to construct the matrix. The matrix is formed by storing elements from
the row and column vectors in a specific order. Additionally, this module is re-
sponsible for filling the vector RAM with data from the second set of coefficients,
which is read after the first vector is processed. Since the RAM is initialized with
zero values, it is not required to pad zeros after writing data to the RAMs. The
module then carries out the required multiplications and produces the final re-
sult. Fig. 5 illustrates the functionality of the module. The module operates
through an FSM with three distinct states. In the IDLE state, the module is pre-
pared to initiate operations. Upon receiving the start signal, it transitions to
the LOADING state, during which it reads the two external vectors. Subsequently,
the module advances to the BUSY state, where it performs the multiplication
and outputs the result through its output ports. Once the multiplication is com-
plete, a done signal is asserted for one clock cycle to indicate task completion,
after which the module returns to the IDLE state. It should be noted that in all
modules, except for the MatrixVectorMultiplier, the start signal indicates the
beginning of the process.
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Fig. 3: TMVP-2’s Architecture

5 Results and Discussion

This section presents the results of the novel MT-TMVP multiplier implementa-
tion on FPGAs, with a focus on resource utilization, which is crucial for practical
implementation on resource-constrained devices. NIST recommends the Artix-7
[2] and Zynq Ultrascale+ [3] FPGAs for PQC development and the results are
compared with existing multiplier implementations on the same FPGAs for fair
comparison. The detailed results of the proposed implementation and previous
works in the literature are shown in Tables 1-3.

5.1 Resource Utilization & Performance

The resource utilization of the MT-TMVP’s design is shown in Table 1, with
the data width set to 8. Synthesis and implementation are conducted using
Vivado 2023.2 with default settings. The results are obtained on the Artix-7 and
Zynq Ultrascale+ FPGAs with the part numbers xc7a200tffv1156-3 and xczu7ev-
ffvf1517-3-e, respectively. The resources utilized for the entire design (including
padding and the controller in the top module) are reported separately from those
used solely for the multiplier. In the proposed design, the clock frequency is set
to 270 MHz. The time required for each multiplication is determined by counting
the clock cycles between the assertion of the start and done signals. Table 2
presents the results for various values of N . The total processing time, including



MT-TMVP Polynomial Multiplication for PQC on FPGAs 11
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Fig. 4: MainMultiplier’s Architecture

Table 1: Resource Utilization for Full and Multiplier-Only Implementations
N FPGA LUT FF BRAM DSP

Mult. Only Total Mult. Only Total Mult. Only Total Mult. Only Total

512 Artix-7 308 361 398 528 1 2.5 16 16
Zynq Ultrascale+ 280 329 397 529 1 2.5 16 16

720 Artix-7 350 418 371 515 1 2.5 10 10
Zynq Ultrascale+ 346 394 370 516 1 2.5 10 10

864 Artix-7 356 421 385 529 1 2.5 12 12
Zynq Ultrascale+ 345 393 384 530 1 2.5 12 12

Table 2: Simulation Time Taken for Various Values of N

N # of Clock Cycles
(Mult. Only)

# of Clock Cycles
(Total)

Time Elapsed (µs)
(Mult. Only)

Time Elapsed (µs)
(Total)

512 28,421 28,934 105.262 107.163
720 94,037 94,741 348.285 350.893
864 109,733 110,557 406.419 409.470

data writing to RAMs and the multiplication operation, is reported separately
from the time spent solely on multiplication.
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Fig. 5: Top TMVP’s Architecture

5.2 Comparison

The comparison of the proposed MT-TMVP multiplier with other state-of-the-
art multiplier implementations for N=512 is presented in Table 3. MT-TMVP
is implemented with a focus on optimizing resource utilization, unlike previous
works, which prioritized maximizing performance and, as a result, led to higher
resource consumption. Tu et al. [34] measure ADP as a metric for comparison
to achieve a balanced area-time consideration, evaluating both area and time
for efficiency assessment. Our proposed scheme shows the best ADP (i.e., LUT
count times delay, where delay is defined as latency over maximum frequency)
with 99.94% and 80.02% improvement and 99.68% and 84.22% fewer LUTs
on Artix-7 and Zynq Ultrascale+ FPGAs compared to the best existing results.

In comparison with Peng et al. [30]’s Schoolbook design on the Zynq Ultra-
scale+, a direct comparison is not fair due to the difference in modulus q. Their
design does not employ BRAM, which makes it vulnerable to timing-based SCAs,
whereas the MT-TMVP leverages BRAM to enhance SCA resistance. Li et al.
[19] design Schoolbook with 7,554 LUTs, compared to which the MT-TMVP
achieves a 95.9% reduction in LUT usage on Artix-7 and a 96.3% reduction
on Zynq Ultrascale+. Note that they did not specify the FPGA type used in
their implementation. Both designs employ BRAM, enhancing SCA resistance.
The MT-TMVP achieves a 99.92% improvement in ADP-LUT compared to
Li et al. (assuming that the FPGA is Zynq Ultrascale+), which indicates its
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Table 3: Comparison of MT-TMVP with Multiplier Implementations for N=512
Reference Multiplier FPGA LUT FF BRAM DSP Freq.

(MHz)
Latency

(µs)
# of

Clock Cycles ADP-LUT

Peng et al. [30] Schoolbook Zynq Ultrascale+ 1,775 818 0 0 290 89.25 25,881 546.27

Li et al. [19] Schoolbook - 7,554 5,776 3 0 130 2,313 301,000 134,403.09

Tu et al. [34] Schoolbook Zynq Ultrascale+ 88,267 35,159 0 0 525 515 270,900 86,585.72

Tu et al. [34] Schoolbook Artix-7 97,322 35,159 0 0 254 516 131,064 197,709.26

Allam et al. [1] NTT Zynq Ultrascale+ 2,831 1,394 10.5 12 263 2,830 1,287 30,462.85

Tu et al. [34] TMVP Zynq Ultrascale+ 157,686 84,226 0 0 529 260 137,540 77,541.75

This Work MT-TMVP Artix-7 308 398 2.5 16 270 105.26 28,421 120.17

This Work MT-TMVP Zynq Ultrascale+ 280 397 2.5 16 270 105.26 28,421 109.13

superior area-time efficiency. Tu et al. [34] implemented a Schoolbook-based
multiplier on both the Zynq Ultrascale+ and Artix-7 platforms. Their results
are obtained with the modulus q set to 213, making it unfair to directly com-
pare their ADP with our results, which use q = 256. However, unlike Tu et al.’s
design, which lacks BRAM and may be vulnerable to timing-based SCAs, the
MT-TMVP incorporates BRAM to enhance SCA resistance. Additionally, they
implemented TMVP for the FALCON PQC scheme on the Zynq Ultrascale+.
Remarkably, they did not implement their design on the Artix-7 due to
excessive resource utilization observed on the Zynq Ultrascale+, indicating
the impracticality of this approach for resource-constrained devices. Allam et
al. [1] implemented an NTT multiplier on FPGA that relies on a specific NTT-
compatible prime. Unlike NTT, MT-TMVP does not require any modification in
polynomial parameters. The MT-TMVP design improves LUT usage by 90.1%,
reducing from their 2831 LUTs to 280 on Zynq Ultrascale+. Both designs use
BRAM to resist timing-based SCAs; however, the proposed MT-TMVP achieves
this with only 2.5 BRAMs, compared to the 10.5 BRAMs used in their design.
Kundi et al. [18] implemented NTT and Schoolbook multiplications on FPGAs,
prioritizing speed. However, since their results are presented for N = 256, a
direct comparison with our work is not fair.

In summary, the proposed MT-TMVP shows LUT usage improvements rang-
ing from 84.22% to 99.68% compared to existing designs. The MT-TMVP also
leverages BRAM in both Artix-7 and Zynq Ultrascale+ implementations, pro-
viding security against timing-based SCAs. The MT-TMVP achieves the best
ADP-LUT results, with improvements ranging from 80.02% to 99.94% over the
closest state-of-the-art designs. Additionally, the modular property of the MT-
TMVP allows it to be scaled to support various matrix sizes and polynomial
degrees by adjusting the tile size in the top module which provides flexibility.

6 Conclusion and Future Directions

In this paper, a novel polynomial multiplication algorithm (MT-TMVP) is pro-
posed for lattice-based PQC schemes targeting resource-constrained devices. A
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modular architecture is implemented using BRAMs on Zynq Ultrascale+ and
Artix-7 FPGAs, recommended by NIST. Due to the modular property of the
design, it provides flexibility and can be scaled up to any other dimensions. The
results demonstrate a significant reduction in LUT utilization and achieve the
best ADP compared to the state-of-the-art multiplier implementations. In future,
we plan to extend the approach to other algorithms for broader benchmarking.
Since the current design is secure against timing SCAs due to BRAM usage
[30,15], further security analysis is planned to assess its resistance to physical
attacks like power analysis. Potential countermeasures, such as masking tech-
niques, will be investigated, though they introduce additional resource costs.

7 Source Code

The source code is available upon request.
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