
Zero-Knowledge Polynomial Commitment in Binary Fields

Benjamin E. Diamond
Irreducible

bdiamond@irreducible.com

Abstract

In recent work, Diamond and Posen (’24) introduce a polynomial commitment scheme for large binary
fields, adapting BaseFold (CRYPTO ’24). In this note, we devise a zero-knowledge variant of Diamond
and Posen’s scheme. Our construction reprises a few ideas from Aurora (EUROCRYPT ’19). We carry
through those ideas in characteristic 2, and moreover show that they’re compatible with BaseFold.

1 Introduction

In two recent works, Diamond and Posen [DP25] [DP24] introduce multilinear polynomial commitment
schemes for polynomials over tiny binary fields. That latter work’s PCS proceeds in two steps. First, those
authors introduce a reduction—called ring-switching [DP24, § 3]—from the problem of tiny-field commitment
to the problem of large-field commitment. They then define a standalone, large-field scheme [DP24, § 4].
That standalone scheme adapts Zeilberger, Chen and Fisch’s BaseFold [ZCF24] to the characteristic 2 setting.

In this work, we make the large-field multilinear polynomial commitment scheme [DP24, Cons. 4.11]
zero-knowledge. Our adaptation adds a bit of constant, multiplicative overhead to [DP24, Cons. 4.11] (of
about fourfold for the prover, to be precise). Reducing this overhead seems tricky; we discuss this problem
further below. We only treat large-field commitment in this work, and not ring-switching (see Section 5).

Our ideas adapt ones already present in Zhang, Xie, Zhang and Song’s Virgo [ZXZS20, Prot. 2]. In fact,
Virgo itself calls these ideas “standard”, and cites in turn Ames, Hazay, Ishai and Venkitasubramaniam’s
Ligero [AHIV23] and Ben-Sasson et al.’s Aurora [Ben+19]. They seem to be folklore. To set up the problem,
we recall the basic structure of FRI. In that protocol, the prover encodes a sensitive polynomial onto a large
Reed–Solomon domain, and further “folds” that encoding onto various successively smaller domains. Later
in the protocol, the verifier queries all oracles—i.e., not just the initial one, but also the subsequent folded
ones—at a smattering of points (roughly, at a number of points proportional to the security parameter).

We must take care that these evaluations learned by the verifier reveal nothing about the prover’s sensitive
polynomial. To this end, we apply two techniques, both of which appear (in some form) in the above works.
First, we direct the prover to pad its input polynomial with random coefficients on the “high end”. Provided
that it uses enough random coefficients in this process—specifically, at least as many as the number of
evaluations the verifier is liable to demand—the prover may ensure that its polynomial’s evaluations become
random-looking outside of a certain “fundamental domain”. As is standard, we use a Reed–Solomon domain
disjoint from this fundamental domain—a “disjoint coset” (or more properly for us, a disjoint affine subspace).

On the other hand, these high random coefficients are not enough. The issue is that as FRI proceeds,
the prover’s polynomial “shrinks”, while the verifier continues to demand the same number of evaluations
(i.e., on each smaller oracle). On these small domains, the verifier’s fixed number of queries becomes liable
to overpower the prover’s randomness, since the prover’s polynomial appears on them in “condensed” form.

To solve this issue, we use another technique from Aurora [Ben+19, § 5.1]. That is, we direct the prover
to sample a second, purely random polynomial, just as long as its padded input. The parties run FRI not
on the prover’s padded initial input, but on a virtual linear combination between that padded input and the
prover’s second, purely random polynomial (with respect to a combination challenge sampled by the verifier).
This procedure guarantees that, on the shrunken domains, the prover evaluates only this combination and
its derivates, which are “purely random” (i.e., simulatable). The prover must evaluate its raw padded input
only on the initial domain, where that polynomial is un-condensed, and its padding suffices to mask it.

1

mailto:bdiamond@irreducible.com


1.1 Some Remarks

We mention various further aspects of our zero-knowledge construction.

Padding in the novel basis. High-end padding becomes “free” in Lin, Chung and Han’s novel polynomial
basis, a fact which Aurora [Ben+19] appears to have missed. We fix a large binary field L, equipped with
an F2-basis (β0, . . . , βr−1), as well as a statement size parameter ℓ. Lin, Chung and Han [LCH14] introduce

a novel polynomial basis of the L-vector space L[X]≺2ℓ of L-polynomials of degree strictly less than 2ℓ; we
write X0(X), . . . , X2ℓ−1(X) for that basis. For each j ∈ {0, . . . , 2ℓ − 1}, Xj(X) is a polynomial of degree j.
Lin, Chung and Han describe a quasilinear-time algorithm—the additive NTT—which, on input a coefficient

vector (a0, . . . , a2ℓ−1), outputs the evaluations of P (X) :=
∑2ℓ−1

j=0 aj ·Xj(X) on some affine subspace S(0) ⊂ L.

Here, the evaluation domain S(0) must be a union of cosets of ⟨β0, . . . , βℓ−1⟩ (we refer to [DP24, § 2.3] for
further background on the additive NTT).

We write H := ⟨β0, . . . , βℓ−1⟩. To pad the polynomial f(X) ∈ L[X]≺2ℓ with high, random coefficients—
without disturbing f(X)’s values on H (since we can’t change the prover’s statement)—we begin as Aurora
[Ben+19, § 5] does. That is, we replace f(X) with f ′(X) := f(X) + ZH(X) · r(X); here, ZH(X) :=∏

u∈H(X − u) is H’s vanishing polynomial, and r(X) is random of appropriate degree. We note that f(X)
and f ′(X) have identical restrictions to H ⊂ L.

On the other hand, we note that ZH(X) = Wℓ(X), the Lin–Chung–Han “subspace vanishing polynomial”
attached to ⟨β0, . . . , βℓ−1⟩. Because

X2ℓ+j(X) = Ŵℓ(X) ·Xj(X)

holds for each j ∈ {0, . . . , 2ℓ − 1}, the coordinate representation of ZH(X) · r(X) in the novel basis is just
the upward shift by 2ℓ positions of r(X)’s (technically we need to normalize ZH(X), but this is immaterial).
Equivalently, to obtain f ′(X), the prover can just take f(X)’s coefficient vector—again in the novel basis—
and tack on some purely random entries to its high end. It can thus randomize f(X) “without doing any
arithmetic”.

Interaction with BaseFold. Aurora [Ben+19] and Virgo [ZXZS20] develop zero-knowledge variants of
FRI [BBHR18]. In our case, we have a sumcheck too to deal with. Indeed, BaseFold PCS [ZCF24, § 5]
interleaves FRI-folding with a sumcheck. For further detail on BaseFold PCS, we refer to Zeilberger, Chen
and Fisch [ZCF24, § 5] (see also [DP24, § 4]).

A priori, BaseFold’s sumcheck presents a problem for us, since it could reveal something about the prover’s
input multilinear. We note that Virgo [ZXZS20, Prot. 4] develops a zero-knowledge sumcheck variant; on the
other hand, that protocol assumes access to a zero-knowledge multilinear polynomial commitment scheme,
an object which we’re in the process of trying to create.

In fact, we adopt a simpler solution. As we show below, the recourse used by Aurora to protect its
prover’s positive-indexed FRI oracles serves also to save our sumcheck. Indeed, the message upon which
the parties run FRI is the linear combination between the prover’s padded input and its further, purely
random input. Since that combination is simulatable, the prover’s sumcheck on it is too. In particular, our
simulator—having generated the prover’s combination in full—may simply run the sumcheck “honestly” on
it. We explain this remedy in detail below.

2 Background and Notation

We import all notation from [DP24, § 2]. In particular, we recall multilinear polynomials (see [DP24, § 2.1]),
the novel polynomial basis [LCH14] polynomials X0(X), . . . , X2ℓ−1(X) (see also [DP24, § 2.3]), the additive
NTT (see also [DP24, Alg. 2]), the Reed–Solomon code RSL,S(0) [2ℓ+R, 2ℓ] (see also [DP24, § 2.2]), and FRI
[BBHR18] (see also [DP24, § 2.4]).

3 Security Definitions

We record security definitions.

2



3.1 Multilinear Polynomial Commitment Schemes

We begin by reviewing various definitions from [DP24].

FUNCTIONALITY 3.1 (FL
Vec—vector oracle).

An arbitrary alphabet L is given.

• Upon receiving (submit,m, f) from P, where m ∈ N and f : Bm → L, output (receipt, L, [f ]) to
all parties, where [f ] is some unique handle onto the vector f .

• Upon receiving (query, [f ], v) from V, where v ∈ Bm, send V (result, f(v)).

Definition 3.2. An interactive oracle polynomial commitment scheme (IOPCS) is a tuple of algorithms
Π = (Setup,Commit,P,V) with the following syntax:

• params← Π.Setup(1λ, ℓ). On input the security parameter λ ∈ N and a number-of-variables parameter
ℓ ∈ N, outputs params, which includes, among other things, a field L.

• [f ] ← Π.Commit(params, t). On input params and a multilinear polynomial t(X0, . . . , Xℓ−1) ∈
L[X0, . . . , Xℓ−1]

⪯1, outputs a handle [f ] to a vector.

• b ← ⟨P([f ], s, r; t),V([f ], s, r)⟩ is an IOP, in which the parties may jointly leverage the machine FL
Vec.

The parties have as common input a vector handle [f ], an evaluation point (r0, . . . , rℓ−1) ∈ Lℓ, and
a claimed evaluation s ∈ L. P has as further input a multilinear polynomial t(X0, . . . , Xℓ−1) ∈
L[X0, . . . , Xℓ−1]

⪯1. V outputs a success bit b ∈ {0, 1}.

The IOPCS Π is complete if the obvious correctness property holds. That is, for each multilin-
ear polynomial t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]

⪯1 and each honestly generated commitment [f ] ←
Π.Commit(params, t), it should hold that, for each r ∈ Lℓ, setting s := t(r0, . . . , rℓ−1), the honest prover
algorithm induces the verifier to accept with probability 1, so that ⟨P([f ], s, r; t),V([f ], s, r)⟩ = 1.

We define the soundness of IOPCSs exactly as in [DP24, Def. 2.8].

3.2 Zero-Knowledge

We now define zero-knowledge for IOPCSs. Our definition of below adapts Virgo’s [ZXZS20, Def. 3], and
also incorporates the IOP model.

Definition 3.3. For each interactive oracle polynomial commitment scheme Π, security parameter λ ∈ N,
number-of-variables parameter ℓ ∈ N, and PPT simulator S, we define the following experiment:

• The experimenter samples params← Π.Setup(1λ, ℓ), and gives params, including L, to P and S.

• P outputs a multilinear t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]
⪯1.

• P interacts with the vector oracle as prescribed by Π.Commit(params, t), and so produces [f ].

• V, given [f ], outputs an evaluation point r ∈ Lℓ. The experimenter gives V s := t(r).

• The experimenter defines two distributions:

– RealΠ,ℓ(λ): P and V interact honestly on ⟨P([f ], s, r; t),V([f ], s, r)⟩. Output V’s view.

– IdealΠ,ℓ
S (λ): S, given params, r and s (but not t), initiates an internal simulation to the honest

verifier V, in which S simulates the existence both of P and of the vector oracle. Output V’s view.

The IOPCS Π is said to be zero-knowledge if there exists a PPT simulator S such that the distributions{
RealΠ,ℓ(λ)

}
ℓ,λ

and
{
IdealΠ,ℓ

S (λ)
}
ℓ,λ

are identical.

3



4 Our Protocol

We now give our protocol, adapting [DP24, Cons. 4.11].

CONSTRUCTION 4.1 (Zero-Knowledge Binary BaseFold).
We define Π = (Setup,Commit,P,V) as follows.

1. params ← Π.Setup(1λ, ℓ). On input 1λ and ℓ, run the setup algorithm of [DP24, § 4.11] on the
inputs 1λ and ℓ+1. In this way, obtainR, a binary field L/F2, a repetition parameter γ = ω(log λ),

an F2-basis (β0, . . . , βr−1) of L, and the novel basis (X0(X), . . . , X2ℓ+1−1(X)) of L[X]≺2ℓ+1

. Fix
a folding factor ϑ | ℓ. Write S(0) := βℓ+R+1 + ⟨β0, . . . , βℓ+R⟩; for each i ∈ {1, . . . , ℓ}, write

S(i) := Ŵi

(
S(0)

)
. Write C(0) ⊂ L2ℓ+R+1

for the Reed–Solomon code RSL,S(0) [2ℓ+1+R, 2ℓ+1]. Write

κ := γ · 2ϑ for the number of points of each FRI oracle that V opens.

2. [f ] ← Π.Commit(params, t). Write (ti)
2ℓ−1
i=0 for t(X0, . . . , Xℓ−1)’s Lagrange coefficient vector.

Moreover, for each j ∈ {0, . . . , κ− 1}, sample t2ℓ+j ← L. Write P (X) :=
∑2ℓ+κ−1

j=0 tj ·Xj(X). Us-

ing the additive NTT [DP24, Alg. 2], compute the codeword f : S(0) → L defined by f : x 7→ P (x).
Send (submit, ℓ+R+1, f) to FL

Vec. Upon getting (receipt, ℓ+R+1, [f ]) from FL
Vec, output [f ].

We define (P,V) as the following IOP, in which both parties have the common input [f ], s ∈ L, and
(r0, . . . , rℓ−1) ∈ Lℓ, and P has the further input t(X0, . . . , Xℓ−1) ∈ L[X0, . . . , Xℓ−1]

⪯1.

1. P samples 2ℓ + κ further fresh random coefficients, say t′j ← L, for j ∈ {0, . . . , 2ℓ + κ − 1}. P
writes P ′(X) :=

∑2ℓ+κ−1
j=0 t′j ·Xj(X), and encodes it just as in the commitment procedure above,

so obtaining f ′ : S(0) → L. P sends (submit, ℓ+R+ 1, f ′) too to the oracle.

2. P’s new random coefficients
(
t′j
)2ℓ+κ−1

j=0
lexicographically define an ℓ + 1-variate multilinear, say

t′(X0, . . . , Xℓ). P calculates s′ := t′(r0, . . . , rℓ−1, 0) and sends s′ to V in the clear.

3. Upon receiving [f ′] and s′, V samples α← L and sends α to P.

4. P and V define the virtual combination oracle f (0) := α·f+f ′. Moreover, they write s0 := α·s+s′.
P defines

t′′(X0, . . . , Xℓ−1) := α · t(X0, . . . , Xℓ−1) + t′(X0, . . . , Xℓ−1, 0),

and sets h(X0, . . . , Xℓ−1) := ẽq(r0, . . . , rℓ−1, X0, . . . , Xℓ−1) · t′′(X0, . . . , Xℓ−1).

5. Exactly as in [DP24, § 4.11], P and V proceed for ℓ rounds, interleaving a sumcheck on
h(X0, . . . , Xℓ−1)—with the initial statement s0—with FRI folding on the (virtual) initial ora-
cle f (0). In this way, if the verifier doesn’t reject, they wind up a final sumcheck claim sℓ, positive

oracles f (ϑ), . . . , f (ℓ−ϑ), and a final FRI message (c0, c1) sent in the clear. Here, c0+c1 ·X(ℓ)
1 (X) is

the ℓth-order basis representation of P’s final FRI oracle f (ℓ) : S(ℓ) → L. Note here that S(ℓ) ⊂ L
is affine-linear of dimension R+ 1, and f (ℓ) is the encoding of a polynomial of degree at most 1.

6. V checks sℓ
?
= ẽq(r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1) · c0.

7. V executes the usual FRI querying procedure, for γ repetitions, on the words f (0), f (ϑ), . . . , f (ℓ).
Here, again, f (0) = α · f + f ′ is virtual, the oracles f (ϑ), . . . , f (ℓ−ϑ) are committed, and f (ℓ) is

given fully in the clear to the verifier, as the encoding of c0 + c1 ·X(ℓ)
1 (X) onto the domain S(ℓ).

Construction 4.1 is complete. The idea is straightforward, once you understand [DP24, Thm. 4.12].
First, h(X0, . . . , Xℓ−1) is defined in such a way that

∑
w∈Bℓ

h(w) = t′′(r0, . . . , rℓ−1) = α · t(r0, . . . , rℓ−1) +
t′(r0, . . . , rℓ−1, 0), which itself equals α · s+ s′ = s0 if P is honest. P’s sumcheck claim will thus be true. On
the other hand, by [DP24, Lem. 4.13], c0 will be α · t(r′0, . . . , r′ℓ−1) + t′(r0, . . . , r

′
ℓ−1, 0). The product of c0

with ẽq(r0, . . . , rℓ−1, r
′
0, . . . , r

′
ℓ−1) will thus give V exactly what it needs at the very end of the sumcheck.

4



Theorem 4.2. The IOPCS Π = (Setup,Commit,P,V) of Construction 4.1 is sound.

Proof (sketch). E , on input A’s message f to the oracle, runs the Berlekamp–Welch decoder (see e.g. [DP24,

Alg. 1]), as usual. If E successfully obtains a polynomial P (X) =
∑2ℓ+1−1

j=0 tj · Xj(X), then E writes

t(X0, . . . , Xℓ−1) for the multilinear whose Lagrange coefficients are (tj)
2ℓ−1
j=0 , and outputs t(X0, . . . , Xℓ−1).

If either f : S(0) → L or f ′ : S(0) → L fails to reside within C(0)’s unique decoding radius, then so too
will f (0), with high probability over V’s choice of α, by the basic Reed–Solomon proximity gap [Ben+23,
Thm. 4.1] (see also [DP24, Thm. 2.2]). Moreover, if f (0) isn’t in C(0)’s unique decoding radius, then V will
reject [DP24, Prop. 4.23]. We can thus safely treat just the case in which f and f ′ are close to the code, so
that t(X0, . . . , Xℓ−1) and t′(X0, . . . , Xℓ) are both well-defined.

Again by [DP24, Prop. 4.23], we can likewise assume that A’s positive oracles f (ϑ), . . . , f (ℓ−ϑ) too are
close to the code, as well as that these oracles’ close codewords are consistent in the sense of [DP24, Def. 4.17].
Under these conditions, [DP24, Lem. 4.13] gives us the guarantee c0 = α · t(r′0, . . . , r′ℓ−1)+ t′(r′0, . . . , r

′
ℓ−1, 0).

Now if s ̸= t(r0, . . . , rℓ−1) holds, then so too will

α · s+ s′ ̸= α · t(r0, . . . , rℓ−1) + t′(r0, . . . , rℓ−1, 0) = t′′(r0, . . . , rℓ−1),

except with low probability over V’s choice of α← L. We thus further assume that

s(0) = α · s+ s′ ̸= α · t(r0, . . . , rℓ−1) + t′(r0, . . . , rℓ−1, 0) = t′′(r0, . . . , rℓ−1) =
∑
w∈Bℓ

h(w).

Invoking the soundness of the sumcheck, we conclude that, except with low probability,

sℓ ̸= h(r′0, . . . , r
′
ℓ−1) = ẽq

(
r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1

)
· t′′(r′0, . . . , r′ℓ−1)

too will hold as of that protocol’s end. On the other hand, we just justified assuming that c0 = α ·
t(r′0, . . . , r

′
ℓ−1) + t′(r′0, . . . , r

′
ℓ−1, 0) = t′′(r′0, . . . , r

′
ℓ−1). Substituting that last equality into the inequality just

above, we obtain
sℓ ̸= ẽq

(
r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1

)
· c0,

so that the verifier will reject.

Theorem 4.3. The IOPCS Π = (Setup,Commit,P,V) of Construction 4.1 is zero-knowledge.

Proof. We first write down our simulator S. On input params, r and s, S operates as follows:

1. S simulates the vector oracle’s sending to V the receipt [f ′], as if P had just committed to f ′ : S(0) → L.

2. S simulates P’s supposed evaluation s′ ← L uniformly randomly, and sends s′ to V as if from P.

3. S receives in turn V’s message α, intended for P.

4. S samples coefficients (t′′j )
2ℓ+κ−1
j=0 uniformly randomly subject to the condition t′′(r0, . . . , rℓ−1) = α·s+s′.

Here, we write

t′′(X0, . . . , Xℓ−1) :=
∑
w∈Bℓ

t′′{w} · ẽq(X0, . . . , Xℓ−1, w0, . . . , wℓ−1).

S locally encodes (t′′j )
2ℓ+κ−1
j=0 in the usual way; that is, it evaluates P ′′(X) :=

∑2ℓ+κ−1
j=0 t′′j ·Xj(X) on

S(0), and so obtains a function f ′′ : S(0) → L.

5. S performs the entire sumcheck “honestly” with V, using t′′(X0, . . . , Xℓ−1). Moreover, S FRI-folds
“honestly” using f (0) := f ′′. That is, it honestly locally computes, just as P would, the positive oracles
f (ϑ), . . . , f (ℓ−ϑ) (and simulates to V their commitment receipts), as well as the final message (c0, c1).

6. S writes (u0, . . . , uκ−1) for the points of S(0) opened by V. For each such ui, S simulates f(ui) ← L
uniformly randomly. Moreover, it sets f ′(ui) := f ′′(ui)−α · f(ui). S simulates all of V’s oracle queries
to f and f ′ in this way; it answers all of V’s queries to f (ϑ), . . . , f (ℓ−ϑ) “honestly”.

5



In step 4, the condition t′′(r0, . . . , rℓ−1) = α · s+ s′ is linear on the space of coefficients (t′′j )
2ℓ−1
j=0 , so that S

can perform that step’s sampling procedure efficiently. In step 6 above, as well as henceforth, we assume for
convenience that the query points (u0, . . . , uκ−1) in S(0) are distinct ; the case in which they’re not is similar.

We argue that this simulator S fulfills the requirements of Definition 3.3.

We begin with a linear-algebraic lemma. This lemma shows that, for low terms (tj)
2ℓ−1
j=0 and evaluation

points (ui)
κ−1
i=0 fixed, choosing high terms

(
t2ℓ+j

)κ−1

j=0
is equivalent to choosing the evaluations (f(ui))

κ−1
i=0 .

The key is that S(0) is disjoint from ⟨β0, . . . , βℓ−1⟩.

Lemma 4.4. For each list (tj)
2ℓ−1
j=0 and each list (u0, . . . , uκ−1) of distinct S(0)-elements, the affine-linear

map Lκ → Lκ which sends (
t2ℓ+j

)κ−1

j=0
7→ (P (ui))

κ−1
i=0 , (1)

where P (X) :=
∑2ℓ+κ−1

j=0 tj ·Xj(X), is bijective.

Proof. For each list of low coefficients (tj)
2ℓ−1
j=0 as in the hypothesis of the theorem, we write Plow(X) :=∑2ℓ−1

j=0 tj ·Xj(X); moreover, for each high list
(
t2ℓ+j

)κ−1

j=0
, we write Phigh(X) :=

∑κ−1
j=0 t2ℓ+j ·X2ℓ+j(X). Since

P (X) = Plow(X)+Phigh(X), we may freely, after subtracting off the constant vector (Plow(ui))
κ−1
i=0 from the

image of (1), consider instead the linear map(
t2ℓ+j

)κ−1

j=0
7→ (Phigh(ui))

κ−1
i=0 . (2)

Indeed, if (2) is bijective, then (1) is too, since they differ by the additive affine offset (Plow(ui))
κ−1
i=0 .

We re-express (2) using the following matrix identity:

i
v
a
ry

in
g




Phigh(ui)


=


X2ℓ(ui) · · · X2ℓ+κ−1(ui)


·


t2ℓ+j



=



X2ℓ(u0)

. . .

X2ℓ(uκ−1)


·


X0(ui) · · · Xκ−1(ui)


·


t2ℓ+j





j
v
a
ry

in
g

.

The first equality above is just the definition of Phigh(X). That first matrix contains a “Vandermonde” of
the novel basis polynomials X2ℓ(X), . . . , X2ℓ+κ−1(X), evaluated respectively at the points (u0, . . . , uκ−1).
That is, the jth column of that matrix gives the respective evaluations at (u0, . . . , uκ−1) of the novel basis
polynomial X2ℓ+j(X).

In the second equality, we use the recursive substructure of the novel basis polynomials. Indeed, for
each j ∈ {0, . . . , κ − 1}, X2ℓ+j(X) = X2ℓ(X) · Xj(X) as polynomials (we assume that 2ℓ ≥ κ here). We
may thus replace the high-end Vandermonde associated with X2ℓ(X), . . . , X2ℓ+κ−1(X) with the standard
Vandermonde associated instead with X0(X), . . . , Xκ−1(X), provided that we scale the rows of that latter
Vandermonde by the scalars X2ℓ(u0), . . . , X2ℓ(uκ−1).

The diagonal matrix diag(X2ℓ(u0), . . . , X2ℓ(uκ−1)) is nonsingular. Indeed, X2ℓ(X) vanishes exactly on
⟨β0, . . . , βℓ−1⟩; moreover, we chose S(0) specifically to be disjoint from that subspace. Thus the entries of
that diagonal are all nonzero. (This is where we use the disjointness of S(0) from Uℓ = ⟨β0, . . . , βℓ−1⟩.)

Finally, the Vandermonde associated withX0(X), . . . , Xκ−1(X) is also nonsingular. This fact is standard;
to prove it, we note that that Vandermonde in turn can be expressed as the product between the standard
univariate Vandermonde, with respect to the points (u0, . . . , uκ−1), and the change-of-basis matrix between
the monomial basis and the novel basis. Both of these matrices are nonsingular.

6



We now define a number of hybrid distributions, all of which will be identical to each other.

1. Defined to be RealΠ,ℓ.

2. Same as above, except for the following differences. V’s receipt of [f ′] is replaced by a simulation of
that receipt. P’s value s′ := t′(r0, . . . , rℓ−1, 0) is replaced with a freshly sampled random scalar s′ ← L.
The oracle f (0) upon which FRI folding is conducted is defined not as α · f + f ′, but rather as the

encoding f ′′ of a vector
(
t′′j
)2ℓ+κ−1

j=0
sampled exactly as in 4 above (that is, uniformly randomly subject

to the linear condition t′′(r0, . . . , rℓ−1) = α · s + s′). Finally,
(
t′j
)2ℓ+κ−1

j=0
is defined according to the

backfilling rule t′j := t′′j − α · tj for each j ∈ {0, . . . , 2ℓ + κ− 1}, and f ′ is defined to be its encoding.

3. Same as above, except instead of defining f as the encoding of (tj)
2ℓ+κ−1
j=0 , the simulator instead samples

the evaluations f(ui) ← L directly as random scalars for each i ∈ {0, . . . , κ − 1}. Using these values

and the prover’s secret message (tj)
2ℓ−1
j=0 , the simulator backfills the high values

(
t2ℓ+j

)κ−1

j=0
. This

prescription is well-defined by Lemma 4.4. Finally, the simulator uses the resulting list (tj)
2ℓ+κ−1
j=0 to

perform the backfilling t′j := t′′j −α · tj for j ∈ {0, . . . , 2ℓ+κ− 1}, and to define f ′, just as it did above.

4. Defined to be IdealΠ,ℓ
S .

Lemma 4.5. The distributions 1 and 2 are identical.

Proof. Since, for each (r0, . . . , rℓ−1), the map L2ℓ+κ → L which sends
(
t′j
)2ℓ+κ−1

j=0
7→ t′(r0, . . . , rℓ−1, 0) is linear

and surjective, the honest prover might as well, as opposed to choosing
(
t′j
)2ℓ+κ−1

j=0
uniformly, instead first

sample the image point s′ ← L, and then pick a uniform element
(
t′j
)2ℓ+κ−1

j=0
in the hyperplane H ′ ⊂ L2ℓ+κ

for which t′(r0, . . . , rℓ−1, 0) = s′ holds. Thus 2’s selection procedure for s′ is valid. Furthermore, adding

(α · tj)2
ℓ+κ−1

j=0 translates H ′ identically to the further hyperplane H ′′ ⊂ L2ℓ+κ consisting of coefficient vectors(
t′′j
)2ℓ+κ−1

j=0
for which t′′(r0, . . . , rℓ−1) = α·s+s′ holds. Instead of choosing a uniform element of H ′, therefore,

the simulator might as well choose a uniform element of H ′′ and backfill the corresponding element of H ′.

Lemma 4.6. The distributions 2 and 3 are identical.

Proof. As of the point at which V first reveals its query locations, the prover’s high coefficients
(
t2ℓ+j

)κ−1

j=0

remain purely random and independent of everything else in the transcript. V’s choice of query positions thus

amounts to a choice of isomorphism
(
t2ℓ+j

)κ−1

j=0
7→ (P (ui))

κ−1
i=0 . Instead of choosing the preimage

(
t2ℓ+j

)κ−1

j=0

uniformly as P would, S might as well uniformly choose the image (f(ui))
κ−1
i=0 and backfill

(
t2ℓ+j

)κ−1

j=0
.

Lemma 4.7. The distributions 3 and 4 are identical.

Proof. The only difference between these distributions is how the evaluations (f ′(ui))
κ−1
i=0 are generated.

In 3, they come from an encoding of two backfills: first, from (f(ui))
κ−1
i=0 to

(
t2ℓ+j

)κ−1

j=0
, which uses the

prover’s secret vector (tj)
2ℓ−1
j=0 , and next from

(
t′′j
)2ℓ+κ−1

j=0
to

(
t′j
)2ℓ+κ−1

j=0
, which proceeds by subtraction. In

4, they come instead from the backfilling rule f ′(ui) := f ′′(ui) − α · f(ui) in the evaluation domain. That

latter backfilling doesn’t use (tj)
2ℓ−1
j=0 , and can be carried out by the simulator. We show that these rules

respectively yield identical distributions.

This turns into a calculation. To prepare for it, we introduce some notation. We write V : L2ℓ+κ → Lκ

for the function (tj)
2ℓ+κ−1
j=0 7→ (P (ui))

κ−1
i=0 (we reuse the notation of Lemma 4.4 here). Similarly, we write

Vlow : L2ℓ → Lκ for the map (tj)
2ℓ−1
j=0 7→ (Plow(ui))

κ−1
i=0 and Vhigh : Lκ → Lκ for

(
t2ℓ+j

)κ−1

j=0
7→ (Phigh(ui))

κ−1
i=0 .

Clearly, for each (tlow, thigh) in L2ℓ+κ:

V (tlow, thigh) = Vlow(tlow) + Vhigh(thigh). (3)

7



We now have the main calculation. Below, we give meaning to all symbols with reference to the distri-
bution 3.

(f ′(ui))
κ−1
i=0 = V

(
(t′′low, t

′′
high)− α ·

(
tlow, V

−1
high

(
(f(ui))

κ−1
i=0 − Vlow(tlow)

)))
(this is the definition of 3.)

= V (t′′low, t
′′
high)− α · V

(
tlow, V

−1
high

(
(f(ui))

κ−1
i=0 − Vlow(tlow)

))
(by the linearity of V .)

= V (t′′low, t
′′
high)− α · Vlow(tlow)− α ·

(
(f(ui))

κ−1
i=0 − Vlow(tlow)

)
(use (3); cancel V −1

high ◦ Vhigh.)

= V (t′′low, t
′′
high)− α · (f(ui))

κ−1
i=0 (cancel plus and minus α · Vlow(tlow).)

= (f ′′(ui))
κ−1
i=0 − α · (f(ui))

κ−1
i=0 . (by definition of f ′′(ui))

κ−1
i=0 .)

This is exactly how S simulates (f ′(ui))
κ−1
i=0 in 4. We conclude that these distributions are identical.

This completes the proof of the theorem.

4.1 The BCS transform

In applications, we want to work in the random oracle model, not in the IOP model. For this reason, we
must use the Ben-Sasson–Chiesa–Spooner transformation [BCS16]. Importantly, we must use that transfor-
mation’s zero-knowledge variant, given in [BCS16, § 3.2]. In that variant, each “tag” in the Merkle tree is
salted with a purely random string before it is hashed into a leaf. We explain this fact here.

To begin, we must first explain what zero-knowledge means in the random oracle model (see also Chiesa
and Yogev [CY25, § 5.2]). Instead of demanding that the two distributions of Definition 3.3 be identical, we
must merely ask that they be computationally indistinguishable. Moreover, we need to be careful about the
random oracle. Firstly, we need to allow S to “program” the oracle—that is, to manually inscribe various
input–output pairs into its table—during its execution. Moreover—and this is the crucial point—when the
distinguisher runs on a transcript (whether from the real or ideal world), the distinguisher must inherit the
state of the oracle. That state includes any input–output pairs sampled by the oracle itself in response to
queries made by the various parties, as well as any pairs which S programmed. This model is called the
explicitly programmable random oracle model. We must finally give the distinguisher D access to this oracle
and to the honest prover’s witness before it runs.

In the explicitly programmable model, the standard, non-zero-knowledge BCS transformation fails to
bootstrap our zero-knowledge IOPCS above into a zero-knowledge PCS. Indeed, the distinguisher, given

access to the prover’s secret (tj)
2ℓ−1
j=0 and to the transcript, may easily use the further evaluations (f(ui))

κ−1
i=0

to backfill
(
t2ℓ+j

)κ−1

j=0
, exactly as in Lemma 4.4. Given the full list (tj)

2ℓ+κ−1
j=0 , the distinguisher could further

independently recompute the full Merkle tree over (tj)
2ℓ+κ−1
j=0 , using the random oracle it inherited. It could

finally check whether the resulting root matched that present in the transcript or not. If the standard BCS
transformation were used, then the simulator S would have no way to simulate the Merkle root in such a

way as to forestall this attack by the distinguisher (after all, S doesn’t get (tj)
2ℓ−1
j=0 ; this is the whole point).

Under the zero-knowledge BCS variant, this attack wouldn’t work: the distinguisher would have the full

list of messages (tj)
2ℓ+κ−1
j=0 , but would lack the salts used by the honest prover while it computed its Merkle

tree. The distinguisher would thus have no way to independently redo what the prover (supposedly) did
during its execution of the protocol. Equivalently, S, in this setting, could get away with simulating a purely
random Merkle root in the transcript, and D would be none the wiser.

This attack only works when D inherits the oracle’s state. In that hypothetical, alternative framework
which chose to define “zero-knowledge” in such a way as to withhold this oracle state from the distinguisher,
even the standard BCS transform would yield a “secure” IP. That model, called the fully programmable
random oracle model, turns out to be pathological (it too readily deems things “secure”). In that model,
S itself simulates the existence of the random oracle internally to V. Its very existence is a figment of S’s
simulation. In particular, not only may S program it arbitrarily (subject to generating an appropriate view
to V), but moreover, before D arrives, the state of that oracle becomes “wiped” or destroyed. Thus, in that
model, D could again attempt to reconstruct P’s Merkle root, as it did above, but that endeavor would
tell D nothing (its oracle would be independent of P’s). In any case, it’s interesting that Construction 4.1,
compiled using the standard BCS transform, exhibits a separation between the EPROM and the FPROM.

8



4.2 Efficiency

We discuss the efficiency of Construction 4.1, and compare it to [DP24, Cons. 4.11]’s. Our construction is
about four times more costly than [DP24, Cons. 4.11] is. Indeed, our prover must additive-NTT the vectors

(tj)
2ℓ+κ−1
j=0 and

(
t′j
)2ℓ+κ−1

j=0
onto S(0), which is of size 2ℓ+R+1. These vectors are inconveniently sized: they

are just larger than 2ℓ. By zero-padding, the prover can carry out each NTT in no worse than (ℓ+1) · 2ℓ+R

L-multiplications, for a total of 4 · (ℓ+1) · 2ℓ+R−1 L-multiplications. In [DP24, Cons. 4.11], the prover must
NTT just a single vector of length 2ℓ onto a domain of size 2ℓ+R; this task takes ℓ ·2ℓ+R−1 L-multiplications.

We are not sure if there is a way to exploit the fact (tj)
2ℓ+1−1
j=0 and

(
t′j
)2ℓ+1−1

j=0
’s respective high halves

are mostly zero (i.e., to encode them faster). We note that our protocol would still be correct and secure
if the prover sampled these upper halves fully randomly; this would be less efficient though (i.e., merely to
generate and write the random values). As our security proof shows, κ random values are enough.

Avenues for improvement. In one possible variant of our above encoding algorithm, the parties would
instead define S(0) := βℓ+R + ⟨β0, . . . , βℓ+R−1⟩—i.e., as an ℓ+R-dimensional, as opposed to an ℓ+R+ 1-
dimensional, subspace—and encode P (X) on S(0). It is tempting to hope that the parties might carry out
FRI rather in the code RSL,S(0) [2ℓ+R, 2ℓ + κ], whose rate is just slightly worse than ours’s. In this way, they
would reduce by half the prover’s cost, while paying just a small soundness penalty.

Unfortunately, this idea seems not to work, at least in any obvious way. The problem is that FRI seems
not to work for non-power-of-2-sized domains. The “excess” κ coefficients in the prover’s message would
“leak” as the protocol proceeded, and cause the relative rates of the prover’s higher-indexed codewords to
saturate to 1. This fact would apparently break the soundness analysis of FRI, leave aside its implications
for BaseFold. (In particular, the verifier would have to stop at least one round early, in order to retrieve the
prover’s folded message.)

Joseph Johnston has suggested to us an interesting idea whereby the prover might start with a fully

random upper half (tj)
2ℓ+1−1
j=2ℓ , and then delay its introduction of the blinding codeword f ′ until the FRI

oracle f (i) becomes so small that κ ≈ 2ℓ−i. This approach would reduce the multiplicative cost overhead of
Construction 4.1 over [DP24, Cons. 4.11] from 4 + o(1) to just 2 + o(1). In fact, if just FRI were at stake,
this approach could be made to work. Unfortunately, we have the sumcheck too to deal with. It’s hard
to imagine how the prover might handle the early rounds of its sumcheck—i.e., before f ′ gets introduced—

without leaking something about (tj)
2ℓ−1
j=0 . The point for us is that our prover’s (t′′j )

2ℓ+κ−1
j=0 is already fully

random, and can be simulated. Nothing about it needs to be hidden (either in the sumcheck or its encodings).

5 Future Work

This note makes zero-knowledge just the large-field scheme [DP24, Cons. 4.11]; it doesn’t handle ring-
switching or small-field commitment. We leave for follow-up work the task of making ring-switching zero-
knowledge, as well as that of designing a zero-knowledge, higher-level PIOP.

References

[AHIV23] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. “Ligero:
lightweight sublinear arguments without a trusted setup”. In: Designs, Codes and Cryptography
(2023). doi: 10.1007/s10623-023-01222-8.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed–Solomon Inter-
active Oracle Proofs of Proximity”. In: International Colloquium on Automata, Languages, and
Programming. Ed. by Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Don-
ald Sannella. Vol. 107. Leibniz International Proceedings in Informatics. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 14:1–14:17. doi: 10.4230/LIPIcs.
ICALP.2018.14.

9

https://doi.org/10.1007/s10623-023-01222-8
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.4230/LIPIcs.ICALP.2018.14


[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In: Inter-
national Conference on Theory of Cryptography. Vol. 9986. Berlin, Heidelberg: Springer-Verlag,
2016, pp. 31–60. isbn: 978-3-662-53644-5. doi: 10.1007/978-3-662-53644-5_2.

[Ben+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. “Aurora: Transparent Succinct Arguments for R1CS”. In: Advances in Cryp-
tology – EUROCRYPT 2019. Berlin, Heidelberg: Springer-Verlag, 2019, pp. 103–128. isbn: 978-
3-030-17652-5. doi: 10.1007/978-3-030-17653-2_4.

[Ben+23] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. “Proximity
Gaps for Reed–Solomon Codes”. In: Journal of the ACM 70.5 (Oct. 2023). doi: 10.1145/
3614423.

[CY25] Alessandro Chiesa and Eylon Yogev. Building Cryptographic Proofs from Hash Functions. 2025.

[DP24] Benjamin E. Diamond and Jim Posen. Polylogarithmic Proofs for Multilinears over Binary
Towers. Cryptology ePrint Archive, Paper 2024/504. 2024. url: https://eprint.iacr.org/
2024/504.

[DP25] Benjamin E. Diamond and Jim Posen. “Succinct Arguments over Towers of Binary Fields”.
In: Advances in Cryptology – EUROCRYPT 2025. Ed. by Serge Fehr and Pierre-Alain Fouque.
Cham: Springer Nature Switzerland, 2025, pp. 93–122. isbn: 978-3-031-91134-7.

[LCH14] Sian-Jheng Lin, Wei-Ho Chung, and Yunghsiang S. Han. “Novel Polynomial Basis and Its Ap-
plication to Reed–Solomon Erasure Codes”. In: IEEE 55th Annual Symposium on Foundations
of Computer Science. 2014, pp. 316–325. doi: 10.1109/FOCS.2014.41.

[ZCF24] Hadas Zeilberger, Binyi Chen, and Ben Fisch. “BaseFold: Efficient Field-Agnostic Polynomial
Commitment Schemes from Foldable Codes”. In: Advances in Cryptology – CRYPTO 2024.
Berlin, Heidelberg: Springer-Verlag, 2024, pp. 138–169. isbn: 978-3-031-68402-9. doi: 10.1007/
978-3-031-68403-6_5.

[ZXZS20] J. Zhang, T. Xie, Y. Zhang, and D. Song. “Transparent Polynomial Delegation and Its Applica-
tions to Zero Knowledge Proof”. In: IEEE Symposium on Security and Privacy. 2020, pp. 859–
876. isbn: 2375-1207. doi: 10.1109/SP40000.2020.00052.

10

https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1145/3614423
https://doi.org/10.1145/3614423
https://eprint.iacr.org/2024/504
https://eprint.iacr.org/2024/504
https://doi.org/10.1109/FOCS.2014.41
https://doi.org/10.1007/978-3-031-68403-6_5
https://doi.org/10.1007/978-3-031-68403-6_5
https://doi.org/10.1109/SP40000.2020.00052

	Introduction
	Some Remarks

	Background and Notation
	Security Definitions
	Multilinear Polynomial Commitment Schemes
	Zero-Knowledge

	Our Protocol
	The BCS transform
	Efficiency

	Future Work

