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Abstract. Secure Multi-Party Computation is a privacy-enhancing tech-
nology that allows several parties to securely compute on distributed pri-
vate data. In the line of the well established SPDZ protocol, the by far
most expensive task is the generation of Beaver triples in the so called
o�ine phase. Silentium is our implementation of an actively secure o�ine
phase in the form of a Pseudorandom Correlation Generator for Beaver
triples (Bt-PCG, Boyle et al. CRYPTO 2020), which, as any PCG, is de-
signed to have low communication. Compared to previous o�ine phases,
their Bt-PCG reduces the communication costs by three orders of magni-
tude. However, so far e�ciency was only estimated. With Silentium, we
demonstrate that their Bt-PCG can achieve even better running times
than state-of-the-art o�ine phase implementations in the MP-SPDZ li-
brary. To actually achieve such a performance, Silentium comprises a
systematic parallelization strategy and implementation-friendly decom-
position scenarios of the Bt-PCG into structured modules. Looking for-
ward for large-scale applications on the cloud, Silentium is designed to
be versatile to support hardware acceleration in future.

Keywords: Secure Multi-Party Computation · Beaver Triples · Pseu-
dorandom Correlation Generators

Secure multi-party computation (MPC) is a privacy-enhancing technology
that allows several parties to evaluate a public function without leaking private
inputs and outputs. Silentium is our implementation of a recent protocol for
silent MPC [9], i.e., we bring forward practical MPC solutions with low commu-
nication. Our motivation is MPC on cloud servers, e.g., with the Carbyne Stack
platform1 based on the SPDZ protocol [14], where typically communication is
a bottleneck due to high latency. More generally, the cloud setting is promis-
ing to outsource large-scale and industrial applications, e.g., privacy-preserving
machine learning. In this sense, the attractiveness of MPC on the cloud is deter-
mined not only by communication but also computation. Concretely, Silentium
is our implementation of a recent Pseudorandom Correlation Generator (PCG)
for the generation of Beaver triples [9], the most expensive, and cryptograph-
ically challenging, task in the line of the SPDZ protocol. While this PCG, as
any PCG, is designed to have low communication, so far concrete e�ciency was

1 https://carbynestack.io/
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only estimated. With Silentium2 we prove that their PCG is indeed attractive
in practice.

1.1 Technical Context

To distinguish our work from other MPC approaches, we mention three main
MPC assumptions of Silentium. Firstly, follwoing the SPDZ protocol, Silentium
is in the domain of MPC over arithemtic circuits based on additive secret-sharing,
in contrast to MPC over binary circuits based on e.g. garbled circuits [33]. Sec-
ondly, following the Bt-PCG, Silentium is restricted to the two-party setting,
which is already su�cient to outsource a secure computation for any number
of parties to (two) cloud servers [3]. Finally, we consider the actively secure Bt-
PCG formulation [9], i.e., with strong security guarantees even if one untrusted
party might actively deviate from the underlying protocols. This strong scenario
gives stronger security guarantees and compliance for industrial applications.

1.2 Silentium as O�ine Phase in the Line of SPDZ

The basic MPC framework of our work is the SPDZ protocol [14]. Protocols in
the line of SPDZ can be seen as standard approach for MPC over arithmetic
circuits (encoding the real-world function to evaluate). The crucial point of the
SPDZ protocol is the preprocessing model [3] with two phases. In this model,
the actual secure function evaluation (online phase) consumes distributed cor-
related randomness that is provided by a preceding, input-independent, o�ine
phase. While this separation allows the construction of online phases with little
overhead compared to an unprotected (local) function evaluation, the construc-
tion of actively secure o�ine phases is challenging in terms computation and
communication. For SPDZ the o�ine phase mainly refers to the generation of
Beaver triples, also known as authenticated multiplication triple, each supporting
one multiplication in the online phase. For the cloud context, Silentium targets
for large-scale applications, that means for the generation of millions of Beaver
triples.

In the last years, the initial o�ine phase for SPDZ was improved in several
directions [3,13,14], with ready-to-use implementations in the MP-SPDZ library
[22]. While these typically rely on homomorphic encryption, Silentium can be
seen as an alternative o�ine phase implementation, following the recent design
of Pseudorandom Correlation Generators [8]. Concretely we implement a PCG
for Beaver triples (Bt-PCG). In general, PCGs come with low-communication
by design. [1,6,31]. The basis of Silentium is the Bt-PCG from Boyle et al [9],
which is so far the only attractive Bt-PCG (see below).

As a baseline, Silentium realizes the generation of about one million Beaver
triples over an 128-bit �eld (that means 100 MB of correlated randomness) in one
batch. For this amount, the Bt-PCG [9] takes a few MB of communication, while

2 Silentium (latin for silence) denotes periods of silence in monasteries with special
rules to bring communication to a minimum, in analogy to the design of PCGs.
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the protocols in MP-SPDZ take a few GB of communication. In pure numbers,
this reduction promises a game changing advantage in the aforementioned MPC
cloud context. With Silentium we demonstrate that on the same time, the Bt-
PCG is computationally as good as the protocols in MP-SPDZ.

1.3 Pseudorandom Correlation Generators

The following introduction on PCGs puts light on what actually hides beyond
the term Bt-PCG by giving relevant background on PCGs.

In general, PCGs [8] are a recent primitive for MPC o�ine phases with a focus
on low communication. PCGs [5,8] can be seen as a distributed generalization of
PRGs to expand small seeds into a large batch of correlated pseud-randomness
that is distributed cryptographically close to a given distributed target correla-
tion. A PCG consists of two stages: In a �rst step, private seeds are generated,
which in our use case of an MPC o�ine phase takes place as actively secure
seed generation protocol. In a second step, the seeds can be locally, i.e., without
further communication, expanded into a large amount of correlated randomness,
e.g., 220 of Beaver triples in case of the Bt-PCG [9]. The point about PCGs is to
be compressive in terms of small private seeds, which typically is achieved with
an encoding of the target correlation under variations of the learning with error
assumption [28]. While the compressive property is challenging to achieve it has
two practical advantages, that especially apply to MPC in the cloud context:

� Low Communication:When carefully constructed, the small seeds can be
generated with low communication, which typically is achieved with function
secret sharing [10,11] in the form of distributed point functions (DPF) [17].

� Reduced Storage: The storage costs for the seed between the interactive
and local phase is cheap, which becomes relevant for large-scale applications
with many PCG iterations. Concretely, small seeds enable e�cient MPC de-
ployments, where the interactive phase of the PCGs can be scheduled ways
before the PCG local phase and the MPC online phase. A dynamic cloud
deployment can bene�t from that freedom, and for example schedule seed
generations at times where high bandwidth is available. Instead, dynamic re-
source allocation on the cloud allows to schedule local phases just in advance
of an MPC online phase activation, which might depend on short-notice user
inputs.

PCGs for Beaver triples: It is well known that PCGs in general can achieve
very good performances [4,6,7,31,32]. However, the construction of PCGs for
Beaver triples turns out to be more challenging compared to other forms of
correlated randomness like VOLE. The point is that the non-linear multiplicative
property of Beaver triples is in contrast with many linear building blocks in the
toolbox of PCGs. Apart from initial, but ine�cient, approaches [8], there exists
only the Bt-PCG construction [9] for two-party Beaver triples with two follow-
up works about optimizations [29] and the multi-party setting [1]. Impressively,
for the Bt-PCG the generation of 220 Beaver triples (128 bit �eld) takes only
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0.5 to 30 MB per party, which is three orders of magnitude better than for
the protocols in MP-SPDZ. However, there exists no implementation, mainly
since the Bt-PCG is based on two special purpose primitives [9]. The �rst is an
actively secure generation protocol for authenticated secret-shared scaled unit
vectors (SUVs) [29]. So far, concrete e�ciency is only based on related work [7].
The second primitive is the ring-LPN assumption over large �elds, generalizing
the binary-ring LPN assumption [20]. Hereby the challenge is that the ring-
LPN assumptions requires large degree polynomial arithmetic, e.g., the Number
Theoretic Transforms with degree 220 over a 128-bit �eld, which is far beyond
sizes for comparable applications like the lattice based protocols standardized
by NIST3.

1.4 Contribution

Silentium is the �rst implementation of the Bt-PCG [9] (to the best of our
knowledge), proving the competitiveness with MP-SPDZ. E�ectively, our best
setup of the Bt-PCG runs 34% faster than respective benchmarks for LowGear,
the fastest o�ine phase in MP-SPDZ. For fairness, we do not claim to be in fact
better: Firstly, we stress that our benchmarks are only preliminary, rather than
a comprehensive comparison, e.g., with respect to the selection of parameters.
Secondly, while Silentium is standalone o�ine phase of based on the rather
new PCG paradigm, the protocols in MP-SPDZ are much more established and
mature in practice.

Silentium takes a two-folded approach to achieve good performance for the
Bt-PCG. As a theoretical contribution, Silentium actually comprises a whole
framework with systematic strategies for parallelization and decomposition (Sec-
tion 1.5). On the practical side, Silentium comprises more than 20.000 lines of
code, which, for good e�ciency on hardware level, are mainly written in C lan-
guage. The pure size of the code can be justi�ed by the novelty and size of many
building blocks, the implementation of the Silentium framework, and a versatile
design. The outstanding components are:

� At the core is the �rst implementation of an actively secure protocol to
generate authenticated secret-shared scaled unit vectors(SUVs) [9,29].

� An implementation of the Number Theoretic Transform (NTT) [26] for the
extraordinary large degree 220, based on a from scratch 128-bit �eld arith-
metic implementation. This setting is Bt-PCG speci�c and much more ex-
tensive compared to usual cryptography NTT applications (with degree up
to 215 on smaller �elds, e.g. [2]).

� Silentium contains two libraries for MPC online phases (as necessary for
the Bt-PCG itself): For SPDZ [14], i.e., for arithmetic operations, and for
TinyOT [16,27], i.e., for binary operations. We stress that the overhead for
their respective o�ine phases, which are not (yet) covered by Silentium, is
expected to be small [9,29].

3 https://csrc.nist.gov/projects/post-quantum-cryptography
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Looking forward to large-scale MPC deployments on the cloud, we design the
Silentium framework to be versatile. One goal is to prepare Silentium for special
purpose hardware acceleration and thus even better performance for large-scale
applications. For example, Silentium allows to easily exchange di�erent compo-
nents like the �eld implementation, enabling future use of specialized hardware
implementations. A further aspect of versatility is the challenge to �nd optimal
parameters con�gurations, which we address with our decomposition framework.

1.5 Technical Overview and Paper Outline

The preliminary section (Section 2) introduces the basis of SPDZ, that is MPC
with additively secret-sharing. Section 3 describes the Bt-PCG [9] and its con-
crete building blocks. In Section 4, we then perform a cost analysis of the Bt-
PCG, identifying relevant cost metrics and suitable actions concerning com-
munication, computation, internal MPC operations, and memory consumption.
Based on this analysis, we then derive the Silentium framework. Concretely, we
introduce di�erent techniques and scenarios to decompose the Bt-PCG into mod-
ules of implementation-friendly size (Section 5). At the core is a parallelization
strategy for speed-up, operating on two levels:

� High-level multi-tasking: Di�erent modules are supposed to run on dif-
ferent computation units like cores. This allows to balance high memory
consumption.

� Low level multi-threading:Within each module, we synchronize identical
tasks to run arithmetic operations in parallel on hardware level, and to reduce
the number of communication rounds.

In Section 6 we make one further step towards an implementation by formal-
izing the concept of modules as executable programs. Hereby, the modules are
con�gurable in order to make Silentium versatile. Section 7 provides some details
of our implementation. The evaluation of Silentium is in Section 8.3, including
a comparison to MP-SPDZ benchmarks. With Section 9 we conclude the paper
with a list of possible future work.
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Daniele de Bernardini, Giulia Salvatori, and Enrico Sorbera supporting in coding
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Agreement No. 16KIS1441 and from the French National Research Agency under
Agreement Grant No. ANR-20-CYAL-0006. The author has no competing interest
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2 Preliminaries:Additive Secret Sharing

In general, we write F for a large �nite �eld, where the bit size ν is a security
parameter. We write x← S to denote that x is sampled uniformly random from
a set S. We use upper indices Sc to denote c independent instances of S.

In SPDZ [14] the secure arithmetic circuit evaluation operates on additive
secret-sharing with authentication for active security. We write [x] for a secret-
shared value x ∈ F, where both parties Pσ hold a private share xσ and a private
message authentication code (MAC) x′σ such that x = x0+x1 and mx = x′0+x′1,
where m = m0 + m1 ∈ F is an additively shared global MAC key [13]. We write
x′ = m · x for short. The MAC is used to ensure active security, i.e., on each
secret-shared value [x] that is revealed as output, a MAC check is performed to
ensure that the value x was computed as intended without any corruption.

Note that due to linearity of [·], the online phase evaluation of addition gates
in an arithmetic circuit can be done locally without communication. In contrast,
multiplications are interactive, consuming one Beaver triple [x], [y], [z], where
x, y ← F, z = x · y. Silentium is an o�ine phase for the generation of Beaver
triples5, making itself use of secret-sharing [·]. Hereby, we extend the notation
[·] to vectors and polynomials over F, where all coe�cients are secret-shared
individually. We denote an authenticated secret-shared scaled unit vector, i.e.,
a secret-shared element in FN , where exactly one position α has a non-zero
payload A, as SUV.

Apart from SPDZ for arithmetic circuits, Silentium uses secret-sharing in
the sense of the TinyOT protocol [27] for actively secure evaluation of binary
circuits, operating on authenticated secret-shared bits [·]2. We extend this to
bit-wise secret-shared integers [·].

3 Description of the Bt-PCG

The purpose of the Bt-PCG [9] is to generate a large batch of N many uni-
formly random Beaver triples. As any PCG the Bt-PCG consists of an interac-
tive seed generation phase (Section 3.1) proceeded by a local expansion phase
(Section 3.2). In Section 3.3 we draw a whole picture, Fig. 1, distinguishing be-
tween a direct and indirect Bt-PCG formulation (Section 3.4). We conclude the
description of the Bt-PCG with a discussion on parameters (Section 3.5).

3.1 Interactive Phase and Generation of SUVs

The core of the interactive phase is a novel protocol Π
SUV

for the generation
of SUVs [9]. We always consider Π

SUV
in optimized form [29]. Given an integer

position α, the task of Π
SUV

is to generate a random SUV with position α and
payload A without revealing information about α,A,m. For this,Π

SUV
processes

5 We do not explicitly consider the generation of random share [a] (to input private
values in the online phase), since this is a sub-task of generating Beaver triples.
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d×Π*
SUV for x

d×Π*
SUV for y

correlation d2 ×ΠSUV for z

2c× Ts for x

2c× Ts for y

2c2 × Tl for z

Interactive phase Local phase

(a) Direct PCG

d×Π*
Gen for x

d×Π*
Gen for y

correlation d2 ×ΠGen for z

d×ΣEval for x

d×ΣEval for y

d2 ×ΣEval for z

2c× Ts for x

2c× Ts for y

2c2 × Tl for z

Interactive phase Local phase

(b) Indirect PCG

Fig. 1: Visualization of the Bt-PCG. An execution starts with the Π*
SUV (resp. Π*

Gen)
for x, y and ends with the output [x] · [y] = [z] of the LPN transformation T . Double
arrows represent the �ow of secret-shared positions and payloads, thick arrows represent
the �ow of large vectors, and dashed arrows the �ow of small DPF keys.

the position bit-wise secret shared with [·]2, whereas the payload A and MAC
key m, are both secret-shared with [·]. The choice of [·]2 and ·[·] is due to protocol
details [9]. As key feature, the communication of Π

SUV
only operates on the level

of the position and payload, instead of the full SUV of large degree N . This is
the core of the global PCG design for low communication.

To describe the indirect Bt-PCG, we also consider a two-step separation of
Π
SUV

over the interactive and local phase. As part of the interactive phase, this
approach takes a key generation protocol Π

Gen
which generates two private keys

that are much smaller than the respective SUV. The keys are made such that
the parties can expand them into their share of the SUV with a local (non-
interactive) algorithm Σ

Eval
. Hereby, Π

Gen
is similar to Π

SUV
, di�ering only in

the output format, and Σ
Eval

can be seen as a localization of Π
SUV

, where all
information received by interaction is encoded into the private keys. Note that
the literature mainly focuses on Π

SUV
, leaving the description of the two-step

approach with Π
Gen

, Σ
Eval

as straightforward modi�cation [9,29].
As variations of Π

SUV
and Π

Gen
we additionally use protocols Π*

SUV
, Π*

Gen

that do not expect a secret-shared position and payload as input, but rather
include to sample fresh values in an e�cient way [29].

3.2 Local Phase and Ring-LPN Transformation

The local phase relies on a special purpose coding-theoretic assumption, which
we refer as ring-LPN assumption [9]. The assumption itself is out of the scope
of its work, for Silentium the underlying polynomial transformation is su�cient.
For this, let R = F[X]/F be the polynomial ring modulo F , where F ∈ F[X] has
degree N and is fully reducible into di�erent linear factors, i.e., there exists a
ring isomorphism ψ : R ∼= FN , where we identify polynomials in R with their N -
dimensional coe�cient vectors. For example, if F is the cyclotomic polynomial
F = XN+1, than ψ is e�ciently computable with the NTT [26]. Let furthermore
Rq ⊂ R be the set of q-sparse polynomials, i.e., N dimensional vectors with q
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arbitrary non-zero positions and respective arbitrary payloads. Let 〈x, y〉c =∑c−1
i=0 xiyi denote the c-dim scalar product over R.
For the Bt-PCG, consider vectors u, v ← Hcq and respective MACs u′ =

m · u, v′ = m · v. We write ⊗ for tensor products, e.g., w = u⊗ v ∈ Rc×c is given
by wi,j = ui · vj . Than the ring-LPN assumption implies that the distribution

{x, x′, y, y′, z, z′ | ρ← Rc, u← Rcq, v ← Rcq, u
′ = m · u, v′ = m · v,

w = u⊗ v, w′ = m · w, x = 〈ρ, u〉c, x′ = 〈ρ, u′〉c, y = 〈ρ, v〉c,
y′ = 〈ρ, v′〉cz = 〈ρ⊗ ρ, 〉c×c, z′ = 〈ρ⊗ ρ, w′〉c×c}

(1)

over R6 is computationally indistinguishable from sampling [x], [y], [z], where

x, y
$← R, z = x · y. Hence, after applying ψ, Eq. (1) describes nothing else than

to sample N independent Beaver triples over F. We denote the respective map

u 7→ ψ(〈u, ρ〉), v 7→ ψ(〈v, ρ〉), w 7→ ψ(〈w, ρ⊗ ρ〉)
u′ 7→ ψ(〈u′, ρ〉), v′ 7→ ψ(〈v′, ρ〉), w′ 7→ ψ(〈w′, ρ⊗ ρ〉)

(2)

as ring-LPN transformation T . We write Ts, Tl for the individual maps with
small c- or large c2-dimensional input vectors, respectively.

3.3 Visualization of the Bt-PCG

Given the previous two sections, we now can draw a complete picture of the
Bt-PCG (Fig. 1). First observe that due to linearity, the parties can locally
apply Ts, Tl to transform a secret-shared version of w = u⊗ v into a batch of N
many pseudo-random Beaver triples [x], [y], [z]. This already induces the task of
the interactive phase, namely to generate a respective triple [u], [v], [w] of secret-
shared sparse vectors (SSVs), that are correlated by a polynomial tensor product.
These SSV can be generated with Π

SUV
, since the SSVs can be decomposed into

vectors of SUVs ū, v̄, w̄ with coe�cients uki · vlj = wk,li,j , 0 ≤ i, j < c, 0 ≤ k, l < q,
where for the w component the degree of the vectors is increased to 2N . We
refer to the SUVs in ū, v̄ as small SUVs and to the SUVs in w̄ as large SUVs
(resp. for SSVs).

Altogether, the direct Bt-PCG proceeds as follows (Fig. 1a). In the inter-
active phase, the computation starts with calls of Π*

SUV
to generate the small

SSVs [u], [v] with uniformly random payloads [α]2, [β]2 and payloads [A], [B].
Afterwards, positions and payloads [γ]2, [C] of the SSVs [w] are computed. This
is done with d2 secret-shared integer additions for [γ]2 (with TinyOT AND gates
[9,27]) and d2 secret-shared multiplications for [C] (consuming Beaver triples).
Afterwards, Π

SUV
is used to generate the d2 many respective SSVs [w]. In a

separate local phase, the parties can than call Ts, Tl on their shares of u, v, w,
giving them secret-shares of N Beaver triples [x], [y], [z].

For the indirect approach, Fig. 1b, the di�erence is that Π
SUV

, Π*
SUV

calls
are replaced by Π

Gen
, Π*

Gen
protocol calls. This replaces the output SSVs by a

set of respective SUV keys, altogether referred as PCG seed. It is than part of
the local phase to recompute the SSVs shares with Σ

Eval
before running T .
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3.4 Indirect and Direct PCG

While the direct PCG is more compact with respect to computation in the
local phase, the indirect Bt-PCG is more compact with respect to memory re-
quirements between the interactive and local phase. Whether to use the direct
or indirect Bt-PCG is a design choice of the real-world deployment. While the
direct Bt-PCG contains less computational steps, the indirect Bt-PCG has the
advantage of the seed compression. The latter is not only useful to reduce storage
in large-scale applications, but also if the interactive phase is schedule indepen-
dently of the MPC online phase, e.g. on cloud servers.

The initial presentations of the Bt-PCG [9,29] only consider the direct Bt-
PCG, without actually naming it as PCG. This has technical reasons since the
initial PCG de�nition [8] is hard to formalize for active security. More concretely,
the mechanism for active security at Π

SUV
introduces a technical leakage. While

this leakage is not critical with respect to security, it makes a formalization
in terms of the initial PCG de�nition very challenging. Still in practice, we
do not see a point in not using an indirect, two-step approach, or why not
to call the whole construction as PCG. What the indirect PCG actually does
compared to the PCG only depends on the di�erent output structure of Π

SUV

and Π
Gen

. Since the communicated messages are identical, there is nothing to
discuss about security (following the simulation based privacy formalization from
the UC framework as used for PCGs [9]). Furthermore, Σ

Eval
has no e�ect on

the security and privacy, since it is only local.

3.5 Bt-PCG Parameter Choices

To complete the description of the Bt-PCG we comment on the parameter choices
for N, c, t. One point is that the Bt-PCG can be slightly improved by replac-
ing the set Rq of sparse vectors, by a set Rb,t of regular sparse vectors, where
the polynomial is split into b many t sparse blocks. The concrete advantage of
this regular variant is that the degree of the SUVs is reduced to Nb = N/b
(2N/b respectively), which reduces the costs for the SUV generation in terms of
communication, memory consumption, and runtime, while on the other side the
security level of the ring-LPN assumption is only slightly decreased [9].

All available parameter recommendations [9] are for �xed N = 220, ν ≈
124, F = XN + 1 and di�erent λ = 80, 128, c = 2, 4, 8 and d = c · b · t =
32, 40, 64, 96, 156, where b is a power of 2 in order to divide Nb (see Section 8.3
for concrete combinations). The general relation is that larger values for c allow
to use smaller values for b · t. Due to out versatile design, Silentium is adaptive
to future results on the ring-LPN assumption.

4 Analysis of the Bt-PCG

The Bt-PCG employs a wide variety of tools and cryptographic primitives, which
makes it hard to predict bottlenecks and to detect possible improvements in the-
ory only. However, we got more insight during the process of the implementation,
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Table 1: Di�erent cost metrics for the direct Bt-PCG. The absolute numbers are per
party and with respect to N = 220, ν = 128, and di�erent parameters (c, b, t).
Nr. Metric Asymptotic costs (8, 1, 4) (8, 4, 1) (2, 1, 76)

1a communication O(d2(nbλ+ ν)) 0.8 MB 0.8 MB 23.1 MB
1b exchanged messages O(d2nb) 123 · 103 113 · 103 2702 · 103

2a PRG calls (interactive phase) O(d2Nb) 4.5 · 109 109 87 · 109

2b F mults. (interactive phase) O(d2Nb) 9 · 109 2 · 109 195 · 109

3a opened values O(d2nb) 57 · 103 55 · 103 1275 · 103

3b consumed correlated randomness O(d2(nbλ+ ν)) 1.2 MB 1.2 MB 32.7 MB

4a size of SSVs ū, v̄, w̄ O(d2Nbν) 35 GB 9 GB 780 GB
4b size of SUVs u, v, w O(c2Nbν) 1342 MB 1342 MB 134 MB
4c size of PCG seed O(d2(nbλ+ ν)) 0.3 MB 0.2 MB 8.7 MB

5 ring mults. (O(N logN) F mults.) O(c2) 144 144 12

from which we derive di�erent cost metrics to formalize identi�ed bottlenecks.
One step further, for each metric, we derive countermeasures towards an e�cient
implementation.

Table 1 gives concrete cost values for all metrics. As basis, we consider the
reasonable choice N = 220 on a bit �eld size of 128 (due to security [9]). To
provide a general intuition: Each individual SUV has a size of more than 30MB
per party, making the Bt-PCG very heavy.

Metric 1. Communication: By design, the Bt-PCG achieves low communi-
cation (Table 1, 1.a), which we do not further address since it is already highly
optimized [9,29]. We only stress that the practical numbers have a relatively
large range, which can be explained with the advantages of the regular variant
and the trade-o� between c and d (Section 3.5). However, we identify the num-
ber of communication rounds, Metric 1b, as a bottleneck. As an upper bound,
we count the number of exchanged messages required (per party) when running
through all protocols step by step (Table 1, 1.b). Being in the hundred-thousands,
containing single bit messages, this number is prohibitively large.

Derived Requirement: Synchronization to pack several messages into larger
batches that can be exchanged in one communication round.

Metric 2. Computation (Interactive Phase): The computational costs of
the interactive phase are dominated by the SUV generation. Concretely, the costs
of Π

SUV
are dominated by O(N) calls to a PRG (Metric 2a) and multiplications

over F (Metric 2b), which goes into billions of calls [29]. Hereby, the challenge
is, that the operations are separated by interactive steps and distributed among
di�erent SUV instances.

Derived Requirements: Use single instruction many data (SIMD) hardware
instructions for the PRG and F. Synchronization of di�erent computational steps
to increase the parallelization rate.
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Metric 3. MPC Operations: Most of the interactive parts are in terms of
MPC operations (TinyOT, SPDZ), which can be quanti�ed in the number of
opened values, Metric 3a, and amount of consumed correlated randomness, Met-
ric 3b. Both Metrics indicate that the MPC is expensive and requires a care-
ful implementation. Even more, since Π

SUV
mixes MPC operations with other

computational expensive steps from Metric 2, generic MPC solutions can not be
applied.

Derived Requirements: From scratch implementation of the MPC operations.
The preprocessing stage for TinyOT and SPDZ is beyond our work [9,29].

Metric 4. Memory Consumption: By design, the indirect Bt-PCG compress
the target correlation into small seeds, Metric 4c. However, during runtime the
Bt-PCG contains a blow-up of pseudo-randomness in terms of the intermediate
SUVs and SSVs.

Derived Requirements: Compact data representation enabling fast memory
access. Time-scheduling strategy to balance high memory consumption.

Metric 5. Computation (Local Phase): The transformation T in the local
phase employs ψ and ring multiplications. The challenge is that due to the
security the degree is large, e.g, N = 220. Note that comparable applications,
e.g., applications in lattices based cryptography go typically up to 215 for even
smaller �elds, and are hence much cheaper to realize.

Derived Requirements: Careful selection of algorithms and their implemen-
tation. Focus on parallelization and fast memory access. GPU or FPGA imple-
mentation for better multi-threading (as future work).

4.1 General Challenges of an Implementation

On the global Bt-PCG level, we identify the following challenges with the metrics
and their countermeasures:

� There is a trade-o� between parallelization and large memory consumption.
How can we �nd a suitable granularity of tasks?

� The Bt-PCG contains several heavy tasks that are on the one hand supposed
to run in parallel and on the other hand are time-wise dependent. How can
we realize respective time-scheduling of tasks?

� The Bt-PCG employs very di�erent primitives that however rely on common
functions, like MPC operations and �eld arithmetic. How can we connect the
di�erent blocks in Fig. 1 with little overhead?

� How do the recommendations for c, b, t, Section 3.5 a�ect the performance
in practice?

Derived Methods: We provide several techniques to decompose the Bt-PCG into
handful sizes with the goal to have a suitable granularity for parallelization and
time-scheduling of tasks (Section 5). To control the interfaces of the modules,
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we equip the modules with additional structure (Section 6). In our implemen-
tation modules share common functionalities and data structures with a focus
on compact memory representation and synchronization (Section 7). All our
constructions are theoretically independent of speci�c parameter choices.

5 Decomposition of the Bt-PCG

Silentium comprises a framework to decompose the Bt-PCG into implementation-
friendly modules. Starting point of all our decomposition scenarios is the visu-
alization in Fig. 1, which already contains a task-oriented decomposition but
without taking care about the aspects of our analysis in Section 4. We provide
further decomposition techniques in terms of modules as containers for several
instances of one task. Hereby we distinguish between di�erent module categories
like Cor, SUV, Gen, Eval, LPN, similar as in Fig. 1. For example, a module
of the category SUV has the task to generate a given number of SUV instances,
while a module of the category LPN has the task to apply the transformation
Ts, Tl to a speci�ed set of input vectors. In this sense, a decomposition scenario
describes how to cluster the relevant instances (e.g. all 2d+d2 SUVs to be gener-
ated, all d correlation steps, all calls to ψ) into a set of modules. Hereby, setting
the number and sizes of modules is a tool for balancing di�erent tasks and costs,
e.g., to perform a trade-o� between low-level and high-level parallelization. In-
dividual modules are supposed to run on di�erent computation units (high level
parallelization), while the low-level parallelization takes place inside the modules.

In Section 5.1, we di�erentiate between module categories for di�erent tasks.
Due to Metric 4, one aspect is, where to perform the aggregation of SUVs to
SSVs (Section 5.2). In Section 5.3, we discuss decomposition steps for the block of
large SUVs, which can be seen as a blueprint for other decomposition techniques.

5.1 The Module Categories

In the following we formalize the di�erent module categories and discus respec-
tive decomposition steps.

The Correlation Cor: The task of Cor is to compute the positions γ and
payloads C of the large SUV instances (Section 3.3), which in fact takes se-
cure circuit evaluations with SPDZ (positions) and TinyOT (payloads) [9]. To
separate cryptographic techniques we actually use two the module categories,
namely Pos, correlating the positions, and Payl, correlating the payloads. For
high-level parallelization both module categories can run on parallel cores, using
di�erent communication channels. For low-level parallelization, we propose to
run all d additions/multiplications in parallel with synchronous communication
to address Metric 1b (see Section 7 for details).

In a further step, the tensor sum and product might be distributed to several
modules by splitting the d-dimensional tensor operations into k instances of
smaller d̃-dimensional tensor operations, where d = k · d̃. However, we stress
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that for reasonable Bt-PCG parameters (d < 100) a further decomposition tends
to be disadvantageous, since, if the actual computational steps become smaller,
the time to setup the modules during runtime, e.g. communication channels,
becomes more and more dominant.

Modules for the SUV Generation: For the generation of the vectors of SUVs
ū, v̄, w̄, we distinguish between the module category SUV for the direct Bt-PCG
and the module categories Gen, Eval for the indirect Bt-PCG. We treat SUV∗

and Gen∗ as corner cases of SUV, Gen (see Section 6 and [29]). In the following
we focus on SUV and treat all categories equal to simplify the description. Still
in practice one might distinguish especially between the interactive SUV, Gen
and local category Eval. For example, the key generation runs faster since there
are no latency issues, hence parallelization is less critical. The versatile module
design allows such a separation (Section 6).

One module refers to several SUV instances, or their respective key encoding.
In practice, we distribute the SUVs into at least three modules, separating the
terms u, v, w as already done in Fig. 1. In Section 5.3, we further decompose
the SUV module referring to the w component of size d2, which is necessary to
address the metrics 1 and 4. A similar decomposition scenario can be applied to
the smaller components u, v of size d. However, we skip the details since for our
current implementation we see no strong need. Depending on parameter choices,
such a decomposition might have even disadvantages since the modules become
too small, as for the correlation modules.

LPN Modules: For the LPN category, we distinguish between the three com-
ponents x, y, z of the target Beaver triples, as already done in Fig. 1. Although
the costs for the z component are quadratic in c, we do not apply any further
decomposition. The point is that the LPN transformation is non-interactive;
controlling the Metrics 4 and 5 is less critical than controlling for example la-
tency issues in the interactive phase. Instead, for now, we focus on an e�cient
implementation of the large degree polynomial operations (Section 7.4).

MAC Checks: The MPC operations in the Pos, Payl, SUV, Gen categories
require MAC checks for authentication against malicious parties (Section 2).
While one option is to introduce an extra module for MAC checks, we take the
opposite approach and include the MAC checks into the individual modules. The
advantage is that this isolation avoids the overhead of coordinating the opened
values, see Metric 3, during the Bt-PCG execution.

5.2 Aggregation of SUVs to SSVs

While the SUV protocol from Section 3.1 generates individual SUVs, the LPN
transformation T operates on SSVs. At some point this requires to aggregate
the vectors ū, v̄, w̄ of SUVs into vectors u, v, w of SSVs, which is a very critical
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part of the Bt-PCG. While the memory consumption of the intermediate SUVs
is very critical in pure numbers (Metric 4), the aggregation itself is intensive in
terms of memory access, i.e., to read in the SUVs and to concatenated them
following the polynomial tensor product modulo F .

An open question is where to perform the aggregation: As part of SUV, Eval
or as part of LPN? In case of the direct Bt-PCG: As part of the interactive-
or local phase? Since the aggregation is a purely arithmetic tasks, it naturally
belongs to the local phase; in the interactive phase, the aggregation might in-
troduce latency. However, for memory e�ciency, the aggregation should run as
early as possible, i.e., in the interactive phase as part of the SUV generation. In
fact, this would reduces the amount of data to be send and stored between dif-
ferent module executions (Metric 4a vs. Metric 4b), respectively the interactive
and local phase.

Our design choices is to perform the aggregation in the SUV, Eval modules,
where decomposition of the large SUV instances into several modules respects
the the aggregation step (Section 5.3). For each module, all SUV instance are
generated at once, which addresses Metric 1b and 2. However, this implies that
the memory consumption for Metric 4b reaches a maximum with respect to the
number of SUV instances . In particular, large memory consumption is already
an issue inside the SUV module and not only between di�erent module cate-
gories. Hence, it is only consequent to perform the aggregation as �nal step of
Π
SUV

, Σ
Eval

without further delay.

5.3 Decomposition of the Large SUV Component

The generation of the SUV for the z component as visualized in Fig. 1 demands
for a further decomposition, e.g., since the Metrics 2 and 4 scale with d2 and are
prohibitively large for low-level parallelization. The opposite to Fig. 1 would be to
decompose the Bt-PCG down to the level of its noise entries, i.e., referring to each
of the SUVs in w̄ as individual modules, which are then processed individually.
As discussed for the small SUV instances, Pos, Payl, this goes however too far.

The optimal solution is somewhere in between, depending on the parameters
c, b, t,N . In the following we describe such decompositions for SUV, the other
categories Gen, Eval are similar. Note that SUV includes the aggregation step,
where the factor c, of the parameter product d = c ·b ·t, has a special role since it
separates individual SSVs. As a natural consequence, we map all SUVs referring
to one SSV into the same module.

As a �rst step, we propose a decomposition with c many modules of size
s = c(bt)2, see Fig. 2a. For the Bt-PCG parameter recommendations, it holds
128 ≤ s ≤ 11552 . Since each of the 2N dimensional SUVs takes 67 MB (for
b = 1), even for s = 128 the memory consumption is still prohibitively large for
low-level parallelization. Hence we propose to continue the decomposition and
to use c2 many modules of size (bt)2 (Fig. 2b).

Separating the large SUV instances as in Figs. 2a and 2b results in reasonable
modules sizes with respect to memory. However, the number of SUV modules is
given by c in the �rst scenario Fig. 2a and by c2 in the second scenario Fig. 2b,
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d×Π*
SUV for x

d×Π*
SUV for y

Pos

Payl

c(bt)2 ×ΠSUV for z

. . . c times

c(bt)2 ×ΠSUV for z

2c× Ts for x

2c× Ts for y

2c2 × Tl for z

(a) Decomposition Scenario 1

d×Π*
SUV for x

d×Π*
SUV for y

Pos

Payl

(bt)2 ×ΠSUV for z

. . . c2 times

(bt)2 ×ΠSUV for z

2c× Ts for x

2c× Ts for y

2c2 × Tl for z

(b) Decomposition Scenario 2a

d×Π*
SUV for x

d×Π*
SUV for y

Pos

Payl

c rounds of (bt)2 ×ΠSUV for z

. . . c times

c rounds of (bt)2 ×ΠSUV for z

2c× Ts for x

2c× Ts for y

2c2 × Tl for z

(c) Decomposition Scenario 2b

Fig. 2: Decomposition scenarios of the Bt-PCG. An execution starts with the
Π*
SUVexecutions and ends with the output the LPN transformation T . Thin arrows

represent the �ow of positions or payloads, thick arrows represent vectors of SSVs.

where the recommendations are c ∈ {2, 4, 8}. While the �rst scenario with c = 2
employs two parallel computation units for the z component (in the sense of
our high-level parallelization), the scenario with c = 8 would employ 64 parallel
computation units. Even if these are available for the Bt-PCG deployment, set-
ting up 64 modules and coordinating the parallel units, adds some overhead. To
address this, we propose to take only c modules of size s = (bt)2, which all run
on c rounds (Fig. 2c). The concrete advantage is that compared to a separation
to independent modules, the iterative calls share the same infrastructure. like
communication channels and memory, which reduces the setup costs.

6 Structured Modules and Bt-PCG Programs

The decomposition scenarios, as visualized in Fig. 2 are static in the sense that
they do not specify how to schedule the high-level parallelization or how to link
the modules at runtime. In preparation of our implementation, the purpose of
this section is to formulate a Bt-PCG execution in terms of our module concept.
Our implementation is then a straightforward translation into a Bt-PCG script,
calling small C programs, one for each module (Section 7). Hereby, the decom-
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position scenario is determined by the script, while the Bt-PCG parameters are
passed in at run time.

6.1 Bt-PCG Programs

We now sketch one exemplary program for the decomposition scenario Fig. 2c,
formalizing the description from Section 3.3 in terms of our module concept. To
keep the interactive phase as compact as possible we assume to have a strict
time-wise separation of the interactive and local phase. In our example, the
parties agreed on Fig. 2b, whereas the parameters N, c, b, t are generic.

� Before running the Bt-PCG, make sure to provide ρ and to have su�ciently
many correlated randomness available for the internal SPDZ and TinyOT
operations. For now, we only provide an insecure fake generation, where
one party samples and distributes all correlated randomness. While this is
su�cient for testing, a real o�ine phase for the Bt-PCG is future work.

� Small SUV instances: Run the two SUV modules for the x, y component.
Since they are independent of each other, they are scheduled parallel, using
two di�erent communication channels. According to Section 5.3, we model
the optimization by SUV∗ as a speci�cation of SUV modules, which needs
to be set by the Bt-PCG program. Each SUV∗ protocol gives to kinds of
outputs. A set of c SSVs, which are large in size for a later use in the local
phase; and d secret-shares of positions and payloads, which are subsequently
processed in the correlation step.

� Correlation Step: Execute the Pos and Payl modules, in parallel. The
output are blocks of secret-shared positions and payloads, referring to the
blocks of the SUV modules for z. Note that hereby, we implicitly assume
that the Pos and Payl modules take care about splitting the output data
into respective blocks, which allows a better memory management by imple-
mentation speci�c implementations at an early stage. As a consequence, the
Bt-PCG program needs to further specify the two correlation modules, i.e.,
they require all three parameters c, b, t (not only d) and the decomposition
scenario of the z component.

� Large SUV instances: Run all large SUV modules, in parallel. Ideally, all
modules are scheduled at once, such that the Bt-PCG requires no further
coordination and such that there is less latency to wait for all modules to
�nish in the end. At this point, the transition form Fig. 2b to Fig. 2c becomes
relevant: If the number of modules in Fig. 2b is too large for a given number
of computation units, one can delegate the coordination of sequential SUV
instance calls to the execution inside modules.

� Local Phase: Locally run the LPN for the x, y component in parallel, fol-
lowed by one call for the z component. The point of separating the module
for z is that our implementation of LPN internally distributes operations
between di�erent computations units (for each of the c2 SSV), which would
be in concurrence to run all three LPN modules at once.
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Program: Algorithm A or protocol P, together with �avors
Con�guration: type (small or large), linking mode L
PCG Parameters: N = 2n, c, b, t and a relevant fraction c0, b0, t0
Files: input �les, output �les, correlated randomness
Setup: arithmetic data, communication channel
Iteration: r (see Section 5.3, scenario Fig. 2c)

Variables of a Structured Module

Fig. 3: List of module variables

We stress that it is part of the Bt-PCG program to split the correlated
randomness into respective blocks following the decomposition. Hereby a security
restriction is that each entry of the correlated randomness can be only used once.
Furthermore, for e�ciency reasons one might assign exactly as much correlated
randomness as needed by a module execution, even if this depends on the PCG
parameter choices.

6.2 Structured Modules

For an implementation, the module categories SUV, Gen, Eval, Pos, Payl,
LPN are often not precise enough. For example SUV does not distinguish be-
tween Π

SUV
and Π*

SUV
or other algorithmic branches, that might be selected

depending on available resources. We now describe a respective con�guration,
either at compile time, i.e., one can select between di�erent module programs
for the Bt-PCG program, or at runtime, which can be controlled by program
variables. For the latter we extend the modules from Section 5 to structured
modules. The general template of a structured module is depicted in Fig. 3,
where for practical reasons we distinguish between the following variable types:

Program Variables: The program variable speci�es the algorithm (LPN,
Eval), or protocol (SUV, Gen, Pos, Payl) that runs inside each module.
For generality, one program can have di�erent �avors. Static global �avors, e.g.
the choice of the �nite �eld or F , are better addressed at compile-time, while
smaller adaptive �avors, e.g., to turn o�/on a speci�c resource or further specify
arithmetic choices, might be set at run-time.

Con�guration Variables: The main tool to di�erentiate between di�erent
modules are the con�guration variables. The type variable di�erentiates between
small and large instances, e.g., between the components x, y and z, which for
example comes with di�erent degrees, N or 2N , and either refers to d or d2.
Furthermore, the type speci�es whether to run SUV or SUV∗ (Gen, Gen∗), in
fact only changes the input/output format. In general, the con�guration variables
simplify the deployment of the Bt-PCG, since there is no need to provide di�erent
programs that are almost identical up to a few sub-routines.
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PCG Parameters: To set the context, the modules get the global PCG param-
eters N = 2n, c, b, t (Section 3.5). For example, the value n and b determine the
SUV degree Nb to run the SUV generation. However, each module only process
speci�c instances of a task (e.g. a set of SUVs or positions), and these need to
be speci�ed as well. For example in Fig. 2c, the large SUVs run on c(bt)2. This
can be speci�ed by additionally passing in b0 = b, t0 = t, and, to indicate that
the module execution refers to only one SSV, c0 = 1. Although we do not cover
such decompositions in Section 5, this can be technically be similarly used to
split along the variables b, t. Note that the fractional parameters c0, b0, t0 only
describe the the scope of the internal instances. We model the proper linking to
speci�c items implicitly through the input variables.

File Variables The �le variable describe the input and output of each module,
covering secret-shared positions and payloads, SUVs, DPF keys, the MAC, as
well as �les with correlated randomness or the LPN parameter ρ. Note that
the PCG parameters and con�guration variables only specify the task, but that
they do not map to speci�c instances of SUVs, SSVs etc. Instead, the idea is
that the �le variable include this information, i.e. they only contain data for the
relevant instances. It is hence the task of the Bt-PCG program to assign the �le
variables accordingly, using a proper indexing. Instead, the technical splitting
(and merging) of the data into (from) blocks is part of the module executions,
e.g., the correlation steps returns individual �les referring to each SUV module
execution. Still during the correlation, all d2 positions/payloads are computed
in parallel.

Setup Variables: With setup variables we refer to information that is rele-
vant from the perspective of an implementation, e.g., setting up communication
channels or providing arithmetic data. Apart from small values like an identi�er
of the parties and their communication ports, the prime or polynomial F , this
might even refer to larger data like lookup tables for the NTT.

Iteration r: In Section 5.3 we propose to run the SUV modules on several
iteration c in order to reduce setup costs and the number of communication
channels. The iteration variable r sets the respective number of iterations. For
simplicity we let all iterations refer to the same variables, with the exception
that the �le variables need to be extended to cover r rounds.

7 Implementation

In this section, we describe how we actually implement the Bt-PCG. For each
module category we implement a C program; the Bt-PCG itself is a script that
runs through a given decomposition. Follwing the recommendations in Section 4,
we implement the arithmetic (Section 7.1) and the internal MPC operations
(Section 7.2) from scratch. Furthermore, we synchronize the SUV generation,
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Section 7.3. Finally in Section 7.4, we show how we optimize the transformation
T with respect to the number of calls to ψ, which we instantiate as the NTT.

7.1 Arithmetic Library

To structure our code, we put the �eld and ring arithmetic into a separate
library, providing di�erent implementations that can be selected for the Bt-PCG
at compile time. Concretely, we support a 128-bit prime �eld F, as standard for
SPDZ, and N = 220, as recommended for the Bt-PCG. For the choice of R see
Section 7.4. Currently, we provide two implementations for the �eld arithmetic.
Our initial approach is build on the GNU Multiple Precision Arithmetic Library
(denoted as GMP version)6. Since this turns out to be ine�cient (Section 8.1),
the second implementation is from scratch, based on an 16-bit Montgomery
representation for multiplication [21] and inversion [30]. Hereby, we run the whole
Bt-PCG on the Montgomery representation, i.e., we avoid costly transformation
between the Montgomery and standard �eld representation.

Advantages of our F implementation: The main reasons why we took the
e�ort for an implementation of F is to better control and optimize the NTT and
the transition form SUVs to SSVs. Compared to the GMP version, we can have a
speci�c optimizations for a 128-bit �eld. Especially since the GMP library comes
with a signi�cant overhead with respect to memory allocation, which however is
a bottleneck according to Metric 4, Table 1.

Data Structures: We use C data structures to implement the �eld arithmetic.
This standardizes the template inside the module implementations, while the
implementation of the �eld arithmetic can be easily exchanged during compile
time. Concretely, we employ the following data structures:

� data to store relevant arithmetic parameters, e.g, the prime, and additionally
data, e.g., the roots of F , to speed up certain operations.

� num for individual elements in F, supporting standard operations like addi-
tion, multiplication and inversion.

� suv to store SUVs, i.e.Nb dimensional vectors of �eld elements. The idea is to
have a data structure for vectors with a focus on entry-wise �eld arithmetic as
used insideΠ

SUV
, Π

Gen
, and Σ

Eval
. Putting the individual �eld elements into

one data structure, reduces the overhead from wrapping around num data
types and gives direct access to all coe�cients at once. The latter introduces
better options for parallelization of entry-wise operations.

� poly for elements in R, i.e., N -dimensional polynomials, supporting an im-
plementation of the ring-LPN transformation T , e.g., ψ and scalar products,
and supporting the aggregation of SUVs (suv data type) to SSV (poly data
type), following the parameter indexing and output formating described in
Section 6.2.

6 https://gmplib.org/
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Data Representation and Parallelization: All operations on num, suv,

poly can be activated on arrays, typically with the length equal to the module
size. By this design feature, the low-level parallelization is assigned into our
arithmetic libary, that can be exchanged at compile time depending on the actual
needs. For now, we use the generic OpenMP programming interface for shared-
memory multi-processing7. Additionally to keep the memory overhead minimal,
which is required by Metric 4, we represent each data structure, e.g. one suv,
poly or one array of num, as unstructured arrays of C data types, e.g., uint16_t.

7.2 Special Purpose Implementation of MPC Operations

As a requirement for Metric 3 on MPC operations, we implement small MPC
libraries for TinyOT and SPDZ. Similar to the arithmetic implementation, the
MPC implementation can be exchanged at compile time, e.g., to test di�erent
approaches or for hardware speci�c implementations. Currently, we only provide
one implementation for SPDZ and TinyOT respectively, with the following two
features:

Synchronization with Arithmetic Implementation: All our MPC func-
tions operate on arrays, of num for SPDZ, and of C char values for TinyOT,
where typically the length is given by the module size s. In this sense, our SPDZ
implementation inherits the low-level parallelization from our implementation
of num. For TinyOT we apply similar techniques for better e�ciency. In fact,
this vectorization is a countermeasure against Metric 1b: Since the interactive
parts are synchronized, the number of communication rounds becomes constant,
independently of the modulus size s.

Special Purpose MPC Functions: In general, implementing the MPC op-
erations from scratch allows us to customize MPC operations to the needs of
the Bt-PCG that are beyond standard additions and multiplications. Our MPC
library includes functions for

� the tensor product [C] = [A]⊗ [B] inside Payl, taking care about the index-
ing of c, b, t and separation of the output into blocks (Section 6.1)

� the tensor sum γ = α � β inside Pos, taking care about the indexing of
c, b, t and separation of the output into blocks (Section 6.1). Furthermore,
the addition of bit-wise secret shared values is done with a minimal number
of interactive AND operations [9,25].

� a mixed multiplication of authenticated bits (TinyOT) with private bit-
strings, as required by Π

SUV
, Π

Gen
[9].

� a relaxed version of secure multiplications over [·] to speci�cally optimize
Π
SUV

, Π
Gen

in terms of communication [29].

7 https://www.openmp.org/



Silentium: Bt-PCG implementation 21

We stress that Silentium does not include an o�ine phase implementation
for MPC operations, especially not for correlated OT and AND triples [9,19].
For our benchmarks, the correlated randomness is sampled locally by one of the
parties and than distributed in advance.

7.3 Synchronized Implementation of the SUV Generation

To increase the low-level parallelization rates and to reduce the communication
rounds (Metric 1b), we implementΠ

SUV
, and similarlyΠ

Gen
, Σ

Eval
in such a way

that one invocation actually generates several SUV instances in a synchronous
way. Shortly speaking, we achieve this by vectorizing the arithmetic and MPC
operations according to the previous sections. This address the �eld operations of
Metric 2b. Even more e�ective for e�ciency is that the synchronization enables
better SIMD rates for the PRGs invocations (Metric 2a), which we describe in
the following.

Intuition of the PRG in Π
SUV

: To actually formulate our implementa-
tion techniques, we provide the following intuition of Π

SUV
, which consists of

two parts: A tree phase processing the secret-shared position and a �eld phase
processing the secret-shared payload. The tree phase additionally contains a ver-
i�cation mechanism to detect actively corrupted parties. Synchronization of the
�eld phase is fully covered by our synchronization of SPDZ and the �eld arith-
metic. We now describe the role of the PRG calls in the tree phase. This phase
runs through a GGM binary tree [18] where each party Pσ generates node labels
si,jσ ∈ {0, 1}λ, 0 ≤ i ≤ n, 0 ≤ j < 2i that for each level i ful�ll a tree invariant,
depending on the position of the target SUV. Concretely, starting with private
nodes s0,0σ , the parties run trough the tree levels by applying a length-doubling
PRG : si,jσ → (s̄i+1,2j

σ , s̄i+1,2j+1
σ ). However, the new values s̄i+1,·

σ do not ful�ll
the tree invariant. They actually need to be corrected to si+1,·

σ , which the parties
either achieve with interactive TinyOT operations (Π

SUV
, Π

Gen
) or locally from

the DPF key (Σ
Eval

).

Realization of the PRG: For the concrete implementation of the length-
doubling PRG, we follow recommendations of previous work [11,15] and combine
two independent calls of the AES block cipher, which for the tree phase is re-
quired in the ECB mode. As AES implementation we use the OpenSSL library,
accessing Intels AES-NI SIMD hardware module8. We point out that due to the
interactive correction steps, this parallelization is restricted to �xed tree levels,
which means that the achieved parallelization rate for one SUV vary from 1 to
N = 2n, e.g. n = 20. However, when using SIMD operations, the time di�erence
between calling one or approximately one million PRG almost vanishes.

8 https://openssl-library.org/
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Synchronization of the PRG: Since we already synchronize the interactive
steps among s SUV instances, it is straightforward to combine the PRG calls of
the s SUV instances. That means, for each tree level, we can increase the par-
allelization rate by a factor s, keeping the runtime time for the SIMD operation
almost constant. On a technical site, we avoid unnecessary data shifting and
formatting, and treat several SUV protocols as one and operate on large arrays.
For example for the strings {0, 1}λ we use one C char array of dimension sNλ,
that can be directly passed into one SIMD PRG operation.

Parameter Restrictions: Finally, we stress that for the AES-NI module, the
maximal throughput size is restricted to 231 bytes, which implies a restriction
of nb + 1 + log(s) < 27 within the modules for large SUVs. This restriction has
practical consequences for our deployment of the Bt-PCG (Section 8), since it
restricts the Bt-PCG parameter recommendations for deployments of Silentium.

7.4 Optimized Ring-LPN Transformation

The costs of the local phase, i.e., for the ring-LPN transformation T in Eq. (2),
are dominated by multiplications in R and the isomorphism ψ (Metric 5). We
actually avoid explicit polynomial multiplications in R and operate on ψ. In-
spired by the NTT-based polynomial multiplication, we use the homomorphic
property f · g = ψ−1(ψ(f) ∗ ψ(g)), where ∗ refers to coe�cient wise multipli-
cation, to multiply in f, g ∈ R. Then, the observation for T is that the call of
ψ−1 is redundant. Concretely, writing out the scalar product in Eq. (2) allows
to shift in ψ, such that ψ−1 cancels out:

u 7→ x =

c∑
i=1

ψ(ui) ∗ ψ(ri) w 7→ z =

c∑
i,j=1

ψ(wi,j) ∗ ψ(ri) ∗ ψ(rj), (3)

and similar for v 7→ y. Now, observer that on the one hand ψ is an isomorphism,
i.e., it is bijective, and that the only assumption on r ∈ Rc is to be uniformly
random. Hence, we can avoid all respective calls of ψ by computing

u 7→ x =

c∑
i=1

ψ(ui) ∗ r̃i, w 7→ z =

c∑
i,j=1

ψ(wi,j) ∗ r̃i ∗ r̃j , (4)

and similar for v 7→ y, where r̃ ← Rc is uniformly random. Taking into account
that the parties operate on secret shared values that consist as well of the linear
MAC component, this shows how to realize the local phase with only 4c + 2c2

calls to ψ (with each O(N logN) �eld multiplications), as well as 4Nc + 3Nc2

�eld multiplications for ∗, where the product r̃i ∗ r̃j needs to be computed only
once.

NTT Implementation: The implementation of T is covered by our library
for poly, where we run the operations ψ(ui) ? r̃i, respectively for the other
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components, in parallel, using OpenMP. On top of that, the implementation of
poly internally makes use of multi-threading. In fact, due to the large degree,
e.g., N = 220, an e�cient implementation of ψ turns out the expensive and
challenging.

Right now, we �x N = 220 and support the most straightforward choice
R = F[X]/(X220 − 1) (where p divides 2N). With other words, we implement
ψ as the well established NTT. For the NTT implementation we implement
the Gentleman-Sandé and Cooley-Tukey approach. Both are implemented in an
inline-version with reduced multiplications [26]. For a better e�ciency, we use a
look-up table for roots of unity, concretely this is part of the data structure.

We stress that our NTT implementation is only a baseline for further work. A
small step is to replace F = X220−1 by X220 +1, as initially proposed [9]. Tech-
nically, this implies a transition from the NTT to the nega-cyclic NTT, taking
three more entry-wise vector multiplications. Long term steps are algorithmic
optimizations and hardware acceleration for the NTT, e.g., running the whole
transformation T on a GPU for a better multi-threading of the large degree
NTT butter�y multiplications (Section 9).

8 Evaluation

The goal of Silentium is to be competitive with previous o�ine phase implemen-
tations in MP-SPDZ. The following provides benchmarks for a comparision. For
a comprehensive evaluation of our decomposition methods and the individual
modules, we refer to Section 8. For all our benchmarks we use two servers in a
LAN setting, with 24 cores, 2.80GHz, and 256GB RAM.

Furthermore, we provide an Silentium internal evaluation of our SUV,Gen
and Eval modules (Section 8.1) to demonstrate the e�ect of our theoretical
framework. Since we are the �rst who implement Π

SUV
and the Bt-PCG, we

focus on running time numbers, rather than other metrics like communication
which are already discussed in previous work [9,29].

8.1 Evaluation of the SUV Generation

We focus our evaluation of the SUV generation modules on four di�erent aspects.
The �rst is the di�erence with respect to the module categories, the second is
the synchronization, Section 7.3, the third are di�erent parameter choices, and
the last is about di�erent con�gurations, e.g. to compare our �eld arithmetic
implementation (as selected throughout our benchmarks) with the GMP version
(Section 7.1).

Di�erences between SUV, Gen, Eval: The relative values in Table 2
relate the running time between the di�erent module categories. For the gener-
ation of one SUV, the modules SUV, Gen only di�er in the output structure
(SUV vs. DPF key). Since this implies that Gen skips aggregation into SSV,
the Gen module runs much faster than the SUV module, especially for large
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Table 2: Running times of SUV, Gen, Eval modules in seconds for di�erent sizes
d = 2k − 1, where c = 1, t = d to include the SSV aggregation. For practical reasons
we set the size s = 2k − 1 since according to Section 7.3 the maximum we can run is
s = 127 = 27 − 1. The factor values give the ratio of running times between s many
sequential calls (with size 1) and one synchronized module call. The category relation
(cat.rel.) values are the ration between the times for Gen (resp. Eval) to the times of
SUV. To set the context for the indirect Bt-PCG, Gen+Eval sums up the running
times of Gen and Eval.

SUV Gen Eval Gen+Eval

size s time factor time factor cat. rel. time factor cat. rel. time cat. rel.

1 1.3 1 1.3 1 98 % 0.3 1 25% 1.6 123%
3 3.4 1.2 2.8 1.4 84% 0.8 1.2 24% 3.7 108%
7 6.0 1.5 4.9 1.9 81% 1.9 1.2 31% 6.7 111%
15 9.5 3.1 8.1 2.4 86% 3.7 1.3 39% 11.8 124%
31 13.5 2.1 11.1 3.7 82% 6.8 1.5 50% 17.9 132%
63 21.5 3.9 16.5 5.0 77% 13.4 1.6 62% 29.9 139%
127 43.1 3.9 28.4 5.9 66% 27.0 1.5 63% 55.4 129%

s (up to 66%). The Eval module runs much faster than SUV, Gen, mainly
since it is non-interactive. However, with growing size s, the running times of
Eval gets closer to Gen, which indicates that other factors like memory and
computation (PRG, SSV aggregation in Eval) become more dominant. Finally,
Table 2 shows that the indirect SUV generation with Gen and Eval takes 10%
to 40% longer compared to running the SUV module directly.

Synchronization: Table 2 shows that synchronization is e�ective, where the
e�ect refers to the synchronization of the PRG, arithmetic operations and MPC
in total (Section 7). For the SUV module, synchronization with s = 3 reduces
the running time about a factor 1.2, while for larger s the reduction grows to
a factor up to 3.9, worth of two minutes for s = 127. The reason why the
synchronization is more e�ective for larger module sizes is most likely due to
increased (PRG) parallelization rates (Section 7.3) and decreasing latency due to
less communication rounds, (Metric 1b). The latter explains why the advantage
of the synchronization is less signi�cant for the non-interactive Eval category.
Furthermore, the synchronization for Gen is even more e�ective, which indicates
that the synchronization of the PRG is more e�ective than the synchronization
of the SSV aggregation (skipped by Gen).

E�ect of Bt-PCG Parameters: In Fig. 4a we compare the running times
of the SUV module for di�erent combinations of (c, b, t). Hereby, we di�eren-
tiate between its tree- and �eld phase (Section 7.3), and the time to setup the
module. The latter includes to setup the communication channel, memory allo-
cation, and MAC checks. Fig. 4a shows that the costs are more or less equally
distributed between the tree and �eld phase. While the tree phase is indepen-
dent of the parameter choices (for �xed depth nb) the �eld phase depends on
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(a) SUV module (small SUV) for di�erent
(c, b, t).

(b) Di�erent modules and con�gurations,
with (c, b, t) = (6, 1, 6), resp. (1, 1, 36).

Fig. 4: Running time of SUV generation for di�erent parameter choices, module
categories, and con�gurations. The values N = 220 and s = 36 are �xed.

the costs for the aggregation, which takes more �eld operations for larger t, b.
Furthermore, the setup step contributes to the runtime signi�cantly, driven by
the large memory consumption, Metric 4. For example, for larger c the setup
time increases, mainly due to the increased memory allocation for the poly out-
put objects. Note, that for choices of smaller c, this allocation is hidden inside
the �eld phase, where respective suv are aggregated before the aggregation to
poly objects, representing SSVs. Finally Fig. 4a con�rms a positive e�ect of
the regular variant with b = 2, 4 (up to ten seconds): The running time of the
tree phase roughly halves when the SUV degree Nb halves as expected due to
the linear number of PRG calls. Furthermore the smaller SUV degree e�ectively
reduces the running-time of the �eld phase by a even larger factor, depending
on parameter choices, mainly due to the reduction of memory consumption.

Module Con�gurations: In Fig. 4b we compare the runtime for selected vari-
ations of the SUV generation, covering:

(i) As baseline we take SUV as in Fig. 4a with (c, b, t) = (6, 1, 6).
(ii) A version of SUV, selected at compile time, where most of the memory

allocation inside Π
SUV

, e.g. for AES ciphertexts and suv data types, is
o�oaded to the setup stage. This version increases the setup costs but
reduces the general module costs since it is more latency-friendly. Note
that we introduced this version to support module iterations (r > 1, Sec-
tion 6.2), since it allows to reuse allocated memory over several iterations.

(iii) The Gen, Eval modules to visualize how their running times splits be-
tween the tree and �eld phase. Hereby, it is remarkable that the tree phase
of Eval is quite fast, although it includes the SSVs aggregation step. This
indicates that for the interactive modules SUV, Gen, the interactive parts
(veri�cation) of the tree phase are relevant as well, compared to the non-
interactive SSV aggregation.

(v) A call of the SUV referring to large SUV instances (speci�ed as confugu-
ration variable). To have a comparable size to the other scenarios, we use
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(c2, b2, t2) = (1, 1, 36). The cost are increased (more than a factor two,
mainly due to the larger degree of 2N (which is more memory intensive),
and the more complex aggregation (the setup is negligible since we set
c2 = 1).

(vi) A version of SUV with the GMP library for the arithmetic, Section 7.1.
The costs are much higher compared to the baseline (i) using our own �eld
arithmetic. The reason is the dynamic memory management of the GMP
library, which not only implies a larger setup stage (memory allocation),
but also slows down the tree- and �eld phase by seconds.

8.2 Evaluation of the Bt-PCG Decompositions

In Table 4 we provide running times for the direct and indirect Bt-PCG, with
explicit numbers for the categories SUV, Gen, Eval, and LPN. Hereby we
give the total times for each block of modules that are executed in parallel
according to Section 6.1. Note that we do not explicitly list the modules Pos
and Payl, since their running time (about one second) is not signi�cant due to
our synchronization (Section 7.2).

The numbers in Table 2 are with respect to all parameter recommenda-
tions (Section 3.5) that satisfy the condition on the maximum module size from
Section 7.3. We checked the condition for all decomposition scenarios depicted
(Figs. 1 and 2). It turns out that all possible choices, except one are with respect
to Scenario 2, an none of the parameter works without decomposition (Fig. 1).
This con�rms the need to decompose the Bt-PCG. Concretely, we choose Sce-
nario 2b, instead of Scenario 2a, clustering several iterative calls within our
module programs. Table 4 allows the following interpretations:

� Costs of SUV generation: The costs of the Bt-PCG are dominated by
the generation of the d2 many large SUVs. Compared to that, the small SUV
instances are cheap, so we list them only for the SUV category.

� Scenario 1 turns out to be the best with respect to the SUV generation.
This can be explained with a better high-level parallelization, instead of
iterative calls inside the modules. Unfortunately, Scenario 1 is limited to one
parameter set.

� The regular variant, i.e. b > 1 gives a clear advantage for the SUV gener-
ation, see for example the last two rows in Table 4. A real evaluation of the
regular variant would require more secure parameter sets.

� The LPN module executions have costs of O(c2N logN) �eld multiplica-
tions (Section 7.4). Indeed, running time for LPN only depend on c, with a
clear advantage for c = 4 over c = 8. Note that the parameter recommenda-
tions [9] even cover c = 2. However this requires larger values of d, which is
out of the scope with respect to our restriction on the module sizes.

� Module Categories: The time-wise relation between the modules SUV,
Gen, Eval re�ects the results from Section 8.1, however in detail di�erent
e�ects are hard to quantify. Altogether, the indirect approach is up to half
a minute slower compared to the direct approach.
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� The local phase takes 17% to 76% of the complete running time. This range
can be explained by di�erent choices on c and the advantage of Scenario 1.

Throughput of Triples and Communication: PCGs are designed to have
low communication, thus a natural question is the relation between computation,
in terms of running time, and communication. In theory, the ring-LPN security
implies that the price for speeding up the local phase with a smaller c, is to
increase d and hence the communication [9]. Table 4 con�rms that relation.
In general, the relation between communication and computation is hard to
quantify with the restricted amount of our benchmarks. Relevant factors are the
security parameter λ, the regular variant and the decomposition scenario.

8.3 Comparison to MP-SPDZ

As already known from theory, the Bt-PCG reduces the communication costs
by three orders of magnitude, which for 220 triples means a reduction from a
few GB to a few MB, see Tables 3 and 4. To compare the running times, we
run several Beaver triple generation protocols in MP-SPDZ [13,22] on the same
local servers as our Bt-PCG benchmarks (Table 3). It turns out that our work
outperforms the protocols in MP-SPDZ. While the benchmarks for MP-SPDZ
range between 400 and 7400 triples per second, our Bt-PCG implementation
achieves a throughput between 2900 and 11200 triples per second (Table 4), for
the same security level λ = 128. LowGear is the only protocol that runs faster
than some of our Bt-PCG programs. For the limitations of our comparison, we
refer to Section 1.4.

Table 4 provides further data for di�erent combination of parameters and
decomposition, which we derive from the parameters of the theoretical Bt-
PCG evaluation[9] and concrete memory limitations of our implementation (Sec-
tion 7). This might give an intuition how performances is determined by the
small and large SUV instances, or how performance di�ers between the module
categories SUV, Gen, Eval. An important takeaway from Table 4 is that the
time-relation between the interactive phase and local phase highly depends on
the parameters and the direct or indirect Bt-PCG approach. All these freedoms
need to be considered when it comes to an deployment.

9 Conclusion and Open Topics

Our work con�rms that the Bt-PCG [9] is competitive with previous o�ine
phases in MP-SPDZ, which is especially attractive for real-world applications in
the cloud context. Towards such applications, we conclude with a list of further
optimizations and issues that Silentium leaves open:

� Our benchmarks are on two local servers. How is the performance on two dis-
tant (cloud) severs with higher latency? While the Bt-PCG bene�ts from low
communication, delays induced by high memory consumption might become
more signi�cant.
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Table 3: Throughput in triples per second, and communication in GB per triple 220

triples for di�erent protocols in MP-SPDZ [22] (named as in [24]). All protocols are
with respect to a 128 bit �eld and 128 bit computational security. (S)HE refers to
(somewhat) homomorphic encryption, and OT to oblivious transfer extension.

Protocol MP-SPDZ Program Primitives tr/s GB

SPDZ 1 [14] simple-o�ine.x SHE 2800 4
High Gear [24] simple-o�ine.x -g semi-HE 2700 4
Low Gear [24] pairwise-o�ine.x semi-HE 7400 2
SPDZ 2 [13] cnc-o�ine.x SHE 300 59
MASCOT [23] ot-o�ine.x OT 1900 47

Table 4: Running times for the generation of N = 220 Beaver triples for di�erent
parameters with the direct and indirect Bt-PCG, including explicit numbers for the
parallel execution of the SUV, Gen, Eval modules with respect to small and large
SUV instances. The local percentage is the percentage the local phase takes of the full
running time. The last section gives the performance in terms of triples per second
(tr/s,rounded) and communication per 220 triples in MB for the direct Bt-PCG. We do
not explicitly list the time to run the Cor modules since it takes only about 1 second
for all scenarios.

SUV Gen Eval LPN direct indirect direct
λ d c b t Fig. 2 small large large large small large total local total local tr/s MB

80 32 8 4 1 2b 15 190 159 69 11 78 293 30% 333 49% 3600 0.8
128 40 8 1 5 2b 17 257 188 105 11 78 362 24% 402 50% 2900 1.2
80 40 4 2 5 2b 10 180 111 106 6 20 217 12% 255 53% 4800 1.2
80 32 8 2 2 2b 8 134 115 36 11 78 230 38% 250 51% 4600 0.7
80 32 8 4 1 1 7 32 26 13 11 78 127 69% 135 76% 8300 0.7
80 32 8 4 1 2b 5 102 96 19 11 78 194 45% 208 52% 5400 0.7
128 64 4 8 2 2b 6 112 65 69 6 20 144 17% 165 58% 7300 2.8
128 64 4 16 1 2b 4 63 39 35 6 20 94 28% 106 59% 11200 2.7

� In Section 5, we focus on those decomposition scenarios that we actually
implement, leaving details about further decomposition techniques as future
work. Is it possible to di�erentiate the decomposition scenarios for di�erent
hardware environments and network settings? How can one �nd the best
decomposition scenario in a given context?

� Future work might continue the initial security analysis of the new ring-LPN
assumption [9], especially with the goal to provide further parameter sets for
the Bt-PCG.

� Silentium does not cover the preprocessing for the internal MPC (TinyOT,
SPDZ), which needs to be addressed for any real-world deployment.

� We see high potential in hardware acceleration for arithmetic operations (T ,
the NTT, PRG) on GPUs or FPGAs for better multi-threading. Hereby, a
challenge might be the high data transfer between di�erent devices, espe-
cially with respect to latency in the interactive phase.
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� Can the techniques of Silentium be applied to other PCGs? Can the mod-
ular approach of Silentium be used to compose other types of correlated
randomness e�ciently (e.g. circuit-depending tuples or multi-party triples).
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