
TEAKEX: TESLA-Authenticated Group Key Exchange

Qinyi Li1, Lise Millerjord2, and Colin Boyd2

1Griffith University, Brisbane, Australia. qinyi.li@griffith.edu.au
2NTNU – Norwegian University of Science and Technology, Trondheim, Norway.

colin.boyd@ntnu.no, lise.millerjord@ntnu.no

Abstract

We present a highly efficient authenticated group key exchange protocol, TEAKEX, us-
ing only symmetric key primitives. Our protocol provides proven strong security, including
forward secrecy, post-compromise security, and post-quantum security. For online applica-
tions we claim that TEAKEX is much simpler and more efficient than currently available
alternatives. As part of our construction we also give a new abstract security definition
for delayed authentication and describe its instantiation with the TESLA protocol.

1 Introduction
The purpose of a group key exchange (GKE) protocol is to securely establish a shared
key for parties which are members of the group. In contrast to two-party key exchange
protocols, GKE protocols often include mechanisms to securely change the group member-
ship by adding new parties to the group or removing existing parties. These mechanisms
can be much more efficient than setting up a new shared key from scratch. Thus GKE
protocols with such mechanisms are very useful when group membership is dynamic.

In pioneering work in the early 2000s, Bresson, Chevassut and Pointcheval [6] (hereafter
BCP) developed the first computational security analysis of GKE, including the dynamic
case. They proposed a protocol based on Diffie-Hellman (DH) and proved its security in
their model. However, their proposal has a number of limitations as follows.

1. Users need to store their ephemeral secrets (DH components) to allow adding or
removing of parties.

2. Their security model only allows corruption of long-term secrets and not user state
variables; otherwise, forward secrecy is lost.

3. Their protocol to add members is still linear in the size of the group.

4. The use of DH prevents the protocol from achieving post-quantum security.

Another significant development in the evolution of GKE was the idea of key trees.
The notion was developed and analyzed independently by different authors late in the last
millenium [15, 16]. The main advantage of using key trees is that group members can be
added or deleted using only a logarithmic (in the number of parties) number of messages,
while ensuring that added parties cannot read old group messages and removed parties
cannot read new group messages. Individual parties share a long-term key with the trusted
key server. These early papers [15, 16] did not include a formal security model or consider
the effects of compromise of group members. The goal of this paper is to propose and
prove secure a new GKE protocol based on key trees with symmetric cryptography and
using the TESLA authentication protocol [14] for key authentication.

1

1.1 Continuous Group Key Exchange
Continuous group key exchange (CGKE) can be viewed as an extension of dynamic GKE.
In many modern applications, conversations between parties are long-lived, frequently
years in length. It is natural that group membership changes over time, so it is an efficient
choice to set up an initial key and then evolve the key when parties join or leave. Since the
session may be long-lived, it is also natural that the group key is updated periodically, even
when group membership remains unchanged. CGKE sessions are therefore divided into
epochs, where each epoch has a new independent group key. This leads to the following
general definition of a CGKE protocol [2].

Definition 1. A continuous group key exchange protocol consists of a set of potential
participants Ω and a set of protocols (Gen, Initialize, Add, Remove, Update). During the
protocol execution, each user maintains an evolving state that may include short-term key
materials for encryption/decryption and signing/authentication (depending on the actual
protocol) as well as a value used as the current group communication key. Users may also
have a long-term key which we regard as stored separately from the evolving state.

• Gen: The algorithm generates keys for all parties in Ω. The keys may be used for
encryption and/or authentication (or signing) or other tasks.

• Initialize: initialize a communication group G = {U1, U2, . . . , Un} with n users and
establish the user states for all users.

• Add(U): On input an entity U /∈ G, the protocol creates U ’s state and updates the
states of other users in G.

• Remove(U): On input an entity U ∈ G, the protocol removes U ’s membership in G
and updates the states of other users in G.

• Update(U): The protocol re-creates the state of user U ∈ G and updates the states
of other users in G. (The effect is the same as performing Remove(U) and then
Add(U).)

The application target motivating the first definitions of CGKE was group messag-
ing [2], notably in the context of Message Layer Security (MLS) standardisation [4]. Com-
munications in such a context are naturally asynchronous since some parties will be offline
at certain times. Our new protocol requires parties to be online; for reasons which will
soon become apparent, parties need to process messages relatively quickly. This means
that group messaging may not be a good application for our new protocol. However, we
believe that there are many practical group communication scenarios where online working
is normal, for example in working groups in corporations. Note that the BCP protocols [6]
also require online parties, so in a direct comparison between BCP and our protocol we
achieve both stronger security and much better efficiency.

1.2 Post-Compromise Security
When a GKE protocol session is long-lived and involves a large number of parties there is
an increased likelihood that some parties will be compromised at some time. One concern
is that an adversary who obtains the current group key should not be able to read group
messages sent in the past, which defines forward secrecy (FS). In our protocol, as in MLS,
FS is achieved because each Add, Remove or Update operation results in a new epoch with
a new group key. The key material (tree root) from previous epochs has been deleted so
knowledge of the current tree state is of no help to the adversary for finding previous keys.

In addition to FS, we would like to allow sessions to recover from compromise. Post-
Compromise Security (PCS) [7] is the property that party U can recover private commu-
nications after the Update(U) operation. In order to achieve PCS, something must remain

2

hidden from the adversary. In our protocol, as in MLS, we will assume that the long-
term key of each party remains secure even during compromise. This may be reasonable
in practice if long-term keys are stored in tamper-proof devices and can only be used to
execute certain operations.

In our security model, as in the MLS models [2, 11, 1], we assume that the adversary
can corrupt parties and obtain any of the evolving state data. Whenever the keys in the
tree are updated (using an Add, Remove or Update operation) the new values need to
be authenticated so that any party can verify them. In MLS this is achieved by digital
signatures, but we want to avoid public key operations. When using symmetric key cryp-
tography, authentication is typically achieved using a message authentication code (MAC),
but that is not satisfactory here since the same MAC key would then have to be shared
with all group parties – compromise of that one key would then permanently break all
parties who may participate. Our solution to this dilemma is to authenticate Add, Remove
and Update operations using the TESLA protocol; while using only hash functions and
MACs, it has the remarkable property that any party can verify authentic messages from
the group manager, but the verification information can be public.

1.3 Contributions
Our main contribution is a new continuous group key agreement protocol, which we call
TEAKEX, with features of:

• high efficiency, namely with only symmetric key primitives;

• post-quantum security, which essentially comes for free due to use of only symmetric
key primitives;

• strong security, including forward secrecy and post-compromise security;

• a relatively simple security proof.

A secondary contribution is an abstract security definition for delayed authentication
and its instantiation with TESLA.

2 Definitions and Background
This section gives some necessary definitions and then reviews related work on group key
exchange, the TESLA protocol and post-quantum primitives.

2.1 Symmetric-Key Encryption
Definition 2. Let λ be the security parameter. A symmetric-key encryption (SKE) scheme
E = (Encrypt,Decrypt) with plaintext space M and ciphertext space C contains two p.p.t
algorithms. Encrypt(k,m) encrypts the message m ∈ M using a key k ∈ {0, 1}λ and gets
the ciphertext c ∈ C. The deterministic algorithm Decrypt(k, c) returns m ∈M, or ⊥. We
require the standard correctness for SKE, i.e., for any k ← {0, 1}λ, m ∈M

Pr[Decrypt(k,Encrypt(k,m)) = m] ≥ 1− negl(λ)

where the probability is over the choices of k, and the random coins of Encrypt. For
security, we require the standard ciphertext pseudorandomness.

Definition 3. Let λ be the security parameter. We say that an SKE scheme E = (Encrypt,Decrypt)
has ciphertext pseudorandomness if for all p.p.t A,

AdvindrE,A(λ) := |Pr[ExpindrE,A(λ) = 1]− 1/2| ≤ negl(λ),

where the experiment ExpindrE,A(λ) is defined in Fig. 1.

3

Experiment ExpindrE,A(λ):

1. k ← {0, 1}ℓ, b← {0, 1}
2. b′ ← AOk(·,b)(1λ)

3. Return (b′ = b)

Oracle Ok(m, b):
1. Return c← Encrypt(k,m) ∈ C if b = 1;

Otherwise, return random c← C

Experiment ExpindKDF,A(λ):

1. k ← K, b← {0, 1}
2. (x, st)← A(·)(1λ)
3. y0 ← KDF(k, x), y1 ← {0, 1}ℓ

4. b′ ← A(st, yb)
5. Return (b′ = b)

Figure 1: Security Experiment for SKE and KDF

Experiment Expeuf−cma
MAC,A (λ):

1. L ← ∅,k ← MacGen(1λ, T)

2. (m∗, σ∗)← AO(·)(λ)

3. Return 1 if MacVer(k,m∗, σ∗) = 1
and (m∗, σ∗) /∈ L; Else, return 0

Oracle O(m):
1. Return σ ← Tag(k,m)

2. L ← L ∪ (m,σ)

Figure 2: Security Experiment of CMA

2.2 Key Derivation Functions
Key derivation functions (KDFs) extract pseudorandom keys from short random sources.
We simplify the definition by Krawczyk [12] by assuming a perfect λ-bit source is available
where λ is the security parameter, and each sample is only used one-time. This is sufficient
as every group communication key of TEAKEX is computed via KDF using a freshly
generated key (seed). We emphasise that this is to simplify the security proof. We suggest
instantiating KDF using HKDF [12].

Definition 4. Let λ be the security parameter. Let K be a set with size {0, 1}≥λ. We say
a key derivation function KDF : K ×X → {0, 1}ℓ is secure if the advantage

AdvindKDF,A(λ) = |ExpindKDF,A(λ) = 1| ≤ negl(λ)

where the experiment ExpindKDF,A(λ) is defined in Fig. 1

2.3 Message Authentication Code
Definition 5. A message authentication code (MAC) scheme MAC has three p.p.t algo-
rithms. MacGen(1λ) returns a secret key k. MacSign(K,m) returns a tag (a.k.a authen-
ticator) σ on a message m. MacVer(k,m, σ) returns 0 or 1. The correctness of MAC
requires that for all k ← MacGen(1λ):

Pr[MacVer(k,m,MacSign(k,m) = 1] ≥ 1− negl(λ)

where negl(λ) is negligible, the probability is over the algorithms’ random coins.

Definition 6. We say MAC = (MacGen,MacSign,MacVer) has unforgeability if for all
p.p.t adversary A, the advantage

Adveuf−cma
MAC,A := Pr[Expeuf−cma

MAC,A (λ) = 1]

is negligible in λ where Expeuf−cma
MAC,A (λ) is defined in Fig. 2. And, we say that MAC is

pseudorandom if for all p.p.t A, AdvpseudorMAC,A(λ), defined as

|Pr[AMacSign(k,·)(λ) = 1]− Pr[Af(·)(λ) = 1]|

is negligible in λ where k ← MacGen(1λ) and f ←$ F is a random function from the
message space to the tag space.

4

2.4 Group Key Exchange Security
Our security model for TEAKEX, detailed in Section 6, can usefully be compared with
that of BCP01 [5]. The main security goal and adversary capabilities are the same so we
here highlight only some key differences.

• TEAKEX, like MLS, is a CGKE protocol so that it has an Update operation in
addition to the Add and Remove operations in the BCP protocols. Therefore, like
MLS models [2, 11, 1], our security model also gives the adversary the ability to
query Update operations.

• Corruption in the BCP model allows the adversary access to the long-term key of
the corrupted party, not the ephemeral (state) data. Like MLS models [2, 11, 1],
our model does the opposite: Corrupt returns only the evolving state data, not the
long-term secret (the key shared with the group manager in TEAKEX, the signing
key in MLS). For reasons discussed in Sec. 1.2 we believe that our choice is more
natural and allows us to model PCS.

Note that despite the different terminology, the adversarial Send query in BCP models
is equivalent to the Deliver/Process query in MLS models [2, 11, 1]. Both queries allow
the adversary to control whether parties receive protocol messages and to observe the
response, thereby modelling active attacks.

One cause of additional complexity in GKE security models is the possibility of insider
attacks [10, 3] where valid protocol participants deviate from their defined protocol be-
haviour. As discussed by Alwen et al. [3], in some security models used for MLS adversarial
control of the network was restricted and an idealised public key infrastructure (PKI) was
assumed. We emphasise that, due to the simplicity of our protocol, such attacks are im-
possible. PKI is not needed during the TEAKEX protocol execution; and only the group
manager can initiate any evolution of the state material for any party. Our adversary is
allowed full control of network messages through its Send query.

It may be noticed that TEAKEX, like MLS, does not allow all parties to influence
the group key, a property sometimes called contributiveness. Arguably this is not a core
security property and seems impossible to achieve in any CGKE without severely impacting
efficiency.

2.5 The TESLA protocol
TESLA [14, 9] is an acronym for Timed Efficient Stream Loss-tolerant Authentication.
The idea is elegant and simple: the authenticator (server) generates a hash chain and
(authentically) delivers the end of the hash chain to all parties who need to authenticate
messages. Each message is then sent with a MAC keyed with the previous value in the
hash chain. After the message and MAC are sent, the previous value in the hash chain is
released so that the recipient can check it using the endpoint and then verify that MAC
with the derived key.

Loosely synchronized clocks are a critical requirement to make TESLA secure. This
assumption is reasonable, but only if protocol parties are online whenever key updates
occur. This restricts the applicability of our TEAKEX protocol, but we believe that the
increasingly reliable and online nature of real-world communications makes online working
reasonable in many practical applications.

In Section 3, we give an abstract formal definition of message authentication with
delayed key disclosure and show that it is satisfied by the TESLA protocol. As far as we
are aware, this is the first formal analysis of TESLA. It allows us to treat server messages
as formally authenticated in our protocol security proof.

5

2.6 Postquantum Secure Cryptography
Upgrading cryptographic primitives to avoid the impending threat of quantum computers
has been one of the main research thrusts in cryptography in recent years. This effort has
focussed almost exclusively on public key primitives because the previously standardised
public key encryption and digital signature schemes are known to be vulnerable to quantum
attacks.

In 2024, following the approval of the first standards for post-quantum secure public
key systems, NIST drafted a strategy for transition to post-quantum cryptography [13].
According to this document, current NIST-approved symmetric-key primitives are believed
to provide adequate security against quantum computers. For this reason, we claim that
our protocol TEAKEX will also inherit post-quantum security by using currently stan-
dardised symmetric encryption, MAC and hashing algorithms. Although we have not
included a formal analysis against a quantum adversary, we assert that our formal re-
duction to symmetric primitives shows that a successful quantum adversary against our
protocol would imply a successful attack on at least one of those primitives.

3 Continuous Message Authentication
In this section, we will define the notion of continuous message authentication with delayed
key disclosure (CMA-DKD), which is a crucial part of our construction. Then we will show
that in practice, we can regard the TESLA protocol [14, 9] as a secure CMA-DKD.

Definition 7. A continuous message authentication scheme with delayed key disclosure,
CMA-DKD, consists of three p.p.t algorithms.

• KGen(1λ, T): the key generation algorithm Gen takes as input the security parameter,
λ, and the maximum number of time intervals T . It returns a set of parameters,
Param, and a set of secret keys, {AKi}i∈[T].

• Auth(AKi, i,m): For i = {T, T − 1, ..., 1} the algorithm Auth picks the index i such
that AKi hasn’t been used for Auth; It runs two subroutines:

1. Tag(AKi, i,m): Let m be the message to be authenticated in the i-th time in-
terval, the algorithm applies the i-th authentication key, AKi, and returns an
authenticator, σ.

2. Disclose(i): The secret disclosing algorithm takes as input the current time in-
terval number i and returns the i-th authentication key, AKi.

The values of (i, σ,m) and then, after a suitable delay, AKi, are sent to the recipi-
ent(s).

• Ver(Param, r, i, σ,m): the verification algorithm runs three subroutines:

1. KVer(Param, i, r): The key verification algorithm takes as input Param, a time
interval number i ≤ T , and a string r. It returns 1 if r = AKi, or 0, otherwise.

2. MVer(Param, AKi, i, σi,m): The verification algorithm takes as input Param, σi,
m, and a key, AKi, and returns 1 or 0.

3. Compatible(AKi, i, σ,m): The compatibility checking predicate returns 1 if AKi

is compatible with (i, σ,m), or 0, otherwise.

The verification algorithm returns 1 if and only if 1 = Compatible(AKi, i, σ,m),
1 = KVer(Param, i, r) and 1 = MVer(Param, AKi, i, σ,m), or 0 otherwise.

The predicate Compatible can be different for different constructions. For the TESLA
authentication protocol (see below), a mild time synchronization between the sender and
receiver(s) is established. To be compatible, when an authenticator σ is received with
message m during time interval i, then the key AKi can only be released after σ and m
are received.

6

For correctness, we require that for properly generated parameters, both key verification
and message verification will succeed, i.e., for all i ∈ [T], r = AKi,

Pr[KVer(Param, i, r) = 1] ≥ 1− negl(λ)

and
Pr[MVer(Param,Tag(m, i,AKi),m, r)] ≥ 1− negl(λ)

where the probability is over the randomness of the algorithms. Obviously, the two condi-
tions make Pr[Ver(Param, r, i, σ,m)] ≥ 1−negl(λ) provided that Compatible(AKi, i, σ,m) =
1.

For security, we require a CMA-DKD scheme to be unforgeable. That is, no adversary
can forge a valid message-authenticator pair at any time interval t without knowing the
authentication keys for the later time intervals.

Definition 8. We say a CMA-DKD scheme Σ is unforgeable if for all p.p.t adversary A,
the advantage

AdveufΣ,A(λ) := Pr
[
ExpeufΣ,A(λ) = 1

]
≤ negl(λ)

where the experiment ExpeufΣ,A(λ) is defined in Fig. 3.

Experiment ExpeufΣ,A(λ):

1. L1,L2 ← ∅
2. (Param, {AKt}t∈[T])← KGen(1λ, T)

3. (t∗,m∗, σ∗)← ADisclose(·),Tag(·,·)(Param, T)

4. If MVer(Param, AKt∗ , t
∗, σ∗,m∗) = 1, t∗ > maxt∈L1

t,
and ((m∗, σ∗), t∗) /∈ L2, return 1; Else, return 0

Oracle Disclose(t):
1. L1 ← L1 ∪ {t}
2. Return AKt

Oracle Tag(m, t):
1. Return ⊥ if t > maxt′∈L1 t

′

2. L2 ← {(m,σ), t} ∪ L2

3. Return σ ← Tag(AKt, t,m)

Figure 3: Security Experiment of CMA

TESLA – An Example of CMA-DKD. The definition of CMA-DKD can be seen as
an abstract of the TESLA broadcast authentication protocol [14], a well-known broadcast
authentication scheme under the delayed key disclosure paradigm. The TESLA protocol
requires a cryptographic hash function H : {0, 1}∗ → {0, 1}ℓ, modelled as a random oracle,
a message authentication code MAC = (MacGen,MacSign,MacVer) that is unforgeable
and pseudorandom (as defined in Section 2.3) and MacGen selects an element from {0, 1}ℓ
uniformly at random. The protocol works as follows.

• The key generation algorithm KGen(1λ, T) randomly selects a seed s0 ∈ {0, 1}ℓ. For
i ∈ [0, T], compute

si+1 = H(si), (1)

set sT+1 = h, AKi = si and return Param := (H,h) and {AKi = si}i∈[0,T]. Note that
Param must be communicated authentically to protocol users. In some applications,
this may be conveniently achieved with one-time use of a digital signature which is
elided in our efficiency analysis. In other applications, an out-of-band method can
be used, for example, in a factory setup for IoT devices.

• The authentication algorithm Auth(AKi, i,M) does the following:

1. Pick the first i ∈ {T, T − 1, ..., 1} such that si hasn’t been used for Auth.
2. Run Tag(AKi, i,m) as MacSign(AKi,m||i).
3. Send (i, σ,m) and then, after a suitable period, AKi to the recipients.

• The verification algorithm Ver(Param, i, σ,M, r) is defined as follows.

7

1. Set compatibility predicate Compatible(AKi, i, σ,M) = 1 if (i, σ,M) is received
in the time interval i, and AKi is received after a certain time delay (determined
by the communication network and protocol setup). Otherwise, if the condition
is unsatisfied, the predicate returns 0.

2. The key verification algorithm KVer(Param, i, r) sets r = ri, and computes
{rj+1 = H(rj)}j∈[i,T] and returns 1 if h = rT+1, or 0, otherwise.

3. MVer(Param, AKi, i, σ,m) returns MacVer(AKi,M ||i, σ).
The algorithm Ver(Param, i, σ,M, r) returns 1 iff: 1 = Compatible(AKi, i, σ,M), 1←
KVer(Param, i, r) and 1← MacVer(AKi,M ||i, σ); Else, it returns 0.

Experimental work [14] has shown that even 20 years ago, TESLA performed efficiently
with delays in the worst-case measured in seconds and in the best case milliseconds, all
depending on the network characteristics. Note that false assumptions on the network per-
formance cannot lead to a recipient wrongly accepting a message – only that the recipient
may reject authentic messages.

Fernández-Hernández et al. [8] have analysed the concrete security of TESLA in the
context of satellite communications. Below we present a simple security analysis based on
the idealisation that the hash function is a random oracle. We note that in the standard [9]
and also in the analysis of Fernández-Hernández et al. [8], the hashchain used in TESLA
is defined in a more complex way. Specifically, instead of the chain defined by Eq. 3, they
define

si+1 = H(si||i− 1||α), (2)

where α is a salt value chosen randomly for each hash chain and distributed as an additional
element in Param. The advantage of including α is that inverting one hashchain does not
result in inverting a different hashchain. Because we model H as a random oracle this
advantage is not evident in our analysis, but in practice it would be worthwhile to consider
using this standardised version of TESLA.

Theorem 1. If the message authentication code MAC = (MacGen, MacSign, MacVer) is
unforgeable and the hash function H is a random oracle, the TESLA protocol described
above is a CMA-DKD scheme with delayed key disclosure, and it is unforgeable. In par-
ticular, AdveufTESLA,A(λ) ≤ negl(λ).

Proof. (Sketch) We outline the proof here. First of all, the construction demonstrates
that TESLA is a CMA-DKD scheme with delayed key disclosure. For the unforgeability
per Definition 8, notice that the definition essentially requires that no adversary should
be able to forge an authentication tag (authenticator) on any message without knowing
the key of that time interval and its later time intervals. Let i∗ be the challenge time
interval. Since AKi+1 = H(AKi) for i ∈ [i∗, T], H is a random oracle, AKi for i < i∗ are
not released, the only information about AKi∗ are from the tags generates signed by AKi,
i > i∗. However, MAC is pseudorandom, meaning that those tags do not leak information
about AKi∗ either. Hence, AKi∗ remains hidden from the adversary. Then, the theorem
follows as the MAC is unforgeable under random and secret keys.

4 The TEAKEX Protocol
In this section, we describe our CGKA protocol, TEAKEX. We provide the necessary
notations and definitions followed by the details of our protocol.

4.1 Preliminaries and Notations
Our protocol uses full binary trees. The depth of a binary tree is defined as the largest
number of edges from the root node to a leaf. An internal node of a binary tree is a

8

non-leaf node. The protocol involves a group of users with a group manager G denoted
by G = {G,U1, ..., Un}. It assigns each user to a leaf of the binary tree. Each user/leaf
node U is associated with kGU , the long-term key shared between G and U . Give a leaf U ,
we denote as U ⇝ root the path from the node U to the root root. During the protocol,
internal nodes are associated with cryptographic keys. We denote the set of log2(n) keys
associated with the internal nodes on U ⇝ root by k⃗U⇝root. The key associated with the
root node is denoted by kroot. (Note k⃗U⇝root does not include the leaf key associated with
U , i.e., kGU .) We assume suitable time synchronization among the protocol participants
is in place for the CMA-DKD scheme.

Party and Protocol States. Each party U of the protocol (excluding the group manager
G) holds the user state:

StateU =
(
G, (Param, t), k⃗U⇝root, (e,Ke)

)
and the group manager G holds the protocol state:

StateG =
(
G, (Param, {AKi}i∈[T], t), {kGU}U∈G , {k⃗U⇝root}U∈G , (e,Ke)

)
where 1) G is the current group membership including G, the group manager, 2) Param,
{AKi}i ∈ [T], t are, respectively, the public parameters, the set of secret keys, and the
current time interval of the CMA-DKD scheme; 3) kGU is the symmetric key U shares with
G; 4) k⃗U⇝root is the set of node keys associated to the nodes on the path U ⇝ root; 5) the
tuple (e,Ke) are the current epoch and the group communication key of the current epoch.

Cryptographic Primitives. Let λ be the security parameter. The protocol uses the
following components:

• A CMA-DKD scheme (Defn. 7) Σ = (KGen,Auth,Ver), where Auth runs Tag, Disclose
as subroutines, and Ver runs Compatible, KVer, MVer as subroutines.

• A symmetric key encryption (Defn. 2 in 2.1) scheme E = (Encrypt,Decrypt) with key
space {0, 1}λ.

• A key derivation function (Defn. 4 in 2.2) KDF : {0, 1}λ × {0, 1}∗ → {0, 1}2λ.
Initializing Shared Keys. Below we specify that the group manager G will share a
key, kGU , with each other protocol party U . There are different ways that such keys can
be initialized. For example, they can be set up using a prior TLS session using a PKI in
the case of powerful computing devices. Another example is that they can be hard-wired
keys to physical IoT devices set up at factory configuration. The former case allows kGU

to be updated after full compromise, while the latter may require the destruction of the
IoT device when fully compromised. We allow applications to decide the most appropriate
method.

4.2 Protocol Description
Our protocol, TEAKEX, is described as follows. We explain the five algorithms for a
CGKE introduced in Defn. 1.

– Gen(1λ, G): Given a group manager G, the algorithm outputs (Ω, {kGU}U∈Ω) where Ω
is the group of users that can participate in the group communication and kGU is a
length-λ random key shared by G and U .

– Initialize(G, n, e): Given a maximum group size n, an initialized group G = {G, U1, U2, ..., Un′}
with n′ ≤ n, and the starting epoch e = 0, The protocol works as follows:

1. G sets (Param, {AKi}i∈[0,T])← KGen(1λ, T), publishes Param and T .

9

2. G generates a full binary tree with n leaves, assigns each user Ui with the i-th
leaf, selects random, length-λ keys {ki}i∈[n−1] for each internal node (including
the root).

3. For each Ui, set C0,i ← Encrypt(kGUi , k⃗Ui⇝root) and C0 = ({C0,i}i∈[n′],G).
4. G computes K1 = KDF(kroot,G, 0), updates StateG with t = 1 and e = 1.
5. G sends

((C0||init, 0, σ), r)← Auth(AK0, 0, C0)

to the recipient(s), where init specifies procedure Initialize. (Recall that AK0 ←
Disclose(0) and σ ← Tag(AK0, 0, C0||init).)

Upon receiving the message from G, the user Ui does the following.

1. If 0 = Ver(Param, r, 0, σ0, C0||init), Ui returns ⊥; Otherwise, Ui parses C0 =
({C0,i}i∈[n′],G), returns ⊤, and does Decrypt(kGUi , C0,i) to get k⃗Ui⇝root which
includes kroot.

2. Ui computes the group communication key Ke+1 = KDF(kroot,G, e).
3. Setting t = 1, e = 1, U updates StateU .

As a result, the initial state StateG is established. In particular, all participants can
compute the group communication key Ke for epoch e = 1.

– Add(U, e): To add a new user U to the current group G at the time interval 1 < t ≤ T
and epoch e, the group manager G does:

1. If there are n users in G or U ∈ G, G keeps StateG unchanged, and exits.
2. G assigns the left-most unused leaf, e.g., the i-th leaf, to U and sets G ← G∪{U};

G notifies U with G, Param, the current time interval t and the current epoch e.
3. G identifies the current time interval t and chooses a new set of keys k⃗U⇝root

which includes the new root key. Then, G identifies all sibling nodes of the nodes
on the path U ⇝ root and their corresponding keys.

4. Let kj ∈ k⃗U⇝root for j ∈ [log2 n], and vj be the node for kj ; G does:
• setting Ct,j,0 ← Encrypt(kj,L, kj), Ct,j,1 ← Encrypt(kj,R, kj) where kj,L (resp.

kj,R) denotes the key associated with left child (resp. right child) of vj ,
provided it exists.

• defining Ct be the set of ciphertexts created, and sending the message
(Ct||add, t, σ), r)← Auth(AKt, t, Ct||add) to the group.

• setting t = t+1, e = e+1, computing Ke+1 ← KDF(kroot,G, e), and updating
StateG .

Upon receiving the message from G, the user Ui does the following.

1. If 1 ̸= Ver(Param, r, t, σ, Ct||add) then U and the users in G reject the ciphertexts
and return ⊥; Otherwise,

• Ui returns ⊤ and recovers the new node keys kj (include kroot) on the path
Ui ⇝ root using the relevant ciphertext where the decryption kj,L or kj,R is
known to it.(User Ui has the key associated with one of the siblings of the
nodes on U ⇝ root.)

• U returns ⊤ and recovers k⃗U⇝root by sequentially decrypting the ciphertexts
along U ⇝ root.

2. The users use kroot to compute Ke+1 ← KDF(kroot,G, e).
3. Setting t = t+ 1, e = e+ 1 user Ui updates StateUi .

As a result, U is added to the group communication with its state StateU established.
The users in G established a fresh communication key Ke and the epoch increments
to e+ 1.

10

– Remove(U, e): To remove a user U from the current group membership G at epoch e, G
does:

1. If U /∈ G, keep StateG unchanged, and exit.
2. G identifies the current time interval t, chooses a new set of node keys k⃗U⇝root,

and identifies all sibling nodes of the internal nodes on the path U ⇝ root and
their corresponding keys.

3. Let kj ∈ k⃗U⇝root for j ∈ [log2 n], and vj be the node for kj . G does:
• setting Ct,j,0 ← Encrypt(kj,L, kj), Ct,j,1 ← Encrypt(kj,R, kj) where kj,L (resp.

kj,R) denotes the key associated with the left child (resp. the right child) of
vj , provided it exists;

• defining Ct be the set of ciphertexts and sending

((Ct||rem, t, σ), r)← Auth(AKt, t, Ct||rem)

to all users;
• setting t = 1, e = 1, computing Ke+1 ← KDF(kroot,G, e), and updating

StateG .

Upon receiving the message from G, the user Ui does the following.

1. If 1 ̸= Ver(Param, r, t, σ, Ct||rem), the users reject the ciphertext and returns ⊥;
Otherwise, user Ui ̸= U returns ⊤ and recovers kj (including kroot) on the path
Ui ⇝ root by decrypting the relevant ciphertext whose decryption key kj,L or
kj,R is known.

2. The users Ui uses kroot to compute Ke+1 ← KDF(kroot,G, e).
3. Setting t = t+ 1, e = e+ 1, user Ui updates StateUi .

As a result, each of the remaining users obtains the group communication key Ke+1

and the protocol moves over to epoch e+ 1.

– Update(U, e): The user U ’s state can be updated as follows.

1. G identifies the leaf node U .
2. G runs Step 3 and Step 4 of what the group manager (G) does in the protocol

Add(U, e) with the message upd concatenated with the ciphertext set Ct instead
of add.

3. Upon receiving the message from G, the user U does Step 1 to Step 3 of what U
does in the protocol Add(U, e) except using the message upd concatenated with
the ciphertext set Ct instead of add.

As a result, the states StateG and StateU for U ∈ G are updated; the group commu-
nication key is fresh.

5 Efficiency Analysis
Let a group have n users and one group manager. We analyze the space efficiency and the
computational efficiency of the protocol in terms of the variable n.

First, we consider the space overhead of users and the group manager. Recall that a
user has state StateU = (G, (Param, t), k⃗U⇝root, (e,Ke)). StateU contains one long-term
shared key with the group manager G, a set of node keys of the nodes from the leaf that
U occupies to the root (which contains log2 n length-λ symmetric-key keys), the current
epoch, and a length-λ group communication key Ke. The total overhead of a user space
is O(log n). The group manager needs to store n long-term length-λ symmetric keys plus
all the node keys. This makes its space overhead O(n).

11

Second, we analyse the computational complexity of the protocol operations Add and
Remove and Update (we exclude Gen as it only needs to be done once). For Add operation
on a user U , the group manager G encrypts the internal node keys along the path U ⇝ root
to U by the sibling node keys. So, the ciphertext overhead is 2 log2 n. For Remove
operation, there are at most 2 log2 n ciphertexts which leads to an O(log n) overhead.
Update operation has the same computational complexity as Add, i.e., O(log n).

Computational Overhead Space Overhead
Initialize Add Remove Update User Group Manager
O(n) O(log n) O(log n) O(log n) O(log n) O(n)

Table 1: Protocol Efficiency

Note that we expect that in applications the Initialize operation is called once and
there will follow multiple Add, Remove and Update operations as the group evolves. The
frequency of Update operations is a policy decision to be specified for the application. This
is similar to MLS where it is suggested that “the right frequency is usually on the order of
hours or days, not milliseconds” [4].

Our protocol has the same asymptotic complexity as the typical MLS-type protocols
with binary tree structures [1, 2, 11]. However, since our protocol only involves symmetric-
key encryption and hashing, it is in practice orders of magnitude more efficient. We
stress that the favorable efficiency gain comes with the assumption that our protocol is
centralized, which can make good sense in many real-world applications, as discussed in
the introduction.

6 Security Model
We formally define the security model for TEAKEX using game-based security definitions.
At the start of the security game, a random bit is chosen, i.e., b ← {0, 1}, the challenger
runs Gen to set the keys of all parties. Then A chooses a set of initial users, and the
challenger runs Initialize to initialize the protocol participants. A makes queries to the
oracles Add(), Send(), Remove(), Corrupt() as stated in Table 2 and receives the responses
from the challenger. At some time, A chooses a user U∗ and an epoch e∗ for which the
protocol state is fresh (see below) to make the challenge query. Challenge(U∗, e∗, b). If
b = 1, A is given the group communication key Ke∗ from StateU∗ . If b = 0, A is given
a key drawn randomly from the key space {0, 1}λ. Eventually, A outputs its guess bit b′

and wins if b′ = b. We formalize the game as ExpindCGKE,A(λ), defined in Fig. 4.

Send(U,M, e) A sends a message M to the user U at epoch e receives
the response.

Add(U, e) A chooses a new user U to add to the group G at epoch
e.

Remove(U, e) A chooses an existing user U to remove from the group
G at epoch e.

Corrupt(U, e) The state of U ∈ G, i.e., StateU , at epoch e is given to
A.

Update(U, e) Update user U and other users’ states.
Challenge (U, e, b) A is given either the group communication key of U in

epoch e or a random key, depending on a secret bit b.

Table 2: Adversarial queries in the security game

12

Definition 9. Let λ be the security parameter. We say a continuous group key exchange
protocol CGKE is secure if for any efficient adversary A, the advantage,

AdvindCGKE,A(λ) = |Pr[ExpindCGKE,A(λ) = 1]− 1/2|.

is negligible in λ, if the protocol state StateG∗ at epoch e∗ is fresh (Definition 10). Let O :=
{Send(),Add(),Remove(),Update(),Corrupt()}. The experiment ExpindCGKE,A(λ) is defined in
Fig. 4.

Experiment ExpindCGKE,A(λ):

1. b← {0, 1}, Ω← Gen(1λ)

2. (G, n, st)← A(Ω)
3. StateG ← Initialize(G, n, 0)
4. (G∗, e∗, st)← AO(st)

5. K ← Challenge(U∗, e∗, b) with U∗ ∈ G∗ \
{G}

6. b′ ← AO(st,K)

7. Return (b′ = b)

Oracle Send(U,M, e):
1. U processes M at epoch e according pro-

tocol specification.

Oracle Add(U, e):
1. Run protocol Add(U, e)

Oracle Remove(U, e):
1. Run protocol Remove(U, e)

Oracle Update(U, e):
1. Run protocol Update(U, e)

Oracle Corrupt(U, e):
1. Return StateU at epoch e

Oracle Challenge(U∗, e∗, b):
1. Return a random K← {0, 1} if StateG at

e∗ is not fresh
2. Retrieve Ke∗ from StateU∗

3. K1 ← Ke∗ , K0 ← {0, 1}λ

4. Return K := Kb

Figure 4: Security Experiment of Group Key Exchange

Definition 10 (Freshness). We say the state of the protocol at epoch e∗,

StateG =
(
G, (Param, {AKi}i∈[T], t), {kGU}U∈G , {k⃗U⇝root}U∈G , (e

∗,Ke∗)
)

is fresh if 1) there is no Corrupt(U, e∗) query for U ∈ G, and 2) if Corrupt(U, e′) happened
for U ∈ G and e′ < e∗, then Remove(U, e′′) or Update(U, e′′) queries with e < e′′ < e∗

happened and no Corrupt(U, e′′′) query with e′′ < e′′′ ≤ e∗.

We note that our security model incorporates two important security properties:

– forward secrecy is provided since A is allowed to corrupt users in epochs after the
Challenge epoch and the group key must still remain secure;

– post-compromise security is provided since the group key must be secure even after
U was corrupted, as long as the state of U has been renewed before the Challenge
query.

7 Security Proof
Theorem 2. Let Σ = (KGen,Auth,Ver) be an CMA-DKD scheme, E = (Encrypt, Decrypt)
with key space {0, 1}λ and message space K be a secure symmetric-key encryption scheme,
and KDF is secure key derivation function. Let CGKE be our protocol, constructed using
Σ, E, and KDF. For any efficient adversary A:

AdvindCGKE,A(λ) = |Pr[ExpindCGKE,A(λ) = 1]− 1

2
| ≤ negl(λ)

where λ is the security parameter and negl(λ) is negligible.

13

Proof. The proof follows from the following ideas: 1) if the adversary does not alter
the message flows, then we turn the adversary’s advantage to break the symmetric-key
encryption scheme. 2) If the adversary gains advantages from altering the message flows,
we can use it to break the CMA-DKD scheme.

First, let F be the event that at a time interval, say t, of CMA-DKD that prior to the
disclosure of AKt, the adversary makes a send query Send(U,M, e) where M = Ct||type
where type ∈ {init, add, rem, upd} such that Ver(Param, AKt, σ, Ct||type) = 1. That
is, F represents the event that the adversary forges σ on Ct||type without knowing the
authentication key AKt. We have

Pr[ExpindCGKE,A(λ) = 1] = Pr[ExpindCGKE,A(λ) = 1|F] Pr[F]+

Pr[ExpindCGKE,A(λ) = 1|F̄] Pr[F̄]

≤ Pr[F] + Pr[ExpindCGKE,A(λ) = 1|F̄]

We first prove the following lemma which bounds Pr[F].

Lemma 1. Let T be a (polynomial) bound on the number of time intervals for the CMA-
DKD scheme. For all p.p.t adversary A1, we have:

Pr[F] ≤ 1/T · AdveufΣ,A1
(λ)

Proof. We construct A1 to interact with the protocol attacker A. After receiving a CMA-
DKD challenge (Param, T), A1 begins by running Gen(1λ) to establish the shared secret
keys with the users. It uses Param and T to run Initialize to form the group. Meanwhile,
A1 guesses a time interval t∗ ∈ [T]. Looking ahead, A1 hopes that at the interval t∗, the
adversary forges an authenticator for the first time. A1 answers the queries from A before
t∗ as follows:

• Send(U,M, e): A1 follows the protocol to process M as it is in epoch e. This includes
using the CMA-DKD scheme to verify the authenticity of the ciphertext sets which
was included in M .

• Add(U, e), Remove(U, e) and Update(U, e): A1 acts as in the real protocols Add,
Remove and Update; when there is a need to compute Auth at time interval t on
a ciphertext Ct, A1 forwards (Ct||add, t) to its CMA-DKD challenger, making a
query to the oracle Tag to get the authenticator σ and sending (Ct||add, t, σ) to the
destinations. Then, A1 makes a Disclose query to get the authentication key AKt

and sends AKt to the destinations within the required period.

• Corrupt(U, e): A1 follows the descriptions in Fig. 4 to get StateU for A.

• Challenge(U∗, e∗, b): A1 follows the descriptions in Fig. 4 to return the Ke∗ .

If A1’s guess on t∗ is incorrect, A1 aborts the simulation. Otherwise, at time interval
t∗, a Send(U,M, e) query is made by A. Instead of making a Disclose query to get the
authentication key, she parses M = (Ct∗ ||type, t∗, σ) where type ∈ {init, add, rem, upd},
aborts the interaction with A, and submits (t∗, Ct∗ ||type, σ) as her output for ExpeufΣ,A1

(λ)
and returns what the experiment returns. It is easy to see that A1 simulates the game
properly until the time interval t∗. If A1 guesses t∗ correctly, Pr[F] equals the probability
that A1 breaks the CMA-DKD scheme. Hence, we derived the bound.

Next, we bound Pr[ExpindCGKE,A(λ) = 1|F̄], which is the advantage that the CGKA
adversary succeeds without breaking the underlying CMA-DKD scheme. In this case, we
force the adversary to break the symmetric-key encryption scheme. We prove the following
lemma that formally states this.

14

Lemma 2. Let λ be the security parameter, n be the number of leaves in the binary tree.
For any p.p.t adversary A, let Q, a polynomial in λ, be the number of queries that A made.
We have Pr[ExpindCGKE,A(λ) = 1|F̄] is bounded by

1

2
+ 2n∗Q̇(Q+ 1) · log2(n∗) · AdvindrE,A1

(λ) + 2Q(Q+ 1) · Advindkdf,A2
(λ)

for all adversaries A1 and A2.

Proof. We bound Pr[ExpindCGKE,A(λ) = 1|F̄] using the security of the symmetric-key en-
cryption scheme E . We do not explicitly handle Send queries as condition F̄ ensures that
all Send queries only contain honest messages from the group manager G. We start with
some definitions that facilitate the proof.

• The depth of a node of a binary tree is defined as the largest number of edges from
the root node that node.

• We say an internal node is safe if it is not in a path U ⇝ root where U ’s state in
under corrupted status. Otherwise, the node is called dangerous.

We proceed through a series of hybrid games G0 to G3, each with a well-defined binary
output. We assume that Ω, the group of users that can participate in the group, has n∗

users and one group manager. We also assume that A only asks its Challenge query against
a fresh epoch. Otherwise, its advantage is 0. We denote by Sx the event that Gx returns
1. The games are defined as follows:

G0: Is identical to ExpindCGKE,A(λ) conditioned on F does not happen.

G1: This game is identical to G0 except that for a number q ∈ {0, 1, 2, ..., Q), the ad-
versary’s q-th query is Corrupt(U, e) and it is also the last Corrupt query before the
Challenge query. The game outputs 1 if the guess is correct.

G1,i: Let G1,0 be the same as G1. For i ∈ [1, n∗], G1,i is identical to G1,i−1 except that
after the q-th query, i.e., the last Corrupt query, all the ciphertexts for Add, Remove,
Update, queries that encrypt the node keys of safe nodes on path Ui ⇝ root are set
to be random.

G2: This is identical to G1,n∗ .

G3: This game is identical to G2, except that oracle Challenge(U, e, b) chooses a random
K1 ← {0, 1} instead of setting K1 ← Ke∗ .

Since G0 is identical to ExpindCGKE,A(λ) where F does not happen, by definition,

Pr[S0] = Pr[ExpindCGKE,A(λ) = 1|F̄] (3)

Let E be the event that the guess was correct in G1. Since the guess in G1 is indepen-
dent of A’s view, we have

Pr[S1] = Pr[S0 ∧ E] = Pr[S0] · Pr[E] =
1

Q+ 1
Pr[S0] (4)

To bound |Pr[S1,i−1] − Pr[S1,i]|, we further define hybrid games G1,i,j for the depth
variable j from log2(n) to 0:

• Game G1,i,log2(n
∗) is identical to game G1,i−1.

• Game G1,i,j−1 is identical to G1,i,j except that in G1,i,j−1 the ciphertexts for the
depth j − 1 safe node is set random, instead of being computed using Encrypt of the
symmetric-key encryption scheme E .

• Game G1,i,0 is identical to G1,i.

15

Recall that q-th query is the last corrupt query. All queries after that and before
the challenge will not introduce any more dangerous nodes and gradually make more and
more safe nodes until the challenge epoch e∗ at which no nodes are on corrupted paths.
That being said, given a path U ⇝ root, once the depth-j node is safe, it won’t become
dangerous later (U can be removed; but once it rejoins, that node remains safe). We
use this idea to construct an algorithm A1 to bound |Pr[S1,i,j] − Pr[S1,i,j−1]| using A1’s
advantage against E .

Assume A1 is running ExpindrE,A1
(λ) and aims to produce guess b′ of a bit value b. A1

creates a simulation by running Initialize to set up the protocol and follow G1,i,j to interact
with the adversary A. Recall that to user Ui, only Add(Ui, e), Remove(Ui, e), Update(Ui, e)
queries can happen after A’s q-th query. Given one such query during this period, there is
a need to produce a ciphertext of the depth-j node key on Ui ⇝ root encrypted using the
key of the depth-j node. At that point, A1 receives a ciphertext c from the oracle O in
the experiment ExpindrE,A1

(λ) (see Definition 3) and uses c to be the encryption of the node
key. A1 follows G1,i,j for the rest of the simulation. Finally, A1 returns what A returns.

Now we analyse the simulation. It is easy to see that if O is parametrised by b = 1, c
is a proper encryption of k. Here, k is implicitly treated as the key of the depth-j node on
Ui ⇝ root, which makes the case G1,i,j . On the other hand, c is random, which corresponds
to the case in G1,i,j . Meanwhile, the simulation can answer the queries perfectly without
the knowledge of key k – there are cases.

• Before Challenge(U, e∗): A cannot see k as no Corrupt query happens.

• After Challenge(U, e∗): k is replaced by a key chosen by A1 as in the real protocol
(G1). So, Corrupt queries can be answered.

As a result, we have

|Pr[S1,i,j]− Pr[S1,i,j−1]| = 2 · |1
2
(Pr[S1,i,j] + 1− Pr[S1,i,j−1])−

1

2
|

= 2 · |1
2
(Pr[A ⇒ 1|b = 1] + 1− Pr[A ⇒ 1|b = 0])− 1

2
|

= 2 · |1
2
(Pr[A1 ⇒ 1|b = 1] + Pr[A1 ⇒ 0|b = 0])− 1

2
|

= 2 · AdvindrE,A(λ)

This gives

|Pr[S1,i−1]− Pr[S1,i]| ≤ |Pr[S1,i,log2(n
∗)]− Pr[S1,i,0]| (5)

≤
log2(n)∑
j=1

|Pr[S1,i,j]− Pr[S1,i,j−1]|

≤
log2(n

∗)∑
j=1

2 · ExpindrE,A1
(λ)

= 2 · log2(n∗) · AdvindrE,A(λ)

For the relation between G1 and G2, applying the inequality (5), we obtained

|Pr[S1]− Pr[S2]| = |Pr[S1,0]− Pr[S1,n∗]| (6)

≤
n∗∑
i=1

|Pr[S1,i−1]− Pr[S1,i]|

≤ 2n∗ · log2(n∗) · AdvindrE,A(λ)

The difference between G2 and G3 can be easily bounded by the security of KDF.
Notice that in G2, the key associated with the root for the challenge query Challenge(U, e∗)

16

is randomly chosen and independent of the adversary A’s view. A routine reduction shows

|Pr[S2]− Pr[S3]| ≤ 2 · AdvindKDF,A(λ) (7)

for some adversary A2 against KDF. Finally, we can see that the group communication
key Ke∗ is random. So, the adversary A has no advantage, i.e.,

Pr[S3] = 1/2 (8)

Combining (3), (4), (6), (7) and (8), we derived the bound in Lemma 2.

Under our assumptions that the symmetric-key encryption scheme E and the key deriva-
tion function KDF are secure, the quantities AdvindrE,A1

(λ) and Advindkdf,A2
(λ) are negligible in

λ. Meanwhile, Q and T are polynomials of λ. Therefore, putting the bounds from Lemma
1 and Lemma 2, Theorem 2 is proved.

8 Conclusion
We have designed a continuous group key exchange (CGKE) protocol based on symmetric-
key primitives. While achieving all desirable security properties for CGKE, compared to
MLS and related protocols using public-key primitives, the protocol enjoys high efficiency,
simplicity, and post-quantum security. The core of the protocol is a novel use of the famous
TESLA authentication protocol.

Acknowledgements.

Boyd and Millerjord were supported by the Research Council of Norway under Project
No. 288545.

References
[1] Alwen, J., Auerbach, B., Noval, M.C., Klein, K., Pascual-Perez, G., Pietrzak, K.,

Walter, M.: CoCoA: Concurrent continuous group key agreement. In: Dunkelman, O.,
Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13276, pp. 815–844. Springer
(2022), https://doi.org/10.1007/978-3-031-07085-3_28

[2] Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improvements
for the IETF MLS standard for group messaging. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020 - Part I. LNCS, vol. 12170, pp. 248–277. Springer (2020),
https://doi.org/10.1007/978-3-030-56784-2_9

[3] Alwen, J., Jost, D., Mularczyk, M.: On the insider security of MLS. In: Dodis,
Y., Shrimpton, T. (eds.) CRYPTO 2022 - Part II. LNCS, vol. 13508, pp. 34–68.
Springer (2022). https://doi.org/10.1007/978-3-031-15979-4_2, https://doi.org/
10.1007/978-3-031-15979-4_2

[4] Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-Gordon,
K.: The messaging layer security (MLS) protocol. RFC 9420 (July 2023).
https://doi.org/10.17487/RFC9420, https://www.rfc-editor.org/info/rfc9420

[5] Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group Diffie-
Hellman key exchange - the dynamic case. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 290–309. Springer (2001), https://doi.org/10.1007/3-540-
45682-1_18

[6] Bresson, E., Chevassut, O., Pointcheval, D.: Provably-secure authenticated group
Diffie-Hellman key exchange. ACM Trans. Inf. Sys. Sec. 10(3) (2007), http://www.
di.ens.fr/%7epointche/Documents/Papers/2007_tissec.pdf

17

https://doi.org/10.1007/978-3-031-07085-3_28
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-031-15979-4_2
https://doi.org/10.1007/978-3-031-15979-4_2
https://www.rfc-editor.org/info/rfc9420
https://doi.org/10.1007/3-540-45682-1_18
https://doi.org/10.1007/3-540-45682-1_18
http://www.di.ens.fr/%7epointche/Documents/Papers/2007_tissec.pdf
http://www.di.ens.fr/%7epointche/Documents/Papers/2007_tissec.pdf

[7] Cohn-Gordon, K., Cremers, C., Garratt, L.: On post-compromise security. In: CSF
2016. pp. 164–178. IEEE (2016), https://doi.org/10.1109/CSF.2016.19

[8] Fernández-Hernández, I., Ashur, T., Rijmen, V.: Analysis and recommendations for
MAC and key lengths in delayed disclosure GNSS authentication protocols. IEEE
Trans. Aerosp. Electron. Syst. 57(3), 1827–1839 (2021), https://doi.org/10.1109/
TAES.2021.3053129

[9] ISO: Information Security – Lightweight Cryptography – Part 7: Broadcast Authen-
tication Protocols, ISO/IEC 29192-7 (2019), international Standard

[10] Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols. In:
Atluri, V., et al. (eds.) Proceedings of CCS 2005. pp. 180–189. ACM (2005), https:
//doi.org/10.1145/1102120.1102146

[11] Klein, K., et al.: Keep the dirt: Tainted TreeKEM, adaptively and actively secure
continuous group key agreement. In: IEEE Security and Privacy. pp. 268–284. IEEE
(2021), https://doi.org/10.1109/SP40001.2021.00035

[12] Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme. In:
Annual Cryptology Conference. pp. 631–648. Springer (2010)

[13] Moody, D., Perlner, R., Regenscheid, A., Robinson, A., Cooper, D.:
Transition to post-quantum cryptography standards. NIST IR 8547 (Nov
2024). https://doi.org/10.6028/NIST.IR.8547.ipd, https://csrc.nist.gov/pubs/
ir/8547/ipd

[14] Perrig, A., Canetti, R., Tygar, J.D., Song, D.X.: Efficient authentication and signing
of multicast streams over lossy channels. In: Security and Privacy. pp. 56–73. IEEE
Computer Society (2000). https://doi.org/10.1109/SECPRI.2000.848446, https://
doi.org/10.1109/SECPRI.2000.848446

[15] Wallner, D., Harder, E., Agee, R.: Key Management for Multicast: Issues and
Architectures. RFC 2627 (Jun 1999). https://doi.org/10.17487/RFC2627, https:
//www.rfc-editor.org/info/rfc2627

[16] Wong, C.K., Gouda, M.G., Lam, S.S.: Secure group communica-
tions using key graphs. IEEE/ACM Trans. Netw. 8(1), 16–30 (2000).
https://doi.org/10.1109/90.836475, https://doi.org/10.1109/90.836475

18

https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1109/TAES.2021.3053129
https://doi.org/10.1109/TAES.2021.3053129
https://doi.org/10.1145/1102120.1102146
https://doi.org/10.1145/1102120.1102146
https://doi.org/10.1109/SP40001.2021.00035
https://csrc.nist.gov/pubs/ir/8547/ipd
https://csrc.nist.gov/pubs/ir/8547/ipd
https://doi.org/10.1109/SECPRI.2000.848446
https://doi.org/10.1109/SECPRI.2000.848446
https://www.rfc-editor.org/info/rfc2627
https://www.rfc-editor.org/info/rfc2627
https://doi.org/10.1109/90.836475

	Introduction
	Continuous Group Key Exchange
	Post-Compromise Security
	Contributions

	Definitions and Background
	Symmetric-Key Encryption
	Key Derivation Functions
	Message Authentication Code
	Group Key Exchange Security
	The TESLA protocol
	Postquantum Secure Cryptography

	Continuous Message Authentication
	The TEAKEX Protocol
	Preliminaries and Notations
	Protocol Description

	Efficiency Analysis
	Security Model
	Security Proof
	Conclusion

