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Abstract. The standard notion of security for threshold signature schemes
is static security, where the set of corrupt parties is assumed to be fixed
before protocol execution. In this model, the adversary may corrupt up
to t− 1 out of a threshold of t parties. A stronger notion of security for
threshold signatures considers an adaptive adversary, who may corrupt
parties dynamically based on its view of the protocol execution, learn-
ing the corrupted parties’ secret keys as well as their states. Adaptive
security of threshold signatures has become an active area of research
recently due to ongoing standardization efforts. Of particular interest is
full adaptive security, the analogue of static security, where the adversary
may adaptively corrupt a full t− 1 parties.

We present a plausible attack on the full adaptive security of threshold
Schnorr signature schemes with public key shares of the form pki = gski ,
where all secret keys ski lie on a polynomial. We show that a wide range
of threshold Schnorr signature schemes, including all variants of FROST,
Sparkle, and Lindell’22, cannot be proven fully adaptively secure without
modifications or assuming the hardness of a search problem that we define
in this work. We then prove a generalization that extends below t − 1
adaptive corruptions.

1 Introduction

Some of the most destructive attacks in threshold cryptography in recent
years were the so-called ROS attacks [11, 25] (Random inhomogeneities in a
Overdetermined Solvable system of linear equations). The ROS problem was first
stated in the original paper on Schnorr signatures [47]. The attacks fundamentally
rely on concurrency, where an adversary may gain an advantage in forging a
signature by opening many signing sessions in parallel and interleaving protocol
messages from different sessions. A wide range of threshold, blind, and multi-
signature schemes were broken in the concurrent setting by ROS attacks [41, 31,
48, 44, 2, 52, 54, 32].

The ROSℓ problem, parameterized by an integer ℓ, is a search problem to find
ℓ+1 vectors ρi = (ρi,j)

ℓ
j=1 such that the following system of ℓ+1 linear equations

in unknowns c1, . . . , cℓ in Zp has a solution, where HROS : (Zp)
ℓ → Zp is a random

oracle:
∑ℓ

j=1 ρi,jcj = HROS(ρi), i ∈ {1, . . . , ℓ+ 1}. In the context of multi-party



Schnorr signatures,1 ROS attacks amount to an adversary searching for a solution
to the ROS problem and outputting a forgery that is a linear combination of the
other parties’ signature contributions. Many increasingly effective ROS attacks
have been demonstrated since the original cryptanalysis of Schnorr [47, 53, 43, 25,
11, 35], with the most recent [35] showing a polynomial-time attack for ℓ greater
than 0.725 log(p) (e.g., ≈ 190) concurrent sessions, rendering the aforementioned
schemes insecure for a modest number of concurrent sessions easily mounted by
a real-world attacker.

The Problem P. In this work, we define a search problem P and show a concrete,
efficient attack if P is easy to solve.

Definition 1. P is the following search problem. Given v ∈ Zt
p and k1, ...,kn ∈

Zt
p, find a set F ⊂ {1, . . . , n} with |F | = f such that v ∈ span({ki}i∈F ) if one

exists.

In the context of threshold signatures, p is the prime order of the group, n
is the number of parties, t is the threshold required to issue a signature, and f
is the corruption threshold, up to f = t− 1. As in cryptographic assumptions
like the discrete logarithm problem, the problem P will not be hard for some
parameters, for example small p.

Similar to the ROS problem, the problem P does not rely on group elements
or operations; it relies on field elements alone. The ROS problem, however, relies
on a random oracle. The problem P is not stated in terms of, for example, a
group with hard discrete logarithm, or with random oracles.

We give an attack against a large class of threshold Schnorr signature schemes,
given access to an oracle to solve P that, for an arbitrary vector v ∈ Zt

p, returns
a subset F ⊂ {1, . . . , n} of size f such that v ∈ span({ki}i∈F ), if such a
subset exists. Our attack demonstrates that any proof of full adaptive security
(f = t− 1) must imply that P is not solvable in polynomial time. We then prove
a generalization that extends below f = t− 1 adaptive corruptions.

The Attack. Similar to ROS, we demonstrate an attack where the forgery
amounts to a linear combination of parties’ public values. Uniquely, our attack
allows a forgery based on public key shares alone - no partial signatures are
required. Unlike ROS attacks, the attack works even for a single signing session.

Our attack applies to any scheme satisfying the following three properties:

1. Public key shares pk1, . . . , pkn are public.
2. Public keys are pk = gq(0), pk1 = gq(1), . . . , pkn = gq(n), where q is a degree

t− 1 polynomial with coefficients in Zp.
3. The threshold signature is compatible with Schnorr verification (Definition 2).

Condition 1 does not require public key shares to be output as a result of key
generation. Concealing public key shares naively is not a viable solution to avoid

1 Recall that a (single-party) Schnorr signature, defined over a prime-order group, is a
pair (R, z) such that gz = R · pkc, where c = Hash(R, pk,m).
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assuming the problem P is hard for many natural schemes [38, 24, 39], which
reveal the public key share of a signer through a single partial signature issued
by them. Thus, modifications to the protocol itself would need to be made to
avoid this assumption.

Condition 2 is not overly restrictive and applies to many protocols, especially
those implemented in practice (e.g., BLS [12, 5] and ECDSA [30, 17]). Public
keys of this form are used to efficiently verify the correctness of each party’s
contribution to the signature, so that a misbehaving party can be identified and
removed (i.e., to achieve identifiable abort [38, 46]).

Condition 3 is not specific to Schnorr signatures. EdDSA signatures, a de-
terministic version of Schnorr signatures, are not verifiably deterministic, so our
results apply. Any scheme compatible with the single-party Schnorr verification
algorithm is susceptible to our attack.

We now give an overview of the core ideas in the attack. To issue a Schnorr
signature, it is necessary to provide the discrete logarithm of R · pkc. If the
adversary is able to express this as a combination of f public key shares, then
it can corrupt those f parties, and obtain the discrete logarithm with the
combination of f secret key shares. First, pk is a combination of public key shares.
The adversary chooses R as a random combination of public key shares and uses
this fact to get R · pkc as a combination of public key shares. The chance that
this is a combination of a particular f parties’ keys is small, since the protocol
is secure against static corruption, indeed 1/p or less. But there are many,

(
n
f

)
combinations of parties to corrupt, which means that the probability that there is
some sparse combination of shares that gives R · pkc can be significant. However,
the large number of combinations means that the adversary cannot brute force
the set to corrupt even if one would work. An oracle for the problem P would
allow them to find the sparse combination when one exists and thus the set of
parties to corrupt, resulting in a successful forgery.

Impact of Our Results. Our results have far-reaching implications for threshold
cryptography, both theoretically and practically.

Consider that, until recently, there were only three digital signature schemes
standardized by NIST: RSA, ECDSA, and EdDSA. NIST recently published
a draft Call for Multi-Party Threshold Schemes [13, 14], emphasizing a strong
preference for schemes achieving provable adaptive security. The Call specifies
two categories of schemes; Class N is the main category of interest, which
considers schemes that are compatible with single-party verification of NIST-
standardized signatures. This important design goal has motivated an extensive
line of work on multi-party signatures achieving compatibility with single-party
EdDSA/Schnorr verification [3, 42, 38, 24, 39, 40, 9, 46, 10, 6, 37]. Many have
seen widespread adoption in practice, and some, e.g., FROST, are already the
subject of standardization efforts [20].

Now consider that most threshold signature schemes are proven in the static
corruption model, where an adversary is assumed to control up to t− 1 out of a
threshold of t parties, but does not corrupt any parties during protocol execution.
In the adaptive corruption model, an adversary has the added capability of
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corrupting parties based on observing some of the protocol execution. Full
adaptive security is of particular interest, as it matches the corruption profile of
static security, allowing an adversary to corrupt t− 1 parties dynamically. There
is sometimes a presumption that the lack of an adaptive security proof does not
imply complete failure of basic security properties in the presence of an adaptive
adversary. However, any such failure could have catastrophic consequences, for
example, a complete loss of funds in cryptocurrency wallets. NIST [13] states,
“Given the possibility of adaptive corruptions in the real world, it is important to
consider for any proposed threshold signature scheme whether the major safety
properties of interest (such as unforgeability) are safeguarded against such an
adversary.”

Our results have two striking implications:

1. If the problem P is easy, all of the schemes meeting the stated conditions
are statically secure but not adaptively secure. This would be the first such
separation for any natural protocol, solving a long-standing open problem
in multi-party computation.2 Moreover, it would apply to a large class of
schemes and would hold even in the strongest idealized models (e.g., the
algebraic group model (AGM) and the generic group model (GGM)).

2. The full adaptive security of these schemes cannot be proven without an
assumption that implies the hardness of some instances of P. Such an as-
sumption would likely go beyond assumptions about the group and random
oracles since P is not defined in terms of them.3 Moreover, this extends to
corruption thresholds below f = t− 1.

One natural question is: Why not assume the problem P is hard for showing
security? As in ROS, it is dangerous to assume this problem is hard.

The NIST Call specifies several parameter regimes of interest, with n = 1024
and f = t− 1 being the highest level of security. Considering modest to large n
is important in practical applications where identifiable abort falls short, and
guaranteed output delivery is required [46, 10, 6]. Moreover, for small n, there
are straightforward ways to turn statically secure schemes into adaptively secure
ones via a simple guessing argument.

Quantitatively, we show the impact of our attack in Table 1, giving the
probability of the attack succeeding for different parameter regimes with p ≈ 2252

(e.g., Ed25519). An entry of 0.0 indicates that our attack succeeds with probability
2−0 = 1. For probabilities under 2−126, it would be better to attack the discrete
logarithm problem. These probabilities are for one call to an oracle to solve P and
for one random oracle query. So, for example, without assuming P is hard and

2 Protocols have been concocted for the express purpose of demonstrating a separation,
cf. [16, 15], but, to the best of our knowledge, no separation has been shown for a
natural protocol.

3 This is true even if P is NP-hard, as the instances of P in the average case that are
used in the attack would need to be NP-hard. See Section 7 for a discussion of the
hardness of P.
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(n, t) f = t− 1 f = t− 2 f = t− 3 f = t− 4

(64,43) 195.84 446.97 698.2 949.52

(128,86) 137.87 388.92 640.02 891.17

(196,131) 75.41 326.45 577.53 828.64

(512,342) 0.0 37.25 288.28 539.32

(768,513) 0.0 0.0 53.8 304.82

(1024,683) 0.0 0.0 0.0 69.29

Table 1. The probability that our attack succeeds is 2−x for x given in the table, with
p ≈ 2252, where x is computed as in Theorem 2. Here, n is the total number of potential
signers, t is the threshold, and f is the corruption threshold.

only assuming a bound on the number of random oracle queries, a modest 131
out of 196 parties and a 2−75.41 probability of attack is insecure, corresponding to
the number of hashes all the Bitcoin miners in the world can compute in roughly
one minute.

2 Impact of the Attack

2.1 Schemes Affected by the Attack

The following schemes are susceptible to our attack.

FROST, FROST2, FROST3. FROST [38, 7] and its variants FROST2 [24, 7]
and FROST3 [46, 19] are state-of-the-art protocols for threshold Schnorr signing
that are currently undergoing standardization efforts, including a recent RFC
through the IETF [20]. All three variants are two-round protocols consisting of
one online signing round and one preprocessing round. All three are secure in
the static corruption setting under the one-more-discrete logarithm assumption
(OMDL)4 in the ROM.

SimpleTSig. SimpleTSig [24] is a three-round threshold Schnorr signature
scheme that follows a commit-reveal approach and allows for one round of prepro-
cessing. Its static security holds under the security of the (single-party) Schnorr
signature scheme, which itself holds under the discrete logarithm assumption
(DL) in the ROM [44, 27].

Sparkle, Sparkle+. Sparkle and Sparkle+ [23] are adaptations of SimpleTSig
that are secure against adaptive corruptions. Sparkle is fully three rounds, and
Sparkle+ allows preprocessing, but requires an additional plain signature (or
authenticated channels). Static security holds under the DL assumption in the

4 The OMDL assumption states: Given q + 1 challenge group elements (X0, . . . , Xq)
(in addition to the generator g) and q-time access to a discrete logarithm solution
oracle, compute xi such that Xi = gxi for all i ∈ [0..q].
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ROM. Adaptive security for up to (t−1)/2 corruptions has been proven under the
algebraic one-more discrete logarithm assumption (AOMDL)5 in the ROM. Our
results show that the full adaptive security of Sparkle and Sparkle+ [24], claimed
under AOMDL in the AGM and ROM, cannot hold without an assumption that
implies the hardness of some instances of the problem P.

Lindell’22. Lindell’22 [39] is a three-round, commit-reveal protocol that is proven
to UC-realize a Schnorr signing functionality in the hybrid model where the
following functionalities exist: a multiparty broadcast commitment functionality
and a zero-knowledge functionality. Security is proven in the static corruption
model.

Classic S. Classic Schnorr [40] is a three-round, commit-reveal protocol that is
proven to UC-realize the threshold signature functionality in [17] in the global
random oracle model, assuming the hardness of the DL problem. Adaptive
security is shown using the guessing argument.

ROAST. ROAST [46] is a wrapper protocol for FROST, which has O(n) round
complexity and achieves robustness (i.e., guaranteed output delivery). FROST
has the property of identifiable abort, where a party issuing malformed protocol
messages can be identified and removed, and the protocol rerun. However, such
a procedure is impractical beyond small numbers of parties. ROAST, therefore,
offers an alternative to FROST for large n. Its static security has been shown
under the OMDL assumption in the ROM.

SPRINT. SPRINT [10] is another robust threshold Schnorr signature scheme,
with 3 broadcast rounds, which is proven statically secure under the DL assump-
tion in the ROM. Its security is argued with a restriction on concurrency, but
results in [50] suggest general concurrency does hold.

HARTS. HARTS [6] is a robust threshold Schnorr scheme with O(1) round
complexity that has been proven adaptively secure for up to (t− 1)/2 corruptions
under the OMDL assumption in the AGM and ROM. It requires secure erasure
of secret state for its zero-knowledge proofs. Our results apply even to schemes
relying on secure erasures.

GJKR. GJKR [31] is a robust threshold Schnorr signing protocol, with 3
broadcast rounds, proven statically secure assuming the security of single-party
Schnorr signatures. It is insecure in the concurrent setting due to ROS attacks.

Stinson-Strobl. Stinson-Strobl [51] is, to the best of our knowledge, the first
threshold Schnorr signature scheme proposed in the literature. It achieves ro-
bustness, and its static security reduces to the security of single-party Schnorr
signatures.

5 The AOMDL assumption is the same as OMDL, except any discrete logarithm solution
oracle query must include an algebraic representation in terms of the challenge group
elements and generator g. This makes the oracle polynomial time and therefore
AOMDL a falsifiable assumption.
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Arctic. Arctic [37] is a two-round deterministic threshold Schnorr signature
scheme proven statically secure under the DL assumption in the ROM.

GKMN. GKMN [29] is a three-round deterministic Schnorr signature scheme
proven to UC-realize an n-party Schnorr signing functionality, in the presence of an
adversary statically corrupting up to n−1 parties, in the hybrid model where the
following functionalities exist: a deterministic nonce derivation functionality and a
committed zero-knowledge proof-of-knowledge for discrete logarithm functionality.

Remark 1 (Key Generation). Our results hold for the above schemes when im-
plemented with trusted key generation or any distributed key generation (DKG)
protocol revealing public key shares of the appropriate form. However, even
if public key shares are suppressed at the key generation phase, most of the
above protocols anyway expose public key shares during signing. All of these
combinations are susceptible to our attack.

2.2 Schemes Unaffected by the Attack

Non-Schnorr Threshold Signatures. Our results do not immediately apply
to schemes not compatible with single-party Schnorr verification. However, it is
an interesting open question whether a similar search problem could be defined,
and shown necessary, for adaptive security of schemes with a similar structure,
for example those derived by applying the Fiat-Shamir transform [26] to other
identification schemes.

Crackle & Snap, FROST-Mask. Crackle & Snap [36] are five-round stateless
and four-round stateful threshold Schnorr protocols, respectively, which are
obtained by applying a masking technique to Sparkle. Both schemes are proven
fully adaptively secure under the DL assumption in the ROM. Uniquely, the
security of these protocols critically relies on public key shares never being
revealed, even through signing, and therefore they do not achieve identifiable
abort. As we will see, this is precisely what is needed to avoid our attack.
However, without identifiable abort, Crackle & Snap are impractical except for
small numbers of parties. FROST-Mask [18] takes the same technical approach,
applying the masking technique of [36] to FROST to obtain 3-round stateless
and 2-round stateful schemes.

Abe-Fehr, Zero S., Glacius. One general approach for achieving adaptive
security is to output public key shares that are not perfectly binding commitments
to secret keys, allowing the reduction to equivocate on the secret keys as needed.
Abe-Fehr [1], Zero S. [40], and Glacius [4] all follow this line of reasoning.
Indeed, our attack does not work if public key shares, for example, are Pedersen
commitments pki = gskihri .
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3 Related Work

Prior work [22] proves a series of impossibility results on the adaptive security of
threshold signature schemes, including those compatible with Schnorr signature
verification. Specifically, one result rules out adaptive security for more than
t/2 corruptions for threshold Schnorr signatures that satisfy a property called
key-uniqueness. An example of a key-unique scheme is one for which public keys
are perfectly binding commitments to secret keys, e.g., pki = gski as in our work.
This result rules out adaptive security above t/2 corruptions under the OMDL
and AOMDL assumptions in the programmable ROM, following the standard
rewinding argument for Schnorr signatures. In the case that the problem P is easy,
our results rule out t adaptive corruptions as well some values below t− 1, with
rewinding and programming or not, under any hardness assumption. Furthermore,
if P is easy, our work rules out adaptive security in strong idealized models: in
the AGM and even in the GGM. However, we emphasize that whether P is easy
or not remains an open question. Interestingly, the metareductions in [22] and
our attack are based on public key shares alone - not even one partial signature
is needed. The results in [22] extend beyond threshold Schnorr signatures, ruling
out adaptive security for more than t/2 corruptions under any non-interactive
computational assumption for a wide range of threshold signature schemes and a
natural class of reductions.

Follow-up work [21] shows a positive result about the adaptive security of
FROST (and its variants), and builds on the techniques of our work. FROST is
proven adaptively secure for up to t/2 corruptions in the ROM only under the
AOMDL assumption, and adaptively secure above t/2 corruptions additionally in
the AGM and assuming the hardness of the low-dimensional vector representation
(LDVR) problem. The LDVR problem specializes the problem P, and is proven
to be both sufficient and necessary for proving the adaptive security of FROST.
The hardness of P and LDVR remains an intriguing open question.

4 Preliminaries

Let λ ∈ N denote the security parameter and 1λ its unary representation. A
function ν : N→ R is called negligible if for all c ∈ R, c > 0, there exists k0 ∈ N
such that |ν(k)| < 1

kc for all k ∈ N, k ≥ k0. For a non-empty set S, let x←$ S
denote sampling an element of S uniformly at random and assigning it to x. We
use [n] to represent the set {1, . . . , n} and [0..n] to represent the set {0, . . . , n}.
We represent vectors as a = (a1, . . .).

Let PPT denote probabilistic polynomial time. Algorithms are randomized
unless explicitly noted otherwise. Let y ← A(x; ρ) denote running algorithm A on
input x and randomness ρ and assigning its output to y. Let y←$ A(x) denote
y ← A(x; ρ) for a uniformly random ρ. The set of values that have non-zero
probability of being output by A on input x is denoted by [A(x)].

Group Generation. Let GroupGen be a polynomial-time algorithm that
takes as input a security parameter 1λ and outputs a group description (G, p, g)
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consisting of a group G of order p, where p is a λ-bit prime, and a generator g of
G.

Random Oracle Model (ROM) [8]. The random oracle model is an idealized
model that treats a hash function Hash as an oracle in the following way. When
queried on an input in the domain of Hash, the oracle first checks if it has an
entry stored in its table for this input. If so, it returns this value. If not, it samples
an output in the codomain of Hash uniformly at random, stores the input-output
pair in its table, and returns the output.

Definition 2 (Schnorr Signatures [47]). The Schnorr signature scheme con-
sists of efficient algorithms (Setup,KeyGen,Sign,Verify), defined as follows:

– Setup(1λ) → par: On input a security parameter 1λ, run (G, p, g) ←
GroupGen(1λ) and select a hash function Hash : {0, 1}∗ → Zp. Output
public parameters par ← ((G, p, g),Hash) (which are given implicitly as input
to all other algorithms).

– KeyGen()→ (pk, sk): Sample a secret key sk←$ Zp and compute the public
key as pk ← gsk. Output key pair (pk, sk).

– Sign(sk,m)→ σ: On input a secret key sk and a message m, sample a nonce
r←$ Zp. Then, compute a nonce commitment R← gr, c← Hash(R, pk,m),
and z ← r + csk. Output a signature σ ← (R, z).

– Verify(pk,m, σ) → 0/1: On input a public key pk, a message m, and a
purported signature σ = (R, z), compute c ← Hash(R, pk,m) and output 1
(accept) if R · pkc = gz; else, output 0 (reject).

Schnorr signatures have been proven secure under the discrete logarithm (DL)
assumption in the ROM [44]. Their tight security has been proven under DL in
the AGM and ROM [27].

Remark 2. Our attack also applies the variant of Schnorr signatures where the
signature is (c, z).

Polynomial Interpolation. A polynomial q(Z) = x0 + x1Z + x2Z
2 + . . . +

xt−1Z
t−1 of degree t−1 over a field F can be interpolated by t points. Let η ⊆ [n]

be the list of t distinct indices corresponding to the x-coordinates zi ∈ F, i ∈ η,
of these points. Then the Lagrange polynomial Li(Z) has the form:

Li(Z) =
∏

j∈η;j ̸=i

Z − zj
zi − zj

Given a set of t points (zi, q(zi))i∈[t], any point q(zℓ) on the polynomial f
can be determined by Lagrange interpolation as follows:

q(zℓ) =
∑
k∈η

q(zk) · Lk(zℓ)
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Definition 3 (Shamir Secret Sharing [49]). Shamir secret sharing is a
t-out-of-n secret sharing scheme over a field F that consists of efficient algorithms
(SS.Share,SS.Recover), defined as follows:

– SS.Share(sk, n, t)→ {(zi, sk1), . . . , (zn, skn)}: On input a secret sk, number
of participants n, and threshold t, sample coefficients x1, . . . , xt−1←$ F and
define the polynomial q(Z) = sk + x1Z + x2Z

2 + · · · + xt−1Z
t−1. Choose

arbitrary non-zero points z1, . . . , zn in F. (These could, for example, be par-
ticipant indices 1, . . . , n.) For i ∈ [n], compute ski = q(zi). Output shares
{(zi, ski)}i∈[n].

– SS.Recover(t, {(zi, ski)}i∈S) → ⊥/sk: On input threshold t and a set of
shares {(zi, ski)}i∈S , output ⊥ if S ̸⊆ [n] or |S| < t. Otherwise, recover sk
by polynomial interpolation:

sk ←
∑
i∈S

λS
i ski

where the Lagrange coefficient for the set S is:

λS
i = Li(0) =

∏
j∈S,j ̸=i

−zj
zi − zj

Definition 4 (Vandermonde Matrix). We define the Vandermonde matrix
V (z1, . . . , zt) for the t ≥ 1 numbers z1, . . . , zt ∈ Zp as:

V (z1, . . . , zt) :=


1 z1 z21 · · · zt−1

1

1 z2 z22 · · · zt−1
2

...
...
. . .

...

1 zt z2t · · · zt−1
t


which is invertible if and only if the zi are pairwise distinct.

Definition 5 (Cantelli’s Inequality). Let X be a real-valued random variable.
Let a > 0 and let V ar(X) be the variance of X. Then:

Pr[X − E(X) ≥ a] ≤ V ar[X]

V ar[X] + a2

where E(X) is the expected value of X. Applying the above to −X gives:

Pr[X − E(X) ≤ −a] ≤ V ar[X]

V ar[X] + a2
.

4.1 Threshold Signatures

We begin with the definition of a threshold signature scheme given in [23]. The
definition is for a generic signing protocol with r rounds, as threshold Schnorr
signature schemes in the literature consist of two or more signing rounds. Key
generation is given as an algorithm, but may be replaced by a distributed key
generation (DKG) protocol.
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Definition 6 (Threshold signature scheme). A threshold signature scheme
TS whose signing protocol consists of r rounds is a tuple of the following algo-
rithms TS = (Setup,KeyGen, (Sign1, . . . ,Signr),Combine,Verify), defined
as follows:

– Setup(1λ)→ par: Takes as input a security parameter and outputs public
parameters par (which are given implicitly as input to all other algorithms).

– KeyGen(n, t) → (pk, {ski}i∈[n]): A probabilistic algorithm that takes as
input the number of signers n and the threshold t and outputs the public key
pk and secret key shares {ski}i∈[n], which are sent to each party privately.

– (Sign1, . . . ,Signr) → {pm1,i, . . . , pmr,i}i∈S : A set of signing algorithms
executed by each party in a signing set S ⊆ [n], |S| ≥ t, on a message m:

(pm1,i, st1,i)← Sign1(i, ski,S,m)

(pm2,i, st2,i)← Sign2(st1,i,PM1)

. . .

pmr,i ← Signr(str−1,i,PMr−1)

Here, pmj,i is the protocol message sent by party i ∈ S in round j, stj,i is
the state of party i in round j, and PMj = {pmj,i}i∈S is a set of protocol
messages sent in round j.

– Combine(S,m,PM1,PM2, . . . ,PMr)→ (m,σ): A deterministic algorithm
that takes as input the signing set S, the message m, and a set of protocol
messages PM1,PM2, . . . ,PMr and outputs a signature σ.

– Verify(pk,m, σ)→ 0/1: A deterministic algorithm that takes as input the
public key pk, a message m, and a purported signature σ and outputs 1
(accept), or 0 (reject).

Correctness of TS. A threshold signature scheme is correct if for all security
parameters λ ∈ N, all par ∈ [Setup(1λ)], all (pk, {(ski)}i∈[n]) ∈ [KeyGen(n, t)],
all S ⊆ [n] such that |S| ≥ t, and all messages m, we have:

Pr[Verify(pk,m, σ) = 1 | σ ← TSignHon(pk, {ski}i∈[n],S,m)] = 1

where the algorithm TSignHon is as defined in Fig. 1.

Remark 3. The Combine algorithm may be executed by one of the signers or
an external party, typically a coordinator.

Remark 4. The signing set S, message m, and secret key share ski are given as
input in the first round of signing; however, for some schemes, this is deferred
until the second round to allow preprocessing [38, 24, 7, 46, 19].
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TSignHon(pk, {ski}i∈[S],S,m)

return ⊥ if S ̸⊆ [n] ∧ |S| < t

for k ∈ S do (pm1,k, st1,k)← Sign1(k, skk,S,m)

for k ∈ S do (pm2,k, st2,k)← Sign2(st1,k, {pm1,i}i∈S)

. . .

for k ∈ S do pmr,k ← Signr(str-1,k, {pmr-1,i}i∈S)

σ ← Combine(S,m, {pm1,i, . . . , pmr,i}i∈S)

return σ

Fig. 1. An algorithm TSignHon modeling an honest execution of the signing protocol.

4.2 Static and Adaptive Security

We next define static and adaptive security for threshold signatures, as specified
by [23], in Fig. 2.

The adaptive unforgeability game takes as input the security parameter λ,
the number of parties n, the threshold t, and the allowed number of corruptions
f (t− 1 in the static and full adaptive settings). The challenger generates public
parameters par and returns all parameters to the adversary A. The adversary
returns an initial set of corrupt parties C (or the full set, in the case of static
corruption), which must not exceed f , and the challenger sets the honest parties
H ← [n] \ C. The challenger runs KeyGen and returns pk and the set of
corrupt secret keys {skj}j∈C to A. The adversary can then query signing oracles
OSign1,...,Signr for honest parties, and the challenger performs various checks to
ensure each query is valid. The adversary may open concurrent signing sessions;
each session is managed with a session ID sid. The adaptive unforgeability game
includes a corruption oracle OCorrupt, which returns the secret key and state of
the selected party across all signing sessions. The adversary wins the game if
it can produce a valid forgery σ∗ = (R∗, z∗) with respect to public key pk on a
message m∗ that has not been queried to a signing oracle.

Definition 7 (Static Security). Let the advantage of an adversary A playing
the static security game GameUF

A,TS(λ, n, t, f) for f = t− 1, as defined in Figure 2,
be as follows:

AdvUF
A,TS(λ, n, t, f) = Pr[GameUF

A,TS(λ, n, t, f) = 1]

A threshold signature scheme TS is statically secure if for all PPT adversaries
A, AdvUF

A (λ, n, t, f) is negligible.

Definition 8 (Adaptive Security). Let the advantage of an adversary A
playing the adaptive security game Gameadp-UF

A,TS (λ, n, t, f) for f ≤ t−1, as defined
in Figure 2, be as follows:

Advadp-UF
A,TS (λ, n, t, f) = Pr[Gameadp-UF

A,TS (λ, n, t, f) = 1]

12



main Game
adp-UF

A,TS (λ, n, t, f)

ID, Qm ← ∅
par ← Setup(1λ)

(C, stA)←$A(par, n, t, f)
return ⊥ if C ̸⊂ [n] ∨ |C| > f

H ← [n] \ C
(pk, {ski}i∈[n])←$ KeyGen(n, t)

input← (pk, {skj}j∈C , stA)

(m∗, σ∗)←$AOSign1,...,Signr,Corrupt

(input)

return 1 if m∗ /∈ Qm

∧Verify(pk,m∗, σ∗) = 1

return 0

Init(sid, k,S,m)

if sid /∈ ID
return ⊥ if S ̸⊆ [n] ∨ |S| < t

∨ k /∈ H ∩ S
ID ← ID ∪ {sid}
S[sid]← S; m[sid]← m

Qm ← Qm ∪ {m[sid]}
return ⊥ if k /∈ H ∩ S[sid]
∨ rnd[sid, k] ̸= ⊥

return 1

OCorrupt(k)

return ⊥ if k ̸∈ H ∨ |C| ≥ f

C ← C ∪ {k}
H ← H \ {k}
return (skk, {st[sid′, k]}sid′∈ID)

OSign1(sid, k,S,m)

return ⊥ if ⊥ ← Init(sid, k,S,m)

(pm1[sid, k], st1[sid, k])

← Sign1(k, skk,S[sid],m[sid])

pm1,k ← pm1[sid, k]; rnd[sid, k]← 1

return pm1,k

OSign2(sid, k,PM1)

return ⊥ if sid /∈ ID
∨ k /∈ H ∩ S[sid] ∨ rnd[sid, k] ̸= 1

parse {pm1,i}i∈S ← PM1

return ⊥ if pm1,k ̸= pm1[sid, k]

(pm2[sid, k], st2[sid, k])

← Sign2(st1[sid, k],PM1)

pm2,k ← pm2[sid, k]; rnd[sid, k]← 2

return pm2,k

...

OSignr (sid, k,PMr−1)

return ⊥ if sid /∈ ID
∨ k /∈ H ∩ S[sid] ∨ rnd[sid, k] ̸= r − 1

parse {pmr−1,i}i∈S ← PMr−1

return ⊥ if pmr−1,k ̸= pmr−1[sid, k]

pmr[sid, k]← Signr(str−1[sid, k],PMr−1)

pmr,k ← pmr[sid, k]; rnd[sid, k]← r

return pmr,k

Fig. 2. Games defining the static and adaptive unforgeability of a threshold signature
scheme with r signing rounds [23]. The static game contains all but the dashed boxes,
and the adaptive game adds the dashed boxes. The public parameters par are implicitly
given as input to all algorithms.
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A threshold signature scheme TS is adaptively secure if for all PPT adversaries
A, Advadp-UF

A,TS (λ, n, t, f) is negligible.

Definition 9 (Full Adaptive Security). A threshold signature scheme TS

achieves full adaptive security if the corruption threshold f in Gameadp-UF
A,TS (λ, n, t, f)

is f = t− 1.

5 The Attack

We now present the main result of this work.

Our attack applies to protocols where the secret shares are generated as follows.

Definition 10 (Threshold Schnorr signature protocol with Shamir secret-
shared key). We say a protocol is a threshold Schnorr signature protocol with
Shamir secret-shared key if signature verification is compatible with Schnorr
verification (Definition 2) and there exists a polynomial q(Z) with coefficients in
Zp such that:

– the public key for the threshold Schnorr signatures is pk = gq(0),
– each honest party i knows ski = q(zi) for some zi ∈ Zp, and
– the points z1, . . . , zn are public.

Theorem 1. There is an adversary with an oracle to solve P that can forge using
just the public key shares for any threshold Schnorr signature protocol with Shamir
secret-shared key where the elements pk1 = gq(z1), . . . , pkn = gq(zn) are public.
The adversary, which makes one random oracle query (or hash computation) and

calls the oracle for P once, succeeds with probability at least
( n
t−1)

p+( n
t−1)

. In particular,

it succeeds with probability at least 1/2 when
(

n
t−1

)
≥ p.

If P is solvable in polynomial time, this rules out the full adaptive security of
such schemes. Any proof of full adaptive security must imply that P is not solvable
in polynomial time. Could there be a proof that only involves the hardness of
group problems (e.g., DL, AOMDL), idealized models of groups (e.g., AGM,
GGM), or a bound on the random oracle queries?

Note that the description of P does not involve the group or random oracles.
For, say, an elliptic curve, the instance of P uses a different field than the
arithmetic of the elliptic curve is defined and so we would not expect the hardness
of P to be related to that of problems involving the specific group. However, if P
is NP-hard, then its hardness would be implied by hardness of any NP problem,
such as the discrete logarithm problem in a group with efficient operations. Even
in this case, to prove full adaptive security without additional assumptions would
require showing that the instances used in the attack are hard and that they are
hard for a uniformly random v. We discuss this further in Section 7.

Now, consider the points X0 = gx0 , . . . , Xt−1 = gxt−1 where

q(Z) = x0 + x1Z + x2Z
2 + · · ·+ xt−1Z

t−1.
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These points would be the Feldman VSS commitments for a trusted party who
uses q. If each dealer in the DKG uses the Feldman VSS or a related VSS
protocol that uses these commitments, then these could be computed from their
commitments. Even if not, our assumptions suffice to compute them. While
introducing the linear algebra needed to describe the setting, we will show below
that:

Claim. Given pk1, . . . , pkn, it is possible to compute X0, . . . , Xt−1 and vice versa.

Schemes using the Feldman VSS commitments operate in the reverse direction
to the claim. The dealer or DKG outputs X0 = gx0 , . . . , Xt−1 = gxt−1 . Any party
i ∈ {1, . . . , n} can verify their public key share as:

pki = K⊤
i X

where X⊤ = (X0, X1, . . . , Xt−1) and K⊤
i = (1, zi, z

2
i , . . . , z

t−1
i ). In other words,

pki = X0X
zi
1 X

z2
i

2 · · ·X
zt−1
i

t−1

We will also take pk = X0. We can define K⊤
0 = (1, 0, . . . , 0) so that pk = gq(0) =

K⊤
0 X.
Any set of t distinct indices i1, . . . , it ∈ {0, 1, . . . , n} have that Ki1 , . . .Kit

form a basis of Zn
p . This is because they are the rows of the Vandermonde matrix

of zi1 , . . . , zit (with the convention that z0 = 0), which is non-singular when
zi1 , . . . , zit are distinct (see Definition 4).

As a result of this, if X0, X1, . . . , Xt−1 are not public, but pk, pk1, pk2, . . . , pkn
are, then the former can be computed from any t of the latter by solving a non-
singular linear system of equations. We have now shown both directions of the
claim.

Proof. (of Theorem 1) Consider the following attack. The adversary’s goal in the
adaptive security game (Fig. 2) is to adaptively corrupt, based on its view of the
protocol execution, a maximum of f = t− 1 honest parties, receiving their secret
keys ski, and to produce a forgery. In particular, the forgery (m∗, σ∗ = (R∗, z∗))
must be such that no honest party has ever signed m∗, and σ∗ must pass Schnorr
signature verification (see Definition 2):

R∗ · pkc
∗
= gz

∗

where c∗ = Hash(R∗, pk,m∗). In order to forge, the adversary sets R∗ as:

R∗ = α⊤X = Xα0
0 Xα1

1 · · ·X
αt
t (1)

for some uniformly random α0, α1, . . . , αt←$ Zp. Then, since X0 = pk, we have:

R∗ · pkc
∗
= Xα0+c∗

0 Xα1
1 · · ·X

αt
t = (α+ c∗K0)

⊤X

15



The adversary tries to find t − 1 public keys pkj1 , pkj2 , . . . , pkjt−1
and some

µj1 , µj2 , . . . , µjt−1
∈ Zp such that:

α+ c∗K0 =

t−1∑
i=1

µjiKji

and so

R∗ · pkc
∗
= pk

µj1
j1

pk
µj2
j2
· · · pk

µjt−1

jt−1
.

Given j1, . . . , jt−1 for which there is a solution to the above, it is possible to
compute µj1 , µj2 , . . . , µjt−1 as follows: since Kj1 , . . . ,Kjf ,K0 is a basis, using
the Vandermonde matrix, it is possible to compute µj1 , µj2 , . . . , µjt−1

, µ0 with

α+ c∗K0 = µ0K0 +

t−1∑
i=1

µjiKji .

Since this is a basis, µj1 , µj2 , . . . , µjt−1
, µ0 is unique. If µ0 ̸= 0, then there is

no solution; otherwise, the equation above holds.
There are

(
n

t−1

)
possible sets of t − 1 parties. If the adversary can find

such a set F of t − 1 signers, then they can corrupt j1, j2, . . . , jt−1 to obtain
skj1 , skj2 , . . . , skjt−1 and set z∗ = µj1skj1 + µj2skj2 + · · ·+ µjt−1skjt−1 .

First, we need to show under what circumstances such an F of f = t − 1
signers exists. For any set of t − 1 signers F , we define HF = span({Kj}j∈F ).
We need that:

Lemma 1. HF is a t− 1 dimensional subspace of Zt
p. For any distinct sets of

t− 1 signers F, F ′, HF ∩HF ′ is a t− 2 dimensional subspace of Zt
p.

Proof. (of Lemma 1) {Kj}j∈F are linearly independent, as {Kj}j∈F ∪Kj′ forms
a basis for any j′ /∈ F . So dimHF = |{Kj}j∈F | = t− 1.

Given F ′ ̸= F , there is a j′ ∈ F ′ \ F , and {Kj}j∈F ∪Kj′ forms a basis and
so is linearly independent. So Kj′ /∈ span({Kj}j∈F ) = HF . Thus HF and HF ′

are distinct hyperplanes and so their intersection has t− 2 dimensions. ⊓⊔

Now, note that α + c∗K0 is distributed uniformly at random from the pt

points in Zt
p. Thus, we have that Pr[α + c∗K0 ∈ HF ] = pt−1/pt = 1/p and

Pr[α+ c∗K0 ∈ HF ∩HF ′ ] = pt−2/pt = 1/p2.
Now let XF be the indicator variable that is 1 when α+ c∗K0 ∈ HF and 0

otherwise. Then XF is distributed as Bernoulli(1/p) and for distinct F, F ′,

Cov(XF , XF ′) = E[(XF − E[XF ])(XF ′ − E[XF ′ ])]

= E[XFXF ′ − E[XF ]E[XF ′ ]] = 1/p2 − 1/p2 = 0.

Let F be the set of all sets of f signers. Now let X =
∑

F∈F XF .

E[X] =
∑
F∈F

E[XF ] =

(
n

t− 1

)
/p.

16



V ar[X] =
∑
F∈F

V ar[XF ] +
∑

F,F ′∈F,F ̸=F ′

2Cov(XF , XF ′)

=

(
n

t− 1

)
(1/p)(1− 1/p) + 0 ≤ E[X].

Now if there is an F ∈ F with α + c∗K0 ∈ HF , then XF = 1 and so X > 0.
Conversely, if X > 0 then such an F must exist. Now we can use Cantelli’s
inequality (Definition 5) to obtain:

Pr[X = 0] = Pr[X ≤ 0] = Pr[X − E[X] ≤ −E[X]] ≤ V ar[X]

V ar[X] + E[X]2

And so we have:

Pr[∃F ∈ F : α+ c∗K0 ∈ HF ] = Pr[X > 0]

≥ 1− V ar[X]

V ar[X] + E[X]2

=
E[X]2

V ar[X] + E[X]2

≥ E[X]2

E[X] + E[X]2

=
E[X]

1 + E[X]

=

(
n

t−1

)
p+

(
n

t−1

)
This is at least 1/2 for

(
n

t−1

)
≥ p.

With an oracle for solving P, the adversary can find a set F of t− 1 parties

to corrupt to create a forgery with probability at least
( n
t−1)

p+( n
t−1)

as required. ⊓⊔

Remark 5. We note that there are additional assumptions that we could have
added to Definition 1 that might make it easier to solve but which were omitted
for a clean statement. For example, we could require that any t of the ki are
linearly independent. Indeed, we explore this particular assumption in Section 7.

Remark 6. In Equation 1, we only considered a random α to simplify the analysis.
It may be possible that an adversary that does not choose α at random can
achieve a higher probability of success or obtain an instance of P that has a
special form for which there is an efficient algorithm to solve.

6 Extension to when f is smaller than t − 1

In the previous section, we considered the case where the adversary is allowed to
adaptively corrupt a full f = t− 1 out of a threshold of t parties. We now show
a generalization of this result to lower corruption thresholds.
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Theorem 2. There is an adversary with an oracle to solve P that can forge
using just the public key shares for any threshold Schnorr signature protocol with
Shamir secret-shared key where the elements pk1 = gq(z1), . . . , pkn = gq(zn) are
public. Assuming that for some security paramter λ, nt ≤ 2λ and p ≥ 22λ, the
adversary, who makes one random oracle query and one call to the oracle for P,

succeeds with probability at least
(nf)

pt−f (1+O(2−λ))+(nf)
. If additionally, we assume(

n
f

)
≥ pt−f (1+O(2−λ)), then the adversary succeeds with probability at least 1/2.

The two assumptions nt ≤ 2λ and p ≥ 22λ are made to simplify the statement
where O(2−λ) hides terms which are negligible. We note that many protocols
have time complexity Ω(nt), such as DKGs where all parties secret share or
identifiable abort, and 2λ is unfeasible complexity. The choice p ≥ 22λ is required
because of attacks on the discrete logarithm problem in groups of order p that
have time complexity

√
p, such as Pollard’s rho algorithm.

Following the same line of reasoning as in the proof of Theorem 1, we can
consider α as living in the vector space that is the dual to the space of polynomials
of degree at most t−1. For any polynomial of degree at most t−1, p(x), we write
p for its vector of coefficients in Zt

p. For any set S ⊂ {0, 1, . . . , n} of signers (and
possibly 0),we define the vanishing polynomial vS(x) as vS(x) =

∏
i∈S x− zi.

Lemma 2. HF is an f -dimensional subspace of Zt
p. Its annihilator, the subspace

H⊥
F of degree at most t− 1 polynomials p(x) with XTp = 0 for all X ∈ HF , p ∈

H⊥
F , consists of the span of vF (x), xvF (x) . . . , x

t−1−fvF (x). For any distinct sets
of t− 1 signers F, F ′, HF ∩HF ′ is a 2f −min{t, |F ∪ F ′|}-dimensional subspace
of Zt

p.

Proof. (of Lemma 2) HF is the span of Ki for i ∈ F . A polynomal p has XTp for
all X ∈ HF if and only if KT

i p = p(zi) is 0 for all i ∈ F . Thus, p(x) = q(x)vF (x)
for some polynomial q(x) of degree at most t − 1 − deg vS = t − 1 − f . This
subspace of polynomials H⊥

F is spanned by vF (x), xvF (x) . . . , x
t−1−fvF (x), which

has dimension t− f .
Now HF ∩HF ′ is a subspace whose annihilator is H⊥

F +H⊥
F ′ , which is the

span of vF (x), xvF (x), . . . , x
t−1−fvF (x), vF ′(x), xvF ′(x), . . . , xt−1−fvF ′(x). This

set need not be linearly independent. If they are, then dimH⊥
F +H⊥

F ′ = 2f and so
dimHF ∩HF ′ = 2f − t. Otherwise, the dimension of H⊥

F +H⊥
F ′ is reduced by the

dimension of the space of linear combinations of vF (x), xvF (x), . . . , x
t−1−fvF (x),

vF ′(x), xvF ′(x), . . . , xt−1−fvF ′(x) that give the zero polynomial. Such a linear
combination can be written as q(x)vF (x) + r(x)vF ′(x) for polynomals q, r of
degree at most t− 1− f .

If q(x)vF (x) + r(x)vF ′(x) = 0, then q(zi)vF (zi) + r(zi)vF ′(zi) = 0 for all
i ∈ F ∪F ′. Thus q(zi) = 0 for all i ∈ F ′\F and so vF ′\F (x) divides q(x). Similarly,
vF\F ′(x) divides r(x). Now both terms q(zi)vF (zi) and r(zi)vF ′(zi) = 0 divide
vF∪F ′(x) = vF ′\F (x)vF (x) = vF\F ′(x)vF ′(x) and so the linear combination is of
the form s(x)vF ′\F (x)vF (x)− s(x)vF\F ′(x)vF ′(x) for some polynomial s(x) of
degree at most t− 1− deg vF\F ′(x) = t− 1− |F ∪ F ′|.
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If t − 1 − |F ∪ F ′| < 0, then there are no such linear combinations. In this
case, dimH⊥

F +H⊥
F ′ = 2f . Otherwise, the space of linear combinations has the

same dimension as that of polynomials of degree at most t− 1− |F ∪ F ′|, that is
t− |F ∪F ′|. In this case, dimH⊥

F +H⊥
F ′ = 2f − t+ |F ∪F ′|. Thus, the dimension

of the subspace for which this is the annihilator HF ∩HF ′ is 2f−min{t, |F ∪F ′|}.
⊓⊔

Again, let XF be the indicator variable that is 1 when α + c∗K0 ∈ HF and
0 otherwise. α + c∗K0 is a uniformly random point and so Pr[XF = 1] =
1/pt−dimHF = 1/pt−f , i.e., XF is distributed as Bernoulli(1/pt−f ).

Now for F, F ′ ∈ F ,

E[XFXF ′ ] = Pr[XF = 1∧XF ′ = 1] = 1/pt−dimHF∩HF ′ = 1/pt+min{t,|F∪F ′|}−2f .

For any F , how many F ′ have E[XFXF ′ ] = 1/pt−f−k? For k = 0, there is just
one F ′, F ′ = F because that needs |F ∪ F ′| = f = |F |. For 0 < k < t − f ,
|F ∪ F ′| = f + k and so |F \ F ′| = |F ′ \ F | = k. There are

(
f
k

)
possible sets of

k parties to remove from F and then
(
n−f
k

)
possible sets of k parties to add to

get F ′. This results in
(
f
k

)(
n−f
k

)
values of F ′. Finally, for k = t− f , |F \ F ′| ≥ k,

which is all other F ′ that have E[XFXF ′ ] = p2(t−f).
So for X =

∑
F∈F XF , we have E[X] =

(
n
f

)
1/pt−f ,

V ar[X] = E[X2 − E[X]2] =
∑
F,F ′

E[XFXF ′ − 1/p2(t−f)]

=

(
n

f

) t−f−1∑
k=0

(
f

k

)(
n− f

k

)
(1/pt−f−k − 1/p2(t−f)]

Here the k = t− f term is a multiple of 1/p2(t−f) − 1/p2(t−f) = 0. Note that
the ratio of the k term to the k+ 1 term is (f − k)(n− f − k))/p(k+ 1)2 ≤ nt/p.
Now in our regime, this is negligibly small. Concretely, in terms of a security
parameter λ, we will assume that nt ≤ 2λ and p ≥ 22λ. Now we have nt/p ≤ 2−λ

and so the expression of V ar[X] is dominated by the k = 0 term
(
n
f

)
/pt−f = E[X].

So we have V ar[X] = E[X](1 +O(2−λ)).
Using Cantelli’s inequality (Definition 5), we have

Pr[∃F ∈ F : α+ c∗K0 ∈ HF ] = Pr[X > 0]

≥ 1− V ar[X]

V ar[X] + E[X]2

=
E[X]2

V ar[X] + E[X]2

≥ E[X]2(

E[X]1 +O(2−λ)) + E[X]2

=
E[X]

1 +O(2−λ) + E[X]
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=

(
n
f

)
pt−f (1 +O(2−λ)) +

(
n
f

)
So when

(
n
f

)
≥ (1+O(2−λ))pt−f , we have E[X] ≥ 1 and that Pr[X > 0] ≥ 1/2.

So we have that if α is chosen at uniformly at random from Zt
p, the probability

that α + c∗K0 ∈ HF for some F ∈ F is at least 1/(2 − O(2−λ)). Now the
adversary proceeds in a similar way to the one from Theroem 1. They choose
α uniformly at random, then compute R∗ as in Equation 1, query or compute
c∗ = Hash(R∗, pk,m∗) and query their oracle for P to find F with |F | = f and α+
c∗K0 ∈ HF . If the oracle returns such an F , the adversary corrupts parties in F
to learn ski for i ∈ F . Then, it solves a linear system to find µj1 , µj2 , . . . , µjf with

α+c∗K0 =
∑f

i=1 µjiKji , so (R∗, z∗) with z∗ =
∑f

i=0 µjiskji satisfies R
∗ ·pkc∗ =

gz
∗
and is a forgery. This occurs with probability at least

(nf)
pt−f (1+O(2−λ))+(nf)

, as

required. ⊓⊔

7 Is the Problem P Hard?

We show in Theorem 3 that the instances of the problem P the attack uses are
related to the bounded distance decoding of Reed-Solomon codes [45] (Section 7.1).
Decoding of Reed-Solomon codes is a classical, well-studied problem. It is therefore
perhaps surprising that, in the parameter ranges for which the attack applies,
we do not know whether the corresponding Reed-Solomon code problem, and
therefore P, is hard or whether the instances the attack uses are easy. Here, we
state what is known about this problem and speculate about what this means
for the hardness of P.

The relevant Reed-Solomon codes have length n and dimension k = n− t, i.e.,
they are evaluations of polynomials of degree n− t− 1. We consider f errors for
f corruptions. This Reed-Solomon code would be uniquely decodable up to k/2
errors, corresponding to the f ≤ (t− 1)/2 corruption regime. With more errors
than this, Reed-Solomon codes are list-decodable, where an algorithm can output
a list of all words in the code with at most f differences. However, the region
where our attack applies with

(
n
f

)
≥ pt−f = pn−k−f corresponds roughly to the

list decoding capacity bound (cf. Theorem 7.4.1 of [33]), above which the average
list size (which appears as E[X] in the proof above) becomes exponentially
large. Consequently, in this region, list decoding cannot be polynomial time, as
the output is not polynomial sized. However, the problem of bounded distance
decoding – returning one out of the possibly many codewords within f if one exists
– might still be feasible in this region. Bounded distance decoding, indeed list
decoding, is known to be feasible up the Johnson bound of n(n−f) ≥ kn = n(n−t).
It is an open question whether it is feasible beyond this bound. (Open Question
12.2.1 of [33] is this for list decoding.)

So, might bounded distance decoding of Reed-Solomon codes, and therefore
the problem P, be hard in our parameter region? Indeed, there are hardness
results in the literature for our parameters n, k, f . The bounded distance decoding
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is shown to be NP-hard in [34] for n − k − f = 1, corresponding to f = t − 1,
which was extended to slightly lower f in [28]. It has also been shown to be hard
for discrete log in an extension field for the region of our attack

(
n
f

)
≥ pn−k−f .

However, none of these results apply to the fields typically used in Schnorr
signatures, i.e. cryptographically large prime fields, but not exponentially large
in n for which the attack would not apply. The reduction in [34] applies to binary
fields. [28] used fields which are exponentially large in n. The bounded distance
decoding result in [28] only applies to the domain being the entire field, which
requires a smaller field. It is possible that some modification of these results
applies.

However, these hardness reductions use a structured codeword for the input
to the problem. Our attack actually uses an input vector v chosen uniformly
at random. This can be translated to a uniformly random input codeword for
Reed-Solomon decoding. So, even if P is hard, including NP-hard, it is possible
that this average case is easy.

Even if the average case is not easy, we do not know of a reduction strategy
from the literature that is likely to apply to a random input. Without such a
reduction, a new assumption, beyond group-related assumptions and the ROM,
would still be required to show full adaptive security of threshold Schnorr signature
schemes.

7.1 Connection to Reed-Solomon Codes

A linear code C of length n and dimension k over an alphabet of size q, where
q is a prime power, is a k-dimensional subspace of Zn

q . The Hamming distance
dH(u,v) between two vectors u,v ∈ Zn

q is defined as the number of non-zero
coordinates of the vector u− v.

Definition 11 (Bounded Distance Decoding). Bounded distance decoding
for a code C and distance f is the following problem: Given u ∈ Zn

q , find v ∈ C
such that dH(u,v) ≤ f provided such a v exists.

The linear codes we are particularly interested in are Reed-Solomon codes.
For an enumerated domain z ∈ Zn

q with no duplicate coordinates, i.e., zi ̸= zj for
i ̸= j, we define RS(Zq, z, k) containing codewords v of the form vi = v(zi) for
some polynomial v(x) of degree at most k − 1.

Theorem 3. For any K1, . . . ,Kn ∈ Zt
p such that any t are linearly independent,

instances of P with these Ki are equivalent to bounded distance decoding in
a linear code C of length n and dimension n − t. For the special case Ki =
(1, zi, z

2
i , . . . , z

t−1
i ), P is equivalent to bounded distance decoding of RS(Zp, z, n−

t).

Proof. A parity-check matrix for a linear code C of length n and dimension k
is an (n− k)× n matrix H such that the subspace C is the kernel of the linear
transformation given by H, i.e., Hu = 0 if and only if u ∈ C. For a codeword
u ∈ Zn

q , Hu ∈ Zn−k
q is called the syndrome of u.

21



Given an instance of P such that any t of the Ki are linearly independent,
we take H to be the t× n matrix whose ith column is Ki. Because any t of the
Ki are linearly independent, any t× t submatrix of H is non-singular and so H
has rank t. Let C be the kernel of H, i.e., the subspace of Zn

p such that Hu = 0
if and only if u = 0. By the rank-nullity theorem, this subspace has dimension
n− t.

Lemma 3. If v = Hu, then for any a ∈ Zn
p , the following are equivalent:

(i) u− a ∈ C,
(ii) v =

∑
i aiKi.

Proof. (ii) is v = Ha and (i) is H(u − a) = 0 and so both are equivalent to
Hu = Ha. ⊓⊔

Such an a that has at most f non-zero coordinates provides a solution to the
bounded distance decoding problem for u via (i) and a solution to P for v via
(ii).

Corollary 1. If v = Hu, then P has a solution for v if and only if the bounded
distance decoding problem has a solution for u.

Proof. If there exists an a that has at most f non-zero coordinates that satisfies
Lemma 3, then both have a solution; otherwise, neither have a solution. ⊓⊔

Given an input vector v ∈ Zt
p for P , we can solve P using an oracle for

bounded distance decoding for C as follows. First, find u ∈ Zn
p with Hu = v.

This is an overdetermined linear system, but for any subset T ⊂ {1, . . . , n}
with |T | = t, the submatrix of H, HT , of columns with indices from T is non-
singular; indeed, its columns are Ki for i ∈ T , which were assumed to be linearly
independent. Then, using H−1

T v, we can find a vector v with non-zero entries
only in T with Hu = v. Now apply the oracle for bounded distance decoding to
u. If it returns c, then let F ⊂ {1, . . . , n} be the set of non-zero entries in u− c,
and so there are ai such that u− c =

∑
i aiei. By Lemma 3, v =

∑
i aiKi and

we return this solution. If there were no solutions, then by Corollary 1, we can
return that there are no solutions.

Given an input vector u ∈ Zt
p for the bounded distance decoding problem for

C, we can solve bounded distance decoding using an oracle for P . Use the oracle
for P on Hu. If it succeeds and outputs F, ai with v =

∑
i∈F aiKi, then output

c = u−
∑

i∈F aiei ∈ C as a solution to bounded distance decoding. If P has no
solutions for Hu, then by Corollary 1, the bounded distance decoding problem
has no solutions.

This completes the proof for general Ki such that any t are linearly indepen-
dent. Now we consider Ki = (1, zi, z

2
i , . . . , z

t−1
i ) for z with distinct coordinates.

As mentioned previously, any t of these are linearly independent. Indeed, for any
T ⊂ {1, . . . , n} of size |T | = t, the submatrix HT of columns with indices from T
and so columns Ki is a Vandermonde matrix and therefore non-singular.
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The code C obtained as above for these Ki is not quite a Reed-Solomon code.
In fact it is a generalized Reed-Solomon code obtained by scaling Reed-Solomon
codewords pointwise.

We will first give explicitly the vector w ∈ Zn
p of scaling and its key property

and then show how this is related to our codes.

Lemma 4. Let w ∈ Zn
p be defined by wi = 1/v′z(zi), where v′z(z) is the formal

derivative of the vanishing polynomial vz(z) =
∏

i(z − zi). Then, for any polyno-
mial p(x) of degree at most n− 1, the coefficient of xn−1 in p(x) is

∑
i wip(zi).

Proof. Consider the Lagrange interpolation formula for any polynomial p(x) (see
Section 4): p(x) =

∑
i p(zi)vz(x)/v

′
z(zi)(x− zi) =

∑
i wip(zi)vz(x)/(x− zi). Now,

the xn−1 coefficient of vz(x)/(x− zi) is 1 and so taking the xn−1 coefficient of
this expression for p(x) gives

∑
i wip(zi). ⊓⊔

Next, we show how this vector relates to the Reed-Solomon code.

Lemma 5. u ∈ RS(Zp, z, n−t) if and only if
∑

i uiwiz
j
i = 0 for all 0 ≤ j ≤ t−1.

Proof. Let u(x) be the polynomial of degree at most n− 1 with ui = u(zi) for
all 1 ≤ i ≤ n. By Lemma 4, if u(x) has degree at most n− j − 1, then

∑
i uiwiz

j
i

is the xn−1 coefficient of u(x)xj and so also the coefficient of xn−j−1 in u(x).
Suppose that u ∈ RS(Zp, z, n − t). Then deg u(x) ≤ n − t. For each 0 ≤

j ≤ t − 1, u(x) has degree at most n − j − 1 and xn−j−1 coefficient 0 and so∑
i uiwiz

j
i = 0.

Now, suppose that
∑

i uiwiz
j
i = 0 for all 0 ≤ j ≤ t− 1. If u(x) has degree at

most n− j − 1, then the coefficient of xn−j−1 in u(x) is 0 and so it has degree at
most n − j − 2. It has degree at most n − 1, so by induction, it has degree at
most n− t− 1. Thus, we have u ∈ RS(Zp, z, n− t). ⊓⊔

Now consider the rows of H. The jth column of H is Kj = {1, zj , . . . , znj }.
So, we have Hij = zij and that the ith row of H is (zi−1

1 , zi−1
2 , . . . , zi−1

n ). Thus,
we have the following corollary.

Corollary 2. u ∈ RS(Zp, z, n− t) if and only if u′ with u′
i = uiwi has u′ ∈ C.

Proof. u′ ∈ C is equivalent to Hu′ = 0 and so
∑

i u
′zji = 0 for all 0 ≤ j ≤ t− 1.

By Lemma 5, this is equivalent to u ∈ RS(Zp, z, n− t). ⊓⊔

The equivalence between bounded distance decoding in the two codes is
obtained by multiplying or dividing the inputs by w pointwise. Concretely, we
have shown the correctnes of this reduction from P to bounded distance decoding
of RS(Zp, z, n− t):

1. Find u with v = Hu by taking any T ⊂ [n] with |T | = t and letting
uT = (V (zT )

⊤)−1v and vi = 0 for i /∈ T . Here, V is the Vandermonde matrix
and uT , zT refer to the vectors u, z, respectively, which have coordinates in
T.
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2. Compute w′,w with w′
i = v′z(zi) =

∏
j ̸=i(zi − zj) and wi = 1/w′

i.
3. Use the bounded distance to Reed-Solomon decoding oracle on Diag(w′)u,

whereDiag is the diagonal matrix operator, with RS(Zp, z, n−t) and distance
f .

4. If the oracle returns c ∈ RS(Zp, z, n− t) with dH(Diag(w′)u), c) ≤ f , then
return u−Diag(w)c.

This concludes the proof of Theorem 3. ⊓⊔
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