
Consistency-or-Die: Consistency for Key Transparency

Joakim Brorsson∗§, Elena Pagnin†, Bernardo David‡ and Paul Stankovski Wagner§
∗Hyker

†Chalmers University of Technology
‡IT University of Copenhagen

§Lund University

Abstract—This paper proposes a new consistency protocol that
protects a key transparency log against split-view attacks
and – contrary to all previous work – does not to rely on
small committees of known external auditors, or out-of-band
channels, or blockchains (full broadcast systems).

Our approach is to use a mechanism for cryptographically
selecting a small committee of random and initially undisclosed
users, which are then tasked to endorse the current view of the
log. The name of our protocol, Consistency-or-Die (CoD), re-
flects that users are guaranteed to know if they are in a consis-
tent state or not, and upon spotting an inconsistency in the key
transparency log, users stop using this resource and become
inactive (die). CoD relies on well-established cryptographic
building blocks, such as verifiable random functions and key-
evolving signatures, for which lightweight constructions exist.
We provide a novel statistical analysis for identifying optimal
quorum sizes (minimal number of endorsers for a view) for
various security levels and percentages of malicious users.

Our experiments support that CoD is practical and can run
in the background on mid-tier smart phones, for large-scale
systems with billions of users.

1. Introduction

A backbone to securing the web is the existence of a
trustworthy Certificate Authority (CA) infrastructure. The
main role of a web CA is to issue digital certificates to
validate the authenticity of websites. These certificates help
establish secure connections between a user’s browser and
a website, ensuring that sensitive information is encrypted
and transmitted securely. Additionally, CAs are expected to
verify the identity of website owners and help prevent fraud-
ulent activities. Unfortunately, we have witnessed several
incidents [1] where incorrect or malicious certificates have
successfully been used. For example, Symantec was caught
wrongfully issuing a certificate for google.com [2], and
DigiNotar was fully compromised by an unknown attacker
that issued over 500 fake certificates [3], which were then
used for spying on Iranian citizens. These incidents are due
to placing too much trust in the CA infrastructure.

To remedy this situation, transparency logs for the web,
called Certificate Transparency logs (CT) [4], have been
deployed to ensure correct serving of TLS certificates. Many

browsers currently mandate their use and thus reduce the
trust that needs to be placed in CAs by making them
transparent.

Intuitively, the transparency in transparency logs comes
from publicly recording all certificates issued by a CA.
This allows for greater visibility and accountability in the
issuance of certificates, helping to detect any unauthorized or
fraudulent certificates. More specifically, transparency logs
are label-value data structures which are publicly verifiable
to be append-only, allowing no data to be deleted or altered,
and consistent, i.e., serving all users the same view of the
current state of the data structure. These two properties en-
sure that the same value (certificate) is delivered in response
to all queries for a specific label.

Recently, transparency logs have been applied to serving
public keys for end-to-end encryption messaging apps [5],
[6], [7], [8], [9], and deployed in mainstream apps such as
WhatsApp [10], iMessage [11] and Zoom [12]. In this case,
the technique is called Key Transparency (KT) logs.

Even though CT and KT both aim to detect potential
attacks connected to cryptographic material, they have a few
core differences. While CT logs are designed for detecting
and preventing issuance of fraudulent TLS certificates, KT
logs focus on providing a secure and transparent way to
manage and distribute cryptographic keys.

1.1. State-of-the-Art and Current Issues

Key Transparency research consists of protocols for en-
suring append-only, and protocols for ensuring consistency.
Protocols for ensuring append-only [5], [6], [7], [8], [9],
e.g. Verifiable Key Directories (VKD) [7], [8], constitute
the largest body of work, and these protocols have in recent
years reached production level maturity. However, protocols
for consistency have received much less attention, and cur-
rent methods [8], [13], [14], [15], [16] are unsatisfactory as
they provide weak consistency guarantees.

In light of this, it is imperative to develop better consis-
tency protocols. A KT log with weak consistency guaran-
tees cannot protect against split-view attacks (which break
the consistency property) and is thus of limited value for
ensuring that the correct public keys are served. The need
is urgent. KT logs with no or weak consistency guarantees
have already been deployed in high profile systems (see

Section 1.1.2). Meanwhile a number of split-view incidents
in CT logs have been detected [17], [18], [19]. Such split-
views risk going undetected in current proposals for KT.

1.1.1. Academic Proposals. There are a three known meth-
ods for consistency in KT gossip protocols, blockchains and
designated witnesses. We here give an overview of these
approaches, and provide further details in Appendix C.

Gossip protocols [20], [21], [22] achieve consistency
by having users gossip over the state of the log using
Out-Of-Band (OOB) channels, where the service provider
cannot suppress messages. Gossiping essentially consists
of exchanging messages that endorse (or oppose) a certain
view. While this approach works for CT, it is problematic
for KT systems, since OOB channels are unworkable in real-
world KT scenarios (matching QR codes in person does not
scale well to a user base of, say, a billion users).

Blockchains have been suggested [13], [14], [23] as an
alternative to gossip protocols. By using a blockchain, con-
sistency comes for free since each record in a blockchain is
cryptographically linked to previous records, in a sequential
and immutable manner. However, relying on this technology
implicitly implies accepting the costs and assumptions that
come with implementing it. We consider the costs, e.g.,
end users running full blockchain nodes, unrealistic in most
mainstream scenarios such as KT for large scale instant mes-
saging apps. Indeed, none of the existing KT deployments
have chosen to use blockchains for consistency.

External Committees of Consistency Auditors [8], [24]
is the most recent alternative for achieving efficient and
scalable consistency in KT. The idea is to appoint an exter-
nal committee of auditors, where each committee member
endorses its view, and where at last two thirds of the
members are assumed to be honest. A user can be assured of
consistency of its own view if there is a large enough set of
committee members (other users) who agree with this view.
Security demands that such a committee be large and un-
targetable, otherwise an adversary could simply corrupt all
committee members. However, for efficiency and practical
reasons, such a committee should at the same time be small.
First of all, because users’ CPU and network overhead grow
with the committee size. Secondly, because finding a large
number of trustworthy external parties can be difficult in
practice. Finding the one-size that fits all is challenging, and
the current suggestion (10-50 committee members [8]) falls
short on meaningfully safeguarding potential high-impact
targets such as WhatsApp, iMessage or Zoom.

In summary, neither gossip, nor blockchains, nor ex-
ternal committees of consistency auditors are satisfying
solutions to ensure consistency for key transparency.

We note that concurrent work [16] explores another
direction of ensuring consistency for KT which does not use
external parties for auditing consistency. This is achieved
by weakening the consistency guarantees of KT, so that the
protocol only ensures that split-views are detected by either
the party who queries for a key, or the key owner.

1.1.2. Practical Deployments. The drawbacks of state-of-
the-art academic proposals for Key Transparency consis-
tency impact the security of existing KT systems. Indeed,
none of the systems we consider currently provide a satis-
factory consistency guarantee.

The consistency guarantees in iMessage come from gos-
sip protocols [11], which due to the lack of proper OOB
channels give weak security guarantees. Zoom state that
they “will partner with independent external auditors” [12]
for ensuring the consistency guarantee, i.e., they envision
a future use of designated witnesses but lack a solution at
present. WhatsApp’s approach is to use an S3 bucket with
a 5-year retention period [10]. This means that consistency
depends on a central third party, which is clearly undesir-
able since KT is designed to avoid trust in third parties.

1.2. A Novel Approach to KT Consistency

As mentioned in Section 1.1.1, consistency comes triv-
ially if one is willing to accept the costs and assumptions
associated with blockchains [25], [26], or more generally
broadcast systems [27].1 This is because by design such
systems enjoy, among others, two distinctive features;

(1) Consistency: each party can verify that they have a
view of an ordered list of data that is identical to the
view of all other parties,

(2) Guaranteed Output Delivery (GOD): each party has
guaranteed access to any update of the list at specific
time intervals.

For KT, feature (1) suffices and (2) is superfluous. Hence
one could attempt to dissect a blockchain as a broadcast
system, dispose of any machinery related to (2), and extract
only what provides (1), in the hope of reducing costs and
assumptions. Unfortunately, consistency and GOD are not
easily separable – GOD enables consistency.

The next natural attempt is to design a novel mechanism
that only provides consistency, and may not have guaranteed
output delivery. This is precisely the aim of gossip proto-
cols and protocols relying on external committees, with the
shortcomings for KT discussed in Section 1.1.1.

<latexit sha1_base64="K/UrSw1DMLl/yTpRf0rglkOz1U8=">AAAB9XicbVDLSgMxFL3js46vquDGTbAUXJUZEXVZ6sZlC05baIeSSTNtaCYzJhmlDP0OV4KCuBN/wj9w5cZvMX0stPVA4HDOvdyTEyScKe04X9bS8srq2npuw97c2t7Zze/t11WcSkI9EvNYNgOsKGeCepppTpuJpDgKOG0Eg6ux37ijUrFY3OhhQv0I9wQLGcHaSH47wrpPMM+8UYd18gWn5EyAFok7I4XyYe2bvVU+qp38Z7sbkzSiQhOOlWq5TqL9DEvNCKcju9hOFU0wGeAebRkqcESVn01Sj1DRKF0UxtI8odFEtX9tZDhSahgFZnKcUs17Y/E/r5Xq8NLPmEhSTQWZHgpTjnSMxhWgLpOUaD40BBPJTFhE+lhiok1RtmnBnf/zIqmfltzz0lnN1FGBKXJwBMdwAi5cQBmuoQoeELiFB3iCZ+veerRerNfp6JI12zmAP7DefwBgh5YY</latexit>Ui

<latexit sha1_base64="f+4gyW+NxjrEATrIwVxJJZuvTP0=">AAAB9XicbVDLSgMxFL3js7Y+qi7dBGvBVZkRUZdFNy4r2Ae0Q8mkmTY2kxmTTKUM/Q5XgoK4decP+Amu/BBdm2m70NYDgcM593JPjhdxprRtf1oLi0vLK6uZtWxufWNzK7+9U1NhLAmtkpCHsuFhRTkTtKqZ5rQRSYoDj9O6179I/fqASsVCca2HEXUD3BXMZwRrI7mtAOsewTypjNo37XzBLtljoHniTEmhfPD19j7IfVfa+Y9WJyRxQIUmHCvVdOxIuwmWmhFOR9liK1Y0wqSPu7RpqMABVW4yTj1CRaN0kB9K84RGYzX7ayPBgVLDwDOTaUo166Xif14z1v6ZmzARxZoKMjnkxxzpEKUVoA6TlGg+NAQTyUxYRHpYYqJNUVnTgjP753lSOyo5J6XjK1PHOUyQgT3Yh0Nw4BTKcAkVqAKBW7iHR3iy7qwH69l6mYwuWNOdXfgD6/UHPjSWvA==</latexit>Pj

<latexit sha1_base64="+hmA323gr2rpHWP/uaaB4Aogg8o=">AAACGHicbVDLSgNBEJz1bXxFPXoZEgRFCLsiKp6CevAYxUQhG8LspJMMmZ1dZ3rFsOQvcvJTPAkK4lVP+Rsnj4OvgoGiqrunu4JYCoOuO3Cmpmdm5+YXFjNLyyura9n1jYqJEs2hzCMZ6duAGZBCQRkFSriNNbAwkHATdM6G/s09aCMidY3dGGohaynRFJyhlerZgo/wgCrSIZNpqW0n0f0TegV3CRgUqkV3Uh+RnttNdG+3V8/m3YI7Av1LvAnJF3P+Xn9Q7Jbq2U+/EfEkBIVcMmOqnhtjLWUaBZfQy2z7iYGY8Q5rQdVSxUIwtXR0WI9uW6VBm5G2TyEdqZlvHSkLjemGga0MGbbNb28o/udVE2we11Kh4gRB8fFHzURSjOgwJdoQGjjKriWMa2GXpbzNNONos8zYFLzfN/8llf2Cd1g4uLRxnJIxFsgWyZEd4pEjUiQXpETKhJM+eSIv5NV5dJ6dN+d9XDrlTHo2yQ84H19uC6Lv</latexit>

Phase 2: Requesting (Distr)
<latexit sha1_base64="wSkFaa7MvS3T3KCqJ6Ydd2qM6J8=">AAACFnicbVDLSgMxFM34tr6qLt0ERVCUMqOi4qpYBJcVrAqdUjLpbRvMJENyRyxDf0Jc+CmuBAVxK7jq35i2LnwdCBzOuSfJPVEihUXf73kjo2PjE5NT07mZ2bn5hfzi0oXVqeFQ4VpqcxUxC1IoqKBACVeJARZHEi6j61Lfv7wBY4VW59hJoBazlhJNwRk6qZ7fDhFuUWkTM5mV2+4muntET1RDu4xq0Y0sRKQlMNjd7Nbza37BH4D+JcEXWSuuhlv3vWKnXM9/hA3N0xgUcsmsrQZ+grWMGRRcQje3HqYWEsavWQuqjioWg61lg7W6dN0pDdrUxh2FdKDmviUyFlvbiSM3GTNs299eX/zPq6bYPKxlQiUpguLDh5qppKhpvyPaEAY4yo4jjBvhPkt5mxnG0TWZcy0Ev3f+Sy52CsF+Ye/M1XFMhpgiK2SVbJCAHJAiOSVlUiGc3JFH8kxevAfvyXv13oajI95XZpn8gPf+CYsXoeY=</latexit>

Phase 3: Endorsing (Cert)

Phase 4: Consistency (Ver)
<latexit sha1_base64="EBgMeH23hn2octPZjEeDjJ0Ubks=">AAAB9HicbVDLSgMxFL1TX3V8VV26CZaCqzIjom7EYjduhAr2AZ2hZNK0Dc3MhCRTKEN/w5WgUNz6G36AC/FvzLRdaPVA4HDOvdyTEwjOlHacLyu3srq2vpHftLe2d3b3CvsHDRUnktA6iXksWwFWlLOI1jXTnLaEpDgMOG0Gw2rmN0dUKhZHD3osqB/ifsR6jGBtJM8LsR4QzNPq3aRTKDplZwb0l7gLUrx+t6/E9NOudQofXjcmSUgjTThWqu06QvsplpoRTid2yUsUFZgMcZ+2DY1wSJWfzkJPUMkoXdSLpXmRRjPV/rGR4lCpcRiYySykWvYy8T+vnejepZ+ySCSaRmR+qJdwpGOUNYC6TFKi+dgQTCQzYREZYImJNj3ZpgV3+c9/SeO07J6Xz+6dYuUG5sjDERzDCbhwARW4hRrUgYCAR3iGF2tkPVlT63U+mrMWO4fwC9bbN+CFlSE=</latexit>CM

<latexit sha1_base64="S/kuCFOPceiWbfwDlZV45RdRG1A=">AAAB9nicbVDLSgNBEOz1GddX1KOXwRDwFHZF1IsY9OJRwRghWcPs7GwyZHZmmZlVw5L/8CSoiFf/wg/wIP6Nk8dBowUNRVU33V1hypk2nvflTE3PzM7NFxbcxaXlldXi2vqllpkitEYkl+oqxJpyJmjNMMPpVaooTkJO62H3ZODXb6jSTIoL00tpkOC2YDEj2FjpOm/qGEXyVnCJo36rWPIq3hDoL/HHpHT07h6mz5/uWav40YwkyRIqDOFY64bvpSbIsTKMcNp3y81M0xSTLm7ThqUCJ1QH+fDsPipbJUKxVLaEQUPV/TGR40TrXhLazgSbjp70BuJ/XiMz8UGQM5FmhgoyWhRnHBmJBhmgiClKDO9Zgoli9lhEOlhhYmxSrk3Bn/z5L7ncqfh7ld1zr1Q9hhEKsAlbsA0+7EMVTuEMakBAwT08wpNz5zw4L87rqHXKGc9swC84b9+TNJYc</latexit>

download

<latexit sha1_base64="K/UrSw1DMLl/yTpRf0rglkOz1U8=">AAAB9XicbVDLSgMxFL3js46vquDGTbAUXJUZEXVZ6sZlC05baIeSSTNtaCYzJhmlDP0OV4KCuBN/wj9w5cZvMX0stPVA4HDOvdyTEyScKe04X9bS8srq2npuw97c2t7Zze/t11WcSkI9EvNYNgOsKGeCepppTpuJpDgKOG0Eg6ux37ijUrFY3OhhQv0I9wQLGcHaSH47wrpPMM+8UYd18gWn5EyAFok7I4XyYe2bvVU+qp38Z7sbkzSiQhOOlWq5TqL9DEvNCKcju9hOFU0wGeAebRkqcESVn01Sj1DRKF0UxtI8odFEtX9tZDhSahgFZnKcUs17Y/E/r5Xq8NLPmEhSTQWZHgpTjnSMxhWgLpOUaD40BBPJTFhE+lhiok1RtmnBnf/zIqmfltzz0lnN1FGBKXJwBMdwAi5cQBmuoQoeELiFB3iCZ+veerRerNfp6JI12zmAP7DefwBgh5YY</latexit>Ui

<latexit sha1_base64="o0oyauD2g6s44NDRYiJRg7rc+wA=">AAAB9XicdVDLSgNBEJyNrxhfUY9eBkPAU9iVmMct6EGPEc0DkiXMTnqTwdnZdWZWCUu+w5OgIF79GE/+jZNkBRUtaCiquunu8iLOlLbtDyuztLyyupZdz21sbm3v5Hf32iqMJYUWDXkoux5RwJmAlmaaQzeSQAKPQ8e7OZv5nTuQioXiWk8icAMyEsxnlGgjuUlf+fgKYHgOYjrIF+xS3XbqJ1W8ILVySip17JTsOQooRXOQf+8PQxoHIDTlRKmeY0faTYjUjHKY5or9WEFE6A0ZQc9QQQJQbjK/eoqLRhliP5SmhMZzNfdtIiGBUpPAM50B0WP125uJf3m9WPs1N2EiijUIuljkxxzrEM8iwEMmgWo+MYRQycyxmI6JJFSboHImha9X8f+kfVxyKqXyZbnQOE3zyKIDdIiOkIOqqIEuUBO1EEW36AE9oWfr3nq0XqzXRWvGSmf20Q9Yb59wepJ4</latexit>

SeedGen

<latexit sha1_base64="Snu7MsMk7BnUgc4Bps2N9VuxmCU=">AAAB8nicdVDLSsNAFL2prxpfVZduBkvBVUmk9rErunFZ0T6wDWUynbSDk0mYmQgl9C9cCQri1r9x5d84bSOo6IELh3Pu5d57/JgzpR3nw8qtrK6tb+Q37a3tnd29wv5BR0WJJLRNIh7Jno8V5UzQtmaa014sKQ59Trv+3cXc795TqVgkbvQ0pl6Ix4IFjGBtpNt0oAJ0zcZiNiwUnXLDcRtnNbQk9UpGqg3klp0FipChNSy8D0YRSUIqNOFYqb7rxNpLsdSMcDqzS4NE0RiTOzymfUMFDqny0sXJM1QyyggFkTQlNFqo9reJFIdKTUPfdIZYT9Rvby7+5fUTHdS9lIk40VSQ5aIg4UhHaP4/GjFJieZTQzCRzByLyARLTLRJyTYpfL2K/ied07JbLVeuKsXmeZZHHo7gGE7AhRo04RJa0AYCAh7gCZ4tbT1aL9brsjVnZTOH8APW2ydhWZFQ</latexit>

Sign
<latexit sha1_base64="NKHEyVqgko92IYaf/EiWHx1wq4k=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LJaCp5JIUY9FETxWsLWQhrLZbNqlm92wuxFK6M/wJCiIV3+NJ/+N2zYHbX0w8Hhvhpl5YcqZNq777ZTW1jc2t8rblZ3dvf2D6uFRV8tMEdohkkvVC7GmnAnaMcxw2ksVxUnI6WM4vpn5j09UaSbFg5mkNEjwULCYEWys5Pd1jG5FJJWmg2rNbbhzoFXiFaQGBdqD6lc/kiRLqDCEY619z01NkGNlGOF0Wqn3M01TTMZ4SH1LBU6oDvL5zVNUt0qEYqlsCYPmauXXRI4TrSdJaDsTbEZ62ZuJ/3l+ZuKrIGcizQwVZLEozjgyEs0CQBFTlBg+sQQTxeyxiIywwsTYmCo2BW/551XSPW94F43mfbPWui7yKMMJnMIZeHAJLbiDNnSAgIRneIU3J3NenHfnY9FacoqZY/gD5/MHaaGRQQ==</latexit>

Endorse

<latexit sha1_base64="y+eN+rS0l/VZGtHvMy2bfYADP8c=">AAAB/nicbVDLSsNAFJ3UV42v+Ni5GWwLrkpSRF0W3bisYB/QhjKZTtqhkwczN0oMBT/FlaAgbv0PV/6N0zYLbT1w4XDOvdx7jxcLrsC2v43Cyura+kZx09za3tnds/YPWipKJGVNGolIdjyimOAhawIHwTqxZCTwBGt74+up375nUvEovIM0Zm5AhiH3OSWgpb519MBhhGMZecTjgkOKy3G5b5Xsqj0DXiZOTkooR6NvffUGEU0CFgIVRKmuY8fgZkQCp4JNzEovUSwmdEyGrKtpSAKm3Gx2/gRXtDLAfiR1hYBnqvlrIiOBUmng6c6AwEgtelPxP6+bgH/pZjyME2AhnS/yE4EhwtMs8IBLRkGkmhAquT4W0xGRhIJOzNQpOIs/L5NWreqcV89ua6X6VZ5HER2jE3SKHHSB6ugGNVATUfSIntErejOejBfj3fiYtxaMfOYQ/YHx+QM99JT6</latexit>

with probability p

<latexit sha1_base64="W/xLRTw4HQ0lO8lgvpWe33PY7hU=">AAAB9HicdVDLSsNAFL2prxpfVZduBkvBVUik9rErunFZ0T6gCWUynbSDkwczk0IJ/Q1XgoK49Wdc+TdO2wgqeuDC4Zx7ufceP+FMKtv+MApr6xubW8Vtc2d3b/+gdHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz3//mrh96ZUSBZHd2qWUC/E44gFjGClJTdzZYBuKadEzYelsm01bad5UUcr0qjmpNZEjmUvUYYc7WHp3R3FJA1ppAjHUg4cO1FehoVihNO5WXFTSRNM7vGYDjSNcEilly2PnqOKVkYoiIWuSKGlan6byHAo5Sz0dWeI1UT+9hbiX94gVUHDy1iUpIpGZLUoSDlSMVokgEZM6Hf5TBNMBNPHIjLBAhOlczJ1Cl+vov9J99xyalb1plpuXeZ5FOEETuEMHKhDC66hDR0gkMADPMGzMTUejRfjddVaMPKZY/gB4+0T7cSSMw==</latexit>

Select

<latexit sha1_base64="K/UrSw1DMLl/yTpRf0rglkOz1U8=">AAAB9XicbVDLSgMxFL3js46vquDGTbAUXJUZEXVZ6sZlC05baIeSSTNtaCYzJhmlDP0OV4KCuBN/wj9w5cZvMX0stPVA4HDOvdyTEyScKe04X9bS8srq2npuw97c2t7Zze/t11WcSkI9EvNYNgOsKGeCepppTpuJpDgKOG0Eg6ux37ijUrFY3OhhQv0I9wQLGcHaSH47wrpPMM+8UYd18gWn5EyAFok7I4XyYe2bvVU+qp38Z7sbkzSiQhOOlWq5TqL9DEvNCKcju9hOFU0wGeAebRkqcESVn01Sj1DRKF0UxtI8odFEtX9tZDhSahgFZnKcUs17Y/E/r5Xq8NLPmEhSTQWZHgpTjnSMxhWgLpOUaD40BBPJTFhE+lhiok1RtmnBnf/zIqmfltzz0lnN1FGBKXJwBMdwAi5cQBmuoQoeELiFB3iCZ+veerRerNfp6JI12zmAP7DefwBgh5YY</latexit>Ui

<latexit sha1_base64="opBluWmSY8yZINh5KkJ1PEeA3Do=">AAACAXicbVDLSgMxFL1TX3V8jbpw4SZYCq7KjBR1WXTjzir2Ae1QMmmmDc1MhiQjlNJu/BRXgoK49TNc+Tem7Sy09UDgcM595J4g4Uxp1/22ciura+sb+U17a3tnd8/ZP6grkUpCa0RwIZsBVpSzmNY005w2E0lxFHDaCAbXU7/xSKViIn7Qw4T6Ee7FLGQEayN1nKO2ChERsTKraKwnt/cTHAipO07BLbkzoGXiZaQAGaod56vdFSSNzBDCsVItz020P8JSM8Lp2C62U0UTTAa4R1uGxjiiyh/NLhijolG6KBTSvFijmWr/6hjhSKlhFJjKCOu+WvSm4n9eK9XhpT9icZKa88h8UZhypAWaxoG6TFKi+dAQTCQzn0WkjyUm2oRmmxS8xZuXSf2s5J2XynflQuUqyyMPx3ACp+DBBVTgBqpQAwJjeIZXeLOerBfr3fqYl+asrOcQ/sD6/AHPxZcZ</latexit>

consistent OR abort

<latexit sha1_base64="TloMJyhwd/1kUxdmbkNoUUEiFIc=">AAAB+nicdVDLSgMxFM3UVx1foy7dBNuCqzJTtNPuim5cVrCt0JaSSW/b0ExmSDKFMvZPXAkK4tY/ceXfmD4EFT1w4XDOvcm9J4g5U9p1P6zM2vrG5lZ2297Z3ds/cA6PmipKJIUGjXgk7wKigDMBDc00h7tYAgkDDq1gfDX3WxOQikXiVk9j6IZkKNiAUaKN1HMciCM6wnnIY6WJ1Krn5Nyi73rViwpeEr+6ImUfe0V3gRxaod5z3jv9iCYhCE05UartubHupuYtRjnM7EInURATOiZDaBsqSAiqmy5Wn+GCUfp4EElTQuOFan+bSEmo1DQMTGdI9Ej99ubiX1470YNKN2UiTjQIuvxokHCsIzzPAfeZBKr51BBCJTPLYjoiklBt0rJNCl+n4v9Js1T0ysXzm1KudrnKI4tO0Ck6Qx7yUQ1dozpqIIom6AE9oWfr3nq0XqzXZWvGWs0cox+w3j4BcVGTdw==</latexit>

epoch e starts

<latexit sha1_base64="/eiR4TruVhxya7ZmUtNZH8LuMZ4=">AAAB9nicdVBNS8NAEN34WetX1aOXxbbgqSRFm/ZW9OKxgv2ANpbNZtou3WzC7kYspf/Dk6AgXv0vnvw3btsIKvpg4PHeDDPz/JgzpW37w1pZXVvf2MxsZbd3dvf2cweHLRUlkkKTRjySHZ8o4ExAUzPNoRNLIKHPoe2PL+d++w6kYpG40ZMYvJAMBRswSrSRbiGO6AgXoIBBBKqfy9sl13Zq51W8JG4tJRUXOyV7gTxK0ejn3ntBRJMQhKacKNV17Fh7UyI1oxxm2WIvURATOiZD6BoqSAjKmy7OnuGiUQI8iKQpofFCzX6bmJJQqUnom86Q6JH67c3Fv7xuogdVb8pEnGgQdLlokHCsIzzPAAdMAtV8YgihkpljMR0RSag2SWVNCl+v4v9Jq1xyKqWz63K+fpHmkUHH6ASdIge5qI6uUAM1EUUSPaAn9GzdW4/Wi/W6bF2x0pkj9APW2yct2pI7</latexit>

epoch e ends

<latexit sha1_base64="bPXz+V1U7GlJLhsy1HQMOjOLmzw=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LJaCp5JIUY9FLx4r2FZsQ9lsN+3SzSbsToQS+i88CQri1X/jyX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmzjVjLdYLGP9EFDDpVC8hQIlf0g0p1EgeScY38z8zhPXRsTqHicJ9yM6VCIUjKKVHnsmJNYW4aRfrrg1dw6ySrycVCBHs1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9L1V5qeELZmA5511JFI278bH7ylFStMiBhrG0pJHO19Gsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2f9kIDRnKCeWUKaFPZawEdWUoU2pZFPwln9eJe3zmndRq9/VK43rPI8inMApnIEHl9CAW2hCCxgoeIZXeHPQeXHenY9Fa8HJZ47hD5zPH+gXkPw=</latexit>

verify
<latexit sha1_base64="1LzjMTU1uHYzwWIBelpVm0qrQT8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBEvBVZmRoi6L3bisYB/QDiWT3mlDM5khyRTK0N9wJSiIW3/GlX9j+lho64HA4ZxzuTcnSATXxnW/ndzW9s7uXn6/cHB4dHxSPD1r6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WBcn/vtCSrNY/lkpgn6ER1KHnJGjZV6PR2S+giZTcp+seRW3AXIJvFWpAQrNPrFr94gZmmE0jBBte56bmL8jCrDmcBZodxLNSaUjekQu5ZKGqH2s8XRM1K2yoCEsbJPGrJQC78mMhppPY0Cm4yoGel1by7+53VTE975GZdJalCy5aIwFcTEZN4AGXCFzIipJZQpbo8lbEQVZcb2VLAteOt/3iSt64p3U6k+Vku1+1UfebiAS7gCD26hBg/QgCYwSOAZXuHNmTgvzrvzsYzmnNXMOfyB8/kD192ReQ==</latexit>

CheckCon

<latexit sha1_base64="dQqVT8BgwBxhJOA2+PjlD1Gncjw=">AAACFnicbVDLSgMxFM3UV62vqks3oaVQUcqMiIqrohuXFewDOqVk0rQNzWSG5I5Yhv6EuPBTXAkK4lZw1b8x03ahrQcCh3PuTXKOFwquwbbHVmppeWV1Lb2e2djc2t7J7u7VdBApyqo0EIFqeEQzwSWrAgfBGqFixPcEq3uD68Sv3zOleSDvYBiylk96knc5JWCkdvbYBfYAMlA+EXGlb27CziU2e4LRZAIXYxcgEUaHo3Y2b5fsCfAicWYkX865R0/j8rDSzn67nYBGPpNABdG66dghtGKigFPBRpmCG2kWEjogPdY0VBKf6VY8iTXCBaN0cDdQ5kjAEzXzayMmvtZD3zOTPoG+nvcS8T+vGUH3ohVzGUbAJJ0+1I0EhgAnHeEOVya9GBpCqOLms5j2iSIUTJMZ04Izn3mR1E5Kzlnp9NbUcYWmSKMDlENF5KBzVEY3qIKqiKJH9ILe0Lv1bL1aH9bndDRlzXb20R9YXz90VKHX</latexit>

Phase 1: Collection (Col)

Figure 1: Core components and phases of CoD.

1. Although blockchains are not formally broadcast systems, they do
implicitly provide similar guarantees, and are often used as broadcast
channels in academic literature.

Overview of our Techniques. To guarantee consistency, we
employ a mechanism similar to external committees where
each member endorses its view, but with two significant
novelties. The first novelty is that the committee is neither
external nor fixed. Instead, for each epoch, a fresh set of
initially undisclosed users is randomly selected from all
users in the system. This allows for distributing trust across
the entire set of users rather than trusting in a small external
committee, which a powerful adversary could easily corrupt.
The second novelty is that the data which constitutes the
view, e.g. a commitment to the current state by the identity
provider, needs to be delivered before the identities of the
committee members become known. This makes users tasked
with endorsing a view untargetable for an adversary.

Figure 1 illustrates the core mechanisms of our ap-
proach. Time in the protocol proceeds in consecutive epochs.
Each epoch is divided into four non-overlapping phases.
In the first phase (Col), the channel maintainer CM col-
lects data from publishing parties Pj . In the second phase
(Distr), CM organizes the collected data into what we
call the view for the current epoch, and distributes the
signed view as a reply to download requests from users
Ui. In the third phase (Cert), users independently run a
mechanism for randomly selecting a committee of endorsers
that will certify the view of the epoch in a way that is
cryptographically sound and does not reveal the identity of
committee members until they publish an endorsement to the
CM. We realize this in a similar way as in [26], [28], [29]:
users get a common seed and evaluate a Verifiable Random
Function (VRF) (see Definition 2.1) on the seed – using their
own secret VRF key. If the VRF output is below a threshold
value, they endorse the view they received in the previous
phase by signing it and sending it to CM along with the
VRF proof for public audit of their selection as the current
epoch’s endorsers. This mechanism is essential in our secu-
rity analysis. In the fourth and final phase (Ver), each user
verifies the consistency of the view received in the second
phase. This entails downloading a set of endorsements from
the CM, and verifying that it contains a quorum. In brief,
the quorum is a number identifying the minimum number of
independent endorsements needed to ensure consistency of
one’s view. This entails checking; (1) the VRF outputs (to
ensure cryptographically sound sampling of the endorsers),
(2) the endorsements (that should support the user’s view),
and (3) that there is at least a quorum of endorsements. If the
quorum check fails, consistency is not guaranteed; thus the
user aborts and ceases to participate in the protocol for all
future epochs, i.e., it “dies”. We provide a new statistical
analysis (see Section 5) of optimal quorum size for our
setting that improves on the state of the art for selecting
anonymous committees [30]. Techniques from [31] do not
apply, as a corrupted CM arbitrarily controls communica-
tion (including dropping messages).

In contrast to gossip protocols, our approach enables
immediate detection of split-view attacks by the user itself,
provides strong detection guarantees where all split-views
are detected, and is compatible with the in-band communi-
cation pattern where an adversarial central party is present in

KT. Compared to external committee consistency protocols,
it guarantees consistency assuming honest majority among
all users (i.e., in billions of users in the case of WhatsApp)
rather than among a small set of targetable external auditors.

1.3. Contributions

Motivated by the lack of satisfactory solutions for
providing consistency in KT, we propose a novel protocol
that enables each user to autonomously detect split-view
attacks, and in such a case immediately abort the protocol
(die). We name our protocol Consistency-or-Die (CoD).
CoD provides consistency without assuming broadcast,
OOB channels, or a trusted committee of external auditors;
it only relies on well-established, efficiently implemented
cryptographic tools, and a novel statistical analysis that
justifies parameters choices that make CoD attractive for
large scale systems. In detail:

We formalize the notion of a consistency protocol for KT
(Section 3), essentially consistent broadcast [32] (i.e., com-
plete and consistent but without guaranteed output delivery)
where all communication is done via a central party.

We present CoD (Section 4 and Protocol 1), an effi-
cient realization of a consistency protocol that combines
in a black box way: an unforgeable signature scheme, a
forward-secure signature scheme, a verifiable random func-
tion with unpredictability under malicious key generation, a
randomness beacon, and a verifiable key directory (under
monitoring). Our realization relies on a one-time trusted
setup to produce a common reference string (in line with
the standard KT trust model).

We discuss how to efficiently instantiate CoD using
existing cryptographic schemes. Our efficiency estimates
support that CoD is practical and can run in the background
on mid-tier smart phones, for large scale systems with
billions of users (Section 4.4).

We provide an extensive mathematical analysis of how
to set the quorum in our CoD protocol (Section 5). Our
analysis leverages results from combinatorics that have not
been used in previous work [30], [31] and reveals a concrete
mechanism to identify optimal quorum sizes. The quorum is
a key concept leveraged by our construction and essentially
sets the (minimal) number of endorsements required for
considering one’s view to be consistent with the view of
the majority of honest endorsers.

As a minor contribution, we show to apply our mathe-
matical analysis to reliable broadcast systems (with guaran-
teed output delivery), and draw connections between split-
view attacks in settings without GOD, and honest majority
committees assuming reliable broadcast (Section 5.1).

2. Preliminaries

VRFs A Verifiable Random Function [33] (VRF) allows
a prover to, given a seed, output a value which is verifiably
random. It is defined as in Definition 2.1.

Definition 2.1 (Verifiable Random Function). A VRF con-
sists of the following procedures:
■ KeyGen(λ)→ (sk, pk): on input a security parameter λ
outputs a secret key sk and a public key pk.
■ Prove(sk, s) → (r, πr): on input a secret key sk and a
seed s, outputs a value r and a proof πr.
■ Verify(pk, s, r, πr) → 0/1: on input a public key pk, a
seed s, a value r, and a proof πr, outputs 1 if the proof
verifies, and 0 otherwise.

A VRF is secure if it has uniqueness, i.e., for each
(pk, πr) there is a single r which will verify, it has provabil-
ity, i.e. a correctly produced r and πr will always verify, and
it has pseudorandomness, i.e. a computationally bounded
adversary has a negligible advantage in distinguishing r
from randomness. For formal definitions, see [33].

The above properties which are the common ones re-
quired for a VRF however do not account for malicious
key generation, which can impact the output of the VRF and
skew the distribution of r. Since wee must account for this,
we require a VRF with unpredictability under malicious
key generation. Informally, this guarantees that regardless of
how the public key was generated, the output of the VRF
must be random. For formal definitions, see [28].

Verifiable Key Directories (VKD) A VKD [7], [8]
is a centrally maintained verifiably append-only label-value
directory, intended for secure lookup of public keys. The
syntax of a full-fledged VKD is out of scope for our paper,
it suffices here to note that a VKD outputs a digest dige
of the state of a directory Dir at time e. A VKD provides
completeness and soundness, which informally means the
following security properties.

Membership: Relative to a digest dige, a VKD ensures
that proofs of membership for a value v will only verify if
v ∈ Dir at time e.

Append-only: Relative to 2 consecutive digests dige−1

and dige, a VKD ensures proofs of append-only will only
verify if all changes to Dir between time e − 1 and time e
were append only (i.e. no deletes).

Consistency (relative): Relative to a digest dige, a VKD
ensures that any query for a specific label a has a unique
value which satisfies proofs of consistency.

We emphasize that the consistency guarantee of a VKD
is relative to a digest. A separate protocol for consistent
distribution of digests is needed, as discussed in Section 1.1).

We refer to [7], [8] for a definition of VKD syntax and
for formal definitions of security.

Key Evolving Signatures and Forward Security A key
evolving signature scheme (KES) [34] is a signature scheme
which allows the signer to evolve the secret key each time
it signs a message.

Definition 2.2 (Key Evolving Signatures). A KES scheme
consists of the following procedures:
■ KeyGen(λ,Max)→ (sk, pk): on input a security param-
eter λ and a maximum number of allowed signatures for a
secret key Max, outputs a secret key sk and a public key pk.

■ KeyUpdate(sk, i) → ski+1/fail: on input a secret key sk
and an index i outputs the evolved signing key ski+1 if sk is
a valid secret key for index i and i < Max, or fail otherwise.
■ Sign(sk,m, i) → σi/fail: on input a secret key sk, a
message m, and an index i, outputs a signature σi if sk is a
valid secret key for index i and i < Max, or fail otherwise.
■ Verify(pk,m, σi, i) → 0/1: on input a public key pk, a
message m, a signature σi, and an index i, outputs 1 if
σi is a valid signature on m under pk for index i, and 0
otherwise.

We require a KES existentially unforgeable under adap-
tive chosen message attacks (EUF-CMA). We also require
that the KES has forward security (FSSIG), which intuitively
means that the an (adaptive) adversary which is given the
current time secret key of a user ski, cannot forge a signature
for keys which have been evolved (any skj , j < i). For a
full definition of EUF-CMA and FSSIG for KES, see [34].

3. Introducing CoD

CoD is a lightweight version of a broadcast channel that
can be realized in a concretely efficient way, and without
relying on complex blockchain ecosystems. Efficiency
comes by replacing the distributed system (typical in
blockchains) with an untrusted central party (typical in
transparency logs), and by relaxing some properties

1) CoD achieves the same consistency guarantees as
broadcast,

2) contrasting broadcast, CoD makes no guarantees on
message delivery, i.e., it provides neither censorship resis-
tance nor guaranteed output delivery (as is the case with
transparency logs with communication via a central party),

3) instead, CoD provides abort upon discovery of an
inconsistent view (honest parties that discover an inconsis-
tency will abort and become inactive).

3.1. Model

3.1.1. Entities, Roles, and States. A CoD system consists
of the following entities (input/output processes):
■ A channel maintainer: denoted CM, which maintains a
list of published data, and answers queries for the data.
■ Users: denoted Ui, which download data from the CM.
The set of users is allowed to evolve over time.
■ External parties: covering specific roles.

There are two roles that some of the entities may take:
■ publisher: any number of users and external parties may
take this role. This entitles the party to send data to CM.
In our CoD protocol, we will assume a special publisher
(external entity) called the Identity Provider (IdP).
■ endorser: the protocol assigns the role of endorser
to a small subset of the users. Each such user is tasked
with endorsing the view they obtain from the CM and
thus help audit view consistency across users. At any point
in time honest users are in one of two possible states:
consistent: meaning that their view equals the view of

all other active honest users who are in a consistent
state; or abort: meaning that the user discovered a poten-
tial split-view attack.

3.1.2. Infrastructure. The entities in the system communi-
cate over a star-topology network, with CM acting as the
central node, while users and external parties are edge nodes.
No direct user-to-user channels are assumed. The CM is
assumed to be online (practically) all the time. The CoD
system can tolerate a varying fraction of users being offline.

3.1.3. Time, Epochs and Phases. CoD does not include
any notion of time per se, as natively it is an asynchronous
system. However, we do need a notion of time to decide
whether a message is simply delayed or completely sup-
pressed. We do so by using epochs as an abstract time-unit,
and collect and distribute data in epoch-batches.

Epochs progress in an incremental way. Each epoch is
divided into four phases: data collection, data distribution,
data certification, and data verification. The syntax of a
CoD protocol follows these four phases. First, during the
data collection phase Col, publishers submit data to the
channel maintainer CM which collects these messages into
a list Viewe. Second, during the data distribution phase
Distr, CM distributes Viewe to users. Third, during the
data certification phase Cert, a special subset of users act
as endorsers by sending an endorsement of their view, which
CM collects into Ende. Fourth and finally, during the data
verification phase Ver, all users query for Ende and verify
their view against the endorsements in Ende, so that all
honest parties in the consistent state have the same view.

3.1.4. Adversary. We consider an adversary A that is mali-
cious, adaptive, and rushing; A is modelled as a probabilistic
polynomial-time algorithm. The adversary has full control
over the communication network, and can corrupt a fraction
fM of active users in the system, the CM, and any external
entity acting as a publisher (e.g., the IdP). In particular, A
intercepts all protocol messages and can arbitrarily suppress
messages to and from CM. To better emulate reality, our
model assumes a fraction fI of inactive users at each epoch.
Inactive users are honest users which are unresponsive due
to being blocked by the adversary or simply being offline.
They do not count as malicious.

3.2. Trusted Setup

A protocol that implements a CoD channel relies on a
trusted setup (which can be bootstrapped, as in our CoD
construction, see Protocol 1). Since the system relies on a
central untrusted party (the channel maintainer CM), and
it does not assume peer-to-peer connection among users,
there needs to be a way to kick-start the system and tell
all entities involved who the users are, what (initial) key
material they have, etc. The trusted setup is meant to output
a CRS (a public common reference string) that provides such
information, and it takes care of:

1) Registering and generating keys for all parties in
the system. This entails: associating to each party
an entity type, a public and unique identifier IDi,
and generating the necessary key material for that
entity, e.g., key pairs (ski, pki) for relevant building
blocks in the protocol. Notably, the trusted setup
ensures only the party itself knows ski.

2) Including the list of entity identifiers and cor-
responding public keys in the CRS. In de-
tail, the CRS contains a description of PK =
{(IDCM, pkCM), (ID1, pk1), (ID2, pk2), . . .}.

3) Including a security parameter λ, and the total
number of users in the system N , in the CRS.

4) Optionally, include any additional auxiliary mate-
rial aux to kickstart the protocol in the CRS. In the
case of our CoD protocol, this entails a random seed
s0 (to bootstrap endorser selection), a digest dig0
of PK, a pair of integers needed for security (i.e.,
T, k), public parameters of the building blocks,
and any additional information needed to run the
procedures.

3.3. Syntax

Definition 3.1 provides the syntax of a CoD protocol. To
reflect the nature of most centralized systems, all interactive
procedures are initiated by a user or publisher. We denote
interactive procedures as:
Name :

〈
Initator(input)

Interlocutor(input)

〉
7→ [Entity : local output].

Definition 3.1 (CoD). A CoD protocol for a given CRS out-
put by a trusted setup is defined by the following procedures
(the CRS is implicitly available to all entities):
Send :

〈
P(data, e)

CM(skCM,Viewe′ , e
′)

〉
7→ [CM : (Viewe′ ,Tkne′)]

The Send procedure is interactive and can be run multiple
times during phase Col. It is initiated by a publisher P ,
who sends a (SEND, data) request to CM. CM includes
the received data into the view Viewe′ , and returns OK to
P . Further, CM generates a (potentially empty) token Tkne′
for the data view, for later use.
Download :

〈
U(e)

CM(Viewe′ ,Tkne′ , e
′)

〉
7→ [U : (Viewe′ ,Tkne′)]

The Download procedure is interactive and is initiated by
every active user, who during the Distr phase sends a
download (DWN) request to CM. CM responds by sending
(Viewe′ ,Tkne′) to U .

Endorse :

〈
U(sk,Viewe,Tkne, e)
CM(Ende′ , e

′)

〉
7→ [CM : Ende′]

The Endorse procedure is interactive and is initiated by
every active user in the system once during the Cert phase.
The user uses its secret key sk, and its epoch counter to
check if it should act as endorser. If so, it sends an endorse-
ment of its view to CM. CM includes the endorsement into
the Ende′ list.
CheckCon :

〈
U(Viewe,Tkne, e)
CM(Ende′ , e

′)⟩

〉
7→ [U : (epare,U .state)]

The CheckCon procedure is interactive and is initiated by
every active user in the system, who during the Ver phase

sends a (VERIFY, e) request to CM. CM replies with the
list of endorsements for epoch e, Ende. U checks the validity
of the endorsements using its local data Viewe,Tkne. If the
check fails, U sets it state to abort and stops participating
in the protocol for all future epochs. Else, U considers
Viewe valid, updates its epoch parameters and remains in
consistent state.

3.4. Properties

CoD enjoys completeness and consistency.
Completeness ensures that any user engaged in the

protocol that is in a consistent state at the beginning of
an epoch, will be in a consistent state at the end of the
same epoch with overwhelming probability. This property
needs to hold for every epoch, assuming all parties behave
honestly, that each procedure is executed in the designated
phase, and there is no temporal overlap between phases.

Definition 3.2 (completeness). For a given CRS, a CoD
protocol is said to be complete if: for every epoch e ≥ 1,
let λ be the security parameter and N be the total number
of users; let (View,Tkn) denote U’s output in Download
during epoch e; let End denote CM’s output from the
final Endorse call during the Cert phase in epoch e. Then
Pr

[
CheckCon

〈
U(View,Tkn, e)
CM(End, e)

〉
7→ abort

]
< negl(λ,N).

Consistency guarantees that there exists a unique view
which is shared among all honest users in the consistent
state. We formalize this security property as follows:

Definition 3.3 (Consistency). Let CRS denote the common
reference string output by the trusted setup of the CoD
protocol. Let λ be the security parameter and N be
the total number of users. A CoD protocol for CRS is
said to provide consistency in the presence of at most
I = fIN inactive users, and M = fM (1 − fI)N corrupt
parties if for every epoch e ≥ 1, and for any pair of
honest U ≠ Û that are in consistent state at the
beginning of epoch e, the probability that the events
E1...E4 described below all happen given that the A
generated (View,Tkn,End), (V̂iew, T̂kn, Ênd) such that
View ̸= V̂iew, is negligible.
Formally, for every epoch e let

E1 = U’s Download output is (View,Tkn)

E2 = Û’s Download output is (V̂iew, T̂kn)
E3 = U’s CheckCon output is (epare,consistent)
E4 = Û’s CheckCon output is (êpare,consistent)

Then

Pr

 4∧
i=1

Ei

∣∣∣∣∣
View ̸= V̂iew

∧(
(View,Tkn,End)

(V̂iew, T̂kn, Ênd)

)
←A

 < negl(λ,N).

(1)

This property needs to hold for every epoch, under
the assumptions that each procedure is executed solely in

the designated phase, there is no temporal overlap between
phases, and that the building blocks used in CoD are secure
against the adversary described in 3.1.4.

4. Constructing CoD

We now construct a secure CoD instance from black
box use of a few building blocks. While our construction
and security analysis are generic, we later show how to
efficiently and concretely instantiate each building block.

Our construction employs a trusted setup for generating
public parameters of the first epoch, containing a random
nonce for committee election and an initial list of the parties’
public keys. The construction then updates these parameters
in a non-trusted manner each subsequent epoch.

In this section, we assume we have a protocol that gener-
ates random nonces. We also assume generic parameters for
committee sizes and for the number of committee members
in a quorum who must endorse a view to guarantee that at
least one honest party endorsed it. Later on, we address how
random nonces can be generated via external randomness
beacons or via VRFs by leveraging the CoD protocol itself.
Moreover, we provide a careful analysis of committee and
quorum sizes, which is one of our contributions.

4.1. Building Blocks

Our building blocks, introduced in Section 2, are the
following: an EUF-CMA signature scheme Sig, a VRF
with unpredictability under malicious key generation, a Key
Evolving Signature (KES) scheme with forward security and
a VKD. The VRF will be used as in [28] to randomly select
a committee of anonymous parties. The KESscheme will
be used also as in [28] to achieve security against rushing
adaptive adversaries via forward security, preventing such
adversaries from signing alternative versions of committee
members’ messages as soon as they are sent by corrupting
those members and using their signing keys. The VKD is
used to monitor an updated list of public keys assigned to
each party for append-onlyness as the execution proceeds.
In addition, we rely on a common source of randomness
called SeedGen. Next we give more details on the VKD
and the SeedGen.

4.1.1. IdP, VKD Operation and related Assumptions. We
assume that there is an external party acting as an identity
provider IdP, which is responsible for maintaining the set of
users and their public keys. We assume that all users enroll
a single keypair with the IdP (i.e. we do not deal with
Sybil attacks and instead put our faith into heuristics such
as verification of phone numbers etc.). In the same line, we
assume that the number of users in the system N is known.

The CM maintains a VKD. In each epoch, the IdP
sends the keys of new users to the CM, which includes the
keys in the VKD. For brevity, and to keep focus on how to
ensure consistency, we have not detailed the VKD operations
in the protocol. That is, the following is implicit in the
protocol: The CM is expected to (1) expose the interface for

the VKD and respond to queries for public keys, and (2) to
send the VKD digest (including an append-only proof) over
the CoD channel each epoch during the Col phase. Further,
all queries to the CM for public keys, and the verification
of membership proofs of keys against the VKD digest, are
implicit in the protocol.

With the above omittances, for the protocol to be for-
mally complete, we have included a list PK of all public
keys in the system. We remark however that in practice this
list is not distributed to all parties (since it is quite large).
Instead public keys are in practice obtained from the VKD
whenever they are needed. This is possible since endorsers
do not use public keys when endorsing and thus will not
reveal themselves to the CM.

4.1.2. SeedGen. We also rely on black box use of a
function se ← SeedGen(e) which takes an epoch counter e
as input and outputs the seed se of the epoch. A SeedGen
is correct if all honest parties in the consistent state
receive an identical output, except with a negligible prob-
ability. It is secure if it is unpredictable, meaning that an
adversary has a negligible advantage in predicting its output
se before the time e − δ (e being the current epoch and δ
being a number of epochs or phases). The period between
e − δ and e is referred to as the leaky period. There are
multiple ways to realize such a function, which we detail in
Section 4.3.

4.2. The CoD Protocol

Our CoD protocol is presented in Protocol 1. In each
epoch e, the protocol takes as implicit input to all procedures
the epoch parameters epare−1 (obtained from the trusted
setup executed as Algorithm 1 or from the view of the
previous epoch).

4.2.1. Trusted Setup (Description of Algorithm 1). The
trusted setup algorithm outputs values as described in Sec-
tion 3.2. In detail, it generates a common reference string
(CRS) containing public parameters for all building blocks,
and the initial set of public keys for all users registered
in the system and the channel maintainer. In addition, it
gets the initial VKD digest from the CM, it computes the
appropriate threshold value T (for selecting endorsers), and
the quorum size k for the system accounting for a fraction
of fM corrupted parties, and fI inactive users. Finally, it
generates a random seed s0. In practice, s0 can computed
through a heuristic such as using a hash of a current stock
market valuation, or obtained by running a fair coin tossing
protocol.

4.2.2. Our CoD Protocol (Description of Protocol 1).
In line with the design of messaging apps, all procedures
are initiated by users or publishers who send requests or
upload data to the channel maintainer CM. Each time a
user initiates a procedure it starts with checking whether
it is still in a consistent state, or if it has detected a

Protocol 1 – CoD Protocol

Entities: CM channel maintainer; Pj publishers (including an
external IdP); Ui users.

Notation: (sk.Xi, pk.Xi) is Ui’s key pair for primitive X,
sk contains all (sk.Xi, pk.Xi).

Trusted Setup: epar0 = CRS, as output by Algorithm 1.
Initialization: At the beginning of epoch e = 1, for all i

set Ui.state to consistent. At the beginning of each
epoch e ≥ 1, set Ende ← ∅, Viewe ← ∅, Tkne ← ∅.

1. Send :⟨Pj(dataj, e); CM(skCM,Viewe, e)⟩ Col

1: Pj sends (SEND, dataj) to CM
2: if (Pj = IdP), CM does the following
3: Interpret dataj as a set of public keys PK, add the updated

keys to a VKD, and generate a digest dige
4: Let N= |PK|−1, derive (T, k) from (N, fM , fI)
5: Let se ← SeedGen(e)
6: Set epare = (PK, λ,N, (se, dige, T, k))
7: Let Viewe ← (Viewe||epare)
8: Sign Tkne ← Sig.Sign(sk.SigCM, (Viewe, e))
9: CM outputs (Viewe,Tkne) to itself (move to next phase)

10: else
11: CM lets Viewe←(Viewe||dataj), and sends OK to Pj

2. Download :⟨Ui(e); CM(Viewe, Tkne, e)⟩ Distr

1: Ui sends (DWN) to CM, who answers (VIEW,Viewe,Tkne)
2: Ui outputs the received View′

e,Tkn
′
e to itself

3. Endorse :⟨Ui(ski,View′
e,Tkn

′
e, e); CM(Ende, e)⟩ Cert

1: Ui obtains (se−1, T) from epare−1
2: Ui runs (yi, πi)← VRF.Provesk.VRFi (se−1)
3: if yi ≥ T
4: Ui ends here (without aborting, moves to the next phase)
5: else Ui does the following (Ui has endorser role in epoch e)
6: Verify that: VKD updates are append-only w.r.t. (PK, dige),

and se = SeedGen(e), and (T, k) are correctly derived from
(|PK| − 1, fM , fI) and match the values given in epare (con-
tained in View′

e). If any verification fails, Ui sets its state to
abort, and leaves the protocol

7: Let σi ← KES.Sign(sk.KESi, (yi, πi,View
′
e,Tkn

′
e), e)

8: Let sk′.KESi ← KES.KeyUpdate(sk.KESi, e)
9: Delete sk.KESi and lets sk.KESi ← sk′.KESi

10: Ui sends (ENDORSE, (yi, πi, σi, e)) to CM
11: Upon receiving (ENDORSE, (y′i, π

′
i, σ

′
i, e)), CM includes it in

Ende ← Ende ∪ {(yi,′ π′
i, σ

′
i)} and CM outputs Ende

4. CheckCon :⟨Ui(View′
e,Tkn

′
e, e); CM(Ende, e)⟩ Ver

1: if 0 = Sig.Verify(pk.SigCM, (View′
e, e),Tkn

′
e)

2: Ui sets its state to abort, and leaves the protocol
3: Ui sends (VERIFY, e) to CM, who answers (VERIFY, Ende)
4: Ui lets ctr← 0, and obtains (T, k, se−1) from epare−1
5: for (yj , πj , σj) ∈ Ende do (Endorsement Validity Check)

6: if
(

VRF.Verify(pk.VRFj , se−1, yj , πj) ∧ (yj < T) ∧
KES.Verify(pk.KESj , (yj , πj ,View

′
e,Tkn

′
e), σj , e)

)
7: ctr← ctr + 1
8: if ctr < k (Quorum Check)
9: Ui sets its state to abort, and leaves the protocol

10: Ui outputs (epare,consistent) and sets e = e+ 1.

split-view and entered the abort state and shall thus not
participate in the protocol any further.

The Send procedure takes place during the Col phase
and can be initiated by a publisher who wishes to upload
data for publication. The CM stores any such data it receives
into an initially empty View for the current epoch (line

Algorithm 1 – Trusted Setup

Input: λ security parameter, fM (fI) max fraction of admissible
corrupted parties (inactive users)
Output: epar0 = CRS

1: Setup all building blocks: ppSig ← Sig.Setup(λ), ppKES ←
KES.Setup(λ), ppVRF ← VRF.Setup(λ)

2: Construct PK = {(IDCM, pkCM), (ID1, pk1), (ID2, pk2),
. . .} and enroll all parties in PK in the VKD

3: Let N = |PK| − 1, use (N, fM , fI) to derive (T, k)
4: Obtain dig0 from CM (See how in Section 5)
5: Let s0

$←− {1, . . . , 2λ}
6: Let CRS = (PK, λ,N, (s0, dig0,T, k, ppSig, ppKES, ppVRF))
7: Output epar0 = CRS

11). In the special case where the information is a list
of public keys PK from the IdP (line 2), CM creates a
VKD digest (including the append-only proof) (line 3). CM
also generates the next epoch parameters by deriving (T, k)
w.r.t. (|PK|, fM , fI) (line 4), and computing a new seed
se ← SeedGen(e) (line 5). The way T, k are computed
and the way they relate to one another is described in
Section 5. In practice, they are computed from the code
in [?] . We discuss several ways to instantiate SeedGen
in Section 4.3. CM then sets the new parameters epare
containing the updated set of public keys PK, the VKD
digest dige (for verifying that PK has been updated in an
append-only manner), the new seed se, and a copy of the
values which are to remain consistent over epochs (line 6).
CM then adds epare to the view Viewe (line 7), generates
a token as a signature of the view in epoch e (line 8), and
stops accepting updates for the view in this epoch (line 9),
thereby completing the Col phase.

The rest of the procedures must be initiated by all honest
active users in each epoch.

The Download procedure takes place during the Distr
phase. Here, all active honest users request the data pub-
lished during the current epoch from CM. CM responds
to each request with the data view and the token for the
view. This token allows users – who are later selected as
endorsers – to prove that their view was actually given by
the CM, and not falsified by a corrupt endorser. It also
allows non-selected users to efficiently compare their views
with endorsed views. Note that at this point the consistency
of the published data is not yet audited and thus it should
not be trusted.

The Endorse procedure takes place during the Cert
phase. Here each user first obtains the seed and selection
threshold of the epoch (line 1), uses the seed to compute
a verifiably random value (line 2), and checks if the value
is below the threshold for being selected as an endorser of
this epoch (line 3). If it is not selected, the user ends the
procedure for this epoch (line 4). If the user is selected, it
verifies the new set of parameters epare (line 6). To this
end, it verifies that the new set of public keys PK is a
modification for the previous epoch’s one by auditing the
VKD append-onlyness with respect to PK and dige. This
step is intentionally vague to admit different realizations for

the VKD construction. A trivial, yet inefficient way, would
be to verify that dige is the root of a hash tree with PK
as leaves. If a discrepancy is detected, the user aborts and
leaves the system; otherwise PK is considered verified and
the algorithm derives from it the new user headcount N .
A discussion on practically realizing the VKD is available
in Section 4.4.2. The user also checks that T, k are derived
correctly from N and the fractions of maximal admissible
corrupt and inactive users. Furthermore, it checks that the
seed for the next epoch is correctly generated. If all checks
pass, the user creates an endorsement of their view (line
7), evolves the secret signing key (line 8), and deletes the
old secret key (line 9). For simplicity, we here assume that
users resuming from being inactive in the previous epoch
evolves the secret signing key up to the current epoch. The
user then sends the endorsement signature σi and proof of
selection as an endorser (yi, πi) to the CM (line 10). When
the CM obtains the message, it adds the endorsement to its
list of received endorsements for this epoch and outputs the
updated list (line 11).

The CheckCon procedure takes place during the Ver
phase. Here each user first checks whether the CM signature
on the view it received during Download is valid (line 1) and
aborts if the check fails. To then verify whether this view is
consistent, it requests the endorsements for this epoch from
CM, who responds with all endorsements it has received
(line 3). The user then counts the number of endorsements
which are both valid endorsements for the users own view,
and are generated by a valid endorser of this epoch (lines
4-7). If the number of such endorsements falls short of a
quorum (line 8), the user has detected a split-view or a
failure in obtaining sufficiently many valid endorsements. In
either of those cases, the user sets its state to abort (line
9) and ceases to participate for all future epochs. Otherwise,
the user computes the next epoch parameters and outputs its
consistent state for the view of this epoch (line 10).

4.2.3. Security Analysis. The following theorem states that
our protocol is secure as long as the cryptographic building
blocks are secure. This means that CoD is complete (Def-
inition Definition 3.2) and provides consistency (Definition
Definition 3.3), given that the VRF has uniqueness, prov-
ability and has pseudorandom outputs that are unpredictable
even under malicious key generation, the signatures Sig and
KES are existentially unforgeable under chosen message
attack, and KES is also forward secure, the VKD is complete
and sound, and SeedGen has outptus that are upredictable.

Theorem 4.1. Let CoD be the protocol described in Pro-
tocol 1, instantiated with a Key Evolving Signature scheme
KES (as per Definition 2.2), a standard EUF-CMA secure
signature scheme Sig, and a Verifiable Random Function
VRF (as per Definition 2.1), a Verifiable Key Directory
VKD (as discussed in Section 2) and a random seed gen-
eration protocol SeedGen (as discussed in Section 4.3).
Let λ denote the security parameter, N the total number
of active users at each epoch, and fI , fM ∈ [0, 0.5] denote
respectively the fraction of inactive users, and of parties

corrupted by a rushing adaptive malicious adversary A
(who may also corrupt CM and IdP). Then, for every
epoch e ∈ {1, . . . , E} and E = poly(λ), Protocol 1 is a
CoD protocol (as per Definition 3.1) that is complete (as per
Definitions 3.2) and provides consistency (as per Definition
3.3) in the CRS model, i.e., assuming the CRS (epar0) is
generated as in Algorithm 1.

The complete and detailed proof is available in Appendix
A, but we provide a proof overview here.

Completeness essentially reduces to the correctness of
the building blocks and to appropriately setting the quorum
size k. Our novel statistical analysis in Section 5.2 bounds
the probability of not collecting enough endorsements by
2−b for security parameter b, as illustrated in Figure 3b.

Consistency when CM is honest reduces to the un-
forgeability of Sig, indeed malicious parties (controlled by
the adversary A) cannot generate valid signatures for other
views (line 1 in CheckCon).

Consistency against a malicious CM (and other adap-
tively corrupted parties) relies on multiple factors. The
unpredictability of SeedGen(e) guarantees that A cannot
predict or influence its output se, which in turn could bias
VRF evaluations. The security of the VRF evaluated on an
unpredictable se ensures that A cannot affect the crypto-
graphic selection of endorsers. Unforgeability for KES im-
plies that A cannot create signatures (hence endorsements)
for different views in place of honest endorsers. However,
upon sending an endorsement to the malicious CM, A can
choose to corrupt the (honestly selected) endorser. Forward
security makes such targeted corruptions pointless, since
endorsers update and securely erase current signing keys
prior to sending out endorsements (line 8 in Endorse).
Finally, our analysis in Section 5 guarantees that the quorum
size k can be set so that more than k honest and fewer than k
malicious endorsements will be collected with high enough
probability. The statements ‘A cannot’ above are meant in
the cryptographic sense, i.e., if A could, then there exists a
reduction that breaks a property of a building block.

4.3. Realizing SeedGen

As defined in Section 4.1.2, a secure SeedGen needs
to be unpredictable. Without an unpredictable seed, an ad-
versary could target a (any) given future epoch and use the
time until that epoch arrives to pre-compute key pairs that
are selected by the VRF for this seed. This would undermine
the quorum check of Protocol 1, since the adversary could
then compute sufficiently many adversarial keys to form a
quorum. Seed unpredictability prevents such adversarial key
generation attacks by making sure that the adversary gets no
(zero) time for pre-computation. Thus, keys in the VKD can
only be trusted for VRF selection based on the seed se if the
keys were registered in the VKD before the leaky period for
SeedGen’s computation of se began. That is, in a secure
CoD the seed that selects an endorser must not be older
than an endorser’s public key. With this in mind, we now
give realizations of SeedGen under different assumptions,

first by assuming GOD in a pre-existing external system,
then internally realized without GOD but with simplifying
assumptions, and finally in the general case assuming neither
GOD nor other simplifications.

4.3.1. Using an External Randomness Beacon with GOD.
One way of realizing SeedGen is to use an external
randomness beacon [35] which provides a fresh random
nonce in each epoch. Such protocols allow for any party to
publicly verify that each output has been generated correctly,
ensuring that the output is unbiased and unpredictable. In
order to achieve such strong properties, randomness beacons
generally require standard broadcast with GOD, which we
want to avoid. However, notice that randomness beacons
are readily available in a number of Proof-of-Stake based
blockchain protocols that intrinsically execute them as sub-
protocols, e.g. [36]. Hence, instead of executing a random-
ness beacon protocol, parties can rely on an existing beacon
and leverage its public verifiability properties to validate its
random outputs relative to each epoch.

4.3.2. Using an Internal Beacon Without GOD (With
Simplifying Assumptions). Let us now describe how to
realize SeedGen via the bounded bias beacon of Ouroboros
Praos [28], without relying on GOD for security. We refer to
this realization as SeedGenPraos(e). In the model of [28],
the adversary is allowed to reset the beacon (resample
randomness) a bounded number of times during the leaky
period which is a specific time interval before epoch e. Such
a beacon can be realized internally in CoD by having every
endorser in the CoD protocol provide not only an endorse-
ment signature σi and a VRF output/proof pair (yi, πi),
but also an extra VRF output/proof pair (si, π

′
i). When

computing SeedGenPraos(e), the seed se is derived by
verifying all pairs (si, π

′
i) from epoch e−1, and computing

se = H(s1| . . . |sn) from valid VRF outputs s1, . . . , sn,
where H is modeled as a random oracle.

Provided that the VRF key pairs are fixed before the
randomness generation starts, we can follow the analysis
from [28]. If we make the simplifying assumption that keys
are fully fixed (no updated or added keys throughout the
protocol), then the adversary can only introduce a bounded
amount of bias in se by selectively adding or removing pairs
si, π

′
i from the view of honest users (i.e. refusing to deliver

pairs generated by honest parties or refusing to generate
pairs that should have been generated by corrupted parties).
In other words, seed generation in epoch e is derived from
VRF outputs from epoch e − 1. Thus se is unpredictable
if at least one of the si’s used to compute the SeedGen
was delivered by an honest party, which can be statistically
guaranteed with high probability by choosing an appropriate
committee size.

4.3.3. General Construction (Without Simplifying As-
sumptions). We now provide a realization SeedGenGen that
neither relies on GOD nor assumes fixed keys.

In the above realization, SeedGenPraos, the seed se
is computed from the VRF outputs s1, . . . , sn from epoch

e − 1, with proofs π′
1, . . . , π

′
n that are verified against the

seed se−1. The seed se−1 has, in turn, been constructed from
VRF outputs from epoch e−2, with proofs that are verified
against the seed se−2, and so on. When keys are allowed to
be updated, this chaining of seeds becomes a problem for
users which resume after being offline. Resuming users can
not rely on the unpredictability of such a chain of seeds to
guard against adversarial key generation, because they were
asleep when the seeds were fresh. Thus, resuming users do
not know how old the seeds in the chain are – they can even
be older than when these users were last online. Securely
evaluating SeedGenPraos(e) requires that keys used in the
evaluation are fixed when randomness generation starts.
Randomness generation in SeedGenPraos(e) can start as
soon as the seed is known. However, without any guarantees
for seed freshness, there is no way to set a point in time for
when to fix keys.

A heuristic for meeting the key fixation requirement in
our case is for a resuming user evaluating SeedGenPraos(e)
to make sure that the seed used for evaluating the si’s is not
older than when the user was last online (and ignore any
keys updated after that time). In order to solve this, we can
define SeedGenGen(e) as H(se−1,SeedGenPraos(e)) and
have a user compute se−1 as follows. The user obtains sk
and SeedGenPraos(k) from the CM for all epochs e− j <
k < e for which the user was sleeping (two hashes per
offline epoch). Then, it reconstructs the hash chain defined
by SeedGenGen(e) from se−j and SeedGenPraos(e − j)
(when it was last online) up to se−1. Since the user knows
that se−j was unpredictable for epoch e − j, and due to
the preimage resistance of H , then se−1 is by construction
more recent than epoch e − j. No keys registered before
epoch e− j could thus have been adversarially generated to
be selected from se−1.

4.4. Efficiency Estimates

4.4.1. CoD Efficiency. Protocol 1 employs only lightweight
cryptographic tools. The heaviest computational tasks for
users is in CoD.CheckCon, where they verify selection
proofs and endorsements (lines 4-7 in CheckCon), since for
these tasks the CPU overhead scales linearly with the size
of the quorum. We here provide an efficiency estimation
of these parts when concretely instantiating selection proofs
from a VRF, and endorsements as XMSS forward secure
signatures. Our main use case for CoD is consistency in
key transparency, and thus the protocol should be efficient
enough to run on mobile phones.

We have implemented the VRF of [28] in C using
OpenSSL 1.1.1w. Internally this VRF depends on a hash,
which we instantiate as SHA256, and on group opera-
tions, which we instantiate over the P256 curve. We com-
piled for iOS, and executed tests of VRF on the mid-
tier phone iPhone 12 with iOS 17.3.1 installed. CPU time
was measured using the mach absolute time function in
mach time.h. This timer provides high resolution measure-
ments (nanoseconds) of CPU ticks. The code of the imple-
mentation and tests is available at [37]. The results are that

a VRF evaluation takes 0.00145 seconds, i.e., 1.45 seconds
per 1,000 endorsers.

We have no direct measurements of a KES scheme on
an iPhone 12. For a rough performance estimate we take
the measurements in [38, Table IV] for the XMSS KES
instantiated with SHA-256 and evaluated on an 9-year old
Intel Core i7-6700K (which, although comparing mobile and
desktop CPUs is tricky, can be said to be roughly on par
with the CPU in iPhone 12 in single core tasks). For 128-bit
security, signature verification time is 0.3ms (0.3 seconds per
1,000 endorsers). We defer concrete examples of execution
times for realistic parameters for CoD to Section 5.3, where
we take into account security against grinding attacks.

As we note in Appendix B, efficiency can be further
improved by exploring the use of aggregate signatures and
VRFs in CoD.

4.4.2. VKD Efficiency. While the specifics of how to audit
a VKD for append-onlyness is not in the scope of this
paper and should be considered an orthogonal problem,
the Endorse procedure in Protocol 1 depends on endorsers
verifying VKD append-onlyness. We therefore here account
for the overhead of this verification. We note though that
using a VKD for key transparency requires verifying the
append-onlyness of the VKD whether CoD is used or not,
and thus the existence of overhead due to auditing the VKD
for append-onlyness is not a consequence of CoD.

If the VKD is implemented in the style of CONIKS,
where append-onlyness follows from each user monitoring
its own key, the overhead is small. CONIKS [5] reports
the user network overhead to be 736 bytes per epoch. The
user CPU overhead is also very small, consisting only of
verifying a signature and computing O(log2(N)) hashes.

For a VKD in the style of SEEMless, where auditing
append-onlyness consists of verifying tree paths for inserted
keys, cost are a bit larger. SEEMless [7] reports a verifier
CPU overhead of 0.22s and a network overhead of max-
imum 4.24 MB for a VKD with 10 million users, where
1000 users are added and 1000 keys are updated during
an epoch. A nuance here is that in CoD, the overhead of
monitoring append-onlyness falls on endorsers on mobile
phones, whereas SEEMless expects auditors to be external
parties with potentially more powerful hardware. Further,
the monitoring costs of SEEMless-style VKDs grow with
the number of keys inserted in each epoch, and the over-
head for endorsers will increase accordingly. We emphasize
again however that the efficiency of verifying VKD append-
onlyness is an orthogonal problem, and that straightforward
improvements such as reducing the amount of work per
endorser by dividing the verification between the endorsers,
or reducing proof sizes with zk-SNARKs [39], are possible.

5. How to set the Quorum Size

We now provide a new and improved statistical analysis,
which is motivated by the fact that the stochastic nature of
the sortition process makes it impossible for a system user
to know the size of the endorsement committee. That is, in

any epoch, the actual number of users that are selected as
endorsers in that epoch is not a number that is revealed or
can be made available to the system users. This makes it
more involved to define security guarantees for an honest
majority of endorsers or split-view defense, further moti-
vating our quorum concept. Compared to the analyses in,
e.g., [30], [31], our statistical analysis is also more flexible
regarding how to model users who do not provide outputs on
time, which may be considered actively malicious or simply
inactive (crashed) depending on the situation.

The security analysis of our CoD protocol (Protocol 1)
relies on having an opportune quorum size k that identifies
the minimal number of endorsements – signatures for the
same view generated by distinct users – which together
guarantee, with high probability, the existence of a unique
view across all users who are in a consistent state.

Our goal here is to develop a well-defined mechanism to
compute k for any given CoD system given the following
three parameters; (1) the probability of being selected as
an endorser (denoted by p), (2) the total number of honest
active users (denoted by H), and (3) the total number of
malicious active users (denoted by M).

Let 0 < p < 1 denote the probability that any given
user is selected for jury duty on the hidden committee of
endorsers. Note that all users in the system are selected
cryptographically at random in a publicly verifiable way,
and independently from other users. This is done using the
function VRF.Prove (employed for Endorse in CoD), which
returns as part of its output a pseudo-random value y. If
y < T , this indicates that a user is selected as an endorser.
Intuitively this selection process simulates a coin flip that
returns “heads” (output 1) with probability p. The selection
of a user as endorser is therefore accurately modeled as a
Bernoulli random variable with parameter p. Since the user
selection trials are independent of one another, the overall
sortition process runs across the whole population of N
users is distributed as a Binomial random variable B(N, p)
with p = T

|y| , where T is the threshold available in the
epoch parameters and |y| denotes the size of the random
value output by VRF.Prove.

For the novelty in our analysis, we adapt a partition–
and–cut methodology in which we first partition users into
different classes, and then we exploit statistical properties
of these classes to find a cutoff point that in some sense
maximizes the differences between those classes of users.

We partition N , the total number of users in the system,
into three disjoint sets, identified by the fractions of inactive
fI , and malicious fM users);

I inactive (non-responsive) users, I has size fI ·N ,
M malicious users who are active in this epoch, M has

size at most fM · (1− fI) ·N ,
H honest active users, H has size at least (1 − fM) ·

(1− fI) ·N .
Note that N = H + M + I with H,M, I ≥ 0, and the
number of active users is NA = H +M = (1− fI) ·N .

We remark that that for the I inactive users we do
not care why they are inactive. They can be actively sup-
pressed by an adversary or they may simply be off-line and

temporarily not interacting in the system. This partitioning
approach enables us to (conceptually) separate actively ma-
licious users from users that are inactive in a given epoch
(which can typically be a non-negligible fraction of the pop-
ulation when considering large scale, world-wide adopted
systems) to provide more accurate security estimates.

At each epoch, we expect to have H + M active
users running endorser selection. We recall a known fact
about Binomial distributions, which follows directly from
Chu–Vandermonde identity: B(H + M,p) = B(H, p) +
B(M,p). This means that we can analyse the selection
of active malicious users and of active honest users inde-
pendently. In particular, B(M,p) identifies a well-defined
discrete probability distribution that is different, in shape,
from B(H, p) if M ̸= H . In short, our analysis is based on
this shape difference.

For the sake of understanding our analysis, it is easier
to first consider the simplified case of selecting a committee
that, with high probability, has an honest majority. This
is what more intuitively corresponds to a quorum in the
traditional setting where we have a channel with GOD. We
present this in Section 5.1. This part in itself also serves as
a new and more accurate analysis of the setting in [30].

In Section 5.2 we will then make our analysis more
involved for the CoD channel quorum case to provide high
probability guarantees that the system is additionally pro-
tected against split-view attacks, which is harder to accom-
plish since it requires more than just an honest majority in
the endorsement committee.

5.1. Warmup: Quorum in Broadcast with GOD –
Protection Relying on an Honest Majority

In GOD channels, everyone that speaks will be heard,
so a quorum in this setting is a committee size that, with
high probability, yields an honest majority.

Let us denote Z ∼ B(M,p) and Y ∼ B(H, p), so that
Z and Y , respectively, correspond to the number of mali-
cious and honest users that have been selected as endorsers.
While the endorsement committee additionally consists of a
number W ∼ B(I, p) of silent users, they are not active in
the endorsement process and need not be considered further
in this analysis.

The reader may note that the exact values taken by
the random variables Z and Y at any given epoch are not
available to the system users, so they do not know the size
of the actual endorsement committee. Our analysis therefore
focuses on finding a value k ∈ {1, . . . ,M} such that both
Pr(Z ≥ k) and Pr(Y ≤ k) are negligible. In other words, in
our practical application we need a cutoff value k (that we
call quorum) which guarantees that, with high probability,
the following two bad events do not occur;

A) committee has k or more malicious endorsers, and
B) committee has k or fewer honest endorsers.

Intuitively, we are thus comparing the right tail area of
B(M,p) with the left tail area of B(H, p), and require both
of them to be small. If such a cutoff value k exists, then

the act of verifying k valid signatures on one and the same
view provides a provable guarantee that more honest than
malicious users endorse the view.

To see that such a k always exists, first note that the
probability p is a parameter that directly determines the
expected size of the endorsement committee. Given any
fixed probability p, let the value k′ ∈ {1, . . . ,M} denote
the smallest value i for which Pr(Z ≥ i) ≤ Pr(Y ≤ i). It
is clear that k′ exists and is uniquely defined since M < H .
Note that for k′ we have Pr(Z ≥ k′) ≈ Pr(Y ≤ k′),
and b′ = − log(Pr(Y ≤ k′)) can be interpreted as the bit
security level of the probability p, as 2−b′ is the probability
of endorsement committee failure in terms of the bad events
A or B above.

In order to find a suitable cutoff value k that is optimal
in this metric for any given bit security level b, we take the
cutoff value k′ corresponding to the minimal probability p
(which determines the minimal expected committee size)
with bit security level b′ ≥ b.

These computations are indeed practical, even for our
extreme case target of systems with N = 1, 000, 000, 000 ≈
230 users. We provide concrete values for realistic scenarios
in Section 5.2.1, and we also provide code that can be used
to compute these values [40].

5.2. Quorum in CoD –
Protecting Against split-view Attacks

Protecting against split-view attacks is tightly coupled
to computing the term neglQrm(N, fM , fI) in the proof of
Theorem 4.1 in the case of a malicious CM. In this case,
the adversary’s highest chance to succeed in a split-view
attack is to divide the honest users into two disjoint sets
of equal size. This translates to having half of the honest
endorsers endorsing the same view, regardless of which view
the malicious users choose to endorse. Statistically, we thus
need to compare X ∼ B(M + H

2 , p) to Y ∼ B(H, p). The
intuitive reasoning is identical to the explanation in Sec-
tion 5.1, except that the peaks of the probability distributions
are now closer together to reflect that safe-guarding against
split-view attacks is harder than ensuring an honest majority.
However, the procedure for finding an optimal cutoff value
k for any given bit security b is precisely the same, and
the act of verifying k valid signatures on one and the same
view now provides a provable guarantee of the consistency
property of the KT log. And this k value is precisely our
quorum size that we set out to determine, which completes
our main goal for this part.

The probability distributions we are discussing closely
resemble the ones plotted in Figure 2. The optimal cutoff
value k′ corresponds to a vertical line that separates the two
bumps. The bit security level b intuitively corresponds to
the log of the tail areas beyond the cutoff value k′. Figure
2 further illustrates how the probability distributions change
shape as we modify the probability p, which governs the
expected endorsement committee size.

From our statistical analysis it follows that the limit of
efficiency is approached as the number of malicious users

M approaches H
2 . When M ≥ H

2 , there exists no hope of
efficiently protecting the system against split-view attacks,
but for reasonable M < H

2 , we can actually compute
concrete values for relevant parameter sets.

5.2.1. Some Optimal Quorum Size Computations. For
some realistic parameter sets, consider a large scale applica-
tion with one billion (1,000,000,000) users, where we allow
for fI = 20% of the users to be silent/non-responsive. In
Figure 3 we present optimal quorum sizes for parameter
sets with varying degrees of honesty and maliciousness in
the remaining population.

5.3. About Grinding

We handle adversarial seed tampering for the crypto-
graphic sortition similarly to [30]. This approach gives the
adversary power to choose the seed. However, since epochs
have time limitation, and the adversary is computationally
bounded, only up to C = 2c seed resets are allowed. In
our analysis, this corresponds to having C samplings from
the random variable X . Since each sampling (new seed)
corresponds to an independent event, the overall probability
of succeeding in finding a seed that yields a larger committee
is

∑C
i=1 Pr(X ≥ k) = C · Pr(X ≥ k). To make this

latter probability negligible, it is enough to select a k for
which Pr(X ≥ k) = 2−(b+c). In other words, using our
methodology, it is possible to explicitly account for grinding
by adjusting the metric to weight the respective tail areas of
B(M + H

2 , p) and B(H, p) accordingly.

5.3.1. Considerations on Grinding and Epoch Duration.
For a conservative choice that targets b′ = 128 bit security
level and grinding tolerance C = 2c = 2128, the quorum
is given in the b = b′ + c = 256 row in Figure 3b. In a
system of a billion users, the worst case scenario with 20%
malicious users (200 million corruptions) and 20% offline
users we get a quorum of 41, 816. According to the compute
times discussed in Section 4.4, the bulk of consistency check
verifications takes about 70 seconds for each epoch.

In practice it is possible to eliminate the grinding attack
vector with minimal efficiency penalties by adjusting the
grinding tolerance to the epoch duration, similarly to how
Bitcoin adjusts the block generation speed. Intuitively, the
shorter the epoch, the smaller the grinding tolerance needed
to maintain security. However, too short epochs place high
CPU demands on users due to frequent consistency checks.
A realistic setting of parameters for a system with N = 109

users is a bit security level b′ = 128, epoch duration of
7 hours, that is on par with existing CT logs2, a grinding
factor of C = 2c = 260 (using the beacon described in Sec-
tion 4.3.2), fI = 20% inactive users, fM = 5% malicious
users (corresponding to 40, 000, 000 users, roughly the pop-
ulation of Canada). Interpolating the numbers in Figure 3b
for the 75%−5% column, these parameters yield a quorum

2. For example, the epoch duration of Cloudflare’s Nimbus2024 log is
7 hours [41]. Other logs have similar epoch durations.

400 450 500 550 600 650 700 750 800
k

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Pr
ob

ab
ilit

y
of

 e
xa

ct
ly

 k

X
Y

pdfs for X and Y with p = 0.000001

(a) Smaller Committee Size

4000 4500 5000 5500 6000 6500 7000 7500 8000
k

0.000

0.001

0.002

0.003

0.004

0.005

Pr
ob

ab
ilit

y
of

 e
xa

ct
ly

 k

X
Y

pdfs for X and Y with p = 0.00001

(b) Larger Committee Size

Figure 2: Plots of the probability distribution functions X ∼ B(M + H
2 , p) and Y ∼ B(H, p) for a population of N = 109

with 20% inactive users, 20% (active) malicious users and 60% (active) honest users, with p = 10−6 (left) and 10−5 (right).

0 10000 20000 30000 40000
Quorum Size

0

50

100

150

200

250

Bi
t S

ec
ur

ity
 L

ev
el

 (b
)

79% honest, 1% malicious
75% honest, 5% malicious
70% honest, 10% malicious
65% honest, 15% malicious
60% honest, 20% malicious

(a) Plotted

b Quorum Size
79% 75% 70% 65% 60% Honest

1% 5% 10% 15% 20% Malicious
20% 20% 20% 20% 20% Inactive

256 3,133 4,329 7,141 14,145 41,816
128 1,541 2,127 3,509 6,951 20,537

80 944 1,306 2,152 4,260 12,584
30 329 454 750 1,481 4,365

(b) Tabulated

Figure 3: Plots and concrete values for neglQrm(N, fM , fI), identifying suitable quorum sizes for N = 109, fI = 20% and
varying degrees of honesty in the remaining (active) population.

size of k = 3, 236. According to the performance estimates
in Section 4.4, this translates to each user spending roughly
6 seconds every 7 hours for running the bulk consistency
check of our CoD protocol.

These crude estimates illustrate that our techniques are
not limiting in practice, not even for large scale applications.
More optimized approaches can give even better perfor-
mance guarantees in practice, for example, as we suggested
in Section 5.3, by recomputing the optimal quorum sizes
using different metrics that explicitly include a grinding
factor that is suitable for the target use-case application.
And as we mention in Appendix B, future work leveraging
aggregate signatures and VRFs can improve the efficiency
of our scheme further.

6. Privacy & User Churn

Privacy Some VKDs, e.g., CONIKS [5], SEEMless [7]
and Parakeet [8] (but not all, e.g., Merkle2 [6]) provide a
notion of privacy which limits information leaks such as the
number of registered keys and information about other keys
than the one which was queried for during lookups. How-
ever, these protocols do leak, and must leak, information
about what keys are registered in the system. This is since
their main purpose is to provide append-only guarantees
for key lookup systems. However, the identities of users
and their public keys are public information in key lookup
systems. Any privacy regarding the identities of registered
users is thus necessarily weak. While Protocol 1 does not
directly undermine many of the privacy guarantees of a

VKD, CoD relies on an certain fraction of honesty among
the users. Thus, to boost confidence in this assumption, it
is natural for the identities in the system to be public. Since
this is the normal case for a key lookup system, and since
privacy guarantees of VKD schemes are necessarily weak
in the above sense, we argue that publishing the list of
identities of users is sensible since membership of a system
is in fact already public information.

Silent User Churn While users explicitly leaving the
system is not a problem in Protocol 1, some users might
silently stop participating in the protocol without notifica-
tion. For this to not affect the liveliness of the protocol (by
overrunning the capacity for offline parties), such users need
to be removed from the system.

Acknowledgements

Joakim Brorsson was supported by the Wallenberg
AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.
Bernardo David was supported by the Independent Research
Fund Denmark (IRFD) grant numbers 9040-00399B and
0165-00079B. Paul Stankovski Wagner was supported by
the Swedish Foundation for Strategic Research grant RIT17-
0035, and the Swedish Research Council grant 2019-04166.

References

[1] sslmate, “Timeline of certificate authority failures,” https://sslmate.
com/resources/certificate authority failures, 2024, [Accessed 30-06-
2024].

[2] B. Post, “Improved digital certificate security,” https://security.
googleblog.com/2015/09/improved-digital-certificate-security.html,
2015, [Accessed 12-02-2024].

[3] T. H. Hoogstraaten, D. Niggebrugge, D. Heppener, F. Groenewegen,
J. Wettinck, K. Strooy, P. Arends, P. Pols, R. Kouprie, S. Moorrees
et al., “Black tulip,” Tech. Rep.(Fox-IT BV, 2012), Tech. Rep., 2012.

[4] B. Laurie, A. Langley, E. Kasper, E. Messeri, and R. Stradling,
“Certificate Transparency Version 2.0,” RFC 9162, Dec. 2021.
[Online]. Available: https://www.rfc-editor.org/info/rfc9162

[5] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J.
Freedman, “CONIKS: Bringing key transparency to end users,” in
USENIX Security 2015, J. Jung and T. Holz, Eds. USENIX Asso-
ciation, Aug. 2015, pp. 383–398.

[6] Y. Hu, K. Hooshmand, H. Kalidhindi, S. J. Yang, and R. A. Popa,
“Merkle2: A low-latency transparency log system,” in 2021 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press,
May 2021, pp. 285–303.

[7] M. Chase, A. Deshpande, E. Ghosh, and H. Malvai, “SEEMless:
Secure end-to-end encrypted messaging with less trust,” in ACM CCS
2019, L. Cavallaro, J. Kinder, X. Wang, and J. Katz, Eds. ACM
Press, Nov. 2019, pp. 1639–1656.

[8] H. Malvai, L. Kokoris-Kogias, A. Sonnino, E. Ghosh, E. Oztürk,
K. Lewi, and S. Lawlor, “Parakeet: Practical key transparency for
end-to-end encrypted messaging,” Cryptology ePrint Archive, 2023.

[9] J. Len, M. Chase, E. Ghosh, K. Laine, and R. C. Moreno,
“{OPTIKS}: An optimized key transparency system,” in 33rd
USENIX Security Symposium (USENIX Security 24), 2024, pp. 4355–
4372.

[10] Meta, “Whatsapp key transparency overview,” 2023, [Accessed 12-
02-2024].

[11] Apple, “Advancing imessage security: imessage contact key verifica-
tion,” 2023, [Accessed 12-02-2024].

[12] J. Blum, S. Booth, B. Chen, O. Gal, M. Krohn, J. Len, K. Lyons,
A. Marcedone, M. Maxim, M. E. Mou et al., “Zoom cryptography
whitepaper,” 2022.

[13] J. Bonneau, “Ethiks: Using ethereum to audit a coniks key trans-
parency log,” in International Conference on Financial Cryptography
and Data Security. Springer, 2016, pp. 95–105.

[14] A. Tomescu and S. Devadas, “Catena: Efficient non-equivocation via
bitcoin,” in 2017 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2017, pp. 393–409.

[15] B. McMillion, “Key Transparency Architecture,” Internet Engineering
Task Force, Internet-Draft draft-ietf-keytrans-architecture-00, Jan.
2024, work in Progress. [Online]. Available: https://datatracker.ietf.
org/doc/draft-ietf-keytrans-architecture/00/

[16] E. Ghosh and M. Chase, “Weak consistency mode in key trans-
parency: Optiks,” Cryptology ePrint Archive, 2024.

[17] F. Post, “Trust Asia 2021 has produced inconsistent STHs
— groups.google.com,” https://groups.google.com/a/chromium.org/g/
ct-policy/c/VJaSg717m9g, 2020, [Accessed 01-02-2024].

[18] ——, “Upcoming CT Log Removal: Izenpe — groups.google.com,”
https://groups.google.com/a/chromium.org/g/ct-policy/c/
qOorKuhL1vA, 2016, [Accessed 01-02-2024].

[19] ——, “Upcoming Log Removal: Venafi CT Log Server —
groups.google.com,” https://groups.google.com/a/chromium.org/g/
ct-policy/c/KMAcNT3asTQ, 2017, [Accessed 01-02-2024].

[20] L. Chuat, P. Szalachowski, A. Perrig, B. Laurie, and E. Messeri,
“Efficient gossip protocols for verifying the consistency of certificate
logs,” in 2015 IEEE Conference on Communications and Network
Security (CNS). IEEE, 2015, pp. 415–423.

[21] R. Dahlberg, T. Pulls, J. Vestin, T. Høiland-Jørgensen, and A. Kassler,
“Aggregation-based certificate transparency gossip,” arXiv preprint
arXiv:1806.08817, 2018.

[22] L. Nordberg, D. K. Gillmor, and T. Ritter, “Gossiping in
CT,” Internet Engineering Task Force, Internet-Draft draft-ietf-
trans-gossip-05, Jan. 2018, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-trans-gossip/05/

[23] L. Dykcik, L. Chuat, P. Szalachowski, and A. Perrig, “Blockpki:
An automated, resilient, and transparent public-key infrastructure,”
in 2018 IEEE International Conference on Data Mining Workshops
(ICDMW). IEEE, 2018, pp. 105–114.

[24] A. Dirksen, D. Klein, R. Michael, T. Stehr, K. Rieck, and M. Johns,
“Logpicker: Strengthening certificate transparency against covert ad-
versaries.” Proc. Priv. Enhancing Technol., vol. 2021, no. 4, pp. 184–
202, 2021.

[25] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” De-
centralized business review, 2008.

[26] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,” in
Proceedings of the 26th symposium on operating systems principles,
2017, pp. 51–68.

[27] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” Journal of the ACM (JACM), vol. 27, no. 2, pp.
228–234, 1980.

[28] B. David, P. Gazi, A. Kiayias, and A. Russell, “Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
EUROCRYPT 2018, Part II, ser. LNCS, J. B. Nielsen and V. Rijmen,
Eds., vol. 10821. Springer, Heidelberg, Apr. / May 2018, pp. 66–98.

[29] P. Daian, R. Pass, and E. Shi, “Snow white: Robustly reconfigurable
consensus and applications to provably secure proof of stake,” in
FC 2019, ser. LNCS, I. Goldberg and T. Moore, Eds., vol. 11598.
Springer, Heidelberg, Feb. 2019, pp. 23–41.

https://sslmate.com/resources/certificate_authority_failures
https://sslmate.com/resources/certificate_authority_failures
https://security.googleblog.com/2015/09/improved-digital-certificate-security.html
https://security.googleblog.com/2015/09/improved-digital-certificate-security.html
https://www.rfc-editor.org/info/rfc9162
https://datatracker.ietf.org/doc/draft-ietf-keytrans-architecture/00/
https://datatracker.ietf.org/doc/draft-ietf-keytrans-architecture/00/
https://groups.google.com/a/chromium.org/g/ct-policy/c/VJaSg717m9g
https://groups.google.com/a/chromium.org/g/ct-policy/c/VJaSg717m9g
https://groups.google.com/a/chromium.org/g/ct-policy/c/qOorKuhL1vA
https://groups.google.com/a/chromium.org/g/ct-policy/c/qOorKuhL1vA
https://groups.google.com/a/chromium.org/g/ct-policy/c/KMAcNT3asTQ
https://groups.google.com/a/chromium.org/g/ct-policy/c/KMAcNT3asTQ
https://datatracker.ietf.org/doc/draft-ietf-trans-gossip/05/

[30] F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk,
C. Lin, T. Rabin, and L. Reyzin, “Can a public blockchain keep a
secret?” in TCC 2020, Part I, ser. LNCS, R. Pass and K. Pietrzak,
Eds., vol. 12550. Springer, Heidelberg, Nov. 2020, pp. 260–290.

[31] B. David, B. Magri, C. Matt, J. B. Nielsen, and D. Tschudi, “Gear-
Box: Optimal-size shard committees by leveraging the safety-liveness
dichotomy,” in ACM CCS 2022, H. Yin, A. Stavrou, C. Cremers, and
E. Shi, Eds. ACM Press, Nov. 2022, pp. 683–696.

[32] G. Bracha, “An o(\mathop lg n) expected rounds randomized
byzantine generals protocol,” in Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985, Providence,
Rhode Island, USA, R. Sedgewick, Ed. ACM, 1985, pp. 316–326.
[Online]. Available: https://doi.org/10.1145/22145.22180

[33] Y. Dodis and A. Yampolskiy, “A verifiable random function with short
proofs and keys,” in PKC 2005, ser. LNCS, S. Vaudenay, Ed., vol.
3386. Springer, Heidelberg, Jan. 2005, pp. 416–431.

[34] J. A. Buchmann, E. Dahmen, and A. Hülsing, “XMSS - A practical
forward secure signature scheme based on minimal security assump-
tions,” in Post-Quantum Cryptography - 4th International Workshop,
PQCrypto 2011, B.-Y. Yang, Ed. Springer, Heidelberg, Nov. / Dec.
2011, pp. 117–129.

[35] K. Choi, A. Manoj, and J. Bonneau, “SoK: Distributed randomness
beacons,” in 2023 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2023, pp. 75–92.

[36] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A provably secure proof-of-stake blockchain protocol,” in
CRYPTO 2017, Part I, ser. LNCS, J. Katz and H. Shacham,
Eds., vol. 10401. Springer, Heidelberg, Aug. 2017, pp. 357–388.

[37] Anonymous. (2024) Code for implementation estimates. [Online].
Available: https://anonymous.4open.science/r/SpeedTestCoD-0286/
README.md

[38] A. K. D. De Oliveira, R. Cabral et al., “High performance of
hash-based signature schemes,” International Journal of Advanced
Computer Science and Applications, vol. 8, no. 3, 2017.

[39] J. Groth, “On the size of pairing-based non-interactive arguments,” in
EUROCRYPT 2016, Part II, ser. LNCS, M. Fischlin and J.-S. Coron,
Eds., vol. 9666. Springer, Heidelberg, May 2016, pp. 305–326.

[40] Anonymous. (2024) Code for statistical analysis. [Online]. Available:
https://anonymous.4open.science/r/quorum-stats-1742/README.md

[41] Cloudflare. (2024) Nimbus2024. [Accessed 30-06-2024]. [Online].
Available: https://ct.cloudflare.com/logs/nimbus2024

[42] D. Ma and G. Tsudik, “Extended abstract: Forward-secure sequential
aggregate authentication,” in 2007 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 2007, pp. 86–91.

[43] B. David, R. Dowsley, A. Konring, and M. Larangeira,
“MUSEN: Aggregatable key-evolving verifiable random functions
and applications,” Cryptology ePrint Archive, Paper 2024/628, 2024,
https://eprint.iacr.org/2024/628 (To Appear in SCN’24). [Online].
Available: https://eprint.iacr.org/2024/628

[44] G. Malavolta, “Key-homomorphic and aggregate verifiable random
functions,” Cryptology ePrint Archive, Paper 2024/643, 2024,
https://eprint.iacr.org/2024/643. [Online]. Available: https://eprint.
iacr.org/2024/643

[45] N. Fleischhacker, M. Hall-Andersen, M. Simkin, and B. Wagner,
“Jackpot: Non-interactive aggregatable lotteries,” Cryptology ePrint
Archive, Paper 2023/1570, 2023, https://eprint.iacr.org/2023/1570.
[Online]. Available: https://eprint.iacr.org/2023/1570

[46] M. Oxford, D. Parker, and M. Ryan, “Quantitative verification of
certificate transparency gossip protocols,” in 2020 IEEE Conference
on Communications and Network Security (CNS). IEEE, 2020, pp.
1–9.

[47] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities” honest or
bust” with decentralized witness cosigning,” in 2016 IEEE Symposium
on Security and Privacy (SP). IEEE, 2016, pp. 526–545.

[48] F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova, “On
the (in)security of ROS,” Journal of Cryptology, vol. 35, no. 4, p. 25,
Oct. 2022.

Appendix A.
Security Analysis of the CoD Protocol (Proof
of Theorem 4.1)

Proof (Completeness). An honest CM distributes to all par-
ties the same view Viewe with the same honestly generated
signature Tkne (line 1 of Download, and 8 of Send in
Protocol 1). Hence, all honest parties output the same, con-
sistent view during Download. Further, since the VKD and
SeedGen are correct, all checks for the updated parameters
by endorsers (line 6 of Endorse) will verify for honestly
computed values. In the Ver phase, the endorsement va-
lidity check (line 6 of CheckCon) passes for all (honest)
endorsements, since KES and VRF are correct. Recall that
the quorum parameter k is set so that CM will collect
at least k endorsements of the same view, except with
negligible probability (more details on this in Section 5).
Using the notation of Section 5, the quorum check (line 8
of CheckCon) will pass with probability Pr(B(N, p) < k),
where p denotes the probability of a user being selected as
endorser. Denote by neglX the probability that primitive
X is not perfectly correct, then the probability that, in epoch
e = 1, any honest user outputs abort during the execution
of CheckCon is equal to

neglKES(λ) + neglSeedGen(λ) + neglSig(λ)+

neglVRF(λ) + Pr(B(N, p) < k)

which is negligible for suitable choices of λ and k (see
Figure 3b). This proves our CoD protocol complete.

Proof (Consistency). This proof proceeds by induction on
the epoch counter e ≥ 1, and is presented in two main steps.
The first step, the base case, proves that CoD is consistent
for epoch e = 1. The second step, the induction step, proves
CoD is consistent for any e ≥ 1, by assuming that CoD is
consistent up to the generation of epare−1.

STEP 1 (BASE CASE) Let U and Û denote two distinct
honest users that are in a consistent state at the beginning
of the first epoch (e = 1), i.e., U .state = consistent =
Û .state. Recall that epar0 is generated honestly (CoD works
in the CRS model, i.e., with the trusted setup Algorithm
1). To prove consistency for e = 1 as per Definition 3.3,
we must show that the inequality described in Equation (1)
in Definition 3.3 holds. We do this using the definition of
conditional probability Pr[A|B] = Pr[A ∩ B]/Pr(B), and
showing that Pr[A∩B] is negligible. For us A = E1 ∩E2 ∩
E3 ∩ E4 (the events defined in Definition 3.3), while B is
generated by the adversary (and thus has probability at least
1 over all possible outputs of A, which is computationally
bounded to polynomial many outputs).

We distinguish two cases depending on whether or not
A corrupts the channel maintainer.

https://doi.org/10.1145/22145.22180
https://anonymous.4open.science/r/SpeedTestCoD-0286/README.md
https://anonymous.4open.science/r/SpeedTestCoD-0286/README.md
https://anonymous.4open.science/r/quorum-stats-1742/README.md
https://ct.cloudflare.com/logs/nimbus2024
https://eprint.iacr.org/2024/628
https://eprint.iacr.org/2024/628
https://eprint.iacr.org/2024/643
https://eprint.iacr.org/2024/643
https://eprint.iacr.org/2024/643
https://eprint.iacr.org/2023/1570
https://eprint.iacr.org/2023/1570

The case of an honest CM: If CM is honest, its input
to Download is identical when interacting with U and Û .
Formally,

Download

〈
U(e)

CM(ViewCM,TknCM, e)

〉
7→ [U : (Viewe,Tkne)]

Download

〈
Û(e)

CM(ViewCM,TknCM, e)

〉
7→ [Û : (V̂iewe, T̂kne)]

Notice that ViewCM may be different from the re-
ceived Viewe and V̂iewe (and similarly for TknCM). By
the probability in (1) (see Definition 3.3), Viewe ̸= V̂iewe,
which implies Viewe ̸= ViewCM (w.l.o.g). This means that
CM’s message (VIEW,ViewCM,TknCM) must have been
suppressed by the adversary at the network level (between
line 1 and 2 in Download) for at least one of the users,
and replaced with an adversarial message. We argue that
in this case Pr[E1 ∧ E2 ∧ E3 ∧ E4 ∧ B] < Pr[E3 ∩ B] is
negligible and upperbounded by the (negligible) probability
of producing a forgery against the signature scheme Sig, i.e.,
Pr[E3] < Pr[1 = ExpEUF-CMA

Sig (A)] = neglSig(λ). Indeed,
for event E3 to happen, we have U .state = consistent
at the end of CheckCon, hence the signature check for TknA
(line 1 in CheckCon) does not fail. Since CM never signed
Viewe, the message signature pair (Viewe,TknA) constitutes
a forgery against Sig. This violates the assumption that Sig
is EUF-CMA.

The case of a corrupt CM: By the probability in (1)
(see Definition 3.3), Viewe ̸= V̂iewe and CheckCon must
output (·,consistent) for both U and Û . For the latter to
happen, i.e. (E3∧E4), the checks in lines 1 (CM signature
verification), 6 (endorsement validity), and 8 (quorum) must
all pass for both users. In what follows we argue that
Pr[E3∧E4] is negligible and upperbounded by neglKES(λ)+
neglVRF(λ) + neglQrm(N, fM , fI), where neglKES(λ) de-
notes the probability that A generates a successful forgery
against the KES scheme or breaks the forward security
of KES, neglVRF(λ) denotes the probability that A breaks
the security of the VRF, and neglQrm(N, fM , fI) is the
probability of selecting an endorsement committee without
honest majority. Concrete estimates of neglQrm(N, fM , fI)
are given in Figure 3b for N = 230, varying values of
fM , fI < 0.2 and varying security levels in the interval
[2−256, 2−30].

Since CM is corrupt, A can generate valid signatures
for any view, hence, for simplicity, we can assume that the
signature check on line 1 of CheckCon always passes for
both U and Û .

We first discuss the endorsement validity check at line
6. For this check to pass it must be the case that A provides
two sets of endorsements End ̸= Ênd that verify for different
views View ̸= V̂iew. Lines 1 and 2 in Endorse, and line 4
in Verify ensure that all endorsements are for the same seed
se−1. In the first epoch, s0 is part of the trusted CRS. The
uniqueness property of the VRF ensures that one seed will
lead to a unique set of endorsers (the same for both End and
Ênd). The pseudorandomness property of the VRF ensures
A cannot predict if a user will act as endorsers for s0,

unless the user is already corrupt, except with a negligible
probability neglVRF(λ). The forward security property of
the KES after a key is evolved and securely erased ensures
that even though A learns the identities of each honest
endorser (at line 11 of Endorse), even if it targets them for
corruption, it does not learn the KES secret key needed to
generate endorsements for this epoch. Thus, in the worst
case scenario, the adversary has corrupted a fraction of
fM active users, for which A holds the KES secret key
of this epoch. Note that for all corrupt users acting as
endorsers, A can produce correct KES signatures for any
view. This is not the case for honest endorsers, in which
case, generating a valid KES signature for the other view
gives a forgery against the KES scheme, which happens with
negligible probability neglKES(λ) since KES is unforgeable
and forward secure given secure erasures.

Next, we discuss the the quorum check at line 8. For
this check to pass A must have submitted k many valid
endorsements for both View and V̂iew. The quorum value
k can be set so that the probability that this happens is
as low as desirable. Suitable values of k are displayed in
Figure 3b, e.g., for a bit security level b = 128 (i.e., the
quorum check fails with probability 2−128), k = 20, 537 is
a suitable quorum value for N = 230, fM = fI = 0.2. These
figures are backed by the mathematical arguments based on
combinatorics and probability theory detailed in Section 5.

Intuitively, the VRF’s security properties guarantee that
A cannot bias the committee of endorsers to contain much
more than an expected number of corrupt endorsers; at
the same time, the KES’s security properties guarantee that
A cannot forge signatures for honest endorsers. Therefore,
as long as the number of expected honest endorsers is
comfortably larger than the number of malicious ones, it
is possible to identify a value k for which the probability
of obtaining at least k honest endorsers is high, and the
probability of obtaining at most k malicious endorsers is
low. This is sufficient in settings with GOD, where all honest
endorsements will reach all users (see Section 5.1). In CoD,
however, (honest) endorsements may be suppressed without
notice. To achieve consistency (and deter split-view attacks)
without relying on GOD, the quorum value k must be set
differently (see Section 5.2). Denote by kM the expected
number of malicious endorsers randomly selected by the
cryptographic sortition process (lines 1 to 3 in Endorse).
Then, k is set as before, but additionally ensuring that the
probability that kM + (k/2) > k is low. This is because
A can generate valid endorsements for the legitimate kM
malicious endorsers, in addition it can distribute View to half
of the user (among which there are, in expectation, half of
the endorsers) and V̂iew to the remaining half of the users.
Hence, A can easily get kM +(k/2) endorsements for both
views. Therefore consistency is guaranteed as long as the
quorum is safely larger than kM + (k/2), since in this case
either U or Û will not collect enough endorsements to pass
the quorum check and end up in abort. More formally,
if A generates (View,Tkn,End) and (V̂iew, T̂kn, Ênd) with
View ̸= V̂iew and that pass the endorsement validity check,

then Pr[(|End| ≥ k) ∧ (|Ênd| ≥ k)] ≤ neglQrm(N, fM , fI).
Figure 3 displays selected values for the quorum function
neglQrm(N, fM , fI).

Putting all pieces together (in the notation of Defini-
tion 3.3), Pr[E1 ∧ E2] = 1 since we consider an active
malicious adversary that controls the communication net-
work. Let (View,Tkn,End) and (V̂iew, T̂kn, Ênd) denote
A’s split-view attack output (against the consistency of our
CoD protocol), then we have

Pr
[
E3 ∧ E4|View ̸= V̂iew

]
≤

Pr
[
(E3 ∧ E4) ∧ (View ̸= V̂iew)

]
Pr[View ̸= V̂iew]

<

neglKES(λ) + neglVRF(λ) + neglQrm(N, fM , fI),

which is negligible for suitable parameters choices.
This proves that any two users who are in a consistent

state at the end of epoch e = 1, must hold the same View
(consistency). In particular, this implies that all honest users
in a consistent state will obtain the same set of parameters
for the next epoch. Since epar1 generated by CM is verified
by the endorsers before they endorse View1 and we have a
quorum of endorsements on View1, we are also guaranteed
that epar1 is valid and consistent with epar0 and View1.

STEP 2 (INDUCTION) The inductive step assumes that
CoD is consistent up to the generation of epare−1, and aims
to prove that CoD is consistent in generating epare.

Since the generation of epare−1 is consistent across
honest active users, it replaces the parameters from the CRS
in the consistency proof of the base step, which concludes
arguing that honest users will obtain the same (consistent)
set of parameters for the next epoch, epare. We must
however ensure that epare fulfills the same requirements
as the initial CRS output by the trusted setup. The fact
that epare is obtained consistently by all honest users and
generated honestly by CM due to the existence of a quorum
of endorsements on Viewe is one fundamental property.
We have that epare must guarantee that the set of public
keys PK is correct for the set of users in the system, and
the new seed se is random. Recall that we have assumed
(in Section 4.1.1) that each user (including newly added
users) has registered a single key to the IdP/VKD, thus if
PK at epoch e is an append-only update of the previous
epoch’s PK, the set of public keys is correct. This property
follows from the soundness and append-only properties of
the VKD. We discuss how to securely instantiate SeedGen
in Section 4.3.

Appendix B.
Improving Efficiency via Aggregate Signatures
and VRFs (or lotteries)

Our CoD scheme has computational, communication and
storage costs linear in the quorum size: each endorsement
(signature and VRF) needs to be stored, downloaded and
verified individually. This can be improved by instantiating

CoD with forward secure aggregate signatures [42] and
aggregate VRFs [43], [44], which would yield considerable
improvements in computational, communication and storage
complexity. Aggregate signatures allow for a constant size
representation of the signatures on the VKD digest by each
committee member. On the other hand, aggregate VRFs
allow for a constant size representation of the VRF proofs
provided by each committee member, albeit still requiring
an individual representation of each VRF output. Hence,
instead of requiring storing/downloading/verifying n signa-
tures and n pairs of VRF output/proofs, an endorsement
would require storing one group element for the aggregate
signature, storing 1 group element for the aggregate VRF
proof and n strings of security parameter length, which
can be verified by computing 2n bilinear pairings and 2n
hash functions evaluations. Considering the VRF-based ran-
domness generation scheme described in Section 4.3.3, one
can take advantage of the MUSEN [43] scheme to further
reduce complexity by using MUSEN both as a VRF and as
a forward secure signature. In this setting, an endorsement
by n parties requires storing only n group elements and
verifying an endorsement requires only n bilinear pairings
and n hash function computations.

An alternative solution is employing a different scheme
for electiing random anonymous committee based on aggre-
gate lotteries [45], which allow for a constant size represen-
tation of the proofs that certain parties have been elected
for a committee. Following this approach, the complexity
of storing an endorsement becomes constant, requiring one
group element for the forward secure aggregate signature
and 80 bytes for the lottery proof. Verifying the forward se-
cure aggregate signature still requires computing n bilinear
pairings and n hash functions and verifying the aggregate
lottery proof requires computing 2n modular exponentia-
tions.

Appendix C.
Literature Review of Consistency Protocols

Consistency Via Blockchains Blockchains [25], [26]
securely handle financial transactions without involving any
central party, and have broadcast-like properties. Thus,
one can store data such as digests of a VKD/PAHD
on a blockchain to obtain consistency guarantees. Since
blockchains come with extended security assumptions and
performance penalties, one can argue that adding them only
to use them for consistency is unnecessarily expensive.

Dykcik et al. [23], presents a straightforward scheme
which incorporates a transparency log into a smart contract
on a blockchain. Tomescu and Devadas in their Cathena sys-
tem [14] design a scheme which leverages Bitcoin to provide
consistency. Performance improvements over a straightfor-
ward blockchain for the entire log is presented. Bonneau in
EthIKS [13] proposes to embed CONIKS data structures in
an Ethereum contract, allowing to piggyback on Ethereum’s
consensus protocol for security guarantees.

Consistency Via Gossip Protocols Gossiping over OOB
channels are the suggested method of achieving consistency

by Certificate Transparency [4] and in a recent internet draft
for Key Transparency [15]. When using a gossip protocol
for consistency, the log maintainer provides a digest of
the log state at recurring intervals to users. Users then
exchange these digests over OOB channels and compare
them. Inconsistencies between these digests can thus be
detected during comparison, and constitutes cryptographic
proof of misbehavior which can be be reported. Comparing
digests from the log maintainer is done on a voluntary basis.

This approach, while avoiding blockchains and its draw-
backs, only give statistical probabilities for detecting split-
views (which are quite low as discussed below) rather than
formal guarantees about consistency. Further, gossiping is
done retroactively, meaning that split-view attacks will only
be detected after they have occurred. Gossiping proactively
would not be practical due to the ”soft” guarantees and
long waiting times. While this makes undetected split-view
attacks harder, it does not rule them out, and users thus do
not have guarantees that a public key is safe to use.

A further drawback of gossip protocols in the context of
key transparency, is that they rely upon using OOB channels.
If OOB channels are not used, an adversary controlling
the network can suppress messages from targeted users to
evade detection of an attack (or even alter them through
Meddler-in-the-Middle attacks as we discuss below). This is
problematic since OOB channels are not available at scale
where KT protocols are deployed.

Chuat et al. [20] propose the first gossip protocols for
Certificate Transparency and present results for how signed
views are distributed using a simulation based on real In-
ternet traffic traces at a 0.1% gossiping rate (the fraction
of parties volunteering to gossip). In their results, after 24
hours, 11% of the users holds a signed view signed during
this period. No results for the probability and speed of
detection of log inconsistencies are presented.

The Chuat et al. gossip protocols are also evaluated in
[46] by Oxford et al. Assuming a gossiping rate of 100%,
they measure data dissemination, probability of split-view
detection and rate of such detections. In their analysis,
after 20 gossiping rounds the latest view is disseminated
to all users, and a split-view attack is detected with 40%
probability. They also show that if one makes the extra
assumption of server-to-server gossip, these numbers can
be improved.

Dahlberg et al. [21] explore how the network infrastruc-
ture such as routers and switches can provide gossiping as
a service. Nordberg et al. [22] proposes an Internet-Draft
where gossiping takes place between a server and a client,
so that if a meddler-in-the-middle attack occurs, it will be
detected once the attack ends and the client has established
contact directly with the correct server.

We note that Apple’s approach to gossiping in iMes-
sage [11], where they piggyback gossip data on end-to-
end encrypted messages over in-band channels (i.e., via
Apple), does not solve this issue of in-band gossiping. Even
though the gossip data is now encrypted, the log maintainer
(Apple) can execute a split-view attack where it replaces
public keys given to the victim, and act as a Meddler-in-

the-Middle which alters gossip data. Such an attack can be
sustained indefinitely (assuming it does not break append-
only guarantees). To the best of the authors knowledge,
Apple has not provided a security analysis for this approach.

Consistency Via External Committees of Consistency
Auditors To avoid both the cost of blockchains and weak
guarantees of gossip protocols, one can instead opt to use a
set of external consistency auditors. These external auditors
are centrally selected as a static set of parties. During the
protocol execution, the log maintainer sends a log digest to
all consistency auditors in each epoch. The auditors then
sign these. So, instead of comparing commitments directly
as in gossiping, users can compare their view with the signed
views of the consistency auditors to see if it corresponds
with a majority of the auditors. This approach provides both
pro-active (immediate) detection of misbehaviour as well
as formal guarantees, as long as the set of auditors has a
sufficiently large fraction of honest parties.

The drawback however, is that it sacrifices the distributed
nature of using blockchains or gossiping. Consistency guar-
antees in blockchains and gossip protocols are rooted in the
honesty of a very large set of users (all miners/stakers or
all KT users). It is unlikely that even a powerful adversary
can corrupt the majority of such large sets of users. The
same can not be said about a small and well known set of
consistency auditors. Current proposals suggest committee
sizes of roughly 50 [8] auditors. A powerful adversary (say,
e.g., a state sponsored adversary) can realistically corrupt
most, if not all, of the auditors in a set of this size.

Parakeet by Malvai et al. [8], presents a simple protocol
for a fixed set of external auditors which all sign their
view, (up to 50 auditors are simulated in the paper). In
order to prove that there is no split-view attack, the identity
provider needs to obtain a threshold of two thirds of auditor
signatures agreeing on a single view. Dirksen et al. [24]
let a set of Certificate Transparency logs act as consistency
auditors for each other by pitting them against each other,
where for each cert, it is included in one log only and the
other logs are expected to audit this log.

While increasing the number of external auditors would
somewhat increase the resilience against split-view attacks,
it would still not achieve the distribution of blockchains or
gossip protocols, and thus not live up to the same level of
resilience. Further, scaling up the number of auditors is non-
trivial. First, it is a problem in practice to find a large set
of auditors which all users trust to have an honest majority.
Second, it poses an efficiency problem for users which have
to validate authenticity and correctness of the auditors’ state-
ments. For example, the overhead of Parakeet’s consistency
protocol scales linearly with the number of auditors.

We note that Syta et al. [47] proposed a protocol for au-
ditor cosigning with sublinear verification overhead, where
auditors interact with each other to combine their signatures
into a single multisignature. This protocol has however since
been broken [48], and even if it were secure it would only
scale to thousands of auditors, compared to millions or
billions in blockchains or gossiping.

Weaker Versions of Consistency The work in [16]

provides a protocol which does not use external parties
for auditing consistency. This is achieved by weakening
the consistency guarantees of KT, so that the protocol only
ensures that split-views are detected by either the party who
queries for a key, or the key owner.

	Introduction
	State-of-the-Art and Current Issues
	Academic Proposals
	Practical Deployments

	A Novel Approach to KT Consistency
	Contributions

	Preliminaries
	Introducing CoD
	Model
	Entities, Roles, and States
	Infrastructure
	Time, Epochs and Phases
	Adversary

	Trusted Setup
	Syntax
	Properties

	Constructing CoD
	Building Blocks
	IdP, VKD Operation and related Assumptions
	SeedGen

	The CoD Protocol
	Trusted Setup (Description of Algorithm 1)
	Our CoD Protocol (Description of Protocol 1)
	Security Analysis

	Realizing SeedGen
	Using an External Randomness Beacon with GOD
	Using an Internal Beacon Without GOD (With Simplifying Assumptions)
	General Construction (Without Simplifying Assumptions)

	Efficiency Estimates
	 CoD Efficiency
	VKD Efficiency

	How to set the Quorum Size
	Warmup: Quorum in Broadcast with GOD – Protection Relying on an Honest Majority
	Quorum in CoD – Protecting Against split-view Attacks
	Some Optimal Quorum Size Computations

	About Grinding
	Considerations on Grinding and Epoch Duration

	Privacy & User Churn
	References
	Appendix A: Security Analysis of the CoD Protocol (Proof of Theorem 4.1)
	Appendix B: Improving Efficiency via Aggregate Signatures and VRFs (or lotteries)
	Appendix C: Literature Review of Consistency Protocols

