
Detecting Rogue Decryption in (Threshold) Encryption via
Self-Incriminating Proofs

James Hsin-yu Chiang1⋆, Bernardo David2⋆⋆, Tore Kasper Frederiksen, Arup Mondal4⋆ ⋆ ⋆†, and Esra
Yeniaras2⋆⋆†

1 Aarhus University
jachiang@cs.au.dk

2 IT University of Copenhagen
bernardo@bmdavid.com, esye@itu.dk

3 Zama
tore.frederiksen@zama.ai

4 Ashoka University
arup.mondal_phd19@ashoka.edu.in

Abstract. Keeping decrypting parties accountable in public key encryption is notoriously hard
since the secret key owner can decrypt any ciphertext. Threshold encryption aims to solve this issue
by distributing the power to decrypt among a set of parties, who must interact via a decryption
protocol. However, such parties can employ cryptographic tools such as Multiparty Computation
(MPC) to decrypt arbitrary ciphertexts without being detected. We introduce the notion of (thresh-
old) encryption with Self-Incriminating Proofs, where parties must produce a self-incriminating
proof of decryption when decrypting every ciphertext. In the standard public key encryption case,
the adversary could destroy these proofs, so we strengthen our notion to guarantee that the proofs
are published on public ledger when decryption succeeds. This creates a decryption audit trail,
which is useful in scenarios where decryption power is held by a single trusted party (e.g., a Trusted
Execution Environment) who must be kept accountable. In the threshold case, we ensure that at
least one of the parties who execute the decryption protocol will learn a self-incriminating proof,
even if they employ advanced tools such as MPC. The fact that a party learns the proof and may
leak it at any moment functions as a deterrent for parties who do not wish to be identified as
malicious decryptors (e.g., a commercial operator of a service based on threshold encryption). We
providing matching constructions of our notions under appropriate assumptions. In the threshold
case, we build on recent results on Individual Cryptography (CRYPTO 2023).

1 Introduction

The now ubiquitous notion of public key encryption [29] gives full control over the privacy of a message
encrypted under a given public key to the party who knows the corresponding secret key. In other words,
whoever has the corresponding secret key has full discretion to decrypt ciphertexts generated under
a given public key, learning the plaintext message and deriving whatever utility it may afford. More
importantly, the custodian of the secret key may do so at any time without being detected. While this
is unproblematic when the owner of a secret key stores it locally, it poses significant security risks when
this is not the case.

Even though this may seem like a general issue for any kind of outsourced key management, the risks
are significantly lower for the other main public key primitive of digital signatures. This is because a
digital signature is in itself an unforgeable proof that a cryptographic operation has been carried out;
thus, any use of an adversarially constructed signature will in itself provide detection of the misuse.
Since signatures only provide value only when validated, this means that malicious signing will likely be
observable by all honest verifiers.

Since holders of private signing keys will likely have secure storage and use the key as part of a
larger protocol, it means that as long as the value of producing a “rogue” signature is less than that of
following the protocol, then they are incentivized not to misuse any stored keys. As an example, consider
a custodian company providing on-site storage of signing keys for cryptocurrency blockchains: Any rogue
signature could drain a “single” user’s wallet, but would also completely destroy the reputation of that
⋆ This work was supported by SUI Foundation.

⋆⋆ This work was supported by the Independent Research Fund Denmark (IRFD) grant number 0165-00079B.
⋆ ⋆ ⋆ This work was done while visiting the IT University of Copenhagen with supported by Mphasis F1 Foundation.

† This work was supported by CPH Fintech.

company. For decryption, simply learning the plaintext is often the end-goal, as the knowledge can be used
in an undetectable manner. For example, consider the bids in a first-price auction; a rushing adversary
knowing the bids from all other parties can win the auction by paying just above the highest honest bid.

In both the cases of digital signatures and of public key encryption, security can be greatly enhanced
by splitting up the secret key among multiple parties via threshold cryptography [27, 28]. In this setting,
no single party can decide to use the secret key. Instead, at least t + 1 out of a total of n parties, must
cooperate to successfully authorize any cryptographic operation using the secret key. Hence the committee
holding shares of the key can enforce rules about when a cryptographic operation should be carried out.
Thus, both key storage, and key-use authorization is secured through consensus by a certain amount of
parties in the committee. However, for the decryption setting, this notion still requires that no more than
t parties act maliciously. Otherwise, the same issue from before occurs, as a large enough set of corrupted
parties in the decryption committee can easily decrypt any arbitrary ciphertext without detection.

It is notoriously hard to achieve accountability for both standard and threshold encryption schemes
when the party (or parties) with the power to decrypt acts maliciously. Despite decades of research
on public key cryptography, the majority of current encryption schemes still allow malicious parties
with knowledge of the secret key to perform “rogue” (unauthorized) decryptions of arbitrary ciphertexts
without being detected. Even if we construct schemes that readily allow detection of rogue decryptions
through publicly available information, powerful cryptographic tools such as anonymous channels [18]
and Multiparty Computation (MPC) [19,36] can be employed by malicious parties to avoid detection. In
this context, we ask the following question:

Is it possible to detect rogue decryptions in (threshold) public key encryption schemes even when secret
key holders use cryptography to avoid detection?

We answer this question in the affirmative both in the standard setting where a single party holds the
decryption key and in the threshold setting where the secret key is shared among multiple parties. We
do so by proposing definitions and matching constructions of (threshold) public key encryption schemes
where the decryption process intrinsically forces parties to produce proofs that decryption has happened.
We call such proofs Self-Incriminating Proofs (SIP), as they reveal that a party (or committee of parties)
has acted to decrypt a given ciphertext. In the threshold setting, our notion guarantees security even
against adversaries who use cryptographic tools such as MPC to avoid producing a SIP. Hence, our
threshold scheme thwarts so-called “cryptovirological” attacks [55].

Besides settling a long-standing theoretical question, our solution also finds practical applications in
several real-world scenarios where public key cryptography is used. In general, any application of public
key encryption where parties with the ability to decrypt must be kept accountable can benefit from our
new notions and constructions. In particular, in cases where the secret key for a standard public key
encryption is stored in a Trusted Execution Environment (TEE), our notion can help detect the TEE’s
malfunctioning (or malfeasance) if it performs rogue decryptions. On the other hand, in many applications
of threshold encryption, clients submit ciphertexts to be decrypted by implicitly trusted committees that
provide threshold decryption as a service. Our threshold notions can help detect committee malfeasance
in such scenarios.

One concrete example of where accountability in decryption can bring utility is in the case of “en-
crypted mempools”. In the blockchain literature, a mempool is the set of transactions that are known, but
have not yet been written to the ledger. More specifically, these transactions are known to the miners/val-
idators, who can mount “front-running” attacks to gain financial profit via so-called “miner extractable
value” [23]. A common way to prevent this is to encrypt the transactions in mempools until they are
written [51] using standard public key encryption executed by TEEs or threshold encryption executed as
a service by committees. Thus, when using encrypted mempools there is a clear incentive for the TEE
or the committee to misbehave and purposefully decrypt the pools to front-run. On the other hand, if
these rogue decryptions can be detected, clients can react to the malfeasance appropriately, such as by
boycotting the key management committee or by taking away collateral funs locked in a smart-contract.
Thus, incentivizing the committee not to carry out rogue decryptions.

In other cases, the decrypting committee might not be incentivized to misbehave, but external parties
might be incentivized to bribe them to maliciously decrypt and share the plaintext. This, for example,
occurs when encryption is used as part of a protocol facilitating computation on private data from
multiple clients. In the threshold setting, this can happen when using outsourced secure multi-party
computation [44] with a scheme based on homomorphic encryption [8, 25]. For example, in the case of
loan benchmarking; where clients are banks that input customers’ confidential financial information [24],
which, if revealed to competing banks, could give them a competitive advantage. In the blockchain

2

literature, we see this in systems realizing privacy-preserving smart contracts, such as Oasis [49] (based on
TEEs) or Zama’s fhEVM [22] (based on fully homomorphic encryption with threshold decryption). While
knowledge of other client’s private information could in itself be valuable, certain smart contracts are
more vulnerable than others. Smart contracts handling personal information are particularly vulnerable,
as a rogue decryption could expose sensitive personally identifying information protected by privacy
regulations.

1.1 Our Contributions

We look at the issue of detecting rogue decryptions of arbitrary ciphertexts in standard and threshold
public key encryption schemes as a problem on its own and introduce the notion of a “Self-Incriminating
Proof” (SIP) as a central tool to solve it. A SIP proves, unequivocally, to any third party that a given
ciphertext has been decrypted, while providing unforgeability properties ensuring that it cannot be gen-
erated unless the ciphertext is indeed decrypted. Starting from this concept, we define and construct
the following new primitives: Public Self-Incriminating Proof (PSIPE), and Threshold Encryption with
Self-Incriminating Proof (TSIPE). These new primitives enrich standard public key encryption with the
guarantees that a SIP must be published on a public ledger (PSIPE) during the decryption process, and
enrich threshold encryption with the guarantee that a SIP must be learned by one of the decrypting
parties (TSIPE) if a ciphertext is decrypted. We summarize our main contributions as follows:

• Definitions, and two matching constructions, of the notion of Encryption with Public Self-Incriminating
Proof (PSIPE), which guarantees that a SIP is published, in the context of non-threshold encryption.

• Definitions, and a matching construction, for the notion of Threshold Encryption with Self-Incriminating
Proof (TSIPE), building on the Individual Cryptography paradigm introduced by Dziembowski et
al. [30].

Both our PSIPE constructions require an underlying Proof-of-Stake (PoS) public ledger, which is
assumed as a setup, and is required to guarantee that a SIP is published, i.e., that all honest parties
learn the SIP. While our constructions are based on any standard (non-threshold) public key encryption
scheme, they can be trivially be generalized to the threshold setting by building on a threshold encryption
scheme instead.

In the threshold setting, instead of assuming access to a PoS ledger to publish the SIP, we assume that
rogue decryptions are desincentivized by the fact that at least one party in the decryption committee is
guaranteed to learn a SIP. However, not guaranteeing that a SIP is published could potentially allow a
set of parties to silently execute arbitrary MPC protocols that can be used to execute decryption without
leaking the SIP. Hence, we construct a threshold decryption protocol with a guarantee that at least one
of the parties who cooperate in decrypting a given ciphertext will learn a SIP, even if cryptographic
techniques such as MPC are used by the rogue decryption committee members. Our TSIPE construction
forces colluding malicious parties to disclose their private key shares to each other in order to do a rogue
decryption without revealing a SIP to at least one of them. A private key share can then be used as
a proof of malicious behavior, similar to a SIP. Even though a SIP or key shares will only be learned
by colluding parties, as it is possible to incentivize these parties to share this information publicly and
self-inncriminate the rogue committee (e.g. by offering financial incentives).

1.2 Technical Overview

We present a PSIPE construction, denoted ΠPSIPE-TBIBE, based on a public ledger realized by a Proof-
of-Stake blockchain, a signature scheme and a thresholdizable Batched IBE scheme (TBIBE). TBIBE
is a special threshold version of an Identity Based Encryption (IBE) scheme introduced by Agrawal et
al. [1] which allows public aggregation of any subset of identity secret keys. That is, multiple identities
can be succinctly combined into a single decryption key, when a threshold of master key share holders
agree. In the appendix, we present an alternative construction of PSIPE, denoted ΠPSIPE-eWE, which uses
an extractable witness encryption (eWE) scheme for a specific language instead of a TBIBE scheme. We
show how to realize this eWE efficiently from standard assumptions using the underlying blockchain via
techniques from [42] suitably combined with a publicly verifiable secret sharing scheme for anonymous
committees [17] to force misbehaving parties to reveal themselves as proposed in [15]. We also present
a construction of TSIPE based on a (regular) threshold encryption scheme, a commitment scheme, a
non-interactive zero-knowledge proof, and an MPC-hard function (which is a function that cannot be
feasibly computed by an MPC protocol [30]), which can be realized without the use of a public ledger.

3

In more detail, the core idea of ΠPSIPE-TBIBE is to first slightly modify the protocol steps for validators
(i.e. parties executing the PoS blockchain protocol) of the underlying PoS ledger so that each validator
has a share of the secret master key for a TBIBE scheme, which can then be used to permit decryption
of a ciphertext, after a SIP has been linked to a given ciphertext. More concretely, when encrypting a
message msg, it is encrypted not only under a standard PKE, but also toward a random unique id under
the TBIBE. During decryption, the decryptor first publishes, on the ledger, a signature on the doubly
encrypted ciphertext, which will function as a SIP. Now, at the beginning of each new round on the ledger,
the validators will recover all SIPs posted in the previous round. They then verify these SIPs against the
appropriate public verification keys. They then construct a single secret key that can be used to decrypt
any of the verified ciphertexts. This key is then published in the new block on the ledger. After the
validators have verified the signature of the decryptor, they can use the newly derived TBIBE secret key
to decrypt the outer ciphertext, and then use the standard PKE key to decrypt the inner message.

Similarly to ΠPSIPE-TBIBE, the core idea of ΠPSIPE-eWE is to use a signature on the ciphertext to decrypt,
as a SIP. However, in ΠPSIPE-TBIBE the message encryption is performed using witness encryption, where
the witness required for the decryption is a proof that a SIP (signature) has been posted to a given smart
contract on the public ledger. More concretely, the encryptor reads the current state of the ledger and
then witness encrypts their message under the current state a public verification key s.t. a signature on
the ciphertext must be included on the ledger in an appropriate contract, before decryption is permitted.
Specifically, such a constraint is handled by the fact that each block is signed by a set of validators that
can be linked back to any previous block. Hence, the decryptor is forced to publish a signature on the
ciphertext to decrypt, to have the blockchain evolve to a new block that will be the witness they need
to actually decrypt the message. We build on a Proof-of-Stake blockchain as it has been shown that it is
possible to non-interactively verify whether a given blockchain state has evolved from a given previous
state via an honest protocol execution [41]. We later also use the blockchain to realize the eWE scheme
based on standard assumptions using the “eWE on Blockchains” construction from [42], using techniques
from [15] to ensure that it cannot be abused to decrypt without generating a SIP.

Our threshold construction, ΠTSIPE on the other hand does not directly require the use of a public
ledger (but it can be used in conjunction with one in order to incentivize honesty of the threshold
parties). Instead, it builds on top of regular threshold encryption, non-interactive zero-knowledge proofs,
commitments and hash functions. The idea is to combine these in a clever manner s.t. any single party
learning a sufficient amount of partial decryptions can efficiently produce a SIP that a given ciphertext
was indeed decrypted. While this may on the surface sound like a weak result, it is important to note that
at least one party will learn the proof and external incentives can encourage, even a malicious party, to
share this. Still, the main technical issue is to ensure that it is not possible for a set of malicious parties
to decrypt without producing a SIP or leaking their private key shares, e.g. using MPC. To achieve this,
we start from the distributed adversarial model and the concept of MPC-hard function, both introduced
in the recent work on Individual Cryptography [30]. In the distributed adversary model, each corrupted
party is a sub-adversary that acts individually, without being controlled by a monolithic adversary that
gets full control over the corrupted parties. Hence the sub-adversaries must organize to collaborate on
an attack without the sub-adversary sharing their own internal state between each other. In our case,
we assume that a sub-adversary is disincentivized from leaking their private decryption share (in their
internal state) to other sub-adversaries5. Hence their only option for decryption without producing a SIP
is to use MPC to compute a decryption, where they each input their key shares and selectively only open
the actual decrypted output and not the SIP which is produced as part of the decryption process. We
prevent this using the notion of an MPC-hard function, which is fast to compute in plain but slow to
compute in MPC 6.

We observe that ΠTSIPE should only be considered the first step in insuring that secure outsourcing
of secret keys, as it does not consider tracing a SIP to a specific set of parties. A promising direction
for identifying cheating parties is integrating recent research in traitor tracing [20,46] or traceable secret
sharing [14,43] into our TSIPE construction, which we leave as future work.

5 Observe that assuming access to a distributed tokenized ledger with Turing complete smart contracts, such as
Ethereum, this can be incentivized through the folk-lore approach of an “ante-contract”. Such a contract require
each threshold party to “lock-in” a certain amount of tokens during key generation, which can only be retrieved
in full by a quorum of the threshold parties agreeing, or partially retrieved through proving knowledge of the
party’s secret key share. Thus a party will lose some of their tokens if their secret key share is leaked and will
publicly out themselves as having lost their key share.

6 We highlight that this is unrelated to the notion of “time-lock puzzles” [50] which inherently focuses on timing
the hardness of computing a specific function on a given public value.

4

1.3 Related Work

The concept of identifying malicious decryptions carried out by a key-holder was initially considered by
Ryan [52] and dubbed accountable encryption. Later, it was more formally defined by Li et al. [47], who
showed security definitions and protocols for the identification of malicious decryptions when the secret
key is stored in a single TEE that always executes the decryption protocol correctly.

Using cryptography for malicious purposes was first considered by Young and Yung [55] in 1996. They
studied the idea of “Cryptovirology”, which consists of using cryptographic tools maliciously. Specifically,
the work of [55] focuses on the malicious use of public-key encryption. In our case, we consider the
use of distributed cryptographic protocols (e.g., MPC) as a tool to subvert (threshold) encryption and
investigate how to prevent such attacks.

Another approach to prevent leaking secrets has been studied extensively in the context of traitor-
tracing [20,39,46]. Chor et al. [20] described traitor tracing as a method for providing personal decryption
keys to users, such that there is a single encryption key corresponding to all the decryption keys, and any
possible decryption key, even one that was generated by a coalition of corrupt users (traitors), identifies
the personal keys that were used to generate it.

Recently, Goyal, Song, and Srinivasan [43] initiate the study of preventing leakage in the context of
standard secret sharing schemes and introduced the notion of traceable secret sharing. In general, these
are secret sharing schemes that allow leaked shares to be traced back to the share holders responsible for
the leak. Boneh et al. [14] also introduced a new definitions for traceable secret sharing, and presented two
efficient constructions of traceable secret sharing based on two classic secret sharing schemes, i.e., standard
Shamir secret sharing [53] and a variant of Blakley secret sharing [11]. Another recent work [40] introduced
verifiable secret sharing schemes with an associated mechanism that provably incentivizes parties who
obtain a reconstructed secret to publicly identifying the parties who executed the reconstruction. However,
these works only consider the case of reconstructing a secret but not the case where shares of a secret key
are used to threshold decrypt a ciphertext without ever reconstructing the secret key. Moreover, they are
not easily extended to the threshold decryption case.

Recently, Boneh et al. [13] initiated the study of traitor-tracing in the context of threshold decryption
and showed several constructions for it. While this work allows for identifyingt the exact subset of parties
who participated in a rogue threshold decryption, it requires unrestricted access to a stateless decoder, an
oracle that allows for a polynomial number of decryption queries without keeping state between successive
queries. If the colluding decryption committee members use a more sophisticated method to provide rogue
decryptions (e.g. running the original threshold decryption protocol or decrypting via MPC) instead of
providing such a stateless decoder, they can easily avoid detection. Our schemes work even against such
clever attacks, at the cost of not individually identifying the specific colluding parties but only detecting
decryption.

As mentioned in [30], none of above approaches [13,14,20,43,46,55] considers a distributed adversarial
model [30]. On the other hand, we approach the problem of detecting when a distributed adversary
performs (threshold) decryption but does not necessarily require the identification of individual sub-
adversaries (i.e., corrupted parties) who take part in a decryption process.

The notions of collusion-free [2, 4] and collusion-preserving [3] MPC address the setting where cor-
rupted parties cannot collude. In other words, corrupted parties are not fully controlled by a monolithic
adversary but instead must act individually according to their own strategies without coordination. These
works investigate the construction of MPC protocols by leveraging the fact that corrupted parties do not
communicate (or have no incentive to communicate). In our setting, we assume instead that corrupted
parties act individually but can communicate and have an incentive to do so but are disincentivized from
sharing their secret key shares with each other.

As previously mentioned, recently, Dziembowski et al. [30] defined the notion of individual cryptography
in which they consider a distributed adversarial model. They construct two individual cryptographic
primitives: (i) proof of individual knowledge (PoIK), a tool for proving that a given message is fully
known to a single “individual” machine, i.e., that the data is not shared among a group of parties; and
(ii) individual secret sharing (ISS), a scheme for sharing a secret between a group of parties so that the
parties do not know the secret as long as they do not reconstruct it, while reconstruction ensures that
if the shareholders attempt to collude, one of them will learn the entire secret. Concurrently, Kelkar et
al. [45] introduced the concept of proof of complete knowledge (PoCK) which is very similar to the notion
of PoIK in [30]. A PoCK guarantees that a single party has complete knowledge of its secret. In particular,
Kelkar et al. [45] showed a construction of PoCK that directly achieves a zero-knowledge property.

5

2 Preliminaries

Basic Notation. We denote the security parameter by λ ∈ N. In threshold settings, we use n to denote
the number of parties and t the corruption threshold such that 0 < t < n. We use [a, b] for a, b ∈ Z, a ≤ b,
to denote {a, a + 1, . . . , b − 1, b}. [b] denotes the set [1, b]. We denote the concatenation of x and y by
(x∥y). Given a set X , we denote by x

$← X the sampling of a value x from the uniform distribution on
X . A function negl : N→ R is negligible if it vanishes faster than any polynomial. We denote by x = val
or x ← val the assignment of a value val to the variable x. We denote evaluating a PPT algorithm A
that produces an output out from an input in with randomness r

$← {0, 1}∗ as out ← A(in; r), omitting
the randomness when it is obvious or not explicitly required. By AO

alg
param we denote that we run A with

oracle access to Oalg
param, i.e., O executes alg with parameters param on inputs of A’s and returns the

corresponding outputs.

2.1 Building Blocks

Due to space constraints, we defer the building blocks preliminaries on digital signature, commitment
scheme, extractable witness encryption, threshold encryption, non-interactive zero-knowledge, pseudoran-
dom functions, to Appendix A.1, A.2, A.3, A.4, and A.5, and A.6, respectively.

Thresholdizable Batched IBE. In traditional Identity-Based Encryption (IBE) schemes, each message
is encrypted for a specific identity, for each of which a private decryption key is associated. In order to
decrypt, one must hold a decryption key for the identity under which the message has been encrypted.
Private decryption keys are derived based on an identity, using a master secret key. If there are many
distinct identities in play then an IBE scheme can quickly become inefficient. This is in particular true
in the setting where the decryptors hold multiple identities; and hence multiple decryption keys. Batched
IBE [1] overcomes this issue by allowing the aggregation of any subset of identities into a single private
decryption key. Furthermore, batched IBE increases granularity further by introducing batching labels,
s.t. decryption can be further limited to a set of identities associated with a specific label. A batched
IBE scheme can again be generalized to the threshold setting, where initial key generation, along with
derivation of a decryption key, based on a set of identities, needs to be carried out by a threshold of
parties.

Below we sketch the algorithms for threshold batched IBE (TBIBE) based on the work of Agrewal et
al. [1]. We refer the reader to Appendix A.7 for the detailed security definition of a TBIBE scheme.

Definition 1 (Thresholdizable Batched IBE). A Thresholdizable Batched IBE scheme TBIBE is
a tuple of PPT algorithms (Setup, KGen, Enc, Dec, Digest, ComputeKeyShare, ComputeKeyAggregate),
which have the following syntax:

1. pp ← Setup(1λ, 1B, 1n), the setup algorithm take as input a security parameter 1λ, a batch size B =
B(λ) and number of threshold servers n = n(λ), and It outputs public parameter pp which includes a
description of the message space M, identity space I, batch label space B and ciphertext space C.

2. (pk, {(pki, mski)}i∈[n]) ← KGen(pp), is a randomized, threshold algorithm that takes as input the
public parameter pp, and a global public key pk along with a pair of partial master secret, and public,
keys (mski, pki), for each threshold server Pi.

3. ct ← Enc(pk, msg, id; b), is the encryption algorithm that takes as input a global public key pk, a
message msg ∈M and an identity id ∈ I and a batch label b ∈ B, and outputs a ciphertext ct ∈ C.

4. d ← Digest(pk, {id1, . . . , idB}), is a deterministic algorithm that takes as input the global public key
pk and B number of identities {id1, . . . , idB} where each idi ∈ I, and outputs a digest d of the set of
identities.

5. ski ← ComputeKeyShare(mski, d; b), the key share computation algorithm takes as input the partial
master secret key mski, a digest d and a batch label b ∈ B, and outputs a partial digest-batch, label-
specific secret key ski.

6. sk ← ComputeKeyAggregate({(pki, ski)}i∈[n], d; b), the secret key aggregation algorithm that takes as
input all pairs of partial public keys, and partial digest-batch label-specific secret keys {(pki, ski)}i∈[n]
and a batch label b ∈ B, and outputs a digest-batch label-specific secret key sk. This can then be used to
decrypt any ciphertext encrypted under any of the IDs used to derive d, which was used to construct
the digest-batch, label-specific secret keys for batch label b.

7. msg← Dec(ct, sk, d, {id1, . . . , idB}, id; b), the decryption algorithm takes as input a ciphertext ct, secret
key sk, digest d, B number of identities {id1, . . . , idB}, an identity id and a batch label b ∈ B, and
outputs a message msg ∈M if any of the identities were used to derive sk.

6

A TBIBE scheme must satisfy the properties of Correctness and Security which we formally describe
in Appendix A.7.

In the rest of that paper, we preclude the explicit batch label b in the algorithms defined above, as this
will always be static, in our use-case.

2.2 Proof-of-Stake (PoS) Blockchains

In PoS-based blockchains (public ledgers), each participant is associated with some “stake” in the system
and a lottery mechanism ensures that each party succeeds in generating the next block with probability
proportional to its stake in the system. To formally argue about executions of such protocols, we use the
framework of Goyal et al. [41] which, in turn, builds on the analysis done in [32, 48]. The main property
we are interested in is the possibility to non-interactively prove that a blockchain has “evolved”, i.e. a
given future state was obtained by honestly executing the protocol from a known past state. We remark
that in [41] it is proven that there exist PoS blockchain protocols (e.g. [10, 26]) with this property.

More specifically, at the high level, we define a blockchain by the following algorithms:

Definition 2 (Blockchain Protocol [41]). A blockchain protocol Γ V consists of the following three
polynomial-time algorithms (UpdateStateV , GetRecords, Broadcast) with a validity predicate V , are de-
scribed as follows:

• st← UpdateState(1λ), the algorithm takes as input the security parameter 1λ and outputs st which is
the local state of the blockchain along with metadata.

• B ← GetRecords(1λ, st), the algorithm takes as input the security parameter 1λ and state st, and
outputs the longest sequence of valid blocks B (with respect to V).

• Broadcast(1λ, m), the algorithm takes as input the security parameter 1λ and a message m, and
broadcasts the message m over the network to all parties executing the blockchain protocol.

Execution of Γ V = (UpdateStateV , GetRecords, Broadcast), with appropriate restrictions on adversary
A and environment Z, will yield certain compliant executions EXECΓ V

(A,Z, 1λ) where some security
properties will hold with overwhelming probability. Existing works, such as [32,48], have converged toward
a few security properties that characterizes blockchain protocols. These include: Common Prefix or Chain
Consistency, Chain Quality and Chain Growth.

Definition 3 (Common Prefix). Let κ ∈ N be the common prefix parameter. The chains B1, B2 pos-
sessed by two honest parties P1 and P2 satisfy B⌈κ1 ⪯ B2.

Definition 4 (Chain Growth). Let τ ∈ (0, 1], s ∈ N and let B1, B2 be as above, then len(B2)−len(B1) ≥
τs where τ is the speed coefficient.

Definition 5 (Chain Quality). Let µ ∈ (0, 1] and κ ∈ N. Consider any set of consecutive blocks, of
length at least κ, from an honest party’s chain B1. The ratio of adversarial blocks in the set is 1−µ where
µ is the quality coefficient.

In this work, we propose two constructions PSIPE-TBIBE (Sec. 3.1) and PSIPE-eWE (Appendix B)
which assume a secure blockchain protocol. Whilst the security properties above suffice to argue security
of PSIPE-TBIBE, for the security proof of the PSIPE-eWE construction , additional formalism is required.
More specifically, we need to be able to non-interactively prove that a blockchain has “evolved”, i.e. a
given future state has been obtained by honestly executing the protocol from a known, past state. This is
achieved via the distinguishable forking property. At the high level, this property asserts that a sufficiently
long sequence of blocks produced under honest protocol execution can consistently be distinguished from
any fork generated adversarially. Moreover, the total stake committed to these sequences (known as
their proof-of-stake fraction), which can be computed efficiently, serves as a distinguishing criterion. The
relevant formalism for this has been introduced by Goyal and Goyal [41], but we defer the introduction
of this to Appendix A.8 due to space constraints.

2.3 The Distributed Adversarial Model and MPC-hard Functions

In this section, we describe the distributed adversarial model, the notion of an MPC-hard function, along
with a concrete construction, all of which are taken almost verbatim from [30], and are required for our
TSIPE construction.

7

The distributed adversary [30] is a tuple A1, . . . ,Aa of poly-time interactive machines (also called the
sub-adversaries) that can efficiently evaluate a cryptographic task via an MPC protocol or a similarly
distributed manner. Dziembowski et al. [30] define the notion of an MPC-hard cryptographic task. In-
formally, a cryptographic task/function is MPC-hard if executing it securely in a distributed way takes
a significant amount of time. This implies that if a cryptographic task is MPC-hard, then to run it effi-
ciently, the parties need to execute it individually. In other words, by using an MPC-hard task, we want
to enforce that the distributed adversary must run the cryptographic task locally. More concretely, if the
adversaries manage to complete the cryptographic task within some specified time bound, then one of the
adversaries, say Aj , must know (or have “knowledge” of) the other parties’ secret input to computation.
MPC-hard Functions and a (δ, Υ)-Distributed Adversary. The distributed adversary A1, . . . ,Aa

is given access to a special oracle OFun that allows evaluation of a fixed input-length function Fun :
{0, 1}α → {0, 1}β . The oracle accepts queries of the form (x, mode), where x ∈ {0, 1}λ and mode ∈
{fast, slow}. If mode = fast, then a query is called fast, otherwise, the query is called slow. Let us give
some intuition on these two modes:

1. The fast queries are Fun function evaluations that a sub-adversary Aj runs locally, in this case Aj

has to know (or have “knowledge”) the x entirely.
2. The slow queries model an evaluation of the Fun function using an MPC protocol. In particular, this

means that the sub-adversaries A1, . . . ,Aa can learn Fun(x) without knowing x.

Each query coming from any of the sub-adversaries Aj is answered to Aj with Fun(x) (we also say that
Aj evaluated Fun on input x).

The execution of a protocol with a distributed adversary can now be divided into a preprocessing
phase (where the adversary does not know the relevant input) followed by an online phase where relevant
input is known. In the preprocessing phase, the sub-adversaries can send an arbitrary number of slow
queries to the oracle OFun. In the online phase, however, the sub-adversaries are limited in the number of
queries they can make to the oracle OFun. We observe that the notion of an independent preprocessing
phase is common for MPC protocols [8, 25].

More specifically, we say A1, . . . ,Aa is a (δ, Υ)-distributed adversary relative to a function Fun if the
total number of slow queries made by any sub-adversary Aj to OFun in the online phase is bounded by
Υ , for at most δ rounds. The total number of fast queries is only bounded by the time complexity of the
adversaries (i.e., it is polynomial in λ). The adversaries run in at most δ rounds, where each of them has
the following form: (1) each sub-adversary Aj performs some local computation, at the end of which Aj

outputs a string strj , and (2) each strj is delivered to every other sub-adversary.

Instantiating an MPC-hard Function. Dziembowski et al. [30] defined an MPC-hard function based
on iterative hash function computation. They modeled the function Fun as the evaluation of a fixed
input-length hash function H : {0, 1}α → {0, 1}β (and the access to an oracle OFun as OH). Since the
evaluation of a hash function using MPC technology is conceivably much slower than using a regular
CPU or even customized hardware, like an ASIC, we assume that the budget of the adversary for such
queries is comparably small, i.e., bounded by some parameter.

We reproduce the scratch function from [30] in Figure 1. The main idea behind scratch is that it forces
a party to sequentially compute d times H on every block sl of s = (s1∥s2∥ . . . ∥sn). The scratch procedure
takes as input two random s

$← {0, 1}n·(α−β−2) where each |sl| = α−β− 2 and z
$← {0, 1}β , and a nonce

w ∈ {0, 1}α−β−2, and then it sequentially computes d times hashes H on every block of s and finally
outputs a value q (refer to Figure 1(a) in [30] for a schematic overview of scratch procedure.). Note that
the scratch procedure computes nd + 1 hashes H in total.

For the purpose of our TSIPE construction (in Figure 10), we use the scratch function and the goal
is finding a β number of nonces w1, . . . , wβ ∈ {0, 1}α−β−2 such that the first ζ bits (where ζ can be a
function of β) of each qi ← scratch(s, z, wi) are zero for all i ∈ [1, β].

We refer the reader to Appendix A.9 for more details on scratch, along with the security games for a
distributed adversary.

3 Encryption with Public Self-Incriminating Proof

In this section, we start by introduce the notion of public key Encryption with Self-Incriminating Proof
(PSIPE). This notion captures the fact that a decryptor who knows a secret key must produce a Self-
Incriminating Proof (SIP) when they decrypt a ciphertext generated under the corresponding public key.

8

MPC-hard Function: scratch

Parameters: α, β, d, n ∈ N.
Building block: A hash function H : {0, 1}α → {0, 1}β with α ≥ 2β is computed by accessing the special oracle OH (where
OH allows for evaluating a fixed input-length hash function H).
Input: s ∈ {0, 1}n·(α−β−2) and z ∈ {0, 1}β , w ∈ {0, 1}α−β−2.

scratch(s, z, w):

1. Parse s as (s1∥s2∥ . . . ∥sn) where |sl| = α− β − 2 for all l ∈ [n]
2. For k = 1 to d:

(a) For l = 1 to n:
i. If k = 1 and l = 1 then compute: qk

l = H(00∥z∥w)

ii. Else If k ̸= 1 and l = 1 then compute: qk
l = H(10∥sn∥qk−1

n)

iii. Else If l = 2 then compute: qk
l = H(01∥s1∥qk

1)

iv. Else If l > 2 then compute: qk
l = H(01∥sl−1∥qk

l−1)
3. Output q = H(10∥sn∥qd

n).

Fig. 1: Construction of a MPC-hard Function from [30].

We capture this property by requiring the decryption algorithm to output a valid SIP that can be verified
by a new SIP-verification algorithm, Vf. We observe that a simple PSIPE notion where the adversary
may choose never to output the SIP it has produced is not useful for applications, besides implying the
strong notion of extractable witness encryption. Based on this observation, we introduce the notion of
a public key Encryption with Public Self-Incriminating Proof (PSIPE), where the decryptor is forced to
publish the SIP to successfully decrypt a ciphertext. Notably, this notion requires an underlying public
ledger (where the proof is published). We show a PSIPE construction based on witness encryption but
also describe how the public ledger, used during setup, allows us to realize the witness encryption needed
via techniques from [42].

We observe that the notion of Self-Incriminating Proof Extractability as defined above has limited
applicability since the adversary may just choose to erase the SIP that it is forced to produce during
decryption. Instead we investigate a variation of this notion that moreover requires the SIP to be published.
The notion of Encryption with Public Self-Incriminating Proof (PSIPE) is stronger than the former notion
but provides a more meaningful guarantee. While it must be defined with respect to a public ledger (for
publishing SIPs), this setup also helps realize it without resorting to strong building blocks. We define
PSIPE in Definition 6, followed by formal security properties. We construct PSIPE in Figure 17, although
we note that this construction is mostly of theoretical interest.

Intuitively, our primitive allows for creating ciphertexts that can only be decrypted by a party if the
party has published a SIP on the public ledger. To capture the notion of a public ledger in our security
games, we use the model of a PoS blockchain-based public ledger protocol execution introduced in [42]
and recalled in 2.2. In this model, algorithms are defined in the context of a blockchain Γ V , meaning that
parties executing these algorithms are also part of an execution of an underlying blockchain protocol.
This protocol is used to implement the public ledger we require, where parties that execute the protocol
can read/write messages. Given such a protocol execution, it is possible to non-interactively verify if a
future state B̃ of the ledger has evolved from an initial state B, which is crucial for our definitions and
constructions. This verification is done via the evolving blockchain predicate (defined in Sec. 2.2), i.e.,
evolved(B, B̃) = 1 iff B̃ is obtained as a future state of executing the blockchain protocol starting from B.

We believe that a PoS blockchain is the minimal primitive we can use to fulfill our requirements since
it exactly affords an incorruptible, public append-only database, whose updates are validated based on
an NP-relation. All of these are features we require in our PSIPE solution.

Definition 6 (Encryption with Public Self-Incriminating Proof). An encryption with public self-
incriminating proof scheme PSIPE consists of the following PPT algorithms (KGen, Enc, Dec, Vf, ProofExt)
in the context of a blockchain Γ V with evolved predicate evolved (as in Definition 38), which have the
following syntax:

1. (pk, sk)← KGen(1λ), the key generation algorithm takes as input a security parameter 1λ and outputs
a key-pair (pk, sk) where pk is a public key and sk is a secret key.

2. c← Enc(pk, m), the encryption algorithm takes as input the public key pk and a message m ∈ {0, 1}λ,
and outputs a ciphertext c.

3. (π, m)/⊥ ← Dec(pk, sk, c), the decryption algorithm takes as input the public key pk, the secret key
sk and a ciphertext c. It outputs a self-incriminating proof π and a plaintext message m.

9

4. 1/0 ← Vf(pk, c, π), the verification algorithm takes as input the public key pk, a ciphertext c and
a self-incriminating proof π. It outputs 1 if π is a valid self-incriminating proof for c, otherwise, it
outputs 0.

5. π/⊥ ← ProofExt(pk, c), the self-incriminating proof extraction algorithm takes as input the public key
pk and a ciphertext c. It extracts the self-incriminating proof π of the corresponding ciphertext c from
the underlying blockchain Γ V and outputs π, otherwise output ⊥.

An encryption with public self-incriminating proof PSIPE scheme must satisfy the following properties:
Correctness (Definition 7), Unforgeability (Definition 8), IND-CPA Security (Definition 9) and
Public Self-Incriminating Proof (Definition 10).

Correctness: The notion of correctness ensures that for a ciphertext correctly generated under a given
public key, decryption using the corresponding secret key will always output: (1) a valid self-incriminating
proof, and (2) the original plaintext message.

Definition 7 (Correctness). A scheme PSIPE = (KGen, Enc, Dec, Vf, ProofExt) is correct if for any
security parameter λ and any message m ∈ {0, 1}λ, the following conditions hold for message decryption
correctness and self-incriminating proof correctness, respectively:

Pr

[
Dec(pk, sk, c)

= (π, m)

∣∣∣∣(pk, sk)← KGen(1λ)
c← Enc(pk, m)

]
= 1 Pr

[
Vf(pk, c, π) = 1
Dec(pk, sk, c) = (π, m)

∣∣∣∣(pk, sk)← KGen(1λ)
c← Enc(pk, m)

]
= 1

Unforgeability: We define a notion of unforgeability for the self-incriminating proofs produced by our
primitive which is similar to the notion of existential unforgeability under chosen message attacks for
signatures [38]. This type of unforgeability ensures that an adversary should not be able to generate
self-incriminating proof for a ciphertext encrypted under a certain public key if they do not possess the
corresponding secret key. This holds even if the adversary is the one generating the ciphertext, which is
important to avoid falsely incriminating a decryptor. We formally define this notion in Definition 8 via a
game GameUnforge

PSIPE,A, which is presented in Figure 2.

GameUnforge
PSIPE,A

Game steps:

1. Initialize an empty list Q ← ∅
2. (pk, sk)← KGen(1λ)
3. (c′, π′)← AODec

sk (1λ, pk)

Oracle:

ODec
sk (c) :

1. Q ← Q∪ c
2. (π, m)← Dec(pk, sk, c)
3. return (π, m)

The adversary’s advantage in this game is:

AdvUnforge
PSIPE,A = Pr

[
Vf(pk, c

′
, π

′) = 1 ∧ c
′

/∈ Q
]

Fig. 2: Unforgeability Game for PSIPE scheme executed between a challenger and an adversary A given unlimited oracle access to
ODec

sk (c).

Definition 8 (Unforgeability). A scheme PSIPE = (KGen, Enc, Dec, Vf, ProofExt) is unforgeable if
for any security parameter λ and for all PPT adversaries A given unlimited oracle access to ODec

sk (·),
advantage AdvUnforge

PSIPE,A of the GameUnforge
PSIPE,A (in Figure 2) is negligible.

IND-CPA Security: We define IND-CPA Security for Encryption with Self-Incriminating Proof in
the standard manner. This notion is formally defined in Definition 9 via a game GameIND-CPA

PSIPE,A , which is
presented in Figure 3.

Definition 9 (IND-CPA Security). A scheme PSIPE = (KGen, Enc, Dec, Vf, ProofExt) is IND-CPA
secure if for any security parameter λ and for all PPT adversaries A = (A1,A2), advantage AdvIND-CPA

PSIPE,A
of A in GameIND-CPA

PSIPE,A (in Figure 3) is negligible.

10

GameIND-CPA
PSIPE,A

Game steps:

1. (pk, sk)← KGen(1λ)
2. (st, m0, m1)← A1(1λ, pk)
3. Sample b

$← {0, 1}
4. cb ← Enc(pk, mb)
5. b′ ← A2(1λ, st, pk, cb)
6. return b′

The adversary’s advantage in this game is:

AdvIND-CPA
PSIPE,A =

∣∣∣Pr
[

b = b
′
]
−

1
2

∣∣∣

Fig. 3: IND-CPA Security Game for PSIPE scheme.

Public Self-Incriminating Proof. We formalize the public self-incriminating proof property in the
context of a blockchain Γ in Definition 10 via a game GamePUB-SIP

PSIPE,A,Γ , presented in Figure 4. For this
notion, we need to ensure that the key pair has been generated correctly, rather than allowing the
adversary to generate an arbitrary key pair. In order to capture this requirement in the simplest way
possible, the challenger generates the key pair and gives it to the adversary. This can be captured by
requiring key registration, i.e., each party must publish their public key on the public ledger together
with a zero-knowledge proof that the key has been generated by the correct key generation algorithm.

GamePUB-SIP
PSIPE,A,Γ

Game steps:

1. (pk, sk)← KGen(1λ) ; // Guarantee that the keys are generated correctly.
2. VIEW← EXECΓ (A1(1λ, pk, sk),Z, 1λ) ; // Execute the blockchain protocol
3. (st1, m0, m1)← A2(1λ, pk, sk, VIEWA1) ; // Get adversary’s view VIEWA1 from VIEW

4. Samples b
$← {0, 1}

5. cb ← Enc(pk, mb)
6. st2 ← A3(st1, cb) ; // Allow the adversary to compute on cb

7. VIEW′ ← EXECΓ (A4(st2),Z, 1λ) ; // Execute the blockchain protocol
8. VIEW′

A4 ← VIEW′ ; // Get adversary’s view VIEW′
A4 from VIEW′

9. b′ ← A5(st2, VIEW′
A4)

The adversary’s advantage in this game is:

AdvPUB-SIP
PSIPE,A,Γ =

∣∣∣Pr
[

b = b
′
]
−

1
2

∣∣∣
The extractor EXT’s success probability in this game is:

SuccPSIPE
EXT,i =

∣∣Pr
[

π ← EXT(pk, cb, B̃i) | Vf(pk, cb, π) = 1
]∣∣

Where st← UpdateState(1λ) and B̃i ← GetRecords(1λ, s̃t) are executed on honest party Pi’s view VIEW′
Pi

obtained from VIEW′.

Fig. 4: Public Self-Incriminating Proof game for PSIPE scheme.

Definition 10 (Public Self-Incriminating Proof). A scheme PSIPE in the context of a blockchain
protocol Γ executed by PPT machines A = (A1,A2,A3,A4,A5) and Z has the public self-incriminating
proof property if for any security parameter λ, any polynomial p(·), any Z and any A with advantage
AdvPUB-SIP

PSIPE,A,Γ in GamePUB-SIP
PSIPE,A,Γ , there exists a polynomial q(·) and a PPT extractor EXT that outputs

π ← EXT(pk, cb, B̃i) such that Vf(pk, cb, π) = 1 for B̃i ← GetRecords(1λ, s̃t) obtained by any honest party
Pi from s̃t← UpdateState(1λ) executed on its VIEW′Pi

∈ VIEW′ with success probability SuccPSIPE
EXT,i where

AdvPUB-SIP
PSIPE,A,Γ ≥

1
p(λ)

⇒ SuccPSIPE
EXT,i ≥

1
q(λ)

Remark 1 (On the requirement of Proof-of-Stake for PSIPE). The PSIPE definition requires a notion of
consensus that allows for third parties to non-interactively verify that a message is agreed upon without
participating in a protocol execution. This is the case because the decryption algorithm must make
sure that an adversary has indeed published a SIP as part of the decryption process. However, that

11

step in decryption is inherently non-interactive, precluding the use of an ideal bulletin board, which
requires interaction in order to verify that a message has been published. While non-interactive proofs
that a message has been agreed upon can be obtained for classical byzantine agreement protocols, their
guarantees under semi-synchrony or asynchrony are limited by fundamental impossibility results and their
scalability is limited by round/communication complexity lower bounds. Hence, we base our definition on
the weaker notion of blockchain-based consensus, which both circumvents such impossibility results over
semi-synchronous networks and allow for large scale executions of the consensus protocol. We specifically
base our definition on Proof-of-Stake (PoS) blockchains because in a Proof-of-Work (PoW) blockchain the
adversary can always simulate a chain where it generates all blocks. Notice, however, that while the PoS
blockchain model matches this requirement, it can also be obtained by alternative consensus protocols
with similar non-interactive proofs of agreement, e.g., HotStuff [54].

IND-CPA Security vs. Public Self-Incriminating Proofs. Notice that we do not formally require that a
published SIP for a decrypted ciphertext c leaks no information about the message contained in c (i.e.,
that IND-CPA Security holds even when the adversary has access to a SIP published when decrypting c).
While this is a desirable property for many applications, we aim at defining a notion of PSIPE that is as
general as possible, which includes potentially allowing for publishing a SIP that does reveal information
about plaintext messages in decrypted ciphertexts. We hope that presenting such a definition will allow
for obtaining potentially more efficient constructions based on weaker assumptions and simpler building
blocks. Notice, however, that the PSIPE construction presented in this section does guarantee that a SIP
leaks no information about the plaintext message in decrypted ciphertexts, since a SIP in this construction
is simply a signature on a random string chosen independently from the message.

3.1 Practical PSIPE based on Threshold Batched IBE.

We propose two constructions ΠPSIPE-TBIBE and ΠPSIPE-eWE based on Threshold Batched IBE (TBIBE)
and Extractable Witness Encryption (eWE) respectively. The former (ΠPSIPE-TBIBE) represents a practical
protocol, but requires modifying a secure blockchain protocol that assumes the election of an honest
majority validator committee in every round to perform consensus. The latter (ΠPSIPE-eWE) assumes
nothing about the secure blockchain protocol, but is based on an extractable Witness Encryption scheme;
concretely, the encryptor in ΠPSIPE-eWE encrypts to a specific relation, such that decryption succeeds with
a witness that is a valid blockchain transcript with a valid signature by the decryptor on the ciphertext
instance finalized in the common-prefix.

We describe Protocol ΠPSIPE-TBIBE in Fig. 5 and give an overview below:
ΠPSIPE-TBIBE Encryption. A well-formed PSIPE-TBIBE cipher-text consists of two layers of encryption.

1. The inner layer is a public key encryption of the plaintext towards the public key of the decryptor.
2. The outer layer is a TBIBE encryption towards a TBIBE public key.

The ciphertext instance is then defined as the ct = (ĉ, id), where ĉ is the encryption ciphertext resulting
from encryption steps (1) and (2), and id a freshly sampled TBIBE identity.
ΠPSIPE-TBIBE Decryption. The decryptor starts decryption by broadcasting a SIP and ciphertext ct =
(ĉ, id) to the blockchain. A SIP is simply a signature on ct = (ĉ, id). For each block that is finalized,
we require the blockchain validators to broadcast TBIBE decryption keys for all well-formed ciphertext
id’s in the block. Recall that in TBIBE, this can be performed in a batched manner; a single set of
TBIBE keys will enable the decryption of each ciphertext in the entire block, restricting the additional
message complexity imposed on the blockchain protocol by ΠPSIPE-TBIBE to be only linear in the size of
the validator committee size, and independent of the number of SIP’s in each block.
ΠPSIPE-TBIBE Proof Extraction & Verification. Proof extraction for ct = (ĉ, id) and decryptor public
key pk simply involves parsing the blockchain for the appropriate SIP, i.e. a signature on ct that verifies
under pk. Verification of a SIP from the decryptor with public key pk and ciphertext ct = (ĉ, id) is also
simply a signature verification on message ct and pk.
Blockchain protocol extension in ΠPSIPE-TBIBE. We discuss the overhead of the required extension of
the underlying blockchain protocol. As formalized in our scheme in Fig. 5, each elected validator committee
must parse and verify newly finalized SIP messages (or signatures on ct = (ĉ, id)). Let I represents the
set of id’s corresponding to the batch of newly finalized valid SIP’s. The committee of size n then posts
n partial TBIBE decryption signatures which can be aggregegated (TBIBE.ComputeKeyAggregate) to
produce a key which that decrypts any TBIBE ciphertext encrypted to id ∈ I. Notice, that the blockchain

12

message complexity induced by this protocol extension is strictly linear in the size of the validator
committee and independent of the batch size.

The overhead induced on the underlying blockchain protocol is related to frequency with which new
validator committees are elected; each fresh set of validator parties requires the resharing of TBIBE master
keys, inducing a O(n2) communication overhead. For a blockchain execution with committees that include
thousands of validators which are frequently refreshed, this overhead may be prohibitive in practice. In
contrast, for a blockchain protocol with smaller committees and infrequent committee elections or even
static committee role assignments (permissioned blockchains), this overhead can be minimal.

Security of ΠPSIPE-TBIBE. We first sketch arguments for unforgeability, IND-CPA and PSIPE security.
It is easy to see that forgery of a SIP implies forging the signature scheme SIG. IND-CPA security follows
from IND-CPA of encryption scheme PKE - distinguishing between PSIPE ciphertexts is reduced to
distinguishing between the inner PKE encryptions. Finally, contradicting the public self incrimination
property implies either (1) breaking common-prefix blockchain property or (2) security of TBIBE. (1)
permits the adversary to remove a previously finalized SIP from the blockchain (causing proof extraction
to fail) and (2) implies that the adversary can distinguish between ciphertexts without TBIBE decryption
keys, permitting the adversary to forgo broadcasting a SIP, again causing proof extraction to fail. We
formally capture the security of Protocol ΠPSIPE-TBIBE in Theorem 1 and defer the proof to Appendix C.1.

Construction of PSIPE Scheme: ΠPSIPE-TBIBE

Parameters: A security parameter λ.
Building-blocks: A secure PoS blockchain protocol Γ = (UpdateState, GetRecords, Broadcast) (Sec. 2.2) satisfying the κ-common-
prefix security (Def. 3). A IND-CPA secure public key encryption scheme PKE = (KGen, Enc, Dec). An EUF-CMA secure signature
scheme SIG = (KGen, Sign, Vf). A Thresholdizable Batched IBE scheme TBIBE = (Setup, KGen, Enc, Digest, ComputeKeyShare,
ComputeKeyAggregate, Dec) (Definition 1).

• KGen(1λ):
1. Outputs (pkPKE, skPKE)← PKE.KGen(λ) and (pkSIG, skSIG)← SIG.KGen(λ).

• Enc(pk, msg)
1. Parse pk = (pkPKE, pkTBIBE).
2. Encrypt c← PKE.Enc(pkPKE, msg).
3. Sample id←$ I and encrypt ĉ← TBIBE.Enc(pkTBIBE, c, id)
4. Output ct = (ĉ, id).

• Dec(pk, sk, ct)
1. Parse pk = (pkSIG,, {pkTBIBE,i}i∈[n]), sk = (skSIG, skPKE).
2. Post self-incriminating proof of decrypting ct:

(a) Compute π ← SIG.Sign(skSIG, ct).
(b) Run Broadcast(1λ, (pkSIG, π, ct)) in current blockchain round r.

3. After blockchain round r + κ, retrieve decryption keys to decrypt message:
(a) Run s̃t← UpdateState(λ) and B̃← GetRecords(λ, s̃t).
(b) For (pkSIG, π, ct = (ĉ, id)) in block r of B̃: J ← J ∪ {id} if 1← SIG.Vf(pkSIG, ct, π).
(c) Compute d← TBIBE.Digest(pkTBIBE,J). Parse all (skd

TBIBE,i, di) in block r + κ of B̃.
(d) Compute skd

TBIBE ← TBIBE.ComputeKeyAggregate({pkTBIBE,i, skd
TBIBE,i}i∈[n], d).

(e) Decrypt c← TBIBE.Dec(ĉ, skd
TBIBE, d,J , id).

(f) Output msg← PKE.Dec(skPKE, c).
• Vf(pk, ct = (ĉ, id), π):

1. Output SIG.Vf(pk, ct, π).
• ProofExt(pk, ct):

1. Run s̃t← UpdateState(1λ) and B̃← GetRecords(1λ, s̃t) and parse for all (pk, ct, π) in B̃.
2. Output π in first message (pk, ct, π) for which SIG.Vf(pk, ct, π) = 1 or ⊥ otherwise.

Blockchain protocol Γ ′: Extends blockchain protocol Γ as follows.

• Setup(1λ, 1B, 1n): At the beginning of Γ ′, the following setup procedure is run.
1. pp← TIBE.Setup(1λ, 1B, 1n)
2. (pkTBIBE, {pkTBIBE,i}i∈[n], {mskTBIBE,i}i∈[n])← TBIBE.KGen(pp)
3. Output mskTBIBE,i to party Pi and pkTBIBE, {pkTBIBE,i}i∈[n] to all parties.

• At the beginning of each round r of Γ ′, each party executes the following.
1. st← UpdateState(λ) & B̃← GetRecords(λ, st)
2. Parse B̃ for all (pkSIG,j , πj , ctj) messages posted in round r − κ.
3. For each (pkSIG,j , πj , ctj) such that SIG.Vf(pkSIG,j , πj , ctj) = 1, J ← J ∪ {idj}.
4. Compute d← TBIBE.Digest(pkTBIBE,J).
5. Compute skd

TBIBE,i ← ComputeKeyShare(mskTBIBE,i, d).
6. Broadcast(1λ, (skd

TBIBE,i, d)).
7. Reshare mskTBIBE,i to the respective validator role in the next-round committee.

Fig. 5: ΠPSIPE-TBIBE: Construction of PSIPE based on TBIBE.

13

Theorem 1. Assuming that: (i) Γ is a secure blockchain protocol (Def. 3,4,5) (ii) SIG is a EUF-CMA
secure signature scheme as per Definition 16. (iii) PKE is a IND-CPA secure signature scheme as per
Definition 16. (iv) TBIBE is a secure (Fig. 16) thresholdizable batched IBE scheme (as in Definition 1),
then our protocol ΠPSIPE-TBIBE in Figure 5 is a secure encryption with public self-incriminating proof
scheme PSIPE as per Definition 6.

We refer to Appendix B for the complete description, and security treatment, of our alternative PSIPE
protocol ΠPSIPE-eWE, which realizes PSIPE with extractable Witness Encryption and without assuming
any modifications of the underlying blockchain protocol. ΠPSIPE-eWE requires a stricter formalism of
blockchains from [41] defined in Appendix A.8 with distinguishable forking property (Def. 37) and evolved
predicate (Def. 38).

4 Threshold Encryption with Self-Incriminating Proof

In this section, we introduce a novel primitive called “threshold encryption with self-incriminating proof”
(TSIPE). As in the standard public key encryption case, any set of t+1 parties can perform an out-of-band
attack to decrypt a ciphertext without being detected. However, since multiple parties need to cooperate
in order to perform decryption, we do not necessarily need to force the SIP to be published. Instead, our
notion of TSIPE guarantees that one of the parties involved in decryption learns a SIP; this party can
then choose to leak the proof at any time. As discussed in the introduction this can be incentivized e.g.
through an smart contract logic on a tokenized Turing complete public ledger, but this could also be
motivated through more traditional means, e.g., the court system.

4.1 Formal Syntax and Security Definitions

Definition 11 (Threshold Encryption with Self-Incriminating Proof). A threshold encryption
with self-incriminating proof scheme TSIPE consists of the following probabilistic polynomial-time (PPT)
algorithms (Setup, Enc, ParDec, Combine, Vf) with the following syntax:

1. (pk, {ski}i∈[n]) ← Setup(1λ, n, t), the key generation algorithm is executed by a trusted third party.
It takes as input the security parameter λ, the number of parties n, and the threshold t and outputs
(pk, {ski}i∈[n]) where pk is the public key and ski is threshold decryption key share for party Pi. The
trusted third party distributes ski to each party Pi before execution starts.

2. c← Enc(pk, m), the encryption algorithm takes as input the public key pk and a message m ∈ {0, 1}λ.
It outputs a ciphertext c.

3. νi ← ParDec(ski, c), the partial decryption algorithm takes as input a secret key share ski and a
ciphertext c, outputting a partial decryption νi.

4. (m, π)/⊥ ← Combine(pk, ski, c, {νi}i∈T), the partial decryption combining algorithm that takes as
input the public key pk, a secret key share ski and the partial decryption {νi}i∈T for a set T where
|T | ≥ t + 1. It outputs a message m and a self-incriminating proof π, otherwise, it outputs ⊥.

5. 1/0 ← Vf(pk, c, π), the verification algorithm takes as input the public key pk, the ciphertext c, and
the self-incriminating proof π. It outputs 1 if π is a valid self-incriminating proof, otherwise outputs
0.

A TSIPE scheme must satisfy the following properties: Correctness (Definition 12), Unforgeability
(Definition 13), IND-CPA Security (Definition 14), and Self-Incriminating Proof Extractability
(Definition 15).

Correctness The notion of correctness ensures that: (1) a set of at least t honestly generated partial de-
cryptions always produce the original message and a correct self-incriminating proof, and (2) an honestly
generated self-incriminating proof always verifies.

Definition 12 (Correctness). A threshold encryption scheme self-incriminating proof scheme TSIPE =
(Setup, Enc, ParDec, Combine, Vf) is correct if for any security parameter λ, any n, t ∈ N where 0 < t < n
and any message m ∈ {0, 1}λ, we have the following two following properties:
• Combined decryption correctness: for any T ⊆ {ski}i∈[n] with |T | ≥ t + 1 and i ∈ T and any

message m ∈ {0, 1}λ we have that,

Pr

[
Combine(pk, ski, c, {νi}i∈T) = (m, π)

∣∣∣∣∣(pk, {ski}i∈[n])← Setup(1λ
, n, t)

c← Enc(pk, m)
∀i ∈ T : νi ← ParDec(ski, c)

]
= 1

14

• Self-incriminating proof correctness: for any T ⊆ {ski}i∈[n] with |T | ≥ t + 1 and i ∈ T and any
message m ∈ {0, 1}λ we have that,

Pr

[
Vf(pk, c, π) = 1

Combine(pk, ski, c, {νi}i∈T) = (m, π)

∣∣∣∣∣(pk, {ski}i∈[n])← Setup(1λ
, n, t)

c← Enc(pk, m)
∀i ∈ T : νi ← ParDec(ski, c)

]
= 1

Unforgeability. The notion of unforgeability ensures that an adversary should not be able to forge
self-incriminating proofs for a ciphertext. In the threshold case, our notion of unforgeability holds only in
the case where the party generating a ciphertext is not part of the decryption committee, i.e., when the
forger does not possess a secret key share. While we do not guarantee unforgeability against a member of
the decryption committee, we argue that this notion is sufficient for many applications where threshold
decryption is provided as a service for ciphertexts given as input by clients who are not in the decryption
committee. In this case, a decryption committee member generating a “forged” SIP for an arbitrary
ciphertext that they generate locally does not imply misbehavior.

We wish to guarantee security against two different attacks: 1. An adversary who is not part of the
decryption committee and tries to forge a SIP against the decryption committee; 2. A subset T of the
decryption committee with |T | ≤ t (i.e., without the power to decrypt) who tries to forge a SIP against the
decryption committee. The first scenario is captured by a variation of the game for Unforgeability against a
monolithic adversary with has access to the public key and a decryption oracle that we have defined for the
standard public key encryption scenario. In the context of threshold schemes, we define game GameUnforge1

TSIPE,A,
presented in Figure 6, where a monolithic adversary has access to the public key and to a decryption
oracle that will decrypt any ciphertext under any sufficiently large set of secret key shares, generating
a SIP under any secret key share. The second scenario is formalized in GameUnforge2

TSIPE,A1,...,Aa
, presented

in Figure 7. In this game, a subset of the decryption committee has access to an oracle that generates
decryption shares and another oracle that generates ciphertexts encrypting arbitrary messages while
keeping the encryption randomness secret. This captures the guarantee that subsets of the decryption
committee are not able to forge a SIP for a ciphertext that was generated by a third party but not yet
decrypted.

Requiring that the adversaries have a negligible advantage in both aforementioned games captures
the fact that we guarantee unforgeability only against an adversary who does not collude with the
decryption committee (or is part of the decryption committee itself). We formalize self-incriminating
proof unforgeability in Definition 13 via games GameUnforge1

TSIPE,A and GameUnforge2
TSIPE,A1,...,Aa

presented in Figures 6
and 7, respectively.

GameUnforge1
TSIPE,A

Game steps:

1. Initialize an empty list Q ← ∅
2. The adversary A picks n and t.
3. (pk, {ski}i∈[n])← Setup(1λ, n, t)

4. (c′, π′)← A
ODec

ski∈[n] (1λ, pk)

Oracle:

ODec
ski∈[n]

(j, T, c) :

1. Q ← Q∪ c
2. For i ∈ T , νi ← ParDec(ski, c)
3. (π, m)← Combine(pk, skj , c, {νi}i∈T)
4. return (π, m)

The adversary’s advantage in this game is:

AdvUnforge1
TSIPE,A = Pr

[
Vf(pk, c

′
, π

′) = 1 ∧ c
′

/∈ Q
]

Fig. 6: Self-Incriminating Proof Unforgeability Game for TSIPE with a monolithic adversary (A) given pk and oracle access to
ODec

ski∈[n]
(j, T, c).

Definition 13 (Unforgeability). A threshold encryption scheme self-incriminating proof scheme
TSIPE = (Setup, Enc, ParDec, Combine, Vf) is unforgeable if for any security parameter λ, for any n, t ∈ N
where 0 < t < n, for all PPT monolithic adversaries A and for all PPT (δ, Υ)-distributed adversaries
(A1, . . . ,Aa), the advantage AdvUnforge1

TSIPE,A of A in GameUnforge1
TSIPE,A (Figure 6) and the advantage AdvUnforge2

TSIPE,A of
(A1, . . . ,Aa) in GameUnforge2

TSIPE,A1,...,Aa
(Figure 7) are negligible.

15

GameUnforge2
TSIPE,A1,...,Aa

Game steps:

1. Initialize an empty list Q ← ∅
2. The (δ, Υ)-distributed adversary (A1, . . . ,Aa) picks n and t.
3. A1, . . . ,Aa chooses a subset T̃ ⊂ [n] of parties to corrupt, such that |T̃ | = a ≤ t.
4. (pk, {ski}i∈[n])← Setup(1λ, n, t)

5. The sub-adversaries A
OParDec

sk
i∈[n]\T̃

,OEnc
pk

1 (1λ, sk1), . . . ,A
OParDec

sk
i∈[n]\T̃

,OEnc
pk

a (1λ, ska) engage in an interactive protocol with ac-
cess to oracles OParDec

sk
i∈[n]\T̃

and OEnc
pk , at the end of which, A1 outputs (c′, π′).

Oracles:

OParDec
sk

i∈[n]\T̃
(i, c) :

1. Q ← Q∪ c
2. νi ← ParDec(ski, c)
3. return νi

OEnc
pk (m) :

1. c← Enc(pk, m)
2. return c

The adversary’s advantage in this game is:

AdvUnforge2
TSIPE,A = Pr

[
Vf(pk, c

′
, π

′) = 1 ∧ c
′

/∈ Q
]

Fig. 7: Self-Incriminating Proof Unforgeability Game for TSIPE with a (δ, Υ)-distributed adversary (A1, . . . ,Aa) given oracle
access to OParDec

sk
i∈[n]\T̃

(i, c) and OEnc
pk (m).

IND-CPA Security: In Definition 14, we formalize IND-CPA Security for TSIPE in the usual manner
via a game GameIND-CPA

TSIPE,A1,...,Aa
between a challenger and a (δ, Υ)-distributed adversary (A1, . . . ,Aa),

presented in Figure 8.

GameIND-CPA
TSIPE,A1,...,Aa

Game steps:

1. The (δ, Υ)-distributed adversary (A1, . . . ,Aa) picks n and t.
2. A1, . . . ,Aa chooses a subset T̃ ⊂ [n] of parties to corrupt, such that |T̃ | = a ≤ t.
3. (pk, {ski}i∈[n])← Setup(1λ, n, t)
4. The sub-adversariesA1(1λ, pk, sk1), . . . ,Aa(1λ, pk, ska) engage in an interactive protocol, at the end of which,A1 outputs

(st, m0, m1).

5. Sample b
$← {0, 1}

6. Compute cb ← Enc(pk, mb)
7. The sub-adversaries A1

(
1λ, st, pk, sk1, cb

)
, . . . ,Aa

(
1λ, st, pk, ska, cb

)
engage in an interactive protocol, at the end of

which, A1 outputs b′.
8. return b′

As there are only two outcomes, there is a 1
2 probability that a random guess will be correct, the adversary’s advantage in

this game is:

AdvIND-CPA
TSIPE,A1,...,Aa

=
∣∣∣Pr

[
b = b

′
]
−

1
2

∣∣∣
Fig. 8: IND-CPA Security Game for TSIPE scheme.

Definition 14 (IND-CPA Security). A threshold encryption scheme self-incriminating proof scheme
TSIPE = (Setup, Enc, ParDec, Combine, Vf) is IND-CPA secure if for any n, t ∈ N where 0 < t < n, and
for all PPT (δ, Υ)-distributed adversary (A1, . . . ,Aa) where |a| ≤ t, the advantage AdvIND-CPA

TSIPE,A1,...,Aa
of

(A1, . . . ,Aa) in GameIND-CPA
TSIPE,A1,...,Aa

(in Figure 8) is negligible.

Self-Incriminating Proof Extractability. We define self-incriminating proof extractability for Thresh-
old Encryption with Self-Incriminating Proof, via a game GameSIP-SEC

TSIPE,A1,...,Aa
between a challenger and

(δ, Υ)-distributed adversary A1, . . . ,Aa. The game is presented in Figure 9.
Observe that unlike the work of Dziembowski et al. [30] described in Sec. 2.3 and App. A.9, we require

an extractor kEXTi to not only take as input the transcript of fast calls to OH for a party holding ski,
but also the public setup parameters along with the secret key share ski itself. While on the surface this

16

GameSIP−SEC
TSIPE,A1,...,Aa

Game steps:

1. The (δ, Υ)-distributed adversary (A1, . . . ,Aa) picks n and t.
2. A1, . . . ,Aa chooses a subset T̃ ⊂ [n] of parties to corrupt, such that |T̃ | = a ≥ t + 1.
3. (pk, {ski}i∈[n])← Setup(1λ, n, t)
4. The sub-adversaries A1(1λ, pk, sk1), . . . ,Aa(1λ, pk, ska) engage in an interactive protocol with δ-bounded access to oracle
OH, at the end of which, A1 outputs (st, m0, m1).

5. Sample b
$← {0, 1}

6. Compute cb ← Enc(pk, mb)
7. The sub-adversaries A1

(
1λ, st, pk, sk1, cb

)
, . . . ,Aa

(
1λ, st, pk, ska, cb

)
engage in an interactive protocol with δ-bounded

access to oracle OH, at the end of which, A1 outputs, b′.
8. return b′

As there are only two outcomes, there is a 1
2 probability that a random guess will be correct, the adversary’s advantage in

this game is:

AdvSIP−SEC
TSIPE,A1,...,Aa

=
∣∣∣Pr

[
b = b

′
]
−

1
2

∣∣∣
Define extractor πi ← kEXTi(pp, c, ski, τ fast

i) for i ∈ [a] taking as input the public Setup values pp = (λ, n, t, pk), the ciphertext
c, secret key share ski, transcript τ fast

i of fast queries to oracle OH from sub-adversary Ai, and outputs a SIP πi with the
following success probability:

SuccTSIPE
kEXT = Pr

[
∃i ∈ [a] s.t. πi ← kEXTi(pp, c, ski, τ

fast
i) ∧ Vf(pk, cb, πi) = 1

]
Fig. 9: Self-Incriminating Proof Security Game for TSIPE scheme.

might seem like cheating, we point out that this does not make the extractor trivial. In particular, at
least t + 1 secret key shares should be required by any reasonable protocol in order to allow decryption.
Thus, since each extractor is individual and unable to communicate with the other extractors, we are not
giving it more power than any minimal party participating in the protocol. Furthermore, the notion is
closely related to the idea of a knowledge extractor for soundness in zero-knowledge proofs. In practice,
it is reasonable to assume that the Setup procedure is either carried out by a trusted third party or a
distributed key generation protocol. Hence, parties will only be convinced of the correctness of the setup
if there is a maliciously secure interactive protocol that has executed the setup, which will imply that the
secret key shares can be extracted at the moment of setup.

Definition 15 (Self-Incriminating Proof Extractability). A threshold encryption scheme self-
incriminating proof scheme TSIPE = (Setup, Enc, ParDec, Combine, Vf) has self-incriminating proof ex-
tractability if for any λ and n, t ∈ N where 0 < t < n, there exist knowledge extractors kEXT1, . . . , kEXTa

such that for every PPT (δ, Υ)-distributed adversary (A1, . . . ,Aa) where |a| ≥ t + 1 we have that,
SuccTSIPE

kEXT ≥ AdvSIP−SEC
TSIPE,A1,...,Aa

− negl(λ)

where AdvSIP−SEC
TSIPE,A1,...,Aa

is the advantage of A1, . . . ,Aa and SuccTSIPE
kEXT is the extractors’ success probability

in the GameSIP−SEC
TSIPE,A1,...,Aa

defined in Figure 9 and τ fast
j is a transcript of the queries that the sub-adversary

Aj has made to the oracle OH only in mode = fast (defined in Sec. 2.3).

4.2 Construction of TSIPE

In this section, we present a concrete construction of our threshold encryption with self-incriminating
TSIPE = (KGen, Enc, ParDec, Combine, Vf), which we call ΠTSIPE. The formal construction of our scheme
ΠTSIPE is described in Figure 10.

Overview of ΠTSIPE. We show a TSIPE construction, starting from a regular threshold encryption
scheme and embedding the computation of an MPC-hard function in the threshold decryption process,
using the input to this MPC-hard function to generate a SIP. The rationale is that we prevent the sub-
adversaries from executing the threshold decryption process within MPC in order to obtain the message
while discarding the SIP, which they cannot do as at least one sub-adversary must learn the input in
order to evaluate the MPC-hard function. A brief sketch of our protocol ΠTSIPE is described below:

To encrypt a message m, it samples two random s
$← {0, 1}n·(α−β−2) and z

$← {0, 1}β and then search
for β number of nonces w1, . . . , wβ ∈ {0, 1}α−β−2 by computing qi ← scratch(s, z, wi) such that the first ζ
bits of qi are zero, for all i ∈ [1, β] (as described in Step 2 in Figure 10), and we use its outputs to derive

17

Threshold Encryption with Self-Incriminating Proof Scheme: ΠTSIPE

Parameters: Security parameter λ, number of parties n and threshold t such that 0 < t < n, value α, β, ζ ∈ N with α ≥ 2β
(and ζ can be a function of β).
Building-blocks: A threshold encryption scheme TE = (Setup, Enc, ParDec, Combine), a commitment scheme CS = (Setup, Com),
an MPC-hard function scratch, a NIZKPoK proof system, and random oracles H1 : {0, 1}(n+β)·(α−β−2)+β2+β → {0, 1}λ, H2 :
{0, 1}(n+β)·(α−β−2)+β2+β → {0, 1}λ, H3 : {0, 1}∗ → {0, 1}α−β−2,H4 : {0, 1}∗ → {0, 1}λ. A pseudorandom function PRF :
{0, 1}(n+β)·(α−β−2)+β2+β → {0, 1}λ.

• Setup Phase: A trusted third party executes the Setup(1λ, n, t) algorithm as follows:
1. Run

(
pkTE, {skTE

i }i∈[n]

)
← TE.Setup

(
1λ, n, t

)
and ck← CS.Setup(1λ)

2. Compute cmski
= CS.Com(ck, skTE

i ; ρski
) where ρski

← H4(skTE
i) for i ∈ [n].

3. Set pk = (pkTE, ck, {cmski
}i∈[n])

4. Finally: (i) Output ski = (skTE
i , ρski

) to party Pi; and (ii) Output pk to all parties.
• Enc(pk, m):

1. Parse pk as (pkTE, ck, {cmski
}i∈[n])

2. Sample random s and z as: s
$← {0, 1}n·(α−β−2) and z

$← {0, 1}β .
3. Search for β pairs (wi, qi) by setting cnt = 1, i = 1, w1 = H3(pk∥s∥z∥cnt) and doing:

(a) While i ≤ β then do the following:
i. Compute qi ← scratch(s, z, wi)

ii. If the first ζ bits of qi are 0, then record wi, set cnt = cnt + 1, i = i + 1, wi+1 = H3(pk∥s∥z∥cnt), and go to
(a).

iii. Else, set cnt = cnt + 1 and wi = H3(pk∥s∥z∥cnt), and go to (i).
4. Set w = (w1∥ . . . ∥wβ), q = (q1∥ . . . ∥qβ), ρ1 = H1(s∥z∥w∥q), ρ2 = H2(s∥z∥w∥q).
5. Compute c1 ← CS.Com(ck, (s∥z∥w∥q∥m); ρ1), c2 ← TE.Enc (pkTE, s; ρ2) , c3 = PRF(s∥z∥w∥q) ⊕ m. Output c =

(c1, c2, c3, z).
• ParDec(ski, c):

1. Parse c as (c1, c2, c3, z) and ski as (skTE
i , ρski

).
2. Compute partial decryption νi ← TE.ParDec(skTE

i , c2). Output νi.
• Combine(pk, ski, c, {νi}i∈T):

1. Parse pk as (pkTE, ck, {cmski
}i∈[n]), ski as (skTE

i , ρski
) and c as (c1, c2, c3, z).

2. Decrypt c2, obtaining s← TE.Combine (pkTE, {νi}i∈T).
3. Search for β pairs (wi, qi) by setting cnt = 1, i = 1, w1 = H3(pk∥s∥z∥cnt) and doing:

(a) While i ≤ β then do the following:
i. Compute qi ← scratch(s, z, wi)

ii. If the first ζ bits of qi are 0, then record wi, set cnt = cnt + 1, i = i + 1, wi+1 = H3(pk∥s∥z∥cnt), and go to
(a).

iii. Else, set cnt = cnt + 1 and wi = H3(pk∥s∥z∥cnt), and go to (i).
4. Set w = (w1∥ . . . ∥wβ), q = (q1∥ . . . ∥qβ), ρ1 = H1(s∥z∥w∥q), ρ2 = H2(s∥z∥w∥q).
5. Compute m = c3 ⊕ PRF(s∥z∥w∥q).
6. Compute a self-incriminating proof as: a

πi ← NIZKPoK
{(

s, z, w, q, ρ1, ρ2, m, skTE
i , ρski

)∣∣(∨j∈[n]CS.Com(ck, skTE
i ; ρski

) = cmskj

)
∧

c1 = CS.Com(ck, (s∥z∥w∥q∥m); ρ1) ∧ c2 = TE.Enc (pkTE, s; ρ2) ∧ c3 = PRF(s∥z∥w∥q)⊕m}

7. Output (m, πi).
• Vf(pk, c, π):

1. Parse pk as (pkTE, ck, {cmski
}i∈[n]) and c as (c1, c2, c3, z).

2. Output 1 if π is a valid NIZKPoK for the statement above, otherwise output 0.

a Observe that any party with any ski for i ∈ [n] can compute a valid proof π ∈ {π1, . . . , πn}.

Fig. 10: Construction of Threshold Encryption with Self-Incriminating Proof

a one-time pad key as PRF(s∥z∥w∥q) using a pseudorandom function PRF where w = (w1∥ . . . ∥wβ) and
q = (q1∥ . . . ∥qβ). Our ciphertext c = (c1, c2, c3, z) is then composed by a commitment to c1 to s∥z∥w∥q∥m
using randomness ρ1 = H1(s∥z∥w∥q), an encryption c2 of s using randomness ρ2 = H2(s∥z∥w∥q) with
the underlying threshold encryption scheme, c3 = PRF(s∥z∥w∥q) ⊕m, akin to the technique of [31] but
using the MPC-hard function to obtain the extra values w, q needed to derive the key to encrypt message
m via the PRF. Note that z is revealed in the ciphertext in order to allow for SIP extractability (described
under TSIPE SIP extractability proof in Appendix C.2).

In order to decrypt c = (c1, c2, c3, z), a set of t+1 or more parties first threshold decrypt c2 and output
s, then the sub-adversaries must first compute w = (w1∥ . . . ∥wβ) and q = (q1∥ . . . ∥qβ) by computing an
MPC-hard function scratch(s, z, ·), which requires at least one of them to learn (s, z). Finally, we can
retrieve the message as m = c3 ⊕ PRF(s∥z∥w∥q).

Now notice that we can generate a SIP as a zero-knowledge proof showing knowledge of both the
message m and all the randomness s, z, w, q, ρ1, ρ2 used in generating the ciphertext c = (c1, c2, c3, z),
and of a secret key share for the underlying threshold encryption scheme, without revealing which secret

18

key share is used. A party simply verifies that SIP is a valid zero-knowledge proof for the statement above
with respect to ciphertext c = (c1, c2, c3, z).

Detecting Key Share Leakage in the Distributed Adversary Model. We analyze the security
of ΠTSIPE in the Distributed Adversary model, where it is assumed that multiple independent malicious
parties collaborate via an interactive protocol in order to break the TSIPE security guarantees. Hence,
we focus on the worst case where each malicious party keeps their decryption key share secret while
executing an arbitrary interactive protocol to achieve decryption without generating a SIP. However,
malicious parties could still send their shares to a single party who locally performs decryption. In
order to make it possible to generate a SIP in this case, we set cmski

= CS.Com(ck, skTE
i ; ρski

) such that
ρski
← H4(skTE

i) where H4 : {0, 1}∗ → {0, 1}λ is a random oracle. Since skTE
i has enough min-entropy (as

it is a secret share) and H4 is a random oracle, ρski
is indistinguishable from a uniformly random string of

same length to a PPT adversary and the commitment cmski remains computationally binding and hiding.
Generating cmski in this manner allows any party who learns ski to prove (potentially in zero knowledge)
that they have an opening to cmski

, i.e., proving that ski has leaked. Combining t + 1 such proofs for
different ski gives a SIP that any ciphertext generated under the corresponding pk may be decrypted. We
observe that a commitment cmski

can also be used in external mechanisms to disincentivize parties from
sharing their key shares, e.g., through the use of a smart contract where a proof of knowledge of ski can
be used to non-interactively extract value from party i.

Security Analysis. We formally state the security of ΠTSIPE in Theorem 2, which is proven in Ap-
pendix C.2.

Theorem 2. Assuming that: (i) TE is an IND-CPA threshold encryption scheme as per Definition 25,
(ii) CS is a secure commitment scheme as per Definition 19, (iii) scratch is a correct and secure MPC-
hard function as per Figure 1, (iv) NIZKPoK is a secure non-interactive zero-knowledge proof of knowledge
system as per Definition 28, and (v) H1, H2, and H3 are random oracles. Let d, α, β, ζ ∈ N with α ≥ 2β
and β ∗ (β− ζ) ≥ 2λ (where ζ can be a function of β), s ∈ {0, 1}n·(α−β−2). Also, let η = β · (nd+1) ·2ζ+1,
Υ ≤ β · 2ζ−3 and δ ≤ d − 1. Then our protocol ΠTSIPE is a secure threshold encryption with self-
incriminating proof scheme TSIPE as per Definition 11 with η-bounded parties against a (δ, Υ)-distributed
adversary A1,TSIPE, . . . ,Aa,TSIPE (defined in Sec. 2.3).

References

1. Agarwal, A., Fernando, R., Pinkas, B.: Efficiently-thresholdizable batched identity based encryption, with
applications. Cryptology ePrint Archive, Report 2024/1575 (2024), https://eprint.iacr.org/2024/1575

2. Alwen, J., Katz, J., Lindell, Y., Persiano, G., shelat, a., Visconti, I.: Collusion-free multiparty computation in
the mediated model. In: Halevi, S. (ed.) Advances in Cryptology – CRYPTO 2009. Lecture Notes in Computer
Science, vol. 5677, pp. 524–540. Springer Berlin Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20,
2009). https://doi.org/10.1007/978-3-642-03356-8_31

3. Alwen, J., Katz, J., Maurer, U., Zikas, V.: Collusion-preserving computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012. Lecture Notes in Computer Science,
vol. 7417, pp. 124–143. Springer Berlin Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2012).
https://doi.org/10.1007/978-3-642-32009-5_9

4. Alwen, J., Shelat, A., Visconti, I.: Collusion-free protocols in the mediated model. In: Wagner, D.A. (ed.) Ad-
vances in Cryptology - CRYPTO 2008, 28th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5157, pp. 497–514. Springer
(2008). https://doi.org/10.1007/978-3-540-85174-5_28, https://doi.org/10.1007/978-3-540-85174-5_28

5. Barker, E.: NIST SP 800-57 Part 1 Rev. 5 - Recommendation for Key Management: Part 1 – General. National
Institute of Standards and Technology (May 2020), https://csrc.nist.gov/pubs/sp/800/57/pt1/r4/final

6. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) Advances in Cryptology –
CRYPTO’92. Lecture Notes in Computer Science, vol. 740, pp. 390–420. Springer Berlin Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 16–20, 1993). https://doi.org/10.1007/3-540-48071-4_28

7. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) Advances in Cryptology
– EUROCRYPT’94. Lecture Notes in Computer Science, vol. 950, pp. 92–111. Springer Berlin Heidelberg,
Germany, Perugia, Italy (May 9–12, 1995). https://doi.org/10.1007/BFb0053428

8. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty compu-
tation. In: Paterson, K.G. (ed.) Advances in Cryptology – EUROCRYPT 2011. Lecture Notes in Computer
Science, vol. 6632, pp. 169–188. Springer Berlin Heidelberg, Germany, Tallinn, Estonia (May 15–19, 2011).
https://doi.org/10.1007/978-3-642-20465-4_11

19

https://eprint.iacr.org/2024/1575
https://doi.org/10.1007/978-3-642-03356-8_31
https://doi.org/10.1007/978-3-642-32009-5_9
https://doi.org/10.1007/978-3-540-85174-5_28
https://doi.org/10.1007/978-3-540-85174-5_28
https://csrc.nist.gov/pubs/sp/800/57/pt1/r4/final
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/978-3-642-20465-4_11

9. Benhamouda, F., Halevi, S., Krawczyk, H., Miao, A., Rabin, T.: Threshold cryptography as a service (in the
multiserver and YOSO models). In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022: 29th
Conference on Computer and Communications Security. pp. 323–336. ACM Press, Los Angeles, CA, USA
(Nov 7–11, 2022). https://doi.org/10.1145/3548606.3559397

10. Bentov, I., Pass, R., Shi, E.: Snow white: Provably secure proofs of stake. Cryptology ePrint Archive, Report
2016/919 (2016), https://eprint.iacr.org/2016/919

11. Blakley, G.R.: Safeguarding cryptographic keys. In: 1979 International Workshop on Managing Require-
ments Knowledge, MARK 1979, New York, NY, USA, June 4-7, 1979. pp. 313–318. IEEE (1979).
https://doi.org/10.1109/MARK.1979.8817296, https://doi.org/10.1109/MARK.1979.8817296

12. Blum, M., Santis, A.D., Micali, S., Persiano, G.: Noninteractive zero-knowledge. SIAM J. Comput. 20(6),
1084–1118 (1991). https://doi.org/10.1137/0220068, https://doi.org/10.1137/0220068

13. Boneh, D., Partap, A., Rotem, L.: Accountability for misbehavior in threshold decryption via threshold
traitor tracing. In: Reyzin, L., Stebila, D. (eds.) Advances in Cryptology – CRYPTO 2024, Part VII. Lecture
Notes in Computer Science, vol. 14926, pp. 317–351. Springer, Cham, Switzerland, Santa Barbara, CA, USA
(Aug 18–22, 2024). https://doi.org/10.1007/978-3-031-68394-7_11

14. Boneh, D., Partap, A., Rotem, L.: Traceable secret sharing: Strong security and efficient constructions. In:
Reyzin, L., Stebila, D. (eds.) Advances in Cryptology – CRYPTO 2024, Part V. Lecture Notes in Computer
Science, vol. 14924, pp. 221–256. Springer, Cham, Switzerland, Santa Barbara, CA, USA (Aug 18–22, 2024).
https://doi.org/10.1007/978-3-031-68388-6_9

15. Brorsson, J., David, B., Gentile, L., Pagnin, E., Wagner, P.S.: PAPR: Publicly auditable privacy revocation
for anonymous credentials. In: Rosulek, M. (ed.) Topics in Cryptology – CT-RSA 2023. Lecture Notes in
Computer Science, vol. 13871, pp. 163–190. Springer, Cham, Switzerland, San Francisco, CA, USA (Apr 24–
27, 2023). https://doi.org/10.1007/978-3-031-30872-7_7

16. Campanelli, M., David, B., Khoshakhlagh, H., Konring, A., Nielsen, J.B.: Encryption to the future - A
paradigm for sending secret messages to future (anonymous) committees. In: Agrawal, S., Lin, D. (eds.)
Advances in Cryptology – ASIACRYPT 2022, Part III. Lecture Notes in Computer Science, vol. 13793, pp.
151–180. Springer, Cham, Switzerland, Taipei, Taiwan (Dec 5–9, 2022). https://doi.org/10.1007/978-3-031-
22969-5_6

17. Cascudo, I., David, B., Garms, L., Konring, A.: YOLO YOSO: Fast and simple encryption and secret sharing
in the YOSO model. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology – ASIACRYPT 2022, Part I.
Lecture Notes in Computer Science, vol. 13791, pp. 651–680. Springer, Cham, Switzerland, Taipei, Taiwan
(Dec 5–9, 2022). https://doi.org/10.1007/978-3-031-22963-3_22

18. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2),
84–88 (1981). https://doi.org/10.1145/358549.358563, https://doi.org/10.1145/358549.358563

19. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In:
20th Annual ACM Symposium on Theory of Computing. pp. 11–19. ACM Press, Chicago, IL, USA (May 2–4,
1988). https://doi.org/10.1145/62212.62214

20. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y. (ed.) Advances in Cryptology – CRYPTO’94.
Lecture Notes in Computer Science, vol. 839, pp. 257–270. Springer Berlin Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 21–25, 1994). https://doi.org/10.1007/3-540-48658-5_25

21. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes se-
cure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003).
https://doi.org/10.1137/S0097539702403773, https://doi.org/10.1137/S0097539702403773

22. Dahl, M., Joye, M., Danjou, C., Rotaru, D., Demmler, D., Smart, N., Frederiksen, T., Ivanov, P., Thibault,
L.T.: fhevm - confidential evm smart contracts using fully homomorphic encryption. Tech. rep., Zama (2023),
https://github.com/zama-ai/fhevm/blob/main/fhevm-whitepaper.pdf

23. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L., Juels, A.: Flash boys 2.0:
Frontrunning in decentralized exchanges, miner extractable value, and consensus instability. In: 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. pp. 910–927. IEEE
(2020). https://doi.org/10.1109/SP40000.2020.00040, https://doi.org/10.1109/SP40000.2020.00040

24. Damgård, I., Damgård, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confidential benchmarking based on multi-
party computation. In: Grossklags, J., Preneel, B. (eds.) FC 2016: 20th International Conference on Financial
Cryptography and Data Security. Lecture Notes in Computer Science, vol. 9603, pp. 169–187. Springer Berlin
Heidelberg, Germany, Christ Church, Barbados (Feb 22–26, 2016). https://doi.org/10.1007/978-3-662-54970-
4_10

25. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat homomorphic
encryption. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012. Lecture Notes
in Computer Science, vol. 7417, pp. 643–662. Springer Berlin Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 19–23, 2012). https://doi.org/10.1007/978-3-642-32009-5_38

26. David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-secure, semi-synchronous proof-
of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2018, Part II.
Lecture Notes in Computer Science, vol. 10821, pp. 66–98. Springer, Cham, Switzerland, Tel Aviv, Israel
(Apr 29 – May 3, 2018). https://doi.org/10.1007/978-3-319-78375-8_3

20

https://doi.org/10.1145/3548606.3559397
https://eprint.iacr.org/2016/919
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1137/0220068
https://doi.org/10.1137/0220068
https://doi.org/10.1007/978-3-031-68394-7_11
https://doi.org/10.1007/978-3-031-68388-6_9
https://doi.org/10.1007/978-3-031-30872-7_7
https://doi.org/10.1007/978-3-031-22969-5_6
https://doi.org/10.1007/978-3-031-22969-5_6
https://doi.org/10.1007/978-3-031-22963-3_22
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1137/S0097539702403773
https://github.com/zama-ai/fhevm/blob/main/fhevm-whitepaper.pdf
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-78375-8_3

27. Desmedt, Y.: Society and group oriented cryptography: A new concept. In: Pomerance, C. (ed.) Advances
in Cryptology – CRYPTO’87. Lecture Notes in Computer Science, vol. 293, pp. 120–127. Springer Berlin
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 1988). https://doi.org/10.1007/3-540-48184-2_-
8

28. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) Advances in Cryptology –
CRYPTO’89. Lecture Notes in Computer Science, vol. 435, pp. 307–315. Springer, New York, USA, Santa
Barbara, CA, USA (Aug 20–24, 1990). https://doi.org/10.1007/0-387-34805-0_28

29. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6),
644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638

30. Dziembowski, S., Faust, S., Lizurej, T.: Individual cryptography. In: Handschuh, H., Lysyanskaya, A. (eds.)
Advances in Cryptology – CRYPTO 2023, Part II. Lecture Notes in Computer Science, vol. 14082, pp. 547–579.
Springer, Cham, Switzerland, Santa Barbara, CA, USA (Aug 20–24, 2023). https://doi.org/10.1007/978-3-
031-38545-2_18

31. Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly verifiable secret sharing and
its applications. In: Nyberg, K. (ed.) Advances in Cryptology – EUROCRYPT’98. Lecture Notes in Computer
Science, vol. 1403, pp. 32–46. Springer Berlin Heidelberg, Germany, Espoo, Finland (May 31 – Jun 4, 1998).
https://doi.org/10.1007/BFb0054115

32. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and applications. In: Oswald,
E., Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015, Part II. Lecture Notes in Computer
Science, vol. 9057, pp. 281–310. Springer Berlin Heidelberg, Germany, Sofia, Bulgaria (Apr 26–30, 2015).
https://doi.org/10.1007/978-3-662-46803-6_10

33. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs obfuscation and ex-
tractable witness encryption with auxiliary input. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology
– CRYPTO 2014, Part I. Lecture Notes in Computer Science, vol. 8616, pp. 518–535. Springer Berlin Heidel-
berg, Germany, Santa Barbara, CA, USA (Aug 17–21, 2014). https://doi.org/10.1007/978-3-662-44371-2_29

34. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh, D., Roughgar-
den, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium on Theory of Computing. pp. 467–476. ACM
Press, Palo Alto, CA, USA (Jun 1–4, 2013). https://doi.org/10.1145/2488608.2488667

35. Gentry, C., Halevi, S., Krawczyk, H., Magri, B., Nielsen, J.B., Rabin, T., Yakoubov, S.: YOSO: you only speak
once - secure MPC with stateless ephemeral roles. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology
- CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August
16-20, 2021, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12826, pp. 64–93. Springer (2021).
https://doi.org/10.1007/978-3-030-84245-1_3, https://doi.org/10.1007/978-3-030-84245-1_3

36. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for
protocols with honest majority. In: Aho, A. (ed.) 19th Annual ACM Symposium on Theory of Computing.
pp. 218–229. ACM Press, New York City, NY, USA (May 25–27, 1987). https://doi.org/10.1145/28395.28420

37. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run Turing machines on
encrypted data. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013, Part II. Lecture
Notes in Computer Science, vol. 8043, pp. 536–553. Springer Berlin Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 18–22, 2013). https://doi.org/10.1007/978-3-642-40084-1_30

38. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message
attacks. SIAM J. Comput. 17(2), 281–308 (1988). https://doi.org/10.1137/0217017, https://doi.org/10.1137/
0217017

39. Gong, J., Luo, J., Wee, H.: Traitor tracing with N1/3-size ciphertexts and O(1)-size keys from k-Lin. In:
Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023, Part III. Lecture Notes in
Computer Science, vol. 14006, pp. 637–668. Springer, Cham, Switzerland, Lyon, France (Apr 23–27, 2023).
https://doi.org/10.1007/978-3-031-30620-4_21

40. Gong, T., Kate, A., Maji, H.K., Nguyen, H.H.: Disincentivize collusion in verifiable secret sharing. In: Fehr,
S., Fouque, P. (eds.) Advances in Cryptology - EUROCRYPT 2025 - 44th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Madrid, Spain, May 4-8, 2025, Proceedings, Part
V. Lecture Notes in Computer Science, vol. 15605, pp. 34–64. Springer (2025). https://doi.org/10.1007/978-
3-031-91092-0_2, https://doi.org/10.1007/978-3-031-91092-0_2

41. Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using blockchains. In: Kalai, Y., Reyzin,
L. (eds.) TCC 2017: 15th Theory of Cryptography Conference, Part I. Lecture Notes in Computer Sci-
ence, vol. 10677, pp. 529–561. Springer, Cham, Switzerland, Baltimore, MD, USA (Nov 12–15, 2017).
https://doi.org/10.1007/978-3-319-70500-2_18

42. Goyal, V., Kothapalli, A., Masserova, E., Parno, B., Song, Y.: Storing and retrieving secrets on a blockchain.
In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022: 25th International Conference on Theory and
Practice of Public Key Cryptography, Part I. Lecture Notes in Computer Science, vol. 13177, pp. 252–282.
Springer, Cham, Switzerland, Virtual Event (Mar 8–11, 2022). https://doi.org/10.1007/978-3-030-97121-2_10

43. Goyal, V., Song, Y., Srinivasan, A.: Traceable secret sharing and applications. In: Malkin, T., Peikert, C.
(eds.) Advances in Cryptology – CRYPTO 2021, Part III. Lecture Notes in Computer Science, vol. 12827,
pp. 718–747. Springer, Cham, Switzerland, Virtual Event (Aug 16–20, 2021). https://doi.org/10.1007/978-3-
030-84252-9_24

21

https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-031-38545-2_18
https://doi.org/10.1007/978-3-031-38545-2_18
https://doi.org/10.1007/BFb0054115
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-44371-2_29
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1137/0217017
https://doi.org/10.1137/0217017
https://doi.org/10.1137/0217017
https://doi.org/10.1007/978-3-031-30620-4_21
https://doi.org/10.1007/978-3-031-91092-0_2
https://doi.org/10.1007/978-3-031-91092-0_2
https://doi.org/10.1007/978-3-031-91092-0_2
https://doi.org/10.1007/978-3-319-70500-2_18
https://doi.org/10.1007/978-3-030-97121-2_10
https://doi.org/10.1007/978-3-030-84252-9_24
https://doi.org/10.1007/978-3-030-84252-9_24

44. Jakobsen, T.P., Nielsen, J.B., Orlandi, C.: A framework for outsourcing of secure computation. In: Ahn,
G., Oprea, A., Safavi-Naini, R. (eds.) Proceedings of the 6th edition of the ACM Workshop on Cloud
Computing Security, CCSW ’14, Scottsdale, Arizona, USA, November 7, 2014. pp. 81–92. ACM (2014).
https://doi.org/10.1145/2664168.2664170, https://doi.org/10.1145/2664168.2664170

45. Kelkar, M., Babel, K., Daian, P., Austgen, J., Buterin, V., Juels, A.: Complete knowledge: Preventing en-
cumbrance of cryptographic secrets. Cryptology ePrint Archive, Report 2023/044 (2023), https://eprint.iacr.
org/2023/044

46. Kiayias, A., Tang, Q.: How to keep a secret: leakage deterring public-key cryptosystems. In: Sadeghi, A.R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013: 20th Conference on Computer and Communications Security.
pp. 943–954. ACM Press, Berlin, Germany (Nov 4–8, 2013). https://doi.org/10.1145/2508859.2516691

47. Li, R., Li, Y., Wang, Q., Duan, S., Wang, Q., Ryan, M.: Accountable decryption made formal and practical.
IACR Cryptol. ePrint Arch. p. 1519 (2023), https://eprint.iacr.org/2023/1519

48. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In: Coron, J.,
Nielsen, J.B. (eds.) Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 10211, pp. 643–673 (2017). https://doi.org/10.1007/978-3-
319-56614-6_22, https://doi.org/10.1007/978-3-319-56614-6_22

49. Project, O.P.: The oasis blockchain platform. Tech. rep., Oasis Protocol Foundation (2020)
50. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Tech. rep., USA (1996)
51. Rondelet, A., Kilbourn, Q.: Threshold encrypted mempools: Limitations and considerations. arXiv preprint

arXiv:2307.10878 (2023)
52. Ryan, M.D.: Making decryption accountable. In: Stajano, F., Anderson, J., Christianson, B., Matyás,

V. (eds.) Security Protocols XXV - 25th International Workshop, Cambridge, UK, March 20-22, 2017,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 10476, pp. 93–98. Springer (2017).
https://doi.org/10.1007/978-3-319-71075-4_11, https://doi.org/10.1007/978-3-319-71075-4_11

53. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979).
https://doi.org/10.1145/359168.359176, https://doi.org/10.1145/359168.359176

54. Yin, M., Malkhi, D., Reiter, M.K., Golan-Gueta, G., Abraham, I.: HotStuff: BFT consensus with linearity and
responsiveness. In: Robinson, P., Ellen, F. (eds.) 38th ACM Symposium Annual on Principles of Distributed
Computing. pp. 347–356. Association for Computing Machinery, Toronto, ON, Canada (Jul 29 – Aug 2, 2019).
https://doi.org/10.1145/3293611.3331591

55. Young, A.L., Yung, M.: Cryptovirology: Extortion-based security threats and countermeasures. In: 1996 IEEE
Symposium on Security and Privacy. pp. 129–140. IEEE Computer Society Press, Oakland, CA, USA (1996).
https://doi.org/10.1109/SECPRI.1996.502676

22

https://doi.org/10.1145/2664168.2664170
https://doi.org/10.1145/2664168.2664170
https://eprint.iacr.org/2023/044
https://eprint.iacr.org/2023/044
https://doi.org/10.1145/2508859.2516691
https://eprint.iacr.org/2023/1519
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-71075-4_11
https://doi.org/10.1007/978-3-319-71075-4_11
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1109/SECPRI.1996.502676

Supplementary Material

A. Additional Preliminaries
A.1. Signatures
A.2. Commitments
A.3. Extractable Witness Encryption
A.4. Threshold Encryption
A.5. Non-interactive Zero-Knowledge
A.6. Pseudo Random Function
A.7. Threshold Batched Identity Based Encryption
A.8. Proof-of-Stake Blockchains (extended formalism)

B. PSIPE-eWE Construction and Security
B.1. PSIPE-eWE from standard assumptions
B.2. PSIPE-eWE Security Analysis

C. Security Proofs
C.1. PSIPE-TBIBE Security
C.2. TSIPE Security

A Additional Preliminaries

In this section, we provide our additional technical preliminaries.

A.1 Digital Signatures

Here, we describe the general syntax for digital signature in Definition 16.

Definition 16 (Digital Signature). A digital signature scheme is a tuple of PPT algorithms SIG =
(KGen, Sign, Vf) defined as follows:

1. (pkSIG, skSIG) ← KGen(1λ) is a randomized key generation algorithm that takes as input the security
parameter 1λ and outputs a key-pair (pkSIG, skSIG);

2. σ ← Sign(skSIG, m), the signing algorithm takes an input a a secret key skSIG and a message m ∈
{0, 1}λ, outputting a signature σ;

3. 1/0 ← Vf(pkSIG, m, σ), the verification algorithm outputs 1 if σ is a valid signature on m generated
with skSIG, and outputs 0 otherwise.

A signature scheme SIG must satisfy the standard notions of correctness (Definition 17) and unforge-
ability (Definition 18) (i.e., existentially unforgeable against adaptive chosen message attacks (EUF-
CMA) [38]) described below.

Definition 17 (Correctness). A signature scheme SIG = (KGen, Sign, Vf) is correct if for any security
parameter λ and any message m ∈ {0, 1}λ, we have that

Pr
[

Vf(pkSIG, m, σ) = 1

∣∣∣∣∣(pkSIG, skSIG)← KGen(1λ

σ ← Sign(pkSIG, skSIG, m)

]
= 1

Definition 18 (Unforgeability). A signature scheme SIG = (KGen, Sign, Vf) is unforgeable if for any
security parameter λ and for all PPT adversaries A, advantage AdvUnforge

SIG,A of the GameUnforge
SIG,A (in Figure 11)

is negligible.

23

GameUnforge
SIG,A

Game steps:

1. Initialize an empty list Q ← ∅
2. (pkSIG, skSIG)← KGen(1λ)
3. (m′, σ′)← AOSign

skSIG (1λ, pkSIG)

Oracle:

OSign
skSIG

(m) :
1. Q ← Q∪m
2. σ ← Sign(pkSIG, skSIG, m)
3. return σ

The adversary’s advantage in this game is:

AdvUnforge
SIG,A = Pr

[
Vf(pkSIG, m′, σ′) = 1 ∧m′ /∈ Q

]
Fig. 11: Unforgeability Game for SIG scheme executed between a challenger and an adversary A given
unlimited oracle access to OSign

skSIG
(m).

A.2 Commitments

Here, we recall the syntax for a commitment scheme.

Definition 19 (Commitment Scheme). A commitment scheme CS consists of the tuple of PPT algo-
rithms (Setup, Com) defined as follows:

1. ck← Setup(1λ), is a randomized algorithm that takes as input the security parameter 1λ and outputs
a commitment key ck. The commitment key ck defines a message space M and a randomizer space
R.

2. cm ← Com(ck, s; ρ), the commitment algorithm takes as inputs the commitment key ck, an input
message s ∈M and randomness ρ ∈ R, and outputs a commitment cm.

A commitment scheme CS must satisfy the standard properties of binding (Definition 20) and hiding
(Definition 21) described below.

Definition 20 (Binding). A commitment scheme CS = (Setup, Com) is binding if for any security
parameter λ, if no PPT adversary can come up with two pairs (s, ρ), (s′, ρ′) such that s ̸= s′ and
Com(ck, s; ρ) = Com(ck, s′; ρ′) for ck← Setup(1λ).

Definition 21 (Hiding). A commitment scheme CS = (Setup, Com) is hiding if for any security pa-
rameter λ, for any PPT adversary A = (A1,A2), advantage AdvHIDE

CS,A of the GameHIDE
CS,A (in Figure 12) is

negligible.

GameHIDE
CS,A

Game steps:

1. ck← Setup(1λ)
2. (st, s0, s1)← A1(1λ, ck)
3. Sample b

$← {0, 1}
4. cmb ← Com(ck, sb; ρ)
5. b′ ← A2(1λ, st, cmb)
6. return b′

As there are only two outcomes, there is a 1
2 probability that a random guess will be correct, the adversary’s

advantage in this game is:
AdvHIDE

CS,A =
∣∣∣Pr

[
b = b′]− 1

2

∣∣∣
Fig. 12: Hiding Game for CS scheme.

24

A.3 Extractable Witness Encryption: Syntax and Security

Here, we recall the syntax and security definition of extractable witness encryption following broadly the
definitions of [34,37] as presented in [33].

Definition 22 (Extractable Witness Encryption). Let LeWE be an NP language with witness re-
lation ReWE. An extractable witness encryption scheme eWE for language LeWE with message space
M⊆ {0, 1}∗ consists of the following two polynomial-time algorithms (Enc, Dec) are as follows:

1. c ← Enc(1λ,LeWE, inst, m), the encryption algorithm takes as input a security parameter 1λ, the
language LeWE, an unbounded-length string inst, and a message m ∈M, and outputs a ciphertext c.

2. m/⊥ ← Dec(c, wit), the decryption algorithm takes as input a ciphertext c and an unbounded-length
string (witness) wit, and outputs a message m, otherwise output ⊥.

A scheme eWE must satisfy the following properties: Correctness (Definition 23) and Extractable
Security (Definition 24) described below.

Definition 23 (Correctness). An extractable witness encryption scheme eWE = (Enc, Dec) for lan-
guage LeWE is correct if for any security parameter λ, for any message m ∈M, and for any inst ∈ LeWE
such that ReWE ∈ (inst, wit) holds, we have that,

Pr
[
Dec(wit, c) = m | Enc(1λ,LeWE, inst, m)

]
= 1

Extractable Security. An extractable witness encryption scheme is said to be extractable secure if an
adversary can learn some non-trivial information about the encrypted message only if it knows a witness
for the instance used during encryption. We define the formal extractable security in Definition 24.

Definition 24 (Extractable Security). An extractable witness encryption scheme eWE = (Enc, Dec)
for language LeWE with witness relation ReWE is extractable secure if for any security parameter λ and for
all PPT adversary A = (A1,A2) and polynomial p(·), there exists a PPT extractor EXT and polynomial
q(·) such that for every pair of messages m0, m1 ∈M and for any inst ∈ LeWE,

AdvEXT-SEC
eWE,A ≥ 1

2 + 1
p(λ)

⇒ SuccEXT-SEC
eWE,EXT ≥

1
q(λ)

where AdvEXT-SEC
eWE,A is advantage of an adversary A = (A1,A2) in GameEXT-SEC

eWE,A (in Figure 13) and
SuccEXT-SEC

eWE,EXT is the success probability of the extractor EXT for extracting the witness wit such that
(inst, wit) ∈ ReWE.

A.4 Threshold Encryption

We here outline the formal algorithms and definitions we assume for threshold decryption.

Definition 25 (Threshold Encryption). A threshold encryption scheme TE consists of the tuple of
PPT algorithms (Setup, Enc, ParDec, Combine) with the following requirements:

1. (pk, {ski}i∈[n])← Setup(1λ, n, t), is a randomized algorithm that takes as input the security parameter
1λ, the number of shares n and the threshold t. It computes key parameters threshold encryption where
pk is the public encryption key and ski is threshold decryption key share for party Pi.

2. c← Enc(pk, msg; ρ), is a randomized algorithm that takes as input the public key pk, a message msg
and randomness ρ, outputting a ciphertext ct. If ρ is not explicitly written, it is assumed that it is
sampled uniformly at random.

3. µi ← ParDec(pk, ski, ct), the partial decryption algorithm takes as input the public key pk, the secret
key share ski and a ciphertext ct, producing a partial decryption µi.

4. msg/⊥ ← Combine(pk, ct, {µi}i∈T), the partial decryption combine algorithm that takes as input the
public key pk, the partial decryption {µi}i∈T for a set T where |T | ≥ t + 1. It outputs the original
message msg which ct encrypts, otherwise output ⊥.

25

GameEXT-SEC
eWE,A

Game steps:

1. (st, inst, m0, m1)← A1(1λ,LeWE)
2. Sample b

$← {0, 1}
3. cb ← Enc(1λ,LeWE, inst, mb)
4. b′ ← A2(1λ, st, cb)
5. return b′

As there are only two outcomes, there is a 1
2 probability that a random guess will be correct, the adversary’s

advantage in this game is:
AdvEXT-SEC

eWE,A = Pr
[
b = b′]

The extractor EXT’s success probability is:

SuccEXT-SEC
eWE,EXT = Pr

[
(inst, wit) ∈ ReWE

∣∣wit← EXTA(·)(1λ,LeWE, inst, m0, m1)
]

Fig. 13: Extractable Security Game for eWE scheme.

We require a threshold encryption scheme TE satisfy the standard properties: Correctness (Definition 26)
and IND-CPA Security (Definition 27) below.

Definition 26 (Correctness). A threshold encryption scheme TE = (Setup, Enc, ParDec, Combine) is
correct for any security parameter λ with correctly generated keys (pk, {ski}i∈[n]) ← Setup(1λ, n, t) and
for any msg ∈ {0, 1}λ (from the permissible domain) where c← Enc(pk, msg), we have:

∀T ⊂ [n] with |T | ≥ t + 1 : Pr
[
Combine

(
pk, ct, {ParDec(pk, ski, ct)}i∈T

)
= msg

]
= 1

Definition 27 (IND-CPA Security). A threshold encryption scheme TE =
(Setup, Enc, ParDec, Combine) is IND-CPA secure if for any n and t where 0 < t < n, and for all
PPT adversaries A, advantage AdvIND-CPA

TE,A of the GameIND-CPA
TE,A (in Figure 14) is negligible.

GameIND-CPA
TE,A

Game steps:

1. The adversary A picks n and t.
2. A chooses a subset T̃ ⊂ [n] of parties to corrupt, such that |T̃ | ≤ t.
3. (pk, {ski}i∈[n])← Setup(1λ, n, t)
4. (m0, m1)← A(1λ, pk, {ski}i∈T̃)
5. Sample b

$← {0, 1}
6. cb ← Enc(pk, mb)
7. b′ ← A(1λ, pk, {ski}i∈T̃ , cb, {µb,i}i∈T̃)
8. return b′

As there are only two outcomes, there is a 1
2 probability that a random guess will be correct, the adversary’s

advantage in this game is:
AdvIND-CPA

TE,A =
∣∣∣Pr

[
b = b′]− 1

2

∣∣∣
Fig. 14: IND-CPA Security Game for TE scheme.

A.5 Non-interactive Zero-Knowledge

We here outline the formal algorithms and definitions we assume for non-interactive zero-knowledge
(NIZK) [12] proof system.

26

Definition 28 (Non-Interactive Zero-Knowledge Proof). A non-interactive zero-knowledge proof
system NIZK for an NP-language LNIZK with witness relation RNIZK is a tuple of PPT algorithms
(Gen, P, V) such that:

1. crs ← Gen(1λ), is a randomized algorithm that takes as input the security parameter 1λ and outputs
a common random string crs.

2. π ← P(crs, inst, wit), the prover algorithm takes as input a common random string crs, a statement
inst ∈ LNIZK and a witness wit and outputs a proof π.

3. 1/0← V(crs, inst, π), the verifier algorithm takes as input a common random string crs, a statement
inst ∈ LNIZK and a proof π. It outputs 1 if it accepts the proof π, otherwise outputs 0.

We require a NIZK proof system NIZK = (Gen, P, V) must satisfy the following properties: Com-
pleteness, Soundness, and Zero-Knowledge described below. A NIZK proof system satisfying all
these properties is called a secure NIZK [12] proof system.

Definition 29 (Completeness). A NIZK proof system NIZK = (Gen, P, V) for an NP-language LNIZK
with witness relation RNIZK is correct if for any security parameter λ, and for any inst ∈ LNIZK such that
RNIZK ∈ (inst, wit) holds, we have that,

Pr
[
V(crs, inst, P(crs, inst, wit)) | crs← Gen(1λ)

]
= 1

Definition 30 (Soundness). A NIZK proof system NIZK = (Gen, P, V) for an NP-language LNIZK with
witness relation RNIZK is sound if for any security parameter λ, for all PPT provers P∗ and for any
inst /∈ LNIZK, then there exists a negligible function negl(·), such that,

Pr
[

V(crs, inst, π) = 1

∣∣∣∣∣crs← Gen(1λ)
π ← P∗(crs)

]
≤ negl(λ)

Definition 31 (Zero-Knowledge). A NIZK proof system NIZK = (Gen, P, V) for an NP-language
LNIZK with witness relation RNIZK is zero-knowledge if for any security parameter λ there exists a PPT
simulator S such that for every RNIZK ∈ (inst, wit), the following distribution ensembles are computation-
ally indistinguishable,{

(crs, π)

∣∣∣∣∣crs← Gen(1λ)
π ← P(crs, inst, wit)

}
λ∈N

≈

{
(crs, π)

∣∣∣∣∣crs← Gen(1λ)
π ← S(1λ, crs, inst)

}
λ∈N

NIZK Proof-of-Knowledge (NIZKPoK) [6]. A proof-of-knowledge is an additional property which a
NIZK proof system can have. We say that a zero-knowledge proof system is a NIZKPoK if an adversary
must “know” a witness wit to compute a proof for (inst, wit) ∈ RNIZK. More formally, a NIZK proof system
is said to be an NIZKPoK for the relation RNIZK, if the following are satisfied:

– Completeness: On common input statement inst ∈ LNIZK, if the honest prover P gets as private
witness wit such that (inst, wit) ∈ RNIZK, then the verifier V always accepts.

– Soundness: The soundness for proofs-of-knowledge is formalized by defining a prover P∗ which
outputs an accepted proof π and demonstrating an efficient algorithm EXT called the knowledge
extractor which can interact with P∗ and output a witness wit such that (inst, wit) ∈ RNIZK. Depending
on the proof construction, the extractor may need to rewind P∗ (a rewinding extractor) or inspect
P∗’s internal state (a non-black box extractor).

– Zero-Knowledge: A proof-of-knowledge is zero-knowledge if the proof π reveals nothing about the
witness wit. Formally, this is established by an efficient algorithm S called the simulator which is given
any statement inst ∈ LNIZK and the ability to program the random oracle to give specified responses,
can output simulated proofs π′ which is indistinguishable from real proofs such that the verifier V
accepts the proofs π′.

Throughout our paper, we write NIZKPoK{wit | (inst, wit) ∈ RNIZK} to denote a generic non-interactive
zero-knowledge proof of knowledge for relation RNIZK.

27

GameCor
TBIBE,A(1λ, B, n, Corr)

Game steps:

1. The challenger runs pp← Setup(1λ, 1B, 1n) and gives pp to A.
2. The challenger runs (pk, {(pki, mski)}i∈[n])← KGen(pp) and gives (pk, {mski}i∈Corr, {pki}i∈[n]) to A.
3. The adversary A picks a subset of corrupt parties Corr ⊂ [n] such that |Corr| ≤ ⌊n−1

2 ⌋.
4. The challenger generates a ciphertext ct← Enc(pk, msg, id, b), a digest d← Digest(pk, {id1, . . . , idB}) and

a partial digest-batch label-specific secret key ski ← ComputeKeyShare(mski, d, b) for all i ∈ [n] \ Corr.
5. The adversary A is given access to the partial digest-batch label-specific secret key generation oracle of

the honest parties for arbitrary inputs of the adversary’s choice, i.e., ComputeKeyShare(mski, ·, ·) for all
i ∈ [n] \ Corr.

6. The adversary A generates a partial digest-batch label-specific secret key ski for all i ∈ Corr, i.e.,
ski ← A({mskj}j∈Corr, {pkj}j∈[n]\Corr, pk, msg, id, b, ct,J).

7. The challenger computes sk← ComputeKeyAggregate({(pki, ski)}i∈[n], d, b).
8. The challenger decrypts ct as msg′ ← Dec(ct, sk, d, {id1, . . . , idB}, id, b)
9. return 1 iff msg′ ̸= msg, otherwise return 0

The adversary’s advantage in this game is:

AdvCor
TBIBE,A = Pr

[
msg ̸= msg′]

Fig. 15: Correctness Game for the Thresholdizable Batched IBE scheme.

A.6 Pseudorandom Function

We recall the definition of a pseudorandom function (PRF) family.

Definition 32 (Pseudorandom Function Family). A pseudorandom function (PRF) family is a
family of polynomial-time computable functions PRF : X → Y (where the sets (X ,Y) are all parameterized
by the security parameter λ ∈ N, and where each function PRF(·), such that for any PPT adversary A,
any random function f

$← Funcs(X ,Y), we have∣∣∣Pr
[
APRF(·)(1λ) = 1

]
− Pr

[
Af(·)(1λ) = 1

]∣∣∣ ≤ negl(λ)

A.7 Thresholdizable Batched IBE

We define the syntax of a Thresholdizable Batched Identity-Based Encryption (TBIBE) scheme in Sec. 2.1
and recall here the security definition of TBIBE scheme from [1].

Definition 33 (Correctness). A Thresholdizable Batched IBE scheme TIBE = (Setup, KGen, Enc, Dec,
Digest, ComputeKeyShare, ComputeKeyAggregate) is correct for any security parameter λ ∈ N, B ∈ N, n ∈
N, msg ∈M, b ∈ B, id ∈ I,J ⊆ I such that |J | = B and id ∈ J , Corr ⊂ [n] such that |Corr| ≤ ⌊n−1

2 ⌋ and
for any unbounded adversary A:

AdvCor
TBIBE,A = 0

for AdvCor
TBIBE,A defined in Figure 15.

Definition 34 (Security). A Thresholdizable Batched IBE scheme TIBE = (Setup, KGen, Enc, Dec,
Digest, ComputeKeyShare, ComputeKeyAggregate) is secure for any security parameter λ ∈ N, B ∈ N, n ∈
N, for all PPT adversaries A, for all Corr ⊂ [n] such that |Corr| ≤ ⌊n−1

2 ⌋, there exists some negligible
function negl(λ) such that the following holds:

AdvSec
TBIBE,A < negl(λ)

where the TBIBE security game SecA,b
TBIBE is defined in Figure 16.

A.8 Extended Formalization of Proof-of-Stake (PoS) Blockchains

In this section, we give an overview of the full framework from [41] for arguing about PoS blockchain
protocol security. We recall, in almost verbatim form, the overview given in [16] of the blockchain execution
model from [41].

28

GameSec
TBIBE,A(1λ, B, n, Corr)

Game steps:
Setup:

1. The challenger runs pp← Setup(1λ, 1B, 1n) and (pk, {(pki, mski)}i∈[n])← KGen(pp).
2. The challenger gives (pp, pk, {mski}i∈Corr, {pki}i∈[n]) to the adversary A.

Pre-challenge queries: A may issue an arbitrary number of these:

1. A sends identities {id1, . . . , idB} along with a batch label b to the challenger.
2. If a key computation query has already been made with batch label b, the challenger halts the game.

Otherwise, the challenger does the following:
(a) Compute d← Digest(pk, {id1, . . . , idB}) and ski ← ComputeKeyShare(mski, d, b) for all i ∈ [n] \Corr.
(b) The challenger gives {ski}i∈[n]\Corr to the adversary A.

Challenge round: Once during the game, A may decide that the current round is the challenge round. The
challenge round proceeds as follows:

1. The adversary A sends two messages msg0, msg1 ∈M and an identity-batch label pair (id∗, b∗) on which
it wishes to be challenged.

2. If key computation query ({id1, . . . , idB}, b) has already been made with batch label b = b∗ and id∗ ∈
{id1, . . . , idB}, the challenger halts the game.

3. Otherwise, the challenger samples b
$← {0, 1} and computes ct ← Enc(pk, msgb, id∗, b∗) and gives ct to

the adversary A.

Post-challenge queries: After the challenger round,Amay again issue an arbitrary number of key computa-
tion queries, with the additional restriction that A cannot query ({id1, . . . , idB}, b∗) with id∗ ∈ {id1, . . . , idB}:

1. A sends identities {id1, . . . , idB} along with a batch label b to the challenger.
2. If a key computation query has already been made with batch label b or if b = b∗ and id∗ ∈
{id1, . . . , idB}, the challenger halts the game.

3. Otherwise, the challenger does the following:
(a) Compute d← Digest(pk, {id1, . . . , idB}) and ski ← ComputeKeyShare(mski, d, b) for all i ∈ [n] \Corr.
(b) The challenger gives {ski}i∈[n]\Corr to the adversary A.

Output: At any point in time, A can decide to halt and output a bit b′ ∈ {0, 1}. The game then halts with
the same output b′.

The adversary’s advantage in this game is:

AdvSec
TBIBE,A =

∣∣∣Pr
[
b = b′]− 1

2

∣∣∣
Fig. 16: Security Game SecA,b

TBIBE for the Thresholdizable Batched IBE scheme.

Blockchain Structure. A genesis block B0 = {(SIG.pk1, aux1, stake1), . . . , (SIG.pkn, auxn, staken), aux}
associates each party Pi to a public signature verification key SIG.pki, an amount of stake stakei and
auxiliary information auxi (i.e., any other relevant information required by the blockchain protocol, such
as verifiable random function public keys). A blockchain B relative to a genesis block B0 is a sequence of
blocks B1, . . . , Bn associated with a strictly increasing sequence such that Bi = (H(Bi−1), d, aux)) where
H(Bi−1) is a collision-resistant hash of the previous block, d is data and aux is auxiliary information
required by the blockchain protocol. We denote by B⌈ℓ the chain (sequence of blocks) B where the last
ℓ blocks have been removed and if ℓ ≥ |B| then B⌈ℓ = ϵ (empty symbol). Also, if B1 is a prefix of B2 we
write B1 ⪯ B2. Each party participating in the protocol has public identity Pi and most messages will be
a transaction of the following form: m = (Pi, Pj , q, aux) where Pi transfers q coins to Pj along with some
optional, auxiliary information aux.

Blockchain Protocol Execution. Recalling the three polynomial-time algorithms
(UpdateStateV , GetRecords, Broadcast) from Definition 2, we can, at the high level, view the exe-
cution of a blockchain protocol Γ V as follows: The participant in the protocol runs the UpdateStateV

algorithm to get the latest blockchain state, the GetRecords algorithm is used to extract an ordered

29

sequence of blocks encoded in the blockchain state variable and the Broadcast algorithm is used by a
party when it wants to post a new message on the blockchain if accepted by V .

The blockchain protocol Γ V execution is directed by the environment Z which classifies parties as
either honest or corrupt, and is also responsible for providing inputs/records to all parties in each round.
All honest parties execute Γ V on input 1λ with an empty local state st, and all corrupted parties are
controlled by the adversary A who also controls network including delivery of messages between all
parties. The execution of the protocol proceeds as follows (and the following description is mostly taken
from [16,41]).

• The execution proceeds in rounds that model time steps. In each round r, all the honest parties
potentially receive a message(s) m from the environment Z and potentially receive incoming network
messages delivered by the adversary A. The honest parties may perform any computation, broadcast
messages (using Broadcast algorithm), and/or update their local states.

• The adversary A is responsible for delivering all messages sent by honest parties to all other parties.
A cannot modify messages broadcast by honest parties but may delay and reorder messages on the
network.

• At any point Z can communicate with adversary A or use GetRecords to retrieve a view of the local
state of any party participating in the protocol.

The joint view of all parties (i.e., all inputs, random coins, and messages received) in the above protocol
execution can be denoted by the random variable EXECΓ V

(A,Z, 1λ). Note that the joint view of all parties
fully determines the execution. We define the view of the party Pi as VIEWPi

(EXECΓ V

(A,Z, 1λ)) and the
view of the adversary A as VIEWA(EXECΓ V

(A,Z, 1λ)). If it is clear from the context which execution
the argument is referring to, then we just write VIEWi. We assume that it is possible to take a snapshot
i.e., a view of the protocol after the first r rounds have been executed. We denote that by VIEWr ←
EXECΓ V

r (A,Z, 1λ). Furthermore, we can resume the execution starts with this view and continue until
round r̃ resulting in the full view including round r̃ denoted by VIEWr̃ ← EXECΓ V

(VIEWr,r̃)(A,Z, 1λ).

Defining stake and u-stakefrac. We denote the stake of party Pi as stakei = stake(B, i) which takes as
input a local blockchain B and a party Pi and outputs a number representing the stake of party Pi as
per the blockchain B. Here, stake(·, ·) is a polynomial time algorithm that takes as inputs the blockchain
B and a party’s public identity and outputs a rational value.

Let an adversary A that controls all parties with public identities in the set X , its sum of stake
controlled by the adversary as per blockchain B can computed as stakeA(B) =

∑
j∈X stake(B, j), and

the total stake held by all parties can be computed as staketotal(B) =
∑

i stake(B, j). We compute the
adversaries relative stake ratio as stake-ratioA(B) = stakeA(B)

staketotal(B) . Also, we will simply write stakeA, staketotal,
and stake-ratioA whenever B is clear from context.

We also consider the PoS-fraction u-stakefrac(B, ℓ) as the amount of unique stake whose proof is
provided in the last ℓ mined blocks. More precisely, let M be the index i corresponding to miners Pi of
the last ℓ blocks in B then we compute the PoS-fraction as follows,

u-stakefrac(B, ℓ) =
∑

i∈M stake(B, i)
staketotal

A note on corruption. For simplicity in the above execution we restrict the environment to only allow
static corruption while the execution described in [48] supports adaptive corruption with erasures.

A note on admissible environments. Pass et al. [48] specifies a set of restrictions on A and Z such
that only compliant executions are considered and argues that certain security properties hold with
overwhelming probability for these executions. An example of such a restriction is that A should deliver
network messages to honest parties within ∆ rounds.

Blockchain Setup and Key Knowledge. As in [26], we assume that the genesis block is generated
by an initialization functionality FINIT that registers all parties’ keys. Moreover, we assume that prim-
itives specified in separate functionalities in [26] as incorporated into FINIT. FINIT is executed by the
environment Z as defined below and is parameterized by a stake distribution associating each party Pi

to an initial stake stakei. Upon being activated by Pi for the first time, FINIT generates a signature key
pair (SIG.pki, SIG.ski) and auxiliary information auxi, and sending (SIG.pki, SIG.ski, auxi, stakei) to Pi as

30

response. After all parties have activated FINIT, it responds to requests for a genesis block by providing
B0 = {(SIG.pk1, aux1, stake1), . . . , (SIG.pkn, auxn, staken), aux}, where aux is generated according to the
underlying blockchain consensus protocol.

Since FINIT generates keys for all parties, we capture the fact that even corrupted parties have regis-
tered public keys and auxiliary information such that they know the corresponding secret keys.

Blockchain Properties.

Stake Contribution Property. At a high level, the sufficient stake contribution property states that after
sufficiently many rounds, the total amount of proof-of-stake in mining the ℓ most recent blocks is at least
β fraction of the total stake in the system.
Definition 35 (Sufficient Stake Contribution). Let suf-stake-contr be the predicate such that
suf-stake-contrℓ(VIEW, β) = 1 iff for every round r ≥ ℓ, and each party i in VIEW such that i is honest at
round r with blockchain B, we have u-stakefrac(B, ℓ) > β. A blockchain protocol Γ has (β(·), ℓ0(·))-sufficient
stake contribution property with adversary sA in environment Z, if there is a negligible function negl(·)
such that for any λ ∈ N, ℓ ≥ ℓ0, it holds that,

Pr
[

suf-stake-contrℓ(VIEW, β(λ)) = 1 | VIEW← EXECΓ (A,Z, 1λ)
]
≥ 1− negl(λ)

Bounded Forking Property. Roughly speaking, the bounded forking property requires that no efficient
adversary can create a sufficiently long fork so that its total amount of proof of stake is higher than
a certain threshold. In more detail, it states that for property parameters α, ℓ1, ℓ2, the proof-of-stake
fraction in the last ℓ2 blocks in any adversarially created fork of length at least ℓ1 + ℓ2 should not be
more than α.
Definition 36 (Bounded Stake Forking). Let bd-stake-fork be the predicate such that
bd-stake-fork(ℓ1,ℓ2)(VIEW, α) = 1 iff for any round r ≥ r̃ and any pair of parties i, j in VIEW
such that i is honest at round r with blockchain B and j is corrupt in round r̃ with blockchain B̃, if there
exists ℓ′ ≥ ℓ1 + ℓ2 such that B̃⌈ℓ

′ ⪯ B and for all ℓ̃ < ℓ′, B̃⌈ℓ
′ ⪯̸ B then u-stakefrac(B̃, ℓ′ − ℓ1) ≤ α. A

blockchain protocol Γ has (α(·), ℓ1(·), ℓ2(·))-bounded forking property with adversary sA in environment
Z, if there is a negligible function negl(·) and δ(·) such that for any λ ∈ N, ℓ ≥ ℓ1(λ), ℓ̃ ≥ ℓ2(λ), it holds
that,

Pr
[

bd-stake-fork(ℓ,ℓ̃)(VIEW, α(λ) + δ(λ)) = 1 | VIEW← EXECΓ (A,Z, 1λ)
]
≥ 1− negl(λ)

Distinguishable Forking. At a high level, distinguishable forking asserts that a sufficiently long sequence
of blocks produced under honest protocol execution can consistently be distinguished from any fork
generated adversarially. Formally, this concept can be defined as follows:
Definition 37 (Distinguishable Forking). A blockchain protocol Γ satisfies (α(·), β(·), ℓ1(·), ℓ2(·))-
distinguishable forking with adversary A in environment Z, if there is a negligible function negl(·) and
δ(·) such that for any λ ∈ N, ℓ ≥ ℓ1(λ), ℓ̃ ≥ ℓ2(λ), it holds that,

Pr

α(λ) + δ(λ) < β(λ) ∧

suf-stake-contrℓ̃(VIEW, β(λ)) = 1 ∧

bd-stake-fork(ℓ,ℓ̃)(VIEW, α(λ) + δ(λ)) = 1

∣∣∣∣∣∣VIEW← EXECΓ (A,Z, 1λ)

 ≥ 1− negl(λ)

Evolving Blockchains. To define Encryption with Public Self-Incriminating Proofs scheme (in Defini-
tion 6), we need to be able to non-interactively verify that a blockchain has evolved from a previous state
such that the current state includes a certain message. In particular, we want to make sure that the initial
chain B has “correctly” evolved into the final chain B̃. A sufficiently long chain in an honest execution
can be distinguished from a fork generated by the adversary by looking at the combined amount of stake
proven in such a sequence of blocks. We encapsulate this property in a predicate called evolved(·, ·) defined
as follows.

Definition 38. Let Γ V = (UpdateStateV , GetRecords, Broadcast) be a blockchain protocol with validity
predicate V and where the (α, β, ℓ1, ℓ2)-distinguishable forking property (formally defined in Definition 37).
Also, let B ← GetRecords(1λ, st) and B̃ ← GetRecords(1λ, s̃t). We define an evolved predicate as a poly-
nomial time function evolved that takes as input blockchains B and B̃ and returns an indicator bit s.t.
evolved(B, B̃) = 1 if and only if all the following properties are satisfied: (i) V (B) = V (B̃) = 1, (ii) B and
B̃ are consistent i.e., B⌈κ ⪯ B̃ where κ is the common prefix parameter, and (iii) Let ℓ′ = |B̃| − |B| then it
holds that ℓ′ ≥ ℓ1 + ℓ2 and u-stakefrac(B̃, ℓ′ − ℓ1) ≥ β.

31

NP-Relation for Proof Inclusion on an Evolving Blockchains Assume a blockchain protocol
Γ = (UpdateStateV , GetRecords, Broadcast) with validity predicate V . We define a relation RΓ V that
captures the fact that a valid signature σ on a reference message d generated under pk is included in the
common prefix of a blockchain B̃ that has evolved from an initial blockchain B via a valid execution of
the protocol. This relation is formalized in Definition 39 below.

Definition 39 (NP-Relation for Proof Inclusion). Let Γ V = (UpdateStateV , GetRecords, Broadcast)
be a blockchain protocol with validity predicate V with the (α, β, ℓ1, ℓ2)-distinguishable forking property
(as in Definition 37) and associated predicate evolved(B, B̃) ∈ {0, 1} (as in Definition 38). Let SIG =
(KGen, Sign, Vf) be an EUF-CMA secure signature scheme and d ∈ {0, 1}∗ is a reference message. We
define relation RΓ V as follows:

RΓ V :
{

((pk, d, B︸ ︷︷ ︸
inst

), (σ, B̃︸︷︷︸
wit

))

∣∣∣∣1← SIG.Vf(pk, d, σ) ∧ evolved(B, B̃) = 1

∧ (pk, d, σ) ∈ B
∗ ∧ B

∗ ∈ B̃⌈ℓ1+ℓ2 ∧ u-stakefrac(B̃, ℓ2) ≥ β

}
Let LΓ V be the language specified by the relation RΓ V . This language is in NP because verification of
blockchains and signatures are polynomial time algorithms, as are the verification of the additional chain
predicates in Definition 39.

A.9 Extended details on MPC-hardness

Security Games for Distributed Adversary. To formalize “knowledge” in the distributed adversary
attack scenario, Dziembowski et al. [30] used the concept of a “knowledge extractor” proposed in [7].
Bellare and Rogaway [7] consider an adversary A with access to a function Fun (they assume that the Fun
is a hash function; which is modeled as a random oracle). It is assumed that if an adversary A evaluated
Fun on some input x, then A knows the input x and the corresponding output Fun(x). Technically, the
(input, output) pairs are later given to an algorithm kEXT called “knowledge extractor”. If kEXT outputs
some message s, then we assume that “A knows s” (since A could have computed s by observing the
oracle queries and corresponding replies).

Now, we define the information each party received as a result of the fast oracle queries at the end of
the execution of a protocol: We define the local transcript of a party Aj to be the sequence τj of function
inputs that OFun received from Aj (in the same order in which they were received). Let τ fast

j be the
sub-sequence of τj containing only the inputs corresponding to fast queries (call it a local fast-function
transcript of a party Aj). A knowledge extractor kEXT is a deterministic poly-time machine that takes
τ fast

j as input and produces as output a finite set kEXT(τ fast
j) ⊂ {0, 1}∗.

In the distributed adversary settings, Dziembowski et al. [30] use the concept of a knowledge extractor
but slightly adjust it in the following way:

1. There is a knowledge extractor kEXTj for each of the sub-adversaries Aj .
2. Each such knowledge extractor kEXTj takes as input the transcript of queries τ fast

j that Aj has made
to the oracle OFun only in mode = fast. Queries made by Aj in mode = slow (recall that these queries
model MPC evaluations of Fun with a potentially unknown input) are not given to kEXTj .

3. Finally, we say that an adversary Ap individually knows a secret s if there exists an efficient knowledge
extractor kEXTp such that s ∈ kEXTp(τ fast

j).

Detailed considerations of scratch We use the MPC-hard function scratch in our constructions, our
goal is to extract the inputs to scratch from one of the transcripts τ fast

j of fast queries made to OH by one
of the sub-adversaries Aj . To argue about this extractability, we derive Lemma 1 below from the proof
of Theorem 1 in [30].

Now, before proceeding with the formal Lemma 1, let us comment on another parameter in the
lemma statement. We define a party P as a η-bounded party if we bound the total number of fast
queries made by the party P to the oracle OH in the online phase by η. Note that each computation
of the scratch procedure requires (nd + 1) hashes H. For a party, observe that each scratch attempt
succeeds with probability 2−ζ (by “succeeding” we mean finding a value that starts with ζ zeros). Since
the party needs to be successful β times, the party needs, on average, ⌊(nd + 1) · 2ζ · β/(nd + 1)⌋ = 2ζ · β
scratch attempts. We set η to be the double of this parameter, i.e., η = β · (nd + 1) · 2ζ+1, to make the
probability that the party is successful (refer to Definition 2 in [30] for the formal statement) less than
β times exponentially small. Note that this budget allows the η-bounded party P to evaluate scratch
⌊η/(nd + 1)⌋ = ⌊(nd + 1) · 2ζ+1 · β/(nd + 1)⌋ = 2ζ+1 · β times.

32

Setting the parameters of scratch appropriately we can de-facto prevent MPC attacks up a certain
amount of time. Since key rolling/rotation within a few months to a few years [5] is the de-facto industry
standard this allow us to heuristically prevent MPC-based attacks. We furthermore note that a second
motivation on the heuristic security of MPC-hard functions is that the price of executing an MPC
computation over a very long time-period will not be cheap in computation resources and thus may in
many situations, be higher than the value of what parties might learn by executing an MPC protocol.

Lemma 1 (Derived from [30]). Let scratch be the function defined in Figure 1 with parameters d, n ∈
N, and also let α, β, ζ ∈ N be arbitrary parameters with α ≥ 2β (where ζ can be a function of β) and a
special oracle OH that allows for evaluating a fixed input-length hash function H : {0, 1}α → {0, 1}β. Let
A1, . . . ,Aa be a (δ, Υ)-distributed adversary where δ ≤ d− 1 and Υ ≤ β · 2ζ−3. Let η = β · (nd + 1) · 2ζ+1

and P be a η-bounded party. For random s ∈ {0, 1}n·(α−β−2) and z ∈ {0, 1}β, the following holds:

1. The η-bounded party P can compute β number of nonces w1, . . . , wβ ∈ {0, 1}α−β−2 by accessing the
oracle OH such that for all i ∈ [β] the qi ← scratch(s, z, wi) has its first ζ bits equal to 0 except with
negligible probability over the choice of s, z.

2. If (δ, Υ)-distributed adversary A1, . . . ,Aa can compute β number of nonces w1, . . . , wβ ∈ {0, 1}α−β−2

such that for all i ∈ [1, β] the qi ← scratch(s, z, wi) has its first ζ bits equal to 0 with access to an
oracle OH, then except with negligible probability over the choice of s, z, there exists an extractor
kEXT(τ fast

j) that outputs s for at least one j ∈ [1, a], where τ fast
j is transcript of the fast hash queries

made to OH by the sub-adversaries Aj.

Proof (Sketch). This lemma follows from Theorem 1 of [30], which proves the security of the Proof of
Individual Knowledge scheme introduced in that work. Point 1 follows from the completeness of the Proof
of Individual Knowledge. Intuitively, an η-bounded party for η = β · (nd + 1) ·2ζ+1 can compute scratch a
sufficient number of times to find such β number of nonces w1, . . . , wβ by accessing the oracle OH, except
with negligible probability. Point 2 follows from the soundness of the Proof of Individual Knowledge,
more specifically from the existence of an extractor that successfully extracts a malicious prover’s witness
from τ fast

j for a sub-adversary Aj given a (δ, Υ)-distributed adversary A1, . . . ,Aa where δ ≤ d − 1 and
Υ ≤ β · 2ζ−3 with access to OH.

We refer to reader to Sec. 4 in [30] for a more detailed description, correctness, and security (MPC-
hardness) of the scratch procedure.

B PSIPE based on Extractable Witness Encryption

In this section, we present a concrete construction of encryption with public self-incriminating proof
PSIPE = (KGen, Enc, Dec, Vf, ProofExt), which we call ΠPSIPE-eWE. Our construction is described formally
in Figure 17. We require as setup a blockchain protocol Γ = (UpdateState, GetRecords, Broadcast) with
validity predicate V (discussed in Sec. 2.2). We realize the notion of PSIPE from a signature scheme
SIG = (KGen, Sign, Vf) (in Definition 16) and an extractable witness encryption scheme eWE = (Enc, Dec)
(in Definition 22) for the language LΓ V specified by the relation RΓ V (in Definition 39).

Although our construction works based on any eWE scheme, in Sec. B.1, we observe that since we
assume a PoS blockchain as a setup, we can realize such a scheme under standard assumptions via the
extractable Witness Encryption on Blockchain (eWEB) notion of [42] using techniques from [42] and [15].

Overview of our ΠPSIPE-eWE. At a high level, the core idea is to force the decryptor to produce and
publish on the blockchain a signature π on a reference signing message d for the message m, and the
signature must be valid under a given public key pk in order to decrypt a ciphertext c.

To achieve this, we encrypt msg = m∥d using a eWE scheme with respect to a statement (pk, d, B),
where d is the reference signing message d for the message m, pk is the prescribed public key and B
denotes the current state of the blockchain. This outputs a ciphertext ĉ and finally defining our output
PSIPE ciphertext as c = (ĉ, d) and publish it on the blockchain.

To decrypt ciphertext c = (ĉ, d), the decryptor must first generate a signature π on d, and then ĉ can
only be decrypted as msg = m∥d by a party who has a witness (π, B̃) where B̃ denotes a future valid state
of the blockchain that evolved from B containing π such that π verifies as a valid signature on d under
pk. Therefore, the decryptor is forced to publish π in order to obtain a B̃ that allows it to decrypt ĉ.

At the time of SIP verification, to verify that the SIP π is valid and ensure the consistency of c = (ĉ, d),
the verifier first extracts the witness (π, B̃). Then, using this witness, the verifier decrypts ĉ to obtain

33

Construction of PSIPE Scheme: ΠPSIPE-eWE

Parameters: A security parameter λ.
Building-blocks: A blockchain protocol Γ = (UpdateState, GetRecords, Broadcast) (Definition 2) with va-
lidity predicate V , the (α, β, ℓ1, ℓ2)-distinguishable forking property (Definition 37) and associated predi-
cate evolved(B, B̃) ∈ {0, 1} (Definition 38). An extractable witness encryption scheme eWE = (Enc, Dec) for
the language LΓ V specified by the relation RΓ V (Definition 39). An EUF-CMA secure signature scheme
SIG = (KGen, Sign, Vf).

• KGen(1λ):
1. Run (pk, sk)← SIG.KGen(1λ).
2. Output (pk, sk).

• Enc(pk, m):
1. Run st← UpdateState(1λ) and B← GetRecords(1λ, st).
2. Sample a random d ∈ {0, 1}λ and set msg = m∥d.
3. ĉ← eWE.Enc(1λ,LΓ V , (pk, d, B), msg), where (pk, d, B) ∈ LΓ V .
4. Publish the ciphertext on the blockchain Γ by Broadcast(1λ, c = (ĉ, d))
5. Output c = (ĉ, d).

• Dec(pk, sk, c = (ĉ, d)):
1. Compute the self-incriminating proof as π ← SIG.Sign(sk, d).
2. Publish π on the blockchain Γ by executing Broadcast(1λ, (pk, d, π)).
3. Run s̃t ← UpdateState(1λ) and B̃ ← GetRecords(1λ, s̃t) until the message (pk, d, π) appears in a block

B∗ ∈ B̃ of blockchain B̃ such that the chain extends B∗ by ℓ1 + ℓ2 block.
4. Decrypt ĉ using π and B̃, obtaining msg ← eWE.Dec(ĉ, (π, B̃)).
5. Parse msg as m∥d and output (m, π).

• Vf(pk, c = (ĉ, d), π):
1. Run s̃t← UpdateState(1λ) and B̃← GetRecords(1λ, s̃t).
2. If c is not the first ciphertext with d to appear on the ledger, then return 0.
3. Decrypt ĉ using π and B̃, obtaining msg′ ← eWE.Dec(ĉ, (π, B̃))a.
4. Parse msg′ as m′∥d′ and, if d′ ̸= d, then return 0.
5. Output SIG.Vf(pk, d, π).

• ProofExt(pk, c = (ĉ, d)):
1. Run s̃t← UpdateState(1λ) and B̃← GetRecords(1λ, s̃t).
2. Find a block B∗ ∈ B̃⌈ℓ1+ℓ2 containing a record (pk, d, π) ∈ B∗ such that 1 ← SIG.Vf(pk, d, π) and

output π.
3. Otherwise, if no such record exists in any block B∗ ∈ B̃⌈ℓ1+ℓ2 , output ⊥.

a As observed in Remark 2, it is trivial to add an extra layer of encryption that prevents leaking the plaintext
message when a SIP is produced.

Fig. 17: Construction of PSIPE based on eWE: ΠPSIPE-eWE.

msg = m′|d′. Finally, it verifies the SIP π and checks whether d′ is consistent with d and c is the first
ciphertext with d to appear on the ledger.

We build on a Proof-of-Stake blockchain as it has been shown that it is possible to non-interactively
verify whether a blockchain B̃ evolved from a previous blockchain B via an honest protocol execution [41]
and ensure that the protocol cannot be abused to decrypt a ciphertext without publishing a SIP.

Remark 2 (Stronger Security ΠPSIPE-eWE). In our proposed protocol ΠPSIPE-eWE shown in Figure 17, once
a valid decryptor decrypts a ciphertext, anyone within the blockchain system can subsequently decrypt it
and retrieve the original message. This limitation reduces the practical applicability of the construction.
However, we can easily address this issue using the approach described below, ensuring that only the
intended decryptor is able to obtain the original message.

To encrypt a message m, an encryptor first encrypts the message as ct ← Enc(pk, m) using an IND-
CCA2 secure encryption scheme (e.g., [21]), and then it encrypt msg = ct∥d using a eWE scheme with
respect to a statement (pk, d, B), where d is the reference signing message d for the message m, pk is the
prescribed public key and B denotes the current state of the blockchain. This outputs a ciphertext ĉ and
and our PSIPE ciphertext is then defined as c = (ĉ, d) and publish it on the blockchain.

To decrypt ciphertext c = (ĉ, d), the decryptor must first generate a signature π on d, and then ĉ can
only be decrypted as msg = ct∥d by a party who has a witness (π, B̃) where B̃ denotes a future valid state

34

of the blockchain that evolved from B containing π such that π verifies as a valid signature on d under pk.
Therefore, the decryptor is forced to publish π in order to obtain a B̃ that allows it to decrypt ĉ. Finally,
only the decryptor can decrypt the ciphertext ct and obtain the original message as m ← Dec(ct, sk).
The SIP verification and proof extraction process is same as described in Figure 17.

B.1 Instantiating ΠPSIPE-eWE from Standard Assumptions

Our construction of ΠPSIPE-eWE in Figure 17 can be instantiated from any extractable witness encryption
(eWE) scheme. However, known eWE constructions with support for the language we need are based
on non-standard and very strong assumptions (e.g. iO). Hence, in order to obtain a concrete instanti-
ation of ΠPSIPE-eWE from standard assumptions, we take advantage of the fact that we already use a
blockchain-based public ledger in ΠPSIPE-eWE and employ the notion of extractable Witness Encryption
on a Blockchain (eWEB) [42].

It has been shown in [42] that a flavor of (extractable) witness encryption can be realized using
a Proof-of-Stake (PoS) blockchain ledger as setup, which we already do in ΠPSIPE-eWE. This notion is
called extractable Witness Encryption on a Blockchain (eWEB) and provides the same functionality as a
regular extractable WE scheme, provided that the parties executing the eWEB scheme have access to the
underlying PoS ledger. The main idea of the eWEB construction of [42] is to use dynamic proactive secret
sharing to store the encrypted message in such a way that it can be re-shared towards new committees as
parties join and leave the PoS blockchain protocol execution. When a party who knows a witness to the
instance under which a ciphertext was generated wants to decrypt it, they publish a NIZKPoK of that
witness, which allows the committee to verify whether the party indeed knows the witness (also allowed
the simulator to extract this witness). Extractable privacy for eWEB holds given that the majority of
the committee is honest, and thus refuses to help a party reconstruct an encrypted message unless it
publishes such a valid NIZKPoK.

In order to meaningfully employ such an eWEB scheme in instantiating our ΠPSIPE-eWE construction,
we must prevent dynamic proactive secret sharing committees from leaking messages encrypted under
eWEB without being detected, which would circumvent the need to publish a self-incriminating proof.
Notice that we cannot prevent such a committee from leaking a message, but in our case it is sufficient
that this leakage is detected in public if it happens. We achieve this property via the techniques of [15] by
storing each message encrypted under eWEB as shares held by dynamic anonymous committees chosen
at random. Since each committee is anonymous, even an adaptive adversary does not know which parties
to corrupt to take control of a committee (as in the YOSO model [35]). We observe that this construction
can be instantiated with the efficient publicly verifiable secret sharing scheme for random anonymous
committees presented in [17], which also allows for the secret to be periodically re-shared towards a
newly selected dynamic anonymous committee.

The key observation of [15], is that since each secret message is held by a different anonymous com-
mittee chosen at random, adversarial committee members cannot leak the secret without communicat-
ing in public (e.g., announcing their shares, or their willingness to leak shares). Hence, we can modify
the eWEB construction of [42] to employ such publicly verifiable secret sharing with randomly chosen
dynamic anonymous committees to store messages encrypted under eWEB, instead of using standard
dynamic proactive secret sharing. Notice that this only modifies the encryption step of the construction
from [42], requiring encryptors to use this alternative secret sharing scheme, while the decryption remains
the same. As observed in [15], instead of requiring a new committee to hold shares of each encrypted
message, this solution can be instantiated by threshold encrypting under a public key whose correspond-
ing secret key shares are held by randomly chosen anonymous committees, who re-share this secret key
towards new committees whenever a decryption happens or when parties leave the protocol execution (as
in YOSO threshold encryption scheme [9]).

Notice that even when randomly chosen dynamic anonymous committees are employed, an attacker
may still offer to bribe committee members to leak their shares. Such a bribe proposition can be publicized
by the attacker, who is then contacted privately by each opportunistic committee member. This sort
of attack can be thwarted in our setting by choosing larger committees in way that providing such
bribes to sufficiently many committee members becomes economically infeasible. Analysing such incentive
structures is beyond the scope of this work. Providing such an analysis as well as alternative constructions
of eWEB that offer better resilience against such attacks is left for future works.

B.2 Security Analysis

We formally state the security of ΠPSIPE-eWE in Theorem 3.

35

Theorem 3. Assuming that: (i) Γ is a blockchain protocol (as in Definition 2) with validity predi-
cate V , the (α, β, ℓ1, ℓ2)-distinguishable forking property (as in Definition 37) and associated predicate
evolved(B, B̃) ∈ {0, 1} (as in Definition 38), (ii) eWE is an extractable witness encryption scheme (as in
Definition 22) for the language LΓ V specified by the relation RΓ V (Definition 39), (iii) SIG is a EUF-
CMA secure signature scheme as per Definition 16. Then our protocol ΠPSIPE-eWE in Figure 17 is a secure
encryption with public self-incriminating proof scheme PSIPE as per Definition 6.

Proof. We prove the Theorem 3 by showing a proof for Correctness, Unforgeability, IND-CPA Security,
and Public Self-Incriminating Proof properties of our scheme ΠPSIPE-eWE as follows:

Correctness. The correctness of ΠPSIPE-eWE is immediate and can be proven by the correctness of the
underlying primitives.

Fix λ, ℓ1, ℓ2, and β and a correct blockchain protocol Γ with validity predicate V as described in
Sec. 2.2. Let ΠPSIPE-eWE.KGen(1λ) as (pk, sk) ← SIG.KGen(1λ) and for any message m ∈ {0, 1}λ, we
encrypt the message by ΠPSIPE-eWE.Enc(pk, m) as ĉ ← eWE.Enc(1λ,LΓ V , (pk, d, B), msg = m∥d) where d
is a reference signing message for the message m, and st← UpdateState(1λ) and B← GetRecords(1λ, st).
Finally, it publish the PSIPE ciphertext c = (ĉ, d) on the blockchain Γ by executing Broadcast(1λ, c =
(ĉ, d)) and output c = (ĉ, d).

For decrypting a ciphertext c = (ĉ, d) by ΠPSIPE-eWE.Dec(pk, sk, c), a decryptor first needs to generate
a self-incriminating proof as π ← SIG.Sign(sk, d), and then run the Broadcast algorithm to post (pk, d, π)
on the blockchain Γ . Let s̃t be the local state of the decryptor after message (pk, d, π) is posted on the
blockchain and it is extended by ℓ1 + ℓ2 blocks. At this point, it holds that evolved(B, B̃) = 1 and that
there exists a block B∗ ∈ B̃⌈ℓ1+ℓ2 such that (pk, d, σ) ∈ B∗, so that with all but negligible probability, B̃
and π can be used as the witness to decrypt ciphertexts ĉ as msg = m′∥d′ ← eWE.Dec(ĉ, (π, B̃)) where
((pk, d, B), (π, B̃)) ∈ RΓ V . Therefore, msg = m′∥d′ ← eWE.Dec(c2, (π, B̃)) follows from the correctness
of the extractable witness encryption scheme as per Definition 22, π ← SIG.Sign(sk, d) follows from the
correctness of the signature scheme as per Definition 16 and finally check the consistency of d′ with d
and check c is the first ciphertext with d to appear on the ledger. Therefore, ΠPSIPE-eWE satisfies the
correctness condition.

Unforgeability. Assume, for the sake of contradiction, that we have an adversary APSIPE that wins the
game GameUnforge

PSIPE,APSIPE
with non-negligible advantage when executing PSIPE from Figure 17. We then show

how to use APSIPE to construct another adversary ASIG with black-box access to APSIPE which breaks the
unforgeability of the signature scheme SIG, i.e., GameUnforge

SIG,ASIG
(defined in Figure 11), with asymptotically

similar advantage.
We construct an adversary ASIG, who is talking with the challenger of GameUnforge

SIG,ASIG
and an internal

copy of APSIPE for which it simulates GameUnforge
PSIPE,APSIPE

. The adversary ASIG proceeds as follows:

1. ASIG receives (1λ, pk) from the challenger of GameUnforge
SIG,ASIG

and forwards this to APSIPE, pretending to
be the challenger of the GameUnforge

PSIPE,APSIPE
game.

2. Playing the role of challenger in GameUnforge
PSIPE,APSIPE

then ASIG receives back from APSIPE the value (c′, π′)
which has a non-negligible advantage in winning GameUnforge

PSIPE,APSIPE
.

3. Letting c′ = (ĉ, d) then ASIG returns (m′, σ′) = (d, π′) to the challenger of GameUnforge
SIG,ASIG

.

First observe that (pk, ·)← SIG.KGen(1λ), hence the pair (1λ, pk) that ASIG receives from GameUnforge
SIG,ASIG

is
similarly distributed to the pair that APSIPE receive from the real challenger in the GameUnforge

PSIPE,APSIPE
game.

Now see that c′ = (ĉ, d) for which π ← SIG.Sign(sk, d) with (σ = π) = π′ with non-negligible probability.
Hence (m′, σ′) will be a valid output with similar probability.

IND-CPA Security. Assume by contradiction that there exists an adversary APSIPE with non-negligible
advantage in GameIND-CPA

PSIPE,APSIPE
for our PSIPE. We will show that this APSIPE can be used to construct

adversaries breaking the extractable security of the underlying extractable witness encryption scheme
eWE or unforgeability of the underlying signature scheme SIG.

We construct an adversary A who is talking with the challenger of GameEXT-SEC
eWE,A and GameUnforge

SIG,A , and
an internal copy of APSIPE for which it simulates GameIND-CPA

PSIPE,APSIPE
. Throughout this reduction, A acts as

Z in the execution of the blockchain protocol Γ , which it simulates towards APSIPE following the same
steps as the real protocol. The adversary A proceeds as follows:

36

1. A receives (1λ, pk) from the challenger of GameUnforge
SIG,A and forwards (1λ, pk) to APSIPE, acting as the

challenger of GameIND-CPA
PSIPE,APSIPE

.
2. A receives a tuple (m0, m1) from APSIPE and sets inst = (pk, d, B) ∈ LΓ V where d

$← {0, 1}λ, and st←
UpdateState(1λ) and B ← GetRecords(1λ, st). A forwards the tuple (·, inst, m0, m1) to the challenger
of GameEXT-SEC

eWE,A .
3. A receives the challenge ciphertext c′b from the challenger of GameEXT-SEC

eWE,A . Then A forwards cb = (ĉ, d)
to APSIPE, where d = d and ĉ = c′b.

4. A receives a guess b′ from APSIPE.
5. A executes the eWE extractor (as defined in the extractable security property) and obtains wit =

(π, B̃)← EXTAPSIPE(·)(1λ,LΓ V , inst, m0, m1).
6. Finally,A forwards the guess b′ to the challenger of GameEXT-SEC

eWE,A and (m′, σ′) = (d, π) to the challenger
of GameUnforge

SIG,A .

Notice that A simulates GameIND-CPA
PSIPE,APSIPE

exactly as in a real execution. Now assume that APSIPE has non-
negligible advantage AdvIND-CPA

PSIPE,APSIPE
in GameIND-CPA

PSIPE,APSIPE
, then A is able to distinguish extractable witness

encryption ciphertexts c0, c1 generated under the statement inst = (pk, d, B) such that inst ∈ LΓ V from
messages m0, m1. Hence, A has non-negligible advantage in GameEXT-SEC

eWE,A , which means given extractable
security for the eWE scheme there is an extractor EXT that obtains wit = (π, B̃) from APSIPE, where
SIG.Vf(pk, d, π) = 1. Notice that π is a valid signature forgery on d, since APSIPE does not have the
signing key corresponding to pk. Hence, if APSIPE has non-negligible advantage in GameIND-CPA

PSIPE,APSIPE
and

extractable security holds for the eWE scheme, then A has non-negligible advantage in GameUnforge
SIG,A . On

the other hand, if APSIPE has non-negligible advantage in GameIND-CPA
PSIPE,APSIPE

but EXT fails to output such
(π, B̃) with non-negligible probability, we contradict the extractable security property of the eWE scheme.
Hence, given that eWE has extractable security and that SIG is EUF-CMA secure, we have that APSIPE
can only have negligible advantage AdvIND-CPA

PSIPE,APSIPE
in GameIND-CPA

PSIPE,A.

Public Self-Incriminating Proof. Assume by contradiction that an adversary APSIPE exists which
can win the GamePUB-SIP

PSIPE,APSIPE,Γ game with a non-negligible advantage AdvPUB-SIP
PSIPE,APSIPE,Γ while extractor

EXT(pk, cb, B̃) obtains π such that Vf(pk, cb, π) = 1 with probability SuccPSIPE
EXT < AdvPUB-SIP

PSIPE,APSIPE,Γ−negl(λ).
We argue that if this is the case, then it must be because either APSIPE breaks the underlying blockchain
protocol’s distinguishable forking and common prefix properties, or the adversary breaks the extractable
security of the extractable witness encryption scheme eWE. This leads to two distinct cases:

1. Assuming that the extractable witness encryption scheme is secure, if a valid π does not appear
on the common prefix of an honest party’s blockchain but APSIPE is able to produce B̃ such that
1← SIG.Vf(pk, d, π) ∧ evolved(B, B̃) = 1 ∧ (pk, d, π) ∈ B∗ ∧ B∗ ∈ B̃⌈ℓ1+ℓ2 ∧ u-stakefrac(B̃, ℓ2) ≥ β (i.e.,
((π, B̃), inst) ∈ RΓ V where inst = (pk, d, B) and inst ∈ LΓ V), thenAPSIPE is breaking the distinguishable
forking and common prefix properties of the blockchain protocol Γ .

2. Assuming that the blockchain protocol is secure, if the adversary APSIPE distinguishes the ciphertext
c0, c1 with a B such that inst = (pk, d, B) ∈ LΓ V and a valid B̃ evolved from B containing a valid π,
then there exists an extractor EXT can extract the π or APSIPE breaks the extractable security of the
extractable witness encryption scheme.

We first reason about case 1. Notice that if APSIPE successfully distinguishes the ciphertext c0, c1 without
allowing for the extractor to obtain a valid SIP π and without violating the extractable security of the
extractable witness encryption scheme, APSIPE must obtain a valid witness for the following relation:

RΓ V :

{
((pk, d, B︸ ︷︷ ︸

inst

), (σ, B̃︸︷︷︸
wit

))

∣∣∣∣∣1← SIG.Vf(pk, d, σ) ∧ evolved(B, B̃) = 1

∧ (pk, d, σ) ∈ B∗ ∧B∗ ∈ B̃⌈ℓ1+ℓ2 ∧ u-stakefrac(B̃, ℓ2) ≥ β

}

However, while obtaining a valid π is trivial for APSIPE since it holds sk, APSIPE must obtain a B̃ that
satisfies the relation without resulting in a blockchain execution where a valid SIP π is present in the
common prefix of every honest party’s blockchain at the moment of decryption. In order to do so, APSIPE
must produce a valid execution of the blockchain starting from the initial blockchain B used to generate
the ciphertext cb and arriving at an evolved blockchain B̃ such that 1← SIG.Vf(pk, d, π)∧ evolved(B, B̃) =
1∧(pk, d, π) ∈ B∗∧B∗ ∈ B̃⌈ℓ1+ℓ2∧u-stakefrac(B̃, ℓ2) ≥ β while preventing π from appearing in the common

37

prefix of an honest party’s blockchain given the view ofAPSIPE. However, since this contradicts the common
prefix property for the underlying blockchain protocol, APSIPE can only hope to produce B̃ locally, without
actually executing the blockchain protocol, in such a way that π never appears in the common prefix of
the blockchain (i.e., so that the extractor fails when run on the blockchain obtained by honest parties).
However, this would violate the distinguishable forking property of the blockchain protocol, since APSIPE
would need to obtain a B̃ that does not contain a valid π but that satisfies evolved(B, B̃) = 1. Hence,
we conclude that APSIPE is not able to produce a blockchain execution such that inst = (pk, d, B) and
inst ∈ LΓ V without allowing the extractor to obtain a valid π, except with the negligible probability
that APSIPE breaks the distinguishable forking or common prefix properties of the underlying blockchain
protocol Γ V . This leaves us with case 2, where APSIPE is able to distinguish extractable witness encryption
ciphertexts c0, c1 for inst = (pk, d, B) ∈ LΓ V without producing a valid witness (π, B̃), which is ruled out
by this reasoning.

To tackle case 2, we consider an adversary APSIPE = (A1,A2,A3,A4,A5) that has non-negligible advan-
tage in GamePUB-SIP

PSIPE,APSIPE,Γ but does not publish π on the blockchain, as that is ruled out by case 1. We
construct an adversary AeWE, using black-box access to APSIPE, which breaks the extractable security of
eWE. Throughout this reduction, AeWE acts as Z in the execution of the blockchain protocol Γ , which
it simulates towards APSIPE following the same steps as the real protocol. Specifically, AeWE proceeds as
follows:

1. AeWE starts GamePUB-SIP
PSIPE,APSIPE,Γ game acting as the challenger towards APSIPE, simulating an execution

of the blockchain protocol EXECΓ (A1(1λ, pk, sk),Z, 1λ) where (pk, sk) ← KGen(1λ). AeWE proceeds
exactly as Z would until A1 stops and obtains a VIEW of the execution.

2. AeWE executes A2(1λ, pk, sk, VIEWA1) where VIEWA1 ∈ VIEW to obtain (st1, m0, m1).
3. AeWE sets inst = (pk, d, B), where d

$← {0, 1}λ, and B← GetRecords(1λ, st), given st← UpdateState(1λ)
obtained from A2’s view VIEW′A2

← VIEW′ of the simulated blockchain protocol execution. AeWE

sends (·, inst, m0, m1) to the challenger of the GameEXT-SEC
eWE,AeWE

game.
4. When AeWE receives ceWE

b from the challenger of GameEXT-SEC
eWE,AeWE

, it sets cb = (ceWE
b , d) and resumes

GamePUB-SIP
PSIPE,APSIPE,Γ . AWE executes st2 ← A3(st1, cb) and resumes the blockchain protocol execution

EXECΓ (A4(st2, cb),Z, 1λ) acting exactly as Z until A4 stops, obtaining VIEW′.
5. AeWE executes A5(st2, VIEW′A4

) where VIEW′A4
← VIEW′, obtaining output b′, which it returns to

the challenger in the GameEXT-SEC
eWE,A game.

Notice that AeWE simulates GamePUB-SIP
PSIPE,APSIPE,Γ and the blockchain execution towards APSIPE ex-

actly as in a real execution. Now assume that APSIPE has non-negligible advantage AdvPUB-SIP
PSIPE,APSIPE,Γ

in GamePUB-SIP
PSIPE,APSIPE,Γ , then AeWE is able to distinguish extractable witness encryption ciphertexts c0, c1

generated under the statement inst = (pk, d, B) ∈ LΓ V from messages m0, m1. Hence, AeWE has non-
negligible advantage AdvEXT-SEC

eWE,A in GameEXT-SEC
eWE,A , which means given extractable security for the eWE

scheme there is an extractor EXTAPSIPE(·)(1λ,LΓ V , inst, m0, m1) that obtains wit = (π, B̃) from APSIPE
with probability SuccEXT-SEC

eWE,EXT, where(wit, inst) ∈ RΓ V . Otherwise, if APSIPE has non-negligible advantage
in GamePUB-SIP

PSIPE,APSIPE,Γ while the extractor EXT(pk, cb, B̃) obtains SIP π such that Vf(pk, cb, π) = 1 with
negligible probability SuccPSIPE

EXT (i.e., fails to output such SIP π with non-negligible probability), we con-
tradict the extractable security property of the eWE scheme. Hence, given that the blockchain protocol
is secure and eWE has extractable security, we have that APSIPE can only have negligible advantage
AdvPUB-SIP

PSIPE,APSIPE,Γ in GamePUB-SIP
PSIPE,APSIPE,Γ while EXT fails to output SIP π.

C Security Proofs

C.1 Proof of Theorem 1 (ΠPSIPE-TBIBE Security)

Proof. We prove the Theorem 1 by showing a proof for Correctness, Unforgeability, IND-CPA Security,
and Public Self-Incriminating Proof properties of our scheme ΠPSIPE-TBIBE as follows:
Correctness. The correctness of our ΠPSIPE-TBIBE scheme follows immediately from the correctness guar-
antees of the underlying blockchain protocol, public key encryption, signature scheme and thresholdizable
batched IBE.

A well-formed PSIPE-TBIBE ciphertext consists of a PKE and TBIBE encryption layers. Whilst the
decryptor holds the sk to decrypt the inner PKE layer, the outer layer requires TBIBE decryption keys

38

for the id corresponding to the ciphertext instance. Given a valid SIP for ciphertext encrypted to id in
the common-prefix of the blockchain, the blockchain protocol (as extended in Fig. 5) ensures that TBIBE
decryption keys for id will be broadcast by a blockchain validator committee holding sharings of the
TBIBE master keys, permitting correct recovery of the plaintext by the decryptor, and successful public
SIP recovery during proof extraction.
Unforgeability. We construct an adversary ASIG from APSIPE with non-negligible advantage to win
GameUnforge

PSIPE,APSIPE
to break unforgeability of the signature scheme SIG. This adversary ASIG proceeds as

follows:

1. ASIG receives (1λ, pk) from the challenger of GameUnforge
SIG,ASIG

and forwards this to APSIPE, acting as the
challenger of the GameUnforge

PSIPE,APSIPE
game.

2. Playing the role of challenger in GameUnforge
PSIPE,APSIPE

, ASIG then receives back from APSIPE the tuple (ct, π)
which has a non-negligible advantage in winning GameUnforge

PSIPE,APSIPE
.

3. Letting ct = (ĉ, d) then ASIG returns (m, σ) = (ct, π) to the challenger of GameUnforge
SIG,ASIG

.

First observe that (pk, ·) ← SIG.KGen(1λ), hence the pair (1λ, pk) that ASIG receives from GameUnforge
SIG,ASIG

is similarly distributed to the pair that APSIPE receive from the real challenger in the GameUnforge
PSIPE,APSIPE

game. Now see that ct = (ĉ, id) and π ← SIG.Sign(pk, sk, ct) are returned from APSIPE with non-negligible
probability. Hence (m = ct, σ = π) will be a verifying message, signature pair with similar probability.

IND-CPA. We construct an adversary AEnc from APSIPE with non-negligible advantage to win
GameIND-CPA

PSIPE,APSIPE
to break IND-CPA security of PKE. This adversary AEnc proceeds as follows:

1. APKE receives pkPKE from the challenger of GameIND-CPA
PKE,A , and generates (pkSIG, skSIG) ←

SIG.KGen(λ) and (pkTBIBE, {pkTBIBE,i}i∈[n], {mskTBIBE,i}i∈[n]) ← TBIBE.KGen(pp) and forwards pk =
(pkPKE, pkSIG), pkTBIBE, {pkTBIBE,i}i∈[n] and mskTBIBE,i∈A to APSIPE, acting as the challenger of
GameIND-CPA

PSIPE,APSIPE
.

2. APKE receives a tuple (m0, m1) from APSIPE and forwards this plaintext pair to the challenger of
GameTBIBE,A.

3. APKE receives a ciphertext c from APKE, samples id←$ I and encrypts ĉ← TBIBE.Enc(pkTBIBE, c, id).
APKE forwards this to APSIPE in GameIND-CPA

PSIPE,APSIPE
.

4. Finally, APKE receives a bit from APSIPE which it forwards to the challenger in GameIND-CPA
PKE,APKE

.

Observe that the same plaintext messages (m0, m1) are encrypted in both black-box GameIND-CPA
PSIPE,APSIPE

and GameIND-CPA
PKE,APKE

instances. Thus, the advantage of APSIPE winning GameIND-CPA
PSIPE,APSIPE

directly translates
to an advantage of APKE winning GameIND-CPA

PKE,APKE
.

Public Self Incrimination. Assume by contradiction that an adversary APSIPE exists which can win the
GamePUB-SIP

PSIPE,APSIPE,Γ game with a non-negligible advantage AdvPUB-SIP
PSIPE,APSIPE,Γ while extractor EXT(pk, cb, B̃)

obtains π such that Vf(pk, cb, π) = 1 with probability SuccPSIPE
EXT < AdvPUB-SIP

PSIPE,APSIPE,Γ − negl(λ). We argue
that if this is the case, then it must be because (1) APSIPE breaks the underlying blockchain protocol’s
common prefix properties, or (2) the adversary breaks IND-CPA security of TBIBE. This leads to two
distinct cases:

1. Assuming TBIBE is secure, if a valid π does not appear on the common prefix of an honest party’s
blockchain, then APSIPE is breaking the common prefix properties of the blockchain protocol Γ .

2. Assuming the blockchain protocol Γ is secure, if a valid π does not appear on the common prefix of
an honest party’s blockchain, then APSIPE is breaking the security of TBIBE.

Consider case 1. Note that if APSIPE distinguishes ciphertexts c0, c1 without allowing the extractor to
obtain a valid SIP π and without breaking security of the TBIBE scheme, this implies that APSIPE must
have obtained valid decryption TBIBE decryption keys for a ciphertext cb∈{0,1}; however, note that parties
executing blockchain protocol Γ only produce these keys when a valid SIP π occurs in the common prefix
of the blockchain (Fig. 5). Thus, if the same SIP π is not observed by the extractor later on, the common
prefix property of the blockchain must have been violated.

Consider case 2. IfAPSIPE distinguishes ciphertexts c0, c1 without violating the common-prefix property
of the blockchain, then no valid SIP π is ever finalized in the common-prefix of the blockchain, which

39

would otherwise imply a successful SIP extraction. We can then construct an adversaryATBIBE fromAPSIPE
winning GamePUB-SIP

PSIPE,APSIPE,Γ without obtaining any TBIBE decryption keys for any ciphertext instances as
follows.

1. ATBIBE in GameTBIBE
ATBIBE

acts as the challenger towards GamePSIPE
PUB-SIP,APSIPE

: it generates
(pkPSIPE, skPSIPE) ← PSIPE.KGen(λ) and receives (pkTBIBE, {mskTBIBE,i}i∈A, {pkTBIBE,i}i∈[n])
from the GameTBIBE

ATBIBE
challenger. It forwards pkPSIPE = (pkPKE, pkSIG) and

(pkTBIBE, {mskTBIBE,i}i∈A, {pkTBIBE,i}i∈[n]) to the adversary APSIPE.
2. ATBIBE obtains (m0, m1) from APSIPE and encrypts cb ← PKE.Enc(pkPKE, cb) for b ∈ {0, 1}. ATBIBE

forwards (m0, m1) = (c0, c1) to the challenger in GameTBIBE
TBIBE,ATBIBE

.
3. ATBIBE forwards ctb from the challenger in GameTBIBE

ATBIBE
to APSIPE.

4. ATBIBE outputs the bit which it obtains from APSIPE in GamePSIPE
PUB-SIP,APSIPE

.

Notice that ATBIBE simulates GamePSIPE
PUB-SIP,APSIPE

perfectly towards APSIPE. The ciphertext challenges from
(simulated) and real challengers in GamePSIPE

PUB-SIP,APSIPE
and GameTBIBE

ATBIBE
respectively are “consistent” in the

underlying plaintext message; the ciphertext challenge from GameTBIBE
ATBIBE

simply includes another PKE
encryption layer on the underlying plaintext that is consistent with the (m0, m1) chosen by APSIPE. Thus,
any advantage of APSIPE directly translates to the same advantage of ATBIBE. ⊓⊔

C.2 Proof of Theorem 2 (ΠTSIPE Security)

Proof. We prove Theorem 2 by showing a proof for Correctness, Unforgeability, IND-CPA Security and
Self-Incriminating Proof Extractability properties of our scheme ΠTSIPE as follows:

Correctness. The correctness of our ΠTSIPE protocol is immediate and can be proven by the correctness
of the underlying primitives’ threshold encryption, MPC-hard function, commitment scheme and NIZK.

Fix a security parameter λ ∈ N, value α, β, ζ ∈ N with α ≥ 2β and β ∗ (β− ζ) ≥ 2λ (where ζ can be a
function of β) and parameters (n, t) such that 0 < t < n. The setup algorithm ΠTSIPE.Setup(1λ, n, t) works
as follows: a trusted third party who computes a public key and secret shares for a threshold encryption
scheme

(
pkTE, {skTE

i }i∈[n]

)
← TE.Setup

(
1λ, n, t

)
and public parameters for a commitment scheme ck←

CS.Setup(1λ). For all i ∈ [n], compute commitments to skTE
i as: cmski

= CS.Com(ck, skTE
i ; ρski

) where
ρski ← H4(skTE

i). The trusted third party distributes the public key pk = (pkTE, ck, {cmski}i∈[n]) to all
parties, and a pair of secret key share and random ski = (skTE

i , ρski) to each party Pi. In practice, this is
substituted by a suitable distributed key generation protocol but we treat this as a trusted setup for the
sake of simplicity.

For any message m ∈ {0, 1}λ, we encrypt the message by ΠTSIPE.Enc(pk, m) by sampling s
$←

{0, 1}n·(α−β−2) and z
$← {0, 1}β as an input to an MPC-hard function scratch(s, z, ·), and searching

for β number of nonces {w1, . . . , wβ} ∈ {0, 1}α−β−2 (as described in step 2 in Figure 10) such that the
first ζ bits of each qi ← scratch(s, z, wi) are zero. Given Lemma 1, this succeeds except with negligible
probability. Finally, we compute the ciphertext c = (c1, c2, c3, z) as: c1 ← CS.Com(ck, (s∥z∥w∥q∥m); ρ1)
where ρ1 = H1(s∥w∥w∥q), w = (w1∥ . . . ∥wβ) and q = (q1∥ . . . ∥qβ), c2 ← TE.Enc (pkTE, s; ρ2) where
ρ2 = H2(s∥z∥w∥q) and c3 = H2(s∥z∥w∥q)⊕m. Note that z is revealed in the ciphertext in order to allow
for SIP extractability (described under TSIPE SIP extractability proof).

For the decryption of a ciphertext c = (c1, c2, c3, z) by ΠTSIPE.Combine(pk, ski, c, {νi}i∈[T]), a set of
t + 1 or more parties do the following: (i) first, decrypt c2 as s ← TE.Combine (pkTE, {νi}i∈T) where
νi ← TE.ParDec(skTE

i , c) and the correctness of it follows from the correctness of the threshold encryption
scheme (as per Definition 25); (ii) then, search for β number of nonces {w1, . . . , wβ} ∈ {0, 1}α−β−2

(as described in step 2 in Figure 10) by computing qi ← scratch(s, z, wi) such that the first ζ bits of
each qi are 0, and retrieve the original message as m = c3 ⊕ PRF(s∥z∥w∥q) where ρ1 = H1(s∥z∥w∥q),
ρ2 = H1(s∥z∥w∥q), w = (w1∥ . . . ∥wβ) and q = (q1∥ . . . ∥qβ), and the correctness of it follows from the
correctness of the MPC-hard function scratch (in Figure 1) as per Lemma 1. Now, notice that for a
party Pi who has access of the ski = (skTE

i , ρski
) and (s, z, w, q, ρ1, ρ2, m) which is sufficient to generate a

40

self-incriminating proof πi computed as a NIZKPoK with witness (s, z, w, q, ρ1, ρ2, m, skTE
i , ρski

) showing:{(
∨j∈[n]CS.Com(ck, skTE

i ; ρski) = cmskj

)
∧

c1 = CS.Com(ck, (s∥z∥w∥q∥m); ρ1)∧
c2 = TE.Enc (pkTE, s; ρ2)∧
c3 = PRF(s∥z∥w∥q)⊕m}

the correctness of self-incriminating proof π follows from the underlying NIZKPoK scheme (as per Defini-
tion 28) commitment scheme CS (as per Definition 19), threshold encryption scheme 25 and pseudorandom
function. Therefore, ΠTSIPE satisfies the correctness properties.

IND-CPA Security. IND-CPA security of TSIPE can be proven via the following sequence of hybrid
arguments where start with the original GameIND-CPA

TSIPE,A1,...,Aa
and finish at a hybrid where the ciphertext

contains no information about the message:

H0: The first hybrid is A1,TSIPE, . . . ,Aa,TSIPE’s view in the real-world game GameIND-CPA
TSIPE,A1,...,Aa

for the
TSIPE.

H1: Recall the threshold encryption from our ΠTSIPE construction proceeds by sampling two ran-
dom as s

$← {0, 1}n·(α−β−2) and z
$← {0, 1}β and then compute a threshold encryption as

c2 = TE.Enc (pkTE, s; ρ2) where ρ2 = H2(s∥z∥w∥q). The hybrid H1 is the same as hybrid H0 ex-
cept that instead of generating a threshold encryption according to the above process, we just sample
a random string in {0, 1}n·(α−β−2)+β and use that to generate the encryption. We show that the two
hybrids H0 and H1 are indistinguishable unless A1,TSIPE, . . . ,Aa,TSIPE breaks the IND-CPA security
of the underlying threshold encryption scheme TE.

H2: Recall the commitment process from our ΠTSIPE construction proceeds by sampling two random
as s

$← {0, 1}n·(α−β−2) and z
$← {0, 1}β . Next, it searches for β number of nonces {w1, . . . , wβ} ∈

{0, 1}α−β−2 such that the first ζ bits of each qi ← scratch(s, z, wi) are 0. Then it computes a com-
mitment as c1 = CS.Com(ck, (s∥z∥w∥q∥m); ρ1) where ρ1 = H1(s∥z∥w∥q), w = (w1∥ . . . ∥wβ) and
q = (q1∥ . . . ∥qβ). The hybrid H2 is the same as hybrid H1 except that instead of generating a commit-
ment according to the above process, we just sample a random string in {0, 1}(n+β)·(α−β−2)+β2+β+λ

and use that to generate the commitment. We show that the two hybrids H1 and H2 are indistinguish-
able unless A1,TSIPE, . . . ,Aa,TSIPE breaks the hiding property of the underlying commitment scheme
CS.

H3: Recall the message encryption c3 = PRF(s∥z∥w∥q) ⊕m from our ΠTSIPE, construction proceeds by
sampling two random as s

$← {0, 1}n·(α−β−2) and z
$← {0, 1}β , and next, it searches for β number of

nonces {w1, . . . , wβ} ∈ {0, 1}α−β−2 such that the first ζ bits of each qi ← scratch(s, z, wi) ∈ {0, 1}β

are 0. Then it encrypt the message m as c3 = PRF(s∥z∥w∥q) ⊕ m where w = (w1∥ . . . ∥wβ) and
q = (q1∥ . . . ∥qβ). The hybrid H3 is the same as hybrid H2 except that instead of generating an
encryption according to the above process, we just sample a random string r3 ∈ {0, 1}λ and use that to
compute the encryption as c3 = r3⊕m. We show that two hybrids H2 and H3 are indistinguishable until
A1,TSIPE, . . . ,Aa,TSIPE breaks the computational indistinguishability in the pseudorandom function.

Assume by contradiction that there exists a (δ, Υ)-distributed adversary A1,TSIPE, . . . ,Aa,TSIPE with
non-negligible advantage in GameIND-CPA

TSIPE,A1,...,Aa
when executing TSIPE from Figure 10. Such an ad-

versary is able to distinguish between the hybrids in the sequence above. We will show that this
A1,TSIPE, . . . ,Aa,TSIPE can be used to construct adversaries breaking the hiding property of the com-
mitment scheme and the IND-CPA property of the threshold encryption scheme.

Hybrid H1. In hybrid H1, we use the threshold encryption to encrypt a randomly chosen string. Hence,
the advantage of A1,TSIPE, . . . ,Aa,TSIPE in hybrid H1 can be directly reduced to IND-CPA security of the
underlying threshold encryption scheme. We construct an adversaryATE who is talking with the challenger
of GameIND-CPA

TE,A and an internal copy of A1,TSIPE, . . . ,Aa,TSIPE for which it simulates GameIND-CPA
TSIPE,A1,...,Aa

.
The adversary ATE proceeds as follows:

1. ATE picks the threshold parameter (n, t) and choose a subset T̃ ⊂ [n] of parties to corrupt, such that
|T̃ | = |a| ≤ t.

2. ATE generates (1λ, pk, {skj}j∈T̃) by (pk, {ski}i∈[n])← Setup(1λ, n, t) and forwards a pair (pk, skj) to
Aj,TSIPE for all j ∈ T̃ , acting as the challenger of GameIND-CPA

TSIPE,A1,...,Aa
.

41

3. ATE receives a tuple (m0, m1) from A1,TSIPE. The ATE forwards the tuple ((s0; ρ2,0), (s1; ρ2,1)) to the
challenger of GameIND-CPA

TE,A . The tuple ((s0; ρ2,0), (s1; ρ2,1)) is computed as follows:
– First it samples s0

$← {0, 1}n·(α−β−2), s1
$← {0, 1}n·(α−β−2), z0

$← {0, 1}β and z1
$← {0, 1}β .

– Then it searches for β number of nonces {w0,1, . . . , w0,β} ∈ {0, 1}α−β−2 and {w1,1, . . . , w1,β} ∈
{0, 1}α−β−2 such that the first ζ bits of:

q0,i ← scratch(s, z0, w0,i) are zero, for all i ∈ [β]

q1,i ← scratch(s, z1, w1,i) are zero, for all i ∈ [β]
and set w0, w1 and q0, q1 as:

w0 = (w0,1∥ . . . ∥w0,β), w1 = (w1,1∥ . . . ∥w1,β)

q0 = (q0,1∥ . . . ∥q0,β), q1 = (q1,1∥ . . . ∥q1,β)
– Finally it computes the randomness as ρ2,0 = H2(s0∥z0∥w0∥q0) and ρ2,1 = H2(s1∥z1∥w1∥q1).

4. ATE receives the challenge ciphertext c′b from the challenger of GameIND-CPA
TE,A . Then, ATE forwards

cb = (c1, c2, c3) to A1,TSIPE, . . . ,Aa,TSIPE where: c2 = c′b and guess b∗ to construct,

c1 ← CS.Com(ck, (sb∗∥zb∗∥wb∗∥qb∗∥mb∗); ρ1,b∗)
c3 ← PRF(sb∗∥zb∗∥wb∗∥qb∗)⊕mb∗

z ← zb∗

where ρ1,b∗ = H1(sb∗∥zb∗∥wb∗∥qb∗).
5. Finally, ATE receives a guess b′ from A1,TSIPE. ATE forwards the guess b′ to the GameIND-CPA

TE,A .

Notice that ATE simulates GameIND-CPA
TSIPE,A1,...,Aa

exactly as in a real execution but guesses b∗. Since b∗

is guessed at random, ATE’s advantage in GameIND-CPA
TE,A in negligibly close to half of the advantage of

A1,TSIPE, . . . ,Aa,TSIPE in GameIND-CPA
TSIPE,A1,...,Aa

. Hence, if A1,TSIPE, . . . ,Aa,TSIPE has non-negligible advantage
in GameIND-CPA

TSIPE,A1,...,Aa
, then ATE has non-negligible advantage in GameIND-CPA

TE,A .

Hybrid H2. In hybrid H2, we use the commitment scheme to commit to a randomly chosen string. Hence,
the advantage of A1,TSIPE, . . . ,Aa,TSIPE in hybrid H2 can be directly reduced to the hiding property of
the underlying commitment scheme. We construct an adversary ACS who is talking with the challenger
of GameHIDE

CS,A and an internal copy of A1,TSIPE, . . . ,Aa,TSIPE for which it simulates GameIND-CPA
TSIPE,A1,...,Aa

. The
adversary ACS proceeds as follows:

1. ACS picks the threshold parameter (n, t) and choose a subset T̃ ⊂ [n] of parties to corrupt, such that
|T̃ | = |a| ≤ t.

2. ACS generates (1λ, pk, {skj}j∈T̃) by (pk, {ski}i∈[n]) ← Setup(1λ, n, t) and forwards a pair (pk, skj) to
Aj,TSIPE for all j ∈ T̃ , acting as the challenger of GameIND-CPA

TSIPE,A1,...,Aa
.

3. ACS receives a tuple (m0, m1) from A1,TSIPE. Then, ACS forwards the tuple
((s0, z0, w0, q0, m0)0, (s1, z1, w1, q1, m1)1) to the challenger of GameHIDE

CS,A. The tuple
((s0, z0, w0, q0, m0)0, (s1, z1, w1, q1, m1)1) is computed as follows:

– First it samples s0
$← {0, 1}n·(α−β−2), s1

$← {0, 1}n·(α−β−2)), z0
$← {0, 1}β and z1

$← {0, 1}β .
– Then it searches for β number of nonces {w0,1, . . . , w0,β} ∈ {0, 1}α−β−2 and {w1,1, . . . , w1,β} ∈
{0, 1}α−β−2 such that the first ζ bits of:

q0,i ← scratch(s, z0, w0,i) are zero, for all i ∈ [β]

q1,i ← scratch(s, z1, w1,i) are zero, for all i ∈ [β]
and set w0, w1 and q0, q1 as:

w0 = (w0,1∥ . . . ∥w0,β), w1 = (w1,1∥ . . . ∥w1,β)

q0 = (q0,1∥ . . . ∥q0,β), q1 = (q1,1∥ . . . ∥q1,β)

4. ACS receives the challenge commitment cmb from the challenger of GameHIDE
CS,A. Then, ACS and

forwards cb = (c1, c2, c3, z) to A1,TSIPE, . . . ,Aa,TSIPE where: c1 = cmb; choose a random from
r2 ∈ {0, 1}n·(α−β−2)+β+λ and construct c2 ← TE.Enc(pkTE, (r2)); and choose a random r3 ∈ {0, 1}λ,
construct c3 = r3 ⊕mb, and guess b∗ to construct z = zb∗

42

5. Finally, ACS receives a guess b′ from A1,TSIPE. ACS forwards the guess b′ to the GameHIDE
CS,A.

Now, notice that ACS simulates GameIND-CPA
TSIPE,A1,...,Aa

exactly as in H1 but guesses b∗. Since, c2 and
c3 are computed using random value, ACS’s advantage in GameHIDE

CS,A is negligibly close to the advan-
tage of A1,TSIPE, . . . ,Aa,TSIPE in GameIND-CPA

TSIPE,A1,...,Aa
, and b∗ is guessed at random, ACS’s advantage in

GameHIDE
CS,A in negligibly close to half of the advantage of A1,TSIPE, . . . ,Aa,TSIPE in GameIND-CPA

TSIPE,A1,...,Aa
.

Hence, if A1,TSIPE, . . . ,Aa,TSIPE has non-negligible advantage in GameIND-CPA
TSIPE,A1,...,Aa

, then ACS has non-
negligible advantage in GameHIDE

CS,A.

Hybrid H3. In hybrid H3, instead of generating an encryption c3 = PRF(s∥z∥w∥q) ⊕m, we use a ran-
domly chosen string r3 ∈ {0, 1}λ to encrypt the message as c3 = r3 ⊕m. Now, we have computational
indistinguishability of the pseudorandom function, since A1,TSIPE, . . . ,Aa,TSIPE cannot guess the random
r3 except with probability poly(λ)/2λ since it can only make λ queries to H2 and there are 2λ possible
outputs. A1,TSIPE, . . . ,Aa,TSIPE can only guess (s, z, w, q). Hence, we simulate GameIND-CPA

TSIPE,A1,...,Aa
exactly

as in H2 except with the negligible probability that A1,TSIPE, . . . ,Aa,TSIPE guesses (s, z, w, q).

We conclude the proof by observing that in the above hybrid argument, we reach a contradiction and
thus our assumption of the existence of A1,TSIPE, . . . ,Aa,TSIPE against the IND-CPA of ΠTSIPE cannot be
true.

Unforgeability. If there exists an adversary A with non-negligible advantage in GameUnforge1
TSIPE,A or a (δ, Υ)-

distributed adversary A1,TSIPE, . . . ,Aa,TSIPE with non-negligible advantage in GameUnforge2
TSIPE,A1,...,Aa

for our
scheme TSIPE, we show that these adversaries can be used to construct an adversary ANIZK breaking
the soundness property of the NIZKPoK proof system used to generate the SIP π. We analyze each case
separately.

Assume by contradiction that there exists a (δ, Υ)-distributed adversary A1,TSIPE, . . . ,Aa,TSIPE
with non-negligible advantage in GameUnforge2

TSIPE,A1,...,Aa
when executing TSIPE from Figure 10. Such

a A1,TSIPE, . . . ,Aa,TSIPE is able to generate a valid SIP π, which is a NIZKPoK taking as witness
(s, z, w, q, ρ1, ρ2, m, skTE

i , ρski
). Hence, this adversary is generating π for a ciphertext cb it cannot de-

crypt in order to obtain the encryption randomness and message (s, z, w, q, ρ1, ρ2, m). We construct an
efficient adversary ANIZK with black-box access to A1,TSIPE, . . . ,Aa,TSIPE that has a non-negligible advan-
tage in breaking soundness (in Definition 30) property of the NIZK scheme as per Definition 28 or the
IND-CPA security of TSIPE.

We construct an adversary ANIZK who breaks the soundness property of the NIZKPoK proof sys-
tem with non-negligible probability given an internal copy of A1,TSIPE, . . . ,Aa,TSIPE with non-negligible
advantage in GameUnforge2

TSIPE,A1,...,Aa
. ANIZK proceeds as follows:

1. A1,TSIPE, . . . ,Aa,TSIPE picks the threshold parameter (n, t) and chooses a subset T̃ ⊂ [n] of parties to
corrupt, such that |T̃ | = |a| ≤ t.

2. ANIZK computes (pk, {ski}i∈[n])← Setup(1λ, n, t) and forwards a (skj to Aj,TSIPE for all j ∈ T̃ , acting
as the challenger of GameUnforge2

TSIPE,A1,...,Aa
.

3. When A1,TSIPE, . . . ,Aa,TSIPE queries OParDec
ski,i∈[n]\T̃ with (i, c), ANIZK sets Q ← Q∪ c (where Q initially

empty) and answers the query with νi ← ParDec(ski, c) (which it can do since it has computed
{ski}i∈[n]). When A1,TSIPE, . . . ,Aa,TSIPE queries OEnc

pk with m, ANIZK answers with c← Enc(pk, m).
4. ANIZK receives a tuple (c′, π′) from A1,TSIPE, . . . ,Aa,TSIPE.
5. ANIZK returns π′.

It is clear that the (δ, Υ)-distributed adversary A1,TSIPE, . . . ,Aa,TSIPE’s view in the game
GameUnforge2

TSIPE,A1,...,Aa
is indistinguishable from the view simulated by ANIZK, since ANIZK executes

Setup(1λ, n, t) and simulates OParDec
ski,i∈[n]\T̃ and OEnc

pk exactly as in the game. Since we assume that
A1,TSIPE, . . . ,Aa,TSIPE has non-negligible advantage in GameUnforge2

TSIPE,A1,...,Aa
, it is able to generate (c′, π′)

such that 1 ← Vf(pk, c′, π′) where c′ /∈ Q. Hence, π is a valid NIZKPoK for the SIP statement of TSIPE
that is generated without knowledge of the witness (s, z, w, q, ρ1, ρ2, m, skTE

i , ρski), which violates the
soundness and proof of knowledge properties of the NIZKPoK proof system. Thus, the existence of
A1,TSIPE, . . . ,Aa,TSIPE that has non-negligible advantage in GameUnforge2

TSIPE,A1,...,Aa
contradicts the security

properties of NIZKPoK.

43

Assume by contradiction that there exists an adversary A with non-negligible advantage in
GameUnforge1

TSIPE,A. This adversary is able to generate a valid π for a ciphertext for which it knows
(s, z, w, q, ρ1, ρ2, m) (i.e., the encryption randomness, plaintext message and partial decryption for a
set T) without knowing a pair (skTE

i , ρski). Once again, we can use A to construct an adversary ANIZK
that breaks the soundness and proof of knowledge properties of the NIZKPoK proof system that is used
to generate the SIP π with non-negligible probability given A. ANIZK proceeds as follows:

1. A picks the threshold parameter (n, t).
2. ANIZK computes (pk, {ski}i∈[n])← Setup(1λ, n, t).
3. ANIZK executes (c′, π′)← AODec

sk (1λ, pk).
4. When A1,TSIPE, . . . ,Aa,TSIPE queries ODec

ski,i∈[n] with (T, j, c), ANIZK computes νi ← ParDec(ski, c) for
i ∈ T and returns (π, m) ← Combine(pk, skj , c, {νi}i∈T) (which it can do since it has computed
{ski}i∈[n]).

5. ANIZK returns π′.

It is clear that A’s view in the game GameUnforge1
TSIPE,A1,...,Aa

is indistinguishable from the view simulated
by ANIZK, since ANIZK executes Setup(1λ, n, t) and simulates ODec

ski,i∈[n] exactly as in the game. Since we
assume that A has non-negligible advantage in GameUnforge1

TSIPE,A, it is able to generate (c′, π′) such that
1 ← Vf(pk, c′, π′) where c′ /∈ Q. Hence, π is a valid NIZKPoK for the SIP statement of TSIPE that is
generated without knowledge of the witness (s, z, w, q, ρ1, ρ2, m, skTE

i , ρski
), which violates the soundness

and proof of knowledge properties of the NIZKPoK proof system. Thus, the existence of A with non-
negligible advantage in GameUnforge1

TSIPE,A contradicts the security properties of NIZKPoK.

Self-Incriminating Proof Extractability. Assume for the sake of contradiction that the proto-
col does not offer self-incriminating proof extractability. In that case, there exists a (δ, Υ)-distributed
adversary A1,TSIPE, . . . ,Aa,TSIPE that has advantage AdvSIP−SEC

TSIPE,A1,...,Aa
such that there does not exist

an extractor kEXTi for at least one i ∈ [a] that can output a value πi s.t. Vf(pk, c, πi) = 1 with
SuccTSIPE

kEXT ≥ AdvSIP−SEC
TSIPE,A1,...,Aa

− negl(λ). If this is the case, then it must be because no valid πi can
be produced with non-negligible probability from (pk, c, ski, τ fast

i) even when A1,TSIPE, . . . ,Aa,TSIPE is able
to distinguish the challenge ciphertext cb. Observe that if this is the case, then it implies that no adver-
sary Ai,TSIPE for i ∈ [a] has executed scratch correctly. However, this is not possible as it contradicts the
IND-CPA security of TSIPE (as described above in TSIPE IND-CPA security proof). To see this, first,
observe that the adversary needs to be able to learn a non-negligible amount of information about the
message mb encrypted by the challenger. However, the message mb can only be derived by computing
PRF(s∥z∥w∥q) where w = (w1∥ . . . ∥wβ) and q = (q1∥ . . . ∥qβ), for values s∥z∥w∥q that have high entropy
and thus cannot be brute forced by a polynomial time adversary. More specifically, this input to the
random oracle PRF has at least β ∗ (α− β − 2) + β ∗ (β − ζ) = β ∗ (α− 2− ζ) bit of entropy due to the
computation qj ← scratch(s, z, wj) for all j ∈ [β] containing β ∗ (α − 2 − ζ) bits of entropy (as each wj

is (α − β − 2) bits and each qj is β bits but it has first ζ bits are 0). Now, since α ≥ 2β (as defined in
Figure 1) and β ∗ (β − ζ) ≥ 2λ, we get that,

β ∗ (α− 2− ζ) ≥ β ∗ (2β − 2− ζ)
= 2β2 − 2β − βζ

= β2 − βζ + β2 − 2β

= β ∗ (β − ζ) + β2 − 2β

= 2λ + β2 − 2β

≈ 2λ

for the security parameter λ. Hence, no polynomial-time adversary can brute-force these. Furthermore,
observe that these are all derived using random oracles, and hence no, non-brute-force attack is possible.
Thus, each qj must be computed using scratch taking as input the values s, z and wj , for all j ∈ [β]. This
means that for some adversary Ai,TSIPE to learn mb it must have executed scratch correctly in which case
Lemma 1 guarantees that there exists an extractor kEXTi that obtains the s from τ fast

i for at least one
sub-adversary Ai,TSIPE.

Now, notice that the extractor kEXTi has obtained s from τ fast
i , and each extractor kEXTi is also

given c = (c1, c2, c3) and the public key pk; so the Lemma 1 guarantees that the extractor kEXTi can

44

correctly compute β number of nonces {w1, . . . , wβ} in polynomial-time by running qj ← scratch(s, z, wj)
such that the first ζ bits of qj are zero (as described in Figure 1), for all j ∈ [β]. Then the extractor
kEXTi can compute ρ1 = H1(s∥z∥w∥q) and ρ2 = H2(s∥z∥w∥q) using (s, z, w, q) where w = (w1∥ . . . ∥wβ).
Finally, the extractor kEXTi can compute m = c3⊕PRF(s∥z∥w∥q) where q = (q1∥ . . . ∥qβ). Next, see that
the last values needed construct a valid πi using NIZKPoK is the public key pk and the secret share ski

of the sub-adversary Ai,TSIPE. Since kEXTi is also given ski = (skTE
i , ρski

), hence it can compute a valid
proof πi. Thus we can conclude that ΠTSIPE has Self-Incriminating Proof Extractability when scratch is
MPC-hard as per defined in Figure 1.

45

	Detecting Rogue Decryption in (Threshold) Encryption via Self-Incriminating Proofs

