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Abstract. This work re-evaluates the soundness guarantees of the Boneh-
Franklin biprimality test (2001) for Blum integers. Under the condition
gcd(pq, p+q−1) = 1, we show that the test accepts a non-RSA modulus
with probability at most 1/4. This is a refinement of the previously es-
tablished 1/2 bound and holds for all cases except the specific instance
where p = q = 3. We further demonstrate that this 1/4 bound is tight,
thereby halving the number of test iterations required to achieve equiva-
lent soundness. This directly reduces computational and communication
overhead in distributed RSA generation protocols.
Additionally, we propose a generalized biprimality test based on the Lu-
cas sequence. In the worst case, the acceptance probability of the pro-
posed test is at most 1/4 + 1.25/(pmin − 3), where pmin is the smallest
prime factor of N . To validate our approach, we implemented the vari-
ant Miller-Rabin test, the Boneh-Franklin test, and our proposed test,
performing pairwise comparisons of their effectiveness. Both theoretical
analysis and simulations indicate that the proposed test is generally more
efficient than the Boneh-Franklin test in detecting cases where N is not
an RSA modulus. Furthermore, this test is applicable to generating RSA
moduli for arbitrary odd primes.
A distributed RSA modulus verification protocol that incorporates our
test is also introduced. The protocol is secure against semi-honest ad-
versaries for general odd primes. For Blum integers, it also offers secu-
rity against malicious adversaries. We analyze its efficiency and com-
patibility with existing distributed RSA protocols, including those of
Boneh-Franklin and Burkhardt et al. (CCS 2023). Our protocol offers
competitive performance while enhancing soundness and generality in
cryptographic applications.

1 Introduction

The RSA cryptosystem [38] remains a cornerstone of public key cryptography.
Traditionally, RSA key generation involves creating two large, distinct secret
primes, p and q, whose product N = pq forms the public modulus. However,
generating these keys centrally introduces a single point of failure. Multi-Party
Computation (MPC) offers a robust solution by enabling multiple parties to
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collectively compute N using their private inputs (i.e., shares of p and q) while
preserving the confidentiality of these inputs. MPC-based RSA generation has
become a foundational tool for constructing advanced cryptographic primitives,
such as threshold homomorphic encryption [24, 27], time-lock puzzles [1, 32, 39],
accumulators [6, 9, 31], and verifiable delay functions [8, 18,22,28,36,41].

The primary objective in distributed RSA modulus generation is to devise
a secure protocol for n parties, resilient against up to t < n colluding adver-
saries. The protocol should output a random and valid RSA modulus N = pq,
where p, q are distinct primes of a specified size, such that an adversary learns
nothing beyond N , ensuring the privacy of p and q. Such protocols typically
involve two phases: (a) Prime Candidate Sieving: participants generate a
potential RSA modulus N that does not divide by a prime less than a predeter-
mined integer pmin; and (b) Biprimality test: the candidate N is repeatedly
tested by a biprimality test. If N is rejected by the biprimality test, then the
process starts over. Current state-of-the-art sieving techniques often employ the
Chinese Remainder Theorem (CRT) to efficiently generate candidates N free of
small prime factors [16,40]. For biprimality testing, variants of the Miller-Rabin
primality test (cf. [15, Section 3.2]) and Boneh-Franklin’s biprimality test (cf.
Theorem 1) have been commonly used.

A notable limitation is that MPC protocols for these tests often restrict can-
didate primes to p ≡ q ≡ 3 (mod 4). The Boneh-Franklin test, in its original
analysis [10], has a worst-case soundness error (i.e., probability of accepting a
non-RSA modulus) of at most 1/2. While the Miller-Rabin primality test exhibits
a worst-case error of 1/4 for testing individual numbers [14,37], its average-case
performance for testing prime candidates (e.g., for p, q both 1024-bit) can achieve
errors below 2−67 in just two iterations [19,20]. Deriving similarly strong average-
case bounds for the Boneh-Franklin test remains an open question [17,20]. Con-
sequently, relying on its worst-case bound means the Boneh-Franklin test re-
quires substantially more iterations (e.g., 67) to achieve comparable assurance,
increasing verification costs. Burkhardt et al. [15] demonstrated enhanced effi-
ciency using a variant Miller-Rabin test3, though its single MPC execution can
be costlier than one Boneh-Franklin iteration.

However, leveraging the Miller-Rabin test studied by Burkhardt et al.’s, in
practical distributed RSA generation faces challenges. Firstly, it often assumes
p and q are of equal bit-length [15, Input assumptions]. Secondly, its strong
average-case soundness relies on p and q being chosen uniformly at random, an
assumption not met by most efficient distributed RSA generation algorithms [10,
16,17,20,23,40], which typically produce p and q from more complex distributions
(e.g., sums of uniform random variables). Thus, directly applying these average-
case results in practical protocols requires careful justification.

While extensive research has advanced prime candidate sieving, biprimality
testing within distributed protocols has seen comparatively less focus on new

3 The variant Miller-Rabin test they used is a special case of the original Miller-Rabin
test. See Section 5.1.
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alternatives or broader applicability. This paper addresses these gaps by inves-
tigating the following questions:

Which existing test, Boneh-Franklin or variant Miller-Rabin, offers superior
advantages for distributed RSA moduli generation? More importantly, can we

design more efficient or general biprimality tests?

1.1 Our contribution

Our work introduces significant advancements in biprimality testing, focusing on
improved efficiency, tighter security analyses, and relaxed constraints for RSA
modulus generation. We also provide a high-level technical overview in Section
1.2, before formalizing our results. Our primary contributions are:

A Refined Analysis of the Boneh-Franklin Test. We demonstrate that,
in the worst-case scenario, the probability of the Boneh-Franklin test accepting
a non-RSA modulus is 1/4, a tighter bound than the previously established
1/2. The theoretical underpinnings for this improved bound are detailed in our
Technical Overview. Crucially, we identify the necessary and sufficient conditions
on the factors p and q that lead to this worst case (cf. Corollary 1) and show
that infinitely many such pairs (p, q) exist.

A Novel Lucas Biprimality Test. Inspired by classical Lucas primality tests,
we propose a new biprimality test. For odd integers p, q, let N = pq. We define
an exponent4 e4 := (p + [−1

p ])(q + [−1
q ])/4, where

[ ·
·
]
is the Jacobi symbol,

such that gcd(N, e4) = 1. For a Lucas sequence Uk with the initial condition
U0 = 0, U1 = 1, parameters P,Q, and discriminant D := P 2−4Q, we prove that

there exists a pair P,Q satisfying gcd(N, 2QD) = 1,
[
−D
p

]
=
[
−D
q

]
= −1, and[

Q
N

]
= 1 for which the term Ue4 ̸≡ 0 (mod N) if and only if N is not a valid

RSA modulus.

Advantages of the Proposed Lucas Test. (1) Enhanced Detection Efficiency:
Our study, supported by both theoretical analysis (cf. Section 5.2) and empirical
results (cf. Section 5.1, Table 2), reveals that our Lucas test generally outper-
forms the Boneh-Franklin test by detecting non-RSA moduli with fewer itera-
tions, despite both tests having nearly identical computational complexity per
iteration (cf. Table 3). This efficiency reduces overall computational and com-
munication costs. Additionally, Table 2 indicates that, when p and q are selected
from a specific distribution, the Lucas test likely offers better security than the
variant Miller-Rabin test. (2) Relaxed Prime Constraints: A significant advan-
tage of our Lucas test is its ability to operate without the common restriction
p ≡ q ≡ 3 (mod 4) often imposed in distributed RSA key generation protocols.

4 This formulation aligns with the Boneh-Franklin e4 = (p−1)(q−1)/4 when p ≡ q ≡
3 (mod 4).



4 Chuang et al.

This broadens its applicability. While some systems, like the KMOV variant by
Boudabra et al. [12], target p ≡ q ≡ 1 (mod 4), our work contributes to a more
theoretically complete framework for biprimality testing across diverse prime
types.

Secure Protocols and Efficiency Gains. (1) Semi-Honest Security: We pro-
pose a Lucas-based protocol secure against semi-honest adversaries (cf. Theo-
rem 3). The main challenge, ensuring privacy via indistinguishable views for
the simulator, is addressed using refined methods, particularly for cases beyond
p ≡ q ≡ 3 (mod 4) where direct application of Boneh-Franklin’s strategy is in-
sufficient. (2) Malicious Security and Protocol Optimization: For the malicious
setting, we adapt the framework of Chen et al. [16, Protocol 5.2] by integrating
our Lucas test, initially for the p ≡ q ≡ 3 (mod 4) case. Our analysis provides
a more detailed proof within this framework and identifies potential technical
refinements to Chen et al.’s protocol (cf. Section 6.11). Notably, our tighter 1/4
worst-case soundness error for the Boneh-Franklin test directly translates to im-
proved efficiency in such protocols, reducing the required number of iterations
from approximately 2.5s to ⌈1.475s⌉ to achieve a failure probability of less than
2−s (cf. Section 4.4), where s is the security parameter and ⌈·⌉ is the ceiling
function.

Comprehensive Comparison and Validation. A comparative summary of
the Miller-Rabin, Boneh-Franklin, and our Lucas test is provided in Table 1.
Our Lucas-based protocol for p ≡ q ≡ 3 (mod 4) cases is highly competitive. For
other prime congruences, our Lucas test is recommended for generating RSA
moduli due to its relaxed constraints and robust detection. Rigorous empirical
analysis, including benchmarking against competing methods, was performed to
validate our proposed test. The implementation code is publicly available for
reproducibility at 5.

1.2 Technical Overview

First, we provide a high-level description of the biprimality tests considered in
this paper. Let H and G be two sets whose definitions depend on p and q. While
H is a subset of G, their distinct definitions are key that we have G = H if
and only if p and q are distinct primes. The two sets can then be utilized to
construct a biprimality test. By randomly selecting an element g from G and
verifying whether g ∈ H. If g /∈ H, then N is not an RSA modulus. This value
β = |H|/|G| can be considered the soundness error for non-RSA moduli N = pq.

Our proof strategy for establishing soundness is analogous for both the
Boneh-Franklin refinement and our proposed Lucas test: we compute the car-
dinalities of G and H, and then show that for any odd integers p, q, the set H
always a subset of G. Consequently, if |G| = |H|, then one has G = H.

5 https://github.com/lukakusilk/Three-biprimality-test-comparison

https://github.com/lukakusilk/Three-biprimality-test-comparison
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Table 1: Ranking Features of Three Tests: A Comparative Overview

Method Boneh-Franklin Variant
Miller-Rabin

Proposed test

The worst case excluding special
conditions

1/2→ 1/4 1/4 1/4 + 1.25/(pmin − 3)

Exceptional p = q = 3 p, q ≤ 9 pmin < 11

Extra assumption gcd(pq, e4) = 1 equal-length1 gcd(pq, e4) = 12

Detecting of non-RSA moduli 3 2 1

MPC Protocol efficiency 1 3 1

Local computation efficiency 1 3 2

Leakage No No Blum:No3

RSA Moduli Type Blum Blum Arbitrary

The numbers in the table represent rankings. The section under the bold heading presents a comparison of the
protocols in the semi-honest model (cf. Section 6.10). The worst case excluding special conditions is derived from
Theorem 1, 2, and Lemma 14. Exceptional means that the exclusion of the worst-case scenario. Extra assumption
means the additional conditions required by each test. The ranking for Detecting of non-RSA moduli comes from
the Table 2. The ranking for MPC protocol efficiency comes from the Section 5.3. Finally, the ranking for Local
computation efficiency is based on the comparison of local computations in Section 5.3, and Protocol 5, 6, and 7.
For a discussion of Leakage, please refer to the last paragraph of Section 4.2.
The Blum moduli in the RSA Moduli Type require the condition p ≡ q ≡ 3 (mod 4). pmin is the smallest prime
factor of N = pq.
1 The condition of equal-length for primes p, q implies that gcd(pq, e4) = gcd(pq, p + q − 1) = 1.
2 When considering p ≡ 1 (mod 4) (or q ≡ 1 (mod 4)), we additionally assume that p (or q) is not a perfect square.
3 If N is not a Blum integer, then the leakage is negligible.

Next, let us explain why the soundness error in the worst-case can be im-
proved. In the original Boneh-Franklin’s proof [10, Lemma 4.1], the condition
gcd

(
pq, p + q − 1

)
= gcd

(
pq, e4

)
= 1 was not assumed. However, this omission

allowed for the existence of non-RSA moduli N , (i.e., p = pd1
1 , q = pd2

2 , d1 > 0,
and q ≡ 1 (mod pd1−1

1 ), where p1, p2 are distinct primes) which would still pass
the test. To address this issue, the assumption gcd

(
pq, p+ q− 1

)
= 1 was intro-

duced to exclude these pathological cases6. However, in the original proof (i.e.,
they proved H = BF(N, e4) ⊊ G(N) = G), the condition gcd

(
pq, p+ q− 1

)
= 1

was not easy to apply directly. Here

BF(N, e4) :=
{
g ∈ Z×

N | g
e4 ≡ ±1 (mod N)

}
⊂ G(N) :=

{
g ∈ Z×

N

∣∣∣∣ [ gN ] = 1

}
.

To effectively leverage the conditions gcd
(
pq, p+ q − 1

)
= 1, we adopted an

alternative approach based on two key insights. This enabled us to derive an
accurate counting formula for BF(N, e4).

• The oddness of e4 (i.e., which holds when p ≡ q ≡ 3 (mod 4)) implies that
the mapping g 7→ −g is a bijective on the relevant sets. Consequently, we

6 Another method involves multiple verifications of an exponential operation in(
ZN [x]/(x2 + 1)

)×
/Z×

N .
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have∣∣{g ∈ Z×
N | g

e4 ≡ ±1 (mod N)}
∣∣ = 2

∣∣{g ∈ Z×
N | g

e4 ≡ 1 (mod N)}
∣∣ .

• We decompose the problem of counting solutions to {g ∈ Z×
N | ge4 ≡

1 (mod N)} into counting solutions modulo each prime power factor prii
of N using CRT (cf. Section 6.1). This involves analyzing sets BF(prii , e4) ⊂
(Z/prii Z)×. Moreover, the number of e4-roots of 1 in a cyclic group (Z/prii Z)×
can be easily derived (i.e., the condition gcd(pq, p+ q− 1) = 1 is used here).
More details can be found in Lemma 1.

When N is not square-free, analyzing the quotient |BF(N, e4)|/|G(N)| is rel-
atively straightforward. However, when N is square-free, a more careful analysis
is required to understand how the ratio changes. In the worst-case scenarios,
such as N = p1p2p3 and N = p1p2p3p4, we found that the soundness error in
the worst-case is 1/4 instead of 1/2. For example, consider the case p = p1 and
q = p2p3. We can assume that p1 ≡ p2 ≡ 3 (mod 4), and p3 ≡ 1 (mod 4), and
pi − 1 = 2kidi, where di is odd for all 1 ≤ i ≤ 3, and k1 = k2 = 1, k3 ≥ 2. Then
Lemma 3 and Lemma 13 give us

|BF(N, e4)|
|G(N)|

=
2
∏3

i=1 gcd(e4, di)

2−1
∏3

i=1(pi − 1)
≤ 4d1d2d3

2k1+k2+k3d1d2d3
≤ 1

4
.

In conclusion, the main difference between this approach and the original proof
is that the original method only demonstrated that BF(N, e4) is a subgroup
of G(N), without providing any insight into the relative size. In contrast, our
method accurately computes their exact counts.

To develop a protocol analogous to Boneh-Franklin, we consider two sets

LPBP(D,N, e4) :=

(P,Q)
0 ≤ P,Q < N, gcd(Q,N) = 1,
P 2 − 4Q = D (mod N),
(αβ−1)e4 = ±1 (mod NOD)

 ,

and

Zϵ(D,N) :=

(P,Q)

P 2 − 4Q = D (mod N),[
Q
N

]
= ϵ, gcd(Q,N) = 1,

0 ≤ P,Q < N

 .

Here α, β are the two distinct roots of the quadratic polynomial x2−Px+Q, and
OD represents the ring of integers of the quadratic field extension Q(

√
D). The

relation between LPBP(D,N, e4) and the Lucas sequence can be found in Section
2.2. For studying these two sets, we can apply the same strategy of BF(N, e4)
to the proposed Lucas test, which is more complex in proving counting the two
sets.

Additionally, another key point is proving that, the set LPBP(D,N, e4) is
always a subset Z+1(D,N) for any odd integers N and an integer D with
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N

]
= 1, and

[−D
p

]
= −1. In the original Boneh-Franklin paper, this was

straightforward because p ≡ q ≡ 3 (mod 4), and e4 is odd. This allowed the
result BF(N, e4) ⊂ G(N) to be easily derived from the following observation:[ g

N

]
=
[ g
N

]e4
=

[
ge4

N

]
=

[
±1
N

]
= 1.

However, in our case, αβ−1 does not belong to ZN , so this trick must be
applied with caution. In our study (cf. Proposition 2), we found that when(
αβ−1

)e4 ≡ ±1 (mod NOD), the representative of β2e4 modulo NOD can be

chosen in ZN . We can then express Qe4 = (αβ)e4 as
(
αβ−1

)e4 · (β2e4), where all
three representatives in OD/NOD belong to ZN , and apply the same method to
complete the proof.

We also explain why the Lucas test offers advantages in detecting non-RSA
moduli. According to the counting formula of non-perfect-square N (cf. Theorem
1, Proposition 1), the sizes of |G| in the Lucas test and the Boneh-Franklin test
are nearly identical when pi are sufficiently large for all i. However, for |H|,
the Boneh-Franklin test (resp. Lucas test) results in a count 2

∏
i gcd(e4, pi − 1)

(resp.
∏

i

(
gcd(e4, pi− 1)− 1

)
+
∏

i gcd(e4, pi− 1)). This observation shows that
in most cases, it is likely to find a pi such that gcd(e4, pi−1) = 1. Consequently,
the size of |H| in the Boneh-Franklin test is twice that of the Lucas test. As
a result, the Lucas test often achieves nearly twice the probability of detecting
that N is not an RSA modulus when randomly selecting elements from G, and
pi sufficiently large for all i. Practically, ensuring that N has no small prime
factors pi is straightforward via trial division, a necessary step in any efficient
distributed RSA moduli generation protocol.

Next, the proposed protocol against semi-honest adversaries for the Lucas
test closely resembles the Boneh-Franklin protocol, with the key distinction being
that, for cases where p ≡ 1 (mod 4) or q ≡ 1 (mod 4), it is essential to select a D
that satisfies the condition

[−D
N

]
= 1, and

[−D
p

]
= −1. This requires computing[−D

p

]
= −1. As proposed in [26], although not proven in detail, this can be done

by first jointly generating s, then jointly computing and publishing s2p (mod D)
thus obtaining [ pD ]. The desired value can be computed using the basic rules of
the Legendre symbol (cf. πLeg). In the next step, participants use their respective
secrets concerning p and q to jointly compute (αβ−1)e4 . For the GCD test, we
verify gcd(N, e4) = gcd

(
N, p[−1

q ]+q[−1
p ]+[−1

N ]
)
= 1. The parties Pi then jointly

generate a random number r, which is used in an MPC multiplication to compute
r
(
p[−1

q ] + q[−1
p ] + [−1

N ]
)
.

We now elucidate the rationale for imposing the supplementary condition[
−D
p

]
=
[
−D
q

]
= −1 in our proposed test (cf. Theorem 2). In traditional ap-

proaches (e.g., Miller–Rabin primality test) for handling N where p ≡ 1 (mod 4)
or q ≡ 1 (mod 4), one typically uses the factorization p−1 = 2kd with k ≥ 2 and
odd d. It requires multiple MPC rounds to iteratively divide by 2 until d is found,
which leads to non-constant execution time. To address this, we leverage Lucas

sequences with carefully chosen P,Q, such that for a prime p, the
(
p−

[
D
p

])
-th
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term is divisible by p, where D = P 2 − 4Q and
[ ·
·
]
denotes the Jacobi symbol.

By selecting D with
[
−D
p

]
= −1, we get p−

[
D
p

]
= p+1 = 2d

(
i.e.,

[
D
p

]
=
[
−D
p

]
when p ≡ 1 (mod 4)

)
, thereby optimizing the need for additional MPC rounds,

because D can be computed in parallel.
Regarding security proof for the protocol, to simulate the transcript of pro-

posed Lucas protocol, we carefully construct a method to generate a uniform dis-

tribution over L = {P ∈ ZN | [P
2−D
N ] = 1}. In the scenario considered by Boneh-

Franklin, they use a2(−1)b to simulate g, where a ∈ Z×
N . They utilize b = 0 or 1 to

control (a2(−1)b)e4 . In our case, the situation is more complex as
√
D maybe not

belong ZN . Therefore, we modify the selection of a ∈
{(

v+w
√
D

v−w
√
D

)
|v2 − w2D ∈

Z×
N for all v, w ∈ ZN

}
. We then prove that this construction can produce the

desired uniform distribution of the set L (cf. Proposition 4).
In the malicious setting, we follow the methodology proposed by Chen et al.’s

protocol [16, Protocol 5.2] to design our protocol. First, we define a biprimality
functionality and prove that it can be realized by a maliciously secure version
of the Lucas biprimality test. The protocol essentially consists of two parts: a
semi-honest version of the proposed Lucas test, and a Schnorr-like verification
protocol to ensure that the test was executed correctly. The soundness error of
the biprimality test combines with that of the Schnorr-like protocol, resulting in
a total error of

γ :=
5

8
+

0.625

pmin − 3
,

meaning the test must be repeated approximately ⌈s/ log2(γ−1)⌉ times to re-
duce the total soundness error to at most 2−s. Here s is a statistical parameter
ensuring that the probability that N is not an RSA modulus is less than 2−s.
A detailed analysis of the proof led us to observe a few points in Chen et al.’s
protocol that could potentially be improved. Possible improvements would be in
Section 4.4.

1.3 Related work

The generation of RSA moduli in a distributed manner was first pioneered by
Boneh and Franklin [10]. They introduced an efficient protocol to test if an in-
teger N = pq is a valid RSA modulus (i.e., the product of two distinct primes)
without revealing the factors p and q. This protocol is secure in the semi-honest
adversarial model, assuming an honest majority. Their test exhibits perfect com-
pleteness, always accepting valid RSA moduli, and has a soundness error of
at most 1/2 (i.e., it accepts non-RSA moduli with probability at most 1/2).
Their paper detailed two principal variants of this biprimality test: one involv-
ing multiple evaluations of gcd(pq, (p − 1)(q − 1)) = 1, and another based on

repeated exponentiations within the group
(
ZN [x]/(x2 + 1)

)×
/Z×

N . Subsequent
mainstream approaches have often focused on variants that incorporate condi-
tions like gcd(pq, p + q − 1) = 1 to handle specific types of non-RSA moduli.
Building on the theme of distributed primality testing, Algesheimer et al. [2]
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proposed a distributed Miller–Rabin test achieving semi-honest security against
a dishonest majority. This line of work was followed by several papers that adapt
the Miller-Rabin test for designing biprimality tests [15, 20]. In the analysis of
average-case soundness error, Damg̊ard et al. [19] established an upper bound for
the Miller-Rabin test. For Lucas-based tests, Einsele et al. [21] provided a cor-
responding upper bound for strong Lucas pseudoprimes. For articles addressing
the optimization of RSA moduli candidates and proposing a more secure security
model, Burkhardt et al.’s paper [15] underwent a comprehensive review.

1.4 Structure of the Paper

Section 2 introduces fundamental mathematical background and notation, in-
cluding Lucas sequences. Key properties of the Chinese Remainder Theorem
and the Jacobi symbol, along with an introduction to their relevant applica-
tions, are detailed in Appendices 6.1 and 6.2. A novel and refined proof for the
Boneh-Franklin test is presented in Section 3.

Section 4 is dedicated to our proposed Lucas biprimality test. We present
the test itself, the protocol we constructed based on it, and provide proofs of
security against both semi-honest for arbitrary odd integers p, q and malicious
attackers for p ≡ q ≡ 3 (mod 4).

Section 5 offers a comparative data analysis of the Miller-Rabin, Boneh-
Franklin, and Lucas tests. This includes an examination of the complexity of
our proposed Lucas protocol in the semi-honest model. Furthermore, this section
provides a theoretical analysis comparing the Boneh-Franklin and Lucas tests.
Finally, it presents experimental data from biprime generation scenarios.

2 Preliminaries

Basic notations. Let P be the set of all primes, N be the nature numbers, and
Z be the ring of integers. For a finite set S, |S| means the cardinality of S. Let
ZN be the additive group of order N , and Z×

N be the multiplicative group in ZN .
Moreover, |Z×

N | = ϕ(N), where ϕ is the Euler’s totient function. For an interval
I, we set P(I) := {p ∈ P | p ∈ I}. The greatest common divisor of two positive
integers x and y ∈ N is denoted by gcd(x, y). Let [a]m(resp. [a]Z) be the secure
additive sharing of value a in the integer domain Zm (resp. Z). That is each of
the participants, {Pi}ni=1, has their own secret ai ∈ Zm(resp. ai ∈ Z) such that∑n

i=1 ai ≡ a (mod m) (resp.
∑n

i=1 ai = a). Given a finite set S, the notation
a← S denotes that a is sampled uniformly at random from S.

For clarity, we present symbols that have been introduced in earlier studies.

Given two odd positive integers p, q, set e4(= e4(p, q)) :=
1
4

(
p+
[
−1
p

] )(
q+
[
−1
q

] )
.
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Here
[ ·
·
]
is the Jacobi symbol (cf. Section 6.2). For odd integers p, q, we set

MR(p) := {g ∈ Z×
p | g(p−1)/2 ≡ ±1 (mod p)},

BF(N, e4) :=
{
g ∈ Z×

N | g
e4 ≡ ±1 (mod N)

}
,

G(N) :=

{
g ∈ Z×

N

∣∣∣∣ [ gN ] = 1

}
,

Zϵ(D,N) :=

(P,Q)

P 2 − 4Q = D (mod N),[
Q
N

]
= ϵ, gcd(Q,N) = 1,

0 ≤ P,Q < N

 ,

for ϵ ∈ {±1}, Z(D,N) = ∪ϵ∈{±1}Zϵ(D,N), and

LPBP(D,N, e4) :=

(P,Q)
0 ≤ P,Q < N, gcd(Q,N) = 1,
P 2 − 4Q = D (mod N),
(αβ−1)e4 = ±1 (mod NOD)

 .

Here α, β are the two distinct roots of the quadratic polynomial x2 − Px + Q,
and OD represents the ring of integers of the quadratic field extension Q(

√
D).

If p ≡ q ≡ 3 (mod 4), the set BF(N, e4) (resp. LPBP(D,N, e4)) is a subgroup
(resp. subset) of G(N) (resp. Z+1(D,N)) (cf. Proposition 2).

Given that p ≡ q ≡ 3 (mod 4) and a perfect square D, we are interested

in studying the following two quantities: βLucas(D,N, e4) :=
|LPBP(D,N,e4)|

|Z+1(D,N)| , and

βBF(N, e4) := |BF(N,e4)|
|G(N)| , where two quantities, viewed as soundness error, are

used to evaluate the proportion of randomly selected elements in the set of
denominators that pass the test when N = pq is not an RSA modulus. These
values always belong to the range [0, 1], and the smaller the value, the easier
it is to determine that p and q are not an RSA modulus. In fact, Proposition
1 and Proposition 2 implies that βLucas(D,N, e4) is independent of the chosen
of perfect squares D, if p ≡ q ≡ 3 (mod 4). For simplicity, when we write
βLucas(N, e4) = βLucas(1, N, e4).

2.1 Two Mathematical Results

Lemma 1. [5, Lemma 2.1 ] Let G be a cyclic group and d an integer. There
are exactly gcd(d, |G|) dth-root of 1 in G.

Lemma 2 (Hensel’s Lemma). [34, Theorem 2.23 or 2.24] Let f(x) be a poly-
nomial with integer coefficients. If p is a prime number and a is an integer such
that f(a) ≡ 0 (mod pj), and f ′(a) ̸≡ 0 (mod p) then, there exists an integer
t (mod p) such that f(a+ tpj) ≡ 0 (mod pj+1).

2.2 Lucas Pseudo-primes

We recall Lucas sequence and some results [5]. Let P and Q be integers and D :=
P 2 − 4Q. The Lucas sequence (Uk, Vk) that is associated with the parameters
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P,Q are defined as, for k ≥ 0,{
Uk+2 = PUk+1 −QUk;

Vk+2 = PVk+1 −QVk,
with

{
U0 = 0, U1 = 1;

V0 = 2, V1 = P.

It is well known that Up−[Dp ]
≡ 0 (mod p) for any prime p ∤ 2QD. For the

Lucas sequence [5, Section 3], (Uk, Vk) associated with P,Q and P 2 − 4Q ̸= 0,
we have the general formula: for all k ∈ N,

Uk =
αk − βk

α− β
, Vk = αk + βk,

where α, β are two distinct roots of the polynomial x2−Px+Q. Let OD be the
ring of integers of a quadratic field Q(

√
D), and τ := αβ−1. If N ∤ 2QD, then

we have, for k ∈ N,

N | Uk if and only if τk ≡ 1 (mod NOD). (1)

Given an element u + v
√
D ∈ Q(

√
D), the norm map is given by N(u +

v
√
D) = u2 − v2D ∈ Q. When x ∈ OD, the norm N(x) ∈ Z. Consider the

multiplicative group of norm 1 elements denoted by ̂(OD/N
)
in a free Z/NZ-

algebra of rank 2. This group is the image of the set

{x ∈ OD | N(x) ≡ 1 (mod N)}

by the canonical map OD → OD/N.

2.3 The Security Model

We analyze the security of our protocol against static, rushing semi-honest and
malicious adversaries under the standard definition of stand-alone, secure multi-
party computation with abort (cf. Goldreich [35, Section 7.5.1]; Katz [30, Defi-
nition 1]), as detailed in Section 6.4.

3 Refine Boneh-Franklin Biprimality Testing

We establish two key results regarding the Boneh-Franklin test: first, that its
tightest worst-case soundness error is 1/4; and second, the necessary and suffi-
cient conditions on p and q for this worst-case to occur. The formula for the size
of BF(N, e4) is provided below.

Lemma 3. Let p ≡ q ≡ 3 (mod 4) with gcd
(
pq, e4

)
= 1. Assume that N =

pq =
∏s

i=1 p
ri
i , where pi is prime for all i, then we have

|BF(N, e4)| = 2 ·
s∏

i=1

gcd(e4, di).

Here pi − 1 = 2kidi with 2 ∤ di for all 1 ≤ i ≤ s.
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Proof. Since e4 is odd, we have

|{g ∈ Z×
N | g

e4 ≡ 1 (mod N)}| = |{g ∈ Z×
N | g

e4 ≡ −1 (mod N)}|

by the bijective map g 7→ −g, which implies that

|BF(N, e4)| = 2 · |{g ∈ Z×
N | g

e4 ≡ 1 (mod N)}|.

According to Lemma 8, we reduce the problem to count the cardinality of e4-th
roots of 1 in (Z/prii Z)× which are cyclic groups for all i [29, Theorem 3, Chapter
4], since N is odd. Combining this fact, gcd(pq, e4) = 1, and Lemma 1, one has
the number of e4-th roots of 1 in the group (Z/prii Z)× is

gcd(e4, p
ri−1
i (pi − 1)) = gcd(e4, 2

kidi) = gcd(e4, di).

The above discussion implies the desired result.

The proofs of Theorem 1 and Theorem 2 address non-RSA moduli N by
considering three primary categories: 1) N is a perfect square; 2) N is square-
free (and not an RSA modulus, implyingN is a product of s ≥ 3 distinct primes);
and 3) N is neither a perfect square nor square-free.

Our proof for square-free non-RSA moduli (cf. category 2) analyzes cases
based on the number of distinct prime factors, s, particularly when s ≥ 3. For
category 3), the analysis incorporates both the number of distinct prime factors
s and the exponents ri of these primes (where at least one ri ≥ 2).

We also recall that for an integer N = pq where p, q are integers satisfying
p ≡ q ≡ 3 (mod 4), BF(N, e4) forms a subgroup of G(N).

Theorem 1 (Boneh-Franklin biprimality test). Let p ≡ q ≡ 3 (mod 4),
and gcd

(
pq, e4

)
= 1, where e4 = (p− 1)(q − 1)/4. Assume that N := pq. If p, q

are both distinct primes, then we have BF(N, e4) = G(N). For the other cases,
we have |BF(N, e4)| ≤ |G(N)|/4, except for the case p = q = 3.

Proof. Recall that pi − 1 = 2kidi with odd di for all i as the same notations in
the Lemma 3. At first, consider the case p, q are distinct primes, which implies
e4 = d1d2 and k1 = k2 = 1. From Lemma 13, the proof of this case is completed
by the following equality:

|BF(N, e4)| = 2gcd(e4, d1) · gcd(e4, d2) = 2d1d2 = ϕ(N)/2.

Consider case 1): N is a perfect square, which implies r1 ≥ 2. Lemma 3 and
Lemma 13 imply that

βBF(N, e4) =
|BF(N, e4)|
|G(N)|

=
2
∏s

i=1 gcd(e4, di)∏s
i=1 p

ri−1
i (pi − 1)

≤
2
∏s

i=1 di∏s
i=1 p

ri−1
i (pi − 1)

=
2
∏s

i=1 2
−ki∏s

i=1 p
ri−1
i

< 21−1 · 5−1 =
1

5
,
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except for the case p = q = 3.
Consider the case 3). The condition non-perfect-square means that s ≥ 2.

If not, s = 1, then N = pr11 . Since p ≡ q ≡ 3 (mod 4), which implies that
N ≡ 1 (mod 4) and p1 ≡ 3 (mod 4), and r1 is even, which gives a contradiction.
Meanwhile, non square-free N implies that there exists i such that ri ≥ 2. Now,
one has

βBF(N, e4) =
4
∏s

i=1 gcd(e4, di)∏s
i=1 p

ri−1
i (pi − 1)

≤ 2−k1−...−ks+2

(
s∏

i=1

pri−1
i

)−1

.

If there exists pi ≥ 5 with ri ≥ 2 then

βBF(N, e4) ≤ 22−1−1 · 5−1 = 1/5.

Additionally, if s ≥ 3, then

βBF(N, e4) ≤ 22−1−1−1 · 3−1 = 1/6.

Therefore, we only consider the case N = 3r1p2 with r1 = 2 due to

βBF(N, e4) ≤ 22−1−1 · 3−2 = 1/9 as r1 ≥ 3.

As for the case s = 2, then p2 ≡ 1 (mod 4) since N ≡ 1 (mod 4). This case also
implies that

βBF(N, e4) ≤ 22−1−2 · 3−1 = 1/6.

In conclusion, when N is non-square-free with s ≥ 2, and βBF(N, e4) ≤ 1/6.
When N is square-free, the case 2), we consider the case s = 3. Because

p ≡ q ≡ 3 (mod 4), two elements of the set {p1, p2, p3} are 3 module 4 and one
of it is 1 module 4, which gives the bound

βBF(N, e4) ≤ 2−k1−...−ks+2 = 22−1−1−2 = 1/4.

For all s ≥ 4, we have βBF(N, e4) ≤ 2−k1−...−ks+2 ≤ 2−2, since ki ≥ 1 for all
i.

Based on the proof of Theorem 1, we can establish the following sufficient
and necessary conditions for the worst-case scenario to occur.

Corollary 1. Assume that the assumption of Theorem 1 holds. The equality
|BF(N, e4)| = |G(N)|/4 is true if and only if one of the two situations occurred
without considering the symmetry of p and q. 1). s = 3, p = p1p2, q = p3,
gcd(e4, p1−1) = (p1−1)/4, and gcd(e4, pi−1) = (pi−1)/2 for i ∈ {2, 3}, where
p1 ≡ 5 (mod 8), and p2 ≡ p3 ≡ 3 (mod 4); 2). s = 4, gcd(e4, pi−1) = (pi−1)/2,
p = p1p2p3, and q = p4, where pi ≡ 3 (mod 4) for all 1 ≤ i ≤ s.

The bound in the result of Theorem 1 is tight. Taking p1 = 3, p2 = 5, and
p3 ≡ 23 (mod 420), Dirichlet Theorem7 says that there are infinitely many
N = (p)q = (p1p2)p3 such that |BF(N, e4)| = |G(N)|/4, given that gcd(N, e4) =
gcd (15q, 7(q − 1)) = 1 and gcd(420, 23) = 1.

7 If gcd(a, n) = 1, then there exists infinite prime x with x ≡ a (mod n) [33, Corollary
13.8].
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4 The Lucas Biprimality Test

This section introduces a novel test for identifying RSA moduli, applicable to
odd integers p and q where gcd

(
pq, (p+ [−1

p ])(q + [−1
q ])
)
= 1. We subsequently

provide a distributed protocol for this test that is secure against semi-honest ad-
versaries. Additionally, a protocol resilient to malicious adversaries is presented,
specifically for the p ≡ q ≡ 3 (mod 4) scenario. All necessary properties of the
Jacobi symbol are detailed in Appendix 6.2.

4.1 A Lucas Biprimality Testing

The proof for the Lucas biprimality test follows a similar methodology to that
of the Boneh-Franklin test. We first derive formulas for the cardinalities of
LPBP(D,N, e4) and Z+1(D,N). Subsequently, we analyze the worst-case upper
bound of their quotient. The analysis begins with an examination of the special
case where N = pr.

The key to calculating the cardinality of the set Zϵ(D, pr) is to first compute
the result for the base case r = 1. Once this is obtained, the more general case
for r > 1 can be addressed using the standard technique of Hensel’s Lemma (cf.
Lemma 2). For the r = 1 case, we introduce two auxiliary subsets, S+1 and S−1,
defined for ϵ ∈ {±1} as:

Sϵ =

{
1 ≤ i ≤ p− 1

2

∣∣∣∣ [ i2 +D/4

p

]
= ϵ, and i2 ̸≡ −D

4
(mod p)

}
.

The relationship between Z+1(D, p) and S+1 is established in Equation (4). We
then compute the values of two expressions, |S+1| + |S−1| and |S+1| − |S−1|.
Solving this system yields the individual cardinalities |S+1| and |S−1|, from
which we deduce the cardinality of Zϵ(D, p).

Lemma 4. Let p be an odd prime, and D be an element of Z×
p , then for ϵ ∈

{±1},

|Zϵ(D, pr)| =


(
1+ϵ
2

)
pr−1

(
p−

[
D
p

]
− 1
)
, if 2 | r;

pr−1

(
(p−[Dp ]−1)−ϵ

2

)
, if 2 ∤ r.

Proof. In the case where 2 | r, the condition
[
Q
pr

]
= 1 always holds, which

implies that |Z+1(D, pr)| = |Z(D, pr)|. Therefore, we can focus on studying the
cardinality of set |Z(D, pr)|. In the special case r = 1 for the set |Z(D, pr)|, it
is sufficient to consider the cardinality of the set {P ∈ Zp|P 2 = D + 4Q, 0 <
Q < p}. Note that the equation x2 = D has two (resp. zero) solutions in Zp

if
[
D
p

]
= 1(resp.

[
D
p

]
= −1), there are p−1

2 − 1+[Dp ]
2 values of Q such that

x2 = D + 4Q has two distinct solutions. Additionally, there is one value of Q
(specifically Q = −D

4 ) for which x2 = D + 4Q has a single solution. Thus, the
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total number of solutions is given by (p−1
2 −

1+[Dp ]
2 ) · 2 + 1 = p −

[
D
p

]
− 1. For

r > 1, the desired result can be obtained using Hensel’s lemma. The detail proof
can be found in Proposition 3.

As for the case 2 ∤ r, we first consider the case r = 1 and ϵ = 1. Then we can
assume that Q = Q′2. It implies that Z+1(D, p), which is equal to{

(P,Q′)
(P/2)2 = (Q′)2 +D/4 (mod p), gcd(Q′, p) = 1,
0 ≤ P < p, 1 ≤ Q′ ≤ (p− 1)/2.

}
.

Now, for counting the above set, we study the following sum

(p−1)/2∑
i=1

[
i2 +D/4

p

]
=
−1−

[
D
p

]
2

(by Lemma 16),

which gives us the relation

|S−1| = |S+1|+
(
1 +

[
D

p

])/
2, (2)

where Sϵ =
{
1 ≤ i ≤ p−1

2

∣∣ [ i2+D/4
p

]
= ϵ, i2 ̸≡ −D

4 (mod p)
}
(i.e., if there exists

i such that i2 ≡ −D/4 (mod p), then
[
i2+D/4

p

]
= 0).

Note that |S+1|+|S−1| depends on whether exist i such that i2 ≡ −D
4 (mod p).

Specifically,

|S+1|+ |S−1| = (p− 1)/2−
(
1 +

[
−D
p

])/
2. (3)

Moreover, for each i ∈ S+1, we can find two distinct solutions for (x/2)2 ≡
i2 +D/4 (mod p). If

[
−(D/4)

p

]
=
[
−D
p

]
= 1, then an additional solution can be

found (i.e., (0, −D
4 ) ∈ Z+1(D, p)). Therefore,

|Z+1(D, p)| = 2 · |S+1|+
1 +

[
−D
p

]
2

. (4)

Combining (2), (3), and (4) gives that

∣∣Z+1(D, p)
∣∣ = p−

[
D
p

]
− 2

2
.

Furthermore, combining Proposition 3, one has

∣∣Z−1(D, p)
∣∣ = |Z(D, p)| −

∣∣Z+1(D, p)
∣∣ = p−

[
D

p

]
− 1−

p−
[
D
p

]
− 2

2

 =
p−

[
D
p

]
2

.

The proof is complete by Hensel’s Lemma for the general case r ≥ 2 (cf. Lemma
15).
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The counting formula for a general N is provided below.

Proposition 1. Let D be an integer and N :=

s∏
i=1

prii be a positive integer with

gcd(N, 2D) = 1. Write S = S0∪S1, where Sj := {i | ri ≡ j (mod 2), 1 ≤ i ≤ s}.
Then, one has, if N is not a perfect square in Z,

|Z+1(D,N)| =

(∏
i∈S pri−1

i

2

)(∏
i∈S0

(
pi −

[
D

pi

]
− 1

))

·

(∏
i∈S1

(
pi −

[
D

pi

]
− 1

)
+ (−1)|S1|

)
.

Otherwise, if N is a perfect square,

|Z+1(D,N)| =
∏
i∈S

pri−1
i

(
pi −

[
D

pi

]
− 1

)
.

Proof. If N is a perfect square, we obtain the desired result from Lemma 4 and
Lemma 9. If N is not a square, from Lemma 9 then we have

|Z+1(D,N)| =

(∏
i∈S0

|Z+1(D, prii )|

) ∑
ϵ1·...·ϵ|S1|=1

∏
i∈S1

|Zϵi(D, prii )|

 .

Using Lemma 4, we only need to prove∑
ϵ1·...·ϵ|S1|=1

∏
i∈S1

|Zϵi(D, prii )| =

(∏
i∈S1

pri−1
i

)(∏
i∈S1

(
pi −

[
D

pi

]
− 1

)
+ (−1)|S1|

)/
2.

This proof can be concluded through mathematical induction on the cardinality
of |S1|. When |S1| = 1, it follows that ϵ must equal 1, leading to the desired

result. Assuming that |S1| = k, the equality is satisfied. Let Ai = pi −
[
D
pi

]
− 1.

Then, when |S1| = k + 1, applying |Z−1| = |Z| − |Z+1|, and Proposition 3, we
have ∑

ϵ1·...·ϵk+1=1

∏
i∈S1

|Zϵi(D, prii )|

=|Z−1(D, p
rk+1

k+1 )| ·
∑

ϵ1·...·ϵk=−1

k∏
i=1

|Zϵi(D, prii )|+ |Z+1(D, p
rk+1

k+1 )| ·
∑

ϵ1·...·ϵk=1

k∏
i=1

|Zϵi(D, prii )|

=

(∏k+1
i=1 pri−1

i

)(
Ak+1 + 1

)(
2
∏k

i=1 Ai − (
∏k

i=1 Ai + (−1)k)
)

4

+

[∏k+1
i=1 pri−1

i

][
Ak+1 − 1

][∏k
i=1 Ai + (−1)k

]
4

=

(∏
i∈S1

pri−1
i

)(∏
i∈S1

Ai + (−1)|S1|

)/
2 =

(∏
i∈S1

pri−1
i

)(∏
i∈S1

(
pi −

[
D

pi

]
− 1

)
+ (−1)|S1|

)/
2.
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Next, we study the cardinality of the set LPBP and then prove it is a subset
of Z+1.

Proposition 2. Let p, q be positive odd integers, N = pq =
∏s

i=1 p
ri
i , and D

be an integer in Z with gcd(2D,N) = 1, and
[
−D
p

]
=
[
−D
q

]
= −1. Then we

have the set LPBP(D,N, e4) is a subset of Z+1(D,N). Furthermore assuming
gcd(N, e4) = 1, its cardinality is given by

|LPBP(D,N, e4)| =
s∏

i=1

(
gcd(e4, di)− 1

)
+

s∏
i=1

gcd(e4, di).

Here pi −
[
D
pi

]
= 2kidi with 2 ∤ di for all 1 ≤ i ≤ s .

Proof. For sake of proving LPBP(D,N, e4) ⊆ Z+1(D,N), we need to prove that
taking any pair (P,Q) ∈ LPBP(D,N, e4) then one has (αβ−1)e4 ≡ ±1 (modNOD),
where α, β are two distinct roots of the polynomial x2 − Px+Q, which implies

that
[
Q
N

]
= 1. Note that the representative of (αβ−1)e4 modulo NOD is ±1,

which can be viewed as an element in Z×
N , and Q = αβ ∈ Z×

N imply that the
canonical representative of β2e4 modulo NOD belongs to Z×

N . Because e4 is odd,
we have [

Q

N

]
=

[
Q

N

]e4
=

[
(αβ)e4

N

]
=

[
β2e4

N

] [
(αβ−1)e4

N

]
.

Next, the goal is to prove that when condition (αβ−1)e4 ≡ ±1 (mod N) holds,
one has βe4 ≡ Y

√
D (mod NOD) for some Y ∈ ZN . Recall that (αβ−1)e4 ≡

±1 (mod N), then αe4 = ±βe4 , which implies that (P +
√
D)e4 = ±(P −√

D)e4 (modNOD). Now, consider the case (P+
√
D)e4 = −(P−

√
D)e4 (modNOD).

Write (P +
√
D)e4 = A + B

√
D (mod NOD), where A =

e4∑
i=0:
2∤i

(
e4
i

)
P iD(e4−i)/2

andB =

e4∑
i=0:
2|i

(
e4
i

)
P iD(e4−1−i)/2. Then−(P−

√
D)e4 = −A+B

√
D (modNOD).

Therefore, the equality A + B
√
D ≡ −A + B

√
D (mod NOD) gives us A ≡

0 (mod NOD), since N is odd. Now, we have

βe4 =

(
P +

√
D

2

)e4

≡ B(
√
D)

2e4
(mod NOD),

which implies that β2e4 ≡ 2−2e4B2D (mod N). In conclusion, when (αβ−1)e4 ≡
−1 (mod NOD), we have[

Q

N

]
=

[
β2e4

N

] [
(αβ−1)e4

N

]
=

[
2−2e4B2D

N

] [
−1
N

]
=

[
D

N

] [
−1
N

]
= 1.
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Similarly, when αe4 = βe4 , we have βe4 ≡ 2−e4A (mod N), which gives us[
Q

N

]
=

[
β2e4

N

] [
(αβ−1)e4

N

]
=

[
2−2e4A2

N

] [
1

N

]
= 1.

The proof of the cardinality of LPBP(D,N, e4) can be found in [5, Section
1.4].

Finally, the soundness error, denoted βLucas, is estimated as follows.

Theorem 2. Let p, q be odd integers, gcd
(
pq, e4

)
= 1. Set N = pq. Assume

that D is an integer in Z with gcd(2D,N) = 1, and
[
−D
p

]
=
[
−D
q

]
= −1. If p, q

are both distinct primes, then we have LPBP(D,N, e4) = Z+1(D,N). For the
remainder cases, set pmin be the minimal prime factor of N . Assume pmin ≥ 11,
then we have

βLucas(D,N, e4) =
|LPBP(D,N, e4)|
|Z+1(D,N)|

<
1

4
+

1.25

pmin − 3
.

Proof. This proof will distinguish several cases, and the reader may refer to The-
orem 1. Consider the case p, q are distinct primes. Set p1 = p and p2 = q. Recall

that pi −
[
D
pi

]
= 2di for all i. Thus, one has e4 =

(
p−

[
D
p

])(
q −

[
D
q

])/
4 =

d1d2. Now, we only need to prove that |Z+1(D,N)| = |LPBP(D,N, e4)|, because
Proposition 2 says that LPBP(D,N, e4) is a subset of Z+1(D,N). The proof can
be completed by the following equality:

|LPBP(D,N, e4)| =
(
gcd(e4, d1)− 1

)
·
(
gcd(e4, d2)− 1

)
+ gcd(e4, d1) · gcd(e4, d2)

=(d1 − 1)(d2 − 1) + d1d2 =
(2d1 − 1)(2d2 − 1) + 1

2
= |Z+1(D,N)|.

Consider the case perfect square N . Proposition 1, and Proposition 2 imply
that, for all pi ≥ 7,

βLucas(D,N, e4) ≤

(
2∏s

i=1 p
ri−1
i

)(∏s
i=1 2

−ki(pi − 1)∏s
i=1(pi − 2)

)

≤

(
2∏s

i=1 p
ri−1
i

)(
s∏

i=1

(
1

2
+

1

2(pi − 2)

))
≤
(
2

7

)(
1

2
+

1

10

)
=

6

35
.

Note that

∏
i∈S0

(
pi −

[
D

pi

]
− 1

)(∏
i∈S1

(
pi −

[
D

pi

]
− 1

)
+ (−1)|S1|

)

≥
∏
i∈S0

(pi − 2)

(∏
i∈S1

(pi − 2)− 1

)
.
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Regarding the case of non-square-free (i.e., there exists an i such that ri ≥ 2)
and non-perfect-square N (i.e., |S1| ≥ 1), Proposition 1, and Proposition 2 say
that, for all pi ≥ 11,

βLucas(D,N, e4) ≤

(
4∏s

i=1 p
ri−1
i

)( ∏s
i=1 2

−ki(pi − 1)∏s
i=1(pi − 2)−

∏
i∈S0

(pi − 2)

)

≤

(
4∏s

i=1 p
ri−1
i

)( ∏s
i=1

(
1
2 + 1

2(pi−2)

)
1−

(∏
i∈S1

(pi − 2)
)−1

)
≤
(

4

11

)( 1
2 + 1

18

1− 9−1

)
=

5

22
.

When N is square-free. Consider the case s = 3. Then there exists one of

{p1, p2, p3} is 4 | pi −
[
D
pi

]
. If not, for all 1 ≤ i ≤ 3, pi −

[
D
pi

]
= 2di with

odd di hold, which is equivalent to pi ≡ −
[
D
pi

]
(mod 4). Since s = 3, we can

assume without loss of generality that p = p1 and q = p2p3. For such q and the

assumption
[
−D
q

]
= −1, we have

q ≡
[

D

p2p3

]
=

[
D

q

]
= −

[
−1
q

]
(mod 4) =

{
1, if q ≡ 3 (mod 4);

3, if q ≡ 1 (mod 4).

It gives a contradiction. Therefore, applying Lemma 17, we obtain that

βLucas(D,N, e4) <
1

4

( ∏3
i=1(pi − 1)∏3

i=1(pi − 2)− 1

)
<

1

4

(
(pmin − 1)3

(pmin − 2)3 − 1

)
≤1

4

(
(pmin − 1)4

(pmin − 2)4 − 1

)
, for all pmin ≥ 3.

Similarly, as s = 4, we have

βLucas(D,N, e4) <
1

4

(
(pmin − 1)4

(pmin − 2)4 − 1

)
.

When s ≥ 5, applying the following fact∏s
i=1(pi − 1)∏s

i=1(pi − 2)− 1
<

( ∏4
i=1(pi − 1)∏4

i=1(pi − 2)− 1

)( ∏s
i=5(pi − 1)∏s

i=5(pi − 2)− 1

)
,

and Lemma 18 with j = 5, we arrive that, for s ≥ 5,

βLucas(D,N, e4) ≤22−k1−...−ks

∏s
i=1(pi − 1)∏s

i=1(pi − 2)− 1
<

1

4

(
(pmin − 1)4

(pmin − 2)4 − 1

)
.

Lastly, we have

1

4

(
(pmin − 1)4

(pmin − 2)4 − 1

)
=

1

4
+

1

4

(
(pmin − 1)4 − (pmin − 2)4 + 1

(pmin − 2)4 − 1

)
=
1

4
+

1

4

(
4

(pmin − 2)− 1
+

2

(pmin − 2)2 + 1

)
<
1

4
+

1

4

(
4

(pmin − 2)− 1
+

2

(pmin − 2)2 − 1

)
<

1

4
+

1.25

pmin − 3
.
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The condition
[
−D
p

]
= −1 is unsatisfiable when p is a perfect square. Nev-

ertheless, the likelihood of randomly selecting a perfect square for p is minimal.
Moreover, in such instances where p is a perfect square, N = pq would not
constitute a valid RSA modulus.

4.2 The Lucas Biprimality Test in the Semi-Honest Setting

We propose a protocol based on Theorem 2 and provide its security proof under
the semi-honest adversarial model. First, we define the target functionality and
then present its realization, denoted as πS

RSA.

Functionality 1 FS
RSA(n)

Inputs: Each party Pi has a public number N = pq, p (mod 4), q (mod 4),
shares [p]Z and [q]Z, where each share satisfies p1 ≡ p (mod 4), q1 ≡
q (mod 4), and pi ≡ qi ≡ 0 (mod 4) for all 2 ≤ i ≤ n.

Outputs:
If p ≡ q ≡ 3 (mod 4):

• If p ̸= q are both primes and gcd(N, e4) = 1, then each party receives
(RSAModulus, ϕ).
• Otherwise, each party receives (NonRSAModulus, {pi, qi}ni=1).

Else:

• If p ̸= q are both primes and gcd(N, e4) = 1, then each party receives(
RSAModulus,

{[
Dk

p

]}
Dk∈Smin

)
, where

Smin :=

{
Dk ∈ P([3, Dmin])

∣∣∣∣ [−Dk

N

]
= 1

}
,

andDmin is the minimal odd prime such that
[
−Dmin

p

]
= −1 and

[−Dmin

N

]
=

1.
• Otherwise, each party receives (NonRSAModulus, {pi, qi}ni=1).

In order to design a protocol to securely compute FS
RSA, we need functionality

FLeg to compute the quadratic symbol
[
−D
p

]
. A realization of FLeg by protocol

πLeg is provided later in this section.
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Functionality 2 FLeg(n)

Inputs: Each party Pi has a share [p]Z, p (mod 4), and a prime D with
gcd(D, p) = 1.

Outputs: Each party Pi receives the value
[
−D
p

]
.

The Lucas biprimality test protocol, πS
RSA, consists of two main parts: first,

verifying that gcd(e4, N) = 1, and second, performing the exponentiation test
described in Theorem 2. The likelihood that N is an RSA modulus increases
with each successful iteration of the exponentiation test.

Protocol 1 Lucas Biprimality Test πS
RSA(n, κ)

Inputs: Each party Pi has p (mod 4), q (mod 4), N and [p]Z, [q]Z, where each
share satisfies p1 ≡ p (mod 4), q1 ≡ q (mod 4), and pi ≡ qi ≡ 0 (mod 4) for all
2 ≤ i ≤ n.

Outputs:

(
RSAModulus,

{[
Dk

p

]}
Dk∈Smin

)
or (NonRSAModulus, {pi, qi}ni=1).

Select an appropriate positive integer D:

1. If p ≡ q ≡ 3 (mod 4), parties set D = 1, Smin := ϕ, and go to the step 5.
2. Else, parties find the minimal k such that

[−Dk

N

]
= 1, where D1 = 3, D2 =

5, D3 = 7, . . . is the odd prime number sequence.

3. The party Pi sends ([p]Z, p (mod 4), Dk) to FLeg to obtain
[
−Dk

p

]
and adds

Dk to Smin.

4. If
[
−Dk

p

]
= −1 then parties set D = Dk. Else parties find next k such that[−Dk

N

]
= 1 and restart from step 3.

Exponential verification: For 1 ≤ j ≤ κ:

5. Parties agree on a random Pj ∈ ZN and letQj := (P 2
j −D)/4. If gcd(N,Qj) ̸=

1, then broadcast pi, qi and output (NonRSAModulus, {pi, qi}ni=1).

6. If
[
Qj

N

]
̸= 1, then restart from the previous step.

7. The party P1 sets

y1,j := (αjβ
−1
j )(N+p1[−1

q ]+q1[−1
p ]+[−1

N ])/4 and the other parties set

yi,j := (αjβ
−1
j )(pi[−1

q ]+qi[−1
p ])/4 for all 2 ≤ i ≤ n, where αj and βj are two

roots of the polynomial x2 − Pjx + Qj . Party Pi sends yi,j to FShuffle and
then obtain uj .

8. All parties check uj ≡ ±1 (mod NOD). If the check fails then they broadcast
pi, qi and return (NonRSAModulus, {pi, qi}ni=1).

GCD Test
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9. Each party randomly generates shares [r]N . They send
(
[r]N ,

[
p[−1

q ]+q[−1
p ]+

[−1
N ]
]
N

)
to FModMul to obtain [z]N .

10. Each party broadcasts his share zi of [z]N , then they check if gcd(N, z) = 1. If
the check fails they broadcast pi, qi and return (NonRSAModulus, {pi, qi}ni=1).

If all verification pass, then output

(
RSAModulus,

{[
Dk

p

]}
Dk∈Smin

)
.

In practical applications, if we set pmin = 179, then 41 iterations are required
to ensure the soundness error is less than 2−80. A security proof of πS

RSA under
the semi-honest adversary model is provided below.

Theorem 3. Let p and q be odd integers, N = pq, and D be an integer with[
−D
p

]
=
[
−D
q

]
= −1, and gcd(D,N) = 1. The inputs to Pi are given as

(N, [p]Z, [q]Z),

where each share satisfies p1 ≡ p (mod 4), q1 ≡ q (mod 4), and pi ≡ qi ≡
0 (mod 4) for all 2 ≤ i ≤ n. If pmin ≥ 11, then the Protocol πS

RSA (n − 1)-
privately computes the functionality FS

RSA in the FShuffle, FModMul-hybrid model.

Proof. Correctness. Assuming p < q are both primes(i.e., the case p > q
is similar) with gcd(N, e4) = 1, we show that such p and q do not output
(NonRSAModulus, {pi, qi}ni=1) with overwhelming probability. Note that for any
1 ≤ j ≤ κ,

Pr[gcd(Qj , N) = 1] = Pr[(P 2
j −D)/4 ∈ Z×

N ]

≥1− N − ϕ(N)

ϕ(N)/4
≥ 1− 4(p+ q − 1)

ϕ(N)
≥ 1− 4

2p− 1

q2 − 1

≥1− 16p

q2
≥ 1− 2− log2 q+| log2 p−log2 q|+4, (5)

which implies that such p, q will pass all tests in step 5 with overwhelming
probability(cf. Remark 1). For the check of step 8, by Theorem 2, we have
uj ≡ ±1 (mod NOD) for all 1 ≤ j ≤ κ. Using the similar argument as in
(5), we may assume r ∈ Z×

N which implies

gcd(N, z) = gcd(N, e4) = 1.

The output of πS
RSA is

(
RSAModulus,

{[
Dk

p

]}
Dk∈Smin

)
. In the case where gcd(N, e4) ̸=

1, we have gcd(N, z) > 1, and both πS
RSA and FS

RSA output (NonRSAModulus, {pi, qi}ni=1).
When p and q are not distinct primes but gcd(N, e4) = 1, the probability of ex-
ponential test pass is not greater than 1

4+
1.25

pmin−3 , according to Theorem 2. Hence

the probability of πS
RSA outputting

(
RSAModulus,

{[
Dk

p

]}
Dk∈Smin

)
is bounded

by ( 14 + 1.25
pmin−3 )

κ.
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Privacy. Let P∗ be the set of corrupt parties. We show that a simulator S can
be constructed to simulate the transcript of πS

RSA. If the input of S is

(P∗, N, {pi, qi}i∈P∗ , NonRSAModulus, {pi, qi}ni=1),

then S only needs to follow the honest parties’ strategy to simulate the view of
the protocol. Therefore, we consider the case S is given the input(

P∗, N, {pi, qi}i∈P∗ , RSAModulus,

{[
Dk

p

]}
Dk∈Smin

)
.

1: For all 1 ≤ j ≤ κ, S randomly samples vj , wj ∈ ZN with gcd(v2j − w2
jD,N) =

1, bj ∈ {0, 1}, and sets aj =
vj+wj

√
D

vj−wj

√
D
, P ′

j ∈ ZN such that the two roots of

polynomial x2 − P ′
jx+Q′

j are β′
j :=

√
D

a2
j ·(−1)bj−1

and α′
j := β′

j +
√
D.

2: The simulator S randomly generates z′ ∈ ZN , and it’s additive shares [z′]N .
3: The adversary S outputs(

P∗, N, {pi, qi}i∈P∗ , {P ′
j , (−1)bj}κi=1, [z

′]N , {z′i}ni=1

)
.

First, we argue that P ′
j ∈ ZN with overwhelming probability. Note that

P ′
j =α′

j + β′
j =

2
√
D(vj − wj

√
D)2

(vj + wj

√
D)2 · (−1)bj − (vj − wj

√
D)2

+
√
D

=

(
v2j + w2

jD

2vjwj

)1−2bj

Dbj ∈ ZN .

Secondly, we show that the distribution of (P ′
j , (−1)bj ) generated by the

simulator is indistinguishable from the distribution of the real-world transcript
(Pj , uj) = (Pj , (αjβ

−1
j )e4). Note that (α′

jβ
′−1
j )e4 = ((β′

j+
√
D)β′−1

j )e4 = (a2j (−1)bj )e4 .
Due to the symmetry between p and q, we only need to consider proving

(a2j )
e4 ≡ 1 (mod pOD).

Since p, q are odd primes and e4 is odd, we have

1. If
[
D
p

]
= −1, we have, recalling that N is the norm map from OD to Z,

(
vj + wj

√
D

vj − wj

√
D

)2e4

≡

(
N

(
vj + wj

√
D

vj − wj

√
D

))(q+[−1
q ])/2

≡ 1 (mod pOD).

2. If
[
D
p

]
= 1 (i.e.,

√
D ∈ Z×

p ), Euler theorem says that

(
vj + wj

√
D

vj − wj

√
D

)(p+[−1
p ])(q+[−1

q ])/2

≡ 1 (mod p).
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Therefore, (α′
jβ

′−1
j )e4 ≡ (−1)bj (mod NOD) by CRT. Note that the distribution

of P ′
j produced by the simulator S at the step 1. Proposition 4 says that the

distributions of Pj and P ′
j are identical. Lastly, gcd(N, e4) = 1 implies that

(p[−1
q ] + q[−1

p ] + [−1
N ]) ∈ Z×

N , and z ≡ r(p[−1
q ] + q[−1

p ] + [−1
N ]) (mod N) is

uniformly distributed in ZN . We conclude that the joint distribution of the
outputs generated by S and FS

RSA, and of the view and output of an execution
πS
RSA are indistinguishable.

Remark 1. In the practical scenario (e.g., [16]), distributed RSA moduli pro-
tocols generate p =

∑n
i=1 pi and q =

∑n
i=1 qi, where pi and qi are uniformly

sampled from [0, 2ℓ−log2 n], with ℓ being the security parameter. This implies
max{p, q} is at most ℓ-bits and

P[min{p, q} is larger than (ℓ− log2 n− 80)-bits ] ≥ 1− 2−80n.

Therefore, | log2 p−log2 q| ≤ 80+log2 n (i.e., 2− log2 q+| log2 p−log2 q|+4 is negligible)
with overwhelming probability.

Compared to the Boneh-Franklin protocol, our proposed protocol requires
sampling an integer D that satisfies the specific conditions

[−D
N

]
= 1, and[

−D
p

]
= −1. Notably, when p ≡ q ≡ 3 (mod 4), D can be directly chosen

as 1, mirroring the Boneh-Franklin case and introducing no additional leakage.
In other scenarios, while an integer D satisfying

[−D
N

]
= 1 can often be found

without revealing information about p or q, the probability that this D also sat-

isfies
[
−D
p

]
= −1 is approximately 1/2, under the heuristic that p (mod D) is

somewhat uniformly distributed in ZD. Revealing that a candidate D fails the

latter condition (i.e., learning the Jacobi symbols
[
−D
p

]
or
[
−D
q

]
) could poten-

tially leak some information. Nonetheless, our protocol is designed to establish
a single D meeting all criteria, and we argue that the information leaked from
knowing such a D is negligible given the large bit-lengths of p and q.

For completeness, we provide protocol πLeg, which securely realizes Function-
ality FLeg (cf. Proposition 5). A similar protocol for computing the Legendre
symbol was proposed in [26], but a detailed security proof was not provided.

Protocol 2 Legendre symbol πLeg(n)

Inputs: Each party Pi has [p]Z, p (mod 4), and a prime D with gcd(D, p) = 1.

Outputs:
[
−D
p

]
.

1. Each party randomly sample si ∈ ZD sends (si, si, D) to FModMul to obtain
[s2]D.

2. Each party sends ([s2]D, pi (mod D), D) to FModMul to obtain [s2p]D.
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3. Each party opens [s2p]D. If gcd(s2p,D) ̸= 1, then restarts to the step 1.
Otherwise, output−

[
s2p
D

]
, if p ≡ 3 (mod 4) and D ≡ 1 (mod 4);[

s2p
D

]
, otherwise.

4.3 The Lucas Biprimality Test in the Malicious Setting

This section investigates the Lucas biprimality test against malicious adversaries,
focusing specifically on the case p ≡ q ≡ 3 (mod 4), which corresponds to D = 1.
This parameter regime is notable for its cryptographic relevance and distinct
structural properties. Our analysis employs the biprimality test functionality
FM

BI , as formalized by Chen et al. [16, Functionality 4.2].

Functionality 3 FM
BI (n)

Inputs: Each party Pi has a public number N , shares [p]Z and [q]Z with
pi, qi ≥ 0.

Outputs:
If all the following conditions are satisfied, then FM

BI send the message
BlumInteger to the adversary S:

1. All parties agree on the value of N ;
2. N = p · q;
3. p ̸= q are both primes;
4. p ≡ q ≡ 3 (mod 4);
5. gcd(N, e4) = 1;
6. pi ≥ 0 and qi ≥ 0 for all i.

If S responds with proceed, then output BlumInteger to all parties. If
S responds with cheat, or if any of the previous conditions are false, then
output {(pi, qi)}ni=1 directly to S, and output NonBlumInteger to all parties.

Compared to the protocol by Chen et al., our approach incorporates an
explicit check for p ≡ q ≡ 3 (mod 4). Furthermore, we relax the requirement
for p and q; instead of needing them to be confined by a fixed upper bound
M (i.e., 0 < pi, qi < M), our analysis only assumes pi, qi > 0. While this
broader condition on p, q might theoretically include small primes if pmin is not
enforced, this is not a concern in our setting as the target functionality is assumed
to output p, q forming a Blum integer. Thus, an explicit upper bound M is
unnecessary for our protocol’s security. Concretely, the removal of M is justified
by our adjustment of the protocol coefficients (cf. the second part in Section 4.4).
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The Lucas biprimality test is adapted for the malicious setting by leveraging
techniques introduced in Chen et al. [16, Protocol 5.2]. A key observation is that
the test’s soundness error is closely tied to the parameter pmin. Consequently,
to ensure an overall soundness error bounded by 2−κ, where κ is the security
parameter, the number of iterations in our proposed protocol πM

BI is adjusted
accordingly, based on pmin and κ. In practical applications, if we set pmin = 233,
then ⌈1.489κ⌉ iterations are required to ensure the soundness error is less than
2−κ.

Protocol 3 Malicious Lucas Biprimality Test πM
BI (n, κ, pmin)

Inputs: Each party Pi has N and [p]Z, [q]Z with 0 ≤ pi, qi, where each share
satisfies p1 ≡ q1 ≡ 3 (mod 4), and pi ≡ qi ≡ 0 (mod 4) for all 2 ≤ i ≤ n.

Outputs: BlumInteger or NonBlumInteger

1. Let κmin :=

⌈(
log2

8pmin−24
5pmin−10

)−1

κ

⌉
. Party Pi samples τi,j ← Z22κ−1n3Nκmin

for 1 ≤ j ≤ κmin, and sends
(
commit, i, (pi, qi, {τi,j}κmin

j=1 )
)
to functionality

FComCompute.
2. Each party Pi sends sample to FZero(2

κ−3nN) and receives ri in response.
3. For 1 ≤ j ≤ κmin, the parties invoke FCT(Z+1(1, N)) to obtain {(Pj , Qj)}κmin

j=1 .
4. Party P1 sets

y1,j := (αjβ
−1
j )r1+(p1[−1

q ]+q1[−1
p ]+6)/4, and the other parties set

yi,j := (αjβ
−1
j )ri+(pi[−1

q ]+qi[−1
p ])/4 for all 2 ≤ i ≤ n, 1 ≤ j ≤ κmin. Here

αj and βj are two roots of the polynomial x2 − Pjx + Qj . Party Pi sends
(commit, i, {yi,j}κmin

j=1 , {1, . . . , n}) to FCom.
5. Party Pi sends (decommit, i) to FCom and receives {yi′,j}κmin

j=1 for i′ ̸= i.
6. The parties output NonBlumInteger and halt if there exists 1 ≤ j ≤ κmin

such that

(αjβ
−1
j )(N−5)/4 ·

n∏
i=1

yi,j ̸≡ ±1 (mod N).

7. For 1 ≤ j ≤ κmin, each party Pi computes

γi,j = (αjβ
−1
j )τi,j (mod N),

and broadcasts {γi,j}κmin
j=1 .

8. All parties send flip to FCT({0, 1}κmin) and then obtain an agreed-upon
random bit vector c⃗ = (ci) of length κmin.

9. For 1 ≤ j ≤ κmin, the party P1 computes

ζ1,j = τ1,j + cj ·
(
r1 − (p1 + q1 − 6)/4

)
,

and every other party Pi for 2 ≤ i ≤ n computes

ζi,j = τi,j + cj ·
(
ri − (pi + qi)/4

)
.

They all broadcast the values they have computed to one another.



Enhanced Biprimality Tests 27

10. The parties halt and output NonBlumInteger if there exists any 1 ≤ j ≤ κmin

such that
n∏

i=1

(αjβ
−1
j )ζi,j ̸≡

n∏
i=1

γi,j · y
cj
i,j (mod N).

11. Let C be a circuit computing πVerifyBI(N, c⃗, {·, ·, ·, ζi,∗}i∈{1,...,n}); that is,
let it be a circuit representation of Algorithm πVerifyBI with the public val-
ues N , c⃗, and ζ hardcoded. The parties send (compute, 1, {1, . . . , n}, C) to
FComCompute, and in response they all receive z or VerifyFail. If receive
VerifyFail, or if FComCompute aborts, then the parties halt and output
NonBlumInteger.

12. The parties halt and output BlumInteger if gcd(z,N) = 1, or halt and
output NonBlumInteger otherwise.

Algorithm πVerifyBI (cf. [16, Algorithm 5.3]) is employed to verify the rela-
tionships between pi, qi, τi,j , ζi,j , c⃗, N , thereby confirming the correctness of pi
and qi and the consistency of the protocol transcript. If all checks pass, then
πVerifyBI outputs z := r

(
− 1 +

∑n
i=1(pi + qi)

)
for some random r, which isused

for the GCD test.

Algorithm 0 πVerifyBI(N, c⃗, {pi, qi, {τi,j}κmin
j=1 , {ζi,j}

κmin
j=1 }ni=1)

1. Sample r ← ZN and compute

z = r ·

(
−1 +

n∑
i=1

(pi + qi)

)
(mod N).

2. Return z if and only if it holds that

N =

(
n∑

i=1

pi ·
n∑

i=1

qi

)

∧
n∑

i=1

pi ≡
n∑

i=1

qi ≡ 3 (mod 4)

∧
(
pi ≥ 0

)
∧
(
qi ≥ 0

)
for all 1 ≤ i ≤ n

∧
(
τ1,j = ζ1,j + cj ·

(
r1 − (p1 + q1 − 6)

)
/4
)
for all 1 ≤ j ≤ κmin

∧
(
τi,j = ζi,j + cj ·

(
ri − (pi + qi)/4

))
for all 2 ≤ i ≤ n and 1 ≤ j ≤ κmin.

If any part of the above predicate does not hold, output VerifyFail.

Theorem 4. Let κ > 0 be a security parameter. The inputs to all participants
{Pi}ni=1 are given as (N, [p]Z, [q]Z). If pmin ≥ 11, then the Protocol πM

BI (n− 1)-
securely computes the functionality FM

BI with abort in the FComCompute, FZero,
FCT, FCom-hybrid model. Here pmin is the minimal prime factor of N.
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Proof. Let A be a real-world adversary, and let P∗ (resp. P∗) denote the set of
corrupted (resp. honest) parties. We construct the simulator S that operates as
follows:

1. The simulator S simulates FComCompute to obtain (commit, i, (p′i, q
′
i, {τi,j}

κmin
j=1 ))

for each i ∈ P∗. Here κmin :=

⌈(
log2

8pmin−24
5pmin−10

)−1

κ

⌉
.

2. The simulator S sends {(N, p′i, q
′
i)}i∈P∗ to the functionality FM

BI to obtain
BlumInteger or (NonBlumInteger, {pi, qi}ni=1). If S receives (NonBlumInteger, {pi, qi}ni=1),
then S follows the honest parties’ strategies in πM

BI with shares {pi, qi}i∈P∗ .
Otherwise, S proceeds with the following steps.

3. The simulator S follows the strategy of functionality FZero(2
κ−3nN), sam-

ples {ri}ni=1, and sends {ri}i∈P∗ to A.
4. For each 1 ≤ j ≤ κmin, the simulator S randomly samples vj , wj ∈ ZN such

that gcd(v2j −w2
jD,N) = 1, and bj ∈ {0, 1}. It then sets aj =

vj+wj

√
D

vj−wj

√
D
, Pj ∈

ZN such that the two roots of the polynomial x2 − Pjx+Qj are

βj :=

√
D

a2j · (−1)bj − 1
and αj := βj +

√
D.

The simulator S sends (Pj , Qj) to A for each 1 ≤ j ≤ κmin.
5. The simulator S simulates FCom to receive (commit, i, {yi,j}κmin

j=1 , {1, . . . , n})
from A for each i ∈ P∗.

6. Let y′i,j denote the value of, for i ∈ P∗,{
(αjβ

−1
j )ri+(p′

i[
−1
q ]+q′

i[
−1
p ]+6)/4, if i = 1;

(αjβ
−1
j )ri+(p′

i[
−1
q ]+q′

i[
−1
p ])/4, if 2 ≤ i ≤ n.

Let i′ be the minimal number such that Pi′ ∈ P∗. The simulator S randomly
samples r′i ← Z2κ−2nN and sets yi,j := (αjβ

−1
j )r

′
i for each i ∈ P∗ \ {i′} and

1 ≤ j ≤ κmin. Additionally, for 1 ≤ j ≤ κmin, S sets yi′,j be the value such
that

(αjβ
−1
j )(N−5)/4

∏
i∈P∗

yi,j
∏
i∈P∗

y′i,j ≡ (−1)bj (mod N),

and sends (decommitted, i, {yi,j}κmin
j=1 ) to A for each i ∈ P∗.

7. The simulator S checks

(αjβ
−1
j )(N−5)/4

n∏
i=1

yi,j ≡ ±1 (mod N)

for each 1 ≤ j ≤ κmin. If any check fails, then S sends cheat to the func-
tionality FM

BI and outputs the output of A.
8. For each 1 ≤ j ≤ κmin, the simulator S randomly samples cj ← {0, 1} and

ζi,j ← Z22κ−1n3Nκmin
for each i ∈ P∗. It sends {γi,j}κmin

j=1 := {(αjβ
−1
j )ζi,j ·

y
−cj
i,j }

κmin
j=1 for each i ∈ P∗ to A and receives {γi,j}κmin

j=1 from A for each i ∈ P∗.
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9. The simulator S simulates FCT, and sends {cj}κmin
j=1 to A.

10. The simulator S sends {ζi,j}κmin
j=1 to A for each i ∈ P∗ and receives {ζi,j}κmin

j=1

for each i ∈ P∗ from A.
11. The simulator S checks

n∏
i=1

(αjβ
−1
j )ζi,j ≡

n∏
i=1

γi,j · y
cj
i,j (mod N)

for each 1 ≤ j ≤ κmin. If any check fails, then S sends cheat to FM
BI and

outputs the output of A.
12. The simulator S simulates FComCompute to obtain (compute, 1, {1, . . . , n}, C),

if C is the circuit described in πM
BI step 11 and (τi,j , ζi,j , cj , p

′
i, q

′
i) satisfy the

equations {
τi,j = ζi,j + cj ·

(
(ri − (p′i + q′i − 6)/4

)
, if i = 1;

τi,j = ζi,j + cj ·
(
(ri − (p′i + q′i)/4

)
, if 2 ≤ i ≤ n,

for each i ∈ P∗ and 1 ≤ j ≤ κmin, then randomly samples z ← ZN and
sends (result, 1, z) to A. Otherwise, S sends cheat to FM

BI and outputs the
output of A.

13. The simulator S sends proceed to FM
BI and outputs the output of A.

We proceed with the proof by considering two cases, depending on the value
obtained by the simulator S from FM

BI in Step 2.
Case 1: S obtains BlumInteger from FM

BI .
To demonstrate the indistinguishability of the real and ideal world distri-

butions, we employ the following hybrid worlds, where Hi denotes the joint
distribution of the simulator’s output and FM

BI ’s output.

Hybrid 0: The ideal world H0.
Hybrid 1: This hybrid world H1 is the same as H0, except that:

(1) The simulator S1 is given the honest parties’ shares {pi, qi}i∈P∗ as aux-
iliary input.

(2) In Step 4, S1 randomly samples (Pj , Qj) from Z+1(1, N) for each 1 ≤
j ≤ κmin.

(3) In Step 6, the values yi,j are randomly sampled from Z×
N such that

(αjβ
−1
j )(N−5)/4

∏
i∈P∗

yi,j
∏
i∈P∗

y′i,j

≡(αjβ
−1
j )(

∑
i∈P∗ p′i +

∑
i∈P∗ pi − 1)(

∑
i∈P∗ q′i +

∑
i∈P∗ qi − 1)/4 (mod N),

for each i ∈ P∗ and 1 ≤ j ≤ κmin.
(4) In Step 7, the check is replaced by, for each 1 ≤ j ≤ κmin,

(αjβ
−1
j )(N−5)/4

n∏
i=1

yi,j

≡(αjβ
−1
j )(

∑
i∈P∗ p′i +

∑
i∈P∗ pi − 1)(

∑
i∈P∗ q′i +

∑
i∈P∗ qi − 1)/4 (mod N).
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Hybrid 2: This hybrid world H2 is the same as H1, except that the values yi,j in Step
6 are defined as follows:{

(αjβ
−1
j )ri+(p′

i[
−1
q ]+q′

i[
−1
p ]+6)/4, if i = 1,

(αjβ
−1
j )ri+(p′

i[
−1
q ]+q′

i[
−1
p ])/4, if 2 ≤ i ≤ n,

for each 1 ≤ j ≤ κmin.
Hybrid 3: This hybrid world H3 is the same as H2, except that in Step 8, the simulator

S3 randomly samples τi,j ← Z22κ−1n3Nκmin
and sets γi,j := (αjβ

−1
j )τi,j and

ζi,j :=

{
τi,j − cj ·

(
(ri − (pi + qi − 6)/4

)
, if i = 1,

τi,j − cj ·
(
(ri − (pi + qi)/4

)
, if 2 ≤ i ≤ n

for each 1 ≤ j ≤ κmin and each i ∈ P∗.
Hybrid 4: The real world H4.

H0
c≡ H1: The distributions of H0 and H1 are identical; an analogous proof

establishing this indistinguishability is provided in the privacy proof of Theorem
3.
H1

c≡ H2: We first observe that since N is an RSA modulus, (αjβ
−1
j )e4 ≡

±1 (mod N) for 1 ≤ j ≤ κmin. This implies that the order of αjβ
−1
j is at most

2e4 for all j. To bound the statistical distance SD betweenH1 andH2, we employ
Proposition 6 with A = 2e4 and B = 2κ−3nN , and Proposition 8 with A = 2e4
and B = 2κ−2nN , yielding:

SD(H1,H2) ≤
n

4⌊(2κ−2nN + 1)/(2e4)⌋
+

n

4⌊(2κ−2nN)/(2e4)⌋
≤ 1

2κ+1
.

H2
c≡ H3: Proposition 7 demonstrates that the statistical distance between the

distributions of ζi,j generated inHybrid 2 andHybrid 3 is at most nκmin

2κ+1nκmin
<

1
2κ+1 , by setting A = 2κ−2n2N and B = 2κ+1nκmin. We note that −A ≤ cj

(
ri−

(pi + qi)/4
)
≤ A for all 1 ≤ i ≤ n and 1 ≤ j ≤ κmin, given that pi, qi ≥ 0 and

N = (
∑n

i=1 pi) · (
∑n

i=1 qi). Consequently, the joint distributions of (γi,j , cj , ζi,j)
generated in Hybrid 2 and Hybrid 3 are indistinguishable, and

SD(H2,H3) ≤
1

2κ+1
.

H3
c≡ H4: Note that the view of the real-world adversary A in Hybrid 3 and

in the real world is identical. Additionally, S3 sends cheat to FM
BI if and only if

the honest parties output 0. Hence, the distributions of H3 and H4 are identical.
Case 2: S obtains (NonBlumInteger, {pi, qi}ni=1) from FM

BI .
Since S possesses the honest parties’ shares and faithfully follows πM

BI , it
suffices to prove that the parties output NonBlumInteger except with negligible
probability in the real execution. Note that all check conditions of FM

BI , except
condition 3 (i.e., that p ̸= q and both p and q are primes), are directly checked
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in FM
BI . It remains to show that the parties output NonBlumInteger in a real

execution except with negligible probability if (
∑

i∈P∗ p′i+
∑

i∈P∗ pi)·(
∑

i∈P∗ q′i+∑
i∈P∗ qi) is not a Blum integer.
We now consider the probability that A passes both Step 7 and Step 10.

Consider the check in Step 10. Let δ1,j and δ2,j be the offsets such that

(αjβ
−1
j )(N−5)/4

∏
i∈P∗

yi,j
∏
i∈P∗

y′i,j · (αjβ
−1
j )δ1,j ≡ ±1 (mod N),

(αjβ
−1
j )δ2,j ·

n∏
i=1

γi,j ≡
n∏

i=1

(αjβ
−1
j )τi,j (mod N)

for all 1 ≤ j ≤ κmin.
Combining this with the check on ζi,j in FM

BI , we have

(αjβ
−1
j )δ2,j ≡ (αjβ

−1
j )cj ·δ1,j (mod N)

for all 1 ≤ j ≤ κmin. Since the adversary A must choose δ1,j and δ2,j before
it learns cj , for each j, the probability that adversary A passes Step 10 in πM

BI

with δ1,j ̸= 0 is at most 1
2 . Using Theorem 2, the probability that A must set

non-zero δ1,j is 1
4 + 1.25

pmin−3 for each j. Therefore, the probability that A passes
Step 7 and Step 10 is at most

1

4
+

1.25

pmin − 3
+

(
1−

(1
4
+

1.25

pmin − 3

))
· 1
2
=

5

8
+

0.625

pmin − 3

for each j. We have

Pr[πM
BI outputs BlumInteger | N is not a Blum integer]

≤
(
5

8
+

0.625

pmin − 3

)κmin

≤ 1

2κ
. (6)

Finally, considering Case 1 (which utilizes the triangle inequality) and Case
2, for any non-uniform probabilistic polynomial-time distinguisher D, it follows
that:∣∣∣∣Pr [D({REALπM

BI ,A,P∗
(
λ, {(pi, qi, N)}ni=1,aux

)}
λ,pi,qi,N,aux

,aux
)]

−Pr
[
D
({

IDEALFM
BI ,S,P∗

(
λ, {(pi, qi, N)}ni=1,aux

)}
λ,pi,qi,N,aux

,aux
)]∣∣∣∣ ≤ 1

2κ
.

The functionality FComCompute (cf. [16, Functionality A.4]) allows parties
to first commit to their respective inputs xi. Subsequently, the parties can
jointly select a public function f , and the functionality then outputs the result
f(x1, . . . , xn).
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Functionality 4 FComCompute(n)

Input Commitment: Upon receiving (commit, id, x) from party Pi, if
id is a fresh value, then store (value, id, i, x) in memory, and send
(committed, id, i) to all other parties.

Computation: Upon receiving (compute, id, input-ids, f) from all par-
ties, where id is a fresh, agreed upon value, and where input-ids is a vec-
tor of IDs such that for every 1 ≤ i ≤ |input-ids| there exists in memory
a record of the form (value, input-idsi, ∗, ∗), and where f is the descrip-
tion of a function that takes as input the values associated with the IDs
in input-ids and produces as output an n-tuple of values, if the parties
disagree upon the function f or the vector input-ids, then abort, and oth-
erwise:

1. Let x be a vector of the same length as input-ids such that for
1 ≤ i ≤ |input-sids|, there exists in memory a record of the form
(value, input-idsi, ∗, v) such that xi = v.

2. Compute (y1, . . . , yn) := f(x), and then send (result, id, yi) to each
party Pi.

The functionality FZero (cf. [16, Functionality A.3.]) takes as input a number
of parties n and a bound B, and outputs shares ri for each party such that
n∑

i=1

ri = 0.

Functionality 5 FZero(n,B)

Inputs: Each party Pi has input sample.

Outputs:

1. Uniformly sample xi,j ← {−B,−B + 1, . . . , B} for 1 ≤ i, j ≤ n such
that xi,j + xj,i = 0.

2. Each party Pi receives the value ri :=

n∑
j=1

xi,j .

We employ standard coin-tossing (cf. [16, Functioanlity A.1.]) and commit-
ment (cf. [16, Functioanlity A.2.]) functionalities.
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Functionality 6 FCT(n, S)

Inputs: Each party Pi has input flip.

Outputs: Each party Pi receives the value c, where c is uniformly sampled
from the set S.

Functionality 7 FCom(n)

Commit: On receiving (commit, id, x, J) from party Pi, where J ⊆
{1, . . . n} and x ∈ {0, 1}∗, if id is a fresh value, then store
(commitment, id, x, J, i) in memory and send (committed, id, i) to each
party Pj for j ∈ J .

Decommit: On receiving (decommit, id) from Pi, if a record of the form
(commitment, id, x, J, i) exists in memory, then send (decommitted, id, x)
to every party Pj for j ∈ J .

4.4 Technical Observations and Potential Enhancements for Chen
et al.’s Protocol

This section offers several suggestions, notably an optimization for the number
of iterations in the Chen et al. protocol [16, Protocol 5.2]. This refinement stems
from our updated worst-case soundness error for the Boneh-Franklin test: while
the original test yielded a false positive with at most 1/2 probability, our new
analysis (cf. Theorem 1) reduces this probability to 1/4. Therefore, assuming
the adversary always cheats and considering an honest execution would not
have yielded a false positive, the probability of producing a positive outcome
in the jth iteration (i.e., Steps 4–6 and 8–11) is upper-bounded by 5/8 (cf. the
inequality (6)). Consequently, the probability that the adversary succeeds across
all ⌈1.475s⌉ (i.e., the original result gives 2.5s) iterations is at most (5/8)1.475s <
2−s. A brief description of our suggestion is provided below. A revising protocol
from Chen et al. can be found in Section 6.11.

1. Lack of Congruence Verification for p and q.
The VarifyBiprime algorithm by Chen et al. [16, Algorithm 5.3] does not
enforce the condition that both prime factors p and q ofN = pq are congruent
to 3 (mod 4). This omission presents a vulnerability: an adversary could
select primes p ≡ q ≡ 1 (mod 4), potentially causing specific variants of the
Boneh-Franklin test (i.e., or its associated soundness analysis, which often
assumes p ≡ q ≡ 3 (mod 4)) to behave unexpectedly or fail to provide its
intended security guarantees. Indeed, as detailed in Lemma 10, infinitely
many RSA moduli N = pq with p ≡ q ≡ 1 (mod 4) consistently pass certain



34 Chuang et al.

Boneh-Franklin test configurations, even if those configurations are primarily
analyzed for 3 (mod 4) primes.

To address this, one possible enhancement is to augment the verification
procedure with an explicit check for p ≡ q ≡ 3 (mod 4). An alternative ap-
proach, applicable if using encoding components (e.g., shares pi, qi of p, q),
could be to enforce constraints directly at the encoding stage, such as re-
quiring primary shares p1, q1 ≡ 3 (mod 4) while other shares pi, qi for i > 1
satisfy pi, qi ≡ 0 (mod 4).

2. Mismatch Between Proof Structure and Commitment Definition.
The security proof follows a structure analogous to Schnorr’s protocol. Con-
sequently, the definition of the responses ζi,j in the challenge-response phase
(cf. Step 10) must correctly incorporate the randomness ri used in the
commitment phase (cf. Step 4). Specifically, for commitments χi,j (e.g.,

γ
ri−(pi+qi−6)/4
j or γ

ri−(pi+qi)/4
j ), the corresponding responses must be de-

fined using the actual exponent containing ri (i.e., ζi,j = τi,j + cj(ri − (pi +
qi)/4) or τi,j + cj(ri − (pi + qi − 6)/4) respectively). A definition of ζi,j that
omits ri (e.g., based on −(pi + qi − 6)/4 or −(pi + qi)/4) would not faith-
fully represent a Schnorr-like proof of knowledge for χi,j , even if the formal
verification equation in Step 10 remains unchanged.

Moreover, the introduction of ri in the exponent necessitates an adjustment
to the sample space of each blinding factor τi,j . Since the quantity that τi,j
must blind becomes either cj(ri − (pi + qi)/4) or cj(ri − (pi + qi − 6)/4),
the dominant term is now ri rather than the prime shares pi and qi. As a
result, the distribution of τi,j must be chosen to statistically hide ri, not
merely the smaller shares. Accordingly, in our proposed protocol πM

BI and
the corresponding functionality FM

BI , we remove the upper bound M and
eliminate the assumption that pi, qi ≤M . In contrast, in our revised version
of Chen et al.’s protocol (cf. Section 6.11), we retain the bound M and
enlarge the population of τi,j from Z2s+1M to Z⌈1.475s⌉·n2s+1(n222κ+s−3+M) to
accommodate the additional randomness introduced by ri.

3. Improper Dependency of Security Parameters.

Intuitively, the output of FZero should depend on the number of participants
n, since each party receives the sum of a matrix row, which aggregates inputs
from all n participants. As the number of participants increases, the potential
range of these row sums naturally grows. Consequently, both the sample
space of FZero and the choice of the security parameter τi,j should scale with
n, rather than being determined solely by a fixed upper bound on the shared
values.

Indeed, according to Proposition 6, ensuring that the output distribution of
FZero is statistically close to that of the random vector U := (U1, . . . , Un−1,−

∑n−1
i=1 Ui),

where Ui is uniformly distribution on the set Zϕ(N) for all 1 ≤ i ≤ n− 1, the
population must be adjusted from 22κ+s to n22κ+s−3 (cf. Proposition 6).

4. Sampling considerations in Boneh-Franklin Simulation.

In the Boneh–Franklin test, all parties agree on a common base g ∈ Z×
N

such that
[
g
N

]
= 1. Each participant then computes χi ≡ gxi (mod N)
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for 1 ≤ i ≤ n, where the exponent xi is deterministically derived from the
party’s share in the protocol.
For the simulation in the security proof, Chen et al. [16] propose sampling
each χi uniformly from Z×

N . However, this approach treats χi as independent
of g, which contradicts the actual protocol behavior where each χi must be
a specific power of g. This dependency is essential: for example, if g = 1,
then χi = 1 for all 1 ≤ i ≤ n, whereas a uniform sample from Z×

N would
likely yield different values, possibly with

[
χi

N

]
= −1, violating the protocol’s

correctness.
To ensure a faithful simulation, we instead sample exponents r′i uniformly

from Z22κ+s−2n and set χi ≡ gr
′
i (mod N) for 1 ≤ i ≤ n. This produces

values that are statistically close to uniform over the subgroup generated by
g, while preserving the necessary algebraic relation to g.

5 Implementation, Benchmarks, and Evaluation

This section presents an experimental evaluation of our proposed Lucas bipri-
mality test in comparison with established methods, namely the Boneh-Franklin
test and a relevant variant of the Miller-Rabin test.

In Section 5.3, we conduct a comparative analysis of cryptographic protocols:
specifically, the protocol employing Burkhardt et al.’s variant Miller-Rabin test
[15, FIGURE 6.1], a protocol based on the Boneh-Franklin test (as exemplified
in [23]), and our proposed Lucas-based protocol. Subsequently, Section 5.4 details
our independent implementations of both the Boneh-Franklin test and our own
protocol, presenting runtime performance data from executions conducted on a
laptop.

5.1 Comparing the effectives of Three Tests

We begin by recalling the variant Miller-Rabin test [15]. We then proceed to de-
termine which of the three tests under consideration Boneh-Franklin, the variant
Miller-Rabin, or our proposed Lucas test is more effective in detecting non-RSA
moduli. For this analysis, consider N = pq with p ≡ q ≡ 3 (mod 4), and let
f ∈ {p, q}. The algorithm for the variant Miller-Rabin test is as follows:

1. Uniformly sample an element v ∈ Z×
N

8 (i.e., in [15], v is chosen in ZN ).

2. Compute γ = v
f−1
2 (mod N).

3. If γ ≡ ±1 (mod f), then output probably prime. Otherwise output com-
posite.

The biprimality test proposed in [15, 20] applies the variant Miller-Rabin test
separately to f ∈ {p, q}. Therefore, for any N = pq with p ≡ q ≡ 3 (mod 4) and

8 We narrow the selection range of v from ZN to Z×
N because an element v ∈ ZN\Z×

N

will let the test output composite even when f is prime.
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gcd(N, e4) = 1 the probability that N passes the process is (cf. Lemma 14)

βMR(p) :=
|MR(p)|
ϕ(p)

= 2

∏
pi|p

gcd(di,
p−1
2 )

pri−1
i (pi − 1)

 .

In particular, when p = q is prime, such an RSA modulus candidate p, q will
always pass this algorithm’s test with 100% certainty. Therefore, we recommend
incorporating a check to verify whether N is a perfect square to exclude this
case.

We simplify the formula to compare the tests pairwise and analyze the ratios
across three scenarios. Let 1P(·) be the indicator function of positive integers
(i.e., 1P(0) = 0).

• Variant Miller-Rabin vs. Boneh-Franklin Test:

βBF(N, e4)

βMR(p)βMR(q)
=

(
1

1P(
√
N) + 1

)∏
pi|p
pi∤q

gcd(e4, di)

gcd(di,
p−1
2

)


·

∏
pi|q
pi∤p

gcd(e4, di)

gcd(di,
q−1
2

)

 ∏

pi|gcd(p,q)

(pi − 1) gcd(e4, di
)

pi gcd(di,
p−1
2

)
gcd

(
di,

q−1
2

)
 .

• Lucas Test vs. Boneh-Franklin Test

βLucas(N, e4)

βBF(N, e4)
=

(∏s
i=1(gcd(e4, di)− 1) +

∏s
i=1 gcd(e4, di)

2
∏s

i=1 gcd(e4, di)

)
·
( ∏s

i=1(pi − 1)∏
i∈S0

(pi − 2)
(∏

i∈S1
(pi − 2) + 1P(|S1|)(−1)|S1|

)). (7)

• Lucas Test vs. Variant Miller-Rabin Test

βLucas(N, e4)

βMR(p)βMR(q)
=

(∏s
i=1(gcd(e4, di)− 1) +

∏s
i=1 gcd(e4, di)

2
∏

pi|p gcd(
p−1
2 , di)

∏
pi|q gcd(

q−1
2 , di)

)

·
( (∏s

i=1(pi − 1)
)(∏

pi|gcd(p,q)(1− p−1
i )
)∏

i∈S0
(pi − 2)

(∏
i∈S1

(pi − 2) + 1P(|S1|)(−1)|S1|
)).

Table 2 demonstrates that, among the three tests, the Lucas test slightly out-
performs the variant Miller-Rabin test and significantly outperforms the Boneh-
Franklin test in identifying non-RSA moduli.

5.2 Theoretical comparison between the Boneh-Franklin test and
the Lucas test.

Starting with the formula (7), we attempt to explain the rationale behind Table
2. At first, when the product

∏s
i=1

(
gcd(e4, pi − 1)− 1

)
vanishes, if pmin can be
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Table 2: Pairwise comparison charts among the three tests.

Method β = βBF(N,e4)
βMR(p)βMR(q)

β = βBF(N,e4)
βLucas(N,e4)

β = βLucas(N,e4)
βMR(p)βMR(q)

β < 1 0.08% < 0.01% 54.26%

β = 1 54.18% 0% 0%

β > 1 45.74% > 99.99% 45.74%

Count how many non-RSA moduli N = pq with p ≡ q ≡ 3 (mod 4), gcd(N, e4) = 1,

and gcd(pq, p′) = 1 for all primes p′ ≤ 541 satisfy β > 1, β = 1 or β < 1, which run
over all 3 ≤ p < q ≤ 1440003.

controlled (or bounded) such that N lies in

Γ (pmin) :=

{
N =

s∏
i=1

prii
∣∣ pi ≥ pmin for all i, s <

ln(1/2 + 1/(pmin − 1))

ln(1− 1/(pmin − 1))

}
,

then βBF(N, e4) is necessarily greater than βLucas(N, e4). In addition, the func-

tion f(x) = ln(1/2+1/x)
ln(1−1/x) > 0 is an increasing function for all x > 5 implying

that the number of prime factors of N in Γ (pmin) increases with pmin. This also
explains why in most of the cases in Table 2, there is always a high probability
that βBF(N, e4) > βLucas(N, e4).

Lemma 5. Let p, q be two positive integers with p ≡ q ≡ 3 (mod 4), and N =∏s
i=1 p

ri
i be the product of p, q such that there exists gcd(di, e4) = 1 for some

1 ≤ i ≤ s. Here pi − 1 = 2kidi with 2 ∤ di for all 1 ≤ i ≤ s. For any odd prime
number pmin, and all non-perfect square and non-RSA moduli N ∈ Γ (pmin), we
have

βLucas(N, e4) < βBF(N, e4).

Proof. If there exists 1 ≤ i ≤ s such that gcd(e4, di) = 1, then one has

βLucas(N, e4)

βBF(N, e4)
=

∏s
i=1(pi − 1)

2
(∏s

i=1(pi − 2) + 1P(|S1|)(−1)|S1|
∏

i∈S0
(pi − 2)

) .
The condition βLucas(N, e4) < βBF(N, e4) is equivalent to∏

i∈S

(
1− 1

pi − 1

)
+ 1P(|S1|)(−1)|S1|

∏
i∈S0

(
1− 1

pi − 1

) ∏
i∈S1

1

pi − 1
>

1

2
,

which implies that, for all N ∈ Γ (pmin),
(
i.e., s < ln(1/2+1/(pmin−1))

ln(1−1/(pmin−1))

)
,

∏
i∈S

(
1− 1

pi − 1

)
>

(
1− 1

pmin − 1

)s

>
1

2
+

1

pmin − 1
>

1

2
− 1P(|S1|)(−1)|S1|

∏
i∈S0

(
1− 1

pi − 1

) ∏
i∈S1

1

pi − 1
.
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When pmin = 359 (or pmin = 62017 in our experimental scenario, respec-
tively), it can be ensured that for N satisfying the conditions of Lemma 5 and
having a bit length of up to 2086 bits (or 684319 bits, respectively), βLucas(N, e4) <
βBF(N, e4) always holds.

Regarding the reverse direction of the inequality, we can identify the condi-
tions for its validity by considering the following extreme scenarios.

Lemma 6. Let p, q be two positive integers with p ≡ q ≡ 3 (mod 4), and N =∏s
i=1 p

ri
i be the product of p, q such that pi > 3, gcd(e4, pi − 1) = di, and pi ≡

3 (mod 4) for all 1 ≤ i ≤ s. For any non-perfect square N except for s =
|S1| = 2, we have βLucas(e4) > βBF(N, e4). In particular, s = |S1| = 2, then
βLucas(e4) = βBF(N, e4).

Proof. Let and pi − 1 = 2kidi with 2 ∤ di for all 1 ≤ i ≤ s. Since gcd(e4, di) =
di = 2−ki(pi − 1) for all 1 ≤ i ≤ s, we have

βLucas(N, e4)

βBF(N, e4)
=

∏s
i=1(pi − 1) +

∏s
i=1(pi − 1− 2ki)

2
(∏s

i=1(pi − 2) + 1P(|S1|)(−1)|S1|
∏

i∈S0
(pi − 2)

) .
Note that pi ≡ 3 (mod 4), which implies that ki = 1 for all 1 ≤ i ≤ s. Therefore,
the condition βLucas(N, e4) > βBF(N, e4) is equivalent to say that, letting xi :=
pi − 2 > 1 (i.e. if there exists one pi = 3, then

∏s
i=1(xi − 1) = 0 vanishes),

2 · 1P(|S1|)(−1)|S1|
∏
i∈S0

xi <

s∏
i=1

(xi + 1) +

s∏
i=1

(xi − 1)− 2

s∏
i=1

(xi)

=

{
0, if s = 1;

2
(
es−2 + es−4 + . . .+ es−2⌊s/2⌋

)
, otherwise,

where ej is the sum of products of j variables xi. Now, we show that for all s ≥ 1,
the above inequality holds. When s = 1, then |S1| = 1, since N is not perfect
square. Thus −2 < 0 means that the inequality holds. As for the case s = 2,
then |S1| = 1 or 2 (i.e., |S1| = s = 2 gives us the equality), since N is not perfect
square. If |S1| = 1, then the inequality holds since the left side is negative.
If |S0| = s ≥ 3, then N is a perfect square. Thus, we only need to consider
the case |S0| = s − 1. This is because in the other scenarios, the inequality
clearly holds, since

∏
i∈S0

xi < es−2. However, in the case where S0 = s − 1,
we have N = pq ≡ 3 (mod 4), since pi ≡ 3 (mod 4) for all i. This contradicts
N = pq ≡ 1 (mod 4).

For other scenarios not explicitly discussed above (e.g., 1 < gcd(e, pi−1) < di
for all 1 ≤ i ≤ s), the inequality may hold in either direction. However, our anal-
ysis of the governing formulas suggests that the probability of βLucas(N, e4) <
βBF(N, e4) is generally higher. Therefore, the empirical results presented in Table
2 align with this theoretical expectation.

In Lemma 6, we only consider the case where N has no prime factor 3.
This restriction is justified because practical RSA moduli generation protocols
typically eliminate the prime 3 via initial trial division.
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It is noteworthy that since Table 2 enforces a minimum pmin of 541, any value
of N for which a boundary condition such as β = 1 might occur must be greater
than p3min ∼ 1.58 × 108. This large scale for N provides an explanation for the
absence of observed cases where β = 1.

5.3 Computational Cost Comparison of Three Tests

Burkhardt et al. [15] demonstrated that their variant Miller-Rabin protocol ex-
hibits superior efficiency over the Boneh-Franklin protocol, which is presented
by Frederiksen et al. [23] when compared at the same security level. Their anal-
ysis highlighted that the Boneh-Franklin test typically requires more iterations
to achieve equivalent soundness, a consequence of its original 1/2 worst-case
soundness error. To systematically evaluate the effectiveness of these established
protocols alongside our proposed Lucas test, we adopt the comparative frame-
work and terminology from Burkhardt et al.’s work (i.e., detailed further in our
Section 6.10), with key performance metrics summarized in Table 3.

Our evaluation indicates that, in terms of computational cost per iteration,
the Boneh-Franklin test is the most efficient of the three. However, our Lucas
test also demonstrates strong efficiency, closely comparable to Boneh-Franklin’s,
with the primary performance difference stemming from local computations.
Considering contemporary computational capabilities, this operational gap be-
tween the Boneh-Franklin and Lucas tests is nearly negligible in many practical
scenarios.

5.4 Implementation in the Semi-honest Setting

Our experiment is composed of three components:

1. Generate an RSA modulus candidate: Utilizing the CRT-Sampling pro-
tocol [16, Protocol 4.4] generates N , pi, qi, and {pi (mod 4), qi (mod 4)}ni=1

satisfying p =
∑

i pi ≡ 3 (mod 4), q =
∑

i qi ≡ 3 (mod 4), and gcd(N, p′) = 1
for all primes p′ ≤ B. Other RSA moduli generation protocols can also be
utilized (i.e., [10, 16, 17, 20, 23, 40]). Meanwhile, set a parameter pmin to check
that no prime smaller than pmin dividing N = pq. In our case, pmin = 62017.
For N = 2048 (resp. 3072) bits, passing this check implies approximately a
0.0767% (resp. 0.0341%) probability that both p and q are prime. This is based
on DeBruijn’s formula [13]: for a k bit integer p,

Pr(p ∈ P| trial division up to B) ∼ 2.57 · lnB · k−1.

Like most experiments, our MPC multiplication with secret-sharing is proposed
by Gennaro et al. [25, Figure 2], assuming an honest majority.

2. A biprimality test: We continue checking the exponential conditions required
by both biprimality tests until the soundness error is reduced to 2−80. To be
more precise, either Protocol 5 or Protocol 6 may be iterated to a predetermined
number of iterations. In the event that candidate N is identified as a non-RSA
modulus, the procedure reverts to step 1.
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Table 3: Single Execution Comparison for Three Tests

Method Boneh-Franklin Variant
Miller-Rabin

Proposed test

Basis selection (local) g ← ZN ,
[

g
N

]
= 1 v ← ZN P ← ZN ,

[
P2−1

N

]
= 1

Exponential test P1 : g(N−(pi+qi)+1)/4 P1 : v(fi−1)/2 P1 :
(αβ−1)(N−(pi+qi)+1)/4

(local) Pi : g
(−pi−qi)/4 Pi : v

fi/2 Pi : (αβ
−1)(−pi−qi)/4

Exponential test ge4 ←Shuffle Mul-to-Add (αβ−1)e4 ← Shuffle

(MPC)
[
v(f−1)/2

]
←

Divisible
[y+1] , [y−1]←

[y+1 · y−1]←Mult

GCD test (MPC) [r]←RandomSample None1 [r]←RandomSample
[r · (p+ q − 1)]←Mult [r · (p+ q − 1)]←Mult

The calculations of the Variant Miller-Rabin test need to be executed for both f = p and f = q. The process

above the bold line requires 40 iterations to achieve a soundness error not greater than 2−80. Basis selection
refers to the conditions of the basis for exponential calculations. We consider the semi-honest model; hence, the
basis is determined by P1. In Exponential test(local), Pi represents P2, . . .Pn, and α, β are the two roots of

the polynomial x2 + Px + (P2 − 1)/4. In Exponential test(MPC), the Shuffle protocol outputs the product
of shares. Mul-to-Add refers to the conversion of multiplicative shares to additive shares. The output of Divisible

y±1 indicates whether v(f±1)/2 ≡ 0 (mod f). Mult denotes the MPC multiplication between additive shares.
RandomSample outputs a random element from a specified set.
1 The Variant Miller-Rabin test needs to confirm that p ̸= q.

3. Verify gcd
(
pq, (p +

[
−1
p

] )(
q +

[
−1
p

]
)
)
= 1 : Sample an r ∈ Z×

N , calculate

z = r
(
p
[
−1
q

]
+ q

[
−1
p

]
+
[−1
N

] )
, and check gcd(pq, z) = 1. If the check fails,

return to step 1.

The scheme was implemented using the Golang programming language and
its native ”math/big” library. To ensure that the probability of accepting a non-
RSA modulus is at most 2−80, we configured both biprimality tests to perform
40 iterations. Experiments were conducted using moduli N of 2048 and 3072
bits, involving 2, 3, and 4 parties. All programs ran single-threaded on a 13-
inch MacBook Pro (2022) equipped with an Apple M2 processor and 16GB of
LPDDR5 RAM. The resulting execution times are presented in Table 4.

Table 4: The mean ± standard deviation of execution time (in seconds) for our
methods and the competing method.

N = 2048 N = 3072
Proposed test Boheh-Franklin Proposed test Boheh-Franklin

n = 2 18.84± 18.50 20.47± 19.64 117.59± 119.24 109.66± 119.97
n = 3 33.01± 35.36 43.46± 42.68 174.59± 200.88 169.81± 161.44
n = 4 59.67± 60.12 64.16± 61.07 232.81± 249.38 274.67± 273.64
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Our experiments demonstrate that both the Lucas test and the Boneh-
Franklin test achieve efficient average execution times. Notably, when N was
not an RSA modulus in our test instances, both tests consistently identified this
within a single iteration. This suggests that overall performance variations in
RSA modulus generation are likely influenced more by the success rate of the
initial p and q candidate selection than by inherent differences in the single-run
detection speed of these two biprimality tests for clear non-RSA cases.

Regarding computational complexity within MPC protocols (i.e., as detailed
in Section 5.3), our Lucas test and the Boneh-Franklin test are comparable,
with both generally outperforming the variant Miller-Rabin test proposed by
Burkhardt et al. [15]. A key advantage is that the most efficient Prime Candidate
Sampling methods [16, 40] are not directly compatible with Burkhardt et al.’s
approach, as these methods do not guarantee equal bit-lengths for p and q, which
is a requirement for that Miller-Rabin variant. For instance, Chen et al. [16]
restrict shares pi, qi to [0, 2ℓ−log2 n], while Guilhem et al. [40] use [2ℓ−1, 2ℓ−1+80],
where ℓ is related to the bit-lengths of p and q. Consequently, to accommodate
its specific requirements, integrating the variant Miller-Rabin test may incur
additional overhead in the prime generation phase compared to the more flexible
Boneh-Franklin and Lucas tests.

Furthermore, exhaustive experiments (cf. Table 2) indicate that, on average,
the Lucas test achieves the best soundness error. In practical terms, if a variant
Miller-Rabin test requires two iterations to reach a specific target error rate,
our proposed Lucas test typically achieves a comparable or superior error rate
within the same number of iterations. In conclusion, given that the difference
in local computational overhead between the Boneh-Franklin and Lucas tests is
negligible, our proposed Lucas test stands as a highly competitive alternative.
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Appendix 6 Mathematical Tools and Supplementary
Proofs and Protocols

This section begins by introducing the Chinese Remainder Theorem (CRT) as
utilized throughout this paper. We then apply the CRT to demonstrate how
the core sets in both the Boneh-Franklin test (see Lemma 3) and our proposed
Lucas test (see Proposition 1) can be decomposed into components modulo prime
factors pi. This decomposition is a standard application of the CRT. For the
reader’s convenience, we subsequently introduce several properties of the Jacobi
symbol and related lemmas that are used in this article.

Further details are provided as follows: Section 6.3 details the number of ele-
ments in the set related to MR(p) for the Miller-Rabin test when p ≡ 3 (mod 4).
The security model adopted in our work is described in Section 6.4. Section 6.5
includes supplementary proofs pertaining to the Lucas test. Subsequently, Sec-
tion 6.6 examines the distribution consistency required for Theorem 3. A security
proof for the πLeg protocol is then provided in Section 6.7. Furthermore, Section
6.9 covers auxiliary protocols utilized within our main protocol against semi-
honest adversaries. Finally, necessary lemmas concerning statistical distance are
presented in Section 6.8.

For ease of comparison, Section 6.10 summarizes the three RSA moduli gen-
eration protocols discussed. Lastly, a revised version of the Chen et al. protocol
is offered for convenient reference in Section 6.11.

6.1 The CRT and its applications

We start by illustrating the Chinese Remainder Theorem (CRT) and demon-
strating some of its applications.

Lemma 7. [29, Theorem 3, Chapter 4] Let N =

s∏
i=1

prii be the prime decompo-

sition of N . Then we have the isomorphism fCRT defined by

fCRT : Z×
N −→ Z×

p
r1
1

× · · · × Z×
prs
s

x (mod N) 7→
(
x (mod pr11 ), . . . , x (mod prss )

)
.

Here Z×
p
ri
i

is a cyclic group of order pri−1
i (pi − 1). Z×

2a is cyclic of order 1 and 2

for a = 1 and 2, respectively. If a ≥ 3, then it is the product of two cyclic groups,
one of order 2, the other of order 2a−2.

Lemma 8. Let p ≡ q ≡ 3 (mod 4), and gcd
(
pq, e4

)
= 1, where e4 = (p−1)(q−

1)/4. Assume that N := pq =

s∏
i=1

prii . Then

|BF(N, e4)| =
s∏

i=1

|BF(prii , e4)|.
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Proof. Through the map fCRT , we only need to prove that xe4 ≡ 1 (mod N) if
and only xe4 ≡ 1 (mod prii ) for all 1 ≤ i ≤ s. This is directly proven due to the
fact N | xe4 − 1 if and only if prii | xe4 − 1 for all 1 ≤ i ≤ s.

Lemma 9. Let D be an integer and N :=

s∏
i=1

prii be a positive integer with

gcd(N, 2D) = 1. Then, for all ϵ ∈ {−1, 1}, one has

|Zϵ(D,N)| =
∑

ϵ1···ϵs=ϵ

s∏
i=1

|Zϵi(D, prii )|.

Proof. It is clearly, P 2 − 4Q ≡ D (mod N) is solvable, then P 2 − 4Q ≡
D (mod prii ) for all 1 ≤ i ≤ s. Conversely, CRT says that if P 2 − 4Q ≡
D (mod prii ) for all 1 ≤ i ≤ s, then P 2 − 4Q ≡ D (mod N). Moreover,
gcd(Q,N) = 1 if and only if gcd(Q, prii ) = 1 for all 1 ≤ i ≤ s. Consider the
condition of the Jacobi symbol. As for the case N is non-square, given a fixed
set ϵ1, . . . , ϵs such that ϵ1 · · · ϵs = ϵ, where ϵi ∈ {−1, 1} for all 1 ≤ i ≤ s, the

map fCRT guarantees that for any Qi with
[
Qi

p
ri
i

]
= ϵi for all 1 ≤ i ≤ s, there

exists a Q ≡ Qi (mod prii ) such that
[
Q
N

]
= ϵ. The case square N is straightfor-

ward, since
[
Q
N

]
= 1 for all gcd(Q,N) = 1. The proof is complete by the above

discussion.

Lemma 10. Let p1, p2, p3 be distinct prime numbers with p3 = (p2 − 1)p′ + 1,
and p′ | p1 − 1. Here p′ is a prime number. Assume that p = p1, q = p2p3,
e = (p− 1)(q − 1)/4, and N = pq. Then for all g ∈ Z×

N , we have

ge ≡ 1 (mod N).

Proof. Since p′ | p− 1, then for any g ∈ Z×
N , we have

ge ≡ g(p−1)(p2p3−1)/4 ≡ 1 (mod p),

ge ≡ g(p−1)(p2−1)((p2−1)p′+1+p′)/4 ≡ 1 (mod p2),

and
ge ≡ gp

′(p2−1)((p−1)/p′)((p2−1)p′+1+p′)/4 ≡ 1 (mod p3).

The above equalities, and Lemma 7 implies the desired result.

To satisfy the gcd(N, e) = 1 constraints, we first fix a = p2 − 1 and choose
a prime p′ such that both p2 and p3 = a · p′ + 1 are prime. As long as there
exists a pair (a, p′) satisfying the above conditions, then by Dirichlet’s theorem,
there are infinitely many primes of the form p1 = 4kp′ +1 such that: p′ | p1 − 1,
gcd(a, p1) = 1, and gcd(p1, ap

′+1+p′) = 1, because a, p′ have been fixed, which
implies that the desired result gcd(N, e) = 1. As a concrete example, we may
simply choose p2 = 5 and p′ = 3.
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6.2 The Jacobi Symbol and Related Consequences

This section lists the properties and some results of the Jacobi symbol.

Definition 1 (Legendre symbol). [4, Section 9.2] Let p be an odd prime. We

define Legendre symbol
[
a
p

]
as follows:

[
a

p

]
=


0 if a ≡ 0 (mod p);

+1 if a is a quadratic residue modulo p;

−1 if a is a quadratic nonresidue modulo p.

Definition 2 (Jacobi symbol). [4, Section 9.7] If N is a positive odd integer

with prime factorization N =

s∏
i=1

prii , then the Jacobi symbol
[
a
N

]
is defined for

all integers a by the equation [ a
N

]
=

s∏
i=1

[
a

pi

]ri
,

where
[

a
pi

]
is the Legendre symbol.

Lemma 11. [4, Theorem 9.9, Theorem 9.10] If N1 and N2 are odd positive
integers, we have

(a)
[

ab
N1

]
=
[

a
N1

] [
b
N1

]
;

(b)
[

a
N1N2

]
=
[

a
N1

] [
a
N2

]
;

(c)
[

a
N1

]
=
[

b
N1

]
whenever a ≡ b (mod N1);

(d)
[
c2b
N1

]
=
[

b
N1

]
whenever gcd(c,N1) = 1;

(e)
[
−1
N1

]
= (−1)(N1−1)/2;

(f)
[
−2
N1

]
= (−1)(N2

1−1)/8.

Lemma 12 (Reciprocity law for Jacobi symbols). [4, Theorem 9.11] If
N1 and N2 are two coprime odd numbers, then[

N1

N2

] [
N2

N1

]
= (−1)

(N1−1)(N2−1)
4 .

Lemma 13. Let N =

s∏
i=1

prii be a positive odd integer. Then, the cardinality of

G(N) is given by:

|G(N)| =

{
ϕ(N) if N is a perfect square;

ϕ(N)/2 if N is not a perfect square.
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Proof. First, we prove the case whereN is a perfect square. The proof is complete
by the below observation

|G(N)| =
∣∣∣{a ∈ ZN

∣∣ [ a
N

]
= 1
}∣∣∣ = ∣∣Z×

N

∣∣ = ϕ(N).

For the case whereN is not a perfect square, we claim that there exists an a ∈ Z×
N

such that
[
a
N

]
= −1. Without loss of generality, we assume r1 is odd, which

means that there exists 1 ≤ a′ < p1 such that
[
a′

p1

]
= −1 (cf. [3, Theorem 9.1]).

CRT implies that the integer a can be constructed by the following system of
congruence equations. That is a ≡ 1 (mod pi) for all i ≥ 2, and a ≡ a′ (mod p1).
Notice that [ a

N

] ∑
x∈Z×

N

[ x
N

]
=
∑
x∈Z×

N

[ax
N

]
=
∑
x∈Z×

N

[ x
N

]
,

which gives that
∑
x∈Z×

N

[ x
N

]
= 0. Therefore, this equality gives us that the size

of G(n) is half of Z×
N .

6.3 Variant Miller-Rabin Test

For completeness, we provide the formula for the number of variants of the
Miller-Rabin test, which proof is similar to Theorem 1.

Lemma 14. Let p =

s∏
i=1

prii ≡ 3 (mod 4). Then

|MR
(
p
)
| = 2

s∏
i

gcd
(
(p− 1)/2, di

)
.

Proof. Since (p− 1)/2 is odd, we have

|{g ∈ Z×
p | g(p−1)/2 ≡ 1 (mod p)}| = |{g ∈ Z×

p | g(p−1)/2 ≡ −1 (mod p)}|,

which implies that

|MR(p)| = 2 · |{g ∈ Z×
p | g(p−1)/2 ≡ 1 (mod p)}|.

Similar to Lemma 3, we consider the problem of counting the cardinality of
(p−1)

2 -th roots of 1 in (Z/prii Z)× using CRT. Combining the fact (Z/prii Z)× is

cyclic, gcd(p, (p−1)/2) = 1, and Lemma 1, one has the number of (p−1)
2 -th roots

of 1 in the group (Z/prii Z)× is

gcd((p− 1)/2, pri−1
i (pi − 1)) = gcd((p− 1)/2, di).

The above discussion implies the desired result.
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6.4 The Security Model

Our security analysis considers static and rushing adversaries. In the static
model, the adversary must choose the set of corrupted parties before the proto-
col execution commences and cannot alter this selection. Conversely, a rushing
adversary can delay messages from corrupted parties within a given round until
all messages from honest parties in that round have been received. We assume a
standard communication model where n parties exchange messages in synchro-
nized rounds via pairwise private and authenticated channels, and additionally
have access to a broadcast channel.

Semi-honest adversaries follow the protocol specifications honestly but at-
tempt to learn as much information as possible from the messages they receive
from other parties. For this model, we adopt the definition provided in Goldre-
ich [35, Definition 7.5.1], detailed as follows.

Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n−ary functionality, where fi(x1, . . . , xn)
denotes the i-th element of f(x1, . . . , xn). For I = {i1, . . . it} ⊂ {1, . . . , n}, we let
fI(x1, . . . , xn) denote the subsequence fi1(x1, . . . , xn), . . . , fit(x1, . . . , xn). Let Π
be an n-party protocol for computing f . The view of the i−th party during an ex-
ecution of Π on x = (x1, . . . , xn), denoted VIEWΠ

i (x), is (xi, ri,mi1 , . . . ,miℓ),
where ri represents the outcome of the i−th party’s internal coin tosses, and
mij represents the j−th message it has received. For I = {i1, . . . , it}, we let

VIEWΠ
I (x) := (I,VIEWΠ

i1 (x), . . . , VIEWΠ
it (x)).

Definition 3. We say that Π t-privately computes f if there exists a probabilis-
tic polynomial-time algorithm, denoted S, such that for every I ⊆ {1, . . . , n} with
|I| ≤ t, it holds that

{(S(I, (xi1 , . . . , xit), fI(x)), f(x))}x∈({0,1}∗)n

c≡{( VIEWΠ
I (x), OUTPUTΠ(x))}x∈({0,1}∗)n .

Here OUTPUTΠ(x) denotes the output sequence of all parties during the exe-

cution represented in VIEWΠ
I (x), and

c≡ is computationally indistinguishable of
two distribution ensembles.

We consider security with abort against malicious adversaries according to
the definition presented by Katz [30, Definition 1], a definition grounded in
the framework of Goldreich [35]. In the malicious adversarial model, corrupted
parties may deviate from the protocol specification in an arbitrary manner.
The Real Model. At the beginning of a real execution of a protocol, each
party Pi holds the security parameter 1λ and its input xi. Let f : ({0, 1}∗)n →
({0, 1}∗)n be an n−ary functionality. The adversary A takes as input 1λ, the set
I ⊂ {1, . . . , n} of corrupted parties, the inputs of the corrupted parties, and an
auxiliary input aux. The interaction of A with a protocol Π defines a random
variable REALΠ,A,I(λ, x⃗,aux) whose value is determined by the coin tosses of
the adversary and the honest players. This random variable contains the output
of the adversary (which may be an arbitrary function of its view) as well as the
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outputs of the uncorrupted parties. We let REALΠ,A,I denote the distribution
ensemble {REALΠ,A,I(λ, x⃗,aux)}k∈N,(x⃗,aux)∈{0,1}∗ .
The ideal model. Here the parties interact with a trusted party implementing
f . Each honest party Pi holds an input xi as before; the adversary A′ is again
given 1λ, the set I of corrupted parties, the inputs of all the corrupted parties,
and an auxiliary input aux. Each honest party Pi sets x

′
i = xi and sends x′

i to
the trusted party; each corrupted party Pj sends an arbitrary input x′

j to the
trusted party as directed by A′. In case some corrupted party Pj does not send
an input, x′

j is set to a default value. The trusted party computes (y1, . . . , yn)←
f(x′

1, . . . , x
′
n), choosing a uniformly random tape for f in case it is randomized.

Then, the trusted party sends the outputs {yi}i∈I to A′ first. The adversary
can then decide whether to abort the trusted party, or whether to allow it to
continue. In the former case, the trusted party sends the special symbol ⊥ to all
honest parties as their output, where ⊥ is assumed not to lie in the range of f .
In the latter case, the trusted party sends the correct output yi to each honest
party Pi.

The interaction of A′ with the trusted party defines a random variable
IDEALf,A′,I(λ, x⃗,aux) whose value is determined by the random coins of the
adversary and those used by the trusted party in evaluating f . This random
variable contains the output of A′ (which may be an arbitrary function of its
view) as well as the outputs of the uncorrupted parties. We let IDEALf,A′,I

denote the distribution ensemble {IDEALf,A′,I(λ, x⃗,aux)}λ∈N,(x⃗,aux)∈{0,1}∗ .

Definition 4. Let f be an n-party randomized functionality, and Π be an n-
party protocol. Then Π t-securely computes f with abort if for any PPT adver-
sary A there exists a PPT adversary A′ such that for any I ⊆ {1, . . . , n} with
|I| ≤ t:

REALΠ,A,I
c≡ IDEALf,A′,I .

6.5 Missing Proofs of Section 4

When D is not a square, the result have already been provided in [5, Section 5].
Here, we extend this result to general integers D.

Proposition 3. Let D be an integer and N :=

s∏
i=1

prii be a positive integer with

gcd(N, 2D) = 1. Then we have |Z(D,N)| =
s∏

i=1

pri−1
i

(
pi −

[
D

pi

]
− 1

)
.

Proof. Similarly, applying CRT, we only consider the case Z(D, pr).When r = 1,

in the beginning proof of Lemma 4 gives us |Z(D, p)| = pi −
[
D
pi

]
− 1. When

r ≥ 2, we first the case where Q ≡ −D/4 (mod p), and need to compute the
cardinality of the set{

(P,Q)
P 2 ≡ 0 (mod p),
gcd(Q, pr) = 1, 0 ≤ P,Q < pr

}
. (8)
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The number of solution (P,Q) is pr−1, which form is (P,Q) =
(
tp, ((tp)2−D)/4

)
,

where t ∈ Zpr−1 .
For the case Q ̸≡ −D/4 (mod p), we consider Q = a + tp, where t ∈ Zpr−1

and

a ∈ T :=

{
Q ̸≡ −D/4 ∈ Z×

p

∣∣∣∣ x2 ≡ D + 4Q mod p is solvable

}
.

For each Q ∈ Zpr with Q ̸≡ −D/4 (mod p), if fQ(x) := x2−4Q−D ≡ 0 (mod p)
hasm solutions in Zp, and f ′

Q(a) ̸≡ 0 (mod p) for all a ∈ T . Therefore, by Lemma
2, fQ(x) ≡ 0 (mod pr) also has m solutions in Zpr . Since t ∈ Zpr−1 is arbitrary,
then the number of solutions for this case is pr−1(|Z(D, p)| − 1). Therefore, the
total number of solutions is pr−1(|Z(D, p)| − 1) + pr = pr−1(|Z(D, p)|).

This part completes the proof of the Lemma 4.

Lemma 15. Let p be an odd prime, and D be an element of Z×
p . Then we have,

for any r ≥ 1 and ϵ ∈ {±1},

|Zϵ(D, pr)| = pr−1 · |Zϵ(D, p)|.

Proof. When r = 1, the desired result have been proved in the proof of Lemma
4. Here, we only consider the case 2 ∤ r, because Z+1(D,N) = Z(D,N) as
2 | r, which result can be obtain by Proposition 3. Assume ϵ = 1, since we have
|Z(D, pr)| = pr−1 · |Z(D, p)| by Proposition 3 and |Z−1(D, pr)| = |Z(D, pr)| −
|Z+1(D, pr)|. When

[
−D/4

p

]
= 1 holds, one has

(
tp, ((tp)2−D)/4

)
∈ Z+1(D, pr)

for t ∈ Zpr−1 , which implies that the cardinality of the set (8) is pr−1. Using the
same trick as in the Proposition 3, express Q as a+ tb, where t ∈ Zpr−1 , and

a ∈
{
Q ̸≡ −D/4 ∈ Z×

p

∣∣∣∣ x2 ≡ D + 4Q mod p is solvable ,

[
Q

p

]
= 1

}
.

Notice that
[
Q
pr

]
=
[
Q
p

]
= 1, since r is odd. Therefore, For each Q ∈ Zpr ,

if x2 ≡ D + 4Q mod p and
[
Q
p

]
= 1 has m solutions, then x2 ≡ D + 4Q

mod pr and
[
Q
pr

]
= 1 also has m solutions by Lemma 2. Since t ∈ Zpr−1 is

arbitrary, then the number of solutions of Z+1(D, pr) is pr−1
(
|Z+1(D, p)| − 1

)
.

For the case where
[
−D/4

p

]
= −1, there are no (P,Q) ∈ Z+1(D, pr) with Q ≡

−D/4 (mod p). Consequently, the number of solutions of |Z+1(D, pr)| is given
by pr−1|Z+1(D, p)| following the same reasoning as above.

Some lemmas are used in Theorem 4.

Lemma 16. Let p be an odd prime and D ̸≡ 0 (mod p). Then

(p−1)/2∑
i=1

[
i2 +D

p

]
=
−1−

[
D
p

]
2

.
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Proof. First, we prove that

p∑
i=1

[
i2 +D

p

]
= −1.

According to Euler’s criterion (cf. [34, Theorem 3.1]), the above considering sum
can be written as

p∑
i=1

(i2 +D)
p−1
2 .

Since Z×
p is a cyclic group, there exists a generator g, which induces that

p−1∑
i=1

ik (mod p) =

p−2∑
i=0

gik (mod p) =

{
0, if p− 1 ∤ k;
−1, if p− 1 | k.

Therefore, applying this fact and expending (i2 +D)
p−1
2 , one has

p∑
i=1

[
i2 +D

p

]
≡

p−1
2∑

ℓ=0

(p−1
2

ℓ

)
Dℓ

p∑
i=1

ip−1−2ℓ ≡ D(p−1)/2

p∑
i=1

1 +

p∑
i=1

ip−1 ≡ −1 (mod p).

Notice that ∣∣∣∣∣
p∑

i=1

[
i2 +D

p

]∣∣∣∣∣ ≤ p,

which implies that

p∑
i=1

[
i2 +D

p

]
= −1 or p−1. However, if

p∑
i=1

[
i2 +D

p

]
= p−1,

then we must have p−1 terms equal to 1 and exactly 1 term a2+D ≡ 0 (mod p)
with a ≡ −a (mod p), which implies that a ≡ 0 (mod p), since p is odd. Therefore,
one has D ≡ 0 (mod p), which gives us a contradiction.

The proof is completed by the above fact and the following observation.

2

p−1
2∑

i=1

[
i2 +D

p

]
=

p−1∑
i=1

[
i2 +D

p

]
= −1−

[
D

p

]
.

Lemma 17. Let pi > 3 be distinct primes and s ≥ 1. Then∏s
i=1(pi − 1)∏s

i=1(pi − 2)− 1
≤ (pmin − 1)s

(pmin − 2)s − 1
.

Here pmin := min
1≤i≤s

{pi}.
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Proof. Observe that∏s
i=1(pi − 1)∏s

i=1(pi − 2)− 1
=

(∏s
i=1(pi − 1)∏s
i=1(pi − 2)

)( ∏s
i=1(pi − 2)∏s

i=1(pi − 2)− 1

)
.

Since (pi − 1)/(pi − 2) is a decreasing function for pi, we have

s∏
i=1

(
pi − 1

pi − 2

)
≤ (pmin − 1)s

(pmin − 2)s
.

The proof is completed by the facts that x/(x− 1) is decreasing and
∏s

i=1(pi −
2) ≥ (pmin − 2)s.

Lemma 18. Let pi > 5 be distinct primes and s ≥ 1. Then for any 1 ≤ j ≤ s,

s∏
i=j

(pi − 1) <

s∏
i=j

2(pi − 2)− 2s−j+1.

Proof. For all pi ≥ 5, we have

s∏
i=j

(pi − 1) + 2s−j+1 ≤
s∏

i=j

(
(pi − 1) + 2

)
=

s∏
i=j

(pi + 1) ≤
s∏

i=j

2(pi − 2).

6.6 The Identical Distribution of Pj, P
′
j in Theorem 3

In this section, for an integerm, if
√
D ∈ Z×

m, then (modm) refers to the module
mZ; otherwise, if

√
D ̸∈ Z×

m, (mod m) refers to the module mOD. To investigate
the distribution of Pj and P ′

j , we will examine the relationship between Sreal(m,b)

and Sideal(m,b) given an odd integer m and b ∈ {0, 1}. Here

Sreal(m,b) :=

{
P ∈ Zm

∣∣∣∣ [ (P 2 −D)/4

m

]
= (−1)b

}
, and

Sideal(m,b) :=

{
2
√
D

a2(−1)b − 1
+
√
D

∣∣∣∣ a =
v + w

√
D

v − w
√
D
, v,w ∈ Zm,

v2−w2D ∈ Z×
m, a2(−1)b ̸≡ 1 (mod m)

}
.

Then we have

Lemma 19. If p is an odd prime, and D is an integer with
[
−D
p

]
= −1, then

we have Sreal(p,b) = Sideal(p,b) for b ∈ {0, 1}.
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Proof. For any P ′ ∈ Sideal(p,b), we have

(P ′2 −D)/4 =

( √
D

a2(−1)b − 1

)2

+
D

a2(−1)b − 1

=D

(
(v2 − w2D)2(−1)b(

(v + w
√
D)2(−1)b − (v − w

√
D)2

)2
)

Therefore,

[
(P ′2 −D)/4

p

]
=


[
1/(v2w2)

p

]
= 1 , if b = 0;

[
−D/(v2+w2D)2

p

]
= −1 , if b = 1.

We derive
[
(P ′2−D)/4

p

]
= (−1)b and Sreal(p,b) ⊇ Sideal(p,b). On the other hand,

let P be an element in Sreal(p,b). We assume that there exists a belonging the set{
v + w

√
D

v − w
√
D

∣∣∣∣ v, w ∈ Zp, v
2 − w2D ∈ Zp× ,

(v + w
√
D)2 ≡ (−1)b(v − w

√
D)2 (mod p)

}
such that a2(−1)b = P+

√
D

P−
√
D
̸≡ 1 (mod p). Then we have

P ≡ 2
√
D

P+
√
D

P−
√
D
− 1

+
√
D ≡ 2

√
D

a2(−1)b − 1
+
√
D (mod p),

which implies Sreal(p,b) ⊆ Sideal(p,b). To prove the assumption, we split it into
two cases.
Case1:

[
D
p

]
= 1 (i.e.,

√
D ∈ Z×

p ).

Note that
[
P 2−D

p

]
= 1, because of P be an element in Sreal(p,b). Since the

condition in Lemma gives
[
−D
p

]
= −1, we have

[
−1
p

]
= −1. Then one has[

(−1)b(P +
√
D)/(P −

√
D)

p

]
=

[
(−1)b(P +

√
D)2/(P 2 −D)

p

]

=

[
(−1)b(P 2 −D)

p

]
=

[
(−1)b

p

]
(−1)b = 1.

There exists t ∈ Z×
p such that t2 ≡ (−1)b P+

√
D

P−
√
D

(mod p). Assume t ̸≡ 1 (mod p),

we take (v, w) = ( t+1
t−1

√
D, 1) and then a2 ≡

(
v+w

√
D

v−w
√
D

)2
≡ (−1)b P+

√
D

P−
√
D

(mod p).

If t = 1, we set (v, w) = (1, 0), then a2 = 1.
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Case2:
[
D
p

]
= −1.

If b = 0 (resp. b = 1), then we take (v, w) = (
P+
√

4(P 2−D)

2 , 1) ∈ Zp × Zp (resp.

(v, w) = (
D+
√

D(D−P 2)

P , 1) ∈ Zp × Zp). Racall that a = v+w
√
D

v−w
√
D
. Then, one has

a2 ≡ (−1)b P+
√
D

P−
√
D

(mod p).

Assume that p is an odd prime and D ∈ Z×
p . Let

G :=

{
(a, b)

∣∣∣∣ a, b ∈ Zp, a
2 − b2D ∈ Z×

p

}
.

Given g1 = (a1, b1), g2 = (a2, b2) ∈ G, define g1 ∗ g2 = (a1a2 + b1b2D, a1b2 +
b1a2). Then G is a group with the identity (1, 0), and its inverse of g = (a, b) is(
a/(a2 − b2D),−b/(a2 − b2D)

)
. Let

H :=

{
a+ b

√
D

a− b
√
D
∈ Zp(

√
D)

∣∣∣∣ a, b ∈ Zp, a
2 − b2D ∈ Z×

p

}
,

which is also a group under the field multiplication. Here Zp(
√
D) is the fractional

field of the ring {a + b
√
D | a, b ∈ Zp}. The inverse of any h = a+b

√
D

a−b
√
D
∈ H is

a−b
√
D

a+b
√
D
, and the identity is 1.

Lemma 20. Let p be an odd prime, and D ∈ Z×
p . Consider a group homomor-

phism f : G→ H defined by

g = (a, b) ∈ G 7→

(
a+ b

√
D

a− b
√
D

)2

∈ H.

Then the set of f(g) forms a subgroup of H, and | ker(f)| = 2p− 2.

Proof. It is a subgroup can be verified directly using the definition. We omit this
step. The map f is a group homomorphism, which can be verified by showing
that for any (a1, b1), (a2, b2) ∈ G:

f(a1, b1)f(a2, b2) =
a1a2 + b1b2D + (a1b2 + a2b1)

√
D

a1a2 + b1b2D − (a1b2 + a2b1)
√
D

= f((a1, b1) ∗ (a2, b2)).

Let g = (a, b) ∈ G with f(g) = 1. Then
(

a+b
√
D

a−b
√
D

)2
= 1, which implies that

ab
√
D = 0. Therefore a = 0 or b = 0. If a = 0 and b ∈ Z×

p , then f(g) = 1.
Similarly, if b = 0, then a ∈ Z×

p , then f(g) = 1. In conclusion, the cardinality of
kernel of f is 2p− 2.

Proposition 4. If N = pq is an odd RSA modulus, and D is an integer with[
−D
p

]
=
[
−D
q

]
= −1, then we have Sreal(N,0) = Sideal(N,0) ∪ Sideal(N,1). Fur-

thermore, uniformly sampling u, v ∈ ZN , b ∈ {0, 1} with u2 − v2D ∈ Z×
N and

a2(−1)b ̸≡ 1 (mod N) is equivalent to randomly selecting from the set Sreal(N,0).



Enhanced Biprimality Tests 55

Proof. According to the CRT, we have

Sreal(N,0) =
(
Sreal(p,0) × Sreal(q,0)

)
∪
(
Sreal(p,1) × Sreal(q,1)

)
.

Similarly, one has

Sideal(N,0) = Sideal(p,0) × Sideal(q,0), and

Sideal(N,1) = Sideal(p,1) × Sideal(q,1).

Thus, according to Lemma 19, there exists a bijective map from Sideal(N,0) ∪
Sideal(N,1) to Sreal(N,0).

Notice that to ensure Sideal(N,b) is well-defined, we need to assume a2(−1)b ̸≡
1 (mod N). Specifically, for any odd prime p satisfying

[
−D
p

]
= −1, then this

condition is equivalent to a2 ≡ 1 mod p and b = 0, which is also equivalent to
u = 0, w ∈ Z×

p or u ∈ Z×
p , v = 0. Let TN := {(u,w) : u2 − w2D ∈ Z×

N}. Lemma
20 says that there is a surjective map f from Tp to the set Sideal(p,b) for any
b ∈ {0, 1} such that |f−1(x)| = 2p− 2 for all x ∈ Sideal(p,b). This map induces a
bijective map

Tp − {u, v | uv = 0, (u, v) ̸= (0, 0)} × Tp → Sideal(p,0) × Sideal(p,1).

In fact, the set {u, v | uv = 0, (u, v) ̸= (0, 0)} is f−1(1).
Lastly, the CRT says that TN = Tp × Tq. Therefore, there exists a map g

such that |g−1(x)| = (2p− 2)(2q − 2) for all x ∈ Sideal(N,0) ∪ Sideal(N,1).

6.7 A security proof of Protocol πLeg

Proposition 5. Protocol πLeg (n− 1)-privately computes the functionality FLeg

in FModMul-hybrid model.

Proof. We construct the simulator S to simulate the transcript of πLeg. Suppose
S is given input (

P∗, {pi}i∈P∗ , p (mod 4), D,

[
−D
p

])
.

1: S uniformly samples s ∈ Z×
D and si ∈ ZD for i ∈ {1, . . . , n} such that∑n

i=1 si ≡ s (mod D).
2: S uniformly samples s′i ∈ ZD for i ∈ {1, . . . , n} such that

∑n
i=1 s

′
i ≡

s2 (mod D).
3: S uniformly samples r ∈ Z×

D such that

[ r
D

]
=

−
[
−D
p

]
, if p ≡ 3 (mod 4) and D ≡ 1 (mod 4);[

−D
p

]
, otherwise.

4: S uniformly samples ri ∈ ZD for i ∈ {1, . . . , n} such that
∑n

i=1 ri ≡
r (mod D).
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5: S outputs

({pi}i∈P∗ ,p (mod 4), D,

{si}i∈P∗ , {s′i}i∈P∗ , {ri}i∈P∗ , {ri}i∈{1,...,n}\P∗)

Because FLeg is a deterministic function, we only need to prove{
S
(
P∗, {pi}i∈P∗ , p (mod 4), D,

[−D
p

])}
c≡{viewπLeg

P∗ (P∗, {pi}i∈P∗ , p (mod 4), D)}

for any P∗ ⊆ {1, . . . , n}, |P∗| ≤ n − 1, {pi}ni=1 and prime D. In the beginning,
fixed any {pi}ni=1 and D, we claim that the output of

S
(
P∗, {pi}i∈P∗ , p (mod 4), D,

[
−D
p

])
and the view

view
πLeg

P∗ (P∗, {pi}i∈P∗ , p (mod 4), D)

are identical. Observe that[ p
D

]
=

[
D

p

]
· (−1)

p−1
2

D−1
2 =

[
−D
p

]
·
[
−1
p

]
· (−1)

p−1
2

D−1
2

=

[
−D
p

]
· (−1)

p−1
2 · (−1)

p−1
2

D−1
2

implies that
[
p
D

]
=
[
r
D

]
. The facts thatD is a prime, and s is uniformly randomly

chosen from Z×
D, which gives us the identical distribution between {s2p | s ∈ Z×

D}
with

{
r ∈ Z×

D |
[
r
D

]
= (−1)

(p−1)(D−3)
4

[
−D
p

] }
. Due to |P∗| < n, si, s

′
i in the

view
πLeg

P∗ (P∗, N, {pi}i∈P∗ , p (mod 4), D) and

S
(
P∗, N, {pi}i∈P∗ , p (mod 4), D,

[
−D
p

])
are both independently and uniformly distributed in ZD. We conclude that for
any P∗ ⊆ {1, . . . , n}, |P∗| ≤ n− 1, {pi}ni=1, and prime D{

S
(
P∗, {pi}i∈P∗ , p (mod 4), D,

[
−D
p

])}
c≡({pi}i∈P∗ , p (mod 4), D, {si}i∈P∗ , {s′i}i∈P∗ , {ri}i∈P∗ , {ri}i∈{1,...,n}\P∗)
c≡({pi}i∈P∗ , p (mod 4), D, {si}i∈P∗ , {s′i}i∈P∗ , {s2pi}i∈P∗ , {s2pi}i∈{1,...,n}\P∗)
c≡{viewπLeg

P∗ (P∗, {pi}i∈P∗ , p (mod 4), D)}.
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6.8 Some Lemmas of Statistical Distance

In this paper, we use the following statistical distance to prove Proposition 6,
7 for our malicious model, showing that the real view and the ideal view are
indistinguishable.

Definition 5. [11, Definition 3.5] Let X,Y be two random vectors that takes
values in a finite set S. The statistical distance between X and Y is defined as

SD(X,Y ) =
1

2

∑
s∈S

|Pr(X = s)− Pr(Y = s)| .

Here, we will study the statistical distance between the distributions of the
sum of two random variables modulo a positive integer A. More formally, letX =
(X1, . . . , Xn) and Y = (Y1, . . . , Yn) be random vectors defined on a probability
space. We define X + Y (mod A) to mean the component-wise modulo

(
X1 +

Y1 (mod A), . . . , Xn+Yn (mod A)
)
. In addition, when S is a finite set, we define

US to be the random variable uniformly distributed over S.

Lemma 21. Suppose X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) are random vectors
with Xi, Yi are all independent random variable on the finite set S. Then

SD(X,Y ) ≤
n∑

i=1

SD(Xi, Yi).

Proof. This is a standard application of the hybrid argument. We will briefly
describe the approach. Consider n − 1 random vectors H1, . . . ,Hn, defined as
follows:
H1 := (Y1, X2, . . . , Xn), H2 := (Y1, Y2, X3, . . . , Xn), . . . ,Hn−1 = (Y1, . . . , Yn−1, Xn).
Then one has

SD(X,Y ) ≤SD(X,H1) + SD(H1, H2) + . . .+ SD(Hn−1, Y ) =

n∑
i=1

SD(Xi, Yi).

Lemma 22. Let X,Z be independent random variables on the set {0, . . . , A−1},
and U be the uniformly random variable on the set {0, . . . , A− 1}. Then

SD(X + Z (mod A), U (mod A)) ≤ SD(X,U).

Proof. Note that the sum of two distributions U + Z (mod A) is still U for any
distribution Z. Therefore, we only need to prove that

SD(X + Z (mod A), U + Z (mod A)) ≤ SD(X,U).
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From the definition of SD, one has

SD(X + Z (mod A), U + Z (mod A))

=
1

2

∑
z

∣∣∣∣∣∑
x

Pr(X = x) Pr(Z = z − x)−
∑
x

Pr(U = x) Pr(Z = z − x)

∣∣∣∣∣
≤1

2

∑
z

∑
x

|Pr(X = x)− Pr(U = x)|Pr(Z = z − x)

=
1

2

∑
x

|Pr(X = x)− Pr(U = x)|
∑
z

Pr(Z = z − x) = SD(X (mod A), U (mod A)).

Lemma 23. Let B > A > 0 be positive integers. Write 2B+1 = QA+ r, where
0 ≤ r < A. Then the set

{x (mod A) | −B ≤ x ≤ B} =
A−1⋃
i=0

[i].

Here [i] is equivalent class of i of modulo A. Furthermore, there exist A − r
equivalence classes [i] whose cardinality is Q, and the remaining r equivalence
classes have cardinality Q+ 1.

Proof. The set {x (mod A) | −B ≤ x ≤ B} is Q copies of a complete residue
system modulo A. And there are an additional r distinct residue classes that
will each have one more element.

Lemma 24. Assume that n,A,B are positive integers with A < 2B+1. Let X =
(X1, . . . , Xn) be the random vector with i.i.d. Xi = UB := U{x (mod A)|−B≤x≤B},
Z = (Z1, . . . , Zn) be a random vector with a random variable Zi on the set
{0, . . . , A − 1}, and U = (U1, . . . , Un) be a random vector with i.i.d. Ui =
U{0,1,...,A−1} for all 1 ≤ i ≤ n. Then

SD
(
X + Z (mod A), U

)
≤ n

4⌊(2B + 1)/A⌋
.

Proof. If A | (2B + 1), then Lemma 23 says that UB is the uniform random
variable on the set {0, 1, . . . , A − 1}. Therefore, the SD

(
X + Z (mod A), U

)
=

0, since for all 1 ≤ i ≤ n, Xi + Zi is also the uniform variable on the set
{0, . . . , A− 1}. Therefore, we only need to consider the case A ∤ (2B +1). Write
2B + 1 = QA + r with 0 < r < A. In particular, when n = 1, Lemma 22 says
that

SD(Xi + Zi (mod A), Ui) ≤ SD(Xi, Ui).
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Notice that f(x) = x(A−x)
QA+x has maximal A(

√
Q+ 1 −

√
Q)2 (i.e., the critical

point is A(
√
Q(Q+ 1)−Q)) in the set [0, A]. Now, by the Lemma 23, we have

SD(Xi, Ui) =
1

2

[
r

(
Q+ 1

2B + 1
− 1

A

)
+ (A− r)

(
1

A
− Q

2B + 1

)]
=

r(A− r)

(QA+ r)A
≤ 1

(
√
Q+ 1 +

√
Q)2

≤ 1

4Q
.

Therefore, Lemma 21 implies that

SD(X + Z (mod A), U) ≤ n

4Q
.

Proposition 6. Assume that n,A,B are positive integers with A < 2B+1. Let
X = (X1, . . . , Xn) be a random vector representing the output of FZero(n,B),

and U = (U1, . . . , Un−1,−
∑n−1

i=1 Ui) be a random vector with Ui = U{0,1,...,A−1}
are i.i.d. for all 1 ≤ i ≤ n − 1. For any vector s = (s1, . . . , sn), where si ∈
{0, 1 . . . , A− 1} for all 1 ≤ i ≤ n. Then

SD
(
X + s (mod A), U + s (mod A)

)
≤ n− 1

4⌊(2B + 1)/A⌋
.

Here ⌊·⌋ is the floor function.

Proof. Note that the definition of FZero(n,B) gives that
∑n

i=1 Xi = 0, which

means Xn = −
∑n−1

i=1 Xi. For each 1 ≤ i ≤ n − 1, the random variable Xi

can be regarded as the random variable Zi + UB for some random variable Zi.
Here UB := U{−B,...,B}. Let f(x1, . . . , xn−1) = (x1, . . . , xn−1,−

∑n−1
i=1 xi) be a

injective function from Zn−1
A to Zn

A. By the above observation, and the definition
of statistical distance, we have

SD
(
X + s (mod A), U + s (mod A)

)
=SD

(
X,U

)
, by Lemma 22

=SD
(
f(X1 (mod A), . . . , Xn−1 (mod A)), f(U1, . . . , Un−1)

)
=SD ((X1 (mod A), . . . , Xn−1 (mod A)), (U1, . . . , Un−1)) , by defintion of the statistical distance

=SD ((Z1 + UB (mod A), . . . , Zn−1 + UB (mod A))), (U1, . . . , Un−1))

≤ n− 1

4⌊(2B + 1)/A⌋
, by Lemma 24.

Proposition 7. Let A,B, n be positive integers with B > n for all n ≥ 1.
Assume that X = (X1, . . . , Xn), X

′ = (X ′
1, . . . , X

′
n) are n-dimensional random

vectors, where Xi = X ′
i = U{0,1,...,AB−1} are i.i.d.. For any n-dimensional vector

s = (si) with −A ≤ si ≤ A for all 1 ≤ i ≤ n, the statistical distance between X
and X ′ − s is at most n

B .
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Proof. If 0 ≤ sn ≤ A, by the definition of statistical distance, we have

SD(X,X ′ − s))

=
∑

x=(xi)
xi∈Z

1

2
|Pr[X = x]− Pr[X ′ = s+ x]|

=
∑

x=(x1,...,xn−1)

1

2

( −1∑
xn=−sn

+

AB−sn−1∑
xn=0

+

AB−1∑
xn=AB−sn

∣∣∣∣∣
n∏

i=1

Pr[Xi = xi]−
n∏

i=1

Pr[X ′
i = si + xi]

∣∣∣∣∣
)

=
1

2

∑
x=(x1,...,xn−1)

(
sn
AB

n−1∏
i=1

Pr[X ′
i = si + xi] +

sn
AB

n−1∏
i=1

Pr[Xi = xi]

+
AB − sn

AB

∣∣∣∣∣
n−1∏
i=1

Pr[Xi = xi]−
n−1∏
i=1

Pr[X ′
i = si + xi]

∣∣∣∣∣
)

=
|sn|
AB

+

(
1− |sn|

AB

) ∑
x=(x1,...,xn−1)

1

2

(∣∣∣∣∣
n−1∏
i=1

Pr[Xi = xi]−
n−1∏
i=1

Pr[X ′
i = si + xi]

∣∣∣∣∣
)

Similarly, if −A ≤ sn < 0 we have

SD(X,X ′ − s))

=
|sn|
AB

+

(
1− |sn|

AB

) ∑
x=(x1,...,xn−1)

1

2

(∣∣∣∣∣
n−1∏
i=1

Pr[Xi = xi]−
n−1∏
i=1

Pr[X ′
i = si + xi]

∣∣∣∣∣
)

Therefore, for computing SD(X,X ′ − s)), we can consider the recursive se-

quence Fn defined as follows, F1 = |s1|
AB , and Fn = |sn|

AB +
(
1− |sn|

AB

)
Fn−1. It is

easy to obtain the closed form is

Fn = 1−
n∏

i=1

(
1− |si|

AB

)
=

n∑
i=1

|si|
AB
−

∑
1≤i<j≤n

|si||sj |
(AB)2

+ . . .− (−1)n
∏n

i=1 |si|
(AB)n

.

Notice that the Taylor expansion of ln(1 − x) = −
∑∞

k=1
xk

k for |x| < 1. Since∑n
i=1 |si| < AB, one has

∞∑
k=1

(∑n
i=1 |si|/(AB)

)k
k

≥
n∑

i=1

∞∑
k=1

(
|si|/AB

)k
k

,

which implies that

1−
n∑

i=1

|si|
AB
≤

n∏
i=1

(
1− |si|

AB

)
,
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since taking ln to the both side, applying Taylor expansion of ln(1− x). Finally,
because |si| ≤ A for all 1 ≤ i ≤ n, the closed form gives us

SD(X,X ′ − s)) ≤
n∑

i=1

|si|
AB
≤ n

B
.

Proposition 8. Let A,B, n be positive integers with B > n for all n ≥ 1. As-
sume that X = (X1, . . . , Xn), X ′ = (X ′

1, . . . , X
′
n) are n-dimensional random

vectors, where Xi = U{0,1,...,A−1} and X ′
i = U{0,1,...,B−1} are i.i.d.. The statisti-

cal distance between X (mod A) and X ′ (mod A) is at most n
4⌊B/A⌋ .

Proof. Using the same proof strategy as in Lemma 24, we only briefly outline
the main idea of the proof. Let B = QA+ r with 0 ≤ r < A, by Lemma 21 the
definition of statistical distance, we have

SD
(
X,X ′) ≤ n · SD(X1, X

′
1) =

nr(A− r)

(QA+ r)A
≤ n

4Q
.

6.9 Missing Functionalities and Protocols

The functionality describes that each party Pi has two shares, xi and yi, the
functionality outputs zi where [z]N = [xy]N and assigns to Pi.

Functionality 8 Modular Multiplication FModMul(n)

Inputs: Each party Pi has shares [x]N , [y]N and N .

Outputs: Each party has shares of [z]N = [x · y]N , with uniformly random
zi ∈ ZN for all 1 ≤ i ≤ n.

The functionality below is to ensure that participants can learn
∏

i yi without
revealing their own yi. In our setting, we define the finite group G utilized by
the functionality FShuffle as follows:

G :=

{
Z×
N , if

√
D ∈ ZN ;{

a+ b
√
D | a, b ∈ ZN , a2 − b2D ∈ Z×

N

}
, otherwise.

Note that the inverse of x = v + w
√
D ∈ G is given by x−1 = v−w

√
D

v2−w2D ∈ G, and
the identity is 1.
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Functionality 9 FShuffle(n,G)

Inputs: Each party Pi has yi in a finite group G.

Outputs: Each party Pi receives y :=

n∏
i=1

yi ∈ G.

In the following protocol [7], each party splits their own input yi into n − 1
partitions and randomly send one share to other parties to avoid revealing their
own input yi. Every party will calculate the product of all obtained shares

∏
i zi

and publish it. Eventually, we have
∏n

i=1 zi =
∏n

i=1 yi.

Protocol 4 Shuffle πShuffle(n)

Inputs: Each party Pi has yi ∈ G.

Outputs:

n∏
i=1

yi ∈ G.

1. Each party Pi randomly chooses xi,j ∈ G for all 1 ≤ j ≤ n such that
n∏

j=1

xi,j = 1 (i.e., randomly chooses xi,j for 1 ≤ j ≤ n − 1 and x−1
i,n :=∏n−1

j=1 xi,j). Set yi,1 := xi,1 · yi and yi,j := xi,j for all 2 ≤ j ≤ n. Send yi,j to
the party Pj for all 1 ≤ j ̸= i ≤ n.

2. Each party Pi computes zi :=

n∏
j=1

yj,i. Broadcast zi to the other party Pj .

3. Outputs z :=

n∏
i=1

zi.

If G =
{
a+ b

√
D | a, b ∈ ZN , a2 − b2D ∈ Z×

N

}
, the parties choose xi,j by ran-

domly selecting vi,j , wi,j ∈ ZN such that v2i,j − w2
i,jD ∈ Z×

N and setting xi,j :=

(vi,j +wi,j

√
D). In our setting, all inputs are norm 1 (i.e., yi = αiβ

−1
i ) elements

of G.

6.10 Three RSA Moduli Protocols in the Semi-honest Model

In this section, we rewrite the Lucas test using macros from [15] to facilitate
comparison with the Boneh-Franklin test [10] and Burkhardt’s et al.’s [15] pro-
tocols. Here, we always assume p ≡ q ≡ 3 (mod 4). Finally, we note that an
RSA modulus refers to N , which is the product of two distinct prime numbers.
In contrast, a biprime refers to N being the product of any two prime numbers.
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Protocol 5 Lucas Biprimality test type (n)

Inputs: Each party Pi has odd integers [p]Z, [q]Z, D = 1, and N .

Outputs:

1. Party P1 randomly chooses 0 ≤ P < N such that Q = (P 2 − D)/4 and[
Q
N

]
= 1. Send this P to the other parties.

2. Party P1 computes v1 := g(N−p1−q1+1)/4 (mod N), where g := P−
√
D

P+
√
D
. The

other parties compute vi := g−(pi+qi)/4 (mod N). Parties broadcast vi to
compute v :=

∏n
i=1 vi (mod N). They then check if

v =
n∏

i=1

vi ≡ 1 (mod N).

If the test fails, return to NonBlumInteger.
3. Parties verify gcd(N, e) = 1 as follows:

3.1 obtain [r]N ← RandomSample(ZN ).
3.2 compute [p]N ← Int-to-mod(ZN , [p]Z) and

[q]N ← Int-to-mod(ZN , [q]Z).
3.3 call [b]N ← Mult(ZN , [r]N , [p]N + [q]N − 1).
3.4 obtain b ← OpenAll(ZN , [b]N ). If b ̸= 1 then output NonBlumInteger.

Otherwise, output BlumInteger.

Below is Boneh-Franklin protocol [10], as cited from the version in [15, FIG-
URE 7.1].

Protocol 6 Boneh-Franklin biprimality protocol(n)

Inputs: Each party has [p]Z, [q]Z and N .

Outputs:

1. Party P1 randomly chooses g ∈ Z×
N and

[
g
N

]
= 1. Send this g to the other

parties.
2. Party P1 computes v1 := g(N−p1−q1+1)/4 (mod N). The other parties com-

pute vi := g−(pi+qi)/4 (mod N). Parties broadcast vi to compute v :=∏n
i=1 vi (mod N). They then check if

v =

n∏
i=1

vi ≡ ±1 (mod N).

If the test fails, return to NonBlumInteger.
3. Parties verify gcd(N, e) = 1 as follows:

3.1 obtain [r]N ← RandomSample(ZN ).
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3.2 compute [p]N ← Int-to-mod(ZN , [p]Z) and
[q]N ← Int-to-mod(ZN , [q]Z).

3.3 call [b]N ← Mult(ZN , [r]N , [p]N + [q]N − 1).

3.4 obtain b ← OpenAll(ZN , [b]N ). If b ̸= 1 then output NonBlumInteger.
Otherwise, output BlumInteger.

Herein lies Burkhardt’s protocol. For further details, please consult [15].

Protocol 7 Miller-Rabin biprimality protocol(κlenP, s, n)

Inputs: Each party has [p]Z, [q]Z, P , Q and N . Here P and Q are primes
satisfying n222κP < nP < Q.

Outputs:

1. Let G = ∅, for f ∈ {p, q} :
1.1 Pn uniformly samples v ∈ ZN and broadcasts v.

1.2 Compute <γ>N as follows: Party P1 sets γ1 := v
f1−1

2 (mod N). For

2 ≤ i ≤ n, Pi sets γi := v
fi
2 (mod N).

1.3 Obtain [γ]N ← Mul-to-Add(ZN , <γ>N ).

1.4 Compute [γ + 1]N and [γ − 1]N .

1.5 For δ ∈ {γ + 1, γ − 1}, compute

[yδ]Q ← Divisible(κlenP, s,ZP ,ZQ, [δ]N , [f ]Z).

1.6 Compute [y]Q ← Mult(ZQ, [yγ+1]Q, [yγ−1]Q).

1.7 Reveal y ← OpenAll(ZQ, [y]Q).

1.8 If y = 0, set G = G ∪ {f}.
2. If G = {p, q} output BlumInteger, otherwise output NonBlumInteger.

The number of macros used in each test are summarized below.

Table 5: The number of macros in biprimality tests.

# Random ♯ Int-to ♯ Mult ♯ OpenAll ♯ Mult-to

-sample -mod -add

Boneh-Franklin [23] 1 2 1 1 0
Millier-Rabin [15] ≥ 2 4 ≥ 6 ≥ 4 2
Type-(I) 1 2 1 1 0

In addition to the aforementioned, Burkhardt’s protocol includes other macros
such as Invert and Larger-domain.
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6.11 Adaptation of Chen’s Biprime Test Protocol Based on Section
4.4

In this section, we present a modification of the protocol by Chen et al. [16,
Protocol 5.2], building upon the enhancements detailed in Section 4.4. For ease
of comparison, the notation employed in this section adheres to that of [16].

Protocol 8 Adaptation of Chen’s Biprime Test πBiprime(M,n)

This protocol is parametrized by an integer M and the number of parties n. In
addition, there is a statistical parameter s. The parties have access to the FCT,
FCom, FComCompute, and FZero functionalities.
Input Commitment:

1. Upon receiving input (check-biprimality, sid, N, pi, qi) from the environ-
ment, each party Pi for i ∈ [n] samples τi,j ← Z⌈1.475s⌉n2s+1(n222κ+s−3+M)

for j ∈ [⌈1.475s⌉] and commits to these values, along with its shares of p and
q, by sending (commit,GenSID(sid, i), (pi, qi, τi,∗) to FComCompute(n).

Boneh-Franklin Test:

2. Each party Pi for i ∈ [n] sends (sample, sid) to FZero(n, n2
2κ+s−3) and

receives (zero-share, sid, ri) in response.
3. For j ∈ [⌈1.475s⌉], the parties invoke FCT(n, JN ), where JN is the subdomain

of Z∗
N that contains only values with Jacobi symbol 1. The parties define

vector γ that contains the ⌈1.475s⌉ sampled values.
4. For every j ∈ [⌈1.475s⌉], party P1 computes

χ1,j := γ
r1−(p1+q1−6)/4
j (mod N)

and every other party Pi for i ∈ [2, n] computes

χi,j := γ
ri−(pi+qi)/4
j (mod N).

5. Every Pi for i ∈ [n] sends (commit,GenSID(sid, i),χi,∗, [n]) to FCom(n).
6. After being notified that all other parties are committed, each party Pi for

i ∈ [n] sends (decommit,GenSID(sid, i)) to FCom(n), and in response receives
χi′,∗ from FCom(n) for i

′ ∈ [n] \ {i}.
7. The parties output (not-biprime, sid) to the environment and halt if there

exists j ∈ [⌈1.475s⌉] such that

γ
(N−5)/4
j ·

∏
i∈[n]

χi,j ̸≡ ±1 (mod N).

Consistency Check and GCD Test:

8. For j ∈ [⌈1.475s⌉], each party Pi for i ∈ [n] computes

αi,j := γ
τi,j

j (mod N).

The parties all broadcast the values they have computed to one another.
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9. The parties all send (flip, sid) to FCT(n, {0, 1}⌈1.475s⌉) to obtain an agreed-
upon random bit vector c of length ⌈1.475s⌉.

10. For j ∈ [⌈1.475s⌉], party P1 computes

ζ1,j := τ1,j + cj ·
(
ri − (p1 + q1 − 6)/4

)
,

and every other party Pi for i ∈ [2, n] computes

ζi,j := τi,j + cj ·
(
ri − (pi + qi)/4

)
.

They all broadcast the values they have computed to one another.
11. The parties halt and output (not-biprime, sid) if there exists any j ∈

[⌈1.475s⌉] such that∏
i∈[n]

γ
ζi,j

j ̸≡
∏
i∈[n]

αi,j · χ
cj

i,j (mod N).

12. Let C be a circuit computing VerifyBiprime(N,M, c, {·, ·, ·, ζi,∗}i∈[n]); that is,
let it be a circuit representation of Algorithm VerifyBiprime with the public
valuesN,M, c, and ζ hardcoded. The parties send (compute, sid, {GenSID(sid, i)}i∈[n], C)
to FComCompute(n), and in response they all receive (result, sid, z). If z =⊥,
or if FComCompute(n) aborts, then the parties halt and output (not-biprime, sid).

13. The parties halt and output (biprime, sid) to the environment if gcd(z,N) =
1, or halt and output (not-biprime, sid) otherwise.

Algorithm 0 VerifyBiprime(N,M, c, {(pi, qi, τi,∗, ζi,∗)}i∈[n])

1. Sample r ← ZN and compute

z = r ·

−1 + ∑
i∈[n]

(pi + qi)

 (mod N)

2. Return z if and only if it holds that

N =
∑
i∈[n]

pi ·
∑
i∈[n]

qi

∧
∑
i∈[n]

pi ≡
∑
i∈[n]

qi ≡ 3 (mod 4)

∧ 0 ≤ pi < M ∧ 0 ≤ qi < M for all i ∈ [n]

∧ τ1,j = ζ1,j + cj · (p1 + q1 − 6)/4 for all j ∈ [⌈1.475s⌉]
∧ τi,j = ζi,j + cj · (pi + qi)/4 for all i ∈ [2, n] and j ∈ [⌈1.475s⌉]

If any part of the above predicate does not hold, output ⊥.
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