
Truncation Untangled: Scaling Fixed-Point Arithmetic for
Privacy-Preserving Machine Learning to Large Models and

Datasets
Christopher Harth-Kitzerow
Technical University of Munich,

BMW Group
christopher.harth-kitzerow@tum.de

Ajith Suresh
Technology Innovation Institute, Abu

Dhabi
ajith.suresh@tii.ae

Georg Carle
Technical University of Munich

carle@net.in.tum.de

Abstract
Fixed Point Arithmetic (FPA) is widely used in Privacy-Preserving
Machine Learning (PPML) to efficiently handle decimal values. How-
ever, repeated multiplications in FPA can lead to overflow, as the
fractional part doubles in size with each multiplication. To address
this, truncation is applied post-multiplication to maintain precision.
Various truncation schemes based on Secure Multiparty Computa-
tion (MPC) exist, but trade-offs between accuracy and efficiency in
PPML models and datasets remain underexplored. In this work, we
analyze and consolidate different truncation approaches from the
MPC literature.

We conduct the first large-scale systematic evaluation of PPML
inference accuracy across truncation schemes, ring sizes, neural
network architectures, and datasets. Our study provides clear guide-
lines for selecting the optimal truncation scheme and parameters
for PPML inference. All evaluations are implemented in the open-
source HPMPC MPC framework 1 , facilitating future research and
adoption. Beyond our large scale evaluation, we also present im-
proved constructions for each truncation scheme, achieving up to a
threefold reduction in communication and round complexity over
existing schemes. Additionally, we introduce optimizations tailored
for PPML, such as strategically fusing different neural network
layers. This leads to a mixed-truncation scheme that balances trun-
cation costs with accuracy, eliminating communication overhead in
the online phase while matching the accuracy of plaintext floating-
point PyTorch inference for VGG-16 on the ImageNet dataset.

Keywords
Fixed-point arithmetic, MPC, PPML, Truncation, Secure Inference

1 Introduction
Privacy-Preserving Machine Learning (PPML) [32, 35] aims to en-
able machine learning model training and inference while keeping
model parameters and data private using cryptographic techniques.
Secure Multiparty Computation (MPC) [29] allows multiple par-
ties to jointly compute a function on their private inputs without
revealing any information about the inputs to others, making it a
powerful building block for efficient PPML [35].

While private training of state-of-the-art (SOTA) neural net-
works is advancing in reducing MPC’s performance overhead [22,
47], private inference using MPC is already practical for many
models and datasets. For example, the recent PIGEON [18] PPML
framework demonstrated for the first time that secure inference of

1Our implementation is integrated into HPMPC: https://github.com/chart21/hpmpc/

various SOTA convolutional neural networks (CNNs) on the popu-
lar ImageNet image classification dataset achieves a throughput of
over 10 images per second. These advancements highlight the need
for a systematic study of different MPC-specific configurations and
their impact on the performance and accuracy of large CNNmodels
such as VGG-16 [43] and various ResNet [19] architectures.

Plaintext Machine Learning typically utilizes floating-point num-
bers to represent decimal values. However, SOTA libraries for
floating-point arithmetic in MPC [39] introduce significant commu-
nication overhead compared to integer arithmetic, as even floating-
point addition requires an interactive protocol. To efficiently com-
pute on secret-shared decimal numbers, MPC-based PPML algo-
rithms rely on fixed-point arithmetic (FPA) [7] techniques. FPA
encodes decimal values with fixed precision as a ring element over
an ℓ-bit ring Z2ℓ , ensuring it accommodates the expected input
range. This enables MPC parties to perform integer-only arithmetic
using these encoded decimal values.

In FPA, decimal values are represented as ℓ-bit integers, with
𝑘 bits for the fractional part and ℓ − 𝑘 bits for the integer part.
Multiplying two fixed-point numbers results in 2𝑘 fractional bits
and ℓ − 2𝑘 integer bits. Thus, repeated multiplications quickly lead
to an overflow of integer bits, resulting in incorrect computation.
To prevent overflow and maintain precision, the number of frac-
tional bits must be reduced back to 𝑘 using truncation. This process,
which is equivalent to performing an arithmetic right shift by 𝑘 bits,
ensures the result has the correct number of integer and fractional
bits after multiplying two FPA values.

While truncation is straightforward in plaintext computations, it
is a non-trivial cryptographic operation in MPC. However, its com-
munication overhead remains relatively low compared to floating-
point arithmetic [24]. One drawback of using FPA in PPML is that
it may not achieve the same level of accuracy as plaintext floating-
point inference. Therefore, it is essential to carefully choose the
fixed-point precision and bit width to minimize accuracy loss.

In recent years, various truncation methods have been proposed
for different use cases and settings [10, 15, 33, 34]. These methods
involve significant trade-offs between communication complexity
and error probability. Thus, choosing one scheme over another can
significantly impact both the accuracy and the overall runtime of
PPML applications. This is especially important in layers such as
average pooling, batch normalization, and linear layers, where trun-
cation often accounts for most of the communication overhead. The
trade-offs become more complex when comparing schemes across
different ring sizes, since larger ring sizes can improve accuracy
but at the cost of higher runtime.

1

mailto:christopher.harth-kitzerow@tum.de
mailto:ajith.suresh@tii.ae
mailto:carle@net.in.tum.de
https://github.com/chart21/hpmpc/

Christopher Harth-Kitzerow, Ajith Suresh, and Georg Carle

Despite the availability of various truncation schemes and FPA
configurations, such as different ring sizes and numbers of frac-
tional bits, a comparison of approaches is lacking. In this work, we
address this gap by systematically evaluating truncation techniques
in PPML inference. Specifically, we focus on truncation for MPC
protocols operating over the ring Z2ℓ , where ℓ ∈ {16, 32, 64}, as
these ring sizes align with native integer operations on modern
hardware. While truncation is straightforward for field-based pro-
tocols due to the availability of division, field-based computations
incur significant real-world overhead because modern hardware
lacks native support for field operations. To provide a comprehen-
sive comparison, we evaluate both runtime and accuracy across
various truncation schemes, ring sizes, and a full range of practical
fractional bit settings.

1.1 Related Work
While it is possible to perform floating-point operations in MPC [1,
13], SOTA floating-point protocols introduce significantly higher
runtime overhead compared to fixed-point MPC. For instance, the
SOTA floating-point addition protocol [39] requires 49 rounds of
communication between parties and uses costly MPC primitives
such as comparisons. In contrast, fixed-point addition can be per-
formed by simply adding shares locally. In fact, both FPA addition
and multiplication in MPC can use the same protocols as their
integer counterparts. The only difference is that FPA multiplica-
tion requires an additional truncation step to maintain the correct
bit-width. Therefore, developing efficient truncation primitives is
essential for improving the performance of FPA-based MPC.

This section presents a brief overview of various truncation
schemes proposed in the literature. The study of truncation in
MPC using FPA semantics dates back to the work of Catrina et
al. [6, 7]. However, in this work, we focus specifically on truncation
in the context of MPC-based PPML algorithms. Additional technical
details on the works covered in this section are provided in §3.

1.1.1 Stochastic Truncation - 𝑇𝑆{𝐿} . In this probabilistic approach
proposed by SecureML [34], secret shares are locally truncated to
obtain shares corresponding to the truncated value. SecureML op-
erates in a two-party (2PC) semi-honest setting, where the value
reconstructed from locally truncated shares deviates from the ac-
tual truncated value by at most 1 with very high probability. This
construction was later generalized by ABY3 [33] for the three-
party (3PC) setting. Since then, several works have proposed vari-
ants of this approach in 3PC [17, 38], 4PC [9, 11, 17, 25, 27], and
general 𝑛-party [26] settings.

𝑇𝑆{𝐿} can cause truncation failure, i.e. the truncation may in-
troduce a large error with a certain probability. This probability
increases with the absolute plaintext value’s closeness to the ring
size 2ℓ [34, 51]. To mitigate this, frameworks employing such trun-
cation schemes typically increase the ring size by an additional
margin, commonly referred to as slack, reducing the probability of
truncation failure.

Additionally, several works have explored fusing multiplication
with truncation to reduce communication and round complexity [9,
33, 44]. For instance, the 3PC protocols in [17, 44] and the 4PC
protocols in [9, 17, 27, 44] incur no additional communication or
rounds when integrating multiplication with truncation. However,

stand-alone truncations or multiplications with a public fixed-point
value still require communication in these protocols.

Security of Stochastic Truncation. Li et al. [28] raised concerns
that stochastic truncation schemes are inherently insecure under
standard security definitions of MPC [5], since the truncation out-
put depends on the same randomness that masks the input share.
This finding motivated Orca [22] to propose a stochastic truncation
scheme that does not rely on the same randomness as the input
share. However, Santos et al. [42] showed that by using an alter-
native ideal functionality for stochastic truncation, all previously
proposed truncation schemes can, in fact, be proven secure.

1.1.2 Stochastic Truncation with Reduced Slack - 𝑇𝑆{1} . Dalskov
et al. [10] proposed a stochastic truncation scheme that requires no
slack but only guarantees correctness for positive plaintext values.
They also provided an efficient construction for their scheme in the
semi-honest 3PC setting. Fantastic Four [11] extended this approach
to themalicious 4PC setting. Escudero et al. [15] introduced a simple
modification that allows Dalskov et al.’s scheme to support negative
values but requires a slack of one bit.

1.1.3 Exact Truncation - 𝑇𝐸{0} . Exact truncation approaches [15]
are independent of the value or the randomness of its secret shares
and are equivalent to an arithmetic right shift in the plaintext do-
main. These approaches often involve share conversion between the
arithmetic and Boolean domains. While exact truncation requires
no slack, they introduce significant communication overhead due
to the need for Boolean circuit computations, such as sign bit ex-
traction or the addition of decomposed shares. Boolean adders can
be implemented using Ripple Carry Adders (RCAs) or Parallel Pre-
fix Adders (PPAs) [33], utilizing standard AND gates, multi-input
AND gates [37], or multi-input scalar products [4]. Each approach
presents trade-offs in communication rounds and message com-
plexity, but all require at least 𝑂 (𝑙𝑜𝑔(ℓ)) communication rounds
and 𝑂 (ℓ) messages exchanged in the Boolean domain.

1.1.4 Exact Truncation with Slack -𝑇𝐸{1} . To reduce the high costs
of exact truncation, later works introduced a variant requiring a
small slack of 1 bit while significantly lowering communication and
computational complexity. Escudero et al. [15] proposed a generic
construction in this setting that involves computing only two bit
extraction circuits sequentially. Fantastic Four [11] presented a con-
struction for the malicious 4PC setting, utilizing a most-significant
bit extraction circuit and a t-least-significant bit extraction circuit
in parallel, thereby reducing communication rounds.

Comparison of Truncation Schemes. While several works have pro-
posed efficient ring-based truncation techniques, a comprehensive
comparison of these techniques is largely missing, with a few ex-
ceptions. Piranha [49] analyzed the impact of different numbers of
fractional bits on PPML inference accuracy across 2PC, 3PC, and
4PC settings. Based on their results, they recommended a ring size
of 64 bits with 26 bits allocated for the fractional part when using
𝑇𝑆{𝐿} . However, Bicoptor 2.0 [51] found that Piranha did not sam-
ple random values in their experiments, which concealed the impact
of truncation failure. Their experiments suggested that 15 fractional

2

Truncation Untangled

bits are more appropriate for a 64-bit ring to prevent truncation fail-
ure. This aligns with the range of 12 to 16 fractional bits commonly
used in several works, such as ABY3 [33] and SWIFT [25].

Fantastic Four [11] empirically compared their stochastic trun-
cation scheme in malicious 4PC setting, which requires only one
bit of slack (𝑇𝑆{1}), to the stochastic truncation scheme that re-
quires a larger slack (𝑇𝑆{𝐿}). Their findings showed that, in a 64-bit
ring,𝑇𝑆{1} was twice as efficient as𝑇𝑆{𝐿} . This efficiency gain was
primarily due to the computational inefficiency of 𝑇𝑆{𝐿} , which
required 80-bit computations on 64-bit hardware to achieve the
same truncation failure probability as 𝑇𝑆{1} .

Beyond the four truncation categories discussed earlier, some
studies have introduced custom strategies tailored to their spe-
cific settings. For example, Cheetah [21] optimizes communication
costs for exact truncation in the 2PC semi-honest setting by allow-
ing a small error. In the 3PC semi-honest setting, Bicoptor 2.0 [51]
proposes a truncate-then-multiply approach, where factors are trun-
cated before multiplication. This method reduces the probability of
truncation failure. However, a drawback of their approach is that it
requires two truncations per multiplication instead of one. The re-
cent work of MaSTer [50] improves the stochastic truncation𝑇𝑆{𝐿}
in ABY3 [33] for the 3PC malicious setting by carefully organizing
the shares and incorporating a post-processing consistency check.

1.2 Research Gaps
Although various truncation schemes have been studied in MPC-
based PPML inference, the trade-offs between accuracy and effi-
ciency across different models and datasets remain largely underex-
plored. Similarly, strategies to improve the accuracy and efficiency
of truncation primitives for specific MPC protocols or workloads,
such as PPML, are lacking. In particular, we identify the following
unanswered research questions (RQs) by the current literature:
RQ1: Howdo different stochastic and exact truncation approaches

compare regarding slack requirements, communication com-
plexity, and PPML inference accuracy?

RQ2: Which ring sizes and number of fractional bits should prac-
titioners choose to achieve high PPML inference accuracy
on various model architectures?

RQ3: Are there ways to reduce the communication overhead of
existing truncation primitives when applied to SOTA MPC
protocols?

RQ4: Are there optimizations specific to PPML applications to
reduce FPA communication complexity or increase accu-
racy?

1.3 Our Contributions
In this work, we take a significant step towards bridging the identi-
fied gaps by analyzing and consolidating multiple truncation ap-
proaches from the MPC literature.

To answer RQ1 and RQ2, our study focuses on key aspects such
as the impact of ring sizes, the relationship between truncation
failure probabilities and slack sizes, and the accuracy implications
of probabilistic truncation (cf. 𝑇𝑆{𝐿} in §1.1.1) compared to other
approaches and plaintext floating-point inference. By systematically
evaluating these aspects, we provide a comprehensive analysis of
the trade-offs involved and present the following contributions:

Analytical Overview of Truncation Approaches (§3).We pro-
vide a systematic review of existing truncation approaches in MPC
for privacy-preserving machine learning, building on the discus-
sion in §1.1. For each of the four schemes—𝑇𝑆{𝐿} , 𝑇𝑆{1} , 𝑇𝐸{0} ,
and𝑇𝐸{1}—analyzed in this work, we formally present their details
and examine their corresponding slack requirements.

Systematic Evaluation (§6). We present the first comprehensive
evaluation of PPML inference accuracy across various truncation
schemes, ring sizes, neural network architectures, and datasets.

We implement all studied truncation approaches into the open-
source HPMPC framework [16] and evaluate their runtime and ac-
curacy across different ring sizes and neural network architectures
using various benchmark datasets. Notably, we present the first eval-
uation of PPML inference accuracy on the ImageNet dataset [41],
addressing the long-standing question of whether fixed-point MPC
can scale to large-scale models and datasets [35].

We investigate how choices made during plaintext training influ-
ence truncation failure probabilities in PPML inference. Specifically,
we find that training models with the ADAMW optimizer [31]
benefits stochastic truncation due to its built-in weight decay mech-
anism, which helps reducing required slack sizes. Based on our
extensive evaluation, we provide end-to-end guidelines on regu-
larization techniques for plaintext training, optimal ring sizes and
fractional bit lengths for inference, and the truncation approach
that offers the best trade-off between communication complexity
and accuracy.

To answer RQ3 and RQ4, we present several optimizations that
improve the communication complexity and accuracy of truncation
schemes.

Efficient Truncation Protocols (§4). We present efficient con-
structions for the truncation approaches studied in this work, tai-
lored for the semi-honest 3PC and malicious 4PC honest-majority
settings. These constructions are based on the SOTA Trio and
Quad MPC protocols (PETS25) [17]. We observe that the novel
sharing semantics of Trio and Quad can be utilized to replace sev-
eral communication-intensive steps required by existing truncation
primitives with local preprocessing or more efficient sub-protocols.
Our approach reduces the communication overhead of existing
truncation schemes by leveraging the unique sharing semantics
of Trio and Quad. As shown in Table 1, our truncation primitives
achieve up to a 3× improvement in communication complexity
compared to the current SOTA methods.

Optimized Truncation for PPML (§5). In the context of PPML,
we observe that truncation can be efficiently integrated with the
evaluation of other layers by leveraging the inherent structure of
neural networks. Specifically, computation and communication
required by a layer’s evaluation can often be merged with compu-
tation and communication required by a truncation primitive to
obtain a fused primitive requiring a reduced number of messages
and communication rounds compared to evaluating operations in-
dependently. This integration significantly reduces —and in some
cases, entirely eliminates — the communication overhead associ-
ated with truncation. Furthermore, we propose optimizations to
minimize the required slack size for truncation. For example, in
average pooling, public denominators can often be represented

3

Christopher Harth-Kitzerow, Ajith Suresh, and Georg Carle

Table 1: Costs for truncating a secret-shared value by 𝑡 bits. Notations:
Pre. - preprocessing, On. - online, Rounds - communication rounds.

Approach Setting Protocol Pre. On. Rounds

𝑇𝑆{𝐿} :
Stochastic
Truncation,
Large Slack

3PC
ABY3 [33] 0 ℓ 1
This Work ℓ 0 0
This Workp 0 0 0

4PC

Tetrad [27] ℓ ℓ 0c
This Work ℓ ℓ 0c
Tetrad [27]p 0 0 0
This Workp 0 0 0

𝑇𝑆{1} :
Stochastic
Truncation,
1-bit Slack

3PC
Dalskov [10] 0 8ℓ 3
This Work 3ℓ 2ℓ 1
This Workp 3ℓ 0 0

4PC
Fantastic [11] 0 12ℓ 3
This Work 4ℓ 4ℓ 1
This Workp 6ℓ 0 0

𝑇𝐸{1} :
Exact

Truncation,
1-bit Slack

3PC
Escudero [15] 2𝐴ℓ,𝑡 2𝐴ℓ,𝑡 2𝐴ℓ

This Work 𝐴ℓ,𝑡 Aℓ,t Aℓ

This Workp 𝐴𝑡 At 0

4PC
Fantastic [11] 3𝐴ℓ,𝑡 3𝐴ℓ,𝑡 2𝐴ℓ

This Work 𝐴ℓ,𝑡 Aℓ,t Aℓ

This Workp 𝐴𝑡 At 0
Trunc. prior
to Mult.d

3PC Bicoptor 2.0 [51] 2T 2T T
This Work T T T

Costs are measured in ring elements (ℓ), ℓ-bit and 𝑡 bit extraction circuits (𝐴ℓ,𝑡), or
truncation primitives (T).
All protocols in Trio and Quad can be converted into online-only protocols with the
same number of rounds using the interleaved processing model proposed by [17, 18].
c Constant-round online communication [17].
p Optimized construction when fusing truncation with certain PPML layers such as
ReLU or BatchNorm.
d Tweak to truncate two shares prior to multiplication to reduce the probability of
truncation failure.

with fewer fractional bits while maintaining equivalent precision,
thereby reducing the probability of truncation failure.

We also propose a novel mixed truncation approach, denoted as
𝑇𝑆{𝑀𝑖𝑥 } (cf. §5), which applies different truncation strategies to
different layers of a neural network. Ourmixed-truncation approach
incurs no communication overhead for truncation in the online
phase and matches the accuracy of plaintext VGG-16 inference on
the ImageNet dataset, with over 80% accuracy while using shares
with a bit length of only 32 bits. In contrast, SOTAmethods typically
report accuracy only on smaller datasets and require bit lengths of
up to 64–80 bits to maintain high accuracy [11].

2 Preliminaries
This section outlines the notations, sharing semantics, threat model,
and functionalities used in this work. Since our truncation schemes
are built upon the 3PC protocol Trio and the 4PC protocol Quad
from [17], we adopt their sharing semantics to ensure consistency
and improve readability.

Furthermore, as these protocols follow the function-dependent
preprocessing paradigm [37] and use sharing semantics similar to
ASTRA [8] and Tetrad [27], our truncation primitives can likely be
adapted to these protocols with minimal modifications.
Notations. We denote the set of all parties as P and refer to the
𝑖th party as 𝑃𝑖 . A subset of parties, represented by PΦ, consists of

all parties in the set Φ. For example, PΦ, or simply P𝑖, 𝑗 , represents
the subset Φ = {𝑃𝑖 , 𝑃 𝑗 }. Similarly, a value held by all parties in Φ is
denoted as 𝑥Φ, or simply 𝑥𝑖, 𝑗 when Φ = {𝑃𝑖 , 𝑃 𝑗 }.

Truncation of a value 𝑥 by 𝑡-bits is denoted as 𝑥𝑡 = ⌊ 𝑥2𝑡 ⌋. We
define exact truncation as (𝑥)𝑡 and stochastic truncation as (𝑥)𝑠𝑡 .
An exact or stochastic truncation scheme that requires a slack of
𝑠 is denoted as 𝑇𝐸{𝑠 } and 𝑇𝑆{𝑠 } , respectively. Here, 𝑠 ∈ {0, 1, 𝐿},
where 𝐿 represents a large, unspecified slack.
Sharing Schemes. We use three different sharing schemes in this
work, detailed below. Each scheme operates over an ℓ-bit ring Z2ℓ .

(1) [·]-sharing: A value 𝑥 ∈ Z2ℓ is [·]-shared among PΦ, if
each 𝑃𝑖 ∈ PΦ holds 𝑥𝑖 such that

∑
𝑖 𝑥

𝑖 = 𝑥 .
(2) J·K-sharing: A value 𝑥 ∈ Z2ℓ is J·K-shared among PΦ, if

parties in PΦ hold m𝑥 and
[
𝜆𝑥

]
such that m𝑥 = 𝑥 + 𝜆𝑥 .

(3) ⟨·⟩-sharing: ⟨𝑥⟩ denotes a generic secret sharing of 𝑥 ∈ Z2ℓ
without specifying its sharing semantics.

While primitives based on J·K-sharing are specifically designed
for the Trio and Quad protocols in [17], the constructions using
⟨·⟩-sharing are more general and can be implemented with any
linear secret sharing scheme.

Additionally, ⟨·⟩𝐵 represents Boolean sharing, where addition
andmultiplication are replaced by XOR andANDgates, respectively,
while ⟨·⟩𝐴 denotes arithmetic sharing. The superscript is omitted
when the sharing type is clear from context.

Table 2: Sharing semantics for 3PC and 4PC protocols.

Party Trio (3PC) Quad (4PC)

Sharing
Semantics

J𝑥K

𝑃0 𝜆1𝑥 , 𝜆
2
𝑥 m∗𝑥 , 𝜆

1
𝑥 , 𝜆

2
𝑥

𝑃1 m𝑥,2, 𝜆
1
𝑥 m𝑥 , 𝜆

∗
𝑥 , 𝜆

1
𝑥

𝑃2 m𝑥,1, 𝜆
2
𝑥 m𝑥 , 𝜆

∗
𝑥 , 𝜆

2
𝑥

𝑃3 - 𝜆∗𝑥 , 𝜆
1
𝑥 , 𝜆

2
𝑥

Correlation
m𝑥,1 = 𝑥 + 𝜆1𝑥 𝜆𝑥 = 𝜆1𝑥 + 𝜆2𝑥
m𝑥,2 = 𝑥 + 𝜆2𝑥 m𝑥 = 𝑥 + 𝜆𝑥

m∗𝑥 = 𝑥 + 𝜆∗𝑥

Table 2 summarizes the sharing semantics for Trio and Quad
protocols from [17], which use function-dependent preprocess-
ing [3, 8, 30]. While input-independent 𝜆𝑥 shares are generated non-
interactively during preprocessing, computing input-dependent
m𝑥 shares may require interaction between parties. Some shares in
Quad are solely for verification and are needed only at the protocol’s
end. For example, communication involving m∗𝑥 is constant-round
and does not impact the online phase’s round complexity. For fur-
ther details, we refer readers to [17].
Threat Model.We adopt the threat model of Trio and Quad [17],
which assumes an honest-majority setting with at most one cor-
rupted party. Trio’s 3PC protocol ensures semi-honest security,
while Quad’s 4PC protocol provides security with fairness, toler-
ating malicious corruption. For private inference we assume the
client-server model [12] where model- and data owner secretly
share their inputs with the 3-4 parties carrying out the computa-
tion.
Functionalities. Our constructions utilize cryptographically se-
cure implementations of the Shared Random Value Generator func-
tionality (FSRNG), enabling a subset of parties PΦ to generate

4

Truncation Untangled

fresh random values without interaction using pseudorandom func-
tions (PRFs). The protocol assumes an initial shared-key setup (Fsetup),
a standard assumption in most existing protocols [2, 9, 11].

To achieve malicious security in Quad, each party must verify
the correctness of received messages. For this, parties utilize a
Compare-View functionality, similar to the joint-message passing in
SWIFT [25] and the jsnd primitive in Tetrad [27]. We refer readers
to [17] for the formal descriptions of Compare-View (ΠCV) and
sampling shared random values (ΠSRNG).

3 Overview of Truncation Approaches
In this section, we provide an overview of the different state-of-the-
art truncation approaches that we investigate in this work.

3.1 Stochastic Truncation
Stochastic truncation is the most widely used approach in the MPC
literature. It was introduced by SecureML [34] and later adopted
by ABY3 [33], and has since become a standard technique in many
state-of-the-art MPC frameworks [17, 23, 45, 49].

Stochastic truncation primitives based on these works assume
that P can generate an additive sharing [𝑥] = 𝑥1 + 𝑥2 from their
existing sharing ⟨𝑥⟩, where one subset of parties holds 𝑥1 and
another subset holds 𝑥2. Each subset then locally computes

(
𝑥1

)𝑡
and

(
𝑥2

)𝑡 , respectively. Finally, the parties secret-share and add
the truncated values to obtain ⟨(𝑥)𝑠𝑡 ⟩ = ⟨

(
𝑥1

)𝑡 ⟩ + ⟨(𝑥2)𝑡 ⟩. Figure 1
illustrates this general procedure for stochastic truncation, denoted
as 𝑇𝑆{𝐿} in this work.

(1) Create a
(2
2
)
[·]-sharing of ⟨𝑥 ⟩ denoted by [𝑥] = 𝑥1 + 𝑥2.

(2) Compute
(
𝑥1)𝑡 and (

𝑥2)𝑡 using local truncation and create a
⟨·⟩-sharing of the two values.

(3) Output ⟨
(
𝑥1)𝑡 ⟩ + ⟨ (𝑥2)𝑡 ⟩.

Protocol ΠTS{L} (⟨𝑥 ⟩) → ⟨ (𝑥)
𝑠𝑡 ⟩

Figure 1: 𝑇𝑆{𝐿} : Stochastic Truncation requiring a large slack [34].

𝑇𝑆{𝐿} introduces two types of errors: a small one-off error (e0)
and, with some probability, a larger error (e1) that leads to trunca-
tion failure. The one-off error e0 causes the truncated value to be
either one bit larger or smaller than the corresponding truncated
plaintext value. In contrast, the large error e1 causes the truncated
value to differ significantly from the expected value. To illustrate
the impact of e1, we refer to an example from [51]:

J𝑥K = 0100 1011, ℓ = 8, 𝑡 = 4
𝜆𝑥 = 1110 0000,

m𝑥 = (𝑥 + 𝜆𝑥) mod 28 = 0010 1011,(
J𝑥K

)𝑠𝑡
=

(
(m𝑥)𝑡 mod 28 −

(
𝜆𝑥

)𝑡 mod 28
)
mod 28

= (0000 0010 − 0000 1110) mod 28 = 1111 0100

The actual result of probabilistic truncation in this example is
1111 0100, whereas truncating the plaintext value 𝑥 yields 0000 0100.

This error can significantly impact the accuracy of ML applica-
tions. The e1 error is sometimes referred to as a wrap-around error
because a carry bit is falsely propagated through the truncated
values, leading to a large error. The closer the actual value 𝑥 is to

the ring modulus 2ℓ , the higher the probability that 𝑇𝑆{𝐿} trunca-
tion results in truncation failure due to an incorrectly propagated
carry bit. More precisely, assuming a two’s complement represen-
tation and 𝑥 ∈ [0, 2ℓ𝑥) ∪ (2ℓ − 2ℓ𝑥 , 2ℓ) in Z2ℓ , the probability of
truncation failure, as analyzed by [51], is given by:

𝑃 =
1

2ℓ−ℓ𝑥−1
To mitigate this issue, state-of-the-art frameworks utilize a slack

mechanism, which increases the utilized ring size 2ℓ to reduce the
probability of this type of error. As a result, an application may
need to use a ring Z264 even in cases where all inputs fit within the
ring Z232 without overflow.

3.2 Stochastic Truncation with Reduced Slack
This variant of stochastic truncation, denoted as 𝑇𝑆{1} , prevents
wrap-around errors in 𝑇𝑆{𝐿} by introducing additional communi-
cation. The probability of truncation failure for these schemes with
a slack requirement of 𝑠 is 1 if ℓ − ℓ𝑥 − 𝑠 < 0 and 0 otherwise. This
implies that truncation fails deterministically only when the slack
requirement is not met. This represents a significant improvement
over 𝑇𝑆{𝐿} , as even values close to the threshold cannot cause
truncation failure.

Stochastic truncation with reduced slack (cf. Figure 2) was first
proposed by Dalskov et al. [10]. This approach also introduces
an e0 error but eliminates the e1 error. However, their truncation
scheme guarantees correct results only if the most significant bit
of 𝑥 is 0. Escudero et al. [15] addressed this limitation by adding
2ℓ−1 before truncation and subtracting 2ℓ−𝑡−1 after truncation. This
trick ensures that the most significant bit of 𝑥 is 0 but introduces a
slack of 1 bit to maintain correctness.

(1) Add 2ℓ−1 to ⟨𝑥 ⟩ to ensure MSB(𝑥) = 0.
(2) Generate ℓ random shared bits ⟨𝑟𝑖 ⟩𝐵 and compute
⟨𝑟 ⟩𝐴 ← ∑

𝑖 ⟨𝑟𝑖 ⟩ · 2𝑖 .
(3) Open 𝑐 ← ⟨𝑥 ⟩ + ⟨𝑟 ⟩ and compute 𝑐′ ← ((𝑐)𝑡) mod 2ℓ−𝑡−1.
(4) Compute ⟨𝑏 ⟩ ← ⟨𝑟ℓ−1 ⟩ ⊕MSB(c) .
(5) Compute ⟨𝑦⟩ = 𝑐′ − ∑ℓ−2

𝑖=𝑡 ⟨𝑟𝑖 ⟩ · 2𝑖−𝑡 + ⟨𝑏 ⟩ · 2ℓ−𝑡−1
(6) Output ⟨𝑦⟩ − 2ℓ−𝑡−1.

Protocol ΠTS{1} (⟨𝑥 ⟩) → ⟨ (𝑥)
𝑠𝑡 ⟩

Figure 2: 𝑇𝑆{1} : Stochastic Truncation requiring 1 bit slack [10].

The intuition behind 𝑇𝑆{1} is that the parties generate a new
mask for 𝑥 using ⟨𝑟 ⟩ and replace the existing mask of 𝑥 by opening
⟨𝑥⟩ + ⟨𝑟 ⟩ in step 2. By computing

𝑐′ ← ((𝑐)𝑡) mod 2ℓ−𝑡−1,

the parties truncate the value 𝑐 to retain the desired 𝑡 fractional bits
while discarding the 𝑡 most significant bits of 𝑐 . These discarded
bits could be affected by truncation failure if relying on 𝑇𝑆{𝐿} .

Steps 3-4 leverage the fact that the parties also hold a bit decom-
position of the mask ⟨𝑟 ⟩, allowing them to deterministically recover
the 𝑡 most significant bits of 𝑐′.

3.3 Exact Truncation
Exact Truncation computes (𝑥)𝑡 deterministically, without causing
an e0 and e1 error. Figure 3 shows a general procedure for exact
truncation without requiring any slack, denoted as 𝑇𝐸{0} .

5

Christopher Harth-Kitzerow, Ajith Suresh, and Georg Carle

(1) Use ΠA2B to convert ⟨𝑥 ⟩𝐴 to ⟨𝑥 ⟩𝐵 .
(2) Compute ⟨𝑥 ′ ⟩ = ⟨𝑥 ⟩𝑡 using an arithmetic right shift of ⟨𝑥 ⟩𝐵 by 𝑡

bits using only local bit assignments.
(3) Output ΠB2A (⟨𝑥 ′ ⟩𝐵) .

Protocol ΠTE{0} (⟨𝑥 ⟩) → ⟨ (𝑥)
𝑡 ⟩

Figure 3: 𝑇𝐸{0} : Exact Truncation without requiring any slack.

The protocol begins by converting the arithmetic sharing ⟨𝑥⟩𝐴
into a boolean sharing ⟨𝑥⟩𝐵 using arithmetic-to-binary conversion
(ΠA2B). Since ⟨𝑥⟩𝐵 represents an XOR-sharing of bits 𝑥 [0], . . . , 𝑥 [ℓ−
1], where the most significant bit (MSB) is 𝑥 [0], performing an
arithmetic right shift by 𝑡 bits corresponds to locally setting

⟨𝑥 ′⟩𝐵 [𝑖] = ⟨𝑥⟩𝐵 [𝑖 − 𝑡] for 𝑖 ≥ 𝑡,

⟨𝑥 ′⟩𝐵 [𝑖] = ⟨𝑥⟩𝐵 [0] for 𝑖 < 𝑡 .

This operation effectively shifts all bits 𝑡 positions to the right and
sets the vacated bits with the original sign bit. Finally, the parties
convert the boolean sharing of (𝑥)𝑡 back into an arithmetic sharing
using binary-to-arithmetic conversion (ΠB2A). The ΠA2B and ΠB2A
protocols require evaluating a boolean addition circuit, which can
be implemented using one of the variants described in §1.1.

3.4 Exact Truncation with Slack
Fantastic Four [11] proposed a more efficient exact truncation
scheme based on additive sharing, replacing the need for full-bit
adders with bit extraction circuits. These circuits can be imple-
mented using the same number of rounds but often require fewer
gates. The resulting approach requires a slack of 1 bit and is referred
to as 𝑇𝐸{1} in this work. For 𝑓 (𝑥) = 𝑥 − (𝑥 mod 2ℓ), truncation of
[𝑥] withMSB(𝑥) = 0 is computed as follows:

(𝑥)𝑡 =
𝑛−1∑︁
𝑖=0

𝑥𝑖/2𝑡 +
(∑︁

𝑖

(𝑥𝑖 mod 2𝑡)
)
/2𝑡 − 𝑓

(∑︁
𝑖

𝑥𝑖

)
/2𝑡

The intuition behind this formula is as follows: The first term
computes the truncation of each share individually, similar to𝑇𝑆{𝐿} .
The second term corrects the one-off error (e0), while the third term
corrects the wrap-around error (e1) introduced by the first term. The
first term in the sum is computed locally by each party by directly
dividing its share. The remaining terms are computed interactively
in the boolean domain using binary adders.

The authors also observed that the second term,
∑
𝑖 (𝑥𝑖 mod

2𝑚)/2𝑚 , is always smaller than 𝑛, where 𝑛 is the number of unique
shares held by the parties. Therefore, a bit extraction circuit that
computes the carry bits at positions [𝑡, 𝑡+log𝑛−1] suffices to obtain
the result. Similarly, the third term contains non-zero bits only in
the log(𝑛) most significant bits, requiring another bit extraction
circuit on log(𝑛) + ℓ bits. Since extracting the carry bits of 𝑡-bit
terms is computationally cheaper than extracting the carry bits of
ℓ-bit terms, the last term—responsible for correcting e1—accounts
for most of the amortized communication complexity.

4 Efficient Truncation Protocols
This section details the efficient implementation of the truncation
approaches from §3 within the Trio 3PC and Quad 4PC protocols
from [17]. Since our constructions replicate the exact functionalities
of the respective SOTA truncation approaches, they maintain the

same slack requirements, probability of truncation failure, and se-
curity properties. However, by leveraging sharing semantics, local
preprocessing, and subset-sharing primitives, our constructions sig-
nificantly reduce communication complexity compared to a naive
adaptation of these approaches (cf. Table 1).

4.1 Truncation-Related Primitives
To construct efficient truncation protocols, we observe that many
existing approaches benefit from parties holding a

(2
2
)
additive

sharing, where one subset of parties holds 𝑥1 and a disjoint subset
holds 𝑥2, with 𝑥 = 𝑥1 + 𝑥2. Using this [·]-sharing, parties follow a
three-step process: first, they locally apply modulus or truncation
operations to 𝑥1 and 𝑥2; second, they share the modified values
among P; and third, they aggregate the modified values to obtain
the final result.

The Trio and Quad protocols from [17] are particularly well-
suited fro this approach, as they naturally support decomposing 𝑥
into its [·]-shares. In these protocols, one subset of parties locally
obtains −𝜆𝑥 , while a disjoint subset obtains m𝑥 such that 𝑥 =

(−𝜆𝑥) + m𝑥 . For instance, in Trio, 𝑃0 computes −𝜆𝑥 = −(𝜆1𝑥 +
𝜆2𝑥), while both 𝑃1 and 𝑃2 can locally compute m𝑥 as follows: 𝑃1
computes m𝑥 = m𝑥,2 + 𝜆1𝑥 and 𝑃2 computes m𝑥 = m𝑥,1 + 𝜆2𝑥 . In
Quad, each party holds either m𝑥 or 𝜆𝑥 by default. We refer to
parties that can locally obtainm𝑥 as Pm𝑥

and those that can obtain
𝜆𝑥 as P𝜆𝑥 . Note that 𝜆𝑥 is an input-independent share that can be
generated non-interactively during the preprocessing phase.

Subset-sharing. To efficiently generate J·K-sharings of [·]-shared
values among P, we leverage the concept of subset-sharing pro-
posed by [44]. Subset sharing allows specific subsets of parties
to generate secret-shares of a joint value among P. We primar-
ily consider scenarios which require generation of J·K-shares of
a value that is available to some of the parties, either during the
preprocessing or online phase.

Figures 4 and 5 present the subset-sharing primitives for 3PC,
while Figures 6 and 7 present the 4PC setting. These primitives min-
imize the communication overhead of secret sharing by exploiting
two key optimizations: (1) certain shares can be locally obtained
using ΠSRNG, and (2) other shares can be directly set to 0.

Preprocessing:

(1) 𝑃0 samples 𝜆1𝑢 with 𝑃1 using ΠSRNG.
(2) 𝑃0 computes 𝜆2𝑢 = −𝜆1𝑢 − 𝑢 and sends 𝜆2𝑢 to 𝑃2.
Online:
P1,2 set their input-dependent shares to 0.

Protocol ΠSH3PC (𝑢, 𝑃0) → J𝑢K

Figure 4: 3PC Subset-Sharing of value 𝑢 held by P𝜆𝑥 = 𝑃0.

Preprocessing:

All parties set their input-independent shares to 0.
Online:
P1,2 set their input-dependent shares to 𝑢.

Protocol ΠSH3PC (𝑢, P1,2) → J𝑢K

Figure 5: 3PC Subset-Sharing of value 𝑢 held jointly by Pm𝑥 = P1,2.

6

Truncation Untangled

The 4PC primitives incorporate the verify-send technique from
SWIFT [25], where, among the two parties holding a message, one
sends it to the recipient while the other parties verify its correct-
ness using a Compare-View protocol ΠCV. The honest-majority
assumption ensures that the recipient either receives the correct
message or aborts the protocol. Additionally, the Quad protocols
leverage that the value m∗𝑥 is only required by 𝑃0 at the end of the
protocol. As a result, the related online communication does not
increase the round complexity.

Table 3 summarizes the communication complexity of our subset-
sharing primitives. The subset of parties that initially holds the
value to be shared is indicated in the primitive’s signature. Notably,
the subset-sharing primitive by P𝜆𝑥 is applicable only to values
available in the preprocessing phase.

Preprocessing:

(1) P0,3 samples 𝜆1𝑢 with 𝑃1 using ΠSRNG.
(2) P0,3 computes 𝜆2𝑢 = −𝜆1𝑢 − 𝑢 and verify-sends 𝜆2𝑢 to 𝑃2.
(3) P1,2,3 set 𝜆∗𝑢 to 0.
Online:
𝑃0 sets m∗𝑢 to 𝑥 while 𝑃1,2 set m𝑢𝑆 to 0.

Protocol ΠSH4PC (𝑢, P0,3) → J𝑢K

Figure 6: 4PC Subset-Sharing of value 𝑢 jointly held by P𝜆𝑥 = P0,3.

Preprocessing:

(1) P1,2,3 sample 𝜆∗𝑢 using ΠSRNG.
(2) The parties set all remaining input-independent shares to 0.
Online:
(1) P1,2 set their input-dependent share m𝑢 = 𝑢.
(2) P1,2 verify-send m∗𝑥 = 𝑢 + 𝜆∗𝑢 to 𝑃0 as part of constant-round

communication.

Protocol ΠSH4PC (𝑢, P1,2) → J𝑢K

Figure 7: 4PC Subset-Sharing of value 𝑢 jointly held by Pm𝑥 = P1,2.

Table 3: Communication complexity of subset-sharing primitives.

Setting Subset holding 𝑢 PRE ON Rounds

3PC P𝜆𝑥 = 𝑃0 ℓ 0 0
Pm𝑥 = P1,2 0 0 0

4PC P𝜆𝑥 = 𝑃0,3 ℓ 0 0
Pm𝑥 = P1,2 0 ℓ 0

4.2 Truncation Approaches in Trio and Quad
This section provides formal details of our constructions of the
truncation approaches from §3 within the Trio and Quad protocols.
Since our work does not improve upon a naive adaptation of exact
truncation 𝑇𝐸{0} in Trio and Quad, we omit its formal details from
this section. Additionally, the protocols are presented in a generic
manner, allowing them to be instantiated using either Trio or Quad.

4.2.1 𝑇𝑆{𝐿} : Stochastic Truncation. Figure 8 presents our construc-
tion of 𝑇𝑆{𝐿} in Trio and Quad. While our construction does not
offer significant improvements over the SOTA (cf. Table 1), we in-
clude it for completeness, as stand-alone truncation primitives have
not yet been proposed for Trio and Quad.

(1) P𝜆𝑥 computes
(
𝑥1)𝑡 =

(
−𝜆𝑥

)𝑡 and executes ΠSH (P𝜆𝑥 ,
(
𝑥1)𝑡) .

(2) Pm𝑥 computes
(
𝑥2)𝑡 = (m𝑥)𝑡 and executes ΠSH (Pm𝑥 ,

(
𝑥2)𝑡) .

(3) Output J
(
𝑥1)𝑡 K + J

(
𝑥2)𝑡 K.

Protocol ΠTS{L} (J𝑥K→ J(𝑥)𝑠𝑡 K)

Figure 8: 𝑇𝑆{𝐿} in Trio and Quad.

In Trio, parties can locally generate an additive secret sharing
[𝑥] using their existing shares. Specifically, P1,2 can computem𝑥 =

m𝑥,1 + 𝜆2𝑥 = m𝑥,2 + 𝜆1𝑥 , while 𝑃0 computes −𝜆𝑥 = −(𝜆1𝑥 + 𝜆2𝑥).
Similarly, in Quad, an additive sharing is naturally formed, where
P1,2 hold m𝑥 = 𝑥 + 𝜆𝑥 , and P0,3 hold 𝜆𝑥 .

Leveraging this insight, the parties can locally truncate their
respective shares of 𝑥 and distribute the truncated values using the
subset-sharing primitives.

4.2.2 𝑇𝑆{1} : Stochastic Truncation with Reduced Slack. Dalskov
et al. [10] and Fantastic Four [11] provide tailor-made construc-
tions of 𝑇𝑆{1} for the 3PC and 4PC settings, respectively. Naively
re-implementing these primitives in Trio and Quad results in sim-
ilar communication complexity due to the need to generate and
open shared random bits, as shown in steps 2-3 of Figure 2. How-
ever, we show how to construct a slack-free truncation protocol in
Trio and Quad with three times lower round complexity and up to
four times lower online complexity (cf. Table 1) by replacing these
communication-intensive operations with local computations and
leveraging our subset-sharing primitives.

(1) Add 2ℓ−1 to J𝑥K to ensureMSB(𝑥) = 0.
(2) P𝜆𝑥 compute 𝑟 ′ =

∑ℓ−2
𝑖=𝑡 𝜆

𝑥,𝑖
· 2𝑖−𝑡 and 𝑟ℓ−1 = MSB(𝜆𝑥) .

(3) Pm𝑥 compute 𝑐′ = (m𝑥)𝑡 mod 2ℓ−𝑡−1 andMSB(𝑐) = MSB(m𝑥) .
(4) Generate J·K𝐴-sharings J𝑟 ′K, J𝑟ℓ−1K, J𝑐′K, J𝑀𝑆𝐵 (𝑐)K using ΠSH.
(5) Compute J𝑏K𝐴 = J𝑟ℓ−1K𝐴 ⊕ J𝑀𝑆𝐵 (𝑐)K𝐴 .
(6) Compute J𝑦K = J𝑐′K − J𝑟 ′K + J𝑏K · 2ℓ−𝑡−1.
(7) Output J𝑦K − 2ℓ−𝑡−1.

Protocol ΠTS−1 (J𝑥K) →
(
J𝑥K

)𝑠𝑡

Figure 9: 𝑇𝑆{1} in Trio and Quad.

Figure 9 presents our construction of𝑇𝑆{1} . To implement𝑇𝑆{1} ,
we exploit the fact that Pm𝑥

can locally define 𝑐 = m𝑥 , while P𝜆𝑥
can locally define 𝑟 = 𝜆𝑥 . This observation allows parties to bypass
all communication-related operations in steps 1 and 2 of Figure 2, in-
cluding generating doubly authenticated bits J𝑟K and even opening
the value 𝑐 . Additionally, parties can precompute certain operations
locally, such as 𝑟 ′ =

∑ℓ−2
𝑖=𝑡 𝜆

𝑖
· 2𝑖−𝑡 and 𝑐′ = (m𝑥)𝑡 mod 2ℓ−𝑡−1,

to avoid computing these expressions jointly. Finally, parties use
our efficient subset-sharing primitives to share the locally modified
shares and compute the final result, analogous to the original proto-
col. The 𝑋𝑂𝑅 operation in step 4 can be evaluated in the arithmetic
domain using the identity 𝑎 ⊕ 𝑏 = 𝑎 + 𝑏 − 2𝑎𝑏.

4.2.3 𝑇𝐸{1} : Exact Truncation with Slack. The main drawback of
Fantastic Four’s [11] exact truncation primitive 𝑇𝐸{1} is that the
protocol requires four shares per party. As a result, the bit extraction
circuits must be evaluated using a tree-based approach, involving
three adders and two levels of addition.

In contrast, using a
(2
2
)
additive sharing would reduce the number

of bits to extract from four to two while also requiring only a single
adder per term. Note that constructing a

(2
2
)
additive sharing in

7

Christopher Harth-Kitzerow, Ajith Suresh, and Georg Carle

Trio and Quad is straightforward, as parties can efficiently create
sharings of m𝑥 and −𝜆𝑥 with minimal communication overhead
using subset-sharing techniques.

Figure 10 illustrates the optimized 𝑇𝐸{1} protocol, leveraging
the sharing semantics of Trio and Quad. Steps 2–4 establish the
necessary sharings to compute all sums in the truncation formula.
Steps 5–6 compute the potential non-zero bits in the Boolean do-
main. Step 7 then converts the carry bits into the arithmetic domain,
and step 8 aggregates the terms to derive the final result.

Note that combining the one-off error correction from Figure 10
with the more efficient wrap-around error correction from 𝑇𝑆{1}
(cf. Figure 9) could further reduce communication complexity. We
leave the exploration of this combined approach for future work.
Finally, we implement the remaining truncation scheme 𝑇𝐸{0} , in-
troduced in §3, using a straightforward approach based on Figure 3.

(1) Add 2ℓ−1 to J𝑥K to ensureMSB(𝑥) = 0.
(2) Pm𝑥 generate Jm𝑥 /2𝑡 K, while P𝜆𝑥 generate J−𝜆𝑥 /2𝑡 K using ΠSH.

Parties compute J𝑥/2𝑡 K = Jm𝑥 /2𝑡 K + J−𝜆𝑥 /2𝑡 K.
(3) Pm𝑥 generate Jm𝑥 mod 2𝑡 K𝐵 , while P𝜆𝑥 generate

J−𝜆𝑥 mod 2𝑡 K𝐵 using ΠSH.
(4) Pm𝑥 generate Jm𝑥 K𝐵 , while P𝜆𝑥 generate J−𝜆𝑥 K𝐵 using ΠSH.
(5) Calculate the carry bit J𝑏1K𝐵 for bit position 𝑡 + 1 of

Jm𝑥 mod 2𝑡 K𝐵 + J−𝜆𝑥 mod 2𝑡 K𝐵 using a t-bit carry adder.
(6) Calculate the carry bit for bit position ℓ + 1 of J𝑏2K𝐵 of

Jm𝑥 K𝐵 + J−𝜆𝑥 K𝐵 using an ℓ-bit carry adder.
(7) Convert J𝑏1K𝐵 and J𝑏2K𝐵 to J𝑏1K𝐴 and J𝑏2K𝐴 using ΠBit2A.
(8) Compute J𝑦K = J𝑥/2𝑡 K + J𝑏1K𝐴 − J𝑏2K𝐴 · 2ℓ−𝑡 .
(9) Output J𝑦K − 2ℓ−𝑡−1.

Protocol ΠTE{1} (J𝑥K) → J(𝑥)𝑡 K

Figure 10: 𝑇𝐸{1} in Trio and Quad.

5 Applying Truncation in PPML
In this section, we propose how to efficiently integrate the different
truncation approaches into the PPML inference of neural network
layers. We observe that the properties of several layers allow us to
reduce the slack size required by a truncation scheme as well as
reduce its communication complexity.

Linear Layers and Batch Normalization. Linear layers such
as fully connected layers and convolutional layers require matrix
multiplication of fixed-point shares. Thus, each output share needs
to be truncated. Batch Normalization computes𝑦 (𝑥) = 𝑥−𝜇√

𝜎2+𝜖
·𝛾 +𝛽

where the parameters 𝜇, 𝜎,𝛾, 𝛽 are model parameters obtained dur-
ing training, and 𝜖 is a small public constant to avoid division by
zero. Thus, during inference, the party holding the model parame-
ters locally computes �̂� = 𝛾 · 1√

𝜎2+𝜖
and shares it along with 𝜇 and 𝛽

among the parties. Using these shares, the parties can compute the
layer with a single fixed-point multiplication. When using 𝑇𝑆{𝐿} ,
we exploit that truncation can be integrated into the multiplication
protocols of Trio and Quad at no additional communication costs
[17]. The formal protocol is described in the authors’ work.

As Batch Normalization typically appears directly after a linear
layer,𝑇𝑆{1} of the linear layer can be fused with the multiplication
in Batch Normalization using multi-input multiplication gates [37]
to reduce the𝑇𝑆{1} overhead in round complexity to 0. These can be

further optimized to multi-input scalar products [4] to also reduce
the overhead in online communication to 0. To do so, observe that
step 3 inΠTS−1 requires an XOR operation of the two shares J𝑚K𝐴 =

J𝑟𝑙−1K and J𝑛K𝐴 = JMSB(𝑐)K followed by a multiplication with
public value𝑘 = 2ℓ−𝑡−1. The results need to be added to J𝑜K = J𝑐′K−
J𝑟 ′K − 2ℓ−𝑡−1 − J𝜇K to obtain the first factor to compute the batch
normalization. Hence, the parties wish to compute the following
expression to obtain the layer output 𝑦 of batch normalization
which can be expressed as a single scalar product consisting of one
two-input multiplication and one three-input multiplication in a
single round of communication as follows:

J𝑦K = J�̂�K · (J𝑜K + (J𝑚K ⊕ J𝑛K)𝑘 + 𝛽
= J�̂�K · J𝑜K + J�̂�K · (J𝑘𝑚K + J𝑘𝑛K − 2J𝑘𝑚K · J𝑘𝑛K) + 𝛽
= J�̂�K(J𝑜K + J𝑘𝑚K + J𝑘𝑛K) + J−2�̂�K · J𝑘𝑚K · J𝑘𝑛K + 𝛽

Activation Functions. Normalization layers or linear layers are
typically followed by an activation function. The most frequently
used activation function in convolutional neural networks is ReLU.
The ReLU operation is defined as ReLU(𝑥) = max(𝑥, 0). To perform
a ReLU operation, parties convert ⟨𝑥⟩𝐴 to ⟨𝑥⟩𝐵 , evaluate a sign
bit extraction circuit, and negate the result to obtain DReLU(𝑥) =
⟨¬MSB(𝑥)⟩𝐵 . ReLU(x) can then be computed as ⟨DReLU(x)⟩𝐵 ·
⟨𝑥⟩𝐴 using Bit Injection [33].

(1) Execute steps 2-5 of ΠTE{1} .
(2) Execute step 6 of ΠTE{1} but also extract JMSB(𝑥)K𝐵 as part of the

same circuit.
(3) Execute step 7-8 of ΠTE{1} and multiply the result with

JMSB(𝑥)K𝐵 using ΠBitInj.

Protocol ΠReLU+TE{0} (⟨𝑥 ⟩) → ⟨ReLU((𝑥)
𝑡) ⟩

Figure 11: ReLU with exact truncation (𝑇𝐸{0}).

All truncation schemes can benefit from delaying the truncation
of the layer prior to the ReLU operation, both in terms of reduced
slack and communication overhead. The slack-related benefit from
delaying truncation until the next ReLU layer is that after an activa-
tion all negative values are guaranteed to be 0. As truncating 0 has
a negligible probability of truncation failure, this optimization sig-
nificantly reduces the number of truncation failures in PPML where
negative values are as common as positive values. Additionally, the
𝑇𝐸{1} and 𝑇𝑆{1} schemes can benefit from the ReLU operation as
they do not need to respect their non-negativity constraint: In case
of truncation failure, the ReLU operations set the output share to 0
provided that ReLU is calculated based on the untruncated share.
Consequently, the parties can omit the addition and subtraction op-
erations required by the𝑇𝐸{1} and𝑇𝑆{1} schemes which transform
them into 𝑇𝐸{0} and 𝑇𝑆{0} schemes, respectively.

The performance-related benefit of delaying truncation applies
to the 𝑇𝑆{1} , 𝑇𝐸{1} , and 𝑇𝐸{0} schemes. Trivially, ReLU can be
fused with little communication overhead with 𝑇𝐸{0} as proposed
by [22] by performing a full bit decomposition, applying trunca-
tion and ReLU in the boolean domain, and performing a full bit
composition to obtain the result.

However, we observe that ReLU can also be merged with the
more efficient 𝑇𝐸{1} and 𝑇𝑆{1} schemes. The conversion and bit
extraction of ReLU can be fused without additional overhead into

8

Truncation Untangled

ΠTE{1} by letting the carry adder in step 6 of the protocol (cf. Figure
10) also compute the sign bit of J𝑥K𝐵 . Hence, the only communica-
tion overhead of adding a ReLU operation to the truncation primi-
tive is performing a bit injection which is typically similarly com-
plex to performing a single multiplication inZ2ℓ . Figure 11 describes
the protocol for fusing ReLU with ΠTE{1} . Note that ΠTE{1} can also
implement 𝑇𝑆{1} by skipping all computations related to comput-
ing J𝑏1K which includes steps 3,5, and one ΠBit2A operation (cf.
Figure 10). When optimizing for communication rounds, a generic
way of fusing ReLU with ΠTS{1} is to compute DReLU on the un-
truncated share ⟨𝑥⟩ while computing ⟨(𝑥)𝑡 ⟩ in parallel to the ReLU
computation. The parties then bit inject the result of DReLU(⟨𝑥⟩)
into the truncated share ⟨(𝑥)𝑡 ⟩ to obtain ReLU(⟨(𝑥)𝑡 ⟩) without any
overhead in round complexity.

We can design a more efficient protocol for Trio and Quad by
fusing the bit injection performed during ReLU with the online
communication required by ΠTS{1} similar to our approach during
batch normalization. An additional challenge here is that the output
of ReLU prior to Bit Injection is given in the boolean domain and
thus the process is more involved than simply utilizing multi-input
scalar products. We observe that the online phases of bit injection
and ΠTS{1} can be merged at no additional communication cost or
round complexity.
Fusing Truncation and Bit Injection. Similar to our fused Batch
Normalization approach we define J𝑚K𝐴 = J𝑟𝑙−1K and J𝑛K𝐴 =

JMSB(𝑐)K, The shares need to be first XOR-ed, then multiplied
with 𝑘 = 2ℓ − 𝑡 −1, and finally added to J𝑜K = J𝑐′K− J𝑟 ′K−2ℓ−𝑡−1 to
obtain the first factor to compute the fused bit injection. The second
factor J𝑥K𝐵 is the negated most-significant bit of the untruncated
J𝑥K obtained during the ReLU operation. The output J𝑦K of fusing
truncation and bit injection is thus given by.

J𝑦K = J𝑥K𝐵 · (J𝑜K𝐴 + (J𝑚K𝐴 ⊕ J𝑛K𝐴)𝑘)

= J𝑥K𝐵 · (J𝑜K + J𝑘𝑚K + J𝑘𝑛K − 2J𝑘𝑚K · J𝑘𝑛K)
= (m𝑥 + 𝜆𝑥 − 2m𝑥𝜆𝑥) · (J𝑜K + J𝑘𝑚K + J𝑘𝑛K − 2J𝑘𝑚KJ𝑘𝑛K)
= (m𝑥 + 𝜆𝑥 − 2m𝑥𝜆𝑥) (m𝑜 − 𝜆𝑜 +m𝑘𝑚 − 𝜆𝑘𝑚 +m𝑘𝑛 − 𝜆𝑘𝑛
− 2((m𝑘𝑚 − 𝜆𝑘𝑚) (m𝑘𝑛 − 𝜆𝑘𝑛))
= (m𝑥 + 𝜆𝑥 − 2m𝑥𝜆𝑥) (m𝑜 − 𝜆𝑜 +m𝑘𝑚 − 𝜆𝑘𝑚 +m𝑘𝑛 − 𝜆𝑘𝑛
− 2(m𝑘𝑚m𝑘𝑛 −m𝑘𝑚𝜆

𝑘𝑛
−m𝑘𝑛𝜆𝑘𝑚 + 𝜆𝑘𝑚𝜆

𝑘𝑛
))

When fully expanding the last equation the parties obtain differ-
ent combinations of input-dependent and input-independent sub-
terms, e.g., m𝑥 ·m𝑜 , 𝜆𝑥 · 𝜆𝑜 , m𝑥 · 𝜆𝑜 . Note that all input-dependent
terms can be computed locally by Pm𝑥

. To also evaluate the input-
independent terms, they need to obtain additive shares of all rel-
evant 𝜆-terms from P𝜆𝑥 in the preprocessing phase, use these to
calculate an additive sharing [𝑦] and reshare the result to all parties
to obtain J𝑦K. The complete procedure is described in §A.
Pooling Layers. Out of the pooling layers, only average pooling
requires truncation. Computing an average in MPC requires a di-
vision operation, which is not natively supported in ring-based
MPC. However, since the divisor 𝑑 is public, we can approximate
the division by multiplying the input ⟨𝑥⟩ with the FPA representa-
tion of the reciprocal 𝑟 = 1/𝑑 . We can exploit several slack-related
optimizations to reduce the probability of truncation failure of that

multiplication in average pooling, mainly by exploiting that 𝑑 is a
public value.

Following our proposed approach of computing an average
naively would require to approximate 𝑟 using 𝑡 bits of precision fol-
lowed by computing ⟨𝑦⟩ = 𝑟 · ⟨𝑥⟩ with 2𝑡 fractional bits which leads
to the same probability of truncation failure as the multiplication
of two secret shares. However, we observe that common denomina-
tors in average pooling are powers of two with the most common
denominator being 4 resulting from a kernel size of 2x2. For 𝑑 = 2𝑘 ,
the reciprocals can be expressed with 𝑘 fractional bits without any
loss of precision. For denominators that are not powers, we can ex-
ploit that the denominator in FPA is approximated using 𝑡 fractional
bits but not all of these bits are significant. For instance, 𝑟 = 1/9
resulting from a kernel size of 3x3 is approximated as 00111000 for
𝑡 = 8 but can be expressed as 111000 for 𝑡 = 6 without any loss of
precision. Finally, parties can also exploit that when a reciprocal
is between two FPA approximations, choosing the one with lower
precision reduces precision by less than 2−𝑡 but still reduces the
probability of truncation failure by a factor of 2. Hence, parties may
additionally choose a threshold to decide when to use an approxi-
mation with fewer fractional bits that introduce loss of precision.
Note that several networks such as VGG-16 or ResNet architectures
use adaptive average pooling which dynamically determines the
kernel size of the average pooling layer. These layers frequently
create kernels of size 1x1 which results in no required truncation.
Figure 12 describes the protocol for computing a division with a
reduced probability of truncation failure that includes all described
considerations.

(1) Approximate 𝑟𝑡 ≈ 1/𝑑 and 𝑟𝑡−1 ≈ 1/𝑑 using 𝑡 and 𝑡 − 1 fractional
bits in FPA respectively.

(2) Calculate (using floating-points) 𝑒𝑡 = |1/𝑑 − 𝑟𝑡 | and
𝑒𝑡−1 = |1/𝑑 − 𝑟𝑡−1 | .

(3) While 𝑒𝑡 − 𝑒𝑡−1 ≤ threshold, decrement 𝑡 . If 𝑡 = 0, output ⟨𝑥 ⟩.
(4) Compute ⟨𝑦⟩ = 𝑟𝑡 · ⟨𝑥 ⟩.
(5) Output (⟨𝑦⟩)𝑡 .

Protocol ΠDivision (⟨𝑥 ⟩, 𝑑, 𝑡, threshold) → ⟨𝑦⟩ ≈ 𝑥/𝑑

Figure 12: Division with reduced probability of truncation failure.

Finally, note that average pooling typically follows after a ReLU
layer. Hence, 𝑇𝐸{1} and 𝑇𝑆{1} can be implemented without the
1-bit slack requirement thus leading to 𝑇𝐸{0} and 𝑇𝑆{0} schemes,
respectively. Given that we also achieved 0 bits of slack by delay-
ing the truncation of the layer prior to ReLU, all common neural
network architectures that do not use Batch Normalization such
as AlexNet, LeNet5, and VGG-16 are completely evaluated without
any slack using 𝑇𝐸{1} and 𝑇𝑆{1} schemes while layers that use
Batch Normalization such as ResNet architectures achieve 0 bits of
slack in more than half of all layers.

Mixed Truncation. Given the introduced optimizations, we pro-
pose a mixed truncation strategy that combines the benefits of all
truncation schemes depending on the PPML layer type. We ob-
served that average pooling deals with small public reciprocals
𝑟 ≤ 1/4 that can additionally often be expressed with a smaller
fixed-point multiplicator without causing any loss of precision.
Hence, this multiplication is an optimal candidate for 𝑇𝑆{𝐿} . In
neural network architectures, pooling is typically followed by a

9

Christopher Harth-Kitzerow, Ajith Suresh, and Georg Carle

linear layer, in some cases followed by a normalization layer, and
finally by a ReLU layer. If the linear layer is followed by a Batch
Normalization layer, we can apply our proposed𝑇𝑆{1} optimization
to merge the truncation of the linear layer with the multiplication
in Batch Normalization without any overhead in round complexity
or online complexity. The untruncated output of the layer prior to
ReLU is then truncated within the Bit injection operation required
by ReLU as described previously. Observe that the total overhead
of the mixed truncation strategy to the forward pass is 0 in terms
of round complexity and online communication complexity. Table
4 shows which truncation approach to apply in each layer to the
input J𝑥K and output J𝑦K of the layer.

Table 4: Mixed truncation strategy.

Layer trunc(J𝑥K) trunc(J𝑦K) Optimization

MaxPool - - -
AvgPool - 𝑇𝑆{𝐿} Reduced 𝑡a
Linear - Delay -
BN 𝑇𝑆{1} Delay Fuse𝑇𝑆{1} & BN
ReLU 𝑇𝑆{1} - Fuse ReLU &𝑇𝑆{1}

a

a Including slack-based optimization.

Figure 13 shows how our mixed truncation strategy is applied to
a a typical sequence of layers—pooling, convolution, batch normal-
ization, and ReLU—as commonly used in CNN architectures like
ResNets. Importantly, with our proposed protocols, slack-related
optimizations do not introduce any communication costs, while
fused operations introduce no additional overhead during the on-
line phase. The figure also shows the number of resulting fractional
bits in the input matrix 𝑋 after each layer in the forward pass. Our
truncation strategy ensures that whenever a matrix ends up with
twice the desired number of fractional bits (denoted 𝑋 2𝑓), it is trun-
cated before being used in any subsequent operation involving the
multiplication of two fixed-point numbers.

6 Systematic Evaluation
In this section, we show the results of our large-scale comparison
of the different truncation approaches. Our evaluation is based on
our implementation of all truncation schemes in the open-source
HPMPC framework [16] while we utilize PyTorch for plaintext
training and inference. In §6.1, we evaluate the impact of our trun-
cation optimizations tailor-made for PPML, as discussed in §5. This
is followed by §6.2, where all the truncation approaches consid-
ered in this work are evaluated across various models and datasets.
While our evaluation focuses on secure CNN inference, we also
discuss secure inference of Transformer architectures in §E.

6.1 PPML-specific Optimizations
This section evaluates the truncation optimizations proposed for
PPML inference in §5. We categorize the evaluation based on the
nature of the optimizations: slack-related, plaintext training-related,
and performance-related.

6.1.1 Slack-related optimizations. Our slack-related optimization
leverages non-negativity and reduces the number of fractional bits
in the denominator during average pooling. Delaying truncation
not only lowers communication complexity by fusing ReLU and

Convolution

Skip Truncation

Average Pooling

Fused Multiplication & TSL
+ Slack Optimization (Denominator)

Xf

X2f

Batch Normalization

Fused TS1 & BatchNorm

X2f

ReLU

Fused ReLU & TS1
+ Slack Optimization (MSB)

Xf

Xf

TSL

TS1

Delayed Truncation

Figure 13: Mixed truncation workflow

truncation primitives but also reduces truncation failures by ensur-
ing non-negativity through ReLU. Additionally, layers following
the activation function, such as average pooling, benefit from this
non-negativity, eliminating the extra bit of slack required by 𝑇𝑆{1}
and 𝑇𝐸{1} . Reducing the number of fractional bits during average
pooling further decreases the likelihood of overflows and trunca-
tion failures. As shown in Table 5, these optimizations significantly
enhance the accuracy of 𝑇𝑆{1} and 𝑇𝑆{𝑀𝑖𝑥 } , bringing them closer
to their deterministic counterparts and minimizing accuracy loss
compared to plaintext inference.

6.1.2 Plaintext-training-related optimizations. Techniques such as
dropout, weight decay, and weight clipping can help reduce the
magnitude of weight, lowering the probability of overflows and
truncation failures. While dropout and weight clipping generally
improve PPML inference performance as long as plaintext accuracy
remains high, weight decay may require more fractional bits to
accurately represent smaller weights, potentially reducing accuracy.

To study this trade-off, we train multiple models on CIFAR-
10 dataset with the ADAMW optimizer [31] with a weight decay
hyperparameter of 0.03 and compare them to models trained with
the ADAM optimizer, which does not apply weight decay. Figure 16
presents the accuracy of different truncation schemes on CIFAR-10

10

Truncation Untangled

Table 5: Truncation accuracy in % for VGG-16 on CIFAR-10 with
bitlength ℓ = 32 and 𝑡 = 5 fractional bits. Plaintext Accuracy: 81.74%.

¬OPTMSB OPTMSB

Scheme ¬OPTAVG OPTAVG ¬OPTAVG OPTAVG

𝑇𝑆{𝐿} 11.62 18.36 10.75 18.36
𝑇𝑆{1} 51.47 81.05 66.31 81.05
𝑇𝐸{0} 80.76 80.86 80.76 80.86
𝑇𝐸{1} 80.76 80.86 80.76 80.86
𝑇𝑆{𝑀𝑖𝑥 } 61.04 66.90 71.88 79.49

𝑂𝑃𝑇MSB : Exploiting non-negativity during pooling and ReLU layers.
Includes delayed truncation (cf. §5).
𝑂𝑃𝑇AVG : Slack-related optimizations to the denominator during av-
erage pooling (cf. §5).

with ResNet50 at a bitlength of 32. Additional results for various
architectures and bitlengths are presented in §G (cf. Figure 20).

T S{L} T S{1} T E{0} T E{1} T S{Mix} Plaintext

5 10 15
Fractional Bits

20

40

60

A
cc

ur
ac

y
(%

)

(a) ADAM, ℓ = 32

5 10 15
Fractional Bits

0

20

40

60

A
cc

ur
ac

y
(%

)

(b) ADAMW, ℓ = 32

Figure 14: Accuracy of truncation approaches with ResNet50 on
CIFAR-10. Weight decay for ADAMW is set to 0.03.

We observe that models struggle to match plaintext accuracy
when fractional bits are limited. Without weight decay, 5 fractional
bits are sufficient for most truncation methods to achieve near-
plaintext accuracy. However, with weight decay, accuracy declines
noticeably at lower fractional bit settings. This decay is mitigated as
the number of fractional bits increases. More importantly, weight de-
cay reduces truncation failures: with weight decay and 6 fractional
bits, 𝑇𝑆{𝐿} nearly reaches plaintext accuracy, whereas without
weight decay, it fails to do so at any number of fractional bits.

6.1.3 Performance-related optimizations. We analyze the impact
on communication complexity when delaying the truncation of
one layer’s output until the next layer, where it can be fused with
another operation. Table 6 presents the reduction in communi-
cation complexity for a full forward pass using different trunca-
tion schemes on VGG16 with ImageNet (preprocessing + online).
Additional results for other models, datasets, and bitlengths are
presented in §H.

As shown in the table, our approach significantly reduces total
communication, particularly for exact truncation schemes. This is
mainly because fusing these schemes with the ReLU operation elim-
inates most or all truncation-related overhead, which can account
for over 25% of the total communication complexity in a forward
pass. Stochastic truncation schemes also benefit from delayed trun-
cation. An exception is𝑇𝑆{𝐿} , which can already be fused into each

Table 6: Trio and Quad: Reduction in communication complexity of
different truncation schemes for VGG16 on ImageNet when delaying
truncation.

ℓ = 32 ℓ = 64
Scheme ¬ D D Δ ¬ D D Δ

3PC

𝑇𝑆{𝐿} 773.3 827.5 -6.55% 1554 1662 -6.52%
𝑇𝑆{1} 1044 995.3 4.93% 2095 1992 5.17%
𝑇𝐸{0} 1305 1039 25.62% 2627 2091 25.68%
𝑇𝐸{1} 1404 1192 17.79% 2842 2412 17.80%
𝑇𝑆{𝑀𝑖𝑥 } 1044 995.3 4.93% 2095 1992 5.17%

4PC

𝑇𝑆{𝐿} 1331 1440 -7.53% 2674 2891 -7.50%
𝑇𝑆{1} 1819 1719 5.83% 3649 3441 6.05%
𝑇𝐸{0} 2182 1702 28.19% 4392 3424 28.25%
𝑇𝐸{1} 2421 2050 18.12% 4900 4149 18.11%
𝑇𝑆{𝑀𝑖𝑥 } 1819 1719 5.83% 3649 3441 6.05%

¬D: Total communication in MB if not delaying truncation.
D: Total communication in MB if delaying truncation.
Δ: Percentage reduction in communication complexity.

multiplication in Trio and Quad at no additional cost. However, to
fully eliminate𝑇𝑆{𝐿} ’s overhead when delaying truncation, a fused
bit injection scheme similar to 𝑇𝑆{1} could be designed.

Although we do not empirically verify round complexity, our
optimizations likely have an even greater impact since exact trunca-
tion primitives often require multiple rounds, whereas linear layers,
average pooling, and Batch Normalization can be computed in 0
to 1 communication rounds. Notably, reducing the communication
complexity of𝑇𝑆{1} and𝑇𝑆{𝑀𝑖𝑥 } from 1 to 0 rounds by fusing trun-
cation with other layers is a significant improvement, effectively
halving the round complexity of these layers.

The overall impact on round complexity also depends on the
boolean circuit used for sign bit extraction. This complexity ranges
from log4 (ℓ) rounds when using multi-input scalar products with a
parallel prefix adder to ℓ −1 rounds when using a ripple carry adder.

6.2 Comparison of Truncation Approaches
This section compares different truncation approaches across vari-
ous datasets in terms of accuracy and performance. For complete-
ness, the communication complexity of all evaluated models and
datasets is provided in §H, with tables 12 and 13 detailing the results
for 3PC and 4PC, respectively.

6.2.1 Accuracy Comparison. To compare the accuracy across trun-
cation schemes, we apply all the optimizations considered in this
work and set the precision loss threshold for average pooling (cf. §5)
to 0. This ensures that fractional bits are only reduced when it does
not impact approximation accuracy. This section presents results
for a subset of datasets and models, with additional results for other
architectures available in §G (cf. Figure 19).
MNIST. We train a plaintext PyTorch model using the ADAM
optimizer on a modified LeNet5 architecture, replacing max pool-
ing with average pooling and using only ReLU activations for an
MPC-friendly architecture. As shown in Figure 15, most truncation
schemes closely match the plaintext accuracy of over 99% with

11

Christopher Harth-Kitzerow, Ajith Suresh, and Georg Carle

a bitlength of 16 and 3 fractional bits. Only 𝑇𝑆{𝑀𝑖𝑥 } and 𝑇𝑆{𝐿}
require a bitlength of 32 to reach plaintext accuracy.

T S{L} T S{1} T E{0} T E{1} T S{Mix} Plaintext

2 4 6
Fractional Bits

20

40

60

80

100

A
cc

ur
ac

y
(%

)

(a) ℓ = 16

5 10 15
Fractional Bits

20

40

60

80

100

A
cc

ur
ac

y
(%

)

(b) ℓ = 32

Figure 15: Accuracy of truncation approaches with LeNet5 onMNIST.

CIFAR-10. For CIFAR-10, we train PyTorchmodels with the ADAM
optimizer on architectures such as ResNet50, VGG16, and AlexNet,
replacing max pooling with average pooling. Figure 16 presents
accuracy results for ResNet50. All truncation schemes except𝑇𝑆{𝐿}
nearly match plaintext accuracy with a bitlength of 32 and 5 frac-
tional bits, while 𝑇𝑆{𝐿} requires a bitlength of 64. At a bitlength of
16, none of the truncation schemes achieve more than 40% accuracy.

T S{L} T S{1} T E{0} T E{1} T S{Mix} Plaintext

5 10 15
Fractional Bits

20

40

60

A
cc

ur
ac

y
(%

)

(a) ℓ = 32

0 10 20 30
Fractional Bits

20

40

60

A
cc

ur
ac

y
(%

)

(b) ℓ = 64

Figure 16: Accuracy of truncation approaches with ResNet50 on
CIFAR-10.

ImageNet. ImageNet contains over a million images, each sized
224x224x3, making full plaintext training consuming weeks. In-
stead, we use pre-trained PyTorch models of VGG16 and AlexNet,
achieving over 80% and 60% plaintext accuracy, respectively. Both
models employ max pooling, and accuracy is evaluated on 128 vali-
dation images. Figure 17 shows the accuracy results for VGG16. All
truncation schemes except 𝑇𝑆{𝐿} match plaintext accuracy with a
bitlength of 32 and 7 fractional bits, while𝑇𝑆{𝐿} requires a bitlength
of 64. At a bitlength of 16, none of the truncation schemes achieves
more than 20% accuracy.
Recommended fixed-point ranges. From our evaluation of trun-
cation schemes, we obtained the fractional ranges that result in
0%, 1%, and 5% accuracy loss compared to plaintext training. These
results are detailed in §G (cf. Table 11). We further consolidated the

T S{L} T S{1} T E{0} T E{1} T S{Mix} Plaintext

5 10 15
Fractional Bits

0

20

40

60

80

A
cc

ur
ac

y
(%

)

(a) ℓ = 32

0 10 20 30
Fractional Bits

0

20

40

60

80

A
cc

ur
ac

y
(%

)

(b) ℓ = 64

Figure 17: Accuracy of truncation approaches with VGG16 on Ima-
geNet.

findings to provide general recommendations based on dataset di-
mensions, with the suggested fractional ranges presented in Table 7.
Each range ensures high accuracy for most models on the given
dataset, with bold values indicating our recommended bitlength.
This recommended bitlength and fractional range closely match the
plaintext accuracy for most models, offering little to no additional
accuracy gains when further increased.

Table 7: Recommended fixed-point range for truncation schemes.

Dataset Scheme Bitlength
ℓ = 16 ℓ = 32 ℓ = 64

MNIST

𝑇𝑆{𝐿} - 5 2-23
𝑇𝑆{1} 3 6-11 2
𝑇𝐸{0} 3-4 5-11 5
𝑇𝐸{1} 3-4 5-11 5
𝑇𝑆{𝑀𝑖𝑥 } 3-4 5-11 5

CIFAR-10

𝑇𝑆{𝐿} - 6 6-7
𝑇𝑆{1} - 5-9 8-12
𝑇𝐸{0} - 8-9 8-12
𝑇𝐸{1} - 8-9 8-12
𝑇𝑆{𝑀𝑖𝑥 } - 5-6 8-12

ImageNet

𝑇𝑆{𝐿} - - 8-18
𝑇𝑆{1} - 10 8-28
𝑇𝐸{0} - 8-12 8-28
𝑇𝐸{1} - 8-12 8-28
𝑇𝑆{𝑀𝑖𝑥 } - 10 8-28

Additional results.We analyze the impact of truncating operands
before multiplication versus truncating their product afterward,
as proposed by Bicoptor 2.0 [51]. We find that truncation prior to
multiplication is equivalent to a regular truncation approach but
with half the number of fractional bits (cf. §B).

We also evaluate the common optimization of replacingMaxPool-
ing with AveragePooling [45] and find that, given the significant
reduction in communication complexity, this trade-off is worth-
while without substantially affecting plaintext accuracy. Additional
results are presented in §C.

While we have demonstrated that PPML using fixed-point arith-
metic can achieve the same accuracy as plaintext inference for
large models and datasets, we aim to find an indicator of the limits

12

Truncation Untangled

Table 8: Runtime (s) for different truncation schemes in MAN: 1 Gbit/s bandwidth, 2 ms latency.

Setting Scheme
CIFAR-10 ImageNet

ResNet50 VGG-16 VGG-16

32 64 32 64 32 64

3PC

𝑇𝑆{𝐿} 5.07 ± 0.17 8.12 ± 0.00 2.18 ± 0.00 4.20 ± 0.00 8.16 ± 0.02 19.28 ± 0.31
𝑇𝑆{1} 5.68 ± 0.05 9.40 ± 0.30 2.23 ± 0.13 5.26 ± 0.30 8.75 ± 0.02 20.81 ± 0.02
𝑇𝐸{0} 21.95 ± 0.79 54.01 ± 0.14 5.23 ± 0.13 13.96 ± 0.82 9.47 ± 0.02 22.40 ± 0.29
𝑇𝐸{1} 11.92 ± 0.15 31.89 ± 0.80 3.03 ± 0.09 12.42 ± 1.62 9.34 ± 0.09 21.48 ± 0.08

𝑇𝑆{𝑀𝑖𝑥 } 5.23 ± 0.38 9.12 ± 0.01 2.22 ± 0.07 4.95 ± 0.00 8.63 ± 0.13 20.14 ± 0.02

4PC

𝑇𝑆{𝐿} 5.50 ± 0.10 12.72 ± 0.33 2.77 ± 0.14 8.25 ± 0.01 17.21 ± 0.04 41.73 ± 0.30
𝑇𝑆{1} 6.36 ± 0.04 12.20 ± 0.92 3.01 ± 0.41 8.63 ± 0.00 17.69 ± 0.06 42.30 ± 0.01
𝑇𝐸{0} 26.38 ± 1.34 39.09 ± 0.87 5.30 ± 0.04 13.78 ± 0.54 18.62 ± 0.28 44.33 ± 0.04
𝑇𝐸{1} 15.65 ± 0.00 21.39 ± 0.03 3.27 ± 0.14 7.23 ± 2.18 18.24 ± 0.07 43.44 ± 0.01

𝑇𝑆{𝑀𝑖𝑥 } 7.69 ± 0.02 11.53 ± 0.30 2.85 ± 0.00 8.42 ± 0.00 17.52 ± 0.04 42.21 ± 0.02

of fixed-point approximation. Given the small accumulated fixed-
point error in the final layer of neural networks, we conclude that
fixed-point arithmetic remains sufficient for secure inference, even
for models larger than those evaluated in this work (cf. §D).

6.2.2 Performance Comparison. In terms of communication com-
plexity, Table 6 confirms that, as expected, 𝑇𝑆{𝐿} achieves the low-
est communication complexity among all approaches at the same
bitlength. However, when considering bitlengths based on the ac-
curacy achieved by different truncation schemes, we arrive at a
different conclusion.

As shown in Table 11 in §G, 𝑇𝑆{𝑀𝑖𝑥 } and 𝑇𝑆{1} exactly match
the plaintext accuracy of all ImageNet models with bitlength ℓ = 32
and 10 fractional bits. In contrast, 𝑇𝑆{𝐿} results in an accuracy
loss of over 5% at ℓ = 32 across all fractional bit settings. While
increasing the bitlength to 64 mitigates this accuracy loss, 𝑇𝑆{𝐿}
then incurs higher communication costs than all other truncation
schemes. Thus, we conclude that 𝑇𝑆{𝑀𝑖𝑥 } and 𝑇𝑆{1} are the most
efficient truncation schemes when balancing both accuracy and
communication complexity.

For the case of runtime, we evaluate the end-to-end inference run-
time (preprocessing + online phase) of different truncation schemes
across three network settings:

– LAN: 25 Gbit/s bandwidth, 0.3 ms latency
– MAN: 1 Gbit/s bandwidth, 2 ms latency
– WAN: 200 Mbit/s bandwidth, 40 ms latency

Table 8 provides the runtime (in seconds) for different models in
the MAN setting, while results for LAN and WAN are presented
in §I (cf. Tables 14 and 15).

In line with communication complexity results, 𝑇𝑆{𝐿} achieves
the lowest runtime among truncation schemes at the same bitlength.
However, when using the recommended bitlength for accuracy,
𝑇𝑆{𝐿} has a higher runtime than other truncation schemes.

The results also highlight the advantage of 𝑇𝐸{1} over 𝑇𝐸{0}
in parallelizing the computation of Boolean adders. Despite its
higher communication complexity,𝑇𝐸{1} achieves a lower runtime
than 𝑇𝐸{0} in both MAN and WAN settings across all models and
bitlengths. Additionally, for the VGG-16 model on ImageNet, the rel-
ative runtime differences between truncation schemes are smaller,

as the MaxPooling layers present in the default architecture are
responsible for the majority of the runtime.

6.3 Takeaways
Contrary to common intuition, 𝑇𝑆{𝐿} is not the most efficient sto-
chastic truncation scheme when accounting for both accuracy and
runtime. Deterministic truncation schemes achieve similar accuracy
to stochastic ones but tend to bemore reliable at higher fractional bit
settings. Among them, 𝑇𝐸{1} matches the accuracy of 𝑇𝐸{0} while
significantly reducing communication rounds. Therefore, 𝑇𝑆{𝑀𝑖𝑥 } ,
𝑇𝑆{1} , and 𝑇𝐸{1} are the most effective choices for efficient PPML
inference.

For these schemes, a bitlength of ℓ = 32 with 10 fractional bits
serves as a strong baseline, closely matching plaintext accuracy for
most models. In plaintext training, practitioners should consider re-
placingMaxPooling with AveragePooling and incorporating weight
clipping and weight decay.

Our experiments show that, with proper configuration, 32-bit
fixed-point PPML inference exactly matches the accuracy of plain-
text floating-point accuracy in PyTorch for common CNN archi-
tectures on ImageNet. Additionally, our results suggest that 64-bit
fixed-point arithmetic is a future-proof choice for MPC-based se-
cure inference of large models and datasets due to its small accumu-
lated deviation from floating-point calculations. Thus, practitioners
can currently not expect any benefit from utilizing floating-point
arithmetic for secure inference of CNNs.

References
[1] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. 2012. Secure

computation on floating point numbers. Cryptology ePrint Archive (2012).
[2] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

2016. High-Throughput Semi-Honest Secure Three-Party Computation with an
Honest Majority. In ACM CCS.

[3] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. 2019. Turbospeedz: Double
Your Online SPDZ! Improving SPDZ Using Function Dependent Preprocessing.
In ACNS.

[4] Andreas Brüggemann, Robin Hundt, Thomas Schneider, Ajith Suresh, and Hos-
sein Yalame. 2023. FLUTE: Fast and Secure Lookup Table Evaluations. In IEEE
S&P.

[5] Ran Canetti. 2000. Security and Composition of Multiparty Cryptographic
Protocols. Journal of Cryptology (2000), 143–202.

[6] Octavian Catrina and Claudiu Dragulin. 2009. Multiparty Computation of Fixed-
Point Multiplication and Reciprocal. InDatabase and Expert Systems Applications.

13

Christopher Harth-Kitzerow, Ajith Suresh, and Georg Carle

[7] Octavian Catrina and Amitabh Saxena. 2010. Secure Computation with Fixed-
Point Numbers. In FC.

[8] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. 2019.
ASTRA: High Throughput 3PC over Rings with Application to Secure Prediction.
In CCSW@CCS.

[9] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. 2020. Trident: Efficient 4PC
Framework for Privacy Preserving Machine Learning. In NDSS.

[10] Anders P. K. Dalskov, Daniel Escudero, andMarcel Keller. 2020. Secure Evaluation
of Quantized Neural Networks. PoPETs (2020).

[11] Anders P. K. Dalskov, Daniel Escudero, and Marcel Keller. 2021. Fantastic Four:
Honest-Majority Four-Party Secure Computation With Malicious Security. In
USENIX Security.

[12] Ivan Damgård, Kasper Damgård, Kurt Nielsen, Peter Sebastian Nordholt, and
Tomas Toft. 2016. Confidential Benchmarking Based on Multiparty Computation.
In FC.

[13] Daniel Demmler, Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi,
Thomas Schneider, and Shaza Zeitouni. 2015. Automated synthesis of opti-
mized circuits for secure computation. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 1504–1517.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 conference of the North American chapter of the association
for computational linguistics: human language technologies, volume 1 (long and
short papers). 4171–4186.

[15] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.
2020. Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits. In
CRYPTO.

[16] Christopher Harth-Kitzerow. 2025. HPMPC: High-Performance Implementation
of Secure Multiparty Computation (MPC) Protocols. https://github.com/chart21/
hpmpc/. Accessed: 2025-02-26.

[17] Christopher Harth-Kitzerow, Ajith Suresh, Yonqing Wang, Hossein Yalame,
Georg Carle, and Murali Annavaram. 2025. High-Throughput Secure Multiparty
Computation with an Honest Majority in Various Network Settings. PoPETs
(2025).

[18] Christopher Harth-Kitzerow, Yongqin Wang, Rachit Rajat, Georg Carle, and
Murali Annavaram. 2025. PIGEON: A High Throughput Framework for Private
Inference of Neural Networks using Secure Multiparty Computation. PoPETs
(2025).

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In CVPR. 770–778.

[20] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415 (2016).

[21] Zhicong Huang, Wen jie Lu, Cheng Hong, and Jiansheng Ding. 2022. Cheetah:
Lean and Fast Secure Two-Party Deep Neural Network Inference. In USENIX
Security.

[22] Neha Jawalkar, Kanav Gupta, Arkaprava Basu, Nishanth Chandran, Divya Gupta,
and Rahul Sharma. 2024. Orca: FSS-based Secure Training and Inference with
GPUs. In IEEE S&P.

[23] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Compu-
tation. In ACM CCS.

[24] Marcel Keller, Peter Scholl, and Nigel P. Smart. 2013. An Architecture for Practical
Actively Secure MPC with Dishonest Majority. In ACM CCS.

[25] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. 2021. SWIFT: Super-
fast and Robust Privacy-Preserving Machine Learning. In USENIX Security.

[26] Nishat Koti, Shravani Mahesh Patil, Arpita Patra, and Ajith Suresh. 2023. MPClan:
Protocol Suite for Privacy-Conscious Computations. Journal of Cryptology
(2023).

[27] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. 2022. Tetrad: Actively
Secure 4PC for Secure Training and Inference. In NDSS.

[28] Yun Li, Yufei Duan, Zhicong Huang, Cheng Hong, Chao Zhang, and Yifan Song.
2023. Efficient 3PC for Binary Circuits with Application to Maliciously-Secure
DNN Inference. In USENIX Security.

[29] Yehuda Lindell. 2020. Secure Multiparty Computation (MPC). ePrint Archive.
https://eprint.iacr.org/2020/300

[30] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. 2015. Effi-
cient Constant Round Multi-party Computation Combining BMR and SPDZ. In
CRYPTO.

[31] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In ICLR.

[32] Zoltán Ádám Mann, Christian Weinert, Daphnee Chabal, and Joppe W. Bos. 2024.
Towards Practical Secure Neural Network Inference: The Journey So Far and the
Road Ahead. ACM Comput. Surv. (2024).

[33] Payman Mohassel and Peter Rindal. 2018. ABY3 : A Mixed Protocol Framework
for Machine Learning. In ACM CCS.

[34] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable
Privacy-Preserving Machine Learning. In IEEE S&P.

[35] Lucien KL Ng and Sherman SMChow. 2023. SoK: Cryptographic Neural-Network
Computation. In IEEE S&P.

[36] Qi Pang, Jinhao Zhu, Helen Möllering, Wenting Zheng, and Thomas Schneider.
2024. Bolt: Privacy-preserving, accurate and efficient inference for transformers.
In 2024 IEEE Symposium on Security and Privacy (SP). IEEE, 4753–4771.

[37] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. ABY2.0:
Improved Mixed-Protocol Secure Two-Party Computation. In USENIX Security.

[38] Arpita Patra and Ajith Suresh. 2020. BLAZE: Blazing Fast Privacy-Preserving
Machine Learning. In NDSS.

[39] Deevashwer Rathee, Anwesh Bhattacharya, Rahul Sharma, Divya Gupta, Nis-
hanth Chandran, and Aseem Rastogi. 2022. Secfloat: Accurate floating-point
meets secure 2-party computation. In 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 576–595.

[40] Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta,
Rahul Sharma, Nishanth Chandran, and Aseem Rastogi. 2021. Sirnn: A math
library for secure rnn inference. In 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 1003–1020.

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115 (2015), 211–252.

[42] Manuel B. Santos, Dimitris Mouris, Mehmet Ugurbil, Stanislaw Jarecki, José
Reis, Shubho Sengupta, and Miguel de Vega. 2024. Curl: Private LLMs through
Wavelet-Encoded Look-Up Tables. In CAMLIS.

[43] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In ICLR.

[44] Ajith Suresh. 2021. MPCLeague: Robust MPC Platform for Privacy-Preserving
Machine Learning. Ph. D. Dissertation. Indian Institute of Science (IISc), Bangalore.
https://arxiv.org/abs/2112.13338.

[45] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu. 2021. CryptGPU: Fast
Privacy-Preserving Machine Learning on the GPU. In IEEE S&P.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[47] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mit-
tal, and Tal Rabin. 2021. Falcon: Honest-Majority Maliciously Secure Framework
for Private Deep Learning. PoPETs (2021).

[48] Yongqin Wang, G Edward Suh, Wenjie Xiong, Benjamin Lefaudeux, Brian Knott,
Murali Annavaram, and Hsien-Hsin S Lee. 2022. Characterization of mpc-based
private inference for transformer-based models. In 2022 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS). IEEE, 187–197.

[49] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. 2022. Piranha: A GPU
Platform for Secure Computation. In USENIX Security.

[50] Martin Zbudila, Erik Pohle, Aysajan Abidin, and Bart Preneel. 2024. MaSTer: Mali-
ciously Secure Truncation for Replicated Secret Sharing Without Pre-processing.
In CANS.

[51] Lijing Zhou, Qingrui Song, Su Zhang, Ziyu Wang, Xianggui Wang, and Yong
Li. 2023. Bicoptor 2.0: Addressing Challenges in Probabilistic Truncation for
Enhanced Privacy-Preserving Machine Learning. CoRR arXiv (2023). https:
//doi.org/10.48550/arXiv.2309.04909

14

https://github.com/chart21/hpmpc/
https://github.com/chart21/hpmpc/
https://eprint.iacr.org/2020/300
https://arxiv.org/abs/2112.13338
https://doi.org/10.48550/arXiv.2309.04909
https://doi.org/10.48550/arXiv.2309.04909

Truncation Untangled

A Merging Truncation and Bit Injection
When expanding the equation from §5, we obtain the equation
below. Each 𝑃𝑖 ∈ Pm𝑥

can compute an additive share of y by

holding the input-dependent shares in the clear and obtaining
[·]-sharings of the relevant input-independent shares from P𝜆𝑥 .

𝑦 = (m𝑥 + 𝜆𝑥 − 2m𝑥𝜆𝑥) (m𝑜 − 𝜆𝑜 +m𝑘𝑚 − 𝜆
𝑘𝑚
+m𝑘𝑛 − 𝜆

𝑘𝑛
− 2(m𝑘𝑚m𝑘𝑛 − m𝑘𝑚𝜆

𝑘𝑛
− m𝑘𝑛𝜆𝑘𝑚 + 𝜆𝑘𝑚𝜆

𝑘𝑛
))

[𝑦] = m𝑥m𝑜 − m𝑥

[
𝜆𝑜

]
+m𝑥m𝑘𝑚 − m𝑥

[
𝜆
𝑘𝑚

]
+m𝑥m𝑘𝑛 − m𝑥

[
𝜆
𝑘𝑛

]
− 2(m𝑥m𝑘𝑚m𝑘𝑛 − m𝑥m𝑘𝑚

[
𝜆
𝑘𝑛

]
− m𝑥m𝑘𝑛

[
𝜆
𝑘𝑚

]
+m𝑥

[
𝜆
𝑘𝑚

𝜆
𝑘𝑛

]
)

+m𝑜

[
𝜆𝑥

]
−

[
𝜆𝑥𝜆𝑜

]
+m𝑘𝑚

[
𝜆𝑥

]
−

[
𝜆𝑥𝜆𝑘𝑚

]
+m𝑘𝑛

[
𝜆𝑥

]
−

[
𝜆𝑥𝜆𝑘𝑛

]
− 2(m𝑘𝑚m𝑘𝑛

[
𝜆𝑥

]
− m𝑘𝑚

[
𝜆𝑥𝜆𝑘𝑛

]
− m𝑘𝑛

[
𝜆𝑥𝜆𝑘𝑚

]
+

[
𝜆𝑥𝜆𝑘𝑚𝜆

𝑘𝑛

]
)

− 2(m𝑥m𝑜

[
𝜆𝑥

]
− m𝑥

[
𝜆𝑥𝜆𝑜

]
+m𝑥m𝑘𝑚

[
𝜆𝑥

]
− m𝑥

[
𝜆𝑥𝜆𝑘𝑚

]
+m𝑥m𝑘𝑛

[
𝜆𝑥

]
− m𝑥

[
𝜆𝑥𝜆𝑘𝑛

]
+ 4(m𝑥m𝑘𝑚m𝑘𝑛

[
𝜆𝑥

]
− m𝑥m𝑘𝑚

[
𝜆𝑥𝜆𝑘𝑛

]
− m𝑥m𝑘𝑛

[
𝜆𝑥𝜆𝑘𝑚

]
+m𝑥

[
𝜆𝑥𝜆𝑘𝑚𝜆

𝑘𝑛

]
)

=
[
𝜆𝑥

]
(m𝑜 +m𝑘𝑚 +m𝑘𝑛 − 2m𝑘𝑚m𝑘𝑛 − 2m𝑥m𝑜 − 2m𝑥m𝑘𝑚 − 2m𝑥m𝑘𝑛 + 4m𝑥m𝑘𝑚m𝑘𝑛)

+
[
𝜆𝑜

]
(−m𝑥) +

[
𝜆
𝑘𝑚

]
(−m𝑥 + 2m𝑥m𝑘𝑛) +

[
𝜆
𝑘𝑛

]
(−m𝑥 + 2m𝑥m𝑘𝑚) +

[
𝜆
𝑘𝑚

𝜆
𝑘𝑛

]
(−2m𝑥) +

[
𝜆𝑥𝜆𝑜

]
(−1 + 2m𝑥)

+
[
𝜆𝑥𝜆𝑘𝑚

]
(−1 + 2m𝑘𝑛 + 2m𝑥 − 4m𝑥m𝑘𝑛) +

[
𝜆𝑥𝜆𝑘𝑛

]
(−1 + 2m𝑘𝑚 + 2m𝑥 − 4m𝑥m𝑘𝑚) +

[
𝜆𝑥𝜆𝑘𝑚𝜆

𝑘𝑛

]
(−2 + 4m𝑥)

+m𝑥 (m𝑜 +m𝑘𝑚 +m𝑘𝑛 − 2m𝑘𝑚m𝑘𝑛)

Observe that Pm𝑥
require the following additive shares to com-

pletely evaluate the equation:[
𝜆𝑥

]
,
[
𝜆𝑜

]
,
[
𝜆
𝑘𝑚

]
,
[
𝜆
𝑘𝑛

]
,
[
𝜆
𝑘𝑚
· 𝜆

𝑘𝑛

]
,[

𝜆𝑥 · 𝜆𝑜
]
,
[
𝜆𝑥 · 𝜆𝑘𝑚

]
,
[
𝜆𝑥 · 𝜆𝑘𝑛

]
,
[
𝜆𝑥 · 𝜆𝑘𝑚 · 𝜆𝑘𝑛

]
Out of these terms Pm𝑥

already hold
[
𝜆𝑜

]
,
[
𝜆
𝑘𝑚

]
and

[
𝜆
𝑘𝑛

]
but

not any of the cross-terms and not
[
𝜆𝑥

]𝐴 since they only initially
hold

[
𝜆𝑥

]𝐵 in Z2 . Thus, there are six remaining input-independent
cross-terms that P𝜆𝑥 need to compute locally and share with Pm𝑥

.
Pm𝑥

can then proceed to compute [𝑦]. Each 𝑃𝑖 ∈ Pm𝑥
then samples

𝜆𝑖𝑦 , computesM𝑖 = 𝑦𝑖 +𝜆𝑖𝑦 and sends it to the other party 𝑃 𝑗 ∈ Pm𝑥
.

Finally the parties setm𝑦 = M1 +M2 and all parties hold consistent
sharings of J𝑦K according to the Trio sharing semantics.

While this approach accounts for all steps to construct a semi-
honest 3PC protocol in Trio, the malicious 4PC protocol in Quad
requires additional steps to verify correctness. Note that the sharing
of input-independent terms can be trivially verified as both 𝑃0 and
𝑃3 can compute and verify-share the input-independent terms with
𝑃1 and 𝑃2. However, the online reconstruction of J𝑦K needs to be
secured against a malicious 𝑃1 or 𝑃2 who might send incorrect mes-
sages. Thus, P0,1,2 engage in a similar computation to compute [𝑦]
which is only equal to [𝑦] if both 𝑃1 and 𝑃2 honestly communicated
their messages. To do so, P0,1,2 sets m𝑥 = m∗𝑥 + 𝜆𝑥 for each input
share used in the long equation, while P1,2 setm𝑥 = m𝑥 + 𝜆∗𝑥 . Note
that the parties inherently hold

[
𝜆𝑥

]
= 𝜆∗𝑥 + 𝜆𝑥 where 𝜆𝑥 is held

by 𝑃0 and 𝜆∗𝑥 is held by P1,2. The parties proceed to evaluate the
identical equation that computes [𝑦] but with these new shares
to compute [𝑦] while 𝑃3 supplies the six input-dependent terms
denoted by 𝜆 .

After obtaining [𝑦], P1,2 verify-send their masked share to 𝑃0
such that it can obtain m∗

𝑦
= 𝑦 + 𝜆𝑦 . Finally, P0,1,2 compare their

views of m𝑦 + 𝜆𝑦 and m𝑦 + 𝜆𝑦 using ΠCV to verify the correctness
of the computation. Note that only if both 𝑃1 and 𝑃2 honestly

communicated M1 and M2 the verification will succeed. As M{1,2}
is computed non-interactively by both 𝑃1 and 𝑃2, the verification is
secure against a malicious corruption by one of the two parties.

Note that the compare-views used are identical to the ones used
by Quad’s multiplication protocol [17] and the authors provide
simulation-based security proofs for the protocol. Also, note that
M{1,2} is only used for verification and thus part of the constant-
round communication [17]. Figure 18 summarizes the protocol for
semi-honest Trio and malicious Quad. Finally, observe that we
can combine some input-independent terms to further reduce the
number of input-independent shares that need to be sent from P𝜆𝑥
to Pm𝑥

to five.

[𝑦] =
[
𝜆𝑥

]
(m𝑜 +m𝑘𝑚 +m𝑘𝑛 − 2m𝑘𝑚m𝑘𝑛 − 2m𝑥m𝑜

− 2m𝑥m𝑘𝑚 − 2m𝑥m𝑘𝑛 + 4m𝑥m𝑘𝑚m𝑘𝑛)
+

[
𝜆
𝑘𝑚

]
(−m𝑥 + 2m𝑥m𝑘𝑛) +

[
𝜆
𝑘𝑛

]
(−m𝑥 + 2m𝑥m𝑘𝑚)

+
[
𝜆𝑥𝜆𝑘𝑚

]
(−1 + 2m𝑘𝑛 + 2m𝑥 − 4m𝑥m𝑘𝑛)

+
[
𝜆𝑥𝜆𝑘𝑛

]
(−1 + 2m𝑘𝑚 + 2m𝑥 − 4m𝑥m𝑘𝑚)

+
[
𝜆o + 2𝜆km𝜆kn

]
(−m𝑥)

+
[
𝜆x𝜆o + 2𝜆x𝜆km𝜆kn

]
(−1 + 2m𝑥)

+m𝑥 (m𝑜 +m𝑘𝑚 +m𝑘𝑛 − 2m𝑘𝑚m𝑘𝑛)

The total communication complexity of the protocol is thus five
elements in the preprocessing phase and two elements in the online
phase for Trio and ten elements in the preprocessing phase and
three elements in the online phase for Quad. Since Bit Injection
requires the same online complexity and two resp. four elements
of communication in the preprocessing phase, the total overhead
of fusing truncation and Bit Injection is three preprocessing ele-
ments for Trio and six for Quad. This overhead is identical to the
preprocessing costs of one three-input multiplication and thus we
achieve exactly the same overhead as fusing Batch Normalization
and stochastic truncation as shown in §5.

15

Christopher Harth-Kitzerow, Ajith Suresh, and Georg Carle

Preprocessing:

(1) P𝜆𝑥 subset share𝜆𝑥 , 𝜆𝑥 ·𝜆𝑜 , 𝜆𝑘𝑚 ·𝜆𝑘𝑛𝜆𝑥 ·𝜆𝑘𝑚𝜆𝑥 ·𝜆𝑘𝑛𝜆𝑥 ·𝜆𝑘𝑚 ·𝜆𝑘𝑛
with Pm𝑥 .

(2) 𝑃3 shares 𝜆𝑥 , 𝜆𝑥 · 𝜆𝑜 , 𝜆𝑘𝑚 · 𝜆𝑘𝑛, 𝜆𝑥 · 𝜆𝑘𝑚, 𝜆𝑥 · 𝜆𝑘𝑛, 𝜆𝑥 · 𝜆𝑘𝑚 · 𝜆𝑘𝑛
with P0,1,2.

Online:
(1) Pm𝑥 locally compute [𝑦] using their input shares and preprocess-

ing material provided by P𝜆𝑥 .
(2) P0,1,2 locally compute [𝑦] using their input shares and preprocess-

ing material provided by P3.
(3) Each party𝑃𝑖 ∈ Pm𝑥 samples 𝜆𝑖𝑦 with P𝜆𝑥 , computesM𝑖 = 𝑦𝑖+𝜆𝑖𝑦

and sends it to the other party 𝑃 𝑗 ∈ Pm𝑥 . Pm𝑥 set m𝑦 = M1 +M2.
(4) P1,2 sample 𝜆𝑦 with P3, compute M{1,2} = [𝑦] + 𝜆𝑦 , and verify-

send it to 𝑃0. 𝑃0 sets m∗𝑦 = [𝑦] +M{1,2} .
(5) P0,1,2 compare their views of m𝑦 + 𝜆𝑦 and m𝑦 + 𝜆𝑦 using ΠCV.
(6) 𝑃0 sets m∗𝑦 = m𝑦 − 𝜆𝑦 while all other parties set 𝜆∗𝑦 = 𝜆𝑦 . All

parties now hold a consistent sharing of J𝑦K.

Protocol ΠBitInj+TS{1} (J𝑥K𝐵, J𝑜K, J𝑚K, J𝑚K, 𝑘) → J𝑦K

Figure 18: Merged Bit Injection and Truncation in Quad. Steps 2
of the preprocessing phase and steps 2,4,5,6 of the online phase are
omitted for semi-honest Trio.

B Truncation before Multiplication
Bicoptor 2.0 [51] proposed to utilize truncation before multiplica-
tion to reduce the probability of truncation failure. When multiply-
ing 𝑐 = 𝑎 ·𝑏, truncation can either be applied to 𝑎 and 𝑏 individually
before the multiplication or to the result 𝑐 after the multiplication.
When truncating 𝑐 after multiplication, 𝑡 is set to 𝑘 where 𝑘 is the
number of fractional bits used to represent a value. When parties
instead truncate 𝑎 and 𝑏 prior to multiplication, 𝑡 is set to 𝑘

2 . For
large absolute values of 𝑎 and 𝑏, truncation before multiplication
can significantly reduce the probability of truncation failure by
producing intermediary products with 𝑘 instead of 2𝑘 fractional
bits. As truncation prior to multiplication requires two individual
truncations of 𝑎 and 𝑏 instead of a single one of 𝑐 , the communi-
cation overhead is increased by a factor of two. However, we find
that truncating prior to multiplication can be implemented without
any additional communication overhead compared to truncating 𝑐
after the multiplication.

Our key observation to perform the optimization is that each
plaintext value can be pre-truncated by 𝑡 = 𝑘

2 without any commu-
nication overhead before entering the MPC protocol. As a result,
all secret shares are already pre-truncated, and multiplying them
produces shares with 𝑘 fractional bits. From that point on, truncat-
ing prior-to-multiplication can be implemented as truncating after
multiplication by half the number of fractional bits as truncating ⟨𝑐⟩
after multiplication by 𝑡 = 𝑘

2 produces a pre-truncated share ⟨(𝑐)𝑡 ⟩
that can be used either as the next ⟨(𝑎)𝑡 ⟩ or ⟨(𝑏)𝑡 ⟩ for further mul-
tiplications. However, observe also that pre-truncating all plaintext
values by 𝑘/2 bits is equivalent to representing all fixed-point val-
ues with 𝑘/2 fractional bits to begin with. Hence, truncating prior
to multiplication is actually no different from simply using half the
number of fractional bits and utilizing the standard truncation after
multiplication approach.

C Replacing MaxPooling with AveragePooling
A common optimization in MPC to reduce communication complex-
ity is to replace max pooling with average pooling [45]. Computing
the maximum of 𝑛 values requires computing 𝑛 − 1 pairwise com-
parisons along a tree of height log2 (𝑛). Each pairwise comparison
requires on DReLU operation. Hence, maxpooling with common
kernel sizes such as 3x3 can become the most expensive layer in
PPML while average pooling only requires a single fixed-point
truncation and is typically the cheapest layer in PPML. To evaluate
whether this optimization affects the accuracy of ML models we
train different ResNet models on CIFAR-10 with maxpooling and
average pooling using various optimizers and compare the accu-
racy. The results are shown in table 9. On average, the models with
maxpooling achieve 72.59% accuracy while the models with average
pooling achieve 71.00% accuracy. Given the significant reduction in
communication complexity, we replace average pooling with max
pooling for all further evaluations except ImageNet-based models
where we rely on the official pretrained PyTorch models that use
max pooling.

Table 9: Accuracy in % for ResNet models on CIFAR-10 with max
pooling and average pooling.

Model Optimizer MaxPool AvgPool

ResNet50

ADAM 77.14 72.04
ADAMW 77.39 74.86
SGD 66.41 63.30
SGDW 73.38 72.95

ResNet101

ADAM 74.55 76.82
ADAMW 76.00 75.22
SGD 65.30 64.04
SGDW 73.50 71.23

ResNet152

ADAM 76.33 75.31
ADAMW 74.69 73.22
SGD 62.77 61.45
SGDW 73.62 71.58

a SGDW refers to SGD with 0.03 weight decay.

D How far can FPA scale?
FPA enables parties to use 16-bit, 32-bit, or 64-bit integer arithmetic
that has low overhead on modern hardware. While ring sizes of
more than 64-bit are possible, they introduce significant computa-
tional overhead. To obtain an indicator for how much precision is
lost when utilizing 64-bit fixed-point arithmetic in PPML, we inves-
tigate the outputs computed by the last layer of the VGG-16 model
on ImageNet and calculate 𝛿 𝑓 as the fixed-point deviation of each
fixed-point value with respect to its plaintext floating-point value.
Note that by the last layer, all errors from previous layers’ fixed-
point calculations accumulate.We then calculate 𝛿𝑐 as theminimum
difference of two final class predictions in floating-point. Intuitively,
the closer 𝛿 𝑓 and 𝛿𝑐 are the higher the probability that the fixed-
point errors cause swapping the likelihood of two classes compared
to floating-point arithmetic. As only swapping the likelihood order
of top predictions is relevant in practice we only consider the top 5
most likely predictions. Over multiple batches we observe that the
minimum 𝛿𝑐 found for VGG-16 on ImageNet is 0.22 meaning that

16

Truncation Untangled

two classes in the top 5 predictions are at least separated by 0.22.
The maximum 𝛿 𝑓 for 𝑇𝑆{1} when using a bitlength of 64 and 13
fractional bits is 0.012 meaning that the fixed-point representation
of a class value is at most 0.012 off from the final layer’s floating-
point value in plaintext inference. Given this discrepancy, we can
conclude that using 64-bit fixed-point arithmetic in PPML can most
likely be used for even larger models and datasets without risking
misclassification due to the accumulation of fixed-point errors.

E PPML Inference of Transformer
Architectures

Transformer architectures [46] are becoming increasingly popular
in language and vision applications. In contrast to PPML infer-
ence with CNN models, Transformer models such as BERT [14]
require GeLU [20], Softmax and Tanh implementations [48]. These
require evaluating exponential and trigonometric functions which
introduces impractical overhead in MPC [40].
The GeLU function is defined as:

GELU(𝑥) = 1
2
𝑥 ·

(
1 + erf

(
𝑥
√
2

))
erf (𝑥) = 2

√
𝜋

∫ 𝑥

0
𝑒−𝑡

2
𝑑𝑡

The Softmax function is practically implemented as:

Softmax(𝑥𝑖) =
𝑒𝑥𝑖−𝑥max∑𝑛

𝑘=1 𝑒
𝑥𝑘−𝑥max

The Tanh function is defined as:

tanh(𝑥) = 𝑒2𝑥 − 1
𝑒2𝑥 + 1

To enable Transformer-based inference, state-of-the-art PPML
implementations utilize fixed-point arithmetic and approximate
each of these functions. For instance, BOLT [36] approximates GeLU
and Tanh using polynomial approximations of degree five and four,
respectively, across three intervals. Softmax is approximated using
a routine that involves evaluating a degree-two polynomial and a
secure function to compute the reciprocal. BOLT reports absolute
floating-point errors of 6.59 × 10−3 for Tanh, 9.77 × 10−4 for GeLU,
and 1 × 10−6 for 𝑒𝑥𝑝 (𝑥), which is used in the Softmax computa-
tion. Thus, the dominant source of error in PPML inference with
Transformers stems from these function approximations, rather
than from fixed-point representation itself. On the positive side,
Transformer models are often shallower than ResNets; for instance,
BERT [14] typically uses 12 to 24 layers.

Despite the added complexity of evaluating Transformer-based
architectures, BOLT demonstrates accuracy comparable to PyTorch
when evaluating BERT models using fixed-point arithmetic with a
bit length of 37 and 12 fractional bits. These results suggest that simi-
lar FPA configurations can be used for both Transformers and CNNs
to achieve high accuracy. However, more extensive experimentation
is needed to evaluate the accuracy of private Transformer-based
inference across a broader range of datasets and models.

F Benchmark
In sections §6.1 and §6.2 we identified 𝑇𝑆{1} as the state-of-the-art
truncation scheme offering the best trade-off between communica-
tion complexity and accuracy. Although this work focuses on im-
provements to various existing truncation schemes and how these
truncation schemes perform on established benchmark datasets, we
also evaluate how our implementation compares to state-of-the-art
implementations.

The only existing implementation of 𝑇𝑆{1} that we are aware
of is provided by MP-SPDZ [23]. Table 10 compares our 3PC and
4PC implementation to MP-SPDZ’s implementation using the same
pre-trained VGG-16 model provided by PyTorch. The table shows
that our implementation improves end-to-end inference runtime by
more than one order of magnitude and communication complexity
by 32%-57%.

Table 10: Runtime (s) and communication (MB) compared to MP-
SPDZ for secure inference of VGG16 on ImageNet using 64-bit and
𝑇𝑆{1} in a LAN setting

Runtime (s) Communication (MB)

3PC 4PC 3PC 4PC

MP-SPDZ [23] 736.05 ± 7.66 1814.01 ± 40.12 2945 7967
Ours 15.80 ± 0.17 39.09 ± 0.16 1992 3441

17

Christopher Harth-Kitzerow, Ajith Suresh, and Georg Carle

G Additional Accuracy Evaluation

T S{L} T S{1} T E{0} T E{1} T S{Mix} Plaintext

2 4 6
Fractional Bits

20

40

60

80

100

A
cc

ur
ac

y
(%

)

(a) LeNet5, MNIST

2 4 6
Fractional Bits

20

40

60

80

A
cc

ur
ac

y
(%

)

(b) VGG-16, CIFAR-10

2 4 6
Fractional Bits

0

20

40

60

A
cc

ur
ac

y
(%

)

(c) AlexNet, ImageNet

2 4 6
Fractional Bits

0

20

40

60

80

A
cc

ur
ac

y
(%

)

(d) VGG-16, ImageNet

ℓ = 16

5 10 15
Fractional Bits

20

40

60

80

100

A
cc

ur
ac

y
(%

)

(e) LeNet5, MNIST

5 10 15
Fractional Bits

20

40

60

80

A
cc

ur
ac

y
(%

)

(f) VGG-16, CIFAR-10

5 10 15
Fractional Bits

0

20

40

60
A

cc
ur

ac
y

(%
)

(g) AlexNet, ImageNet

5 10 15
Fractional Bits

0

20

40

60

80

A
cc

ur
ac

y
(%

)

(h) VGG-16, ImageNet

ℓ = 32

0 10 20 30
Fractional Bits

20

40

60

80

100

A
cc

ur
ac

y
(%

)

(i) LeNet5, MNIST

0 10 20 30
Fractional Bits

20

40

60

80

A
cc

ur
ac

y
(%

)

(j) VGG-16, CIFAR-10

0 10 20 30
Fractional Bits

0

20

40

60

A
cc

ur
ac

y
(%

)

(k) AlexNet, ImageNet

0 10 20 30
Fractional Bits

0

20

40

60

80

A
cc

ur
ac

y
(%

)

(l) VGG-16, ImageNet

ℓ = 64

Figure 19: Accuracy of different truncation schemes on various models and datasets. Each row corresponds to a different
Bitlength ℓ as indicated.

18

Truncation Untangled

T S{L} T S{1} T E{0} T E{1} T S{Mix} Plaintext

2 4 6
Fractional Bits

20

40

60

A
cc

ur
ac

y
(%

)

(a) AlexNet, ADAM

2 4 6
Fractional Bits

20

40

60

A
cc

ur
ac

y
(%

)

(b) AlexNet, ADAMW

2 4 6
Fractional Bits

20

40

60

A
cc

ur
ac

y
(%

)

(c) ResNet50, ADAM

2 4 6
Fractional Bits

0

20

40

60

A
cc

ur
ac

y
(%

)

(d) ResNet50, ADAMW

ℓ = 16

5 10 15
Fractional Bits

20

40

60

A
cc

ur
ac

y
(%

)

(e) AlexNet, ADAM

5 10 15
Fractional Bits

20

40

60

A
cc

ur
ac

y
(%

)

(f) AlexNet, ADAMW

5 10 15
Fractional Bits

20

40

60

A
cc

ur
ac

y
(%

)

(g) ResNet50, ADAM

5 10 15
Fractional Bits

0

20

40

60

A
cc

ur
ac

y
(%

)

(h) ResNet50, ADAMW

ℓ = 32

0 10 20 30
Fractional Bits

20

40

60

A
cc

ur
ac

y
(%

)

(i) AlexNet, ADAM

0 10 20 30
Fractional Bits

20

40

60

A
cc

ur
ac

y
(%

)

(j) AlexNet, ADAMW

0 10 20 30
Fractional Bits

20

40

60

A
cc

ur
ac

y
(%

)

(k) ResNet50, ADAM

0 10 20 30
Fractional Bits

0

20

40

60

A
cc

ur
ac

y
(%

)

(l) ResNet50 ADAMW

ℓ = 64

Figure 20: Accuracy of different truncation schemes for various models trained on CIFAR=10 with ADAMW and 0.03
weight decay or regular ADAM without weight decay. Each row corresponds to a different Bitlength ℓ as indicated.

19

Christopher Harth-Kitzerow, Ajith Suresh, and Georg Carle

Table 11: Ranges of fractional bits that introduce at most x% of accuracy loss compared to plaintext inference

Model Plaintext Accuracy Scheme x=0% x=1% x=5%

ℓ = 16 ℓ = 32 ℓ = 64 ℓ = 16 ℓ = 32 ℓ = 64 ℓ = 16 ℓ = 32 ℓ = 64

MNIST (28x28x1)

LeNet 99.12%

𝑇𝑆{𝐿} - 5 - - 2-7 2-23 - 2-8 2-24
𝑇𝑆{1} - 6-11 2 3 2-11 2-27 2-4 2-12 2-28
𝑇𝐸{0} - 5-11 5 2-3 2-11 2-27 2-4 2-12 2-28
𝑇𝐸{1} - 5-11 5 2-3 2-11 2-27 2-4 2-12 2-28
𝑇𝑆{𝑀𝑖𝑥 } - 5-11 5 - 2-11 2-27 - 2-12 2-28

CIFAR-10 (32x32x3)

AlexNet 68.55%

𝑇𝑆{𝐿} - 6 11-21 - 6-7 5-23 - 3-8 3-24
𝑇𝑆{1} - 8-9 8-27 - 5-11 6-27 - 3-12 4-28
𝑇𝐸{0} - 8-11 8-27 - 5-11 5-27 - 4-12 4-28
𝑇𝐸{1} - 8-11 8-27 - 5-11 5-27 - 4-12 4-28
𝑇𝑆{𝑀𝑖𝑥 } - 6 6-23 - 5-8 6-25 - 4-10 3-26

AlexNetw 64.33%

𝑇𝑆{𝐿} - 4-8 5-24 - 4-8 4-24 - 4-9 4-24
𝑇𝑆{1} - 5-13 5-29 - 5-13 5-29 4-5 4-13 4-29
𝑇𝐸{0} 5 5-13 5-29 5 5-13 5-29 4-5 4-13 4-29
𝑇𝐸{1} 5 5-13 5-29 5 5-13 5-29 4-5 4-13 4-29
𝑇𝑆{𝑀𝑖𝑥 } - 4-9 4-26 - 4-10 4-26 - 4-11 4-26

ResNet50 73.34%

𝑇𝑆{𝐿} - - 8-9 - - 6-18 - - 5-19
𝑇𝑆{1} - - 8-9 - - 6-21 - 5-7 5-23
𝑇𝐸{0} - 8-9 8-9 - 6-11 6-27 - 5-11 5-27
𝑇𝐸{1} - 8-9 8-9 - 6-11 6-27 - 5-11 5-27
𝑇𝑆{𝑀𝑖𝑥 } - - 8-9 - - 6-22 - 5-7 5-23

ResNet50 w 74.71%

𝑇𝑆{𝐿} - - 9-10 - - 6-20 - 6 6-21
𝑇𝑆{1} - - 6-7 - 6-7 6-22 - 6-7 6-23
𝑇𝐸{0} - - - - 7-13 7-29 - 7-13 7-29
𝑇𝐸{1} - - - - 7-13 7-29 - 7-13 7-29
𝑇𝑆{𝑀𝑖𝑥 } - - 6-7 - - 6-22 - 5-7 6-23

VGG-16 81.74%

𝑇𝑆{𝐿} - - 6-7 - - 5-16 - - 5-18
𝑇𝑆{1} - - 10-12 - 5 5-21 - 5 5-21
𝑇𝐸{0} - - 11-12 - - 5-21 - 5 5-21
𝑇𝐸{1} - - 11-12 - - 5-21 - 5 5-21
𝑇𝑆{𝑀𝑖𝑥 } - - 10-12 - - 5-21 - 5 5-21

ImageNet (224x224x3)

AlexNetp 62.50%

𝑇𝑆{𝐿} - - 11 - - 8-21 - - 7-22
𝑇𝑆{1} - 10-11 25-26 - 8-12 8-28 - 7-12 7-28
𝑇𝐸{0} - 11 11 - 8-12 8-28 - 7-12 7-28
𝑇𝐸{1} - 11 11 - 8-12 8-28 - 7-12 7-28
𝑇𝑆{𝑀𝑖𝑥 } - 10-11 25-26 - 8-12 8-28 - 7-12 7-28

VGG-16p 82.81%

𝑇𝑆{𝐿} - - 7-9 - - 7-18 - - 6-18
𝑇𝑆{1} - 7-10 7-9 - 7-12 7-28 - 6-12 6-28
𝑇𝐸{0} - 7 7 - 7-12 7-28 - 6-12 6-28
𝑇𝐸{1} - 7 7 - 7-12 7-28 - 6-12 6-28
𝑇𝑆{𝑀𝑖𝑥 } - 7-10 7-9 - 7-12 7-28 - 6-12 6-28

w Weight decay of 0.03 p Pretrained weights provided by PyTorch. Unmodified model architecture.

20

Truncation Untangled

H Additional Evaluation of Communication Complexity

Table 12: Trio (3PC): Reduction in communication complexity of different truncation schemes for various models and datasets when delaying
truncation.

Model Scheme ℓ = 16 ℓ = 32 ℓ = 64

¬ D D Δ ¬ D D Δ ¬ D D Δ

MNIST (28x28x1)

LeNet

𝑇𝑆{𝐿} 0.144 0.157 -8.29% 0.291 0.317 -8.26% 0.589 0.641 -8.22%
𝑇𝑆{1} 0.222 0.212 4.97% 0.447 0.423 5.58% 0.900 0.853 5.52%
𝑇𝐸{0} 0.298 0.235 26.94% 0.605 0.476 27.22% 1.235 0.969 27.46%
𝑇𝐸{1} 0.332 0.282 17.76% 0.664 0.561 18.44% 1.366 1.152 18.62%
𝑇𝑆{𝑀𝑖𝑥 } 0.209 0.199 5.28% 0.422 0.398 5.93% 0.849 0.802 5.88%

CIFAR-10 (32x32x3)

ResNet18

𝑇𝑆{𝐿} 3.672 4.276 -14.13% 7.390 8.599 -14.06% 14.82 17.24 -14.01%
𝑇𝑆{1} 6.706 6.533 2.65% 13.46 13.06 3.00% 26.95 26.13 3.17%
𝑇𝐸{0} 9.519 8.410 13.19% 19.31 17.05 13.27% 38.90 34.34 13.28%
𝑇𝐸{1} 10.81 9.951 8.64% 21.52 19.75 8.96% 43.70 40.11 8.95%
𝑇𝑆{𝑀𝑖𝑥 } 6.672 6.499 2.66% 13.39 13.00 3.02% 26.83 26.00 3.18%

ResNet50

𝑇𝑆{𝐿} 5.794 6.705 -13.59% 11.66 13.49 -13.52% 23.40 27.04 -13.49%
𝑇𝑆{1} 10.36 10.07 2.97% 20.80 20.13 3.33% 41.67 40.25 3.53%
𝑇𝐸{0} 14.60 12.75 14.50% 29.62 25.84 14.60% 59.63 52.04 14.58%
𝑇𝐸{1} 16.54 15.10 9.58% 32.94 29.96 9.94% 66.85 60.85 9.86%
𝑇𝑆{𝑀𝑖𝑥 } 10.33 10.03 2.97% 20.74 20.06 3.35% 41.54 40.12 3.54%

VGG-16

𝑇𝑆{𝐿} 6.052 6.606 -8.39% 12.21 13.32 -8.32% 24.53 26.74 -8.27%
𝑇𝑆{1} 9.073 8.621 5.24% 18.25 17.25 5.82% 36.60 34.49 6.12%
𝑇𝐸{0} 11.92 9.257 28.81% 24.18 18.75 28.99% 48.71 37.72 29.14%
𝑇𝐸{1} 13.23 11.12 18.99% 26.42 22.09 19.62% 53.56 44.80 19.55%
𝑇𝑆{𝑀𝑖𝑥 } 8.822 8.372 5.38% 17.75 16.75 5.99% 35.60 33.49 6.30%

AlexNet

𝑇𝑆{𝐿} 0.267 0.291 -8.35% 0.538 0.586 -8.30% 1.080 1.178 -8.26%
𝑇𝑆{1} 0.403 0.383 5.19% 0.810 0.766 5.77% 1.624 1.531 6.09%
𝑇𝐸{0} 0.532 0.415 28.31% 1.080 0.840 28.57% 2.177 1.690 28.81%
𝑇𝐸{1} 0.591 0.498 18.69% 1.181 0.990 19.34% 2.398 2.007 19.48%
𝑇𝑆{𝑀𝑖𝑥 } 0.388 0.369 5.37% 0.781 0.737 6.01% 1.567 1.474 6.32%

ImageNet (224x224x3)

AlexNet

𝑇𝑆{𝐿} 28.15 29.14 -3.40% 56.86 58.84 -3.37% 114.3 118.2 -3.33%
𝑇𝑆{1} 33.10 32.28 2.52% 66.73 64.93 2.77% 134.0 130.2 2.91%
𝑇𝐸{0} 37.66 32.90 14.48% 76.25 66.53 14.61% 153.4 133.8 14.67%
𝑇𝐸{1} 39.77 35.99 10.50% 79.84 72.08 10.77% 161.2 145.5 10.79%
𝑇𝑆{𝑀𝑖𝑥 } 33.10 32.28 2.52% 66.73 64.93 2.77% 134.0 130.2 2.91%

VGG-16

𝑇𝑆{𝐿} 383.2 410.3 -6.60% 773.3 827.5 -6.55% 1554 1662 -6.52%
𝑇𝑆{1} 518.8 496.7 4.45% 1044 995.3 4.93% 2095 1992 5.17%
𝑇𝐸{0} 644.3 513.6 25.45% 1305 1039 25.62% 2627 2091 25.68%
𝑇𝐸{1} 701.8 598.4 17.28% 1404 1192 17.79% 2842 2412 17.80%
𝑇𝑆{𝑀𝑖𝑥 } 518.8 496.7 4.45% 1044 995.3 4.93% 2095 1992 5.17%

¬D: Total communication in MB if not delaying truncation.
D: Total communication in MB if delaying truncation.
Δ: Percentage reduction in communication complexity.

21

Christopher Harth-Kitzerow, Ajith Suresh, and Georg Carle

Table 13: Quad (4PC): Reduction in communication complexity of different truncation schemes for various models and datasets when delaying
truncation.

Model Scheme ℓ = 16 ℓ = 32 ℓ = 64

¬ D D Δ ¬ D D Δ ¬ D D Δ

MNIST (28x28x1)

LeNet

𝑇𝑆{𝐿} 0.251 0.277 -9.42% 0.506 0.558 -9.36% 1.021 1.127 -9.37%
𝑇𝑆{1} 0.391 0.369 5.92% 0.784 0.736 6.50% 1.579 1.483 6.47%
𝑇𝐸{0} 0.495 0.381 29.92% 1.005 0.772 30.18% 2.051 1.572 30.44%
𝑇𝐸{1} 0.575 0.487 18.08% 1.149 0.968 18.74% 2.363 1.987 18.89%
𝑇𝑆{𝑀𝑖𝑥 } 0.369 0.347 6.31% 0.740 0.692 6.89% 1.491 1.394 6.90%

CIFAR-10 (32x32x3)

ResNet18

𝑇𝑆{𝐿} 6.283 7.491 -16.13% 12.64 15.06 -16.06% 25.35 30.19 -16.01%
𝑇𝑆{1} 11.74 11.38 3.22% 23.56 22.75 3.55% 47.19 45.50 3.70%
𝑇𝐸{0} 15.62 13.61 14.77% 31.69 27.60 14.83% 63.85 55.60 14.84%
𝑇𝐸{1} 18.62 17.11 8.84% 37.05 33.95 9.14% 75.26 68.97 9.12%
𝑇𝑆{𝑀𝑖𝑥 } 11.68 11.32 3.22% 23.44 22.64 3.57% 46.96 45.27 3.73%

ResNet50

𝑇𝑆{𝐿} 9.922 11.74 -15.51% 19.97 23.61 -15.44% 40.05 47.35 -15.40%
𝑇𝑆{1} 18.15 17.52 3.58% 36.41 35.04 3.91% 72.94 70.06 4.11%
𝑇𝐸{0} 23.98 20.64 16.20% 48.66 41.85 16.28% 98.00 84.28 16.28%
𝑇𝐸{1} 28.50 25.96 9.78% 56.73 51.52 10.12% 115.2 104.7 10.04%
𝑇𝑆{𝑀𝑖𝑥 } 18.09 17.46 3.59% 36.30 34.92 3.93% 72.71 69.84 4.11%

VGG-16

𝑇𝑆{𝐿} 10.48 11.59 -9.56% 21.13 23.34 -9.49% 42.43 46.87 -9.45%
𝑇𝑆{1} 15.90 14.97 6.25% 31.97 29.93 6.82% 64.13 59.87 7.12%
𝑇𝐸{0} 19.83 15.02 32.05% 40.22 30.42 32.20% 81.01 61.23 32.31%
𝑇𝐸{1} 22.87 19.17 19.33% 45.66 38.07 19.94% 92.57 77.22 19.88%
𝑇𝑆{𝑀𝑖𝑥 } 15.46 14.53 6.44% 31.10 29.06 7.02% 62.38 58.12 7.33%

AlexNet

𝑇𝑆{𝐿} 0.463 0.511 -9.53% 0.932 1.029 -9.45% 1.871 2.066 -9.42%
𝑇𝑆{1} 0.707 0.666 6.17% 1.420 1.331 6.76% 2.848 2.660 7.06%
𝑇𝐸{0} 0.885 0.673 31.44% 1.795 1.363 31.68% 3.619 2.743 31.94%
𝑇𝐸{1} 1.023 0.860 19.00% 2.042 1.706 19.65% 4.145 3.461 19.77%
𝑇𝑆{𝑀𝑖𝑥 } 0.682 0.641 6.45% 1.370 1.280 7.03% 2.747 2.560 7.34%

ImageNet (224x224x3)

AlexNet

𝑇𝑆{𝐿} 48.23 50.20 -3.92% 97.37 101.3 -3.89% 195.7 203.5 -3.88%
𝑇𝑆{1} 57.12 55.44 3.03% 115.2 111.5 3.29% 231.2 223.6 3.42%
𝑇𝐸{0} 63.43 54.83 15.69% 128.4 110.9 15.79% 258.3 223.0 15.84%
𝑇𝐸{1} 68.32 61.67 10.78% 137.1 123.5 11.00% 276.8 249.3 11.02%
𝑇𝑆{𝑀𝑖𝑥 } 57.12 55.44 3.03% 115.2 111.5 3.29% 231.2 223.6 3.42%

VGG-16

𝑇𝑆{𝐿} 659.8 714.0 -7.59% 1331 1440 -7.53% 2674 2891 -7.50%
𝑇𝑆{1} 903.8 858.0 5.34% 1819 1719 5.83% 3649 3441 6.05%
𝑇𝐸{0} 1077 841.0 28.05% 2182 1702 28.19% 4392 3424 28.25%
𝑇𝐸{1} 1211 1029 17.63% 2421 2050 18.12% 4900 4149 18.11%
𝑇𝑆{𝑀𝑖𝑥 } 903.8 858.0 5.34% 1819 1719 5.83% 3649 3441 6.05%

¬D: Total communication in MB if not delaying truncation.
D: Total communication in MB if delaying truncation.
Δ: Percentage reduction in communication complexity.

22

Truncation Untangled

I Additional Runtime Evaluation

Table 14: Runtime (s) for different truncation schemes in LAN: 25 Gbit/s bandwidth, 0.3
ms latency.

Setting Scheme
CIFAR-10 ImageNet

ResNet50 VGG-16 VGG-16

32 64 32 64 32 64

3PC

𝑇𝑆{𝐿} 3.35 ± 0.06 6.25 ± 0.05 2.72 ± 0.15 6.04 ± 0.03 6.51 ± 0.00 15.29 ± 0.05
𝑇𝑆{1} 4.17 ± 0.02 6.96 ± 0.38 3.23 ± 0.00 6.82 ± 0.00 6.90 ± 0.03 15.80 ± 0.17
𝑇𝐸{0} 14.59 ± 0.29 29.74 ± 0.32 6.74 ± 0.01 14.16 ± 0.02 6.75 ± 0.04 15.90 ± 0.10
𝑇𝐸{1} 8.72 ± 0.14 29.92 ± 0.01 3.56 ± 0.00 11.87 ± 0.01 7.23 ± 0.08 16.22 ± 0.27

𝑇𝑆{𝑀𝑖𝑥 } 3.87 ± 0.19 6.70 ± 0.08 3.11 ± 0.00 6.67 ± 0.12 6.86 ± 0.05 15.64 ± 0.04

4PC

𝑇𝑆{𝐿} 3.45 ± 0.03 6.41 ± 0.03 3.35 ± 0.02 6.67 ± 0.01 15.93 ± 0.08 38.34 ± 0.03
𝑇𝑆{1} 4.34 ± 0.00 7.01 ± 0.09 3.72 ± 0.01 7.04 ± 0.00 16.60 ± 0.02 39.09 ± 0.16
𝑇𝐸{0} 14.77 ± 0.53 15.48 ± 2.98 7.13 ± 0.04 14.75 ± 0.01 16.85 ± 0.24 39.34 ± 0.19
𝑇𝐸{1} 8.71 ± 0.08 5.24 ± 0.41 4.07 ± 0.01 13.34 ± 0.09 17.27 ± 0.03 40.30 ± 0.80

𝑇𝑆{𝑀𝑖𝑥 } 4.31 ± 0.00 5.13 ± 1.86 3.75 ± 0.00 6.99 ± 0.02 15.95 ± 0.33 39.15 ± 0.03

Table 15: Runtime (s) for different truncation schemes in WAN: 0.2
Gbit/s bandwidth, 40 ms latency.

Setting Scheme
CIFAR-10

ResNet50 VGG-16

32 64 32 64

3PC

𝑇𝑆{𝐿} 69.05 ± 0.01 132.38 ± 0.00 20.95 ± 0.00 41.27 ± 0.04
𝑇𝑆{1} 75.43 ± 0.03 138.98 ± 0.11 22.46 ± 0.09 42.27 ± 0.00
𝑇𝐸{0} 282.40 ± 0.09 559.10 ± 0.92 54.03 ± 0.08 106.50 ± 0.27
𝑇𝐸{1} 153.10 ± 0.06 292.61 ± 0.15 29.33 ± 0.06 58.57 ± 0.00

𝑇𝑆{𝑀𝑖𝑥 } 72.44 ± 0.05 136.98 ± 0.12 22.31 ± 0.06 42.15 ± 0.12

4PC

𝑇𝑆{𝐿} 69.08 ± 0.00 132.53 ± 0.04 21.43 ± 0.02 41.87 ± 0.02
𝑇𝑆{1} 75.56 ± 0.07 138.77 ± 0.01 22.85 ± 0.02 43.02 ± 0.13
𝑇𝐸{0} 282.32 ± 0.06 559.33 ± 0.01 54.13 ± 0.04 106.65 ± 0.05
𝑇𝐸{1} 152.96 ± 0.33 292.49 ± 0.76 29.99 ± 0.04 56.51 ± 0.02

𝑇𝑆{𝑀𝑖𝑥 } 75.44 ± 0.01 138.74 ± 0.02 22.60 ± 0.03 42.69 ± 0.01

23

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Research Gaps
	1.3 Our Contributions

	2 Preliminaries
	3 Overview of Truncation Approaches
	3.1 Stochastic Truncation
	3.2 Stochastic Truncation with Reduced Slack
	3.3 Exact Truncation
	3.4 Exact Truncation with Slack

	4 Efficient Truncation Protocols
	4.1 Truncation-Related Primitives
	4.2 Truncation Approaches in Trio and Quad

	5 Applying Truncation in PPML
	6 Systematic Evaluation
	6.1 PPML-specific Optimizations
	6.2 Comparison of Truncation Approaches
	6.3 Takeaways

	References
	A Merging Truncation and Bit Injection
	B Truncation before Multiplication
	C Replacing MaxPooling with AveragePooling
	D How far can FPA scale?
	E PPML Inference of Transformer Architectures
	F Benchmark
	G Additional Accuracy Evaluation
	H Additional Evaluation of Communication Complexity
	I Additional Runtime Evaluation

