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Abstract. The field of Fully Homomorphic Encryption (FHE) has seen
many theoretical and computational advances in recent years, bringing
the technology closer to practicality than ever before. For this reason,
practitioners in related fields, such as machine learning, are increasingly
interested in using FHE to provide privacy to their applications.
Despite this progress, selecting secure and efficient parameters for FHE
remains a complex and challenging task due to the intricate interde-
pendencies between parameters. In this work, we address this issue by
providing a rigorous theoretical foundation for parameter selection for
any Learning with Errors (LWE)-based schemes, with a specific focus on
FHE. Our approach starts with an in-depth analysis of lattice attacks
on the LWE problem, deriving precise expressions for the most effective
ones. Building on this, we introduce closed-form formulas that establish
the relations among the LWE parameters.
In addition, we introduce a numerical method to enable the accurate
selection of any configurable parameter to meet a desired security level.
Finally, we use our results to build a practical and efficient tool for re-
searchers and practitioners deploying FHE and other LWE-based schemes
in real-world applications, ensuring that our approach is both rigorous
and efficient.

Keywords: Fully Homomorphic Encryption, Parameter Selection, Learning With
Errors, Primal attacks, Bounded Distance Decoding, Hybrid Attack

1 Introduction

With the advancements of future-generation networking technologies like cloud
services, artificial intelligence applications, and Internet of Things, concerns
about data privacy are increasing significantly. Homomorphic encryption serves
as a solution for preserving privacy during data processing, allowing computa-
tions on encrypted data without the need for decryption. More specifically, Fully
Homomorphic Encryption (FHE) schemes define ciphertext operations corre-
sponding to computations on the underlying plaintext as additions or multipli-
cations [MSM+22].
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The first FHE scheme was introduced in 2009 by Gentry [Gen09]. Gentry
provided a method for constructing a general FHE scheme from a scheme with
limited but sufficient homomorphic evaluation capacity. Since then, several FHE
constructions have been proposed, such as BGV [BGV14], BFV [Bra12, FV12],
FHEW [DM15], TFHE [CGGI16, CGGI20], and CKKS [CKKS17, CHK+18].
More details on FHE and its applications can be found in surveys [MSM17,
AAUC18, MSM+22].

The security of currently known (practical) FHE schemes is based on the
presumed intractability of the (decision) Learning with Errors (LWE) problem,
[Reg05], and its ring variant (RLWE) [LPR10]. Informally, the decisional version
of LWE consists in distinguishing equations {(ai, bi = s · ai + ei)}i mod q,
perturbed by small noise ei (also called error), from uniform random tuples
from Zn

q ×Zq
1. The errors ei’s are drawn from a narrow distribution of standard

deviation σe, while the coordinates of the secret s are drawn from a distribution
with standard deviation σs.

The problem arising from lattice-based constructions is that the error grows
whenever a homomorphic operation is performed. In particular, in the worst-case
scenario, it grows exponentially when homomorphic multiplications are com-
puted. However, in order to guarantee correct decryption, the error has to be
small relative to the modulus q. One approach to accommodating more opera-
tions is to increase the modulus. However, a larger modulus also decreases the
security level of the underlying scheme, requiring a larger LWE dimension n to
keep the same security level λ, which comes at the cost of efficiency.

This trade-off between security (small q) and error margin (large q) illustrates
the challenge of identifying an optimal set of parameters for a given FHE scheme.
Such a balancing process called parameter estimation, is one of the main issues
that need to be addressed to make FHE practical.

Several efforts have been made by the FHE community to address the chal-
lenge of facilitating the deployment of FHE among researchers and practitioners
and to select an optimal set of parameters.

For instance, the Homomorphic Encryption Standard [ACC+18] (using the
Lattice Estimator2) provides upper bounds on the size of the modulus q for given
security levels λ and dimensions n through lookup tables, recently updated in
[BCC+24]. Moreover, in [MML+23], Mono et al. proposed a compact formula
that computes the hardness of LWE for given dimension n, modulus q, and the
standard deviation of secret distribution σs. Finally, the authors of [KMR24],
starting from a theoretical analysis of lattice attacks, present closed and precise
formulas for two key tasks: 1) deriving the security parameter λ given the secret
1 While in FHE literature n is often referred to as polynomial degree, having in mind

Ring-LWE based constructions, in this work we refer to n as to LWE dimension, as
we do not utilize any algebraic properties of Ring-LWE.

2 The Lattice Estimator (https://github.com/malb/lattice-estimator [APS15])
is the successor of the LWE Estimator, which is a software tool to determine the
security level of LWE instances under various attacks proposed until the present
time.

https://github.com/malb/lattice-estimator
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distribution χs, n, and the modulus q, 2) determining n as a function of λ, log q,
and χs. Our work is based on [KMR24], which we significantly extend and
improve in several directions.

In addition to these general efforts, researchers have also focused on op-
timizing parameters for specific FHE schemes. For instance, some FHE com-
pilers, which are high-level tools that aim at abstracting the technical APIs
exposed by FHE libraries, allow a sort of automatic parameter generation ac-
cording to some predefined requirements [VJH21, MSM+22]. Some examples are
ALCHEMY [CPS18], Cingulata [CDS15], EVA [DKS+20], HEIR [Con23] and
SEALion [vEPIL19]. Additionally, Bergerat et al. [BBB+23] proposed a frame-
work for efficiently selecting parameters in TFHE-like schemes. In [MML+23],
the authors developed an interactive parameter generator for the leveled BGV
scheme, which supports arbitrary circuit models, and Biasioli et al. [BMCM23]
further extended this approach to the BFV scheme.

Although these contributions mark significant progress toward improving ac-
cessibility and general adoption of FHE, a fully user-friendly and efficient tool for
secure parameter tuning remains unavailable. As highlighted in Paillier’s invited
talk [Pai], the field still faces the challenge of simplifying parameter selection
to a point where non-cryptographic experts can confidently implement FHE in
diverse applications.

Our contribution. We extend our previous work [KMR24] in several directions:
we express the LWE parameters q and χe (in bit size) via the remaining LWE
parameters and a given security level λ. Moreover, we test our formulas with a
wider range of secret and error distributions (see Sections 2.1 and 6.1). For ex-
ample, for the error distribution, we support now Gaussian, Ternary, Binary, and
Sparse ternary errors. Furthermore, we introduce the use of numerical solvers
that allow us to find precise estimates for the cases when obtaining concrete an-
alytical formulas is too cumbersome. Finally, we have greatly enhanced our tool
with our new results and have included useful functionalities to help developers
find optimal FHE parameters faster.

Our analysis focuses on the following types of lattice algorithms: the unique
Shortest Vector Problem (uSVP) attack [Kan83, AGVW17], the Bounded Dis-
tance Decoding (BDD) attack [LN13], and the primal hybrid attack [HG07]. We
do not consider the (heuristic) versions of dual like [MAT22, GJ21] since, at the
time of writing, these attacks do not offer correctness [DP23].3 Investigating the
impact of the recent proposal from [CMHSJP25] that corrects the flaw of the
analysis of heuristic dual attacks is left for future work.

From this rigorous theoretical analysis, we derive precise formulas that reveal
the relationships among FHE parameters, offering faster and versatile parameter
selection. Specifically,
3 Even if [MAT22] was correct, the improvement over uSVP or BDD would be rather

marginal, as can be seen by running the Lattice Estimator. The provable versions of
dual attacks [PS24] that come with correctness guarantees are inferior to the attacks
considered here for concrete parameters.
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1. For each considered attack, we
• derive the security parameter λ as a function of the standard deviations
σs and σe, the dimension n, and the bit size of the modulus q.

• express the LWE dimension n in terms of λ, log q, σe, and σs,

• express the bit size of the LWE modulus q in terms of λ, n, σe, and σs,

• express the bit size of the standard deviation of the LWE noise σe in
terms of λ, q, n, and σs.

2. Using our formulas as a starting point, we build more precise estimates
by conducting extensive experiments with the Lattice Estimator [APS15],
creating a large dataset that correlates n, log q, σe, σs, and λ and producing
a fitting function that relates the FHE-inspired LWE parameters with various
security levels. This effort enables us to adjust the lower-order terms in the
derived expressions, ensuring accurate estimates for broad parameter sets.

3. An alternative road towards precise estimates is numerical solvers. Since our
formulas are derived from rather elaborate complexity estimates of lattice
attacks, the LWE parameters are entwined, and often it is hard to derive a
nice analytical solution for a specific variable. Numerical solvers, however,
perform very well at this task. Employing Python’s scipy fsolve function-
ality, we are able to express any LWE parameter as a function of the other
LWE parameters.

4. More importantly for practitioners, we provide a practical tool where we
implement our formulas. Written in Python and publicly available on Github
repository4, our tool ensures that our approach is rigorous, accessible, and
fast.

5. We augment our tool with the option of checking for NTRU parameters to
ensure that they do not lie in the insecure regime [ABD16, KF17, DvW21].

Comparison with related work. In [MML+23], the authors empirically derived
and fine-tuned a formula linking the security level λ with the LWE dimension n
for a given modulus q and secret distribution. The main difference between the
formula provided in [MML+23] and our formulas lies in the level of specificity.
In this work, we provide distinct formulas for various attacks against the LWE
problem. In contrast, the authors of [MML+23] propose a single generic formula
that approximates the behavior of all the attacks for ternary (or Gaussian) secret.
This comes at the cost of accuracy, especially because the complexity and best
algorithms change depending on the sparsity of the secret, which is hard to
capture by a generic formula.

In [BBB+23], the authors build a framework to efficiently find optimal pa-
rameters for TFHE-like schemes. Their methodology relies on a security oracle,
which, given the parameters n, q, λ and σs, outputs the minimal σe that guar-
antees security λ. Our methodology deviates considerably from their approach.
4 https://github.com/Crypto-TII/fastparameterselection

https://github.com/Crypto-TII/fastparameterselection
https://github.com/Crypto-TII/fastparameterselection
https://github.com/Crypto-TII/fastparameterselection
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The main difference is that our formulas do not come solely from empirical re-
sults but from the analysis of the main lattice attacks. The point of contact of
the two works is the use of the Lattice Estimator to build a database and the
use of a fitting function. However, while [BBB+23] uses the fitting function to
build the totality of their formula, our use is solely for optimizing lower-order
terms.

Finally, in [BCC+24], the authors provide tables listing parameters for FHE
applications targeting different levels of security. Their work is particularly valu-
able to non-experts since it allows them to select secure parameters for their
applications quickly. The main difference between our work and [BCC+24] is
the scope of parameters that an end-user can obtain. That is, a table-based ap-
proach such as the one provided by [BCC+24] is rigid by design. Although the
authors offer a way to update the parameters via a script, they are restricted
to a predefined set of values. On the other hand, with our tool, we can quickly
get parameters for any range that an application might require, without having
to run any LWE estimator. A more detailed comparison with related work is
provided in Section 7.

Advantages of a formula-based approach. We want to highlight that our formulas
provide not only an alternative to the existing procedures of parameter selec-
tion in FHE but also a faster paradigm. That is, using a script-based strategy
(such as running the Lattice Estimator for different sets of parameters) is in-
efficient since the only way to obtain suitable parameters is brute-force, which
can mean checking many cases until the desired parameters are found. Using a
look-up table of pre-computed values is, of course, faster but also limited since it
might not accommodate all possible needs that arise when selecting parameters
for FHE schemes. This approach is used in the vast majority of FHE libraries
[Lat, BBB+22, SEA19]. Using a formula-based method, we get the best of both
approaches. Namely, we can get close to optimal parameters for any given appli-
cation instantly. Another advantage of using formulas is that we can understand
the behavior of the parameters in relation to each other, allowing us to easily
check if the parameters we are using are optimal. Finally, it is worth mentioning
that our formulas are applicable to any construction based on the hardness of
LWE and not only to FHE schemes, see Section 6.1 for some examples.

To conclude, our approach significantly accelerates the parameter selection
process, offering a practical and efficient tool for researchers and practitioners
deploying FHE or other LWE-based primitives in real-world applications.

The structure of the paper is as follows: Section 2 introduces the notations
and mathematical background necessary for understanding the paper. In Sec-
tion 3, we provide a comprehensive analysis of the uSVP, BDD and hybrid at-
tacks, deriving formulas that establish the relationships among the parameters
of FHE. These formulas are fine-tuned in Section 4, while Section 5 examines
their solutions using a numerical method. Section 6 offers practical guidance on
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how to use our implementation, and Section 7 compares our approach with prior
works. Finally, Section 8 presents our conclusions.

2 Preliminaries

2.1 Notation

For a positive integer q, we denote by Zq = Z/qZ the ring of integers modulo q.
For n ≥ 1, denote by Rn the real vector space. For a vector x, xi denotes the
i-th scalar component of the vector. Matrices are denoted by bold capital letters.
We denote by ∥x∥ the Euclidean norm of x. By At we denote the transpose of
A. For a vector x ∈ Rn, denote by xa:b for 0 ≤ a ≤ b ≤ n the coordinates of x
indexed from a (inclusive) to b (exclusive). The position a (resp. b) is dropped if
a = 0 (resp. b = n − 1). The notation extends to matrices column-wise. By log
we denote the base-2 logarithm.

Let χ be a probabilistic distribution and a ∈ R, we write a ← χ when
sampling a from χ. We use the following distributions.

– Uniform binary distribution U2 over the set {1, 0}.
– Uniform ternary distribution U3 over the set {0,±1}.
– Uniform modulus distribution Up over Zp, where p is a positive integer.
– Uniform distribution U[a,b] over a real interval [a, b] ⊂ R.
– Discrete Gaussian distribution DG(0, σ2), centered in 0 with standard devi-

ation σ.
– The centered binomial distribution ψη of width η ∈ N chooses 2η uniform

independent bits ai, bi ∈ {0, 1} and computes
∑η

i=1(bi − ai).
– Sparse ternary distribution HWT (h) chooses a vector uniformly at random

from {0,±1}n with exactly h nonzero entries, where h ≤ n positive integer.

2.2 Mathematical background

For B = (b1, . . . ,bk) linearly independent vectors in Rn, we define the lattice
L(B) generated by B as the set of all integer linear combinations of elements of
B:

L = L(B) =
{ k∑

i=1

γibi : γi ∈ Z,bi ∈ B
}
.

Such B is called a basis of L. If k = n, the lattice is said to be full rank. We will
be concerned with integral lattices, i.e., L ⊂ Zn. An integral lattice L is called
q-ary if qZn ⊂ L ⊂ Zn. The determinant of a lattice L defined by a basis B is
det(L) =

√
det(BtB) and is independent of the choice of basis.

For basis vectors bi, we write b⋆
i for the corresponding Gram-Schmidt vec-

tors. Concretely, the i-th Gram-Schmidt vector b⋆
i is the projection of bi orthog-

onally to the subspace SpanR(b1, . . . ,bi−1). We denote such projecting operator
πi. We write B[i,j] to denote the matrix whose columns are {πi(bi), . . . , πi(bj)}.
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It generates (a projective) sublattice of dimension j− i+1. We will make use of
the fact that det(L(B)) =

∏n
i=1 ∥b⋆

i ∥.
The minimum distance or the first successive minimum of lattice L, denoted

by λ1(L), is the Euclidean norm of a shortest non-zero vector in L: λ1(L) =
min{∥v∥ : v ∈ L, v ̸= 0}. The i-th successive minimum λi(L) is the smallest
r > 0 such that B(0, r) contains i linearly independent vectors of L, where B(0, r)
is a ball in Rn of radius r centered at 0. The successive minima are independent
of the basis choice.

The Gaussian Heuristic predicts λ1(L) for an n-dimensional lattice L:

λ1(L) ≈
√
n√
2πe

(det(L))1/n.

Hard problems on lattices. There are several fundamental problems related
to lattices, the following ones are relevant to this work.

The Shortest Vector Problem (SVP) asks to find v ∈ L such that ∥v∥ = λ1(L).
In the promise variant of SVP, the unique SVP (uSVP), we are guaranteed

that the first successive minimum is γ > 1 times smaller than the second mini-
mum λ2(L). We are asked to find v ∈ L such that ∥v∥ = λ1(L).

The Closest Vector Problem (CVP) asks to find v ∈ L closest to a given
target vector t ∈ Rn.

Given a lattice L and a target vector t close to the lattice, the Bounded
Distance Decoding (BDD) problem asks to find v ∈ L closest to the target t
with the promise that ∥t− v∥ ≤ R, where R≪ λ1(L).

Discrete Gaussian Distribution on a lattice. For a vector v and any σ > 0,
define ρσ(v) = exp(−π∥v∥2/(2πσ2)). For a lattice L, the discrete Gaussian
probability distribution with standard deviation5 σ is defined with the probability
density function

DL,σ(v) =
ρσ(v)∑

x∈L ρσ(x)
.

2.3 Lattice reduction

Lattice reduction aims at improving the quality of a lattice basis. In this work,
we are interested in the lattice reduction algorithm called BKZ (short for Block-
Korkine-Zolotarev, [Sch87]). Together with a lattice basis, it receives as input
an integer parameter β (called the block size) that governs the quality of the
output basis and the runtime. Here by ‘quality’ we mean the Euclidean norm of
the shortest vector in the basis output by BKZ. Concretely, BKZ run with block
5 Notice that the variance of a Discrete Gaussian and a Continuous Gaussian does not

match when σ ≤ 0.6. In this paper, we use the same parameter for both since we
always work with σ > 0.6.



8 Beatrice Biasioli, Elena Kirshanova, Chiara Marcolla, and Sergi Rovira

size β on a lattice L of rank n, returns a basis containing a lattice vector b1 of
norm

∥b1∥ = δnβ · det(L)1/n, (1)

where δβ is known as the root Hermite-factor and can be expressed in terms of
β as

δβ = (((πβ)1/ββ)/(2πe))
1

2(β−1) ≈
(

β

2πe

) 1
2β

, (2)

where the approximation holds for large β’s such that (πβ)1/β ≈ 1.
The BKZ-β algorithm works by calling multiple times an algorithm for SVP

on sublattices of dimension β. In [HPS11] it is shown that after poly(n) SVP
calls, the guarantee defined in Equation (1) is achieved. Hence, the running
time of BKZ is determined by the complexity of SVP in β dimensional lattices.
The asymptotically fastest algorithm for SVP is due to Becker-Gama-Ducas-
Laarhoven [BDGL16] that outputs a shortest vector in an n-dimensional lattice
in time 20.292n+o(n). We choose this running time (ignoring the o()-term) as the
measure of SVP hardness. Further, for a more concrete complexity of BKZ-β on
an n-dimensional lattice we set the running time of BKZ as

TBKZ(β, n) = 20.292β+log2(8n)+16.4, (3)

which is the choice adopted by [BDK+18, FHK+18, DKL+18]. The correcting
constant of 16.4 was obtained experimentally [BDGL16]. The concrete choice
of TBKZ(β, n) is called the core-SVP model [ADPS16]. Our results are easy to
adapt to other similar choices of TBKZ(β, n).

In addition to Equation (1), BKZ quality guarantees extend (heuristically)
to norms of Gram-Schmidt vectors of the returned basis. It is formulated in
Geometric Series Assumption. All known lattice estimators [APS15, DSDGR20]
rely on this assumption.

Definition 1 (Geometric Series Assumption (GSA), [Sch03]). The norms
of Gram-Schmidt vectors of a BKZ-β reduced basis satisfy

∥b⋆
i ∥ = αi−1∥b1∥,

where α = δ
−2n
n−1

β ≈ δ−2
β ≈ β−1/β.

Babai’s algorithm. For the attacks considered in this work, we need an efficient
BDD solver: Babai’s algorithm [Bab86]. Its running time is polynomial in the
lattice dimension. In a BDD instance, we are given a lattice basis B and the
target t. Assume for simplicity that the coordinates of the BDD error vector
t − v are independent Gaussians with standard deviation σ (case of LWE).
Informally, the success probability of Babai depends on the relation between
∥b⋆

i ∥ and σ: if ∥b⋆
n∥ > σ, the success probability is constant, while if ∥b⋆

1∥ = σ,
the success probability is super-exponentially low (in the lattice dimension).
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We will be concerned with the first case (constant success probability) formally
defined in the next claim. We use the formulation from [HKM18].6

Lemma 1 ([HKM18, Lemma 4]). Let the sequence ∥b⋆
1∥, . . . , ∥b⋆

n∥ follow
GSA, and let t be a vector with coordinates distributed as independent Gaussians
with standard deviation σ. The success probability of Babai’s algorithm is 1−o(1),
if ∥b⋆

n∥ > σ(log n)1/2+ε for fixed constant ε > 0.

2.4 The Learning With Errors Problem

The Learning with Errors problem (LWE) was introduced by Regev in [Reg05].
The LWE problem is parametrized by an integer n, modulus q (not necessarily
prime), an error distribution χe : Zq → R+ with standard deviation σe, and a
secret distribution χs : Zq → R+ with standard deviation σs.

Definition 2 (The Learning with Errors (LWE) problem). Given a vec-
tor b ∈ Zm

q and a matrix A taken uniformly at random from Zm×n
q , the search

version of the LWE problem consists in finding an unknown vector s ∈ Zn
q such

that
As+ e = b mod q,

where e ∈ Zm
q is sampled coordinate-wise from an error distribution χe, and s

is sampled coordinate-wise from χs. In other words, the goal is to find a vector
s ∈ Zn

q given a list of m noisy equations from

As,χe,χs
= {(ai, bi = ⟨ai, s⟩+ ei) ∈ Zn

q × Zq : ai
$←− Zn

q , ei ← χe, si ← χs}.

Often in FHE constructions, we have χs ∈ {U3,U2,HWT (h)}. For the error,
we are concerned with discrete Gaussian distribution centered at 0 with standard
deviation σe. In particular, for BGV, BFV and CKKS, σe = 3.19 [ACC+18],
instead for TFHE parameters [CGGI16, CGGI20], σe may vary, and we consider
these regimes too.

There exist several versions of LWE: Ring-LWE [SSTX09, LPR10] and Module-
LWE [LS15]. These are mainly used for efficiency reasons, security-wise these
versions, at the time of writing, are believed to be equivalent to ‘plain’ LWE.
Therefore, all our results extend to these other versions, in particular to Ring-
LWE, the most relevant variant in the FHE context.

3 Deriving LWE dimension for required security level

On chosen algorithms. We focus on primal attacks on LWE (uSVP and BDD),
and do not consider the dual attacks. First, the recent discoveries [DP23] of
failing heuristics employed in efficient dual attacks [GJ21, MAT22] invalidate
the claimed complexities. Despite of ongoing attempts to bring dual attacks back
6 Even though in [HKM18, Lemma 4] the authors talk about continuous Gaussian,

the result holds for the discrete Gaussian too.
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into play [DP23], no complete algorithm is presented that outperforms primal
attacks. While other potentially less efficient versions of dual attacks have not
been invalidated, the primal attacks perform better on the parameters considered
in this work. Second, dual attacks seem to be much harder to implement: we are
not aware of an existing implementation of a competitive dual attack.

We also consider here the so-called hybrid attacks [HG07, Alb17]. These are
relevant for sparse secret LWE, i.e., for cases when the Hamming weight of the
secret is less than n/2.

We receive as input an LWE instance (A,b = As + e) ∈ Zm×n
q × Zm

q , where
s follows the distribution χs with standard deviation σs, and e follows the dis-
tribution χe with standard deviation σe. We now describe in details the three
attacks: uSVP, BDD, and hybrid, and derive accurate formulas for their complex-
ities. For uSVP and BDD we reverse these formulas to express n as a function of
log q, σe, σs, and the desired security level λ; analogously, we express log q and σe
as functions of the other LWE parameters reaching the given security level. For
hybrid, we also provide formulas for the complexity of the attack as functions of
LWE parameters, and use these formulas to derive log q for the given security
level.

3.1 The uSVP attack

One way to evaluate the hardness of LWE is to model it as the problem of finding
a unique shortest vector (uSVP) in a lattice. Concretely, consider the following
lattice

LuSVP = {v ∈ Zd+1 | [A|Im| − b]v = 0 mod q},

commonly referred to as Kannan’s embedding lattice [Kan83], where d = m+n.
The lattice LuSVP admits the following basis matrix (written column-wise):

BuSVP =

 In 0 0
−A qIm b
0 0 1

 ,

The constant 1 in the lattice basis is a conventional choice [AGVW17] and can
be adjusted for concrete parameters.

From the LWE equation As+ e = b− k · q for some k ∈ Zm, we know that

BuSVP · (s,−k, 1)t = (s, e,−1)t ∈ LuSVP,

and, for typical LWE parameters, (s, e, 1) is ‘unexpectedly’ short. Concretely,
we have ∥(s, e, 1)∥ ≈

√
nσ2

s +mσ2
e + 1. In cases where σs < σe, one can ‘re-

balance’ the contribution of s and e to the norm by scaling the In part of BuSVP
by ζ = max{1, ⌊σe/σs⌉}:

BuSVP =

ζIn 0 0
−A qIm b
0 0 1

 .
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Even though ζ > 1 increases the length of the shortest vector in LuSVP, at the
same time it scales det(BuSVP) by a factor ζn, which is beneficial for lattice
reduction.

The primal uSVP attack runs BKZ reduction [Sch87, SE94] on BuSVP in or-
der to find the unique (up to sign) shortest vector. The estimates [ADPS16,
AGVW17] predict that BKZ succeeds in finding (ζs|e|1) if√

β/d ∥(ζs|e|1)∥ ≈
√
βσe ≤ δ2β−(n+m+1)

β det(LuSVP)1/d.

From the shape of the basis BuSVP of LuSVP, computing its volume (from now
on we ignore the +1 in the dimension of LuSVP and simplify it to dim(LuSVP) =
n+m =: d) leads to √

βσe ≤ δ2β−d
β · ζ n

d · q1−n
d . (4)

Now let us obtain a closed form for β as a function of the LWE parameters.
The following derivations are rather technical, the reader may jump directly
to Equation (6) for the final result.

An attacker is allowed to choose m – the number of LWE samples to build
the lattice from. As our objective is to reach the condition above for as small
β as possible (the lower the β is, the easier the attack is), we aim at finding m
that maximizes the right-hand side of Inequality (4). The maximum is achieved
for d =

√
n ln(q/ζ)

ln δβ
. Substituting it in the Inequality (4) and taking logarithms

leads to the success condition:

2β ln δβ − 2
√
n ln(q/ζ) ln δβ + ln(q/σe)−

1

2
lnβ ≥ 0.

Using the approximation ln(δβ) ≈ ln(β/(2πe))
2β , we obtain the condition on β (we

keep the constants as they matter for the accuracy of the final result):

β ≥ 2n ln(q/ζ) ln(β/(2πe))

ln2(q
√
β/(2πeσe))

. (5)

For the FHE parameters, the modulus q is chosen to be much larger than n and
m and hence, larger than β. Therefore, asymptotically, the right-hand side of
the inequality above belongs to Θ

(
n

ln q ln
(

n
ln q

))
. This leads us to (the equation

below is rather the inequality giving the lower bound on successful β):

β =
2n ln(q/ζ) ln

(
n ln(n/ ln q)
2πe ln(q/σe)

)
ln2
(

q
√

n ln(n/ ln(q/σe))/ ln q

2πeσe

) (6)

Substituting Equation (6), obtain the expression for λ

λ = 0.292β + log2

(
8

√
2n ln(q/ζ)β

ln(β/(2πe))

)
+ 16.4. (7)
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Expressing n. Given the desired security level λ, for fixed q, σe, σs, we can derive
the smallest n that reaches the given λ. Noticing that Inequality (5) is linear in
n, we express

n ≤ β ln2(q
√
β/(2πeσe)

2 ln(q/ζ) ln(β/(2πe)
.

Treating the above inequality as equality and using β ≈ λ/0.292 as a first
order approximation (see Equation (3)), yields

n =
λ (0.5 ln(λ/0.292) + ln(q/(2πeσe)))

2

0.584 ln(q/ζ) ln(λ/(0.584πe))
. (8)

We defer from refinements of the expression as they involve tedious compu-
tations coming from a more accurate expression of β, Equation (3). Later we
show that Equation (8) already provides a very good accuracy.

Expressing ln q. We notice that Inequality (5) is quadratic in ln q. Treating this
expression as equality and choosing the positive root (which can be checked with
some known parameters) reveals the simplified solution:

ln q =

n− β
ln(2πe) ln

( √
β

2πeσe

)
+

√
n2 − 2nβ

ln(β/(2πe)) ln
(

2πeσ2
e√

β

)
ln(β/(2πe))

.

Substituting the approximation for β ≈ λ/0.292, we obtain the expression
for ln q as a function of LWE parameters and λ.

Expressing lnσe. Similarly, Inequality (5) is quadratic in lnσe. In case ζ = σe/σs,
the solution that is relevant for us is

lnσe =

β
ln(β/(2πe)) ln

(
q
√
β

2πe

)
− n+

√
n2 − 2n β

ln(β/(2πe)) ln
( √

β
2σsπe

)
β/ ln(β/(2πe))

.

In case ζ = 1, we have

lnσe = ln

(
q
√
β

2πe

)
−

√
2n ln q√

β/ ln(β/(2πe))
.

3.2 The BDD attack

While the BDD attack on LWE has been known for years [LN13], we did not
find a reference that aligns well with the Lattice Estimator [APS15], hence we
first describe the attack, then derive its running time and reverse the runtime
expression for the desired parameters, e.g., the LWE dimension n.

The search LWE problem is an average-case BDD problem for the (m +
n)−dimensional q-ary lattice

Lbdd = {v ∈ Zn+m | [A|Im]v = 0 mod q},
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with the target vector (0,b) ∈ Zn × Zm. To see this, consider a basis for this
lattice over Zm+n given by the columns of the matrix very similar to Busvp:

Bbdd =

(
In 0
−A qIm

)
.

From the LWE equation As+ e = b− k · q for some k ∈ Zm, we know that

Bbdd · (s,−k)t = (s, e− b)t = (s, e)t − (0,b)t.

The lattice Lbdd is with high probability of full rank m + n (since A has full
column rank n with high probability) and the determinant of Lbdd is det(Lbdd) =
qm. The Gaussian Heuristic suggests that

λ1(Lbdd) ≈
√
m+ n√
2πe

· q
m

m+n .

Further, the vector (0,b) is at distance ∥(s, e)∥ ≈
√
nσ2

s +mσ2
e ≪ λ1(Lbdd)

from Lbdd, hence we have a BDD instance (Lbdd, (0,b)).
If σs < σe, one can again ‘re-balance’ the contribution of (s,−e) into the

distance
√
nσ2

s +mσ2
e by scaling the In part of Bbdd by ζ = max{1, ⌊σe/σs⌉},

that is we perform the attack on Bbdd =

(
ζIn 0
A qIm

)
. Even though it increases

the distance of the target to the lattice, it also scales det(Lbdd) by a factor
ζn, which in turn increases λ1(Lbdd) and hence the decoding properties of Lbdd.
For FHE parameters, the secret s is often binary or ternary, in which cases
ζ = σe/(1/2) = 2σe or ζ = σe/(

√
2/3) =

√
3/2σe.

Denote for simplicity d := m + n, the dimension of Bbdd. The bounded
distance decoding algorithm [LN13] works in three steps. In Step 1, we run a
BKZ-β lattice reduction algorithm on Bbdd. Denote the output basis by B′

bdd.
The goal of BKZ is to obtain a basis with the property

∥πd−η+1((s,−e))∥ < λ1(B
′
bdd,[d−η+1,d])

for 0 ≤ η < d as small as possible. Under the Gaussian Heuristic and the
approximation ∥πd−η+1((s, e))∥ ≈ σe

√
η, the above inequality can be rewritten

as
σe
√
η <

√
η

√
2πe

det
(
B′

bdd,[d−η+1,d]

)1/η
. (9)

This condition means that the orthogonal projection of our short vector (s, e) on
SpanR(b1, . . . ,bd−η+1) is shorter than the shortest vector in the projected lattice
B′

bdd,[d−η+1,d] given by the basis (πd−η+1(b
′
d−η+1), . . . , πd−η+1(b

′
d)). In the LWE

setting, GSA suggests that for small η’s the left-hand side of Ineq. (9) is always
larger than the right-hand side. Although both sides decrease for decreasing η,
the left-hand side does it faster (again, due to GSA) and at some point Ineq. (9)
is satisfied.
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This implies that running an SVP solver on [B′
bdd,[d−η+1,d]|πd−η+1((0,b))]

will find the projection πd−η+1((s, e)) of our secret. This SVP call constitutes
the second step of the algorithm. Notice that we call SVP on a rank-(η + 1)
lattice generated by [B′

bdd,[d−η+1,d]|πd−η+1((s, e))].
The third step of the attack ‘lifts’ the found projected vector πd−η+1((s, e))

using Babai’s algorithm on the ‘remaining’ part of the lattice B′
bdd,[1,d−η], which

is a sublattice of B′
bdd generated by its first (d− η) vectors. The norms of Gram-

Schmidt vectors of this sublattice, ∥b⋆
1∥, . . . ∥b⋆

d−η∥ satisfy

∥b⋆
i ∥ ≥ λ1(B′

bdd,[i,d]) ≥ σe
√
d− i+ 1, i ≤ d− η,

where the first inequality comes from the fact that b⋆
i ∈ B′

bdd,[i,d], and the second
is due to Ineq. (9). Applying Lemma 1 to B′

bdd,[1,d−η] gives constant probability
of Babai algorithm to output (s, e).

Runtime analysis of BDD. Let us now analyse the runtime of this attack. Among
the three steps of the BDD attack, the most expensive ones are the first step
(BKZ-β) and the second (SVP in dimension η). It is optimal to balance these
two steps.

The runtime of BKZ-β on a d-dimensional lattice as given in Equation (3) is
TBKZ(β, d) ≈ 20.292β · 8d, while the runtime of SVP on η-dimensional lattice is
TSVP(η) = 20.292η. The two runtimes differ only by a polynomial factor, hence
we expect β ≈ η to be optimal. Indeed, running the estimator confirms this
choice.

The required β can be derived from Ineq. (9). Concretely, using GSA and
the BKZ-β guarantee on ∥b′

1∥, we compute

det
(
B′

bdd,[d−η+1,d]

)
=

d∏
i=d−η+1

∥b⋆
i ∥ =

d∏
i=d−η+1

δd+2−2i
β (detBbdd)

1
d

= δ
−η(d−η−1)
β · (qmζn)

η
d .

From now on we use the approximation β ≈ η and work with β only. Here we
notice that in LWE one is free to choose the number of samples m, which in turn
affects the lattice dimension d. Maximizing the expression δ−η(d−η−1)

β · (qmζn)
η
d

with respect to d, yields optimal lattice dimension d =
√

n ln(q/ζ)
ln δβ

. From Ineq. (9)
and Equation (2), we obtain the following expression for β as a function of
d, q, σe, ζ:

β ≥
d ln

(
β

2πe

)
ln
(

β
2πe

)
+ 2 ln

(
q

σe

√
2πe

)
− 2n

d ln
(

q
ζ

) . (10)

Substituting the optimal choice for d in the equation above yields
β

ln
(

β
2πe

) ≥ 2n ln q(
ln
(

β
2πe

)
+ 2 ln

(
q

σe

√
2πe

)
− 2

√
n

2 ln q ·
ln( β

2πe )
β ln

(
q
ζ

))2 (11)
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Our goal is to express ln
(

β
2πe

)
via n, q, σe, σs and substitute the obtained

expression in Equation (11). Asymptotically, assuming ζ, σe are constants and
ln q ≥ lnβ, the above inequality is of the form β/ ln(β) ≥ d

ln(q) . Solutions for such
inequality do not have closed form expressions, however, one can check that they
all belong to Θ

(
n

ln(q) ln
(

n
ln q

))
. Experiments suggest that the constant inside

the Θ-notation is 1.
Letting X := β

ln( β
2πe )

, A := 2n ln q, B = 2 ln
(

q

σe

√
2πe

)
+ ln

(
2n
ln q ln

(
n

ln q

))
(it is the second addend of B where we used the simplification ln

(
β

2πe

)
≈

ln
(

2n
ln q ln

(
n

ln q

))
); C := n

2 ln q , D := ln(q/ζ), Equation (11) translates to

X =
A(

B − 2D
√

C
X

)2 .
A positive solution to this quadratic (in

√
X) equation is

√
X = 2D

√
C+

√
A

B .
Note that the right hand side is independent of β. Unrolling the definition of X,

we obtain β
ln(β/(2πe)) =

(
2D

√
C+

√
A

B

)2
. There is no closed form solution to this

equation, however, we can express the solution via the Lambert-W function7,
which can be evaluated numerically for our parameters. Concretely, we obtain

β = 2πe
1−W1

(
− 2πeB

2D
√

C+
√

A

)
, where W1() denotes the “lower” branch of Lambert-

W function. It follows ln
(

β
2πe

)
= −W1

(
− 2πeB

2D
√
C+

√
A

)
. Substituting this result

in Equation (11), we obtain a closed expression for β (technically, it is a lower
bound for β, but we treat it as equality):

β =
2n ln q ·

(
−W1

(
− 2πeB

2D
√
C+

√
A

))
(
−W1

(
− 2πeB

2D
√
C+

√
A

)
+ 2 ln

(
q

σe

√
2πe

)
−
√

n
2 ln q ·

B
2D

√
C+

√
A
ln(q/ζ)

)2
(12)

Having β (and optimal d), we obtain the expression for the security level λ
achieved by the LWE parameters n, q, σe, σs:

λ = log(TBKZ(β, d), 2) = 0.292β + log2(8d) + 16.4. (13)

In the next section, we show that this formula gives very close results to
the Lattice Estimator predictions, and hence we can use it to express the LWE
dimension n.

Expressing n. In order to express n via λ, q, σe, σs we look at Equation (10).
This is a quadratic inequality (treated as equality) in n. Out of the two roots
we choose the one that gives us the matching answers for concrete choices of
7 https://en.wikipedia.org/wiki/Lambert_W_function

https://en.wikipedia.org/wiki/Lambert_W_function
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n, λ, q, σe, σs. The solution is of the form (recall that ζ = max{1, ⌊σe/σs⌉})

n =
2 ln q · β · (2 ln q + ln(β/(2πe)− 2 ln(σe

√
2πe))2

ln(β/(2πe))(4 ln q − 2 ln ζ)2
.

Substituting the first order approximation β ≈ (λ− log(8d))/0.292 as (see Equa-
tion (3)), yields

n =
2 ln q · (λ− log(8d)) · (2 ln q + ln((λ− log(8d))/(0.584πe))− 2 ln(σe

√
2πe))2

0.292 ln((λ− log(8d))/(0.584πe))(4 ln q − 2 ln ζ)2
.

(14)

Expressing ln q. Inspecting Equation (10), we notice that it is linear in ln q
inequality (treated here as equality). Concretely,

ln q =
(d/β − 1) ln(β/(2πe)) + 2 ln(σe

√
2πe)

2(1− n/d)
.

Substituting the approximation for β ≈ (λ − log(8d))/0.292 and the optimal
choice for dimension d, we express lnσe as a function of λ, n, σe, σs.

Expressing lnσe. Similarly to ln q, a closer look at Equation (10) tells that this
inequality (again treated as equality) is linear lnσe. Concretely, we can express
the exact expressions for lnσe are

lnσe =
β + 2β/ ln(β/(2πe))

(
ln(q/

√
2πe)− n

d ln q
)
− d

2β/ ln(β/(2πe))
,

or

lnσe =
β + 2β/ ln(β/(2πe))

(
ln(q/

√
2πe)− n

d (ln q + lnσs
)
− d

2β/ ln(β/(2πe))
,

depending on whether ζ = 1 (in the first case) or ζ = σe/σs (in the second
case). Substituting the approximation for β ≈ (λ− log(8d))/0.292 and the opti-
mal choice for dimension d, we express lnσe as a function of λ, q, n, σs. As the
resulting expression is fairly cumbersome to write down, we omit it here. Instead
we resort to numerical computations (see later in Section 5) to compute σe.

3.3 Hybrid attack

Some FHE schemes [CKKS17] employ LWE instances with sparse ternary se-
crets, i.e., secrets with few non-zero coordinates. In this regime, a hybrid attack
may perform better than BDD or uSVP. The hybrid attack [LN13, Alb17, Ber23]
is a generalization of the BDD attack, where we start by guessing random ng
coordinates of the secret s for a fixed 0 ≤ ng ≤ n. Call the guess sg. If the
guess is correct, that is sg = s:ng

, then we can reduce the dimension of the LWE
instance to n− ng since

As+ e = b mod q ⇐⇒ Ang:sng : + e = b−A:ng
s:ng

. (15)
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For the correct guess s:ng
, the right-hand side forms a valid BDD instance on

the lattice

Lhybrid = {v ∈ Zn−ng+m | [Ang:|Im]v = 0 mod q},

with the target vector (0,b − A:ngs:ng ) ∈ Zn−ng × Zm, thus we can solve it
using lattice reduction as described in Section 3.2. If sng : is a wrong guess,
then Equation (15) does not hold, and we do not have any BDD guarantee.
Deciding whether a guess is correct or not is implemented by running a BDD
attack on each guess. Thus, we arrive at a trade-off between the total number
of guesses sg we make and the running time of the BDD attack on a lattice of
dimension d := n− ng +m.

Let us focus on the case of ternary secrets of Hamming weight h with h/2
ones and h/2 minus ones. This is the most common choice in the FHE literature,
see for example [CH18, GV23, LW24, AKP24]. Fix two integer parameters: ng
– the number of coordinates we guess, and 0 ≤ ω ≤ min(ng, h) – the Hamming
weight of sg ∈ Zng ’s we are guessing. The total number of guesses, that is, the
number of ternary vectors of dimension ng on weight ω is

Tsearch(ng, w) =

(
ng
ω

)
· 2ω.

The probability that the LWE secret s indeed has weight ω on ng coordinates is

psucc(ng, w) =

(
n−h
ng−w

)(
h
w

)(
n
ng

) , (16)

where the denominator enumerates the total number of ng-dimensional subvec-
tors of s, and the nominator computes the number of choices for zero’s in sg
times the number of choices for non-zero’s in sg.8

The hybrid attack starts by running a BKZ-β lattice reduction on Lhybrid ∈
Zd for some parameter β that guarantees that the last Gram-Schmidt vector
b⋆
d is larger than the standard deviation of the error. It essentially means (up

to ∼ (log n)1/2, see Lemma 1) that Babai’s algorithm will succeed in lifting
πd−β−1(sng :, e) to Lhybrid with constant probability. Under GSA, it means that
(on the log2-scale):

(−d+ 1) log2(δβ) +
1

d
((d− n+ ng − 1) · log2 q + (n− ng) log2(ζ)) ≥ 2 log(σ2

e),

(17)

where the left-hand side is log2 ∥b⋆
d∥2 under GSA. The above inequality guar-

antees that the correct guess sg will be identified by a BDD solver on input
8 Instead of guessing the exact weight of sg, one can guess that the secret is up to

weight ω. This will increase the success probability to
∑ω

i=1 psucc(ng, i) but also
increase the search space to

∑ω
i=1 Tsearch(ng, i). Asymptotically, the largest term in

both of these sums is for i = ω since ω < h ≪ ng/2.
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(Lhybrid, (0,b−A:ng
s:ng

)). Overall, the runtime of the hybrid attack is

Thybrid(β, d, ng, w) =
TBKZ(β, d) + Tsearch(ng, w)

psucc(ng, w)
. (18)

Note that there are four parameters to optimize: β – the block-size for BKZ
lattice reduction, d = n − ng +m – the dimension of Lhybrid, ng – the number
of coordinates of the guessed secret, and finally, ω – the Hamming weight of the
guessed secret. Given the target security level λ, these parameters are related as
follows:

0.292β + log2(8d) + 16.4 = log2

((
ng
ω

)
· 2ω
)
, (19)

d− ng =

⌈√
n ln q

ln δβ

⌉
, (20)

where Equation (19) balances (on the log2 scale) the total number of guesses with
the runtime of BKZ, and Equation (20) gives the optimal dimension of the lattice
analogously to the case of the BDD attack. Together with Equation (17) (treated
as equality), we have three relations between the four optimization parameters.
Typically, the Hamming weight ω is a small constant, and, in practice, it is easy
to brute-force over it. The shapes of Equations (17), (19) and (20) do not appear
to be amenable to a nice analytic expression for neither of the LWE parameters,
hence we suggest deriving these parameters using a numerical solver. The details
are given in Section 5.

4 Fine-tuning and Verification

4.1 Our methodology

As we have detailed in the previous section, during the derivation of our formulas,
several simplifications had to be made in order to express one parameter as a
function of the rest (for example, the security parameter λ as a function of LWE
parameters or the LWE dimension n via λ, log q, σs, σe). Although our formulas
perform very well ‘by default’, we can optimize them and compensate for the
loss in accuracy coming from the simplifications via a fitting function. The idea
is to add certain parameters to our formulas and then learn them by using a list
of points computed from the Lattice Estimator [APS15] and a fitting function.
We remark that the simplifications only have a noticeable effect on the non-
leading terms and the correction done via the fitting function can be understood
as fixing these terms.

Database. The database used to verify our formulas has been constructed as
follows. Fix σe = 3.19. Given a range of values for q, a range for LWE dimension
n and χs ∈ {U2,U3}, we run the Lattice Estimator to obtain the security level of
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the corresponding points. It is worth noticing that χs = U2 is employed in TFHE-
like schemes where 210 ≤ n ≤ 211, while χs = U3 is utilized in the other schemes
(BGV, BFV and CKKS), where the dimension n is much bigger, i.e. n ≤ 216.
We have selected various parameter sets providing different security levels to
validate and adjust our formulas exhaustively. Following common practice in
the FHE literature we populate our database with parameters offering at least
80 bits of security [CS16, CS17, MHWW24]. Table 1 shows the number of points
that we considered.

χs Range of n Range of log q σe Num. points

U2 [210, 211] [20, 64] 3.19 42962

U3 [210, 215] [10, 1600] 3.19 5282

Table 1: Number of points (in our database) used to verify our formulas divided
by secret distribution. Half of them correspond to the output of the lattice
Estimator for uSVP and the other half for BDD.

Classification and Curation. Given the database, we classify the points per se-
curity level. It is important to notice that, given a security level, not all points
need to be considered since most of them will never be used in practice. The
considered points follow this criterion:

– Fix a LWE dimension n, we consider the point (n, q) with the biggest possible
q. We can perform more computations with a bigger q.

– Fix a modulus q, we will only consider the point (n, q) with the smallest
possible n. We have higher efficiency with a smaller n.

Verification. The verification step consists of comparing the curated points
against our optimized formulas. Since we provide formulas derived from the
attacks against uSVP and BDD, we verify each formula separately against the
points where the security level corresponds to that attack.

Fine-tuning. After creating our database by running the Lattice Estimator as
explained above, we do the following:
1. We refine the resulting formulas (Equations (7), (8), (13) and (14)) by incor-

porating additional variables. Using coupled optimization9, we determine the
optimal values for these variables to ensure that our parameterized functions
follows the data points generated with the Lattice Estimator, i.e., accurately
reflects the security level estimation.

2. Finally, we provide a further simplification of these formulas, explicitly de-
pending on the variables n, λ and log q. Note that in this case, the variables
found using the coupled optimization technique are intrinsically dependent
on the secret distribution χs (and so on ζ).

9 Specifically, we use the LMFIT Minimizer class: https://lmfit.github.io/lmfit-
py/fitting.html.

https://lmfit.github.io/lmfit-py/fitting.html
https://lmfit.github.io/lmfit-py/fitting.html
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4.2 Verification of uSVP security level, Equation (7)

Starting from Equation (7) and using the process explained above, the resulting
function for λ (considering the uSVP attack) is

λ = Aβ +B ln

(
2n ln(q/ζ)β

ln(β/(2πe))

)
+ C, (21)

where
A = 0.317747 B = 2.071129 C = 1.849214 if χs = U2
A = 0.296208 B = 0.800603 C = 12.09086 if χs = U3.

Now, our aim is to express Equation (21) in a simplified form that explicitly
depends on the variables n and q.

Let x = n/ ln q, k1 = 1
2πe and k2 = 1

2πeσe
= k1

σe
. Since ln(q/ζ) ≈ ln(q/σe) ≈

ln(q), we have that Equation (6) can be approximate as

β ≥ 2n ln(q/ζ) ln(k1x lnx)

ln2(k2q
√
x lnx)

≈ 2n ln q(ln(x lnx)− 2.8)

(ln q + 0.5 ln(x lnx)− 4)2
.

Considering n, q such that the security level is between 80 and 130, we have that
ln q + 0.5 ln(x lnx)− 4 ≈ ln q. So

β ≈ 2x (ln(x) + ln(ln(x))− 2.8) . (22)

Substituting Equation (22) in Equation (21) we have:

λ ≈ 2A ln
(

n
ln q + ln

(
ln
(

n
ln q

))
− 2.8

)
n

ln q +B ln
(

2n ln(q/ζ)β
ln(β/(2πe))

)
+ C

≈ A′ ln
(
k3

n
ln q

)
n

ln q +B ln
(

2n ln(q)β
ln(β)−2.8

)
+ C

≈ A′ ln
(
k3

n
ln q

)
n

ln q +B ln(4n2k4) + C,

where k3 and k4 are small constants since if we consider n, q such that the
security level is between 80 and 130,

k4 =
lnx+ ln

(
lnx
)
− 2.8

ln
(
2x
)
+ ln

(
lnx+ ln

(
lnx
)
− 2.8

)
− 2.8

≈ 1.

Using coupled optimization, we find the following approximation

λ ≈ Ã ln

(
B̃n

ln q

)
n

ln q
+ C̃ lnn+ D̃ (23)

Ã = 0.445309 B̃ = 1.486982 C̃ = 0.950115 D̃ = 11.21416 if χs = U2
Ã = 0.833542 B̃ = 0.154947 C̃ = 1.469823 D̃ = 18.09877 if χs = U3.

The comparison results between the output of the Lattice Estimator and our
formulas (Equations (21) and (23)) are presented in Tables 2 and 3, demonstrat-
ing the effectiveness of our approach in accurately estimating security levels.
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Moreover, we want to point out that although our formulas are fine-tuned for
n = 2κ, with κ ∈ {10, . . . , 15}, they still provide accurate security estimates for
larger powers of two, such as n = 216 and n = 217, as demonstrated in Table 3.

n = 210

log q Estimator (21) (23)
20 172 178 174
24 142 145 144
25 136 139 137
26 130 133 132
27 125 128 126
28 120 123 122
30 112 114 113
33 101 103 102
37 90 92 90
42 80 81 78

n = 211

log q Estimator (21) (23)
37 193 193 188
46 152 152 149
50 139 139 136
53 130 130 128
54 127 128 126
57 120 121 119
62 110 111 109
67 101 102 101
74 91 93 91
84 80 82 80

Table 2: Comparison between the security level provided by our formulas (Equa-
tions (21) and (23)) and the Lattice Estimator with with χs = U2.

n = 210

log q Estimator (21) (23)
16 231 215 233
18 204 187 202
19 192 175 190
25 143 126 137
27 131 115 126
28 126 110 121
30 117 102 112
32 109 94 104
43 79 68 76
48 71 60 68

n = 215

log q Estimator (21) (23)
650 179 155 180
760 150 130 151
810 140 121 141
880 128 110 128
930 120 104 121
1000 111 96 112
1050 106 91 106
1200 92 80 93
1400 79 69 80
1500 74 64 75

n = 216

log q Estimator (21) (23)
1776 128 110 128
1229 192 167 193
955 256 224 260

n = 217

log q Estimator (21) (23)
3576 128 111 128
2469 192 167 193
1918 256 224 259

Table 3: Comparison between the security level provided by our formulas (Equa-
tions (21) and (23)) and the Lattice Estimator with χs = U3.

In Figure 1 we plot the data points of the Lattice Estimator and our formula
proposed in Equation (23).

4.3 Verification of BDD security level, Equation (13)

Starting from Equation (13) and using couple optimization, the resulting func-
tion for λ (considering the BDD attack) is

λ ≈ Ãβ + B̃ ln
(2nβ ln(q/ζ)

ln(β)

)
+ C̃. (24)

where
Ã = 0.26497 B̃ = 3.25511 C̃ = −13.69437 if χs = U2.
Ã = 0.28891 B̃ = 0.87868 C̃ = 19.1069 if χs = U3
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Fig. 1: The security formula (Equation (23)) with data points of the Lattice
Estimator for χs = U3 considering the uSVP attack.

In Figures 2 and 3 we pictured the data points of the Lattice Estimator and
our formula proposed in Equation (24).

Fig. 2: The security level formula (Equation (24)) with data points of the Lattice
Estimator for χs = U2 considering the BDD attack.
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Fig. 3: The security formula (Equation (24)) with data points of the Lattice
Estimator for χs = U3 considering the BDD attack.

From the Lattice Estimator outputs considered in this paper, we observed
that for binary secret, the BDD attack always outperforms uSVP, although by
a non-significant amount. Indeed, as our formulas suggest, the two attacks have
very close runtimes.

Our goal is to express Equation (24) in a simplified form that explicitly
depends on the variables n and q.

Since ln(q/ζ) ≈ ln(q/σe) ≈ ln(q), we have that, starting from Equation (12),

– A = 2n ln q ≈ n ln q;
– B = 2 ln

(
q

σ
√
2πe

)
+ ln

(
2n
ln q ln

(
n

ln q

))
≈ ln q + ln

(
n

ln q ln
(

n
ln q

))
– C = n

2 ln q ≈
n

ln q ,
– D = ln(q/ζ) ≈ ln q

Thus,
B

2D
√
C +

√
A
≈ k1

√
ln q

n
+ k2

where k1 and k2 are small constants. Let z = −2πe
(
k1

√
ln q
n + k2

)
, then Equa-

tion (12) can be approximate as

β ≈ 2n ln q · (−W1(z))(
−W1(z) + ln q +

√
n

ln q ·
(
k1

√
ln q
n + k2

)
ln q + k3

)2
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≈ 2n ln q · (−W1(z))(
−W1(z) + k4 ln q + k2

√
n ln q + k3

)2
≈ n · (−W1(z))(
− 1√

ln q
W1(z) + k4

√
ln q + k2

√
n
)2

Since W1() denotes the “lower” branch of Lambert-W function and the Lambert-
W is the inverse function of y = xex.

For our value of z we can somehow approximate −W (z) = − ln(z) + k, for
some constant k [HH08]. Thus, since − 1√

ln q
W1(z) is a small constant and since

ln
(

n
ln q

)
ln q
n ≈ 0 , Equation (12) becomes

β ≈
k1n ·

(
ln
(

n
ln q

)
+ k
)

(
k4
√
ln q + k2

√
n
)2 ≈ kn ·

(
ln
(

n
ln q

)
+ k
)

k̃4 ln q + k̃2n+ k̃3
√
n ln q

≈ k5
n

ln q
ln

(
n

ln q
+ k

)
+ k6, (25)

where ki are some constants.
Finally, substituting Equation (25) in Equation (24), we have

λ ≈ a n

ln q
ln

(
n

ln q
+ k

)
+B ln

(
2n2 + d

)
+ c, (26)

where a, c, and d are constants. Note that Equation (26) is similar to Equa-
tion (23), and this is not surprising as the two attacks yield very similar results.
Therefore, we aim to further approximate Equation (26) to obtain a formula
identical to Equation (23), but with different constants. Thus, using coupled
optimization, we obtain

λ ≈ A′ ln

(
B′n

ln q

)
n

ln q
+ C ′ lnn+D′ (27)

where

A′ = 0.424578 B′ = 2.122152 C ′ = 1.959558 D′ = 1.155390 if χs = U2
A′ = 0.606897 B′ = 0.476667 C ′ = 0.667667 D′ = 15.20932 if χs = U3.

The comparison results between the output of the Lattice Estimator and our
formulas (Equations (24) and (27)) are presented in Tables 4 and 5.
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n = 210

log q Estimator (24) (27)
20 173 166 175
24 142 138 144
25 136 132 138
26 130 127 132
27 125 122 127
28 120 117 122
30 112 109 113
33 101 99 102
37 90 88 90
42 79 77 79

n = 211

log q Estimator (24) (27)
37 191 185 190
46 150 147 150
50 137 135 137
53 129 127 129
54 126 125 127
57 119 118 120
62 109 108 110
67 100 100 101
74 98 91 91
84 79 80 81

Table 4: Comparison between the security level provided by our formulas (Equa-
tions (24) and (27)) and the Lattice Estimator with with χs = U2.

n = 210

log q Estimator (24) (27)
16 227 234 232
18 200 206 202
19 189 194 190
25 140 144 140
27 129 132 128
28 124 127 123
30 115 117 114
32 107 109 106
43 78 79 78
48 70 70 70

n = 215

log q Estimator (24) (27)
650 181 179 179
760 150 151 150
810 141 140 140
880 129 128 128
930 120 121 120
1000 111 112 112
1050 106 107 106
1200 92 93 92
1400 80 80 79
1500 74 74 74

n = 216

log q Estimator (24) (27)
1776 128 128 127
1229 192 192 191
955 256 256 254

n = 217

log q Estimator (24) (27)
3576 128 129 127
2469 192 192 190
1918 256 256 253

Table 5: Comparison between the security level provided by our formulas (Equa-
tions (24) and (27)) and the Lattice Estimator with χs = U3.

4.4 Verification of the LWE dimension via uSVP, Equation (8)

Starting from Equation (8) and using the couple optimization, the resulting
function for n (considering the uSVP attack) is

n =
Aλ
(
0.5 ln(λ/0.292) + ln(q/(2πeσe)) +B

)2
0.584 ln(q/ζ) ln(λ/(0.584πe) + C)

, (28)

where
A = 1.02575 B = 0.17241 C = 34.84910 if χs = U2
A = 1.05153 B = 0.52652 C = 43.20997 if χs = U3.

In Figure 4 we pictured the data points of the Lattice Estimator and our
formula proposed in Equation (28) for the ternary distribution.
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Fig. 4: The security level formula (Equation (28)) with data points of the Lattice
Estimator for χs = U3 considering the uSVP attack.

Our goal is to express Equation (28) in a simplified form that explicitly
depends on the variables λ and q. To do this, we consider Equation (23) and
setting x = n/ ln q, we have

λ ≈ Ã ln(B̃x)
n

ln q
+ C̃ lnx+ C̃ ln ln q + D̃.

Thus,

n ≈

(
λ− C̃ lnx− C̃ ln ln q − D̃

Ã ln(B̃x)

)
ln q ≈

(
λ+ k1 ln ln q

k2 ln(x) + k3
+ k4

)
ln q

where ki are some constants. Since x appears only in the logarithm, we can
consider the leading term of Equation (23) approximating x ≈ aλ+ b, where a, b
are some constants. Thus, using couple optimization, we obtain

n ≈
(
λ+A′ ln(ln q)

B′ ln(λ) + C ′ +D′
)
ln q, (29)

A′ = −1.142080 B′ = 0.231197 C ′ = 1.106616 D′ = −0.233138 if χs = U2
A′ = −1.073049 B = 0.278319 C ′ = 0.931202 D′ = 0.792882 if χs = U3.
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The comparison results between the output of the Lattice Estimator and
our formulas (Equation (29) and Equation (29)) are presented in Tables 6 and 7,
demonstrating the effectiveness of our approach in accurately estimating security
levels.

log q Est(28) (28) Est(29) (29)
λ ≈ 80

42 81 1036 81 1040
58 81 1432 81 1428
71 81 1754 80 1743
84 81 2076 80 2057

log q Est(28) (28) Est(29) (29)
λ ≈ 100

34 101 1037 101 1041
46 101 1402 101 1403
57 100 1736 100 1734
67 100 2039 100 2035

log q Est(28) (28) Est(29) (29)
λ ≈ 110

31 111 1037 112 1039
42 111 1400 111 1403
52 111 1731 111 1732
61 111 2029 111 2029

log q Est(28) (28) Est(29) (29)
λ ≈ 120

28 122 1019 122 1018
39 121 1412 121 1414
48 121 1734 121 1736
57 120 2056 121 2058

log q Est(28) (28) Est(29) (29)
λ ≈ 128

27 130 1045 130 1043
37 129 1424 129 1425
45 129 1727 129 1730
54 129 2069 129 2072

log q Est(28) (28) Est(29) (29)
λ ≈ 140

24 143 1015 142 1008
34 142 1425 142 1424
41 141 1713 142 1715
49 141 2041 141 2046

Table 6: Results of running the Lattice Estimator with the LWE dimension
provided by Equations (28) and (29). Column Est(28) (resp. Est(29)) shows the
output of the Lattice Estimator run with parameters log q, the output of Equa-
tion (28) (resp. (29)), secret distribution U2 and error distribution a discrete
Gaussian with σe = 3.19.

log q λ Est(28) (28) Est(29) (29)
43 80 82 1054 84 1082
34 100 103 1036 105 1048
32 110 114 1070 115 1075
29 120 125 1057 125 1053
27 128 135 1050 133 1039
25 140 148 1063 145 1043

log q λ Est(28) (28) Est(29) (29)
1400 80 83 34247 81 33535
1100 100 102 33114 100 32607
1000 110 112 32873 110 32425
930 120 122 33117 120 32708
880 128 130 33244 128 32864
810 140 142 33207 140 32870

Table 7: Results of running the Lattice Estimator with the LWE dimension
provided by Equations (28) and (29). Column λ shows the target security level
provided as input to Equations (28) and (29). Column Est(28) (resp. Est(29))
shows the output of the Lattice Estimator run with parameters log q, the output
of Equation (28) (resp. (29)), secret distribution U3 and error distribution a
discrete Gaussian with σe = 3.19.

In Figure 5, we plot the data points of the Lattice Estimator for uSVP attack
and our formula proposed in Equation (29).
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Fig. 5: Comparison between Equation (29) and the data points output by the
Lattice Estimator for χs = U2, considering the uSVP attack.

4.5 Verification of the LWE dimension via BDD, Equation (14)

Starting from Equation (14), and setting β ≈ (λ − ln(λ))/0.292, we use the
couple optimization to find the resulting function for n (considering the BDD
attack):

n =
(Ãβ + B̃)

(
2 ln q + ln (β/2πe) + C̃

)2
2
(
ln (β/2πe) + D̃

)
(ln(q2/ζ))

2
ln q (30)

where

Ã = 1.154587 B̃ = −46.18551 C̃ = −4.457340 D̃ = 0.809972 if χs = U2
Ã = 1.417954 B̃ = −48.44275 C̃ = −2.871196 D̃ = 1.884925 if χs = U3.

We approximate Equation (30) obtaining

n ≈
(k1λ+ k5 lnλ)

(
(ln q + k2) + (k3 lnλ− k3 ln lnλ+ k4)

)2
(k3 lnλ− k3 ln lnλ+ k4) ln q

≈(k1λ+ k5 lnλ)

(
ln q + k6

k3 lnλ− k3 ln lnλ+ k4
+
k3 lnλ− k3 ln lnλ+ k4

ln q

)
≈(k1λ+ k5 lnλ)

(
k7

ln q

lnλ
+ k8

lnλ

ln q

)
for some constant ki ∈ R.
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Using coupled optimization techniques we have

n = (A′λ+B′ lnλ)

(
C ′ ln q

lnλ
+D′ lnλ

ln q

)
(31)

A′ = 0.463730 B′ = −1.634159 C ′ = 5.236220 D′ = 1.818256 if χs = U2
A′ = 2.755987 B′ = −10.41781 C ′ = 0.869780 D′ = 0.318689 if χs = U3.

The comparison results between Equations (30) and (31) and the output of
the Lattice Estimator are presented in Tables 8 and 9. In Figure 6, we show the
data points of the Lattice Estimator for the BDD attack and Equation (31).

log q Estn (30) Estn (31)
λ ≈ 80

42 81 1048 81 1050
58 81 1445 81 1445
71 81 1768 80 1766
84 81 2090 81 2087

log q Estn (30) Estn (31)
λ ≈ 100

34 101 1054 101 1055
46 101 1419 101 1419
57 101 1755 101 1754
67 101 2060 101 2059

log q Estn (30) Estn (31)
λ ≈ 110

31 111 1053 112 1055
42 111 1419 111 1418
52 111 1751 111 1751
61 111 2050 111 2050

log q Estn (30) Estn (31)
λ ≈ 120

28 122 1036 122 1037
39 121 1430 121 1430
48 121 1753 121 1753
57 121 2076 121 2078

log q Estn (30) Estn (31)
λ ≈ 128

27 130 1062 130 1063
37 129 1442 129 1442
45 129 1746 129 1746
54 129 2088 129 2090

log q Estn (30) Estn (31)
λ ≈ 140

24 143 1032 143 1033
34 142 1443 142 1442
41 141 1731 141 1730
49 141 2059 141 2061

Table 8: Results of running the Lattice Estimator with the LWE dimension
provided by Equations (30) and (31). Column Est(30) (resp. Est(31)) shows the
output of the Lattice Estimator run with parameters log q, the output of Equa-
tion (30) (resp. (31)), secret distribution U2 and error distribution a discrete
Gaussian with σe = 3.19.

log q λ Est(30) (30) Est(31) (31)
43 80 82 1076 80 1043
34 100 106 1076 101 1028
32 110 117 1117 111 1061
29 120 130 1110 122 1047
27 128 140 1108 131 1039
25 140 156 1128 144 1051

log q λ Est(30) (30) Est(31) (31)
1400 80 82 33637 81 33675
1100 100 101 32761 101 32780
1000 110 111 32582 111 32604
930 120 121 32863 121 32892
880 128 129 33012 129 33047
810 140 142 32999 141 33043

Table 9: Results of running the Lattice Estimator with the LWE dimension
provided by Equations (30) and (31). Column λ shows the target security level
provided as input to Equations (30) and (31). Column Est(30) (resp. Est(31))
shows the output of the Lattice Estimator run with parameters log q, the output
of Equation (30) (resp. (31)), secret distribution U3 and error distribution a
discrete Gaussian with σe = 3.19.
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Fig. 6: The LWE dimension n (Equation (31)) with data points of the Lattice
Estimator for χs = U3 for the BDD attack.

5 Generalization employing numerical methods

In the previous sections, we derived formulas to express the security level λ
and the LWE dimension n from the complexity analysis of the primal attack
(uSVP, BDD, and hybrid). The idea is to first approximate the non-leading
terms of these equations to retrieve the desired parameter as done in Section 3
and then compensate with a fine-tuning phase as we presented in Section 4. This
approach has several advantages: it is fast, numerically stable, and explicitly
shows the relations among the parameters. On the other hand, the fine-tuning
phase proposed is specific for σe = 3.19. This choice of the standard deviation of
the error distribution is the preferred one for the BGV, BFV, and CKKS schemes.
However, in TFHE, it is often required to vary in order to achieve a specific level
of security due to the restrictions on the ciphertext size. In the following, we
propose a computational alternative that allows to precisely determine the value
of any of the parameters λ, n, q, and σe (the latter two parameters on the
log2-scale), provided the remaining ones and the desired secret distribution.

The idea is to employ numerical methods, i.e. mathematical tools designed to
solve numerical problems, for the resolution of the systems of equations obtained
from the theoretical analysis of the attacks on LWE provided in Section 3. In
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detail, we get a system of two equations in the two variables β and the desired
parameter as follows.

uSVP attack. In Section 3.1, we obtained Equations (5) and (7), relating the
parameters λ, n, q, σs, σe and the block size β. Writing them as equations in
implicit form, we obtain the following systemβ −

2n ln(q/ζ) ln(β/(2πe))

ln2(q
√
β/(2πeσe))

= 0

λ−
(
0.292β + log2

(
8
√

2n ln(q/ζ)β
ln(β/(2πe))

)
+ 16.4

)
= 0.

(32)

Note that, in our scenario, we have a system of two equations in two unknowns,
the block size β and the parameter to be determined (either λ, n, ln q, or lnσe)
that we can solve with a numerical method for root finding. In particular, we
chose to use Python method fsolve, because it appeared fast and effective in
practice.

n = 210

χs log q Estnum λ num
13 266 268
18 194 195

U2 27 127 126
32 106 105
42 80 78
64 56 49

n = 211

χs log q Estnum λ num
28 261 260
32 226 225

U2 37 193 192
53 130 129
64 106 105
84 80 78

n = 210

χs log q Estnum λ num
14 265 263
19 192 191

U3 27 131 130
34 102 100
43 79 78

n = 215

χs log q Estnum λ num
475 256 255
611 192 190

U3 880 128 126
1050 106 104
1400 79 77

Table 10: Comparison between the security level provided by our numerical solver
(num) and the Lattice Estimator for uSVP attack, when σe = 3.19.

Additionally, our tools provides numerical estimates for the LWE dimension
n and the modulus q and standard deviation of the error distribution σe in
bit size. The corresponding results, including the comparison with the Lattice
Estimator output, are presented in Tables 11 to 13.

log q λ Estnum n num
43 80 79 1047
34 100 98 1015
32 110 108 1042
29 120 118 1021
27 128 126 1008
25 140 137 1012

log q λ Estnum n num
1400 80 80 33754
1100 100 100 32875
1000 110 110 32681
930 120 120 32935
880 128 129 33058
810 140 140 32999

Table 11: LWE dimension (n num) computed by the numerical solver given λ,
log q, χs = U3 and χe = DG(0, σ2) with σe = 3.19. Column Estnum reports
the security level from the Lattice Estimator using the output n num and the
corresponding parameters, considering the uSVP attack.
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χs n λ Estnum log q num
1024 100 103 33
1024 128 132 26
1024 192 194 18

U2 1024 256 266 13
2048 100 101 67
2048 128 130 53
2048 192 193 37
2048 256 261 28

χs n λ Estnum log q num
1024 100 102 34
1024 128 131 27
1024 192 204 19

U3 1024 256 265 14
32768 100 101 1113
32768 128 129 881
32768 192 193 611
32768 256 257 475

Table 12: Maximum log q values ensuring the target security level λ against the
uSVP attack. Estnum reports the actual security levels obtained when plugging
(n, log q num , χs, σe = 3.19) into the Lattice Estimator.

It is worth mentioning that, unlike the other parameters, the output of our
numerical solver for σe can occasionally be off or fail to converge to a solution. Al-
though this occurs very rarely (as shown in Table 13), we recommend that users
perform an exhaustive search for optimal parameters using an LWE estimator.
Our tool provides this option: specifically, it uses the result from the numerical
solver as a starting point and performs a search over σe to find the optimal value
according to the Lattice Estimator. The outcome of this approach is presented in
the last three columns of Table 13. In particular, the column * Estnum provides
the security levels obtained when plugging (n, log q, χs = U2, * log2(σe)) into the
Lattice Estimator. Finally, the last column, Estcalls shows the number of calls
required for this correction.

n log q λ Estnum log2(σe) * Estnum * log2(σe) Estcalls
1024 32 100 102 0.33 100 -0.37 9
1024 64 100 100 31.91 100 31.61 5
1024 32 128 128 6.93 128 6.73 4
1024 64 128 128 38.83 128 38.73 3
1024 32 192 192 15.46 192 15.46 2
1024 64 192 191 47.41 192 47.51 2
1024 32 256 255 20.06 257 20.16 2
1024 64 256 255 52.03 257 52.13 2
2048 32 100 0 1.67 100 -14.09 2
2048 64 100 101 -1.11 100 -1.51 6
2048 32 128 129 -9.01 128 -9.11 3
2048 64 128 129 12.21 128 11.81 6
2048 32 192 193 -2.08 193 -2.08 2
2048 64 192 192 28.6 192 28.5 3
2048 32 256 256 5.26 256 5.26 2
2048 64 256 256 37.2 256 37.2 2

Table 13: Minimum standard deviation σe (in base-2 logarithm) of the error
distribution for uSVP attacks with χs = U2 obtained by running our numerical
method approach. Column Estnum represents the security level computed by the
Lattice Estimator for the corresponding (n, log q, σe) values. Columns * Estnum
and * log2(σe) show the results obtained by correcting the output in Estnum
using the Lattice Estimator (column Estcalls shows the number of calls required
for the correction). A value of 0 in the column Estnum indicates that the method
did not converge.
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We want to emphasize that we do not propose a way to compute σs, as the
distribution of the secret key is chosen a priori, according to the scheme and
the scenario. TFHE-like schemes employ the binary distribution, while BGV,
BFV, and CKKS use the ternary if leveled and the sparse if the bootstrapping
is expected.

BDD attack. Analogously, we can write Equations (11) and (13) from Section 3.2
in a system of two equations describing the relations among the parameters and
the block size β,

β − 2n ln q ln( β
2πe )ln( β

2πe )+2 ln
(

q

σe
√

2πe

)
−2

√
n

2 ln q ·
ln( β

2πe )
β ln( q

ζ )

2 = 0

λ− (0.292β + log2(8d) + 16.4) = 0,

(33)

where the optimal d is set to d =
√

2n ln q β
ln(β/2πe) , and find the desired parameter by

solving the system with a numerical method.
The comparison results between the output of the Lattice Estimator and our

numerical method are presented in Table 14.

n = 210

χs log q Estnum λ num
13 264 272
18 191 196

U2 27 125 127
32 105 105
42 79 79
64 58 49

n = 211

χs log q Estnum λ num
28 258 261
32 224 226

U2 37 191 192
53 129 129
64 105 105
84 79 78

n = 210

χs log q Estnum λ num
14 261 265
19 189 192

U3 27 129 130
34 100 101
43 78 78

n = 215

χs log q Estnum λ num
475 256 255
611 192 190

U3 880 129 126
1050 106 104
1400 80 77

Table 14: Comparison between the security level provided by our numerical solver
(num) and the Lattice Estimator for BDD attack, when σe = 3.19.

In the computation of n, log q and σe, we are able to make a further improve-
ment in the precision of our approximation. Indeed, so far we assumed β ≈ η,
which only introduce little fluctuations in the computation of λ with the nu-
merical approach. However, this approximation can have a bigger impact when
estimating other, more delicate parameters like log q or log σe. Therefore, in this
case we use the version of Equation (11) in which η is not replaced by β. The
resulting system of equations is{

η − d+ 1
ln δβ

(ln q

σe

√
2πe
− n

d ln q
ζ ) = 0

λ− (0.292β + log2(8d) + 16.4) = 0,
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and η is computed from λ − (0.292η + log2(η) + 16.4) = 0, using a numerical
method as well.

The results produced by our numerical solver, along with the comparison
with the Lattice Estimator output for n, q, and σe, are presented in Tables 15
to 17, respectively.

log q λ Estnum n num
43 80 79 1031
34 100 98 1005
32 110 108 1034
29 120 118 1014
27 128 126 1001
25 140 137 1006

log q λ Estnum n num
1400 80 80 32955
1100 100 100 32374
1000 110 110 32260
930 120 120 32569
880 128 129 32726
810 140 140 32712

Table 15: LWE dimension (n num) computed by the numerical solver given λ,
log q, χs = U3 and χe = DG(0, σ2) with σe = 3.19. Column Estnum reports
the security level from the Lattice Estimator using the output n num and the
corresponding parameters, considering the BDD attack.

As before, for σe, we recommend that users perform an exhaustive search
for optimal parameters using our tool. The outcome of this process is reported
in the last three columns of Table 17. In particular, the column Estnum shows
the security levels obtained by plugging (n, log q, χs = U2, ∗ log2(σe)) into the
Lattice Estimator; and the last column (Estcalls) indicates the number of calls
needed to complete this refinement.

χs n λ Estnum log q num
1024 100 101 33
1024 128 130 26
1024 192 191 18

U2 1024 256 264 13
2048 100 100 67
2048 128 129 53
2048 192 191 37
2048 256 258 28

χs n λ Estnum log q num
1024 100 100 34
1024 128 129 27
1024 192 189 18

U3 1024 256 261 14
32768 100 100 1096
32768 128 129 872
32768 192 192 608
32768 256 256 474

Table 16: Maximum log q values ensuring the target security level λ against the
BDD attack. Estnum reports the actual security levels obtained when plugging
(n, log q num , χs, σe = 3.19) into the Lattice Estimator.

Hybrid attack. In Section 3.3, we derived three equations that relate the hybrid
BDD attack parameters:
0.292β + log2(8d) + 16.4 = log2

((
ng

ω

)
· 2ω
)
,

d− ng =
⌈√

n ln q
ln δβ

⌉
,

(−d+ 1) log2(δβ) +
1
d ((d− n+ ng − 1) · log2 q + (n− ng) log2(ζ)) ≥ 2 log(σ2

e).
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n log q λ Estnum log2(σe) * Estnum * log2(σe) Estcalls
1024 32 100 98 -0.19 100 0.21 5
1024 64 100 98 28.42 100 28.72 4
1024 32 128 126 6.38 128 6.78 5
1024 64 128 164 34.25 132 31.95 25
1024 32 192 188 13.64 192 13.94 4
1024 64 192 293 41.33 193 36.03 55
1024 32 256 301 17.25 276 16.35 11
1024 64 256 389 45.13 257 39.63 57
2048 32 100 99 -14.19 100 -13.99 3
2048 64 100 99 -1.45 100 -1.25 3
2048 32 128 126 -9.13 128 -8.93 3
2048 64 128 127 11.28 128 11.58 4
2048 32 192 190 -2.12 192 -1.92 3
2048 64 192 190 25.71 192 25.91 3
2048 32 256 253 4.92 256 5.22 4
2048 64 256 254 32.82 256 33.02 3

Table 17: Minimum standard deviation σe (in base-2 logarithm) of the error
distribution for BDD attacks with χs = U2 obtained by running our numerical
method approach. Column Estnum represents the security level computed by the
Lattice Estimator for the corresponding (n, log q, σe) values. Columns * Estnum
and * log2(σe) show the results obtained by correcting the output in Estnum
using the Lattice Estimator (column Estcalls shows the number of calls required
for the correction).

Even though this system has four unknowns (β, d, ng, ω) for the given LWE pa-
rameters n, q, σe, h, we can brute-force over ω as the optimal values do not exceed
40 for the interesting LWE parameters. To aid numerical solvers, we approxi-
mate the binomial coefficient from the first equation using Sterling’s formula,
i.e., log2

(
ng

ω

)
≈ ngH(ω/ng), where H() is the binary entropy function.

Having found β, d, ng, ω for the given LWE parameters, we can easily compute
the security level λ using Equation (13). The results are shown in Table 18.

χs n log q h Estnum λ num
200 128 128 127
119 128 195 196

HWT (h) 8192 87 128 243 239
210 192 128 127
128 192 203 205
91 192 280 274

χs n log q h Estnum λ num
850 128 125 122
500 128 193 190

HWT (h) 32768 330 128 255 254
850 192 128 126
565 192 191 188
410 192 249 248

Table 18: Comparison between the security level provided by our numerical solver
(λ num) and the Lattice Estimator for the hybrid attack for sparse ternary secrets
of Hamming weight h.

Oppositely, in order to find the optimal modulus q given the desired security
level λ, we build the system
λ = 0.292β + log2(8d) + 16.4− log2(psucc(ng, w)),

λ = log2
((

ng

ω

)
· 2ω
)
− log2(psucc(ng, w))

d− ng =
⌈√

n ln q
ln δβ

⌉
,

(−d+ 1) log2(δβ) +
1
d ((d− n+ ng − 1) · log2 q + (n− ng) log2(ζ)) ≥ 2 log(σ2

e),
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where psucc(ng, w) is given in Equation (16).

In Table 19, we show the output of our numerical solver for the system above,
providing the largest log q ensuring the target λ.

χs n h λ Estnum log q num
128 100 102 34
192 100 100 36
128 128 132 26

HWT (h) 1024 192 128 131 28
128 192 194 17
192 192 197 19
128 256 238 14
192 256 249 15

χs n h λ Estnum log q num
128 80 81 1360
192 80 79 1403
128 128 121 877

HWT (h) 32768 192 128 125 877
128 192 163 629
192 192 178 608
128 256 218 420
192 256 211 500

Table 19: Maximum log q values ensuring the target security level λ against the
hybrid attack, for sparse ternary secrets of Hamming weight h. Est reports the
actual security levels obtained when plugging (n, log q num, h) into the Lattice
Estimator.

6 How to use our results in practice

In this section we present a powerful tool that integrates the results of Sections 4
and 5. The tool, available in our Github repository10, allows users to quickly and
efficiently select secure LWE parameters.

After narrowing down the range of possible parameter choices with our tool,
users can verify them using any LWE estimator. For example, one could rely on
the Lattice Estimator or on the Leaky-LWE Estimator [DSDGR20].11 It is im-
portant to note that our tool targets security and does not take into account the
correctness of FHE decryption, since this depends on the circuit being evaluated
and the selected FHE scheme.

Now, we will provide basic usage overview of our tool’s functionality, we refer
the reader to our Github repository for more examples and a detailed explanation
of all the functionalities of our tool.

Estimation of the security level. To determine the security level, use the
command --param "lambda" followed by the known parameters: n, q, σs, and
σe. For example:

python3 src/estimate.py --param "lambda" --n "1024" --logq
"20;35;40" --secret "binary" --std "3.19"

gives as output the following:
10 https://github.com/Crypto-TII/fastparameterselection
11 https://github.com/lducas/leaky-LWE-Estimator

https://github.com/Crypto-TII/fastparameterselection
https://github.com/Crypto-TII/fastparameterselection
https://github.com/Crypto-TII/fastparameterselection
https://github.com/lducas/leaky-LWE-Estimator
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secret dist. | lwe dim. | log q | output
---------------+----------+-------+-------
Uniform (-1 0) | 1024 | 20 | 173
Uniform (-1 0) | 1024 | 35 | 95
Uniform (-1 0) | 1024 | 40 | 83

Estimation of the LWE dimension. The LWE dimension n can be estimated
in the same way as explained in the previous paragraph, with the initial command
changed to --param "n". Here, one provides the LWE parameters as before
together with target λ. For instance:

python3 src/estimate.py --param "n" --lambda "128" --logq
"27;37;45;54" --secret "binary" --error "gaussian" --std
"3.19"

secret dist. | lambda | log q | output | pow
---------------+--------+-------+--------+-----
Uniform (-1 0) | 128 | 27 | 1063 | 1024
Uniform (-1 0) | 128 | 37 | 1442 | 1024
Uniform (-1 0) | 128 | 45 | 1746 | 2048
Uniform (-1 0) | 128 | 54 | 2090 | 2048

The last column pow shows the closest to the output power-of-two.

Estimation of the size of the modulus q. In this case, the procedure is the
same as described earlier, with the only difference being the initial command:

python3 src/estimate.py --param "logq" --lambda "128" --n
"32768" --secret "ternary" --error "gaussian" --std
"3.19"

secret dist. | lambda | lwe dim. | output
---------------+--------+----------+-------
Uniform (-1 1) | 128 | 32768 | 881

Estimation of the standard deviation of the error distribution. As
before, you can estimate σe given the other LWE parameters, and the results
are again obtained via the numerical method. In this case, the initial command
to estimate σe is --param "std_e":

python3 src/estimate.py --param "std_e" --lambda "192" --n
"2048" --logq "64" --secret "binary"
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secret dist. | lambda | lwe dim. | log q | output
---------------+--------+----------+-------+-------
Uniform (-1 0) | 192 | 2048 | 64 | 28.60

6.1 Adapting Our Tool to Non-FHE Settings

While our formulas are fine-tune for FHE settings, our tool allows users to input
arbitrary LWE parameters (λ, n, σe, σs, q). In particular, σs and σe can be chosen
from the following distributions:

– Uniform binary distribution U2
– Uniform ternary distribution U3
– Uniform modulus distribution Up
– Uniform distribution U[a,b]
– Sparse ternary distribution HWT (h)
– Discrete Gaussian distribution DG(0, σ2)
– The centered binomial distribution ψη.

Some cases in which this flexibility is necessary are, for example, Kyber and
Saber. We refer the reader to our Github repository for examples.

7 Advantages of a formula-based approach

Prior to our work, selecting secure parameters for LWE-based FHE schemes was
only possible by using the Lattice Estimator [APS15] and constructing tables
based on its outputs. We believe this approach has two major problems: 1)
depending on the parameters, the Lattice Estimator can take a long time to
produce an output and 2) relying on a set of predefined tables is too rigid,
constraining developers and libraries to use those sets of parameters.

The formula-based approach presented in this work solves the previous prob-
lems and provides a fast and flexible methodology to select secure parameters
for FHE that can directly replace the tables used by existing FHE libraries or
provide a faster methodology to update those tables.

Another great advantage of a formula-based approach is total flexibility con-
cerning the parameters that can be fixed. As shown in the previous sections, we
provide formulas not only for the security level λ but also for the size of the
ciphertext modulus q, the LWE-dimension n and the standard deviation of the
error σe. This will allow companies working on privacy-preserving applications
based on FHE to have total control over the parameters that they need with-
out investing efforts towards constraining their applications to predefined sets of
parameters.

In the rest of this section we compare our approach with [BCC+24] and
[BBB+23] which, at the time of writing, are the state-of-the-art approaches for
parameter selection in FHE.

https://github.com/Crypto-TII/fastparameterselection
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7.1 Comparision with [BCC+24]

In [BCC+24], the authors provide tables listing parameters for FHE applications
targeting different levels of security (128, 192 and 256). Moreover, the paper
includes a script (based on the Lattice Estimator) which can be used to update
the listed values.12 Their work is particularly valuable to non-experts since it
allows them to select secure parameters for their applications quickly.

The main difference between our work and [BCC+24] is the scope of param-
eters that an end-user can obtain. That is, a table-based approach such as the
one provided by [BCC+24] is rigid by design. Although the authors offer a way
to update the parameters via a script, they are restricted to a predefined set of
values. The parameters presented in [BCC+24] indeed cover most of the current
FHE applications but there is no fundamental reason for which we could not
obtain parameters outside the usual range. For instance, there might be appli-
cations that benefit from a different security level, a smaller LWE dimension or
from using a dimension other than a power of two [DGM24]. With our tool, we
can quickly get the parameters of Table 20, which would serve the purpose of
such applications.

λ n log q χs

110 512 17 U3

128 512 13 U3

110 3072 101 U3

128 3072 80 U3

Table 20: Example of parameters obtained using our tool that are not typically
offered in the literature. We selected σe = 3.19 in all the examples.

Another difference between our work and [BCC+24] is their use of the Lattice
Estimator. The script provided by [BCC+24] generates the tables by first reading
a set of predefined values stored in a lookup table and then runs binary search
invoking the Lattice Estimator until optimal parameters are found. Our formula-
based approach allows us to obtain optimal values without the need to run the
Lattice Estimator, which makes the process of updating the tables much faster.
We want to remark that we only use the Lattice Estimator to verify and fine-tune
our formulas while [BCC+24] relies on it to produce the tables.

There are other subtle but important differences between [BCC+24] and
our work. They use the Matzov attack [MAT22], which is not known to be
correct [DP23], we are relying on more understood attacks. Properly analyzing
dual attacks on lattice in the same fashion as we present here for primal attacks
(uSVP, BDD, and hybrid) is beyond the scope of this work. Finally, they do not
consider sparse secrets nor NTRU while we do not consider quantum attacks.
12 See https://github.com/gong-cr/FHE-Security-Guidelines/

https://github.com/gong-cr/FHE-Security-Guidelines/
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7.2 Comparison with [BBB+23]

In [BBB+23], the authors detail a framework to find optimal parameters for ap-
plications built from TFHE-like schemes. They find parameters which are both
secure and provide correctness of computation for the underlying cryptographic
task. Their method relies on a security oracle, which given n, q, λ and σs out-
puts the minimal σe that guarantees security λ. In practice13, this oracle is
constructed as a linear approximation. Their methodology is the following. Fix
log q = 64, σs = U2 and security level λ. Given a range of values for σe, iterate
over different values of n to find the minimum n for which the Lattice Estimator
outputs security level λ. The output is then a collection of points {(ni, σi

e)}i
which can be linearly interpolated, obtaining parameters a, b. The oracle corre-
sponds to the function F(n) = 2⌈a·n+b⌉. Our methodology deviates considerably
from [BBB+23]. The main difference is that our formulas do not come solely
from empirical results but from the mathematical descriptions of the attacks
against uSVP and BDD. This distinction allows us to provide a more general
and theoretically grounded parameter selection framework.

8 Conclusion

Starting from a theoretical base, we provided a pioneering methodology to obtain
closed formulas for the security level of LWE as a function of the LWE dimension
n, (bit size of) modulus q, standard deviations of secret σs, and error σe. By
‘reversing’ these formulas we can express any fixed LWE parameter n, or log q,
or σs, or log σe as a function of the other parameters and the security level λ.
We have then verified and fine-tuned our formulas using empirical data obtained
from the Lattice Estimator [APS15]. Additionally, we introduce the use of a
numerical method that allows us to precisely determine not only the values of
λ and n but also the value of either the (maximal) modulus q or the standard
deviation of the error distribution σe, given the other LWE parameters.

The results obtained in this work significantly accelerate the parameter se-
lection process of any LWE-based encryption scheme. We use them to build a
practical and efficient tool for researchers and practitioners deploying FHE in
real-world applications and seeking for a fast, user-friendly and accessible mech-
anism to choose secure parameters.

13 See https://github.com/zama-ai/concrete/tree/main/tools/parameter-curves

https://github.com/zama-ai/concrete/tree/main/tools/parameter-curves
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