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Abstract

We propose Powerformer, an efficient ho-
momorphic encryption (HE)-based privacy-
preserving language model (PPLM) designed
to reduce computational overhead while main-
taining model performance. Powerformer in-
corporates three key techniques to optimize
encrypted computations: 1) A novel distilla-
tion technique that replaces softmax and layer
normalization with computationally efficient
power and linear functions, ensuring no per-
formance degradation while enabling seamless
encrypted computation. 2) A pseudo-sign com-
posite approximation method that accurately
approximates GELU and tanh functions with
minimal computational overhead. 3) A homo-
morphic matrix multiplication algorithm specif-
ically optimized for Transformer models, en-
hancing efficiency in encrypted environments.
By integrating these techniques, Powerformer
based on the BERT-base model achieves a 45%
reduction in computation time compared to the
state-of-the-art HE-based PPLM without any
loss in accuracy.

1 Introduction

As AI services continue to expand, many com-
panies now offer machine learning as a service
(MLaaS). However, there are growing concerns
about potential privacy breaches when clients en-
trust their sensitive data to a server. To address this
issue, there has been increasing interest in privacy-
preserving language models (PPLMs), which uti-
lize data encryption. In particular, PPLMs lever-
aging homomorphic encryption (HE) enable the
client to send encrypted data to the server, where
all processing is conducted without decryption. The
server subsequently returns the encrypted output
to the client. This approach drastically lowers the
client’s computational load while minimizing ex-
posure of client data or model information. Con-
sequently, HE-based PPLMs have emerged as a

promising solution that preserves data privacy and
AI capabilities in MLaaS environments.

Because HE supports only arithmetic operations,
performing non-polynomial operations within HE-
based PPLMs is challenging. To address this, var-
ious techniques (Zhang et al., 2024; Cho et al.,
2024) have been proposed to accurately approxi-
mate non-polynomial functions using arithmetic
operations, but most rely on high-degree poly-
nomials, which significantly increases computa-
tion time. Some studies (Zimerman et al., 2024b;
Rho et al., 2025) have attempted to fine-tune mod-
els by replacing certain non-polynomial functions
with arithmetic-friendly alternatives, yet this con-
sistently leads to reduced inference accuracy. Con-
sequently, finding an HE-based transformer imple-
mentation that maintains accuracy while improving
speed remains a major challenge. Recently, THOR
(Moon et al., 2024b), the fastest end-to-end HE-
based transformer model, was reported to require
10.43 minutes of inference time for a BERT-base
model on a single GPU. For real-world use, re-
search to further shorten the runtime is essential.

In this study, we propose a PPLM model, Pow-
erformer, designed to effectively reduce the infer-
ence time of HE-based Transformer models. Pow-
erformer integrates: (1) a novel model tuning ap-
proach that replaces softmax and layer normaliza-
tion (LN) with simple arithmetic operations with-
out compromising accuracy, (2) efficient approxi-
mation techniques for GELU and tanh, and (3) a ho-
momorphic matrix computation method optimized
for Transformer models. As a result, we achieved a
45.0% reduction in inference time compared to the
state-of-the-art PPLM model THOR, successfully
lowering the BERT-base PPLM inference time to
5.74 minutes under the same environment.

Detailed implementations can be checked from
https://github.com/thrudgelmir/Powerformer.
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2 Related Work

2.1 Homomorphic Encryption

HE is a cryptographic algorithm designed to per-
form arbitrary arithmetic operations directly on en-
crypted data, and we use the RNS-CKKS scheme
(Cheon et al., 2017, 2019), one of the most widely
used HE schemes for real number computations.
The RNS-CKKS scheme encrypts a vector u of
length n (referred to as a slot) in Rn or Cn. For sim-
plicity, we denote its ciphertext as [u]. Under this
scheme, the following homomorphic operations are
defined and satisfy the corresponding properties:
[u]⊕ [v] = [u+ v], [u]⊙ v = u ⊙ [v] = [u⊙ v],
[u] ⊗ [v] = [u ⊙ v], Rot([u]; r) = [ρ(u; r)],
Multi([u]) = [i · u], Conj([u]) = [ū], where u⊙ v
and ū represent elementwise multiplication and
complex conjugation, respectively, and ρ(v; r) is
defined as (vr, vr+1, . . . , vn−1, v0, . . . , vr−1), de-
noting a left cyclic shift by r positions. Further
details can be found in Section A.2.

2.2 Advanced Homomorphic Operations

One of the most widely used HE-based ciphertext-
ciphertext matrix multiplication (CCMM) algo-
rithms is the Jiang et al. method (Jiang et al.,
2018). This approach leverages the following trans-
formed matrix multiplication equation A · B =∑d−1

ℓ=0 (ϕ
ℓ◦σ(A))⊙(ψℓ◦τ(B)), where d×dmatrix

permutations σ, τ, ϕ, ψ are defined as follows ([n]d
denotes n mod d): σ(A)i,j = Ai,[i+j]d , τ(A)i,j =
A[i+j]d,j , ϕ(A)i,j = Ai,[j+1]d , ψ(A)i,j = A[i+1]d,j

BOLT (Pang et al., 2024) proposed a matrix
multiplication algorithm based on column packing,
which demonstrates fast performance in ciphertext-
plaintext matrix multiplication (CPMM). Recently,
THOR (Moon et al., 2024b) introduced a new type
of matrix multiplication algorithm based on diago-
nal packing, which outperforms BOLT.

Several studies have focused on efficiently ap-
proximating nonlinear functions to enable stable
and computationally efficient homomorphic oper-
ations. Lee et al. (Lee et al., 2022) proposed an
approach for efficient ReLU approximation by de-
composing the sign function into a composition of
multiple low-degree polynomials, ensuring optimal
efficiency under HE. For GELU approximation,
methods used in BumbleBee (Lu et al., 2025) and
PUMA models (Dong et al., 2023) approximate the
Gaussian CDF by dividing the function into multi-
ple segments and computing separate polynomial
approximations for each region.

2.3 Privacy-Preserving Language Model

Various PPLM models have been proposed to im-
plement transformers in HE environments. The-X
(Chen et al., 2022) replaced softmax with a ma-
chine learning model, but offloaded the ReLU oper-
ation to the client side, preventing it from being con-
sidered a fully comprehensive solution. Meanwhile,
NEXUS (Zhang et al., 2024) was the first to achieve
end-to-end HE inference for transformers, and the
recent state-of-the-art HE-based transformer model
THOR (Moon et al., 2024b) introduced diagonally
packed matrix multiplication to accelerate end-to-
end HE inference. Nonetheless, there remains sig-
nificant room for speed optimization due to the high
computational cost of non-polynomial operations
like softmax and LN.

Because softmax relies on costly division and
exponentiation, various approximation techniques
have been explored to replace it. MPC-based PPLM
models such as MPCFormer (Li et al., 2023) and
SecFormer (Luo et al., 2024) employed the 2Quad
function, (x+c)2∑

(x+c)2
, alongside distillation to reduce

computational overhead, but suffered from accu-
racy degradation. Power-Softmax (Zimerman et al.,
2024a) similarly replaced the exponential function
in softmax with a power function and applied con-
ventional fine-tuning, but encountered about a 1%
drop in accuracy. While these methods success-
fully remove the exponentiation step, they do not
entirely eliminate division, leaving it as a bottle-
neck in HE-based PPLM models. LN also presents
another bottleneck for HE inference. The-X (Chen
et al., 2022) proposed an LN distillation technique,
replacing LN with a linear layer, but still observed
a 1.71% accuracy drop even in a small model like
BERT-Tiny. Therefore, further research is essen-
tial to replace softmax and LN with HE-friendly
operations without sacrificing accuracy.

2.4 Distillation of Bert Model

Creating lightweight models through knowledge
distillation is widely utilized in machine learning,
and the situation is no different when construct-
ing HE-friendly models. Studies such as MPC-
Former and SecFormer are representative exam-
ples, both employing the TinyBERT distillation
approach (Jiao et al., 2020). TinyBERT demon-
strated a distillation method that effectively cap-
tures the characteristics of the BERT model. In this
approach, a pre-trained BERT model serves as the
teacher, and loss functions are applied at four key
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positions: (1) the embedding layer, (2) the attention
matrix in each Transformer layer, (3) the hidden
states after each Transformer layer, and (4) the final
prediction layer.

The training process is structured in two stages:
In the first stage, mean squared error (MSE) from
(1),(2) and (3) are minimized to mimic the inter-
mediate output of the teacher model. In the second
stage, the loss from (4) is minimized to achieve
higher performance. Soft cross-entropy with the
teacher model’s output is used as the loss function
for classification tasks, while MSE with label is
applied for regression tasks.

3 Batch Method

We propose Batch Method, a normalization frame-
work that enables fixed normalization behavior
by utilizing batch-level statistics during training.
Rather than dynamically computing normalization
terms for each input, Batch Method extracts repre-
sentative values across the batch, specifically, max-
imum values, and reuses them as constants during
inference.

The key rationale behind using maximum val-
ues is that they provide a consistently large nor-
malization anchor, which helps suppress activation
explosion in deep networks. Importantly, the model
is trained to mimic the normalization effect of the
teacher model via distillation, ensuring that the
outputs align without requiring expensive division
operations.

3.1 Batch Power-Max Function

We propose Batch Power-Max (BPMax) as a re-
placement for softmax, where the exponential func-
tion is substituted with a power-based form (x+c)p,
as similarly adopted in MPCFormer, SecFormer
((x+ c)2) and PowerSoftmax (xp).

BPMax modifies the denominator to be indepen-
dent of each input by applying Batch Method:

BPMax(x) =
(x+ c)p

maxi
∑

l(xi,j,k,l + c)p
→ (x+ c)p

Rd

During training, the denominator is computed
per batch; during inference, it is replaced with a
fixed constant Rd computed in advance.

3.2 Batch Layer Normalization

We propose Batch Layer Normalization (Batch LN)
as a replacement for conventional LN. As with

BPMax, Batch Method is applied:

Batch LN(x) = γ · x− µ

maxi

√
1
dm

∑
k(xi,j,k − µ)2

+ β

→ γ · x− µ
l ·Rd

+ β

We additionally include a parameter l in the de-
nominator. Its effect and rationale are discussed in
detail in the next section.

As with BPMax, the network is retrained to inter-
nalize the normalization behavior guided by these
fixed constants.

3.3 Training of Batch Method
Training with fixed normalization constants can
destabilize intermediate representations. In particu-
lar, we observed cases where the model achieved
high prediction accuracy, yet the overall loss be-
came unstable or even diverged. This occurs be-
cause a small number of activations do not normal-
ize properly, resulting in excessively large values
that dominate the loss calculation. We refer to this
phenomenon as the feature explosion under fixed
normalization.

To address this issue, we propose a unified train-
ing strategy that combines one-step distillation with
an additional loss term, while also introducing an
extra scaling parameter.

The extra scaling parameter l serves as a conser-
vative scaling factor in the denominator, slightly
expanding the normalization scale to suppress the
influence of outliers during residual accumulation,
thus promoting stable convergence under fixed nor-
malization.

In contrast to TinyBERT’s original two-step dis-
tillation, one-step distillation integrates all losses
into a single unified loss function, encouraging the
network to maintain consistent normalization ef-
fects across all layers and closely mimic the origi-
nal model’s normalization.

Furthermore, an additional loss term is applied
in Batch LN, immediately after the normalization
stage, before scaling and biasing, to directly con-
strain raw activation magnitudes. This helps sta-
bilize the training process by preventing extreme
activation values from overwhelming or destabiliz-
ing the training signal.

This training approach is essential for maintain-
ing numerical stability in Batch Method, allowing
fixed normalization constants to remain compatible
with both accurate final outputs and well-behaved
intermediate activations.
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4 Minimax Composition for Pseudo-Sign
Function

Lee et al. (Lee et al., 2022) effectively approxi-
mated the ReLU function for HE operations using
the minimax composition method, which enables
efficient computation of the sign function. How-
ever, in Transformers, the GELU function and tanh
function are used more frequently than the ReLU
function. To compute the GELU function, it is nec-
essary to accurately approximate the cumulative
distribution function Φ(x) of the Gaussian distribu-
tion. Functions such as Φ(x) and tanh(x), which
are commonly used in Transformers, exhibit be-
havior similar to the sign function for inputs with
large absolute values. However, for inputs close
to zero, these functions exhibit unique character-
istics, which often determine the performance of
each activation function.

4.1 Pseudo-Sign Function and Minimax
Composite Polynomial for Sign Function

We devise a method to extend the minimax compo-
sition technique to approximate Φ(x). Our observa-
tion is that when the sign function is approximated
using the minimax composition method over an ap-
proximation interval with a sufficiently large ϵ, the
resulting approximation is monotonic and its func-
tion values remain within the range [−1, 1] over the
interval [−ϵ, ϵ]. If we can compose this approxima-
tion with a simple function to achieve the desired
shape of Φ(x) within the interval [−ϵ, ϵ], we can
compute Φ(x) with almost the same computational
complexity as the original minimax composition
method. Furthermore, since Φ(x) approaches ±1
relatively gradually, it is acceptable to approximate
the sign function for a relatively large ϵ, making
this approach both practical and efficient.

Definition 4.1. A function f satisfying the follow-
ing conditions is defined as a pseudo-sign function:
f is a monotonically increasing function, satisfying
f(−x) = −f(x) for all x and lim

x→∞
f(x) = 1.

Example 4.1. The error function erf(x) =
2
π

∫ x
0 e

−t2dt and the hyperbolic tangent tanh(x) =
ex−e−x

ex+e−x is pseudo-sign functions.

We first observe the approximated minimax com-
posite polynomial for sign function to approxi-
mate the pseudo-sign function f(x), especially the
“don’t care” part of the approximated composite
polynomial. Any (ϵ, δ)-approximate minimax com-
posite polynomial for the sign function, denoted as

pcom(x) = (pt−1 ◦ · · · ◦ p0)(x), can be shown to
increase monotonically within the interval [−ϵ, ϵ]
and maps to the range [−1 + δ, 1− δ]. Therefore,
the minimax composite polynomial for the sign
function can itself be regarded as a pseudo-sign
function. It is important to note that the shape of
the curve within [−ϵ, ϵ] varies depending on the
specific pseudo-sign function.

Specifically, pcom(x) increases monotonically
near the origin over the interval [−ϵ′, ϵ′] (ϵ < ϵ′),
where its range of pcom(x) within [−ϵ′, ϵ′] is con-
tained in [−1 − δ, 1 + δ], satisfying pcom(−ϵ′) =
−1− δ and pcom(ϵ′) = 1+ δ. Now, define a scaled
function h(x) = 1

1+δpcom(x) over [−ϵ′, ϵ′]. Since
h(x) is monotonically increasing, it has an inverse.
By defining g(x) = f ◦ h−1(x) on the interval
[−1, 1], g(x) is also monotonically increasing and
maps to the range [−1, 1]. This function g(x) can
be closely approximated by a low-degree mini-
max polynomial, denoted as pg(x). Using pg(x),
the composite polynomial pg ◦ ( 1

1+δ · pcom) =

pg ◦ ( 1
1+δ · pt−1) ◦ pt−2 ◦ · · · ◦ p0 provides a high-

accuracy approximation of the pseudo-sign func-
tion f(x).

Algorithm 1: MiniCompPseudoSign(f, δ)
Input: A pseudo-sign function f with domain

[−1, 1], minimax approximation bound δ
Output: Polynomials p0, · · · , pn−1 such that

∥pn−1 ◦ · · · ◦ p0 − f∥∞,[−1,1] ≤ δ
1 Identify γ ∈ (0, 1) such that f(γ) = 1− δ/2.
2 Compute p0, · · · , pt−2, p̄t−1 using
{p0, · · · , pt−2, p̄t−1} ←
MiniCompSign

(
γ, δ/4

1−δ/4

)
,

3 Update pt−1 by scaling: pt−1 ← 1
1+δ′ · p̃t−1, where

δ′ is the minimax error of pt−1 ◦ · · · ◦ p0 in the
domain [−1,−γ] ∪ [γ, 1].

4 Define γ′ as the smallest positive x such that
pscale(x) := pt−1 ◦ · · · ◦ p0(x) = 1. Restrict the
domain of pscale(x) to [−γ′, γ′], and denote the
resulting function as p̃scale(x).

5 Define g(x) = f ◦ p̃−1
scale(x) on [−1, 1]. Use Remez

algorithm to approximate g with a minimax
polynomial pg ← Remez(g, δ/2).

6 Let n = t+ 1, and define pn−1 := pg . Output the
polynomial sequence {p0, · · · , pn−1}.

We can verify the correctness of the
MiniCompPseudoSign algorithm in Algo-
rithm 1 through the following theorem, which
is specified and proven in Appendix B. Figure
1 shows the schematic representation of the
MiniCompPseudoSign algorithm.

Theorem 4.1. Let f be a pseudo-sign function
and 0 < δ < 1. Assume that there exists
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Figure 1: Schematic representation of the pseudo-sign composite approximation.

0 < γ < 1 such that f(γ) = 1 − δ/4. Then,
the polynomials p0, · · · , pn−1 obtained through
MiniCompPseudoSign(f, δ) satisfy the following
condition: ∥pn−1 ◦ · · · ◦ p0 − f∥∞,[−1,1] ≤ δ.

4.2 Efficiency of Pseudo-Sign Composite
Approximation

The Bumblebee (Lu et al., 2025) and PUMA (Dong
et al., 2023) methods for approximating the GELU
function were adopted by NEXUS (Zhang et al.,
2024) for use in HE-based PPLMs. Their approach
segments the function into four regions, requiring
three separate sign function evaluations to compute
the indicator functions. Each sign function is ap-
proximated using composite polynomials with a
maximum error of δ/2 and a don’t-care region half-
width of δ/2. Afterward, each segmented function
is approximated with a maximum error of δ/2.

In contrast, our approach requires only a single
sign function approximation with a maximum error
of δ/4 and a significantly wider don’t-care region
half-width of γ. The function g(x) is then approxi-
mated with a maximum error of δ/2, leading to a
more efficient composition. This reduces the num-
ber of sign function evaluations from three to one
while significantly expanding the don’t-care region,
thereby lowering the polynomial degree required
for the overall approximation.

For instance, when δ = 2−10, the NEXUS model
requires computing three composite polynomials
of degrees (3, 5, 5, 5, 5, 5, 5) and two third-degree
polynomials. However, our method achieves the
same accuracy using only one composite polyno-
mial of degrees (5, 5, 5, 7). Similarly, when δ =
2−13, NEXUS computes three composite polyno-
mials of degrees (3, 3, 5, 5, 5, 5, 5, 5, 5) and two
third-degree polynomials, whereas our approach

only requires a single composite polynomial of
degrees (3, 3, 5, 5, 13). As a result, our method re-
duces computational cost by approximately 4.7×
and depth by approximately 1.8× compared to
NEXUS (Zhang et al., 2024).

5 Optimized Homomorphic Matrix
Operation

5.1 Optimized Ciphertext-Plaintext Matrix
Multiplication

We propose a fast CPMM algorithm based on col-
umn packing. Let {mi ∈ Rn}

1≤i≤ d1d2
n

be the

plaintext vectors storing A ∈ Rd1×d2 via column
packing (Section A.3), which we denote by [A]C .
For matrices A ∈ Rd1×d2 and B ∈ Rd2×d3 , our
algorithm computes the ciphertexts of [AB]C from
the ciphertexts of [A]C . We pack the columns of
the input matrix into a total of mid = d1d2

n cipher-
texts, {cti}1≤i≤mid, and ensure that the columns
of the output matrix are packed into ed = d1d3

n ci-
phertexts, {ct′i}1≤i≤ed. By noting that each column
of the output matrix can be expressed as a linear
combination of the columns of the input matrix, we
derive the following equation.

ct′ℓ =
∑

1≤j≤mid

∑
0≤i< n

d1

Rot(ctj ; id1)⊙ dj,ℓi e (1)

for 1 ≤ ℓ ≤ ed, where dj,ℓi ∈ Rn stores the ele-
ments of matrix B appropriately. By applying the
baby-step giant-step technique to Equation 1, we
can transform it into the following form for some
N1, N2 satisfying N1N2 =

n
d1

.

ct′ℓ =
∑

0≤p<N2

Rot(
∑

1≤j≤mid

∑
0≤q<N1

Rot(ctj ; qd1)

⊙ ρ(dj,ℓpN1+q;−pN1d1); pN1d1) (2)
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for 1 ≤ ℓ ≤ ed. When N1 and N2 satisfy
mid · N1 = ed · N2, the algorithm needs about
2
√

n
d1
·mid · ed rotations.

Speedup via Complex Numbers By leverag-
ing complex numbers, we propose a method that
further reduces rotations. For any two ciphertexts
ct′ℓ1 , ct′ℓ2 , we can utilize complex numbers to com-
pute the equation all at once as follows: ct′ =∑
1≤j≤mid

∑
0≤i< n

d1

Rot(ctj ; id1)⊙ (dj,ℓ1i + idj,ℓ2i ). By

using the Extract algorithm (Section C.5), which
seperates the real and imaginary parts, we obtain
ct′ℓ1 , ct

′
ℓ2

= Extract(ct′). By grouping the ed out-
put ciphertexts in pairs and combining their expres-
sions, ed is updated as ed← ⌈ed/2⌉, which leads
to a reduction in the number of rotations.

Meanwhile, it is also possible to combine two
input ciphertexts using complex numbers. For ma-
trices A,B ∈ Rd1×d2/2, C,D ∈ Rd2/2×d3 , the

product of [A|B] and
[
C
D

]
isAC+BD. This com-

putation can instead be performed by extracting the
real part of (A + Bi)(C − Di). In this case, the
value of mid is updated as mid ← ⌈mid/2⌉, and
accordingly, the number of rotations also decreases.

By applying the proposed techniques, the num-
ber of rotations used by CPMM is reduced to√

5/9,
√

2/3,
√

1/2, and
√

1/2 times the orig-
inal values, respectively, for each of the following:
(1) computing the query, key, and value matrices,
(2) multiplying the output projection matrix, (3)
the first feed-forward network, and (4) the second
feed-forward network.

5.2 Optimized Ciphertext-Ciphertext Matrix
Multiplication

5.2.1 Square Matrix Multiplication

Jiang et al. (Jiang et al., 2018) proposed a CCMM
algorithm using row packing. By simply swapping
its two inputs, we can obatin a column packing
version (see Section A.3 for details).

We also propose a technique to optimize this
column packing-based CCMM algorithm. Let the
input matricesA andB both be of size d×d, and let
n = d2. Suppose the constant vectors Ri, Li ∈ Rn

for 0 ≤ i < d are defined as follows:

Ri[j] =

{
1: [j]4 ≥ i
0: else

Li[j] =

{
1: [j]4 < i
0: else.

for 0 ≤ j < n. Let A′ = σ(A) and B′ = τ(B).

Then, the following equation holds:

[
∑

0≤ℓ<d

ϕℓ(A
′)⊙ ψℓ(B

′)]C =
∑

0≤j<N2

ρ(
∑

0≤i<N1

ρ(

[A′]C ; id)⊙ ρ([B′]C ⊙RN1j+i + ρ([B′]C ;−d)
⊙ LN1j+i;N1j + i−N1jd);N1jd).

for N1, N2 satisfying N1N2 = d, which corre-
sponds to an efficient CCMM algorithm. When
N1 = N2 =

√
d, a total of d+ 2

√
2d+ 5

√
d key-

switches are required, which is much fewer than
the 4d+ 2

√
2d+ 2

√
d in Jiang et al.’s algorithm.

5.2.2 Multi-Head Attention
In this section, we first discuss block-wise matrix
operations. For a k satisfying k | d1 and k | d2,
let us partition the d1 × d2 matrix A into k × k
blocks Ai,j . Suppose that the matrix operations
σ, τ, ϕ, ψ are defined for k× k matrices. We define
the operations σ̃, τ̃ , ϕ̃, ψ̃, which apply σ, τ, ϕ, ψ
blockwise to each block Ai,j of the entire matrix
A. Then, we found that by using the new packing
method, the modified column packing (defined in
Section C.1), we can obtain homomorphic algo-
rithms for σ̃, τ̃ , ϕ̃, ψ̃ on n = d1d2, each of which
has the same computational complexity as the cor-
responding homomorphic algorithm for σ, τ, ϕ, ψ
on n = k2. The CCMM algorithm discussed in
Section 5.2.1 can also be naturally extended to a
blockwise (for k) CCMM algorithm for a d1 × d2
matrix without any additional overhead (see Sec-
tion C.4 for details).

By appropriately utilizing blockwise operations
for k = 64, we can implement all the CCMM oper-
ations required for the entire multi-head attention.
In addition, we propose a method to reduce com-
putation by making use of complex number com-
ponents. For example, if we need to compute σ̃(A)
and σ̃(B), we can instead compute σ̃(A+Bi) and
then separate the real and imaginary parts, thereby
reducing the number of calls to σ̃. The same idea
applies to τ̃ and the blockwise transpose algorithm.
Moreover, if we need to compute the products AB
and AC, we can reduce the number of multiplica-
tion algorithms by computing A(B + Ci) instead.
Additionally, if we need to computeAB+CD, we
can compute (A+Ci)(B−Di) and extract the real
part. By combining these ideas, the final optimized
algorithm is presented in Section C.5.

5.3 Microbenchmarks
Table 1 presents the microbenchmark results for
the homomorphic matrix multiplication algorithms.
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One effective metric for estimating computational
complexity is the number of key-switches(KS),
which refers to the total count of non-scalar mul-
tiplications (relinearizations), rotations, conjuga-
tions, and other operations requiring a KS. In this
table, the number of KS is based on the BERT-
base model that we target. Our algorithm requires
32% ∼ 36% fewer KS for CPMM and 22% fewer
KS for CCMM compared to THOR, a state-of-the-
art technique. A detailed ablation study of our al-
gorithm can be found in Section D.

Operation Method #key-switch
NEXUS 3538944

×WQ,WK ,WV
BOLT 288
THOR 180

Powerformer 122
NEXUS -

QKT BOLT 33684
&× V THOR 936

Powerformer 731
NEXUS 14155776

×WO BOLT 168
THOR 118

Powerformer 75

Table 1: Comparison of KS counts in different homo-
morphic matrix multiplication methods.

6 Experiments

Model and Dataset In this study, we utilized
a BERT-base model with a sequence length of
L = 128 and conducted experiments on the RTE,
MRPC, and SST-2 tasks from the GLUE bench-
mark (Wang, 2018).

Hyperparameter In standard training, early
stopping was applied at 10 epochs, while in knowl-
edge distillation training, early stopping was set at
20 epochs. This was determined based on the point
at which no further performance improvement was
observed. Other hyperparameters were fixed, with
a batch size of 64 and a learning rate of 5×10−5, to
ensure a consistent and fair comparison of relative
model performance.

Seeds All experiments were conducted three
times each, using seeds 0, 42, and 777.

HE Environment Powerformer is built on the
GPU version of the Liberate.FHE library with a
slot size of 215. Our HE setting ensures a 128-bit
security level, and 11 multiplicative levels are avail-
able before bootstrapping(BTS). All experiments
were conducted on a single NVIDIA A100 GPU.

6.1 Plaintext Evaluation

As our training method is distillation-based, each
baseline in the table corresponds to the accuracy of
a fine-tuned BERT-base model used as the teacher.

6.1.1 Analysis of BPmax Parameters (p, c)
Table 2 presents the average accuracy across the
three tasks under various parameters p and c. The
results show that both p and c positively influ-
ence the polynomial replacement of softmax. We
propose the combination p = 5, c = 5, which
is the only combination that exceeds the baseline
(82.86%).

p \ c 1 3 5 7

1 69.79 72.77 73.64 73.85
3 66.78 81.54 80.97 79.50
5 56.21 82.62 83.11 82.44
7 51.28 82.06 82.07 82.51

Table 2: Average accuracy for different (p, c) combina-
tions (%).

6.1.2 Analysis of Batch LN Parameter (l)
Table 3 presents the accuracy and feature explosion
rates for l values ranging from 1.0 to 1.3 in incre-
ments of 0.1. The results indicate that increasing
l slightly reduces overall accuracy while signifi-
cantly mitigating the risk of feature explosion. This
suggests that although the l parameter is effective
in preventing feature explosion, careful tuning is re-
quired to avoid performance degradation. We there-
fore recommend fine-tuning l rather than relying
on a fixed value.

Task Baseline 1.0 1.1 1.2 1.3

RTE 69.43 70.52 69.92 68.95 70.28
MRPC 87.01 86.76 86.85 86.19 86.11
SST-2 92.13 92.09 91.93 91.86 91.82

Average 82.86 83.12 82.90 82.33 82.74

f.e rate – 44.44 22.22 0.00 0.00

Table 3: Effect of parameter l (%). "f.e." denotes feature
explosion.

6.1.3 Ablation Study of the Proposed Training
Strategy

Table 4 presents the accuracy and feature explosion
rates from the ablation study of our proposed train-
ing method. In the table, the original distillation
approach is denoted as "2 step", while one-step dis-
tillation is represented as "1 step Loss X" and "1
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step Loss O", depending on whether the additional
loss function is applied. The final configuration
proposed in this paper corresponds to "1 step Loss
O".

The summarized results show that one-step dis-
tillation improves both accuracy and stability com-
pared to the "2 step" baseline. In particular, the
version with the additional loss function ("1 step
Loss O") achieves higher accuracy and further sup-
presses feature explosion than the version without
it.

This training strategy not only reduces computa-
tional overhead but also ensures stable and accurate
learning. Combined with the previously introduced
l parameter, it plays a key role in effectively miti-
gating feature explosion.

Task Baseline 1-step O 1-step X 2-step

RTE 69.43 70.52 68.11 69.49
MRPC 87.01 86.76 86.19 83.42
SST-2 92.13 92.05 91.93 87.08

Average 82.86 83.11 82.08 80.00

f.e rate – 0.00 33.33 66.67

Table 4: Comparison of training methods (%).

6.1.4 Ablation Study of the Batch Method
Table 5 presents the ablation results for the BPMax
function and Batch LN. We compare three config-
urations against the baseline: BPMax alone ("BP-
Max"), Batch LN alone ("Batch LN"), and both
applied together ("Both"). The results show that
each method individually, as well as their combi-
nation, improves accuracy over the baseline. These
findings suggest that BPMax and Batch LN are
effective as independent, general-purpose compo-
nents, and highlight their potential as HE-friendly
solutions to the conventional scaling problem.

Task Baseline BPMax Batch LN Both

RTE 69.43 69.07 71.48 70.52
MRPC 87.01 87.83 87.91 86.76
SST-2 92.13 92.13 92.05 91.97

Average 82.86 83.01 83.81 83.08

Table 5: Ablation study of Batch Methods (%).

6.1.5 Evaluation on Longer Contexts
We conducted additional experiments on longer
sequence using the BoolQ task from the Super-
GLUE (Sarlin et al., 2020) benchmark, with a se-
quence length of 256 and a batch size of 32. Table 6

presents the results. Unlike previous tasks with a se-
quence length of 128, where no accuracy drop was
observed, a slight decrease of 0.77% was noted.

We attribute this performance degradation to the
l parameter used in normalization. Figure 2 illus-
trates the occurrence of feature explosion across
different values of l. In contrast to previous tasks
where feature explosion disappeared at l = 1.2,
in the long-sequence setting, stability was only
achieved from l = 1.9 onward. This indicates that
normalization becomes more unstable as the se-
quence length increases, but the issue can be re-
solved by simply increasing the parameter l.

Figure 2: Feature explosion count for different l values.

Method 0 42 777 Average

Baseline 74.98 76.70 77.34 76.34
Ours 74.98 75.47 76.24 75.57

Table 6: Accuracy across random seeds (%).

6.2 Ciphertext Evaluation
BTS is the most computationally expensive oper-
ation in HE, and is triggered once a certain multi-
plicative depth is consumed (THOR: 13, Ours: 11).
Although KS is less costly than BTS, it remains
the dominant source of latency during ciphertext
multiplications and rotations.

Therefore, we compare the number of KS and
depth consumption (which determines the need for
BTS) to estimate the relative computational cost of
each method.

6.2.1 Efficiency of the Batch Method
Table 7 presents the number of KS and depth re-
quired for the softmax approximation method of
THOR and our BPMax. For softmax, our method
requires only about 7.5% of the KS and 10% of the
depth used by THOR.

Method #KS Depth

BPmax 18 3
THOR 240 30

Table 7: Comparison of KS and depth of softmax.
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Table 8 shows the corresponding results for LN,
comparing the approximation method from THOR
and our Batch LN. Although the THOR paper does
not provide explicit iteration details - only refer-
encing the use of (Moon et al., 2024a) to compute
the inverse square root - our method achieves the
same objective using only 12.5% to 25% of key
switching operations and 6. 25% to 12. 5% of depth,
depending on the assumed number of iterations.

Method #KS Depth

Batch LN 8 1

THOR

Iteration 7 8 9 11 12 13 14 15
Depth 8 10 10 12 12 14 14 16
#KS 40 48 48 56 56 64 64 72

Table 8: Comparison of KS and depth of LN.

In conclusion, our Batch Method performs both
softmax and LN approximations with a combined
computational cost of under 10% compared to
THOR.

6.2.2 End-to-end Runtime Analysis
Table 9 presents the results of a single RTE task
conducted under HE. "Plaintext" refers to the
model accuracy in the plaintext environment, while
"Ciphertext" represents the performance of the
Powerformer model evaluated under encryption.

The Powerformer model is an end-to-end HE-
compatible architecture that integrates all tech-
niques proposed in this paper. We report results
using the model that achieved the highest accuracy
on the RTE task. The experiment confirms that
there is no performance gap between the plaintext
and ciphertext settings. As an additional measure,
"Max Diff" denotes the maximum difference ob-
served between output values in both environments,
with an extremely small deviation of 0.019.

These findings demonstrate that the Power-
former model can robustly approximate various
nonlinear functions, highlighting its potential not
only for classification tasks but also for regression
problems under HE.

Plaintext Ciphertext Max Diff Time (s)

Value 73.29 73.29 0.019 344.52

Table 9: End-to-end HE inference result. for the RTE
task using an encrypted model.

Table 10 presents the layer-wise performance

breakdown for the HE experiment in Table 9. Since
matrix operation time scales nearly linearly with
ciphertext level, this table may not fully capture per-
formance gains. As shown in Table 1, our matrix
operations have a lower computational complex-
ity but may exhibit longer runtimes due to their
execution at higher levels—a consequence of our
level selection strategy designed to minimize BTS.
In contrast, non-linear function replacements, in-
cluding BPMax, Batch LN, and minimax-based
GELU/tanh, significantly reduce both per-layer
runtime and BTS overhead. Overall, the model
achieves a 70% reduction in BTS time—previously
the dominant cost in THOR—and a 45% reduction
in total computation time.

Operation Ours THOR Diff

Attention layer 57.65 49.77 -7.88
Attention score 28.76 32.53 3.77
Softmax 0.75 15.53 14.78
Attention heads 18.95 20.63 1.68
Multi-head attention 22.54 27.43 4.89
LayerNorm1 0.37 7.13 6.76
FC1 59.21 49.80 -9.41
GELU 8.31 29.42 21.11
FC2 43.77 49.19 5.42
LayerNorm2 0.30 4.10 3.80
Pooler & Classification 0.20 2.70 2.50
Bootstrappings 103.72 337.86 234.14

Total 344.52 626.09 281.57

Total w/o Pooler & Class. 344.32 623.39 279.07

Table 10: Breakdown of execution time (in seconds)
compared to THOR.

7 Conclusion

We proposed Powerformer, an efficient HE-based
PPLM designed to reduce computational overhead
while maintaining model performance. To min-
imize computational overhead while preserving
model accuracy, our work introduced a novel distil-
lation framework for softmax and LN, an optimized
approximation method for GELU and tanh, and
a highly efficient matrix multiplication algorithm
tailored for transformer models. By incorporating
these methods, it significantly reduced the computa-
tion time compared to the leading HE-based PPLM
while maintaining the same level of accuracy.
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Limitations

This model assumes a semi-honest security model,
which means that both the client and the server
follow the protocol agreed upon. This assumption
is standard for all HE-based PPLM models, as ho-
momorphic encryption itself is designed within
the semi-honest framework. If the possibility of a
malicious client or server deviating from the proto-
col were considered, instead an MPC-based PPLM
model would be required, which would lead to
an extreme increase in computational resource re-
quirements. However, even under the semi-honest
assumption, HE-based PPLM models can still ade-
quately ensure data privacy in cloud AI systems. In
particular, even if the server does not fully adhere
to the protocol, it cannot extract any meaningful in-
formation from the client’s data due to the inherent
security properties of HE. Given that there is no
strong incentive for the server to act maliciously in
a practical setting, assuming a semi-honest security
model remains a realistic and reasonable approach.
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A Extended Preliminaries

A.1 Transformer

In this paper, we focus on homomorphically imple-
menting a Transformer-based model, BERT (Bidi-
rectional Encoder Representations from Transform-
ers) using the RNS-CKKS scheme (specifically,
BERT-base model). The BERT-base model consists
of 12 identical encoder blocks, where each encoder

block sequentially performs multi-head attention,
LN, feed-forward network, and LN.

First, the input sentence is tokenized, and each
token undergoes an embedding process to become
a fixed-size vector. After embedding, we obtain the
L× dm matrix X , which serves as the input to the
first encoder block. The multi-head attention mech-
anism has h heads, and for each head, the query,
key, and value matrices are computed by multi-
plying the input matrix X with the correspond-
ing weight matrices. If the query, key, and value
weight matrices for head j (j = 0, 1, · · · , h−1) are
denoted as W (j)

Q , W (j)
K , and W (j)

V ∈ Rdm×dm/h,
respectively, the following matrix multiplications
need to be performed:

Q(j) = XW
(j)
Q ,K(j) = XW

(j)
K , V (j) = XW

(j)
V .
(3)

For each head, the following L× L matrix is com-
puted:

Q(j)K(j)T√
d/2

(4)

Next, apply softmax and multiply by V (j) to obtain
the following L× dm/h matrix:

Yj = softmax

(
Q(j)K(j)T√

dm/2

)
V (j). (5)

The Yj matrices for the multiple heads are con-
catenated horizontally to form the L× dm matrix
Y = [Y0|Y1| · · · |Yh−1]. After that, the weight ma-
trix WO is multiplied on the right, and according
to the skip connection, matrix X is added, result-
ing in YWO +X , which completes the multi-head
attention process.

Next, LN is performed to obtain the matrix
Y . In the subsequent feed-forward network, the
weight matrix WF1 ∈ Rdm×dh is first multiplied
to obtain YWF1, followed by applying GELU
and then multiplying by the second weight ma-
trix WF2 ∈ Rdh×dm on the right. After that, LN is
performed. The process described so far constitutes
one encoder layer, and the BERT model repeats this
encoder layer several times with the same structure,
though with different weight parameters. In this
paper, our homomorphic implementation focuses
on the BERT-base model, which has parameters
L = 128, dm = 768, h = 12, and dh = 3072. Fig-
ure 3 shows the architecture of one encoder block
in the BERT-base model.
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Figure 3: Overview of one encoder block of BERT-base
Transformer architecture.

A.2 Homomorphic Encryption

HE is a cryptographic algorithm designed to per-
form arbitrary arithmetic operations directly on en-
crypted data. The CKKS HE scheme is optimized
for real-number computations, which are widely
used in AI tasks, making it a key technique for im-
plementing HE-based privacy-preserving machine
learning models. The CKKS scheme enables the
encryption of a vector of length n, where the ele-
ments are either real or complex numbers. Specif-
ically, given a vector v = (v0, . . . , vn−1) ∈ Cn, it
produces a corresponding ciphertext ct. Several op-
erations can be performed directly on these cipher-
texts, including addition, plaintext multiplication,
ciphertext multiplication, rotation, and conjugation.

For two vectors v and w of length n, the op-
erations v + w, v · w, and v̄ correspond to ele-
mentwise addition, multiplication, and conjugation,
respectively. Additionally, the cyclic left shift of
v by r positions, denoted as ρ(v; r), is given by
(vr, vr+1, . . . , vn−1, v0, . . . , vr−1). If ct1 and ct2
represent the ciphertexts of vectors v1 and v2, re-
spectively, the corresponding homomorphic opera-
tions function as follows:

• Addition: Add(ct1, ct2) = ctadd, where
ctadd decrypts to v1 + v2. This operation can
be written as ct1 + ct2.

• Plaintext Multiplication: PMult(ct1, v2) =
ctpmult, where ctpmult decrypts to v1 · v2. It
can be expressed as v2 · ct1.

• Ciphertext Multiplication: CMult(ct1, ct2) =
ctcmult, where ctcmult decrypts to v1 · v2. This
can be written as ct1 · ct2.

• Rotation: Rot(ct1; r) = ctrot, where ctrot de-
crypts to ρ(v1, r).

• Multiplication by i: Multi(ct1) = ctmulti,
where ctmulti decrypts to i · v1

• Conjugation: Conj(ct1) = ctconj, where ctconj
decrypts to v̄1.

A.3 Homomorphic Matrix Multiplication

In this section, we first define column packing. Let
{cti}1≤i≤d1d2/n denote the ciphertexts obtained by
column-packing the matrix A ∈ Rd1×d2 . For sim-
plicity, assume d1 | n and n | d1d2. If m(i) ∈ Rn

is the decrypted vector of cti, then for 0 ≤ j < n,
we have

m(i)[j] = A
[j]d1 ,

n
d1

(i−1)+
⌊

j
d1

⌋.
We denote by [A]C the set of plaintext vectors
{m(i) ∈ Rn}1≤i≤d1d2/n that store the matrix A
in a column-packed manner. If n = d1d2, then
[A]C is simply m(1).

For some constant vectors ai, bi, cℓ, c′ℓ, the fol-
lowing equations hold:

[σ(A)]C =
∑

0≤i<d

bi ⊙ ρ([A]C ; di), [τ(A)]C ]

=
∑

−d<i<d

ai ⊙ ρ([A]C ; i), [ϕℓ(A)]C

= ρ([A]C ; dℓ), [ψ
ℓ(A)]C

= cℓρ([A]C ; ℓ) + c′ℓρ([A]C ; ℓ− d).

Then, these equations naturally lead to a homomor-
phic CCMM algorithm for column packing.

Now, we describe the CCMM algorithm of Jiang
et al. (Jiang et al., 2018) under the column pack-
ing approach. Suppose we have d × d matrices
A and B. First, Algorithm 2 takes as input the
ciphertexts of [A]C and outputs the ciphertexts
of [σ(A)]C . Algorithm 3 takes as input the ci-
phertexts of [A]C and outputs the ciphertexts of
[τ(A)]C . In Algorithm 2, we use N1, N2 satisfying
N1N2 = d, and typically set N1 = N2 ≈

√
d. In

Algorithm 3, we haveN1N2 = 2d−1 and typically
set N1 = N2 ≈

√
2d− 1. With these choices, the

two algorithms respectively require about 2
√
d and

2
√
2d rotations.
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Algorithm 2: Sigma
Input: ct
Output: ct′

1 ct′ ← ctzero
2 for i← 0 to N1 − 1 do
3 ct(i) ← Rot(ct; di)
4 end
5 for j ← 0 to N2 − 1 do
6 ct′′ ← ctzero
7 for i← 0 to N1 − 1 do
8 ct′′ ←

ct′′ + ρ(bN1j+i;−dN1j)⊙ ct(i)
9 end

10 ct′ ← ct′ + Rot(ct′′; dN1j)

11 end
12 return ct′

Algorithm 3: Tau
Input: ct
Output: ct′

1 ct′ ← ctzero
2 for i← 0 to N1 − 1 do
3 ct(i) ← Rot(ct; i)
4 end
5 for j ← 0 to N2 − 1 do
6 ct′′ ← ctzero
7 for i← 0 to N1 − 1 do
8 ct′′ ← ct′′+ρ(aN1j+i−d+1;−N1j+

d− 1)⊙ ct(i)
9 end

10 ct′ ← ct′ + Rot(ct′′;N1j − d+ 1)

11 end
12 return ct′

Algorithm 4 takes as input the ciphertexts of
[A]C and [B]C and outputs the ciphertexts of
[AB]C . It can be carried out using approximately
3d+ 2

√
d+ 2

√
2d rotations and d non-scalar mul-

tiplications.

B Details for Pseudo-Sign Composite
Approximation

In Algorithm 1, two algorithms are used as subrou-
tines: MiniCompSign(ϵ, δ) and Remez(f, δ).

The algorithm MiniCompSign(ϵ, δ) outputs a
composite polynomial pt−1 ◦ · · · ◦ p0 that satisfies
∥pt−1 ◦ · · · ◦ p0(x) − sign(x)∥∞,Iϵ ≤ δ over the
domain Iϵ = [−1,−ϵ] ∪ [ϵ, 1], while minimizing
the total number of ciphertext-ciphtertext homo-

Algorithm 4: CCMM algorithm for col-
umn packing (Jiang et al., 2018)
Input: ct1 and ct2
Output: ct′

1 ct′ ← ctzero
2 ct1 ← Sigma(ct1)
3 ct2 ← Tau(ct2)
4 for i← 0 to d− 1 do
5 ct′1 ← Rot(ct1; di)
6 ct′2 ←

ci ⊙ Rot(ct2; i) + c′i ⊙ Rot(ct2; i− d)
7 ct′ ← ct′ + ct′1 ⊗ ct′2
8 end
9 return ct′

morphic multiplication operations. This algorithm
was proposed by Lee et al. (Lee et al., 2022) to
compute the sign function efficiently and is proven
to find a composite polynomial with the minimal
homomorphic multiplication operations. For a de-
tailed description of this algorithm, refer to (Lee
et al., 2022).

The algorithm Remez(f, δ) finds a polynomial
p of the minimum possible degree such that ∥p−
f∥∞ ≤ δ over a bounded closed domain D ⊂ R,
where f : D → R. The original Remez algo-
rithm takes a function f and a fixed polynomial
degree d as input and outputs the degree-d poly-
nomial that minimizes the maximum approxima-
tion error, which is called the minimax polynomial.
When combined with a binary search over the de-
gree, this can be transformed into the form of the
Remez(f, δ) algorithm as used here. Details on this
algorithm and its implementation can be found in
(Lee et al., 2021).

The following theorem is essential for proving
the correctness of the pseudo-sign composite ap-
proximation.

Theorem B.1. For any (ϵ, δ)-approximate min-
imax composite polynomial for sign function
p(x) = (pt−1 ◦ · · · ◦ p0)(x), there exists ϵ′ such
that ϵ < ϵ′ < 1 and f(ϵ′) = −f(−ϵ′) = 1 + δ
holds, and p(x) monotonously increase in the in-
terval [−ϵ′, ϵ′].

Proof. We prove this by mathematical induction.
First, we show that the theorem holds for a single
minimax polynomial p0. Then, assuming that the
minimax composite polynomial pn−2 ◦ · · · ◦ p0 sat-
isfies the given property, we prove that the minimax
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composite polynomial pn−1 ◦ · · · ◦ p0, obtained by
composing pn−1, also satisfies the same property.

Let us first verify whether the theorem holds
for a single minimax polynomial. It is well known
that the minimax polynomial of an odd function is
also an odd function. If the degree of the minimax
polynomial p0 is d = 2ℓ− 1, then this polynomial
minimizes ∥p − sign∥∞,D among all polynomi-
als of degree at most d + 1 = 2ℓ on the domain
D = [−1,−ϵ] ∪ [ϵ, 1]. According to the Cheby-
shev alternation theorem, the number of local ex-
treme points of p(x)− sign(x) within D must be
d+ 3 = 2ℓ+ 2. However, a polynomial of degree
d = 2ℓ−1 over R can have at most d−1 = 2ℓ−2
local extreme points. On D, the boundary points
of D can also be local extreme points. Thus, to
satisfy the Chebyshev alternation theorem, all four
boundary points of D and the local extreme points
of R must lie in D, and these points must all be
distinct. Consequently, p(x)− sign(x) = p(x)− 1
cannot have extreme points within [0, ϵ], meaning
that p(x) must be monotonic in this interval. Since
0 = p(0) ≤ 1 − δ ≤ p(ϵ), it follows that p(x)
is monotonically increasing in [0, ϵ]. Additionally,
since x = ϵ is not a local extreme point over R, the
sign of the derivative near x = ϵ cannot change.
Thus, p(x) must continue increasing, and x = ϵ is
a local minimum point, satisfying p(ϵ)− 1 = −δ.

Let ϵ′ denote the smallest local extreme point
greater than ϵ. By the Chebyshev alternation the-
orem, x = ϵ′ must be a local maximum point, so
p(ϵ′)−1 = δ. This implies that p(x)−1 must be an
increasing function on [ϵ, ϵ′]. Consequently, p(x) is
monotonically increasing on [0, ϵ′]. Since p(x) is
an odd function, it follows that p(x) is also mono-
tonically increasing on [−ϵ′, ϵ′]. Thus, we conclude
that the theorem holds for a single minimax poly-
nomial.

Let us prove the second inductive step. Assume
that p̃ = pn−2 ◦ · · · ◦ p0 satisfies the theorem. This
polynomial is also an (ϵ, δ̃)-approximate minimax
composite polynomial for some δ̃, meaning there
exists ϵ̃′ such that p̃(x) is monotonically increasing
on [−ϵ̃′, ϵ̃′] and satisfies p̃(ϵ̃′) = 1 + δ̃. By the defi-
nition of minimax composition, the approximation
domain of pn−1 isDn−1 = [−1− δ̃,−1+ δ̃]∪ [1−
δ̃, 1 + δ̃]. Since pn−1 is a single minimax polyno-
mial, from the result of the first inductive step, there
exists ϵ′′ such that 1− δ̃ < ϵ′′ < 1+ δ̃, and pn−1(x)
is monotonically increasing on [−ϵ′′, ϵ′′], satisfying
pn−1(ϵ

′′) = 1 + δ. Also, there must exist ϵ′ within
[0, ϵ̃′] such that p̃(ϵ′) = ϵ′′. As [−ϵ′, ϵ′] ⊂ [−ϵ̃′, ϵ̃′],

p̃(x) is monotonically increasing within [−ϵ′, ϵ′],
and pn−1 ◦ p̃ = pn−1 ◦ · · · ◦ p0 is also monotoni-
cally increasing within [−ϵ′, ϵ′]. Additionally, since
pn−1(p̃(ϵ

′)) = pn−1(ϵ
′′) = 1 + δ, the second in-

ductive condition is satisfied. Thus, the theorem is
proven.

The core principle of Algorithm 1 is as follows.
Without loss of generality, let us fix the approxima-
tion interval to [−1, 1] and assume that the pseudo-
sign function f is approximated within this inter-
val. The goal is to find a polynomial p(x) such that
∥f(x)− p(x)∥∞,[−1,1] < δ. The pseudo-sign func-
tion considered in this method converges rapidly
to ±1, resulting in intervals sufficiently close to
±1 being long enough to matter. At the same time,
the transition regions where f(x) approaches ±1
cannot be ignored and must be accurately approx-
imated. Therefore, it is reasonable to assume that
there exists a γ ∈ (0, 1] such that f(γ) = 1− δ/2.
Given this, consider a (γ, δ/4

1−δ/4)-approximate min-
imax composite polynomial for the sign function,
denoted as pcom(x). Then, we have

∥pt−1 ◦ · · · ◦ p0−sign∥∞,[−1,−γ]∪[γ,1]

≤ δ′ ≤ δ/4

1− δ/4
,

where δ′ is the real minimax error. We define a
scaled composite polynomial pscale(x) = 1

1+δ′ ·
pcom(x), which satisfies the following conditions:∥∥∥∥pscale − (1− δ

4

)
· sign

∥∥∥∥
∞,[−1,−γ]∪[γ,1]

≤
∥∥∥∥pscale − 1

1 + δ′
· sign

∥∥∥∥
∞,[−1,−γ]∪[γ,1]

+

∥∥∥∥( 1

1 + δ′
−
(
1− δ

4

))
· sign

∥∥∥∥
∞,[−1,−γ]∪[γ,1]

≤ δ′

1 + δ′
+

(
1

1 + δ′
−
(
1− δ

4

))
≤ δ

4

Next, we approximate f within the interval [0, γ].
By Theorem 4.1, there exists a γ′ > 0 such that
pscale(x) is a monotonically increasing function on
[−γ′, γ′] and satisfies pscale(γ′) = 1. Let p̃scale(x)
denote the restriction of pscale(x) to the domain
[−γ′, γ′]. Since p̃scale(x) is monotonically increas-
ing, it has an inverse function. Using this inverse,
we can define g = f ◦ p̃−1

scale : [−1, 1] → [−1, 1].
We refer to g(x) as the transformation function.
This function is smooth and can be approximated
by a single minimax polynomial pg(x) such that

∥pg − g∥∞,[−1,1] ≤
δ

2
.
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Finally, we can approximate f(x) using the com-
posite polynomial

pf (x) = pg ◦ pscale(x).

This construction ensures that f(x) is approxi-
mated with high accuracy while maintaining the de-
sired properties of the pseudo-sign function within
the given interval. The specific approximation
method is detailed in Algorithm 1.

Below is the formal proof of the main theorem.

Proof. (Proof of Theorem 4.1)
Since each function is odd, it suffices to check

for positive inputs only.

• If 0 ≤ x ≤ γ, then f(x) = g(pscale(x)) and
pf (x) = pg(pscale(x)) as x ≤ γ < γ′. Since
pscale(x) ∈ [−1, 1], it follows that

|pf (x)− f(x)| = |pg(pscale(x))− g(pscale(x))|
≤ δ/2 < δ.

Thus, ∥pf − f∥∞,[0,γ] < δ is satisfied.

• If γ ≤ x ≤ 1, then ∥pscale(x)− (1− δ/4)∥ ≤
δ/4, which implies 1− δ/4 ≤ pscale(x) ≤ 1.
Define x̃ = p̃−1

scale◦pscale(x). By definition, we
have γ ≤ x̃ ≤ x ≤ 1. Since f(x) has a range
within [1 − δ/2, 1] for x ∈ [γ, 1], it follows
that |f(x̃) − f(x)| ≤ δ/2. For γ ≤ x̃ ≤ γ′,
we know f(x̃) = g ◦ p̃scale(x̃) = g ◦pscale(x̃).
Furthermore, by the definition of x̃, we have
pf (x) = pg ◦ pscale(x) = pg ◦ pscale(x̃) =
pf (x̃). This allows us to deduce that

|pf (x)− f(x̃)| = |pf (x̃)− f(x̃)|
= |pg(pscale(x̃))− g(pscale(x̃))|.

Since pscale(x̃) ∈ [−1, 1], it follows that

|pf (x)− f(x̃)| = |pg(pscale(x̃))− g(pscale(x̃))| ≤ δ/2.

Finally, combining these results, we obtain

|pf (x)−f(x)|
≤ |pf (x)− f(x̃)|+ |f(x̃)− f(x)|
≤ δ/2 + δ/2 = δ.

Thus, ∥pf − f∥∞,[γ,1] ≤ δ is satisfied.

Due to the odd-function property of f(x), this
result holds symmetrically for x ∈ [−1, 0] as well.
Therefore, combining the results for all intervals,
we conclude that

∥pf − f∥∞,[−1,1] ≤ δ.

C Detailed Algorithms for Optimized
Matrix Multiplication

C.1 Packing Method
In this paper, we use a new packing method called
modified column packing instead of column pack-
ing. Suppose we have a matrix A of size d1 × d2
and a natural number k satisfying k|d1 and k| nd1 .
For simplicity, assume n|d1d2. The modified col-
umn packing for k takes A as input and outputs
{cti}1≤i≤ d1d2

n

, where each cti encrypts a vector

m(i) ∈ Rn defined by

m(i)[j] = A
[j]d1 , k

[⌊
j
d1

⌋]
n

kd1

+⌊ kjn ⌋+ n
d1

(i−1)

for 0 ≤ j < n. We denote the set of vectors
{m(i)}

1≤i≤ d1d2
n

by [A]kC . When d1d2 = n, [A]kC
is simply m(1). Blockwise matrix operation al-
gorithms based on this modified column packing
method require fewer rotations compared to block-
wise algorithms based on column packing. We en-
sure that any intermediate matrix computed dur-
ing BERT model inference is always packed us-
ing modified column packing with the parameter
k = 64. Figure 4 illustrates both the column pack-
ing and modified column packing methods.

C.2 Optimized CPMM
In this paper, we present a CPMM algorithm based
on modified column packing. For the matrices
A ∈ Rd1×d2 and B ∈ Rd2×d3 , consider the sit-
uation of computing the matrix product AB. Let
k|d1, k|d2, and k|d3. The proposed algorithm com-
putes the ciphertexts corresponding to [AB]kC from
the ciphertexts of [A]kC . The columns of the input
matrix are packed into a total of mid = d1d2

n ci-
phertexts, {cti}1≤i≤mid, and the columns of the
output matrix are packed into a total of ed = d1d3

n
ciphertexts, {ct′i}1≤i≤ed.

Based on the fact that each column of the output
matrix can be expressed as a linear combination
of the columns of the input matrix, the following
equation can be derived:

ct′ℓ =
∑

1≤j≤mid

∑
0≤i< n

d1

Rot(ctj ; id1)⊙ d′j,ℓi . (6)

for 1 ≤ ℓ ≤ ed. Here, d′j,ℓi ∈ Rn stores the el-
ements of matrix B appropriately. By applying
the baby-step giant-step technique to the above
equation, it can be transformed into the following
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form for some natural numbers N1, N2 satisfying
N1N2 =

n
d1

:

ct′ℓ =
∑

0≤p<N2

Rot(
∑

1≤j≤mid

∑
0≤q<N1

Rot(ctj ; qd1)

⊙ ρ(d′j,ℓpN1+q;−pN1d1); pN1d1). (7)

for 1 ≤ ℓ ≤ ed. Algorithm 5 is derived from the
above equation. This algorithm uses mid · N1 +
ed · N2 rotations, and when N1 and N2 satisfy
mid · N1 = ed · N2, it requires approximately
2
√

n
d1
·mid · ed rotations.

Note that in the main text, our CPMM algorithm
is described under column packing, whereas in the
appendix, it is described under modified column
packing. For both packing methods, Equation 6 re-
mains valid (only the plaintext vectors d′j,ℓi change).
Hence, the algorithm’s procedure and computa-
tional complexity are exactly the same.

Algorithm 5: CPMM algorithm
Input: {ctj}1≤j≤mid

Output: {ct′ℓ}1≤ℓ≤ed

1 for j ← 1 to mid do
2 for q ← 0 to N1 − 1 do
3 ct

(q)
j ← Rot(ctj ; qd1)

4 end
5 end
6 for ℓ← 1 to ed do
7 ct′ℓ ← ctzero
8 for p← 0 to N2 − 1 do
9 ct′ ← ctzero

10 for j ← 1 to mid do
11 for q ← 0 to N1 − 1 do
12 ct′ ← ct′ + ct

(q)
j ⊙

ρ(d′j,ℓpN1+q;−pN1d1)

13 end
14 end
15 ct′ℓ ← ct′ℓ + Rot(ct′; pN1d1)

16 end
17 end
18 return {ct′ℓ}1≤ℓ≤ed

In addition, we speed up Algorithm 5 by making
appropriate use of complex numbers. The follow-
ings explain how complex numbers are utilized,
depending on the specific case.

Q,K, V Calculation In the BERT-base model,
from the input matrix X ∈ RL×dm , we need to

compute Q(j) = XW
(j)
Q ,K(j) = XW

(j)
K , V (j) =

XW
(j)
V for W (j)

Q ,W
(j)
K ,W

(j)
V ∈ Rdm×dm/h where

0 ≤ j < h. We have parameters L = 128, dm =
768, and h = 12. This can be viewed as com-
puting XW for one large matrix W ∈ Rdm×3dm

obtained by concatenating all the smaller matrices.
Consequently, it suffices to compute the following
equation.

ct′ℓ =
∑

1≤j≤mid

∑
0≤i< n

L

Rot(ctj ; iL)⊙ d′j,ℓi (8)

for 1 ≤ ℓ ≤ ed. Here, mid = Ldm
n = 3 and ed =

3Ldm
n = 9. We need to compute the expression for

a total of ed = 9 output ciphertexts. By making use
of complex numbers, the expression for any two
ciphertexts ct′ℓ1 and ct′ℓ2 can be computed at once
as follows:

ct′ =
∑

1≤j≤mid

∑
0≤i< n

L

Rot(ctj ; iL)⊙(d′j,ℓ1i +id′
j,ℓ2
i )

(9)
Afterward, by using the Extract algorithm, which
extracts the real and imaginary parts, we obtain
ct′ℓ1 , ct

′
ℓ2

= Extract(ct′). Thus, by pairing up 8 of
the 9 output ciphertexts in twos, we only need to
compute the expression for a total of 5 ciphertexts
(ed = 5). When using the baby-step giant-step
algorithm, the number of rotations is approximately

2
√

n
L · 3 · 5, which is

√
5
9 times the 2

√
n
L · 3 · 9

required by Algorithm 5.

Multiplication with WO or WF1 The concate-
nated attention matrix Y ∈ RL×dm is multiplied
by WO ∈ R768×768. In the feed-forward network,
Y ∈ RL×dm is multiplied by WF1 ∈ Rdm×dh

(where dh = 3072). In both cases, we can make
use of complex numbers to combine the expres-
sions for two ciphertexts in the same way, thereby
reducing ed from 3 → 2 and from 12 → 6, re-
spectively. Consequently, the number of rotations

in each case is reduced to
√

2
3 and

√
1
2 times that

of Algorithm 5.

Multiplication withWO In multi-head attention,
the concatenated result matrix Y ∈ R128×768 is
multiplied by WO ∈ R768×768. In this case, we
need to compute Equation 8 for 1 ≤ ℓ ≤ 3, and as
in the computation of Q,K, and V , we can use
complex numbers to merge the expressions for
two output ciphertexts into one. Consequently, the

number of rotations is 2
√

n
L ·mid · 2, which is

√
2
3

times the 2
√

n
L ·mid · 3 required by Algorithm 5.
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Multiplication with WF1 When multiplying
Y ∈ R128×768 by WF1 ∈ R768×3072, the param-
eters are mid = 3 and ed = 12, so Equation 8
must be computed for the 12 ciphertexts ct′ℓ (for
1 ≤ ℓ ≤ 12). By similarly utilizing complex num-
bers to pair these ciphertexts, we only need to com-
pute it for the 6 ciphertexts. The number of rota-
tions is 2

√
n
L ·mid · 6, which is

√
2 times fewer

than the 2
√

n
L ·mid · 12 required by Algorithm 5.

�

column packing for �

modified column packing for � with � = 2

���

���

���

���

Figure 4: Column packing and modifid column packing
with k = 2 for d1 = 2, d2 = 12, and n = 12.

C.3 CCMM for Square Matrix

In this section, we present a new algorithm that is
faster than the CCMM algorithm of Jiang et al. We
begin with the following Equation:

A ·B =
d−1∑
ℓ=0

(ϕℓ ◦ σ(A))⊙ (ψℓ ◦ τ(B)).

First, we note that the operation ψi satisfies the
following equation:

[ψi(A)]C = ρ([A]C ⊙Ri + ρ([A]C ;−d)⊙ Li; i)
(10)

Here, the constant vectors Ri, Li ∈ Rn for 0 ≤
i < d are defined as follows:

Ri[j] =

{
1: [j]4 ≥ i
0: else

Li[j] =

{
1: [j]4 < i
0: else.

for 0 ≤ j < n.

Then, for A′ = σ(A), B′ = τ(B), and natural
numbers N1, N2 satisfying N1N2 = d, the follow-

ing equation holds.

[
∑

0≤ℓ<d

ϕℓ(A
′)⊙ ψℓ(B

′)]C

=
∑

0≤ℓ<d

ρ([A′]C ; ℓd)⊙ [ψℓ(B
′)]C

=
∑

0≤j<N2

∑
0≤i<N1

ρ([A′]C ; (N1j + i)d)

⊙ [ψN1j+i(B
′)]C

=
∑

0≤j<N2

ρ(
∑

0≤i<N1

ρ([A′]C ; id)⊙

ρ([ψN1j+i(B
′)]C ;−N1jd);N1jd)

=
∑

0≤j<N2

ρ(
∑

0≤i<N1

ρ([A′]C ; id)⊙ ρ([B′]C⊙

RN1j+i + ρ([B′]C ;−d)⊙ LN1j+i;

N1j + i−N1jd);N1jd).

Algorithm 6 describes the CCMM algorithm
based on the final equation above. It requires
2
√
d+2

√
2d+N2+N1+N1N2 rotations, which

becomes d+ 2
√
2d+ 4

√
d when N1 = N2 =

√
d.

Moreover, by using the lazy relinearization tech-
nique—where all non-scalar multiplication results
in the loop over j are summed up first and then
relinearized only once at the end—the total number
of relinearizations used is

√
d. Consequently, the

total number of key-switches is d+ 2
√
2d+ 5

√
d,

which is smaller than the 4d + 2
√
2d + 2

√
d re-

quired by Algorithm 4 (Jiang et al., 2018).

C.4 Blockwise Matrix Multiplication
By using the modified column packing method, we
can obtain homomorphic algorithms for σ̃, τ̃ , ϕ̃, ψ̃
on n = d1d2. Each of these has the same computa-
tional complexity as its corresponding homomor-
phic algorithm for σ, τ, ϕ, ψ on n = k2, respec-
tively. In this section, we describe the algorithms
for the proposed blockwise matrix operations. Let
A,B ∈ Rd1×d2 and suppose we have a k such
that k|d1 and k|d2. We define σ̃ and τ̃ to be the
operations that apply σ and τ , respectively, block
by block. Also, let A⊡B denote the result of the
blockwise (with block size k) multiplication of A
and B.

Similar to the equation [σ(A)]C =
∑

0≤i<k

bi ⊙

ρ([A]C ; ki), we have [σ̃(A)]kC =
∑

0≤i<k

b′i ⊙

ρ([A]kC ;
d1d2
k i) where each vector b′i ∈ Rd1d2 is ob-

tained by splitting bi ∈ Rk2 into chunks of size k
and repeating each chunk d1d2

k2
times. Similarly, just
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Algorithm 6: CCMM algorithm
Input: ct1 and ct2
Output: ct′

1 ct′ ← ctzero
2 ct1 ← Sigma(ct1)
3 ct2 ← Tau(ct2)
4 ct′2 ← Rot(ct2;−d)
5 for j ← 0 to N2 − 1 do
6 ct(j) ← Rot(ct1; jd)
7 end
8 for i← 0 to N1 − 1 do
9 ct′′ ← ctzero

10 for j ← 0 to N2 − 1 do
11 ct′′ ←

ct′′ + ct(j) ⊗ Rot(ct2 ⊙RN1i+j +
ct′2 ⊙ LN1i+j ;N1i+ j −N1id)

12 end
13 ct′ ← ct′ + Rot(ct′′;N1id)

14 end
15 return ct′

as τ for a k × k matrix is expressed as [τ(A)]C =∑
−k<i<k

ai⊙ ρ
(
[A]C ; i

)
, τ̃ for a d1× d2 matrix can

be written as [τ̃(A)]kC =
∑

−k<i<k

a′i ⊙ ρ
(
[A]kC ; i

)
.

Similarly, just as [ϕi(A)]C = ρ([A]C ; ki), we
have [ϕ̃i(A)]kC = ρ([A]kC ;

d1d2
k i). Likewise, just as

[ψi(A)]C = ci⊙ρ([A]C ; i)+ c′iρ([A]C ; i−k), we
have [ψ̃i(A)]kC = c̄i⊙ρ([A]kC ; i)+ c̄′i⊙ρ([A]kC ; i−
k). Therefore, the blockwise operations share the
same computational complexity (i.e., the same
number of rotations) as the original operations,
and the baby-step giant-step approach also retains
the same complexity. For matrix transposition, the

blockwise counterpart to [AT ]C =
d−1∑

i=−d+1

si ⊙

ρ([A]C ; (d−1)i) is
d−1∑

i=−d+1

s′i⊙ρ([A]kC ; (2d−1)i),

which likewise has the same computational cost.
As an example, Figure 5 shows the algorithm for ϕ̃
when using modified column packing.

Algorithm 6 can also be naturally extended to a
blockwise (matrix multiplication for k) algorithm
on a d1 × d2 matrix. The constant vectors R′

i and
L′
i used here are defined in the same way as Ri

and Li (in Section 5.2.1), respectively, with the
only difference being that n = d1d2. Then, the
following holds.

� � = [1 2 3 4 5 6 7 8 9]

��
�
� = [1 2 3 10 11 12 4 5 6 13 14 15 7 8 9 16 17 18]

� � � = �( � � ; 3) = [4 5 6 7 8 9 1 2 3]

��(��)
�

�
= � ��

�
� ; 6

= [4 5 6 13 14 15 7 8 9 16 17 18 1 2 3 10 11 12]
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Figure 5: An algorithm for ϕ̃ using modified column
packing

[
∑

0≤ℓ<d

ϕ̃ℓ(A
′)⊙ ψ̃ℓ(B

′)]kC

=
∑

0≤ℓ<d

ρ([A′]kC ;
d1d2
k

ℓ)⊙ [ψ̃ℓ(B
′)]kC (11)

=
∑

0≤j<N2

∑
0≤i<N1

ρ([A′]kC ;
d1d2
k

(N1j + i))

⊙ [ψ̃N1i+j(B
′)]kC

=
∑

0≤j<N2

ρ(
∑

0≤i<N1

ρ([A′]kC ;
d1d2
k

i)⊙

ρ([ψ̃N1j+i(B
′)]kC ;−

d1d2
k

N1j);
d1d2
k

N1j)

=
∑

0≤j<N2

ρ(
∑

0≤i<N1

ρ([A′]kC ;
d1d2
k

i)⊙

ρ([B′]kC ⊙R′
N1j+i + ρ([B′]kC ;−k)⊙ L′

N1j+i;

N1j + i− d1d2
k

N1j);
d1d2
k

N1j).

The above derivations for blockwise operations
each correspond to their respective algorithms. Al-
gorithm 7 takes as input the ciphertexts of [A]kC and
outputs the ciphertexts of [σ̃(A)]kC . Algorithm 8
takes as input the ciphertexts of [A]kC and outputs
the ciphertexts of [τ̃(A)]kC . Finally, Algorithm 9
takes as input the ciphertexts of [A]kC and [B]kC and
outputs the ciphertexts of [A⊡B]kC .

Algorithm 10 is essentially Algorithm 9 with
only the BlockSigma and BlockTau steps removed,
allowing these steps to be computed separately. Al-
gorithm 10 is used in Algorithm 14. Algorithm 11
describes the blockwise transpose operation. Let
ABT denote the matrix obtained by transposing
the matrix A ∈ Rd1×d2 in blocks of size k. Then,
Algorithm 11 takes as input the ciphertexts of [A]kC
and outputs the ciphertexts of [ABT ]kC .

18



Algorithm 7: BlockSigma
Input: ct
Output: ct′

1 ct′ ← ctzero
2 for i← 0 to N1 − 1 do
3 ct(i) ← Rot(ct; d1d2k i)
4 end
5 for j ← 0 to N2 − 1 do
6 ct′′ ← ctzero
7 for i← 0 to N1 − 1 do
8 ct′′ ←

ct′′ + ρ(b′N1j+i;−
d1d2
k N1j)⊙ ct(i)

9 end
10 ct′ ← ct′ + Rot(ct′′; d1d2k N1j)

11 end
12 return ct′

Algorithm 8: BlockTau
Input: ct
Output: ct′

1 ct′ ← ctzero
2 for i← 0 to N1 − 1 do
3 ct(i) ← Rot(ct; i)
4 end
5 for j ← 0 to N2 − 1 do
6 ct′′ ← ctzero
7 for i← 0 to N1 − 1 do
8 ct′′ ← ct′′+ρ(a′N1j+i−k+1;−N1j+

k − 1)⊙ ct(i)
9 end

10 ct′ ← ct′ + Rot(ct′′;N1j − k + 1)

11 end
12 return ct′

C.5 CCMM for Multi-Head Attention
In this section, we address the optimization of the
CCMM computations required to calculate multi-
head attention. Specifically, these are the operations
for the Q(j)K(j)T multiplication and for multiply-
ing the resulting matrix (after passing through the
softmax) by V (j). We first introduce two compo-
nent algorithms that make up this procedure. Al-
gorithm 12 takes as input a ciphertext ct encrypt-
ing a + bi and outputs the ciphertexts ctreal and
ctimag encrypting a and b, respectively. This al-
gorithm uses one key-switch for the conjugation
operation. Any unnecessary level consumption aris-
ing from multiplying by 0.5 can be addressed by
compensating for the 0.5 factor in the constants

Algorithm 9: Optimized blockwise
ciphertext-ciphertext matrix multiplication
algorithm BlockMult
Input: ct1 and ct2
Output: ct′

1 ct′ ← ctzero
2 ct1 ← BlockSigma(ct1)
3 ct2 ← BlockTau(ct2)
4 ct′2 ← Rot(ct2;−k)
5 for i← 0 to N1 − 1 do
6 ct(i) ← Rot(ct1; d1d2k i)
7 end
8 for j ← 0 to N2 − 1 do
9 ct′′ ← ctzero

10 for i← 0 to N1 − 1 do
11 ct′′ ←

ct′′ + ct(i) ⊗ Rot(ct2 ⊙R′
N1j+i +

ct′2 ⊙L′
N1j+i;N1j + i− d1d2

k N1j)

12 end
13 ct′ ← ct′ + Rot(ct′′; d1d2k N1j)

14 end
15 return ct′

used immediately before or after this step. In addi-
tion, Algorithm 13 handles the operation of taking
half of a matrix and copying it onto the other half.
The constant vectors y(0), y(1) ∈ Rn used in Algo-
rithm 13 are defined as follows:

y(i)[j] =

{
1− i : [j]S1 < S1/2
i : else

for 0 ≤ j < n and 0 ≤ i ≤ 1.
For the CCMM computations in multi-head at-

tention, we appropriately employ blockwise op-
erations with k = 64. In addition, we use an
idea that utilizes complex number components to
reduce the computational cost. For example, if
we need to compute σ(A) and σ(B), we can in-
stead compute σ(A + Bi) and then separate the
real and imaginary parts, reducing the number of
calls to σ. The same approach applies to τ and
the transpose algorithm. Furthermore, when we
need to compute AB and AC, we can reduce the
number of multiplication algorithms by computing
A(B + Ci) instead. Additionally, if we need to
compute AB + CD, we can replace it by comput-
ing (A+Ci)(B −Di) and extracting the real part.
Algorithm 14 combines these ideas into a final op-
timized algorithm. Let Q = [Q(0)|Q(1)| · · · |Q(11)],
K = [K(0)|K(1)| · · · |K(11)], and V =
[V (0)|V (1)| · · · |V (11)]. Also, let the concatenated
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Algorithm 10: Optimized blockwise
ciphertext-ciphertext matrix multiplication
algorithm BlockMult’ (without Sigma and
Tau)

Input: ct1 and ct2
Output: ct′

1 ct′ ← ctzero
2 ct′2 ← Rot(ct2;−k)
3 for i← 0 to N1 − 1 do
4 ct(i) ← Rot(ct1; d1d2k i)
5 end
6 for j ← 0 to N2 − 1 do
7 ct′′ ← ctzero
8 for i← 0 to N1 − 1 do
9 ct′′ ←

ct′′ + ct(i) ⊗ Rot(ct2 ⊙R′
N1j+i +

ct′2 ⊙L′
N1j+i;N1j + i− d1d2

k N1j)

10 end
11 ct′ ← ct′ + Rot(ct′′; d1d2k N1j)

12 end
13 return ct′

attention matrix be Y = [Y0|Y1| · · · |Y11] ∈
RL×dm . Then, Algorithm 14 takes the ciphertexts
of [Q]kC , [K]kC , [V ]kC as input and outputs the ci-
phertexts of [Y ]kC .

In this algorithm, Soft is a function that
briefly represents the softmax function; in prac-
tice, since we replace the softmax function with
an component-wise function, this operation can be
carried out as a component-wise operation without
any packing concerns.

D Ablation Study on Optimized
Homomorphic Matrix Multiplication

In Section 5, we presented a comparison of the
number of key-switch operations between the pro-
posed homomorphic matrix multiplication algo-
rithm and existing methods such as NEXUS (Zhang
et al., 2024), BOLT (Pang et al., 2024), and THOR
(Moon et al., 2024b). In this section, we provide
a more detailed ablation study to specifically ana-
lyze the performance improvements contributed by
each proposed technique. The proposed CPMM is
based on the BOLT algorithm, which utilizes col-
umn packing. Table 11 presents the ablation study
results for CPMM. Similarly, our proposed CCMM
builds upon the algorithm introduced by Jiang et
al. (Jiang et al., 2018). Table 12 shows the ablation

Algorithm 11: BlockTrans
Input: ct
Output: ct′

1 ct′ ← ctzero
2 for i← 0 to N1 − 1 do
3 ct(i) ← Rot(ct; (2k − 1)i)
4 end
5 for j ← 0 to N2 − 1 do
6 ct′′ ← ctzero
7 for i← 0 to N1 − 1 do
8 ct′′ ← ct′′+ ρ(s′N1j+i−k+1;−(2k−

1)(N1j − k + 1))⊙ ct(i)
9 end

10 ct′ ←
ct′ +Rot(ct′′; (2k− 1)(N1j − k+1))

11 end
12 return ct′

Algorithm 12: Extract
Input: ct
Output: ctreal, ctimag

1 ct′ ← Conj(ct)
2 ctreal ← 0.5⊙ (ct+ ct′)
3 ctimag ← −0.5⊙Multi(ct− ct′)
4 return ctreal, ctimag

Algorithm 13: SplitPaste
Input: ct
Output: ct′1, ct′2

1 ct′1 ← ct⊙ y(0)
2 ct′1 ← ct′1 + Rot(ct′1;S1/2)
3 ct′2 ← ct⊙ y(1)
4 ct′2 ← ct′2 + Rot(ct′2;S1/2)
5 return ct′1, ct′2

study results for CCMM.
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Algorithm 14: Optimized CCMM algo-
rithm for multi-head attention
Input: {ct′qi}1≤i≤3, {ct′ki}1≤i≤3, and

{ct′vi}1≤i≤3

Output: ctqkv1, ctqkv2, and ctqkv3
1 ĉtk2 ← ct′k2 +Multi(ct′k3)
2 ct′k1 ← BlockTrans(ct′k1)

3 ĉtk2 ← BlockTrans(ĉtk2)
4 ct′k1 ← BlockTau(ct′k1)

5 ĉtk2 ← BlockTau(ĉtk2)

6 ct′k2, ct
′
k3 ← Extract(ĉtk2)

7 for i← 1 to 3 do
8 ctki,1, ctki,2 ← SplitPaste(ct′ki)

9 ĉtki ← ct′ki,1 +Multi(ct′ki,2)

10 end
11 ĉtq2 ← ct′q2 +Multi(ct′q3)

12 ct′q1 ← BlockSigma(ct′q1)

13 ct′q2, ct
′
q3 ← Extract(BlockSigma(ĉtq2))

14 for i← 1 to 3 do
15 ĉtqki ← BlockMult′(ct′qi, ĉtki)

16 ctqki,1, ctqki,2 ← Extract(ĉtqki)
17 ctqki,1 ← Soft(ctqki,1)
18 ctqki,2 ← Soft(ctqki,2)

19 ĉtqki ← ctqki,1 +Multi(ctqki,2)

20 end
21 ct′v1 ← BlockTau(ct′v1)

22 ĉtv2 ← BlockTau(ct′v2 +Multi(ct′v3))

23 ct′v2, ct
′
v3 ← Extract(ĉtv2)

24 for i← 1 to 3 do
25 ct′vi,1, ct

′
vi,2 ← SplitPaste(ct′vi)

26 ĉtvi ← ct′vi,1 −Multi(ct′vi,2)

27 ĉtqki ← BlockSigma(ĉtqki)

28 ĉtqkvi ← BlockMult′(ĉtqki, ĉtvi)

29 ctqkvi,#← Extract(ĉtqkvi)

30 end
31 return ctqkv1, ctqkv2, and ctqkv3
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CPMM
×WQ,WK ,WV ×WO ×WF1 ×WF2 total ratio
(128× 768, 128× 768, 128× 768, 128× 3072,

768× 768)× 3 768× 768 768× 3072 3072× 768

BOLT 288 168 324 324 1104 100
with optimization 166 96 192 192 646 58.5

with complex 122 75 135 132 464 42.03

Table 11: Ablation study on CPMM

CCMM
Q×KT ×V total ratio

(128× 768, 128× 128,
768× 128 128× 768

Jiang et al. 1770 1770 3540 100%
with optimization 1098 1098 2196 62.03%

with lazy relin. 762 762 1524 43.05%
with complex 380 351 731 20.65%

Table 12: Ablation study on CCMM
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