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Abstract
TFHE is a fully homomorphic encryption scheme over the torus
that supports fast bootstrapping. Its primary evaluation mechanism
is based on gate bootstrapping and programmable bootstrapping
(PBS), which computes functions while simultaneously refreshing
noise. PBS-based evaluation is user-friendly and efficient for small
circuits; however, the number of bootstrapping operations increases
exponentially with the circuit depth. To address the challenge of
efficiently evaluating large-scale circuits, Chillotti et al. introduced
a leveled homomorphic evaluation (LHE) mode at Asiacrypt 2017.
This mode decouples circuit evaluation from bootstrapping, result-
ing in a speedup of hundreds of times over PBS-based methods.
However, the remaining circuit bootstrapping (CBS) becomes a
performance bottleneck, even though its frequency is linear with
the circuit depth.

In this paper, we refine the LHEmode by mitigating the high cost
of CBS. First, we patch the NTT-based CBS algorithm proposed by
Wang et al. [WWL+, Eurocrypt 2024], accelerating their algorithm
by up to 2.6×. Then, observing the suboptimal parallelism and high
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complexity of modular reduction in NTT under CBS parameters,
we extend WWL+ to an FFT-based algorithm by redesigning the
pre-processing method and introducing a split FFT technique. This
achieves the fastest CBS implementation with the smallest key
size, outperforming the open-source WWL+ implementation by
up to 12.1× (resp. 5.12× compared to our patched algorithm), and
surpassing TFHEpp [MBM+, USENIX 2021] by 3.42×with a key size
reduction of 33.2×. Furthermore, we proposed an improved integer
input LHE mode by extending our CBS algorithm to support higher
precision and combining it with additional optimizations such as
multi-bit extraction. Compared to the previous integer input LHE
mode proposed by Bergerat et al. [BBB+, JoC 2023], our approach
is up to 10.7× faster with a key size reduction of up to 4.4×.

To demonstrate the practicality of our improved LHE mode, we
apply it to AES transciphering and general homomorphic look-up
table (LUT) evaluation. For AES evaluation, our method is 4.8×
faster and reduces the key size by 31.3× compared to the state-
of-the-art method, Thunderbird [WLW+, TCHES 2024]. For LUT
evaluation, we compare our results with the recent work of Trama
et al. [TCBS, ePrint 2024/1201], which constructs a general 8-bit
processor of TFHE. Our method not only achieves faster 8-to-8
LUT evaluation but also improves the efficiency of most heavy 8-bit
bivariate instructions by up to 21× and the 16-bit sigmoid function
by more than 26×.

Keywords
Homomorphic Encryption, TFHE, Leveled Homomorphic Evalua-
tion, Circuit Bootstrapping, Transciphering, FHE Processor.
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1 Introduction
Fully Homomorphic Encryption (FHE) has long been a cornerstone
in the field of privacy-enhancing technologies, enabling computa-
tions on encrypted data without decryption. TFHE [12–14], pro-
posed as an extension of FHEW [25], is a homomorphic encryption
scheme over torus that supports fast bootstrapping to refresh noise.

TFHE is first proposed as friendly to Boolean evaluation, where
each gate is integrated with a fast bootstrapping operation. This
concept later be extended to the evaluation of negacyclic univariate
functions, known as functional bootstrapping [8] or programmable
bootstrapping [15] (PBS). The evaluation strategy based on PBS,
referred to as FHE mode, combines function evaluation and noise
refreshing steps, making it user-friendly by eliminating the need
to manage noise growth. However, it faces a computational bur-
den when dealing with large-scale circuits since the number of
bootstrapping grows exponentially with the circuit depth.

To deal with this issue, Chillotti et al. [13] introduced the Leveled
Homomorphic Evaluation (LHE) mode for TFHE, which separates
circuit evaluation from noise refreshing. The LHE mode consists
of three steps: (1) Eval., an evaluation step to compute circuit, (2)
Refr., a refreshing step to reduce noise, and (3) Conv., a conversion
step to convert the ciphertext type for next Eval.. The latter two
are generally indivisibly sequential, known as circuit bootstrapping
(CBS). The number of CBS is always proportional to the circuit
depth.

By utilizing a controlled selector gate (CMux gate) operation in-
stead of PBS for Eval., LHE mode significantly enhances circuit eval-
uation efficiency compared to the FHE mode, as PBS itself consists
of hundreds of CMux gates. However, despite the advancement in
the evaluation step, the high cost of CBS in the LHE mode becomes
a performance bottleneck. There are two milestone breakthroughs
among the numerous attempts to improve CBS [15, 28, 35, 41, 44, 45].
First, Chillotti et al. [15] proposed the PBS evaluating multiple look-
up tables, known as PBSmanyLUT at Asiacrypt 2021. By enabling
mutiple look-up tables to be processed simultaneously, this inno-
vation significantly accelerates the Refr. step , which is conducted
through multple PBS, thereby enhancing the efficiency of CBS.
More recently, Wang et al. [45] introduced a faster and smaller
circuit bootstrapping mode at Eurocrypt 2024 (referred to as the
WWL+ method in this paper). This method replaces the heavy
private keyswitching operation with homomorphic trace evalua-
tion (HomTrace) [10] and scheme switching (SchemeSwitch) [21],
significantly reducing the asymptotic computational and storage
complexity of the Conv. step.

1.1 Motivation
However, the LHE mode still faces several challenges.

A. The Missed Multiplicative Error Growth in WWL+1. The circuit
bootstrapping algorithm proposed by Wang et al. encounters multi-
plicative error growth issues. Specifically, HomTrace amplifies the
input noise by a factor of 𝑁 , where 𝑁 denotes the ring dimension.
This necessitates their work increasing bootstrapping parameters,
significantly impacting the efficiency of their CBS algorithm.

1The authors of [45] confirmed this issue and presented adjusted parameter sets and
performance at Eurocrypt 2024 conference.

B. The Discrepancy Between Asymptotic Complexity and Concrete
Cost. In homomorphic encryption schemes, polynomial computa-
tion is critical. Typically, the Number Theoretic Transform (NTT) is
employed when the modulus is prime, while Fast Fourier Transform
(FFT) is preferred when modulus is a power of two to accelerate
polynomial computations. In the CBS mode proposed by WWL+,
to mitigate the phase amplification introduced by (HomTrace), it
leveraged the inverse of 𝑁 to ensure algorithm correctness, restrict-
ing this method to NTT-based systems (since 𝑁 −1 does not exist
in the FFT setting). However, a gap exists between their theoretical
optimizations and actual implementation performance2. This dis-
crepancy arises because the concrete cost of NTT is higher than
FFT for large modulus sizes in LHE mode (54-bit in NTT setting,
64-bit in FFT setting), due to suboptimal parallelism and the high
complexity of modular reduction in NTT calculation.

C. The Inflexibility and Computational Intensity Problem. In the
current LHE mode [13, 15, 45], the Conv. step is always paired
with the heavy Refr. step, executing together in what we known
as circuit bootstrapping. This coupling leads to a inflexibility and
unnecessary overhead when evaluating small-scale circuits.

D. User-Unfriendly Concerns. Compared to the FHE mode, the LHE
mode has more complex parametrization. This often necessitates
expert intervention to configure the various parameters, balancing
noise management and efficiency. This complexity also makes it
challenging to provide a clear and comparative evaluation of the
efficiency benefits of LHE mode over FHE mode. As a result, few
developers opt to use the LHE mode when building applications
based on TFHE scheme.

E. A Lack of Efficient Integer Input LHE Solution. Real-world appli-
cations always encode data into integers rather than single bits. To
process such inputs in the LHE mode, Bergerat et al. presented a
new programmable bootstrapping without padding algorithm (new
WoP-PBS) in JoC23 [4], denoted as the BBB+ method in this paper.
This method involves homomorphically extracting multi-bit data
into single bits and converting ciphertext type for CMux evalua-
tion, thus supporting higher precision to handle integer messages.
Despite its capabilities, the BBB+ method itself is quite heavy and
may be up to 100 times slower than single-bit circuit bootstrapping.

1.2 Our Contributions
In this paper, we address the aforementioned issues and signifi-
cantly boost the efficiency of the LHE mode in TFHE. Subsequently,
we apply this enhanced mode to two practical applications: AES
transciphering and look-up table (LUT) evaluation, aiming for su-
perior performance. The details of the contribution are as follows:

Patched and Extended FFT-based CBS Algorithm. To address the
error growth issue in WWL+ (Challenge A), we first patch the NTT-
based CBS by adopting a newly designed pre-processing method.
This approach enhances the WWL+ performance by up to 2.6×.

Furthermore, to improve the implementation performance of
CBS in response to Challenge B, we extend the patched algorithm
into an FFT-based one. This shift addresses two critical technical
2The CBS implementation in WWL+ achieves only a 1.31× speedup compared to the
FFT-based CBS of TFHEpp (refer to Table 9 in [45]), rather than their proposed 3.5×.
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issues, rather than merely an implementation difference. First, we
propose a FFT pre-processing method to tackle Challenge A, as
the patch used for WWL+ method is incompatible with FFT pa-
rameter setting. Next, we propose a split FFT to handle the FFT
error, which is amplified byHomTrace and disrupts the algorithm’s
correctness. By integrating these approaches and optimizing the
parameters, we implement an improved FFT-based CBS algorithm,
outperforming the open-source NTT-basedWWL+ implementation
by up to 12.1×, and surpassing FFT-based CBS of TFHEpp [35, 36] by
3.4× with a key size reduction of 33.2×. In addition, to address the
user-unfriendly concerns (Challenge D), we provide an automated
parameter evaluation tool as well as some default recommended
sets to lower the barrier to using the LHE mode.

Integer Input LHE Solution. In addressing Challenge E, our initial
strategy involved applying our improved circuit bootstrapping al-
gorithm into the BBB+ dramework. However, the HomTrace algo-
rithm can not support integer inputs. To overcome this, we develop
a high-precision HomTrace algorithm based on GLWE keyswitch-
ing. By combining it with a novel proposed multi-bit extraction
method, we construct an improved integer input LHE solution. This
approach is 10.7× faster than BBB+, and reduces the key size by up
to 4.4×.

Application I: AES Transciphering. Our first application is the AES
transciphering. We propose a light and flexible LHE mode tack-
ling Challenge C, which is suitable for the AES S-Box evaluation.
This mode is based on a newly designed HalfCBS algorithm which
decouples the Refr. and Conv. steps. Then we evaluate the AES
circuit by this mode within 11.53 seconds, which outperforms the
state-of-the-art, Thunderbird [46], by 4.8× faster and 31.3× smaller
key size.

Application II: LUT and TFHE Processor. Recently, Trama et al. [43]
proposed a general-purpose TFHE processor abstraction supporting
8-bit instructions such as AND/OR/XOR, ADD/SUB, MUL/DIV, and
MIN/MAX, based on an PBS-based LUT evaluation method. Under
our improved integer input LHEmode, we can boost their general 8-
to-8 LUT evaluation by a factor of 1.42×. Furthermore, by evaluating
16-to-8 LUT using our method, we can improve most of the heavy
8-bit bivariate instructions by up to 21× (homomorphic division
operator), and the 16-bit sigmoid function by 26×.

2 Preliminaries
2.1 Notations
Throughout the paper, bold letters denote vectors (or matrices).
The nearest integer to 𝑟 is denoted ⌊𝑟⌉. For real numbers 𝑎 and 𝑏
such that 𝑎 < 𝑏, we write [𝑎, 𝑏 [ = {𝑥 ∈ R : 𝑎 ≤ 𝑥 < 𝑏}. For two
integers 𝑎 and 𝑏, Z ∩ [𝑎, 𝑏 [ is denoted J𝑎, 𝑏J. For an integer 𝑞, we
identify Z𝑞 = Z/𝑞Z with J−𝑞/2, 𝑞/2J, and [·]𝑞 denotes the mod𝑞
reduction into Z𝑞 . The set B and [𝑛] denote {0, 1} and {1, 2, . . . , 𝑛},
respectively, for a positive integer 𝑛. The set N denotes the set of all
positive integers. The set Z×𝑞 denotes the multiplicative subgroup of
Z𝑞 . For a set 𝑆 , we will write 𝑎 ← 𝑆 to denote that 𝑎 is chosen from
𝑆 uniformly at random. For a probability distribution D, 𝑎 ← D
denotes that 𝑎 is sampled according to the distribution D. Unless
stated otherwise, all logarithms are to the base 2.

For a polynomial 𝑃 (𝑋 ) = 𝑝0 + 𝑝1𝑋 + · · · + 𝑝𝑁−1𝑋𝑁−1 ∈ Z𝑞 [𝑋 ],
its ℓ1, ℓ2 and ℓ∞ norms are defined as ℓ1 (𝑃) = |𝑝0 | + · · · + |𝑝𝑁−1 |,
ℓ2 (𝑃) =

√︁
|𝑝0 |2 + · · · + |𝑝𝑁−1 |2, ℓ∞ (𝑃) = max0≤𝑖≤𝑁−1 |𝑝𝑖 |.

2.2 TFHE
In this section, we briefly review the core concepts of the TFHE
scheme. For the details of the operations in TFHE, we refer to
Appendix C. We use 𝑝 and 𝑞 to denote the moduli of messages and
ciphertexts, respectively. For a power-of-two 𝑁 , the cyclotomic
ring Z[𝑋 ]/(𝑋𝑁 + 1) is denoted by R𝑁 [𝑋 ]. We also write R𝑞,𝑁 =

R/𝑞R = Z𝑞 [𝑋 ]/(𝑋𝑁 + 1) and B𝑁 [𝑋 ] = B[𝑋 ]/(𝑋𝑁 + 1).
LWE, RLWE, and GLWE Ciphertexts. Under a secret key S ∈ R𝑘𝑞,𝑁 ,
a message𝑀 ∈ R𝑝,𝑁 is encrypted into a generalized LWE (GLWE)
ciphertext C ∈ R𝑘+1𝑞,𝑁 with a scaling factor Δ such that Δ ≤ 𝑞/𝑝 as
follows [7].

C = GLWE𝑞,S (Δ ·𝑀) = (𝐴1, . . . , 𝐴𝑘 , 𝐵 =

𝑘∑︁
𝑖=1

𝐴𝑖 · 𝑆𝑖 + [𝑀 · Δ]𝑞 + 𝐸)

where S = (𝑆1, . . . , 𝑆𝑘 ), 𝐴𝑖 ← R𝑞,𝑁 for 𝑖 = 1, 2, . . . , 𝑘 , and 𝐸 ←
𝜒𝜎 for some Gaussian distribution 𝜒𝜎 as the error distribution.
(𝐴1, . . . , 𝐴𝑘 ) and 𝐵 are called the mask and the body of the GLWE
ciphertext C, respectively, and 𝑘 is called the GLWE dimension. It
is common to use the binary secret key in the FHEW-like scheme,
so we only deal with the binary secret key in this paper. Some of
the subscripts 𝑞, S might be omitted when they are clear from the
context. If 𝐴𝑖 = 0 for 𝑖 = 1, 2, . . . , 𝑘 and 𝐵 = [Δ ·𝑀]𝑞 , it is called a
trivial GLWE ciphertext. It does not protect the plaintext 𝑀 , but
encodes 𝑀 as a GLWE ciphertext. For simplicity, 𝐵 is sometimes
denoted by 𝐴𝑘+1.

A GLWE ciphertext with 𝑁 = 1 is called an LWE ciphertext. In
this case, it is common to use𝑛 to denote the LWE dimension instead
of 𝑘 , so that an LWE ciphertext is usually denoted (𝑎1, . . . , 𝑎𝑛, 𝑏) ∈
Z𝑛+1𝑞 . When 𝑘 = 1, a GLWE ciphertext is called a ring LWE (RLWE)
ciphertext. In this paper, we distinguish LWE ciphertexts from
GLWE ciphertexts of 𝑁 > 1.

The decryption of a GLWE ciphertext is to compute its phase,
which is defined as 𝐵 − ⟨(𝐴1, . . . , 𝐴𝑘 ), S⟩, followed by rounding the
phase by the scaling factor Δ. The decryption works correctly if the
error contained in the ciphertext is small enough to be eliminated
during the rounding by Δ.

From the definition of the GLWE ciphertext, the sum of two
GLWE ciphertexts under the same secret key results in the sum
of their internal plaintexts in R𝑝,𝑁 . Multiplying the ciphertext by
a scalar is possible by iterating addition several times. Both the
addition and the scalar multiplication increase the error of the
resulting ciphertext linearly.

Lev and GLev Ciphertexts. Let 𝐵 ∈ N be a power-of-two and ℓ ∈ N.
A GLev ciphertext ofC ∈ R (𝑘+1)ℓ𝑞,𝑁 of𝑀 ∈ R𝑞,𝑁 with a gadget length
ℓ and base 𝐵 under a GLWE secret key S ∈ B𝑁 [𝑋 ]𝑘 is defined as a
vector of ℓ GLWE ciphertexts of𝑀 ∈ R𝑞,𝑁 as follows.

C = GLev(𝐵,ℓ )S (𝑀) = (
GLWES

(
𝑣 𝑗 ·𝑀

) )
𝑗∈[ℓ ]

where 𝑣 𝑗 = ⌈𝑞/𝐵 𝑗 ⌉ for 𝑗 = 1, . . . , ℓ . When 𝑁 = 1, it is called a Lev
ciphertext.
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GGSW Ciphertexts. In the case of nonlinear operations such as mul-
tiplication, TFHE uses another type of ciphertext called generalized
GSW (GGSW) [27]. Let 𝐵 ∈ N be a power-of-two and ℓ ∈ N. A
GGSW ciphertext C ∈ R (𝑘+1)ℓ×(𝑘+1)𝑞,𝑁 of a message𝑀 ∈ R𝑞,𝑁 with
a gadget length ℓ and base 𝐵 under a secret key S ∈ B𝑁 [𝑋 ]𝑘 is an
(𝑘 + 1)ℓ × (𝑘 + 1) matrix over R𝑞,𝑁 defined as follows.

C = GGSW(𝐵,ℓ )S (𝑀) = (
GLWES

(
𝑣 𝑗 · (−𝑆𝑖 ·𝑀)

) )
(𝑖, 𝑗 ) ∈ [𝑘+1]×[ℓ ]

where 𝑣 𝑗 = ⌈𝑞/𝐵 𝑗 ⌉ for 𝑗 = 1, . . . , ℓ , S = (𝑆1, . . . , 𝑆𝑘 ), 𝑆𝑘+1 = −1.
One can also represent C as a vector of 𝑘 + 1 GLev ciphertexts
(GLev(𝐵,ℓ )S (−𝑆𝑖 ·𝑀))𝑘+1𝑖=1 .

Gadget Decomposition. Let 𝐵 ∈ N be a power-of-two and ℓ ∈ N.
The gadget decomposition GadgetDecomp(𝐵,ℓ ) with a base 𝐵 and
length ℓ decomposes an input 𝑎 ∈ Z𝑞 into a vector (𝑎1, . . . , 𝑎ℓ ) ∈ Zℓ𝑞
such that

𝑎 =

ℓ∑︁
𝑗=1

𝑎 𝑗 · 𝑣 𝑗 + 𝑒

where 𝑣 𝑗 = ⌈𝑞/𝐵 𝑗 ⌉, 𝑎 𝑗 ∈ J−𝐵/2, 𝐵/2J for all 𝑗 = 1, . . . , ℓ and the
decomposition error 𝑒 satisfies |𝑒 | ≤ ⌈ 𝑞2𝐵ℓ ⌉. The gadget decompo-
sition can be extended to a polynomial in R𝑞,𝑁 by applying the
decomposition to its coefficients. When it is applied to a vector of
polynomials, it outputs a vector of decomposition vectors of the
input polynomials.

External Product and CMux Gate. The external product � between
a GGSW ciphertext C1 of𝑀1 and a GLWE ciphertext C2 of𝑀2 is
defined as

C1 � C2 =
𝑘+1∑︁
𝑖=1

ℓ∑︁
𝑗=1

𝐴𝑖, 𝑗 · GLWE(𝑣 𝑗 · (−𝑆𝑖 ·𝑀1))

where GLWE(𝑣 𝑗 · (−𝑆𝑖 ·𝑀)) is each GLWE component of C1 for
(𝑖, 𝑗) ∈ [𝑘 + 1] × [ℓ], (𝐴𝑖,1, . . . , 𝐴𝑖,ℓ ) is a gadget decomposition of
𝐴𝑖 for 𝑖 ∈ [𝑘 + 1] such that C2 = (𝐴1, . . . , 𝐴𝑘+1), and the multi-
plication between a polynomial and a GLWE ciphertext denotes
multiplying the polynomial to each polynomial component of the
GLWE ciphertext. Then the result becomes a GLWE ciphertext of
𝑀1𝑀2.

The controlled mux gate, dubbed CMux, is the key operation
used in TFHE. Suppose that two GLWE ciphertexts C0 and C1 are
given along with a secret boolean value 𝑏 encrypted to a GGSW
ciphertext C, where all three ciphertexts are encrypted with the
same key S. Then one may select C𝑏 without knowing 𝑏 by

CMux(C,C0,C1) = (C1 − C0) � C + C0 .

Programmable Bootstrapping. The programmable bootstrapping
(PBS) of TFHE supports an extra functionality that evaluates a
function for free during the bootstrapping. Suppose that an LWE
ciphertext c = (𝑎1, . . . , 𝑎𝑛, 𝑏) ∈ Z𝑛+1𝑞 of a phase 𝜇 = Δ𝑚 + 𝑒 under a
secret key s = (𝑠1, . . . , 𝑠𝑛) ∈ B𝑛 is given. The PBS operation outputs
a refreshed LWE ciphertext c′ ∈ Z𝑘𝑁𝑞 of the message 𝑓 (𝑚) under a
secret key s′ ∈ B𝑘𝑁 by the following steps.

(1) Encode the function 𝑓 on a new GLWE ciphertext under a
different secret key S′ ∈ B𝑁 [𝑋 ]𝑘 . The half of the function

values of 𝑓 are redundantly encoded in the coefficients of
the plaintext of the (trivial) GLWE ciphertext.

(2) (Modulus switching) Compute c̃ = (𝑎1, . . . , 𝑎𝑛, 𝑏) ∈ Z𝑛+12𝑁
where

𝑎𝑖 = ⌊𝑎𝑖 · (2𝑁 )/𝑞⌉ and 𝑏 = ⌊𝑏 · (2𝑁 )/𝑞⌉,
obtaining an LWE ciphertext of a phase 𝜇̃ ≈ ⌊𝜇 · (2𝑁 )/𝑞⌉.

(3) (Blind rotation) Multiply𝑋 −𝑏+
∑𝑛

𝑖=1 𝑎̃𝑖𝑠𝑖 = 𝑋 −𝜇̃ to the GLWE
ciphertext encoding the function using a bootstrapping key
{GGSWS′ (𝑠𝑖 )}𝑛𝑖=1; multiply either 1 or 𝑋 −𝑎̃𝑖 according to
𝑠𝑖 ∈ {0, 1} by the CMux gate.

(4) (Sample extraction) Extract the constant term of the GLWE
ciphertext, obtaining an LWE ciphertext of 𝑓 (𝑚) under the
secret key s′ ∈ B𝑘𝑁 which is a reordering of the coefficients
of S′.

Since 𝑋𝑁 = −1 in the ring R𝑞,𝑁 , it is only possible to evaluate a
negacyclic function 𝑓 : Z𝑝 → Z𝑞 such that 𝑓 (𝑥 + 𝑝/2) = −𝑓 (𝑥) by
encoding only half of the function values. To evaluate an arbitrary
function, TFHE requires one padding bit of zero in the MSB of 𝜇 to
guarantee 𝜇̃ < 𝑁 .

LWE Keyswitching. The input and output LWE dimensions might
be different for the PBS operation. To improve the performance
of PBS, it is common to use a smaller input LWE dimension than
the output LWE dimension. Hence, one needs to switch the LWE
dimension before the PBS operation, and this step is called the LWE
keyswitching.

GLWE Keyswitching and Functional Keyswitching. It is possible to
switch the key of GLWE ciphertexts. Such keyswitching opera-
tion is called GLWE keyswitching. The core concept of GLWE
keyswitching is the same with that of LWE keyswitching, but its
polynomial operation can be accelerated by NTT/FFT. The detailed
algorithm is given in Algorithm 5 in Appendix C.2.

Functional keyswitching is usually used to denote LWE(s) to
GLWEkeyswitchingwith evaluating a function on the input LWE(s).
When the evaluating function is public, it is called public functional
keyswitching. On the other hand, if the evaluating function con-
tains secret information, it is called private functional keyswitching.
We refer to Appendix C.3 for the details.

2.3 PBS with Multiple Outputs
2.3.1 PBSmanyLUT. Chillotti et al. [15] proposed a generalized
version of PBS, and extended it to PBSmanyLUT that evaluates
several LUTs in a single blind rotation. PBSmanyLUT takes a non-
negative integer 𝜗 in the plaintext modulus switching step, where
𝜗 denotes the number of empty bottom bits after the modulus
switching.3 At the cost of increased input error, it enables evaluating
at most 2𝜗 LUTs on the same input at the cost of a single blind
rotation.

Suppose 2𝜗 functions 𝑓𝑗 , 𝑗 = 1, . . . , 2𝜗 are given. Thanks to the
empty𝜗 LSBs after the plaintext modulus switching, one can encode
all the 2𝜗 functions in a single polynomial 𝑃 (𝑓1,...,𝑓2𝜗 ) defined as

3There is another parameter 𝜘 used in [15] to denote the number of skipped MSBs of
the input, while we omit for simplicity as it is the same as multiplying 2𝜘 to the input.
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follows.

𝑃 (𝑓1,...,𝑓2𝜗 ) (𝑋 ) = 𝑋
𝑁
2𝑝

𝑝−1∑︁
𝑗=0

𝑋
𝑗 𝑁
𝑝

𝑁

𝑝2𝜗
−1∑︁

𝑘=0
𝑋𝑘 ·2

𝜗
2𝜗−1∑︁
𝑖=0

𝑓𝑖+1 ( 𝑗)𝑋 𝑖

where 𝑝 =
𝑞

2Δin
and Δin is the scaling factor of the input LWE

ciphertext. Let (𝛽,𝑚′) ∈ B×N be the result of the plaintext modulus
switching, denoted (𝛽,𝑚′) ← PTModSwitch𝑞 (𝑚,Δ, 𝜗), where 𝛽
is the MSB of the output and 𝑚′ is the remaining message part.
By extracting the first 2𝜗 coefficients after the blind rotation, one
can obtain the function values of (−1)𝛽 · 𝑓𝑗 (𝑚′) for 𝑗 = 1, . . . , 2𝜗
unless the PBSmanyLUT operation fails. We present Algorithm 8
to describe the detailed procedure in Appendix I.

Lemma 2.1 (Theorem 4 in [15]). Suppose that Algorithm 8 takes
an input LWE ciphertext of noise variance 𝜎2in. Then it outputs LWE
ciphertexts c𝑗 encrypting (−1)𝛽 · 𝑓𝑗 (𝑚′) · Δout for 𝑖 = 1, . . . , 2𝜗 if
and only if

𝜎2in <
Δ2
in

4Γ2
− 𝑞2

12𝑤2 +
1
12 −

𝑛𝑞2

24𝑤2 −
𝑛

48
where Γ is a variable depending on the probability of correctness

defined as 𝑃 = erf
(
Γ√
2

)
and𝑤 = 2𝑁 · 2−𝜗 . The output noise variance

𝑉pbs (excluding the FFT error) is estimated as follows.

𝑉pbs =𝑛ℓpbs (𝑘 + 1)𝑁
𝐵2pbs + 2

12 𝜎2bsk + 𝑛
𝑞2 − 𝐵2ℓpbspbs

24𝐵2ℓpbspbs

(
1 + 𝑘𝑁2

)
+ 𝑛𝑘𝑁32 +

𝑛

16

(
1 − 𝑘𝑁2

)2
where 𝜎2bsk is the noise variance of the bootstrapping key BSK.

Unless otherwise stated, the failure probability denotes that of
PBSmanyLUT derived from Lemma 2.1 throughout the paper.

2.3.2 MV-PBS. There is another method proposed by Carpov et
al. [8] to evaluate multiple LUTs on a single input at the cost of
a single blind rotation. Given a function 𝑓𝑗 , let 𝑃 𝑗 be the polyno-
mial encoding 𝑓𝑗 for 𝑗 = 1, . . . , 𝑡 . The main idea of MV-PBS is to
decompose 𝑃 𝑗 as 𝑃 𝑗 = 𝑃 ′𝑗 · 𝑃0, sharing a common polynomial 𝑃0 for
all 𝑗 = 1, . . . , 𝑡 . Then, after evaluating only a single polynomial 𝑃0
by blind rotation, each 𝑃 𝑗 can be computed by multiplying 𝑃 ′𝑗 . We
presented the detailed algorithm in Appendix I (see Algorithm 9).

Unlike PBSmanyLUT, MV-PBS increases the output error be-
cause the output of blind rotation is multiplied by 𝑃 ′𝑗 . Hence, the
output error variance of MV-PBS is obtained by multiplying ℓ2 (𝑃 𝑗 )2
to 𝑉pbs in Lemma 2.1.

2.4 Circuit Bootstrapping
The circuit bootstrapping (CBS) refreshes and converts an LWE
ciphertext of a single bit into the corresponding GGSW cipher-
text [14]. After obtaining refreshed GGSW ciphertexts by CBS, the
LHE mode can evaluate circuits efficiently by CMux gates. In this
paper, we describe CBS in two steps: the Refr. and Conv. steps.

The Refr. step refreshes the input LWE ciphertext by PBS and
outputs the corresponding Lev ciphertext. Given an LWE ciphertext
LWEs (Δ𝑚) of a single bit message 𝑚 with some scaling factor

Algorithm 1: Evaluating Automorphism EvalAuto(C, 𝑑)
Input: C = GLWES(𝑋 ) (𝑀 (𝑋 )), 𝑑 ∈ Z×2𝑁
Input: AutoKey𝑑 = KSS(𝑋𝑑 )→S(𝑋 ) with decomposition

base 𝐵 and length ℓ
Output: C′ = GLWES(𝑋 ) (𝑀 (𝑋𝑑 ))

1 C = (𝐴1, . . . , 𝐴𝑘 , 𝐵)
2 C′ ← (𝐴′1, . . . , 𝐴′𝑘 , 𝐵′) = (𝐴1 (𝑋𝑑 ), . . . , 𝐴𝑘 (𝑋𝑑 ), 𝐵(𝑋𝑑 ))
3 C′ ← GLWE_KS(C′,AutoKey𝑑 )
4 return C′

Δ, one can compute Lev(𝐵,ℓ )s (𝑚) by gathering its internal LWE
ciphertexts LWEs (𝑣 𝑗 ·𝑚) where 𝑣 𝑗 = ⌈𝑞/𝐵 𝑗 ⌉ for 𝑗 = 1, . . . , ℓ using
PBS. Since it computes ℓ PBS operations on the same LWE input
with several output scaling factors, PBSmanyLUT can improve this
step without increasing the PBS error.

Next is the Conv. step converting the Lev ciphertext into the
GGSW ciphertext. Chillotti et al. [13] used the private functional
keyswitching to convert LWE(𝑣 𝑗 ·𝑚) to GLWE(𝑣 𝑗 · (−𝑆𝑖 ·𝑚)) when
proposing the CBS algorithm, requiring (𝑘 + 1)ℓ private functional
keyswitching operations for each CBS operation.4

Since then, there have been many approaches to optimize the
Conv. step. The first one is to precompute the multiplication result
of the evaluation key to improve the speed of the private keyswitch-
ing itself at the cost of increased key size (see Appendix C.3 for the
details). For example, the TFHEpp library [35] adopts this technique.
Another one is using public functional keyswitching combined with
scheme switching to replace private functional keyswitching [9, 46].
The MOSFHET library [28] adopts this technique. Since scheme
switching is much faster than functional keyswitching, it can re-
duce the number of functional keyswitching from ℓ (𝑘 + 1) to ℓ .
The last one is using homomorphic trace evaluation [45] to replace
the public functional keyswitching part, improving the Conv. step
asymptotically.

2.5 Automorphism and Trace
The automorphism and trace can be defined on the polynomial ring
R𝑁 and its residue ring R𝑞,𝑁 . For 𝑑 ∈ Z×2𝑁 , the automorphism 𝜏𝑑
on R𝑁 (or R𝑞,𝑁 ) is defined by 𝜏𝑑 : 𝜇 (𝑋 ) ↦→ 𝜇 (𝑋𝑑 ), and the trace
function Tr on R𝑁 (or R𝑞,𝑁 ) is defined by

Tr(𝜇 (𝑋 )) :=
∑︁

𝑑∈Z×2𝑁
𝜏𝑑 (𝜇 (𝑋 )) = 𝑁𝜇0 . (1)

The automorphism can be homomorphically evaluated by GLWE
keyswitching as described in Algorithm 1. On top of it, Chen et
al. [10] proposed an efficient algorithm to evaluate the trace func-
tion as described in Algorithm 2. We refer to Appendix C.4 for the
detail.

3 Improved Circuit Bootstrapping Algorithms
WWL+ employed HomTrace to construct their faster and smaller
circuit bootstrapping [45]. It is crucial to point that the trace evalua-
tion will multiply the phase of the ciphertext by 𝑁 , containing both
4To be precise, it requires 𝑘 private functional keyswitchings and a single public
functional keyswitching since 𝑆𝑘+1 = −1.
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Algorithm 2: Evaluating Trace HomTrace(C)
Input: C = GLWES(𝑋 ) (𝑀 (𝑋 )) where

𝑀 (𝑋 ) =𝑚0 +𝑚1𝑋 + · · · +𝑚𝑁−1𝑋𝑁−1
Input: AutoKey𝑑 = KSS(𝑋𝑑 )→S(𝑋 ) for all 𝑑 ∈ Z×2𝑁
Output: C′ = GLWES(𝑋 ) (𝑁 ·𝑚0)

1 C′ ← C
2 for 𝑑 = 1 to log(𝑁 ) do
3 C′ ← C′ + EvalAuto(C′, 2log𝑁−𝑑+1 + 1)
4 return C′

message and error, as Equation (1). WWL+ set the scaling factor to
𝑁 −1Δ mod 𝑞 in their NTT setting to recover the scaling factor, but
the error is multiplied by 𝑁 as Figure 1a. Without handling this,
one has to use a larger parameter set to guarantee the algorithm
correctness, degrading the overall performance. In this section, we
first present a novel pre-processing method to patch WWL+, and
further propose a FFT-based extension algorithm to achieve better
performance.

3.1 Patched NTT-Based CBS
Novel pre-processing method. To prevent the error amplification,
we first propose a novel pre-processing method. A possible solution
in the NTT setting is to execute the efficient conversion algorithm
from LWE to GLWE ciphertext proposed by Chen et al. [10] after
PBSmanyLUT. The key point is to multiply 𝑁 −1 to both the mes-
sage and error term, such that only homomorphic trace evaluation
error is added after the conversion. We add this method in WWL+
workflow as Figure 1b, and simplify and improve this method as
Figure 1c.

Patched NTT-Based CBS. Then our patched NTT-based circuit boot-
strapping method can be described as the following two steps:
Step 1 Refr. LWEs (Δ𝑚) to refreshed GLevS (𝑚 + · · · ) by:

• PBSmanyLUT without sample extraction
Step 2 Conv. GLevS (𝑚 + · · · ) to GGSWS (𝑚) conversion by:

• Preprocess ×𝑁 −1 : GLevS (𝑚+· · · ) → GLevS (𝑁 −1𝑚+
· · · )

• HomTrace: GLevS (𝑁 −1𝑚 + · · · ) → GLevS (𝑚)
• SchemeSwitch: GLevS (𝑚) → GGSWS (𝑚).

Our method can significantly reduce the noise growth from by
removing an 𝑁 2 multiplicative factor in the error variance. We
present Theorem 3.1 to analyze the noise growth in our patched
algorithm, and also provide a detailed re-analysis of the WWL+
method in Appendix H.

Theorem 3.1. Let c be an LWE ciphertext of phase 𝜇 = Δ𝑚 + 𝑒in
under a secret key s = (𝑠1, . . . , 𝑠𝑘𝑁 ) where the ciphertext modulus
𝑞 is a prime. Then, our patched NTT-based CBS algorithm returns
a GGSW ciphertext C of phase𝑚 + 𝐸cbs (𝑋 ) under the GLWE secret
key S = (𝑆1, . . . , 𝑆𝑘 ) corresponding to s where the variance 𝑉cbs of
𝐸cbs (𝑋 ) is given as follows.

𝑉cbs ≤ 𝑉pbs +
𝑁

2 𝑉tr +𝑉ss .

where 𝑉pbs denotes the PBSmanyLUT error variance, 𝑉tr denotes the
HomTrace error variance, and𝑉ss denotes the scheme switching error
variance.

Proof Sketch. After pre-processing with 𝑁 −1, the phase of the
ciphertext is

𝑁 −1𝑣 𝑗 ·𝑚 + 𝑁 −1𝑦1𝑋 + . . . + 𝑁 −1𝑦𝑁−1𝑋𝑁−1 + 𝑁 −1𝐸pbs (𝑋 ) .
Then the trace evaluation change the phase to

𝑣 𝑗 ·𝑚 + 𝑒pbs + 𝐸tr (𝑋 ),
where 𝑒pbs is the constant term of 𝐸pbs without amplify it. We give
the full proof in Appendix G for self-completeness. □

3.2 FFT-Based CBS
Under the large modulus used by circuit bootstrapping, FFT out-
performs NTT in terms of the concrete cost and implemented per-
formance [1, 48]. This is due to the decreased parallelism in NTT
and the complexity of the modular reduction algorithm. This key
observation promote us to design an FFT-based CBS method to get
better performance.

However, there are two technical subtleties that prevent the
improved WWL+ method from being applied in the FFT domain:
(a) an inverse of 𝑁 mod 𝑞 does not exist in FFT domains for the
aforementioned pre-processing, and (b) the inherent errors in FFT
(i.e., precision errors in FFT floating-point calculations) will be
multiplied by 𝑁 during HomTrace, compromising the correctness
of circuit bootstrapping. Our FFT-based CBS algorithm addresses
these issues with the following techniques: (a) a new pre-processing
method designed for FFT domains, and (b) a split FFT-based calcu-
lation method to handle FFT errors.

New Pre-processing. We used 𝑁 −1 mod 𝑞 to mitigate the multiplica-
tive factor of 𝑁 during HomTrace in the patched NTT-based CBS,
but the existence of 𝑁 −1 is guaranteed only when (𝑁,𝑞) are co-
prime, which it is not the case in the FFT setting where both 𝑁 and
𝑞 are power-of-two. Inspired by this limited approach, we propose
a new pre-processing method that divides both the scaling factor
and the blind rotation error by 𝑁 using modulus switching and
modulus raising, see Figure 2 for the pictorial description.

Specifically, let C = GLWE𝑞,S (𝑣 𝑗 ·𝑚) be a GLWE ciphertext of
phase 𝜇 = Δ𝑚 + 𝑒 modulo 𝑞 under a GLWE secret key S ∈ B𝑁 [𝑋 ]𝑘 ,
which corresponds to a GLWE component of the output GLev ci-
phertext of PBSmanyLUT (see Figure 1c), where 𝑞 and 𝑁 are both
powers of two. We omit the redundant term 𝑦1𝑋 + · · · +𝑦𝑁−1𝑋𝑁−1
for simplicity as it is vanished by HomTrace. The modulus switch-
ing of C from 𝑞 to 𝑞/𝑁 divides its phase by 𝑁 at the cost of addi-
tional modulus switching error 𝐸ms, obtaining a GLWE ciphertext
C′ = GLWE 𝑞

𝑁
,S (

𝑣𝑗
𝑁𝑚) of phase 𝜇′ = 1

𝑁 𝜇 + 𝐸ms =
𝑣𝑗
𝑁𝑚 + 1

𝑁 𝑒 + 𝐸ms

modulo 𝑞
𝑁 . To recover the ciphertext modulus, we use the modulus

raising from 𝑞/𝑁 to 𝑞. Let C′ = (𝐴1, . . . , 𝐴𝑘 , 𝐵) ∈ R𝑘+1𝑞/𝑁 . Then,

𝐵 − ⟨(𝐴1, . . . , 𝐴𝑛), S⟩ = 𝜇′ + 𝑞
𝑁
·𝑈 (2)

for some 𝑈 ∈ Z[𝑋 ]/(𝑋𝑁 + 1) since the phase of C′ is 𝜇′ modulo
𝑞
𝑁 under the secret key S. The modulus raising interprets each
coefficient of C′ in Z𝑞/𝑁 as an element of Z𝑞 of the same value,
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(c) Our improved method

Figure 1: The Circuit Bootstrapping Workflow. "𝑚 + ..." denote the plaintext polynomial with some redundant power of 𝑋 terms.
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Figure 2: New pre-processing method on an FFT domain.

obtaining a GLWE ciphertextC′′ = (𝐴1, . . . , 𝐴𝑘 , 𝐵) ∈ R𝑘+1𝑞 of phase
𝜇′ + 𝑞

𝑁 ·𝑈 modulo 𝑞 by (2).
After the above modulus switching and modulus raising, the in-

put GLWE ciphertext of phase 𝜇 is changed to the GLWE ciphertext
of phase 𝜇′′ = 1

𝑁 𝜇 + 𝐸ms + 𝑞
𝑁 ·𝑈 under the same GLWE secret key

and modulus 𝑞. Since both the input message and error are divided
by 𝑁 , the multiplication by 𝑁 during HomTrace can be canceled
out. The term 𝑞

𝑁 ·𝑈 will also vanish through trace evaluation, which
multiplies it by 𝑁 modulo 𝑞. Additionally, only the constant 𝑒ms of
𝐸ms remains after HomTrace.

This pre-processing takes negligible time compared toHomTrace.
Its additional error increment by𝑁𝑒ms, whose variance is𝑁 2 · 𝑘𝑁+112 ,
is much smaller than the blind rotation error and HomTrace error.
For more details, we refer to Appendix C.1.

By adopting this new pre-processing method in the FFT setting,
HomTrace after blind rotation outputs a GLWE ciphertext of a
phase

𝑁𝜇′′ + 𝐸tr = 𝜇 + 𝑁𝑒ms + 𝐸tr (3)
under the corresponding GLWE secret key S where 𝐸tr is the error
of the homomorphic trace evaluation.

Split FFT. Most FFT-based implementations of TFHE, especially for
PBS, do not deal with the errors generated from FFT floating-point
calculation. But for HomTrace, it is hard to ignore the FFT error
because it is multiplied by 𝑁 during HomTrace, becoming larger
than the HomTrace error itself. One naive way to reduce the FFT
error is to decrease the gadget basis, but it is not enough. Increasing
the precision of floating-point arithmetic for FFT can be another
solution, but we do not consider this because double-precision FFT
is most commonly used in TFHE.

To reduce FFT errors further, we split a polynomial of 64-bit
precision into two parts: let 𝐹 ∈ R264,𝑁 such that ∥𝐹 ∥∞ ≤ 𝐵/2 and
𝐺 ∈ R264,𝑁 . Then one can represent 𝐺 as

𝐺 = 𝐺0 +𝐺1 · 2𝑏

where the coefficients of 𝐺0 (resp. 𝐺1) are all contained in J0, 2𝑏J
(resp. J0, 264−𝑏J) and 𝑏 ∈ J0, 64J. Splitting the multiplier 𝐺 decom-
poses the polynomial multiplication 𝐹 · 𝐺 into two polynomial
multiplications with smaller multipliers:

𝐹 ·𝐺 = (𝐹 ·𝐺0) + 2𝑏 · (𝐹 ·𝐺1) .
7
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We call this strategy as split FFT.
A key point to use split FFT is finding a proper 𝑏 such that 𝐹 ·𝐺1

can be computed exactly with a negligible failure probability and
𝐹 ·𝐺0 has as small FFT error as possible. To do this, we should first
estimate the FFT error. Let 𝜒 be the bit-precision of the floating
point representation, which is 53 for double-precision. Bergerat et
al. [5] proposed an estimation for the variance of FFT error from
the external product, so we used a slightly modified formula for
GLWE keyswitching as follows.5

2−2𝜒−2.6 · ℓ𝑞2𝐵2𝑁 2𝑘

where ℓ and 𝐵 are gadget length and base of the GLWE keyswitch-
ing, respectively. There is also an FFT error estimate proposed by
Klemsa et al. [31], we analyze the difference in Appendix B. When
it comes to the split FFT-based GLWE keyswitching, the FFT error
variance of the lower part (resp. the upper part) is given by

22(𝑏−𝜒 )−2.6ℓ𝐵2𝑁 2𝑘 (resp. 22(64−𝑏−𝜒 )−2.6ℓ𝐵2𝑁 2𝑘). (4)

This is consistent with the experimental results. Using (4), one
can find a proper 𝑏 to guarantee the exact computation on the
upper part with a negligible failure probability. For instance, the
value of 𝑏 for each parameter set used in this paper is chosen to
obtain the failure probability of the split FFT smaller than about
2−256, enabling one to ignore the failure probability of the split FFT
compared to that of PBS (see Appendix B for the detailed analysis).6
On the other hand, there might be an FFT error for the lower part
that should be added to the final error, but it is reduced significantly
by the split FFT.

We then present Theorem 3.2 to analyze the noise growth in our
FFT-based circuit bootstrapping algorithm.

Theorem 3.2. Let c be an LWE ciphertext of phase 𝜇 under a secret
key s = (𝑠1, . . . , 𝑠𝑘𝑁 ) where the ciphertext modulus 𝑞 is a power-of-
two. Then, our FFT-based CBS algorithm returns a GLWE ciphertext
C of phase 𝜇 + 𝐸cbs (𝑋 ) under the GLWE secret key S = (𝑆1, . . . , 𝑆𝑘 )
corresponding to s where the variance 𝑉cbs of 𝐸cbs (𝑋 ) is given as
follows.

𝑉cbs ≤ 𝑉pbs + 𝑁 2𝑉ms + 𝑁2 𝑉tr +𝑉ss
where 𝑉pbs denotes the PBSmanyLUT output error variance, 𝑉ms
denotes the modulus switching error,𝑉tr denotes theHomTrace output
error variance, and 𝑉ss denotes the scheme switching output error
variance. 𝑉pbs, 𝑉tr and 𝑉ss should contain their FFT error variance.

Proof Sketch. The proof is analogous to that of Theorem 3.1
except that there are additional pre-processing error and FFT error.
We give the full proof in Appendix G for self-completeness. □

3.3 Performance
In this section, we provide the performance of our improved CBS
algorithms. The benchmark environment is i9-11900K @ 3.50 GHz
with 32 GB RAM supproting AVX-512 optimization.

5In [5], 𝑘 + 1 is used instead of 𝑘 since there is FFT-based multiplication for the body
part in the external product, which is not in the keyswitching.
6We set the failure probabilty of the split FFT to be much smaller than that of PBS,
which is set to 2−40 in this paper, because relaxing the failure probability of the split
FFT has no impact on time complexity.

Implementations. For our patched NTT-based CBS7, we employ the
same level of security parameters from the WWL+ method for a
fair comparison. In addition, we provide multiple parameter sets
tailored to support different levels of circuit depth. The parameters
were selected using “Lattice Estimator” 8 to ensure 128-bit security
under standard security assumptions. Table 1 summarizes the rec-
ommended parameter sets for our patched NTT-based CBS. The
ciphertext modulus for the blind rotation is a prime of 54 bits (see
Appendix A.2 for the detail). ℓop and 𝐵op for op ∈ {pbs, tr, ss, ks}
denote the gadget length and base of the corresponding opera-
tions. ℓ and 𝐵 are the gadget length and base of circuit evaluation.
We also provide reanalyzed parameters for the WWL+ method in
Appendix H.

Sets 𝑛 𝑁 𝑘 ℓpbs 𝐵pbs ℓtr 𝐵tr ℓss 𝐵ss ℓ 𝐵 ℓks 𝐵ks

NTT-CMux1 571 2048 1 1 226 3 213 1 228 4 23 10 23
NTT-CMux2 571 2048 1 2 217 3 213 2 219 4 24 10 23
NTT-CMux3 571 2048 1 2 217 6 28 2 219 4 25 10 23

Table 1: Recommended parameters for our NTT-based CBS.

For our FFT-based CBS9, we increase the LWE dimension 𝑛 from
571 to 636 to mitigate larger errors on FFT. The recommended
parameter sets for our FFT-based circuit bootstrapping are summa-
rized in Table 2. The additional column of 𝑏tr denotes the split FFT
base to reduce the FFT error of HomTrace. The ciphertext modulus
is 264. We also provide a parameter analysis tool for the FFT-based
LHE mode that considers the FFT error.10

Sets 𝑛 𝑁 𝑘 ℓpbs 𝐵pbs ℓtr 𝐵tr 𝑏tr ℓss 𝐵ss ℓ 𝐵 ℓks 𝐵ks

FFT-CMux1 636 2048 1 1 223 5 28 - 1 225 4 23 5 22
FFT-CMux2 636 2048 1 2 215 6 27 - 2 217 4 24 5 22
FFT-CMux3 636 2048 1 2 215 6 27 35 2 217 4 24 5 22

Table 2: Recommended parameters for our FFT-based CBS.
“-” indicates that split FFT is not used.

Performance. We implement our FFT-based CBS (resp. NTT-based
CBS) using TFHE-rs [48] (resp. OpenFHE [1]). Table 3 shows the
performance of our CBS algorithms and compares them to previous
methods. WWL+ denotes NTT-based CBS by the WWL+ method
with revised parameters. TFHEpp [35], MOSFEHT [28] and TFHE-
rs [48] denote the FFT-based CBS supported by the corresponding
libraries. Our patched NTT-based CBS decreases the latency (resp.
the keysize) by factors up to 2.60 (resp. 3.43) compared to the revised
WWL+. In the case of our FFT-based CBS, it enjoys 3.42× faster
running time and 33.2× smaller key size compared to TFHEpp.

Remark 1. We implemented all NTT-based circuit bootstrapping
in the open-source OpenFHE library. Additionally, WWL+ utilized an
AVX-512 based NTT library for further optimization. We conducted
estimates by testing the efficiency of the underlying NTT operations
within the same library, with the results shown in parentheses.

7https://github.com/LightFHE/CircuitBootstrap
8https://github.com/malb/lattice-estimator
9https://github.com/KAIST-CryptLab/refined-tfhe-lhe. It also includes the implemen-
tation for Section 4 and 5.
10https://github.com/KAIST-CryptLab/refined-tfhe-lhe/tree/main/error_analysis
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Methods Refr. Conv. Max Time Keysize
Depth (ms) (MB)

WWL+ (CMuxO1) PBSmanyLUT HomTrace + SS 2 95.92 (39.00) 30.56
Ours (NTT-CMux1) PBSmanyLUT Preprocessing + HomTrace + SS 30 71.02 (26.66) 15.50
Ours (FFT-CMux1) PBSmanyLUT Preprocessing + HomTrace + SS 8 14.15 20.84

TFHEpp PBSmanyLUT PrivateKSpre 61 63.46 1359.43
MOSFHET PBSmanyLUT PublicKSpre + SS 1788 101.32 2127.31

WWL+ (CMuxO2) PBSmanyLUT HomTrace + SS 101 119.09 (52.29) 45.91
Ours (NTT-CMux2) PBSmanyLUT Preprocessing + HomTrace + SS 413 95.03 (39.05) 30.57
Ours (FFT-CMux2) PBSmanyLUT Preprocessing + HomTrace + SS 2102 18.57 40.92

TFHE-rs PBS PrivateKS 5237 80.62 168.81
WWL+ (CMuxO3) PBSmanyLUT HomTrace + SS 53378 250.41 (102.64) 106.43
Ours (NTT-CMux3) PBSmanyLUT Preprocessing + HomTrace + SS 57335 96.25 (40.47) 31.01
Ours (FFT-CMux3) PBSmanyLUT Preprocessing + HomTrace + SS 21296 20.62 40.92

Table 3: Comparison of CBS performance.

Remark 2. We contained the LWE keyswitching error to compute
the max depth for accuracy, which was not considered in [45]. Also,
we use a smaller failure probability of 2−40 instead of 2−32.

Remark 3. The key size reduction in our scheme arises from two
factors. First, compared to WWL+, reducing noise amplification al-
lows for smaller parameters, leading to a more compact key. Second,
compared to TFHEpp and MOSFHET, we replace the key-switching
step by using HomTrace, which reduces the key from 2𝑁 to log𝑁 + 1
GLWE ciphertexts. Throughout this paper, the reported key size refers
to the compressed form, where the mask of each fresh ciphertext is
replaced by a seed to generate it. We refer Appendix C.6 for details.

4 Application I: AES Transciphering
Since 2012, homomorphic evaluation of AES has been regarded
as an important benchmark for testing FHE [11, 19, 24, 26]. In
recent years, it has been further promoted as an application for
transciphering, which combines a symmetric cipher with a homo-
morphic encryption scheme. This hybrid approach aims to reduce
computation and communication costs of the client-side at the
cost of homomorphic decryption of the symmetric cipher on the
server-side [39]. Lots of works evaluating AES by TFHE have been
proposed [6, 42, 45–47] to achieve low latency. Among them, the
fastest method to date (in a single thread) is based on the LHE
mode [45, 46].

In the LHEmode, single-bit message encoding makes bit-shifting
operations nearly cost-free. Additionally, homomorphic XOR can
be efficiently implemented using homomorphic addition, which
incurs minimal computational overhead. As a result, the LHE mode
allows for almost free evaluation of AddRoundKey, ShiftRows, and
MixColumns in AES transciphering in terms of computation time.
Consequently, the primary cost arises from computing the 8-bit
AES S-box (SubBytes) using 8-8 lookup tables and performing cir-
cuit bootstrapping. This enables us to enhance AES transciphering
through our improved circuit bootstrapping algorithms. Addition-
ally, we propose the following 2 techniques to further improve
AES transciphering performance: (a) a flexible LHE mode and (b) a
modified AES evaluation workflow.

Remark 4. There have been many works for transciphering with
other symmetric ciphers or other HE schemes [2, 3, 16–18, 20, 22, 23,
29, 30, 37, 38], but we only deal with AES transciphering on TFHE in
this section.

4.1 A Flexible LHE Mode
The aforementioned LHE mode is inflexible since the Conv. step
is always executed together with the heavy Refr. step, denoted as
circuit bootstrapping (CBS). However, given that the supported
circuit evaluation depth increases exponentially with the circuit
bootstrapping parameters, using CBS for small-scale circuits (e.g.
AES S-box) to convert ciphertext types results in wasted depth.
We then propose a HalfCBS algorithm, which takes as input C =

GGSWS (𝑚) and outputs C′ = GGSWS (𝐿[𝑚]) where 𝐿 denotes the
circuit to be evaluated, in order to achieve circuit composability
without refreshing noise as illustrated in Figure 3. Compared to
our proposed CBS algorithms in Section 3.1 and Section 3.2, the
HalfCBS algorithm (Algorithm 3) does not have a Refr. step.

Specifically, instead of using PBSmanyLUT, HalfCBS employs
ℓ look-up table circuits Circuit𝑚→𝑣𝑗 ·𝐿[𝑚] , each implemented as
a CMux-based binary tree, where ℓ is the GGSW gadget length
(line 2). In each circuit, 𝑣 𝑗 · 𝐿[𝑚] serves as the test polynomial,
and GGSW(𝑚) as the control bit. After removing the redundant
terms appearing on non-constant terms by the preprocessing and
HomTrace (line 3-4), the resulting GLWE ciphertexts are gathered
into a corresponding GLev ciphertext (line 5), and converted into
the desired GGSW ciphertext by scheme switching (line 6).

As HalfCBS does not contain the heavy Refr. step, its compu-
tational complexity is lower than CBS. In asymptotic perspective,
the complexity of HalfCBS is 𝑂 (𝑘𝑁 log2 𝑁 ) and that of CBS is
𝑂 ((𝑘 + 1)𝑛𝑁 log𝑁 ). We remark that the parameters 𝑘 and 𝑁 might
differ for HalfCBS and CBS. That said, because 𝑛 is much larger
than log𝑁 , HalfCBS can make circuit evaluation faster at the cost
of increased noise growth. We call an LHE mode using HalfCBS by
a flexible LHE mode.

9
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Figure 3: A Flexible Leveled Homomorphic Evaluation (LHE)
Mode.

Algorithm 3: HalfCBS

Input: C = GGSWS (𝑚)
Input: ℓ look up table circuits Circuit𝑚→𝑣𝑗 ·𝐿[𝑚] ,

𝑗 ∈ {1, . . . , ℓ}
Input: Automorphism keys under S
Input: Scheme switching key under S
Output: C′ = GGSWS (𝐿[𝑚])

1 for 𝑗 = 1 to ℓ do
2 C′𝑗 ← Circuit𝑚→𝑣𝑗 ·𝐿[𝑚] (C)

/* C′𝑗 = GLWES (𝑣𝑗 · 𝐿[𝑚] + . . . ) */

3 C′𝑗 ← Preprocess(C′𝑗 )
4 C′𝑗 ← HomTrace(C′𝑗 ) /* C′𝑗 = GLWES (𝑣𝑗 · 𝐿[𝑚] ) */

5 C
′ ← {C′𝑗 } 𝑗∈{1,...,ℓ } /* C

′
= GLevS (𝐿[𝑚] ) */

6 C′ ← SchemeSwitch(C′) /* C′ = GGSWS (𝐿[𝑚] ) */

7 return C′

Theorem 4.1. Let C be a GGSW ciphertext of𝑚 under a secret
key S. Then, Algorithm 3 returns a GGSW ciphertext C′ of 𝐿[𝑚] with
an error variance 𝑉half-cbs such that

𝑉half-cbs ≤ 𝑉circuit +𝑉pre +
𝑁

2 𝑉tr +𝑉ss
where 𝑉circuit denotes the output error variance from the circuit 𝐿
evaluation on the input C, 𝑉pre denotes the pre-processing error vari-
ance such that 𝑉pre = 0 for the NTT-based one and 𝑉pre = 𝑁 2𝑉ms
for the FFT-based one, 𝑉tr denotes the trace evaluation error variance,
and 𝑉ss denotes the scheme switching error variance. 𝑉circuit, 𝑉tr, and
𝑉ss should contain their FFT error variances in the FFT setting.

Proof. 𝑉circuit denotes the error variance of C′𝑗 in line 2. Then
the above inequality can be obtained from the proof of Theorem 3.1
and Theorem 3.2 by replacing 𝑉pbs with 𝑉circuit. □

Remark 5. We consider a single input circuit 𝐿 in Algorithm 3 for
the consistency with CBS, while it can be generalized to circuits having
arbitrarily number of inputs. For example, if 𝐿 can be evaluated by
CMux gates of depth 𝑑 , then

𝑉circuit ≤ 𝑑
(
(1 + 𝑘𝑁 )

(
𝑞2 − 𝐵2ℓ
24𝐵2ℓ

+ 1
12

)
+ (𝑘 + 1)ℓ𝑁

(
𝐵2 + 2
12

)
𝜎2in

)
It can be derived from Lemma C.4 where (𝐵, ℓ) is the gadget decompo-
sition parameter for the input GGSW ciphertexts and 𝜎2in is the input
error variance.

Sets 𝑛 𝑁 𝑘 ℓks 𝐵ks ℓpbs 𝐵pbs 𝜗 ℓtr 𝐵tr 𝑏tr ℓss 𝐵ss ℓ 𝐵

HalfCBS 768 1024 3 3 24 - - - 3 215 42 3 213 3 27

Set-I 768 1024 2 3 24 1 223 3 3 212 - 2 217 6 22

Set-II 768 1024 2 3 24 2 215 2 6 27 34 2 217 4 24

Table 4: Parameters for the AES evaluation.

Hybrid use of HalfCBS and CBS algorithms. Theorem 4.1 demon-
strates that the HalfCBS algorithm does not refresh the ciphertext
noise. Hence, we can use both HalfCBS and CBS in a flexible LHE
mode to manage the noise. Specifically, based on a compact noise
assessment, the HalfCBS algorithm can be used when the noise
level is low, and the CBS algorithm can be employed when the
noise is about to overflow. This technique is conducted in the AES
transciphering implementation in Section 4.2.

4.2 AES Transciphering
Amodified AES evaluation workflow. First, we embed the AES round
key into the S-box to generate an encrypted keyed S-box. Specifi-
cally, by sending GLWE ciphertexts that encrypt the tables of 𝑆𝑘
such that 𝑆𝑘 (𝑥) = 𝑆 (𝑥 ⊕ 𝑟𝑘) where 𝑆 is the AES S-box and 𝑟𝑘 is the
round key, we can eliminate the homomorphic addition and error
accumulation in AddRoundKey at the cost of increased key size.
Furthermore, we combine SubBytes, MixColumns, and ShiftRows
together into four 8-24 LUTs following Wei et al.’s method [46],
reducing the number of homomorphic additions. For a detailed
step-by-step evaluation, we refer to Appendix D.1.

Implementations. We then implement the AES transciphering based
on our flexible LHE mode using our proposed FFT-based CBS and
HalfCBS. For the implementations, we use the parameter sets as
listed in Table 4. The standard deviation of the fresh error is chosen
to guarantee 128-bit security (see Appendix A.1). HalfCBS denotes
the parameters for the HalfCBS-based round, and Set-I/II denotes
those for the CBS-based round.

For instance, the latency of the HalfCBS round is 423.53 ms,
which is 3.27/5.19 times faster than the CBS round (1387.49/2198.33
ms). However, the whole AES transciphering is too large to use
HalfCBS for all of the procedures. We currently use it 1 time with-
out affecting the bootstrapping failure probability. In our design,
the HalfCBS algorithm is applied only in the first round, and the
standard CBS algorithm is used for the remaining rounds. This
strategy improves efficiency while keeping the decryption failure
probability negligible. In this strategy, the Flexible LHE mode offers
a 1.23× performance improvement over the traditional LHE mode
in AES evaluation.

Performance. Table 5 shows the benchmark result and comparison
with previous works.

The overall benchmark environment is the same as that of Sec-
tion 3.3. Compared to the fastest previous result [46], our result
based on the flexible LHE mode with Set-I is 4.78× faster with 31.3×
smaller keysize. Our results with Set-II provides AES evaluation
with very low failure probability, while they are still faster than the
previous results.
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Evaluation Modes Library Failure Prob. Time (s) Key Size (MB)

FHE [42]11 (∗) TFHE-rs 2−23 249.2 160.00
FHE [6] (∗) TFHE-rs 2−40 95.9 32.88
LHE [47] TFHEpp - 79.3 1359.43
LHE [45]12 OpenFHE 2−32 68.3 46.64
LHE [46] TFHEpp - 55.0 734.40

LHE [Set-I] TFHE-rs 2−34.86 12.7 19.36
Flex. LHE [Set-I] TFHE-rs 2−34.86 11.5 23.46

LHE [Set-II] TFHE-rs 2−368.33 19.4 37.83
Flex. LHE [Set-II] TFHE-rs 2−129.75 15.8 41.93

Table 5: Our AES evaluation performance compared with the
state of the art. The modes indicated by (∗) are estimated
from their building blocks.

5 Application II: LUT and TFHE Processor
In Section 4, we demonstrate the advantage of LHE mode when
processing bit-wise input. However, the bitwise input LHE cannot
handle the case of using an integer input for each LWE cipher-
text. In this section, we first briefly summarize previous methods
to evaluate LUT with integer inputs, and propose our improved
method.

5.1 Previous Methods for LUT
There are LUT evaluation methods for both FHE and LHE modes.
For the FHE mode, a method named tree-PBS was proposed by
Carpov et al. [8]. For simplicity, we describe a tree-PBS for the 4-bit
identity function illustrated in Figure 5 as follows; Initially, the
input message, ranging from [0, ..., 42−1], is encoded into two 2-bit
(basis 4) message chunks, each encrypted in an LWE ciphertext
𝑐𝑖∈[0,1] . Then the LUT is decomposed into four test polynomials,
each with four LUT values, accordingly. In the first layer of the PBS-
tree, it performs four PBS operations using ciphertext 𝑐0 to rotate
the test polynomials and extract four LWE results. Subsequently,
one can use functional key switching to repack them into a new
GLWE ciphertext encrypting the layer-2 test polynomial. Finally, it
perform a PBS with 𝑐1 to output the final result.

Generally, for a 𝐵𝑑 -𝐵 size integer LUT, the tree-PBS performs∑𝑑−1
𝑖=0 𝐵

𝑖 PBS operations and
∑𝑑−2
𝑖=0 𝐵

𝑖 key switching. Since the PBS
in the first layer can be merged into one MV-PBS, then the number
of blind rotations can be reduced to 1 +∑𝑑−2

𝑖=0 𝐵
𝑖 .

The tree-PBS method leads to a challenge for the LHE mode to
deal with integer inputs instead of bits. To respond to this issue,
Bergerat et al. [4] proposed the BBB+ method as a new WoP-PBS
algorithm, as shown in Figure 4a. This algorithm extracts each bit
from the ciphertext chunks, and converts them into GGSWs to
perform CMux evaluation.

11Trama et al. used TFHElib to implement their result, while the building blocks for
their method are not publicly open. We estimate their result using TFHE-rs as it
contains all the building blocks.
12Wang et al. evaluate AES transciphering with their WWL+ circuit bootstrapping
method [45], achieved a latency of 26 seconds on their machine. However, the pa-
rameters used in the paper incur a large decryption failure probability. Therefore, we
reanalyzed the WWL+ method and provided updated parameter sets in Appendix H,
so we used the performance under these parameters as a benchmark.

(a) The BBB+ Method [4]

(b) Our HP-LHE Method

Figure 4: The High-Precision Solutions in the LHE Mode.

Figure 5: Diagram for the tree-PBS with a basis 4

5.2 New Integer Input LHE Mode
In this section, we propose a new integer input LHE mode as shown
in Figure 4b and Algorithm 4.

The overall idea is to improve the BBB+ method as follows:
• Integrate the Extr. and Refr. steps by single PBSmanyLUT.
• Propose high-precision HomTrace to improve the Conv.

step.
• Propose multi-bit extraction to enhance the Extr. step.

Integrating the Extr. and Refr. steps and proposing multi-bit extrac-
tion reduce the number of required PBSmanyLUT operations, im-
proving the performance significantly. Adopting HomTrace-based
Conv. step is also important as in the bitwise input LHE mode.
Because the integer input LHE mode requires a higher precision
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Algorithm 4: CBS of Integer Input LHE Mode
Input: c = LWEs ( 𝑞2𝛿 ·𝑚) where 𝜏 | 𝛿
Input: ℓ test polynomials 𝐹 𝑗 to compute 𝑣𝑗

2 · (−1)𝑥𝜏−1+1 for 𝑗 = 1, . . . , ℓ from a 𝜏-bit input 𝑥 =
∑𝜏−1
𝑖=0 𝑥𝑖 · 2𝑖

Input: 𝜏 − 1 polynomials 𝐺𝑘 such that 𝐺𝑘 · 𝐹 𝑗 becomes a test polynomial to compute 𝑣𝑗
2 · (−1) (𝑥𝜏−1⊕𝑥𝑘 )+1 from a 𝜏-bit input

𝑥 =
∑𝜏−1
𝑖=0 𝑥𝑖 · 2𝑖 for 𝑘 = 0, . . . , 𝜏 − 2

Input: Bootstrapping keys under S
Input: Automorphism keys under S for Conv (or keys for HP-Conv if necessary)
Input: Scheme switching key under S
Output: C𝑖 = GGSW(𝑚′𝑖 ) for 𝑖 = 0, . . . , 𝛿 − 1 where𝑚′𝑖 =𝑚𝑖 if 𝜏 | (𝑖 + 1) and𝑚′𝑖 =𝑚⌈ (𝑖+1)/𝜏 ⌉ ·𝜏 ⊕𝑚𝑖 otherwise.

1 for 𝑖 = 0 to 𝛿/𝜏 − 1 do
2 c′ ← 2𝛿−(𝑖+1)∗𝜏 · c /* c′ = LWE( 𝑞2𝜏 ·

∑𝜏−1
𝑘=0𝑚𝑖 ·𝜏+𝑘 · 2𝑘 ) */

3 C𝑖 ·𝜏+(𝜏−1) ← PBSmanyLUT
(
c′; (𝐹 𝑗 )ℓ𝑗=1

)
(except sample extraction) /* C𝑖 ·𝜏+(𝜏−1) [ 𝑗 ] = GLWE( 𝑣𝑗2 · (−1)

𝑚𝑖 ·𝜏+(𝜏−1) +1 + . . . ) */

4 for 𝑗 = 1 to ℓ do
5 for 𝑘 = 0 to 𝜏 − 2 do
6 C𝑖 ·𝜏+𝑘 [ 𝑗] ← 𝐺𝑘 · C𝑖 ·𝜏+(𝜏−1) /* C𝑖 ·𝜏+𝑘 [ 𝑗 ] = GLWE( 𝑣𝑗2 · (−1)

(𝑚𝑖 ·𝜏+(𝜏−1) ⊕𝑚𝑖 ·𝜏+𝑘 )+1 + . . . ) */

7 C𝑖 ·𝜏+𝑘 [ 𝑗] ← C𝑖 ·𝜏+𝑘 [ 𝑗] + GLWE0 (𝑣 𝑗/2) /* C𝑖 ·𝜏+𝑘 [ 𝑗 ] = GLWE(𝑣𝑗 · (𝑚𝑖 ·𝜏+(𝜏−1) ⊕𝑚𝑖 ·𝜏+𝑘 ) + . . . ) */

8 C𝑖 ·𝜏+(𝜏−1) [ 𝑗] ← C𝑖 ·𝜏+(𝜏−1) + GLWE0 (𝑣 𝑗/2) /* C𝑖 ·𝜏+(𝜏−1) [ 𝑗 ] = GLWE(𝑣𝑗 ·𝑚𝑖 ·𝜏+(𝜏−1) + . . . ) */

9 for 𝑘 = 0 to 𝜏 − 1 do
10 C𝑖 ·𝜏+𝑘 ← Conv(C𝑖 ·𝜏+𝑘 ) (or HP-Conv(C𝑖 ·𝜏+𝑘 )) /* C𝑖 ·𝜏+𝑘 = GGSW(𝑚′

𝑖 ·𝜏+𝑘 ) */

11 if 𝑖 < 𝛿/𝜏 − 1 then
12 C′′ ← Circuit(𝑚′

𝑖 ·𝜏+(𝜏−1) ,...,𝑚
′
𝑖 ·𝜏 )→

𝑞

2𝛿−𝑖 ·𝜏 ·𝐿[
∑𝜏−1

𝑘=0𝑚𝑖 ·𝜏+𝑘 ·2𝑘 ]
( (
C𝑖 ·𝜏+𝑘

)𝜏−1
𝑘=0

)
13 c′′ ← SampleExtract(C′′) /* c′′ = LWE( 𝑞

2𝛿−𝑖 ·𝜏
∑𝜏−1

𝑘=0𝑚𝑖 ·𝜏+𝑘 · 2𝑘 ) */

14 c← c − c′′ /* c = LWE( 𝑞

2𝛿−(𝑖+1)𝜏
∑𝛿−(𝑖+1)𝜏

𝑘=0 𝑚 (𝑖+1)𝜏+𝑘 · 2𝑘 ) */

15 return
(
C𝑗

)𝛿−1
𝑗=0

for this step, we proposed a method to improve the precision of
HomTrace at the cost of additional homomorphic evaluation.

We introduce each technique as follow, and give some more
detailed explanations and its error analysis in Appendix E.

Integrate Extr. with Refr. Suppose that an LWE ciphertext of a 𝛿-bit
message 𝑚 scaled by Δ = 𝑞/2𝛿 is given where 𝑚 =

∑𝛿−1
𝑗=0 𝑚 𝑗2𝑗

and𝑚0, . . . ,𝑚𝛿−1 ∈ {0, 1}. In the BBB+ method, each bit is first ex-
tracted into a new LWE ciphertext by PBS (Extr.), and the resulting
LWE ciphertext is taken into another PBS in the Refr. step of CBS.
It even uses ℓ PBS for the Refr. step where ℓ is the gadget length of
the CBS output.

However, we find that both Extr. and Refr. steps take LWE( 𝑞2 ·𝑚 𝑗 )
as an input to PBS. To integrate both steps and remove unnecessary
PBS, we use PBSmanyLUT to refresh it, obtain GGSW(𝑚 𝑗 ) from the
followed Conv. step, and recover LWE( 𝑞

2𝛿− 𝑗 ·𝑚 𝑗 ) from GGSW(𝑚 𝑗 )
to repeat the bit extraction.

Improved Conv. with HP-HomTrace. HomTrace and scheme switch-
ing improves the Conv. step of CBS in terms of both time complexity
and keysize compared to private functional keyswitching. However,
in terms of error growth, this method cannot support higher pre-
cision due to the multiplicative factor of about 𝑁 3/2, which is not
in private functional keyswitching. Although the error induced by
HomTrace was small enough to be used in the bitwise input LHE

mode, we need a high-precision HomTrace evaluation method to
support the multi-bit input LHE mode.

We propose a high-precision HomTrace approach by combining
GLWE dimension switching as follows. Let S be a GLWE secret
key of a dimension 𝑘 , we first switch the GLWE ciphertext into the
corresponding GLWE ciphertext under a new GLWE secret key S′
of a larger dimension 𝑘′ than 𝑘 by GLWE key switching. Then, after
the pre-processing on the switched GLWE ciphertext, we evaluate
the trace on the large dimension with high-precision. Finally, we
switch it back into the original GLWE dimension 𝑘 . By evaluating
HomTrace on a larger GLWE dimension, we can reduce HomTrace
error significantly. Although two additional GLWE keyswitching
operations to switch the GLWE dimension induce additiona error,
it is much smaller than the HomTrace error in the original GLWE
dimension. We provide Algorithm 7 for details and Theorem E.1
for error analysis in Appendix E.

Masked Multi-Bit Extraction Algorithm. By the above two tech-
niques, one can extract and convert each bit of the message using a
single blind rotation. To reduce it further, we try to process several
message bits (𝜏 bits) in a single blind rotation. The basic idea of our
masked multi-bit extraction is as follows.

(1) Move the least 𝜏-bit to the MSBs (line 2).
(2) Extract all the 𝜏 bits (masked by the MSB) (line 3-8), and

convert them into GGSW ciphertexts (line 10).
12
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(3) Subtract the least 𝜏-bit from the input ciphertext, and repeat
the process (line 12-14).

The idea of extracting the least 𝜏-bit for each iteration is simi-
lar to the homomorphic digit decomposition proposed by Liu et
al. [33]. Since there is no padding bit, they require two blind rota-
tion operations to exactly extract it. On the other hand, to reduce
the number of blind rotation, we extract with slightly modified
outputs; given an LWE ciphertext of the 𝜏-bit input

∑𝜏−1
𝑗=0 𝑚 𝑗 · 2𝑗

without padding, PBSmanyLUT combined with MV-PBS can out-
put

(
GLev(𝑚′𝑗 + . . . )

)𝜏−1
𝑗=0 where𝑚′𝜏−1 =𝑚𝜏−1 and𝑚

′
𝑗 =𝑚𝜏−1⊕𝑚 𝑗

for 𝑗 = 0, . . . , 𝜏 − 2 in a single blind rotation. Although we obtain
slightly modified outputs

(
GGSW(𝑚′𝑗 )

)𝜏−1
𝑗=0 , masked by its MSB, we

can evaluate the desired LUT 𝐿 easily by evaluating a modified
LUT 𝐿′ such that 𝐿(𝑚) = 𝐿′ (𝑚′) where 𝑚 =

∑𝜏−1
𝑗=0 𝑚 𝑗 · 2𝑗 and

𝑚′ =
∑𝜏−1
𝑗=0 𝑚

′
𝑗 · 2𝑗 .

5.3 Performance
We implement our new integer input LHE mode using the TFHE-rs
library where the overall benchmark environment is the same as
that of Section 3.3.

Parameters. We choose some of the recommended parameter sets
for the BBB+ method in the TFHE-rs library with bases 16, 64, and
256, which corresponds to 2𝛿 . Then, under the same LWE dimen-
sion 𝑛, GLWE dimension 𝑘 and polynomial size 𝑁 , we propose
recommended parameters sets for our integer input LHE mode
corresponding to them. Table 6 summarizes our recommended pa-
rameter sets. ℓ𝑘→𝑘 ′ , 𝐵𝑘→𝑘 ′ and 𝑏𝑘→𝑘 ′ denote the gadget length,
base, and split FFT base of the GLWE keyswitching to the larger
dimension, and ℓ𝑘 ′→𝑘 , 𝐵𝑘 ′→𝑘 , and 𝑏𝑘 ′→𝑘 are those of the GLWE
keyswitching from the larger dimension. We note that our parame-
ter set for the base 64 uses a smaller PBS gadget length than that of
the TFHE-rs library, and the standard deviation of the fresh error
is updated to guarantee 128-bit security (see Appendix A.1).

Comparison with BBB+. We compare our new integer input LHE
mode with the BBB+ method implemented in the TFHE-rs library.
The detailed results are shown in Table 7. The maximum CMux
depth after circuit bootstrapping is computed according the failure
probability of 2−40. Our method has a larger max-depth (only except
for the case of (𝛿, 𝜏) = (6, 3)), so our performance improvement
does not come from degrading success probability.

According to the bases, our integer input LHE mode improves
the running time of the BBB+ method by factors from 7.5 to 10.7
for the parameters supporting larger max-depth. For (𝛿, 𝜏) = (6, 3),
it achieves even 12.7× faster result at the cost of smaller max-depth.
In terms of the key size, our method reduces it by factors from 3.4
to 4.4.

General LUT Evaluation. Wemeasure the performance of evaluating
general 8-to-8 and 16-to-8 LUTs using our LHE modes, and com-
pare it to the state-of-the-art result proposed by Trama et al. [43]
using tree-PBS. For our integer LHE mode, we use the parameter
set of (𝛿, 𝜏) = (4, 2) with a padding bit, the same plaintext encod-
ing with [43] of basis 16. Although the padding bit decreases its
max-depth from 333 to 83, it is enough to evaluate the LUTs and
enables PBS-based evaluation interchangeably. Table 8 compares

the performance of 8-to-8 and 16-to-8 LUTs. It shows that our in-
teger LHE mode is 1.42× faster than the tree-PBS for evaluating
8-to-8 LUT. It is also faster than the bitwise LHE mode since the
number of PBSmanyLUT decreases due to the multi-bit extraction.

8-bit TFHE Processor. The work of Trama et al. [43] is not just for
evaluating 8-to-8 LUT. They constructed a general-purpose 8-bit
TFHE processor containing various instructions using 8-to-8 LUT,
and implemented practical functions and algorithms based on the
instructions. The 8-bit instructions are evaluated by 4-to-4 (PBS)
and 8-to-8 (tree-PBS) LUTs, and the cost of each instruction depends
on how complex its circuit is. We can replace heavy 8-bit bivariate
instructions with our 16-to-8 LUT evaluation.

Table 9 compares some of the 8-bit instructions given in [43].
Their implementation based on TFHElib is not publicly open, so
we estimate their work by measuring PBS and public keyswitching
time on TFHE-rs under their parameters, the dominant building
blocks of tree-PBS. Not all the instructions are improved, but the
performance degradation (0.81× for AND/OR/XOR) is much smaller
than the improvement for heavy instructions (21.15× for DIV). The
comparison of all the instructions is given in Appendix F.

Furthermore, since our method evaluates a general 16-to-8 LUT,
we can evaluate some 16-bit precision functions without decomposi-
tion. For example, the sigmoid function of 16-bit precision evaluated
by the 8-bit instructions takes more than 6025 ms while our 16-to-8
LUT can evaluate it in 227.05 ms, which is at least 26.55× faster.

Comparison to Batched LUT. There are also another works eval-
uating LUT using other HE schemes supporting batched opera-
tion [18, 34]. Contrary to our work focusing on latency, they aims
to high throughput at the cost of high latency. The performance
is summarized in Table 10. Since the source code of these works
are not publicly open, we just borrowed the benchmark results on
their paper. We note that the high performance of [18] is affected
by its GPU implementation. [18] also applied their batched LUT to
batched AES evaluation, achieving 578.83 s to evaluate 2048 blocks
in parallel.

6 Conclusion
The current designs and applications of TFHE are mainly focused
on programmable bootstrapping, which hides the sophisticated
parameter configuration and provides a user-friendly interface to
the application developers. However, for most of the applications,
leveled homomorphic evaluation presents more competitive solu-
tions. In this paper, we improved circuit bootstrapping algorithm,
a building block of the leveled homomorphic evaluation. Then we
refined the workflow of leveled homomorphic evaluation based on
TFHE, making it faster and more flexible. By decoupling the most
expensive circuit bootstrapping into three fine-grained operations,
we significantly reduce the need for time consuming operations. In
addition to workflow improvements, main building blocks such as
HomTrace, FFT multiplication, parameter evaluation are carefully
polished. Based on the improvement above, the homomorphic eval-
uation of AES can be speed up by 4.8× and the evaluation of 8-bit
instructions by factors of up to 21×.
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Basis 𝑛 𝑁 𝑘 ℓks 𝐵ks ℓpbs 𝐵pbs ℓtr 𝐵tr 𝑏tr ℓss 𝐵ss ℓ𝑘→𝑘 ′ 𝐵𝑘→𝑘 ′ 𝑏𝑘→𝑘 ′ ℓ𝑘 ′→𝑘 𝐵𝑘 ′→𝑘 𝑏𝑘 ′→𝑘 ℓ 𝐵 𝜗

16 769 2048 1 3 24 2 215 7 27 35 2 216 - - - - - - 4 24 2
64 873 2048 1 2 27 3 211 4 212 40 4 210 3 215 42 3 213 40 4 25 2
256 953 2048 1 2 27 4 29 6 29 37 4 210 3 215 42 4 210 38 8 23 3

Table 6: Recommended parameter sets for our new integer input LHE mode.

Basis Method 𝛿 𝜏
Time (ms) Max

Depth
Key Size
(MB)Extr. Refr. Conv. Total

16 [4] 4 1 53.76 191.31 173.33 418.40 124 170.01
Ours 4 1 73.33 19.93 93.26 377 49.334 2 36.17 19.95 56.12 333

64 [4] 6 1 164.35 572.74 512.24 1249.33 576 365.13
Ours 6 1 159.28 44.92 204.20 1016

6 2 79.45 45.09 124.53 897 82.80
6 3 52.96 45.04 98.00 140

256 [4] 8 1 251.33 1672.4 1360.4 3284.13 4851 375.13
Ours 8 1 290.70 162.20 452.90 12418 120.458 2 145.03 161.18 306.21 7107

Table 7: Our new integer input LHE mode performance.

Method 8-to-8 LUT 16-to-8 LUT
Tree-PBS [43] 160.15 -

Bitwise LHE (FFT-CMux1) 115.04 -
Bitwise LHE (FFT-CMux2) 150.41 306.84
Our Integer-LHE (Basis 16) 112.74 227.05

Table 8: Performance of 8-to-8 and 16-to-8 LUTs in ms.

Instructions [43] Ours Improvement
AND/OR/XOR 184.52 227.05 0.81

EQ 276.79 227.05 1.22
LT(E)/GT(E) 436.94 227.05 1.92
MIN/MAX 825.12 227.05 3.63

MUL 504.82 227.05 2.22
DIV 4801.05 227.05 21.15
MOD 4393.76 227.05 19.35

Table 9: Performance of 8-bit instructions in ms.

Method # Batch
8-to-8 LUT 12-to-12 LUT

Hardware
Amortized Total Amortized Total

[32] 32768 - - 39.1 ms 1280 s e2-standard-4
[18] 32768 0.15 ms 4.94 s - - NVIDIA A100 GPU
Ours 1 112.74 ms 170.62 ms i9-11900K

Table 10: Performance comparison to batched LUT.
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A Ciphertext Modulus and Error Standard
Deviation

The FFT-based and NTT-based TFHE describe the error standard
deviation with respect to the ciphertext modulus in different ways.
The FFT-based one describes the error standard deviation by con-
sidering the ciphertext modulus as 1, while the NTT-based one first
fixes the error standard deviation and determines the maximum
ciphertext modulus for a given security level.

A.1 Standard Deviation of LWE Error for
FFT-based TFHE

We set the standard deviations of our recommended parameters for
the FFT-based CBS to achieve 128-bit security (with a small security
margin) using the lattice estimator.13 The detailed values are given
in Table 11.

A.2 Ciphertext Modulus for NTT-based TFHE
In the NTT-based TFHE, the error standard deviation 𝜎 is fixed
to 3.2. Then, the maximum ciphertext modulus is determined ac-
cording to the security. The ciphertext moduli for the NTT-based
TFHE used in our paper are the same as the WWL+ method [45].
Concretely, the ciphertext modulus for the input LWE ciphertext is
210 and that for the blind rotation is a 54-bit prime.

13https://github.com/malb/lattice-estimator
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Sets LWE Dim. Std. Dev. Security

FFT-CMux 636 9.251 20 × 10−5 130.7 bit
AES 768 8.763 87 × 10−6 130.1 bit

Integer LHE (Basis 16) 769 8.763 87 × 10−6 130.1 bit
Integer LHE (Basis 64) 873 1.396 26 × 10−6 130.1 bit
Integer LHE (Basis 256) 953 3.490 65 × 10−7 130.2 bit

FFT-CMux / HP-LHE / AES 2048 9.251 20 × 10−16 130.7 bit
AES (HalfCBS) 3072 2.168 40 × 10−19 159.5 bit
HP-HomTrace 4096 2.168 40 × 10−19 218.5 bit

Table 11: LWE error standard deviations used for the recom-
mended parameters of our FFT-based CBS.

B Error Analysis of the Split FFT
Klemsa [31] proposed an upper bound for the FFT error of (nega-
cyclic) polynomial multiplication as follows.14

log ∥𝐸fft∥∞ ≤ (2 log𝑁 − 4) · log(
√
2 + 1)

+ log𝐵1 + log𝐵2 − 𝜒 + 9/2 + log 3,
log Var(𝐸fft) ≤ 4 log𝑁 + 2 log𝐵1 + 2 log𝐵2 − 2𝜒 − 3.

However, the experimental result shows that the above theoretical
bound is a loose upper bound to be used in practice. It seems to come
from the gap between the worst-case and average-case analysis,
since most TFHE parameters are chosen based on the average-case
analysis using the independence heuristic [14, 15]. So we opt for
Bergerat et al.’s method [5] to estimate the FFT error in this paper.

For the split FFT to work correctly, we have to guarantee its
failure probability is small enough. By estimating the standard
deviations of the upper part under the parameters used in this
paper, we show that the failure probabilities of the split FFT are
smaller than 2−256. The results are summarized in Table 12.

𝑁 𝑘 𝐵 ℓ 𝑏 Std. Dev. F.P.

FFT-CMux3 2048 1 27 6 35 2−6.01 2−751.7

Integer LHE (Basis 16) 2048 1 27 7 35 2−5.90 2−645.0
Integer LHE (Basis 64) 2048 1 215 3 42 2−5.51 2−378.0

2048 2 212 4 40 2−5.80 2−564.9
2048 2 212 3 40 2−6.01 2−751.7

Integer LHE (Basis 256) 2048 2 215 3 42 2−5.51 2−378.0
2048 1 29 6 37 2−5.51 2−378.0
2048 2 210 4 38 2−5.80 2−564.9

AES (HalfCBS) 1024 3 215 3 42 2−5.72 2−502.6
AES (Set-II) 1024 2 27 6 34 2−5.51 2−378.0

Table 12: Standard deviations for the upper part of the split
FFT and its failure probabilities for the GLWE keyswitching
under the parameters used in this paper.

14The second-order terms are neglected.

C TFHE Operations
As in most FHEW-like cryptosystems, we analyze the noise growth
based on the heuristic assumption such that the noises of coefficient
in ciphertexts follow independent Gaussian distribution (or sub-
Gaussian) centered at 0 of some standard deviation 𝜎 . We denote
the noise variance of a key in terms of ℓ∞-norm, giving an upper
bound of the variance of all coefficients of the key components. For
the gadget decomposition with a base 2𝐵 and a length ℓ , we assume
the decomposition error is uniformly sampled from J− 𝑞

2𝐵ℓ ,
𝑞
2𝐵ℓ J

as analogous to [15]. As mentioned in Section 2.2, we only deal
with the binary secret key in this section.15 The proofs given in
this section comes from [9, 10, 15, 21] with a slight modification
generalizing GLWE dimension 𝑘 .

C.1 Modulus Switching
Let 𝑞 and 𝑞′ be ciphertext moduli such that 𝑞′ < 𝑞. Given a GLWE
ciphertext C = (𝐴1, . . . , 𝐴𝑘+1) ∈ R𝑘+1𝑞,𝑁 of𝑀 under S = (𝑆1, . . . , 𝑆𝑘 ),
the modulus switching from 𝑞 to 𝑞′ outputs a GLWE ciphertext
C′ = (𝐴′1, . . . , 𝐴′𝑘+1) ∈ R𝑘+1𝑞′,𝑁 of 𝑞

′
𝑞 𝑀 under S where 𝐴′𝑖 =

⌊
𝑞′
𝑞 𝐴𝑖

⌉
for 𝑖 = 1, . . . , 𝑘 + 1.

Lemma C.1 (Modulus Switching). Let C ∈ R𝑘+1𝑞,𝑁 be a GLWE
ciphertext of a phase 𝜇 under S. Then, modulus switching outputs a
GLWE ciphertext C′ ∈ R𝑘+1𝑞′,𝑁 of a phase 𝑞

′
𝑞 𝜇 +𝐸ms under S where the

variance 𝑉ms of 𝐸ms is given as follows.

𝑉ms ≤ 𝑘𝑁 + 112 .

Proof. Let C = (𝐴1, . . . , 𝐴𝑘+1) and C′ = (𝐴′1, . . . , 𝐴′𝑘+1) where
𝐴′𝑖 = ⌊

𝑞′
𝑞 𝐴𝑖 ⌉ for 𝑖 = 1, . . . , 𝑘 + 1. Then, one can represent 𝐴′𝑖 as

𝐴′𝑖 =
𝑞′

𝑞
𝐴𝑖 + 𝐸′𝑖

where coefficients of 𝐸′𝑖 are uniformly and independently sampled
from [− 1

2 ,
1
2 ). The phase of C′ under S is given as follow.

⟨C′, (−S, 1)⟩ = 𝑞′

𝑞

(
𝐴𝑘+1 −

𝑘∑︁
𝑖=1

𝐴𝑖𝑆𝑖

)
+

(
𝐸′𝑘+1 −

𝑘∑︁
𝑖=1

𝐸′𝑖𝑆𝑖

)
.

Let 𝐸ms = 𝐸
′
𝑘+1 −

∑𝑘
𝑖=1 𝐸

′
𝑖𝑆𝑖 . From 𝐸′𝑖 ← [− 1

2 ,
1
2 ) and S is a binary

secret key, one obtain

Var(𝐸ms) ≤ 𝑘𝑁 + 112 .

□

For an LWE ciphertext, the modulus switching error increment
𝑒ms has variance bounded above by 𝑛+1

12 . We note that 𝑒ms (and
𝐸ms) does not depend on 𝑞 and 𝑞′.

15The result is the same for the ternary secret key, while is not for the Gaussian secret
key.
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C.2 GLWE Keyswitching
Let S and S′ be two GLWE secret keys of dimensions 𝑘 and 𝑘′, re-
spectively, and of the same polynomial size𝑁 . TheGLWEkeyswitch-
ing from S to S′ changes a GLWE ciphertext of𝑀 under S to another
GLWE ciphertext of𝑀 under S′ using the GLWE keyswitching key
{GLevS′ (𝑆𝑖 )}𝑘𝑖=1, a set of 𝑘 GLev ciphertexts of 𝑆𝑖 , 𝑖 = 1, . . . , 𝑘 . The
precise description of the algorithm is given in Algorithm 5.

Algorithm 5: GLWE keyswitching GLWE_KS
Input: C = GLWES (𝑀) under S = (𝑆1, . . . , 𝑆𝑘 )
Input: KSS→S′ [𝑖] = GLev(𝐵,ℓ )S′ (𝑆𝑖 ) for 𝑖 = 1, . . . , 𝑘 with

decomposition base 𝐵 and length ℓ under
S′ = (𝑆 ′1, . . . , 𝑆 ′𝑘 ′ )

Output: C′ = GLWES′ (𝑀)
1 C = (𝐴1, . . . , 𝐴𝑘 , 𝐴𝑘+1)
2 KSS→S′ [𝑖] [ 𝑗] = GLWES′

(
𝑞
𝐵 𝑗 · 𝑆𝑖

)
for 𝑖 ∈ [𝑘] and 𝑗 ∈ [ℓ]

3 C′ ← (0, · · · , 0, 𝐴𝑘+1) = GLWE0S′ (𝐴𝑘+1) ∈ R𝑘
′+1
𝑞,𝑁

4 for 𝑖 = 1 to 𝑘 do
5 Decompose 𝐴𝑖 as

∑ℓ
𝑗=1𝐴

′
𝑖, 𝑗 ·

𝑞
𝐵 𝑗 + 𝐸′𝑖 with ∥𝐴′𝑖, 𝑗 ∥∞ ≤ 𝐵

2
and ∥𝐸′𝑖 ∥∞ ≤

𝑞
2𝐵ℓ

6 C′ ← C′ −∑ℓ
𝑗=1𝐴

′
𝑖, 𝑗 · KSS→S′ [𝑖] [ 𝑗]

7 return C′

Lemma C.2 (GLWE Keyswitching). Let C be a GLWE ciphertext
of a phase 𝜇 under S. Let 𝜎2S→S′ be the noise variance of the GLWE
keyswitching key from S to S′. Then, Algorithm 5 returns a GLWE
ciphertext C′ of a phase 𝜇 + 𝐸ks (𝑋 ) under S′ where the variance 𝑉ks
of 𝐸ks (𝑋 ) is given as follows.

𝑉ks ≤ 𝑘𝑁
(
𝑞2 − 𝐵2ℓ
24𝐵2ℓ

+ 1
12

)
+ 𝑘ℓ𝑁

(
𝐵2 + 2
12

)
𝜎2S→S′ .

Proof. The output C′ can be represented as follows.

C′ = GLWE0S′ (𝐴𝑘+1) −
𝑘∑︁
𝑖=1

ℓ∑︁
𝑗=1

𝐴′𝑖, 𝑗 · KSS→S′ [𝑖] [ 𝑗] .

FromKSS→S′ [𝑖] [ 𝑗] = GLWES′ ( 𝑞𝐵 𝑗 ·𝑆𝑖 ), let ⟨KSS→S′ [𝑖] [ 𝑗], (−S′, 1)⟩ =
𝑞
𝐵 𝑗 · 𝑆𝑖 +𝐸𝑖, 𝑗 where Var(𝐸𝑖, 𝑗 ) = 𝜎2S→S′ for 𝑖 ∈ [𝑘] and 𝑗 ∈ [ℓ]. Then,
one obtain

⟨C′, (−S′, 1)⟩ = 𝐴𝑘+1 −
𝑘∑︁
𝑖=1

ℓ∑︁
𝑗=1

𝐴′𝑖, 𝑗
( 𝑞
𝐵 𝑗
· 𝑆𝑖 + 𝐸𝑖, 𝑗

)
= 𝐴𝑘+1 −

𝑘∑︁
𝑖=1

©­«(𝐴𝑖 + 𝐸′𝑖 ) · 𝑆𝑖 +
ℓ∑︁
𝑗=1

𝐴′𝑖, 𝑗 · 𝐸𝑖, 𝑗
ª®¬

= 𝜇 −
𝑘∑︁
𝑖=1

𝐸′𝑖 · 𝑆𝑖 +
𝑘∑︁
𝑖=1

ℓ∑︁
𝑗=1

𝐴′𝑖, 𝑗 · 𝐸𝑖, 𝑗 .

Since 𝐸′𝑖 ← J− 𝑞
2𝐵ℓ ,

𝑞
2𝐵ℓ J, 𝐴𝑖, 𝑗 ← J−𝐵/2, 𝐵/2J and S is a binary

secret key, the variance of 𝐸ks = −
∑𝑘
𝑖=1 𝐸

′
𝑖 ·𝑆𝑖 +

∑𝑘
𝑖=1

∑ℓ
𝑗=1𝐴

′
𝑖, 𝑗 ·𝐸𝑖, 𝑗

is given as follows.

Var(𝐸ks) ≤ 𝑘𝑁
(
𝑞2 − 𝐵2ℓ
24𝐵2ℓ

+ 1
12

)
+ 𝑘ℓ𝑁

(
𝐵2 + 2
12

)
𝜎2S→S′ .

□

C.3 Functional Keyswitching
In this subsection, we summarize the LWE to GLWE public/private
functional keyswitching. For the detailed analysis of the keyswitch-
ing, we refer to [14, 15].

Let s = (𝑠1, . . . , 𝑠𝑛) be a LWE secret key and S = (𝑆1, . . . , 𝑆𝑘 )
be a GLWE secret key. The keyswitching key is given by KS𝑖 =
GLev(𝐵,ℓ )S (𝑠𝑖 ) for 𝑖 = 1, . . . , 𝑛 where 𝐵 and ℓ are decomposition base
and length, respectively, for the LWE to GLWE keyswitching.

Given an LWE ciphertext c = (𝑎1, . . . , 𝑎𝑛, 𝑏) ∈ Z𝑛+1𝑞 of𝑚 with
respect to s, let (𝑎𝑖,1, . . . , 𝑎𝑖,ℓ ) be the gadget decomposition of 𝑎𝑖 for
𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , ℓ . Let KS𝑖, 𝑗 = GLWES (𝑞/𝐵 𝑗 · 𝑠𝑖 ) be the
GLWE ciphertext of 𝑠𝑖 with a scaling factor 𝑞/𝐵 𝑗 contained in KS𝑖 .
The LWE to GLWE keyswitching outputs a GLWE ciphertext C of
𝑚 given as follows.

C = GLWE0 (𝑏) −
𝑛∑︁
𝑖=1

ℓ∑︁
𝑗=1

𝑎𝑖, 𝑗 · KS𝑖, 𝑗

where GLWE0 (𝑏) denotes the trivial GLWE encryption of𝑏, namely,

(0, . . . , 0, 𝑏) ∈ R𝑘+1𝑞,𝑁 .

By the linear property of the inner product and gadget decompo-
sition, one can check that C is a GLWE encryption of𝑚 (with the
same scaling factor as the input c) with respect to S.

Public Functional Keyswitching. The LWE to GLWE keyswitching
can be generalized to evaluate a public Lipschitz function while
converting LWE ciphertexts into the GLWE ciphertext. Let 𝑓 :
Z𝑡𝑞 → Z𝑞 be a public Lipschitz function to evaluate on 𝑡 LWE
ciphertexts c(𝑧 ) = (𝑎 (𝑧 )1 , . . . , 𝑎

(𝑧 )
𝑛 , 𝑏 (𝑧 ) ) of𝑚𝑧 for 𝑧 = 1, . . . , 𝑡 . Then,

the following C is a GLWE ciphertext of 𝑓 (𝑚1, . . . ,𝑚𝑡 ).

C = GLWE0 (𝑓 (𝑏 (1) , . . . , 𝑏 (𝑡 ) )) −
𝑛∑︁
𝑖=1

ℓ∑︁
𝑗=1

𝑎𝑖, 𝑗 KS𝑖, 𝑗

where (𝑎𝑖,1, . . . , 𝑎𝑖,ℓ ) is the gadget decomposition of the function
value 𝑓 (𝑎 (1)𝑖 , . . . , 𝑎

(𝑡 )
𝑖 ) for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , ℓ . The above

keyswitching that evaluates a public function 𝑓 is called the LWE
to GLWE public functional keyswitching.

Private Functional Keyswitching. When the Lipschitz function 𝑓 :
Z𝑡𝑞 → Z𝑞 to evaluation during the keyswitching is private, it re-
quires an private functional keyswitching key {KS(𝑓 )𝑧,𝑖 } (𝑧,𝑖 ) ∈ [𝑡 ]×[𝑛+1]
defined as follows (𝑠𝑛+1 = −1 for convenience).

KS(𝑓 )𝑧,𝑖 = GLev(𝐵,ℓ )S (𝑓 (0, . . . , 0, 𝑠𝑖 , 0, . . . , 0))
where 𝑠𝑖 is at position 𝑧 and 𝐵 (resp. ℓ) is the decomposition base
(resp. length). Let KS(𝑓 )𝑧,𝑖, 𝑗 = GLWES (𝑞/𝐵 𝑗 · 𝑓 (0, . . . , 0, 𝑠𝑖 , 0, . . . , 0))
be the GLWE ciphertext of 𝑓 (0, . . . , 0, 𝑠𝑖 , 0, . . . , 0) with the scaling
factor of 𝑞/𝐵 𝑗 contained in KS(𝑓 )𝑧,𝑖 .
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Let c(𝑧 ) = (𝑎 (𝑧 )1 , . . . , 𝑎
(𝑧 )
𝑛+1) be an LWE ciphertext of𝑚𝑧 for 𝑧 =

1, . . . , 𝑡 . Then, the followingC is a GLWE ciphertext of 𝑓 (𝑚1, . . . ,𝑚𝑡 ).

C = −
𝑡∑︁
𝑧=1

𝑛+1∑︁
𝑖=1

ℓ∑︁
𝑗=1

𝑎
(𝑧 )
𝑖, 𝑗 KS(𝑓 )𝑧,𝑖, 𝑗

where (𝑎 (𝑧 )𝑖,1 , . . . , 𝑎
(𝑧 )
𝑖,ℓ ) is the gadget decomposition of 𝑎 (𝑧 )𝑖 for 𝑧 =

1, . . . , 𝑡 and 𝑖 = 1, . . . , 𝑛 + 1. The above keyswitching that evaluates
the private function 𝑓 is called the LWE to GLWE private functional
keyswitching.

Precomputing Keyswitching Keys. The private functional keyswitch-
ing uses the keyswitching keys KS(𝑓 )𝑧,𝑖, 𝑗 to compute 𝑎 (𝑧 )𝑖, 𝑗 KS(𝑓 )𝑧,𝑖, 𝑗 for
all 𝑧, 𝑖, 𝑗 . To reduce the computational cost and error growth at
the cost of increased key size, one can precompute 𝑎 KS(𝑓 )𝑧,𝑖, 𝑗 by
GLWES (𝑎 ·𝑞/𝐵 𝑗 · 𝑓 (0, . . . , 0, 𝑠𝑖 , 0, . . . , 0)) for all possible 𝑎 in J1, 𝐵/2K.
The same trade-off can be applied to other kinds of keyswitching
operations.

C.4 Homomorphic Automorphism and Trace
Let 𝐾 = Q[𝑋 ]/(𝑋𝑁 +1) be the number field where 𝑁 is a power-of-
two. Since 𝐾 is a Galois extension of Q, its Galois group Gal(𝐾/Q)
consists of the automorphisms 𝜏𝑑 : 𝜇 (𝑋 ) ↦→ 𝜇 (𝑋𝑑 ) for 𝑑 ∈ Z×2𝑁 .
Then the field trace Tr𝐾/Q : 𝐾 → Q, defined by

Tr𝐾/Q (𝜇 (𝑋 )) =
∑︁

𝜎∈Gal(𝐾/Q)
𝜎 (𝜇 (𝑋 ))

satisfies the following equation.
Tr𝐾/Q (𝜇 (𝑋 )) = 𝑁𝜇0

where 𝜇 (𝑋 ) = 𝜇0 + 𝜇1𝑋 + · · · + 𝜇𝑁−1𝑋𝑁−1.
The automorphism and trace can be defined analogously on

the ring of integer R𝑁 = Z[𝑋 ]/(𝑋𝑁 + 1) and its residue ring
R𝑞,𝑁 = R𝑁 /𝑞𝑅𝑁 modulo 𝑞.

Computing the trace by its definition requires one to compute the
automorphism𝑁 times. For efficient homomorphic trace evaluation,
Chen et al. [10] proposed a recursive algorithm as follows: let 𝐾𝑛 =

Q[𝑋 ]/(𝑋𝑛 + 1) be the 2𝑛-th cyclotomic field for a power-of-two
𝑛. Then the field extension 𝐾 ≥ Q can be described as a tower of
fields 𝐾 = 𝐾𝑁 ≥ 𝐾𝑁 /2 ≥ · · · ≥ 𝐾1 = Q. For 1 ≤ 𝑖 < 𝑗 ≤ log𝑁 , the
trace Tr𝐾2𝑗 /𝐾2𝑖

can be expressed as a composition
Tr𝐾2𝑗 /𝐾2𝑖

= Tr𝐾2𝑗 /𝐾2𝑗−1 ◦ · · · ◦ Tr𝐾2𝑖+1/𝐾2𝑖
.

Since Gal(𝐾2𝑘 /𝐾2𝑘−1 ) = {𝜏1, 𝜏2𝑘+1} for all 𝑘 = 1, . . . , log𝑁 , com-
puting Tr𝐾2𝑗 /𝐾2𝑖

using the above composition requires only 𝑗 − 𝑖
automorphisms, where 𝐾𝑛 is identified with

{𝑎0 + 𝑎1𝑋
𝑁
𝑛 + · · · + 𝑎𝑛−1𝑋𝑁−

𝑁
𝑛 : 𝑎0, . . . , 𝑎𝑛−1 ∈ Q} ⊆ 𝐾𝑁 .

As an analogue, let Tr𝑁 /𝑛 be the trace onR𝑞,𝑁 /R𝑞,𝑛 where𝑛 and
𝑁 are power-of-two such that 𝑛 | 𝑁 . Then, Tr𝑁 /𝑛 : 𝑅𝑞,𝑁 → 𝑅𝑞,𝑛
satisfies the following equation.

Tr𝑁 /𝑛 (𝜇 (𝑋 )) = Tr𝑁 /(𝑁 /2) ◦ · · · ◦ Tr2𝑛/𝑛 (𝜇 (𝑋 )) (5)

=
𝑁

𝑛
(𝜇0 + 𝜇 𝑁

𝑛
𝑋

𝑁
𝑛 + · · · + 𝜇𝑁− 𝑁

𝑛
𝑋𝑁−

𝑁
𝑛 )

where R𝑞,𝑛 is identified with

{𝑎0 + 𝑎1𝑋
𝑁
𝑛 + · · · + 𝑎𝑛−1𝑋𝑁−

𝑁
𝑛 : 𝑎0, . . . , 𝑎𝑛−1 ∈ Z𝑞} ⊆ R𝑞,𝑁 .

Using the above relation, one can compute Tr = Tr𝑁 /1 on R𝑁
(or R𝑞,𝑁 ) by only log𝑁 automorphisms. The number of automor-
phisms for the trace evaluation is important since the trace function
is evaluated by a series of homomorphic automorphisms based on
GLWE keyswitching. For 𝑑 ∈ Z×2𝑁 , the automorphism 𝜏𝑑 maps
𝑀 (𝑋 ) into𝑀 (𝑋𝑑 ). Given a GLWE secret key S(𝑋 ) ∈ R𝑘𝑞,𝑁 , a GLWE
ciphertext GLWES(𝑋 ) (𝑀 (𝑋 )) of𝑀 (𝑋 ) under S(𝑋 ) can be regarded
as one GLWES(𝑋𝑑 ) (𝑀 (𝑋𝑑 )) of𝑀 (𝑋𝑑 ) under S(𝑋𝑑 ). By switching
the key of GLWES(𝑋𝑑 ) (𝑀 (𝑋𝑑 )) from S(𝑋𝑑 ) to S(𝑋 ), one can obtain
the GLWE ciphertext of𝑀 (𝑋𝑑 ) under the original secret key S(𝑋 ).
We refer to Appendix C.2 for the details of GLWE keyswitching.

Finally, we give Lemma C.3 to measure the HomTrace output
noise:

Lemma C.3 (HomTrace Evaluation). Let C be a GLWE cipher-
text of a phase 𝜇 under S. Let 𝑉auto be the variance of the noise
increment by the homomorphic automorphism evaluation. Then, Al-
gorithm 2 returns a GLWE ciphertext C′ of a phase Tr(𝜇) + 𝐸tr under
S where the variance 𝑉tr of 𝐸tr is given as follows.

𝑉tr ≤ 𝑁 2 − 1
3 𝑉auto .

where 𝑉auto is the variance of the noise increment by homomorphic
automorphism evaluation EvalAuto in Line 3.

Proof. Let 𝐸𝑑 be the increased error polynomial after the 𝑑-th
iteration of Line 3. Then, 𝐸𝑑 satisfies the following relation.

𝐸𝑑 = 𝐸𝑑−1 + 𝜏2log𝑁 −𝑑+1 (𝐸𝑑−1) + 𝐸auto,𝑑
where 𝐸auto,𝑑 is the error increment by EvalAuto in the 𝑑-th itera-
tion. Then, one obtain

Var(𝐸𝑑 ) ≤ 22 Var(𝐸𝑑−1) +𝑉auto .
From 𝐸0 = 0, 𝑉tr = Var(log𝑁 ) satisfies the following.

𝑉tr ≤
log𝑁−1∑︁
𝑑=0

4𝑑𝑉auto ≤ 𝑁 2 − 1
3 𝑉auto .

□

We note that 𝑉auto can be upper bounded by Lemma C.2 since
EvalAuto evaluates a single GLWE keyswitching operation.

C.5 Scheme Switching
Let S = (𝑆1, . . . , 𝑆𝑘 ) be a GLWE secret key. The scheme switch-
ing changes a GLev ciphertext GLev(𝐵,ℓ )S (𝑀) of 𝑀 to a GGSW
ciphertext GGSW(𝐵,ℓ )S (𝑀) of 𝑀 using the scheme switching key
{GGSW(𝐵ss,ℓss )S (𝑆𝑖 )}𝑘+1𝑖=1 , a set of 𝑘 + 1 GGSW ciphertexts of 𝑆𝑖 for
𝑖 = 1, . . . , 𝑘 + 1 under S where 𝑆𝑘+1 = −1. The precise algorithm is
given in Algorithm 6.

Lemma C.4 (External Product). Let C1 = GGSW(𝐵,ℓ )S (𝑀) be
a GGSW ciphertext of𝑀 having variance 𝜎2ext under S and C2 be a

GLWE ciphertext of a phase 𝜇 under S. Then, external productC1�C2
outputs a GLWE ciphertext of a phase 𝜇 ·𝑀 + 𝐸ext under S where the
variance 𝑉ext of 𝐸ext is given as follows.

𝑉ext ≤ (1+𝑘𝑁 )
(
𝑞2 − 𝐵2ℓ
24𝐵2ℓ

+ 1
12

)
ℓ2 (𝑀)2 + (𝑘 +1)ℓ𝑁

(
𝐵2 + 2
12

)
𝜎2ext .
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Algorithm 6: SchemeSwitch

Input: C = GLev(𝐵,ℓ )S (𝑀) under S = (𝑆1, . . . , 𝑆𝑘 )
Input: SS[𝑖] = GGSW(𝐵ss,ℓss )S (−𝑆𝑖 ) for 𝑖 = 1, . . . , 𝑘 + 1

where 𝑆𝑘+1 = −1
Output: C′ = GGSW(𝐵,ℓ )S (𝑀) such that

C′𝑖, 𝑗 = GLWES (− 𝑞
𝐵 𝑗 ·𝑀𝑆𝑖 ) for 𝑖 = 1, . . . , 𝑘 + 1 and

𝑗 = 1, . . . , ℓ
1 C =

(
C𝑗

)
𝑗∈[ℓ ] where C𝑗 = GLWES ( 𝑞𝐵 𝑗 ·𝑀)

2 for 𝑖 = 1 to 𝑘 + 1 do
3 for 𝑗 = 1 to ℓ do
4 C′𝑖, 𝑗 ← SS[𝑖] � C𝑗

5 return C′ =
(
C′𝑖, 𝑗

)
(𝑖, 𝑗 ) ∈ [𝑘+1]×[ℓ ]

Proof. Let S = (𝑆1, . . . , 𝑆𝑘 ) and C =
(
C𝑖, 𝑗

)
(𝑖, 𝑗 ) ∈ [𝑘+1]×[ℓ ] such

that
C𝑖, 𝑗 = GLWES

( 𝑞
𝐵 𝑗
(−𝑆𝑖 ·𝑀)

)
where ⟨C𝑖, 𝑗 , (−S, 1)⟩ = 𝑞

𝐵 𝑗 (−𝑆𝑖 ·𝑀) + 𝐸𝑖, 𝑗 and Var(𝐸𝑖, 𝑗 ) = 𝜎2ext for
𝑖 = 1, . . . , 𝑘 + 1 and 𝑗 = 1, . . . , ℓ . Let C2 = (𝐴1, . . . , 𝐴𝑘+1) and

𝐴𝑖 =
ℓ∑︁
𝑗=1

𝐴′𝑖, 𝑗 ·
𝑞

𝐵 𝑗
+ 𝐸′𝑖

be the gadget decomposition of 𝐴𝑖 such that ∥𝐴′𝑖, 𝑗 ∥∞ ≤ 𝐵
2 and

∥𝐸′𝑖, 𝑗 ∥∞ ≤
𝑞
2𝐵ℓ for 𝑖 = 1, . . . , 𝑘 + 1. Then the output of external

product C1 � C2 can be represented as
∑𝑘+1
𝑖=1

∑ℓ
𝑗=1𝐴

′
𝑖, 𝑗 · C𝑖, 𝑗 . Then,

the phase of the output is given as follows.

⟨C1�C2, (−S, 1)⟩ =
𝑘+1∑︁
𝑖=1

ℓ∑︁
𝑗=1

𝐴′𝑖, 𝑗
( 𝑞
𝐵 𝑗
(−𝑆𝑖 ·𝑀) + 𝐸𝑖, 𝑗

)
=

ℓ∑︁
𝑗=1

𝐴′𝑘+1, 𝑗 ·
( 𝑞
𝐵 𝑗
𝑀 + 𝐸𝑘+1, 𝑗

)
−

𝑘∑︁
𝑖=1

ℓ∑︁
𝑗=1

𝐴′𝑖, 𝑗
( 𝑞
𝐵 𝑗
𝑀 − 𝐸𝑖, 𝑗

)
= 𝜇 ·𝑀 +

(
𝐸′𝑘+1 −

𝑘∑︁
𝑖=1

𝐸′𝑖𝑆𝑖

)
𝑀 +

𝑘+1∑︁
𝑖=1

ℓ∑︁
𝑗=1

𝐴′𝑖, 𝑗𝐸𝑖, 𝑗 .

Let 𝐸ks = (𝐸′
𝑘+1 −

∑𝑘
𝑖=1 𝐸

′
𝑖𝑆𝑖 )𝑀 +

∑𝑘+1
𝑖=1

∑ℓ
𝑗=1𝐴

′
𝑖, 𝑗𝐸𝑖, 𝑗 . Since 𝐸

′
𝑖 ←

J− 𝑞
2𝐵ℓ ,

𝑞
2𝐵ℓ J, 𝐴′𝑖, 𝑗 ← J−𝐵/2, 𝐵/2J and S is a binary secret key, the

variance of 𝐸ks is given as follows.

Var(𝐸ks) ≤(1 + 𝑘𝑁 )
(
𝑞2 − 𝐵2ℓ
24𝐵2ℓ

+ 1
12

)
ℓ2 (𝑀)2

+ (𝑘 + 1)ℓ𝑁
(
𝐵2 + 2
12

)
𝜎2ext .

□

Since scheme switching computes the output GGSW ciphertext
using external output by the scheme switching key, the noise incre-
ment of scheme switching can be analyzed by Lemma C.4.

Lemma C.5 (Scheme Switching). Let C be a GLev ciphertext of
𝑀 having variance 𝜎2in. Let 𝜎

2
ssk be the noise variance of the scheme

switching key. Then, Algorithm 6 returns a GGSW ciphertext C′ of𝑀
having variance 𝑉out such that 𝑉out ≤ 𝑁

2 · 𝜎2in +𝑉ss where

𝑉ss ≤ (1 + 𝑘𝑁 )𝑁2

(
𝑞2 − 𝐵2ℓ
24𝐵2ℓss

+ 1
12

)
+ (𝑘 + 1)ℓ𝑁

(
𝐵2ss + 2
12

)
𝜎2ssk .

C.6 Evaluation Key Size
In this subsection, we describe the size of various evaluation keys
used in TFHE according to the parameters, summarizing the result
in Table 13. As evaluation keys are encryptions of secret informa-
tion, we begin with the description of ciphertext sizes.

Ciphertext Size. An LWE ciphertext (𝑎1, . . . , 𝑎𝑛, 𝑏) ∈ Z𝑛+1𝑞 consists
of 𝑛 + 1 elements in Z𝑞 , so its size is given by (𝑛 + 1) log𝑞 bits.
If the LWE ciphertext is a fresh one such that no homomorphic
operation is performed on it yet, then one can compress the random
mask 𝑎 into a seed for generating it. Such LWE ciphertexts are
called seeded LWE ciphertexts. Ignoring the seed size by assuming
that one seed generates all the random masks for multiple seeded
ciphertexts, the size of the seeded LWE ciphertext is only log𝑞.16
In the case of a GLWE ciphertext (𝐴1, . . . , 𝐴𝑘 , 𝐵) ∈ R𝑘+1𝑞,𝑁 , it is
size of (𝑘 + 1)𝑁 log𝑞 bits. When it is compressed similarly, the
seeded GLWE ciphertext is of 𝑁 log𝑞 bits. For GLev and GGSW
ciphertexts, they can be considered as a vector of ℓ and ℓ (𝑘 + 1)
GLWE ciphertexts, respectively. Table 13a summarizes the size of
each type of TFHE ciphertext.

GLWE Keyswitching Key. A GLWE keyswitching key from a key
Ssrc ∈ R𝑘src𝑞,𝑁 of dimension 𝑘src to another key Sdst ∈ R𝑘dst𝑞,𝑁 of di-
mension 𝑘dst with the same polynomial size 𝑁 is a set of 𝑘src GLev
ciphertexts {GLev(𝐵ks,ℓks )Sdst

(𝑆𝑖 )}𝑘src𝑖=1 where Ssrc = (𝑆1, . . . , 𝑆𝑘src ).
Trace Evaluation Key. A trace evaluation key on a GLWE secret
key S ∈ R𝑘𝑞,𝑁 of dimension 𝑘 is a set of log𝑁 automorphism keys,
each of which is a GLWE keyswitching key on the same GLWE
dimension 𝑘 and a gadget decomposition parameters of (𝐵tr, ℓtr).
Scheme Switching Key. A scheme switching key on a GLWE se-
cret key S ∈ R𝑘𝑞,𝑁 of dimension 𝑘 is a set of 𝑘 GGSW ciphertexts

{GGSW(𝐵ss,ℓss )S (𝑆𝑖 )}𝑘𝑖=1 where S = (𝑆1, . . . , 𝑆𝑘 ).
Packing Keyswitching Key. A packing keyswitching key from a LWE
secret key s ∈ Z𝑛𝑞 of dimension 𝑛 to a GLWE secret key S ∈ R𝑘𝑞,𝑁 of
dimension 𝑘 is a set of GLev ciphertext {GLevS (𝑠𝑖 )}𝑛𝑖=1. Table 13b
summarizes the evaluation key size.

PBS Key. Let s = (𝑠1, . . . , 𝑠𝑛) ∈ B𝑛 be an LWE secret key and
S′ = (𝑆 ′1, . . . , 𝑆 ′𝑘 ) ∈ B𝑁 [𝑋 ]𝑘 be a GLWE secret key with its cor-
responding LWE secret key s′ ∈ B𝑘𝑁 . A PBS key is from s to s′

a set of 𝑛 GGSW ciphertexts {GGSW(𝐵pbs,ℓpbs )S′ (𝑠𝑖 )}𝑛𝑖=1. Since the
PBS operation takes an input LWE ciphertext under a different
LWE secret key, one needs a corresponding LWE keyswitching
key for the PBS operation, which is a set of 𝑘𝑁 Lev ciphertexts
{Lev(𝐵ks,ℓks )s (𝑠′𝑖 )}𝑘𝑁𝑖=1 .
16In the tfhe-rs library, auxiliary information such as the LWE dimension or cipher-
text modulus type is saved together. We ignore such additional data size assuming
that it is fixed in the transciphering framework.
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Circuit Bootstrapping Key. Let s ∈ B𝑛 , S ∈ B𝑁 [𝑋 ]𝑘 and s′ ∈ B𝑘𝑁
be defined the same as above. The (previous) circuit bootstrapping
takes an input LWE ciphertext under s and outputs a correspond-
ing GGSW ciphertext under S using a sequence of PBS operations
and private functional keyswitching operations. The private func-
tional keyswitching operation for the circuit bootstrapping, which
switches an LWE ciphertext LWEs (𝑚) into a GLWE ciphertext
GLWES (−𝑆𝑖 ·𝑚) for 𝑖 = 1, . . . , 𝑘 + 1, requires a set of 𝑘 + 1 GLev
ciphertexts {GLev(𝐵priv,ℓpriv )S (−𝑆𝑖 )}𝑘+1𝑖=1 where S = (𝑆1, . . . , 𝑆𝑘 ) and
𝑆𝑘+1 = −1.17 Table 13c summarizes the evaluation keys for the
bootstrapping operations in TFHE.

D Transciphering and AES Evaluation
Transciphering is an innovative approach that combines the strengths
of symmetric encryption with FHE to address the challenges of
ciphertext expansion.

Specifically, FHE ciphertexts are typically much larger than the
original plaintext, posing significant challenges for devices with
limited resources. Transciphering, first proposed by Naehrig et al.
[40], offers a solution to this problem. The core idea is to use sym-
metric encryption for data transmission, which is then converted
into homomorphic ciphertext by the server for further processing.
Here’s how it works:

1. Symmetric encryption for transmission: The client en-
crypts the data using a symmetric encryption scheme, re-
sulting in a ciphertext E𝑘 (𝑚). Then it generates a homo-
morphic encryption of the symmetric key, Enc(𝑘), sends
both of them to the server.

2. Homomorphic decryption and evaluation on the server:
The server homomorphically evaluates the decryption cir-
cuit of the symmetric encryption using Enc(𝑘) and E𝑘 (𝑚)
to obtain the homomorphic ciphertext of the data, then
perform homomorphic evaluation.

EvalE−1 (Enc(𝑘), E𝑘 (𝑚)) = Enc(E−1 (𝑘, E𝑘 (𝑚))) = Enc(𝑚)

D.1 AES Round Function Evaluation
Since the AES circuit is basically a repetition of its round function, it
is enough to describe how to evaluate the AES round function. The
AES round function consists of SubBytes, ShiftRows, MixColumns
and AddRoundKey.

LWE Keyswitching. Prior to SubBytes, one has to perform LWE
keyswitching on the LWE ciphertexts to use PBS for SubBytes eval-
uation. Although the LWE keyswitching operation takes a smaller
computation time compared to the PBS operation, one cannot sim-
ply neglect it. Instead of using the previous LWE keyswitching
method, we employ the optimization based on GLWE keyswitching
proposed by Bergerat et al. [5], which is an extension of the method
proposed by Chen et al. [10].18

Consider LWE keyswitching from an LWE secret key ssrc ∈ Z𝑛src𝑞

to another one sdst ∈ Z𝑛dst𝑞 where there is a power-of-two 𝑁 such

17To be precise, the private keyswitching from LWE(𝑚) to GLWE(−𝑆𝑘+1 ·𝑚) is a
packing keyswitching since −𝑆𝑘+1 ·𝑚 =𝑚.
18The work of Bergerat et al. [5] enables using non-power-of-two LWE dimensions
based on their new concept of partial GLWE secret key, while we choose power-of-two
LWE dimensions for simplicity.

that 𝑁 divides both 𝑛src and 𝑛dst. Then, there are corresponding
GLWE secret keys Ssrc and Sdst to ssrc and sdst where their GLWE
dimensions are𝑘src = 𝑛src/𝑁 and𝑘dst = 𝑛dst/𝑁 , respectively. Using
the GLWE keyswitching from Ssrc to Sdst, one can perform LWE
keyswitching as follows.

(1) Given an input LWE ciphertext c of𝑚 under ssrc, one com-
putes a GLWE ciphertext C of𝑚 + 𝑢1𝑋 + · · · + 𝑢𝑁−1𝑋𝑁−1
under Ssrc where 𝑢1, . . . , 𝑢𝑁−1 are unknown coefficients.

(2) The GLWE ciphertext C under Ssrc is switched to a GLWE
ciphertextC′ of the same plaintext𝑚+𝑣1𝑋+· · ·+𝑣𝑁−1𝑋𝑁−1
under the different key Sdst by GLWE keyswitching.

(3) Then, an LWE ciphertext c′ of𝑚 under sdst can be extracted
from the GLWE ciphertext C′ under Sdst.

To employ this optimization, we choose 𝑛 = 768 = 3 · 256 for the
input LWE dimension of PBS.

SubBytes. The AES S-box is evaluated using the GGSW ciphertext
of the input bits obtained by our FFT-based CBS. One can directly
evaluate each output bit of the AES S-box using an 8-to-1 general
LUT evaluation. Then, the following ShiftRows, MixColumns, and
AddRoundKey require at most 8 additions.

When our flexible LHE mode is used, the S-box output is redun-
dantly obtained in a gadget decomposed form. Since the scaling
factors are smaller than ⌈𝑞/2⌉, homomorphic addition no longer
corresponds to XOR, so the subsequent linear operations work as in-
teger addition, increasing the magnitude of the internal message. To
reduce the error growth by non-binary message space in the flexible
LHE mode, it is important to reduce the number of additions.

For that purpose, we adopt two modified AES evaluation tech-
niques. The first one is evaluating 8-24 LUT to pre-compute the
field multiplication in the MixColumns layer. Since the cost of
evaluating LUT is much smaller than that of circuit bootstrapping,
we can almost freely pre-compute the field multiplication for the
MixColumns layer, reducing the number of additions in the subse-
quent linear layer. The other one is integrating AddRoundKey and
SubBytes using keyed S-box, i.e., sending GLWE ciphertexts that
encode the tables of keyed S-boxes 𝑆𝑘 such that 𝑆𝑘 (𝑥) = 𝑆 (𝑥 ⊕ 𝑘)
where 𝑆 is the AES S-box and 𝑘 is the round key. By transferring the
keyed S-box instead of the round key, one can integrate AddRound-
Key and SubBytes in LUT evaluation at the cost of increased key
size.

Linear Operations. Since XOR operation is free under the plaintext
encoding that places a single bit plaintext in the MSB of the ci-
phertext, the other operations such as ShiftRows, MixColumns and
AddRoundKey that only require XOR operations can be evaluated
freely. That said, we note that homomorphic XOR operation is free
only in terms of computation time, so the error growth by the linear
operations should be considered in the selection of parameters. In
this perspective, 8-24 LUT and keyed S-box evaluation allow us to
choose a compact parameter in the (flexible) LHE mode.

E Detailed Description for Our Integer LHE
Mode

Integrate Extr. with Refr. First, we integrate the Extr. step with the
Refr. step by a single PBSmanyLUT operation, reducing the number
of blind rotation. The Extr. step extracts each bit of themessage from

20



Refined TFHE Leveled Homomorphic Evaluation and Its Application

LWE Lev GLWE GLev GGSW

Normal (𝑛 + 1) log𝑞 ℓ (𝑛 + 1) log𝑞 (𝑘 + 1)𝑁 log𝑞 ℓ (𝑘 + 1)𝑁 log𝑞 ℓ (𝑘 + 1)2𝑁 log𝑞
Seeded log𝑞 ℓ log𝑞 𝑁 log𝑞 ℓ𝑁 log𝑞 ℓ (𝑘 + 1)𝑁 log𝑞

(a) Size of FHEW/TFHE ciphertexts in bits.

GLWE KS Key Trace Evaluation Key Scheme Switching Key Packing KS Key

Normal ℓks𝑘src (𝑘dst + 1)𝑁 log𝑞 ℓtr𝑘 (𝑘 + 1)𝑁 log𝑁 log𝑞 ℓss𝑘 (𝑘 + 1)2𝑁 log𝑞 ℓpack𝑛(𝑘 + 1)𝑁 log𝑞
Seeded ℓks𝑘src𝑁 log𝑞 ℓtr𝑘𝑁 log𝑁 log𝑞 ℓss𝑘 (𝑘 + 1)𝑁 log𝑞 ℓpack𝑛𝑁 log𝑞

(b) Size of various FHEW/TFHE evaluation keys in bits.

LWE KS Key PBS Key Private Functional KS Key

Normal ℓks (𝑛 + 1)𝑘𝑁 log𝑞 ℓpbs (𝑘 + 1)2𝑛𝑁 log𝑞 ℓpriv𝑘 (𝑘 + 1)2𝑁 2 log𝑞
Seeded ℓks𝑘𝑁 log𝑞 ℓpbs (𝑘 + 1)𝑛𝑁 log𝑞 ℓpriv𝑘 (𝑘 + 1)𝑁 2 log𝑞

(c) Size of evaluation keys for the FHEW/TFHE bootstrapping operations in bits. The PBS operation requires the LWE keyswitching key and
the PBS key, and the circuit bootstrapping operation requires all kinds of keys in the table.

Table 13: Size of FHEW/TFHE ciphertexts and evaluation keys in bits. The size of seeds or auxiliary information is ignored.

the ciphertext, obtaining ciphertexts containing message bits scaled
by ⌈𝑞/2⌉. To extract the message bit by PBS without increasing
the polynomial size, the Extr. step moves the LSB to the MSB by
constant multiplication, changes its scaling factor to subtracts it
from original the ciphertext, and repeats this process until all the
bits are extracted. The followed Refr. step changes the scaling factor
of the extracted ciphertext to the gadget components by PBS. We
found that both Extr. and Refr. perform PBS operations to change
the scaling factor of a single-bit ciphertext, so we integrate them
into a single PBSmanyLUT operation per each bit.

Improved Conv. with HP-HomTrace. After the Refr. step, the result-
ing GLev ciphertext is converted to the GGSW ciphertext in the
Conv. step. The WWL+ method has improved the Conv. step sig-
nificantly in terms of both computation time and key sizes in the
bit-wise input LHE setting, while it’s higher error growth com-
pared to private key switching makes it hard to be used in the
high-precision input LHE mode. We resolved this issue by propos-
ing a high-precision HomTracemethod based on GLWE dimension
switching. By performing HomTrace under a larger GLWE dimen-
sion, we obtained high enough precision at the cost of increased
computation cost.

We propose Algorithm 7 for high-precision conversion step,
and present Theorem E.1 to bound the conversion noise. We note
that HomTrace is evaluated in the larger GLWE dimension 𝑘′ in
Algorithm 7, so one can make 𝑉tr in Theorem E.1 much smaller
than that in Theorem 3.1 and 3.2 for the same 𝑁 .

Theorem E.1. Let C𝑗 be a GLWE ciphertext of 𝑣 𝑗 ·𝑚 + . . . for
𝑗 = 1, . . . , ℓ under a secret key S = (𝑆1, . . . , 𝑆𝑘 ), S′ = (𝑆 ′1, . . . , 𝑆 ′𝑘 ) be
a GLWE secret key of a dimension 𝑘′ such that 𝑘′ > 𝑘 , and KSS→S′
(resp. KSS′→S) be a GLWE keyswitching key from S to S′ (resp. S′ to
S). Then Algorithm 7 outputs a GGSW ciphertext C of𝑚 under 𝑆 with
additional error variance 𝑉hp-conv such that

𝑉hp-conv = 𝑉pre +𝑉S→S′ +
𝑁

2 (𝑉hp-tr +𝑉S′→S) +𝑉ss

Algorithm 7: High-Precision Conversion HP-Conv

Input: C𝑗 = GLWES (𝑣 𝑗 ·𝑚 + . . . ) for 𝑗 = 1, . . . , ℓ
Input: GLWE keyswitching keys KSS→S′ and KSS′→S and

S′ = (𝑆 ′1, . . . , 𝑆 ′𝑘 ′ ) wheres 𝑘′ > 𝑘
Input: Automorphism keys under S′
Input: Scheme switching key under S
Output: C = GGSWS (𝑚)

1 for 𝑗 = 1 to ℓ do
2 C′𝑗 ← GLWE_KS(C𝑗 ,KSS→S′ )
3 C′𝑗 ← Preprocess(C′𝑗 )
4 C′𝑗 ← HomTrace(C′)
5 C′𝑗 ← GLWE_KS(C′,KSS′→S)
6 C
′ ← {C′𝑗 }ℓ𝑗=1

7 C← SchemeSwitch(C′)
8 return C

where 𝑉pre is the pre-processing noise variance, 𝑉S→S′ (resp. 𝑉S′→S)
is the GLWE keyswitching noise variance from S to S′ (resp. S′ to S),
𝑉hp-tr is the trace evaluation variance under S′, and𝑉ss is the additive
scheme switching error.

Proof. Compared to the original Conv. step, the high-precision
conversion (Algorithm 7) has additional GLWE keyswitching opera-
tions. For the first keyswitching error (from S to S′), the subsequent
pre-processing prevents the error amplification by HomTrace and
only its constant term is remained after HomTrace, so the multipli-
cation factor 𝑁 /2 of the scheme switching is not multiplied. For the
second keyswitching error (from S′ to S), the multiplication factor
of the scheme switching is multiplied together with the HomTrace
error. □

Masked Multi-Bit Extraction. Lastly, we propose masked multi-bit
extraction to reduce the number ofPBSmanyLUT operations, which
was the same as the number of the extraction operations. We extract
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𝜏-bit of the message for each extraction step, where 𝜏 ∈ {2, 3},
using a single PBSmanyLUT operation combined with the MV-PBS
method [8]. For each 𝜏-bit extraction, all the bits are masked by
its MSB bit (except the MSB bit itself), while we can evaluate LUT
correctly by modifying the evaluating function using the masked
input bits.

For simplicity, we describe the case of 𝜏 = 2. Suppose an input
ciphertext LWE(⌈𝑞/22⌉ · (2𝑚1 +𝑚0)) of a 2-bit message is given.
Then one can output both LWE(𝑣 ·𝑚1) and LWE(𝑣 · (𝑚1 ⊕𝑚0)) by
1-depth PBS where 𝑣 is a component of the gadget vector. Although
the BBB+method originally outputs GGSW(𝑚0) andGGSW(𝑚1) to
evaluate LUT by CMux, it is also possible to evaluate the same func-
tion using CMux by GGSW(𝑚0 ⊕𝑚1) and GGSW(𝑚1) by slightly
modifying the table.

To compute both {LWE(𝑣 𝑗 ·𝑚1)}ℓ𝑗=1 and {LWE(𝑣 𝑗 ·(𝑚1⊕𝑚0))}ℓ𝑗=1
in a single PBSmanyLUT operation, 𝜗 should be increased by 1 to
evaluate twice many functions. However, using a larger 𝜗 increases
the failure probability of the PBSmanyLUT operation. Combined
with the small scaling factor ⌈𝑞/22⌉ of the input ciphertext in the
multi-bit extraction, increasing 𝜗 might lead to a large failure prob-
ability. To keep the value of 𝜗 , we opted for the MV-PBS.

The test polynomial to extract𝑚1 and output LWE(𝑣 ·𝑚1) from
LWE(⌈𝑞/22⌉ (2𝑚1 +𝑚0)) is as follows.

𝑓𝑚1 (𝑋 ) = −
𝑣

2

(
1 + 𝑋 + · · · + 𝑋𝑁−1

)
.

Blind rotation on it outputs GLWE((−1)𝑚1+1 𝑣
2 + . . . ), and one can

obtain GLWE(𝑣 · 𝑚1 + . . . ) by adding a constant 𝑣/2. The test
polynomial 𝑓𝑚1 is, in fact, the same as the first phase polynomial
used in the MV-PBS, so one can evaluate additional functions (of the
same scaling factor) by multiplying some polynomial to the blind
rotation output on 𝑓𝑚1 . For example, the test polynomial 𝑓𝑚1⊕𝑚0
to compute LWE(𝑣 · (𝑚1 ⊕𝑚0)) from the same input is given as
follows.

𝑓𝑚1⊕𝑚0 (𝑋 ) = −
𝑣

2

(
1 + 𝑋 + · · · + 𝑋𝑁 /2−1 − 𝑋𝑁 /2 − · · · − 𝑋𝑁−1

)
.

From 𝑓𝑚1⊕𝑚0 (𝑋 ) = −𝑋𝑁 /2 · 𝑓𝑚1 (𝑋 ), the MV-PBS method evalu-
ates 𝑓𝑚1⊕𝑚0 on the same input by multiplying −𝑋𝑁 /2 to the blind
rotation output on 𝑓𝑚1 . The full algorithm for the CBS algorithm
of our integer input LHE mode is described in Algorithm 4.

Theorem E.2. Provided that the PBSmanyLUT does not fail, Al-
gorithm 4 outputs GGSW ciphertexts with error variance

𝑐𝜏𝑉pbs +𝑉conv
where 𝑐𝜏 = max0≤𝑘≤𝜏−2 ℓ2 (𝐺𝑘 )2 and

𝑉conv =

{
𝑉pre + 𝑁2 𝑉tr +𝑉ss if Conv is used,
𝑉hp-conv (see Theorem E.1) if HP-Conv is used.

Proof Sketch. The proof is the same as Theorem 3.2 except
that 𝑉pbs is multiplied by 𝑐𝜏 during MV-PBS in line 6. We refer to
Appendix G for the details. □

We used 𝜏 = 2 and 3 for the multi-bit extraction (see Table 6).
To be precise, we note that 𝑐2 = 1 and 𝑐3 = 3 because 𝐺0 = −𝑋𝑁 /2
and 𝐺1 = −(𝑋𝑁 /4 − 𝑋𝑁 /2 + 𝑋 3𝑁 /4).

Max Depth of the Integer Input LHE Mode. The max depth of the
integer input LHE mode is also defined as the maximum number of
CMux gates under the failure probability of 2−40 for the next PBS.
But computation is more complicated than that of the bitwise input
CBS.

Let𝑀 be the number of CMux gates, then the input error variance
𝑉in of the integer input LHE is given by

𝑉in = 𝑀 ·
(
(1 + 𝑘𝑁 )

(
𝑞2 − 𝐵2ℓ
24𝐵2ℓ

+ 1
12

)
+ (𝑘 + 1)ℓ𝑁

(
𝐵2 + 2
12

)
(𝑐𝜏𝑉pbs +𝑉conv)

)
where 𝑐𝜏𝑉pbs + 𝑉conv is the error variance of the output of Algo-
rithm 4 (see Theorem E.2), and (𝐵, ℓ) is the gadget base and length
of the output GGSW ciphertext (see Lemma C.4). Then, for the base
2𝑝 , the 𝜏 LSB bits of the input are moved to the MSB by multiplying
2𝑝−𝜏 , and fed to PBSmanyLUT operation. With 𝜎2in = 22(𝑝−𝜏 ) ·𝑉in,
Δin = 𝑞/2𝜏 , the failure probability of the PBSmanyLUT operation is
computed by Lemma 2.1. There are also PBSmanyLUT operations
in next iterations, while their input error variances are smaller than
the first iteration since the multiplication factor to move the 𝜏 LSB
to the MSB decreases.

F Comparison of Full 8-bit Instructions
In this section, we give a full comparison of the performance for
the 8-bit instructions. The list of the instructions proposed in [43]
are as follows. If there is ‘i’ at the end of the instruction, it implies
the variant of the instruction taking as inputs an encrypted one
and a cleartext one.

• Arithmetic instructions
– ADD(i)/SUB(i)/MUL(i): addition/subtraction/multiplication

of two bytes (modulo 256)
– ADDZ: addition provided that one of the inputs is zero
– MULM(i): most significant byte of the product of two

bytes
– DIV4(i): division of a byte by a nibble19
– DIV(i): division of a byte by another one
– MOD4(i): modulo of a byte by a nibble
– MOD(i): modulo of a byte by another one

• Bitwise instructions
– AND(i)/OR(i)/XOR(i): bitwise and/or/xor of two bytes
– (U)SHL(i)/(U)SHR(i): shift a byte (signed or unsigned)

left/right by a byte index
– ROL(i)/ROR(i): rotate a byte left/right by a byte index

• Test instructions
– EQ(i): test if two inputs are the same byte
– GT(E)(i)/LT(E)(i): test if the first input byte is greater/less

than (or equal to) the second input byte
• Other instructions

– MIN(i)/MAX(i): minimum/maximum of two bytes
– (N)CDUP(i): conditional duplication
– CSEL: conditional selection
– ABS: absolute value of a signed byte
– NEG: opposite of a signed byte
– XOP: user’s defined 8-to-8 LUT

19A nibble denotes 4-bit message
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Instructions # PBS # PubKS [43] Ours Improvement Instructions # PBS # PubKS [43] Ours Improvement
ANDi/ORi/XORi 2 0 48.75 36.17 1.35 AND/OR/XOR 4 2 184.52 227.05 0.81

DC 2 0 48.75 36.17 1.35 RC 8 0 195.00 144.67 1.35
(U)SHLi/(U)SHRi 2 0 48.75 36.17 1.35 (U)SHL/(U)SHR 6 4 320.30 227.05 1.41

ROLi/RORi 4 0 97.50 36.17 2.70 ROL/ROR 9 6 480.45 227.05 2.12
EQi 2 0 48.75 36.17 1.35 EQ 6 3 276.79 227.05 1.22

LT(E)i/GT(E)i 2 1 92.26 112.74 0.82 LT(E)/GT(E) 9 5 436.94 227.05 1.92
(N)CDUP 3 1 116.64 70.71 1.65 CSEL 9 6 480.45 227.05 2.12
NEG/ABS 2 1 92.26 112.74 0.82 MIN/MAX 16 10 825.12 227.05 3.63
ADDi/SUBi 2 1 92.26 112.74 0.82 ADD/SUB 7 4 344.68 227.05 1.52
ADDZ 4 2 184.52 227.05 0.81 MUL(M)i/DIV(4)i/MOD4i 2 1 92.26 112.74 0.82
MODi 3 2 160.15 112.74 1.42 MUL 10 6 504.82 227.05 2.22
MULM 32 20 1650.24 227.05 7.27 DIV4 21 14 1121.04 227.05 4.94
DIV 97 56 4801.05 227.05 21.15 MOD4 10 6 504.82 227.05 2.22
MOD 91 50 4393.73 227.05 19.35 (N)CDUPi 1 0 24.38 18.08 1.35
XOP 3 2 160.15 112.74 1.42 MINi/MAXi 2 1 92.26 112.74 0.82

Table 14: Performance of all the 8-bit TFHE instructions in ms.

– DC/RC: binary decomposition / recomposition
As mentioned in Section 5.3, we estimate the work of Trama et
al. [43] bymeasuring the PBS time (24.375 ms) and public keyswitch-
ing time (43.512 ms). If the instruction does not require public
keyswitching, we also estimate our performance of it only by our
PBS time. If not, we estimate our performance by 8-to-8 LUT for
univariate instructions and 16-to-8 LUT for bivariate instructions.
Especially for (N)CDUP, one of its input is a selection bit so we
estimate its performance by 9-to-8 LUT. The result is summarized
in Table 14.

G Proofs
G.1 Theorem.1

Proof. The Refr. step outputs a GLev ciphertext, where the
phase of the 𝑗-th GLWE ciphertext is⌈ 𝑞

𝐵 𝑗

⌉
𝑚 + 𝑦1𝑋 + . . . + 𝑦𝑁−1𝑋𝑁−1 + 𝐸pbs (𝑋 ),

where 𝑦𝑖𝑋 𝑖 are some redundant terms and 𝐸pbs (𝑋 ) is the error of
PBSmanyLUT. After pre-processing by multiplying with 𝑁 −1, the
phase is

𝑁 −1
⌈ 𝑞
𝐵 𝑗

⌉
𝑚 + 𝑁 −1𝑦1𝑋 + . . . + 𝑁 −1𝑦𝑁−1𝑋𝑁−1 + 𝑁 −1𝐸pbs (𝑋 ) .

Subsequent trace evaluation can eliminate the power terms of 𝑋
and multiply the constant term by a factor of 𝑁 . Therefore the
phase of HomTrace is⌈ 𝑞

𝐵 𝑗

⌉
𝑚 + 𝑒pbs + 𝐸tr (𝑋 ),

where 𝑒pbs is the constant term of 𝐸pbs and 𝐸tr (𝑋 ) is the error
induced byHomTrace. Lastly, the phase after 𝑖-th scheme switching
is (⌈ 𝑞

𝐵 𝑗

⌉
𝑚 + 𝑒pbs + 𝐸tr (𝑋 )

)
· 𝑆𝑖 + 𝐸ss (𝑋 )

=

⌈ 𝑞
𝐵 𝑗

⌉
𝑚𝑆𝑖 + 𝑒pbs𝑆𝑖 + 𝐸tr (𝑋 )𝑆𝑖 + 𝐸ss (𝑋 ),

where 𝐸ss (𝑋 ) is the error induced by scheme switching. Since all
of the additive errors 𝑒pbs𝑆𝑖 , 𝐸tr (𝑋 )𝑆𝑖 and 𝐸ss (𝑋 ) are independent,

the noise variance is
𝑉cbs = 𝑉 (𝑒pbs𝑆𝑖 ) +𝑉 (𝐸tr (𝑋 )𝑆𝑖 ) +𝑉ss .

Given that the secret key 𝑆𝑖 follows uniform binary distribution,
we have 𝑉 (𝑒pbs𝑆𝑖 ) = 𝑉pbs thanks to 𝑒pbs is only a constant term.
Furthermore, 𝑉 (𝐸tr (𝑋 )𝑆𝑖 ) ≤ 𝑁

2 𝑉tr, where 𝑁 is the ring expansion
factor. Substituting these estimate into the above formula, we obtain

𝑉cbs ≤ 𝑉pbs +
𝑁

2 𝑉tr +𝑉ss .
□

G.2 Theorem.2
Proof. The proof is analogous to that of Theorem 3.1 except that

there is an additional pre-processing error. The Refr. step outputs a
GLev ciphertext whose 𝑗-th GLWE ciphertext is

𝑞

𝐵 𝑗
𝑚 + 𝑦1𝑋 + · · · + 𝑦𝑁−1𝑋𝑁−1 + 𝐸pbs (𝑋 ),

where 𝑦𝑖𝑋 𝑖 are some redundant terms and 𝐸pbs (𝑋 ) is the error of
PBSmanyLUT. After pre-processing, one obtains a GLev ciphertext
whose 𝑗-th GLWE ciphertext has a phase of
1
𝑁

( 𝑞
𝐵 𝑗
𝑚 + 𝑦1𝑋 + · · · + 𝑦𝑁−1𝑋𝑁−1 + 𝐸pbs (𝑋 )

)
+𝐸ms (𝑋 )+ 𝑞

𝑁
𝑈 (𝑋 )

where 𝐸ms (𝑋 ) is the modulus switching error from 𝑞 to 𝑞/𝑁 and
𝑈 (𝑋 ) is a redundant terms caused by modulus raising from 𝑞/𝑁 to
𝑞. Subsequent trace evaluation eliminates all the coefficients except
the constant term, which is multiplied by 𝑁 . Hence, the phase after
HomTrace is

𝑞

𝐵 𝑗
𝑚 + 𝑒pbs + 𝑁𝑒ms + 𝐸tr (𝑋 )

where 𝑒pbs (resp. 𝑒ms) is the constant term of 𝐸pbs (𝑋 ) (resp. 𝐸ms (𝑋 ))
and 𝐸tr (𝑋 ) is the error induced by HomTrace. The final scheme
switching operation converts GLev(𝑚) obtained from HomTrace
into GGSW(𝑚), whose error variance 𝑉cbs is given as follows.

𝑉cbs ≤ 𝑉pbs + 𝑁 2𝑉ms + 𝑁2 𝑉tr +𝑉ss
where 𝑉ss is the scheme switching error. □
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H Re-Analysis of WWL+
This section reanalyzes the circuit bootstrapping proposed in [45]
and fixes previous errors. The original WWL+ method can be de-
scribed as the following two steps.
Step 1 Refr. LWE𝑠 (Δ𝑚) to refreshed GLevS (𝑁 −1𝑚 + · · · ) by:

• PBSmanyLUT [15] without sample extraction, or
• automorphism-based multi-value blind rotation [45].

Step 2 Conv. GLevS (𝑁 −1𝑚 + · · · ) to GGSWS (𝑚) conversion by:
• HomTrace: GLevS (𝑁 −1𝑚 + · · · ) → GLevS (𝑚)
• SchemeSwitch: GLevS (𝑚) → GGSWS (𝑚).

We propose Theorem H.1 to provide a detailed re-analysis of the
noise growth in the CBS algorithm proposed by Wang et al. [45].

TheoremH.1. Let c be an LWE ciphertext of phase 𝜇 under a secret
key s = (𝑠1, . . . , 𝑠𝑘𝑁 ) where the ciphertext modulus 𝑞 is a prime. Then,
our patched NTT-based CBS algorithm returns a GGSW ciphertext
C of phase 𝜇 + 𝐸cbs (𝑋 ) under the GLWE secret key S = (𝑆1, . . . , 𝑆𝑘 )
corresponding to s where the variance 𝑉cbs of 𝐸cbs (𝑋 ) is given as
follows.

𝑉cbs ≤ 𝑁 2𝑉pbs +
𝑁

2 𝑉tr +𝑉ss .
where 𝑉pbs denotes the PBSmanyLUT 20 output error variance, 𝑉tr
denotes the HomTrace output error variance, and 𝑉ss denotes the
scheme switching output error variance.

Proof. The Refr. step outputs a GLev ciphertext, where the
phase of the 𝑗-th GLWE ciphertext is

𝑁 −1
⌈ 𝑞
𝐵 𝑗

⌉
𝑚 + 𝑦1𝑋 + . . . + 𝑦𝑁−1𝑋𝑁−1 + 𝐸pbs (𝑋 ),

where𝑦𝑖𝑋 𝑖 are some redundant terms and𝐸pbs (𝑋 ) is thePBSmanyLUT
error. Subsequent trace evaluation can eliminate the power terms
of 𝑋 and multiply the constant term by a factor of 𝑁 . Therefore the
phase of HomTrace is⌈ 𝑞

𝐵 𝑗

⌉
𝑚 + 𝑁𝑒pbs + 𝐸tr (𝑋 ),

where 𝑒pbs is the constant term of 𝐸pbs and 𝐸tr (𝑋 ) is the error
induced by HomTrace. Lastly, the phase after scheme switching
with 𝑆𝑖 is (⌈ 𝑞

𝐵 𝑗

⌉
𝑚 + 𝑁𝑒pbs + 𝐸tr (𝑋 )

)
· 𝑆𝑖 + 𝐸ss (𝑋 )

=

⌈ 𝑞
𝐵 𝑗

⌉
𝑚𝑆𝑖 + 𝑁𝑒pbs𝑆𝑖 + 𝐸tr (𝑋 )𝑆𝑖 + 𝐸ss (𝑋 ),

where 𝐸ss (𝑋 ) is the error induced by scheme switching.
Since all of the additive errors 𝑒pbs𝑆𝑖 , 𝐸tr (𝑋 )𝑆𝑖 and 𝐸ss (𝑋 ) are

independent, the noise variance

𝑉cbs = 𝑁
2𝑉 (𝑒pbs𝑆𝑖 ) +𝑉 (𝐸tr (𝑋 )𝑆𝑖 ) +𝑉ss .

Since the secret key 𝑆𝑖 follows uniform binary distribution, we have
𝑉 (𝑒pbs𝑆𝑖 ) = 𝑉pbs thanks to 𝑒pbs is only a constant term. Further-
more, 𝑉 (𝐸tr (𝑋 )𝑆𝑖 ) ≤ 𝑁

2 𝑉tr, where
𝑁
2 is the ring expansion factor.

Substituting these estimates into the above formula, we obtain

𝑉cbs ≤ 𝑁 2𝑉pbs +
𝑁

2 𝑉tr +𝑉ss .
□

20In this paper, we focus on PBSmanyLUT, the conclusions deduced from the
automorphism-based multi-value blind rotation are similar.

Based on the noise analysis from Theorem H.1, we have adjusted
the noise control parameters, as listed in Table 15 and implemented
them in OpenFHE [1]. As in Remark 1, the estimations of AVX-512
accelerated results are given in parentheses. We note that the key
size in this paper assumes that the evaluation keys are compressed
(see Appendix C.6).

I Algorithms
I.1 PBSmanyLUT

Algorithm 8: PBSmanyLUT

Input: cin = LWEs (𝑚 · Δin) = (𝑎1, . . . , 𝑎𝑛, 𝑎𝑛+1 = 𝑏) ∈ Z𝑛+1𝑞
under s = (𝑠1, . . . , 𝑠𝑛) where
(𝛽,𝑚′) ← PTModSwitch𝑞 (𝑚,Δin, 𝜗)

Input: BSK = (GGSWS′ (𝑠𝑖 ))1≤𝑖≤𝑛 under S′ = (𝑆 ′1, . . . , 𝑆 ′𝑘 )
with decomposition base 𝐵pbs and level ℓpbs

Input: 𝑃 (𝑓1,...,𝑓2𝜗 ) : a redundant LUT for 𝑓1, . . . , 𝑓2𝜗
Output: c1, . . . c2𝜗 where c𝑗 = LWEs′ ((−1)𝛽 · 𝑓𝑗 (𝑚′) ·Δout)

1 and s′ is the LWE secret key corresponding to S′ for 𝑖 = 1 to
𝑛 + 1 do

2 𝑎′𝑖 ←
[ ⌊
𝑎𝑖 ·2𝑁 ·2−𝜗

𝑞

⌋
· 2𝜗

]
2𝑁

/* PTModSwitch */

3 C(𝑓1,...,𝑓2𝜗 ) ← GLWE0S′ (𝑃 (𝑓1,...,𝑓2𝜗 ) )
4 C← BlindRotate

(
C(𝑓1,...,𝑓2𝜗 ) , {𝑎

′
𝑖 }𝑛+1𝑖=1 , BSK

)
5 for 𝑗 = 1 to 2𝜗 do
6 c𝑗 ← SampleExtract𝑗−1 (C)

I.2 MV-PBS

Algorithm 9:MV-PBS
Input: cin = LWEs (𝑚 ·Δin) = (𝑎1, · · · , 𝑎𝑛, 𝑎𝑛+1 = 𝑏) ∈ Z𝑛+1𝑞
Input: BSK = (GGSWS′ (𝑠𝑖 ))1≤𝑖≤𝑛 under S′ = (𝑆 ′1, · · · , 𝑆′𝑘 )
Input: 𝑡 + 1 polynomials 𝑃0 and 𝑃 ′𝑗 for 𝑗 = 1, . . . , 𝑡 such that

𝑃 ′𝑗 · 𝑃0 = 𝑃 𝑗 where 𝑃 𝑗 is the polynomial encoding 𝑓𝑗
Output: c1, · · · , c𝑡 where c𝑗 = LWEs′ (𝑓𝑗 (𝑚) · Δout) and s′

is the LWE secret key corresponding to S′
1 for 𝑖 = 1 to 𝑛 + 1 do
2 𝑎𝑖 = ⌊𝑎𝑖 · (2𝑁 )/𝑞⌉ /* ModSwitch */

3 Let ACC← GLWE0S′ (𝑃0)
4 ACC← BlindRotate(ACC, {𝑎𝑖 }𝑛+1𝑖=1 ,BSK)
5 for 𝑗 = 1 to 𝑡 do
6 ACC𝑗 ← 𝑃 ′𝑗 · ACC
7 c𝑗 = SampleExtract(ACC𝑗 )
8 return c1, · · · , c𝑡
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Sets ℓpbs 𝐵pbs ℓtr 𝐵tr ℓss 𝐵ss ℓ 𝐵 Max Depth Key Size (MB) # of NTTs Time (ms)

NTT-CMuxO1 2 217 3 213 1 228 4 23 2 30.56 3610 95.92 (39.00)
NTT-CMuxO2 3 213 5 29 1 228 4 24 101 45.91 4840 119.09 (52.29)
NTT-CMuxO3 7 27 7 27 2 219 4 25 53378 106.43 9500 250.41 (102.64)

Table 15: The recommended parameter sets for refined NTT based CBS noise management. For each parameter set, we have
listed the corresponding max supported circuit depth, circuit bootstrapping key size, and the number of needed NTT/FFTs.
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