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Abstract

The recent work of Ananth et al. (ITCS 2022) initiated the study of pre-constrained encryption (PCE) which
achieves meaningful security even against the system authority, without assuming any trusted setup. They provided
constructions for special cases such as pre-constrained Attribute Based Encryption (PC-ABE) for point functions
and pre-constrained Identity Based Encryption (PC-IBE) for general functions from the Learning with Errors (LWE)
assumption. For the most general notion of PCE for circuits, they provided a construction from indistinguishability
obfuscation (iO) and moreover, proved a lower bound showing that the reliance on iO was inherent. In all their
constructions, the size of the public key scales linearly with the size of the constraint input to the setup algorithm.

In this work we initiate the study of laconic pre-constrained encryption, where the public key is sublinear in the
size as well as number of constraints input to the setup algorithm. We make the following contributions:

1. We construct laconic pre-constrained ABE for point functions and laconic pre-constrained IBE for general
functions from LWE which achieves succinct public keys, thus improving upon the work of Ananth et al.

2. For general constraints, we sidestep the lower bound by Ananth et al. by defining a weaker static notion of
pre-constrained encryption (sPCE), which nevertheless suffices for all known applications. We show that laconic
sPCE is impossible to achieve in the strongest malicious model of security against authority and provide the first
construction of semi-malicious laconic sPCE for general constraints from LWE in the random oracle model.

3. For general constraints, to achieve malicious security without iO, we provide constructions of non-laconic sPCE
from a variety of assumptions including DDH, LWE, QR and DCR. Our LWE based construction satisfies
unconditional security against malicious authorities.

4. As an application of our sPCE, we provide the first construction of pre-constrained group signatures supporting
general constraints, achieving unconditional anonymity and unlinkability against malicious authorities from the
LWE assumption. The only other construction by Bartusek et al. supports the restricted set/database membership
constraint, and achieves computational security from the DDH assumption.

Along the way, we define and construct the notion of pre-constrained Input Obfuscation which may be of independent
interest.
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1 Introduction
An important balance that the field of cryptography seeks to enable is that between privacy and accountability. Consider
the classic example of encryption – the key generation procedure for public key encryption (PKE) is typically run
by service providers, who are often not trusted by end users but can nevertheless access encrypted user data. Anger
against mass surveillance and “hidden” trapdoors led to the creation of end-to-end encryption services (E2EE), which
guarantees that even the service provider itself cannot access the information that it is storing or transmitting on behalf
of the user. However, the right to privacy of users must be contrasted with the helplessness of law enforcement agencies,
such as the police, in being unable to access conversations that are threatening to society, for example those that incite
violence or distribute illegal information. Thus, a fundamental question, which has received much attention in recent
years, is – is there a way to guarantee privacy for honest users while enforcing accountability for propagating illegal
information?

1.1 Prior Work
There has been a large body of work addressing this question in recent years, for different primitives and achieving
different notions of security. In this work, we continue this study for the fundamental primitive of encryption. We
discuss known solutions for PKE below and relegate discussion of other primitives to Section 1.3.

Pre-Constrained Encryption. The work of Ananth et al. [AJJM22] proposed the notion of pre-constrained encryption
(PCE) as a new model for advanced encryption schemes where even the setup authority does not have full decryption
power, but instead can only decrypt some “authorized” values on private data. Importantly, this model does not assume
any trusted setup or CRS generation. In more detail, Ananth et al. [AJJM22] define pre-constrained encryption with
respect to a constraint family C and a function family F where the constraint family C models the kinds of decryption
capabilities permitted to the authority. Now, setup is run with respect to some constraint C ∈ C and this produces a
public key together with a master secret key which is “constrained” to C, the key generation procedure takes this master
key and a function f ∈ F and outputs a function key SK f if and only if C( f ) = 1. Encryption supports computing a
ciphertext CTx for any input x and decryption of CTx with SK f enables recovery of f (x). In particular, note that even
the authority holding the master secret can only derive function keys and hence perform computations for authorized
functions f , as captured by C( f ) = 1, and nothing else. This is the fundamental difference from the related primitive
of functional encryption (FE) where the authority possesses a master secret key which can be used to decrypt any
ciphertext. Indeed, the existence of such a master key has been the cause of much concern in FE schemes, and several
works [BF03, Cha07, LW11, Goy07, GLSW08, BGJS16, GHMR18, GHM+19, GV20] have attempted to find solutions
to mitigate this so-called “key escrow” problem.

Ananth et al. [AJJM22] (AJJM) provide several constructions for PCE. Analogously to the literature on FE,
they consider special cases of PCE such as identity-based PCE and attribute-based PCE, denoted as IB-PCE and
AB-PCE, respectively. These notions are similar to the celebrated notions of identity-based encryption (IBE) [BF03]
and attribute-based encryption (ABE) [GPSW06], except that the functions must now additionally be authorized via a
constraint specified during setup. In more detail, an AB-PCE scheme consists of four algorithms – Setup takes as input a
constraint C and outputs a public key and master key, KeyGen takes as input a predicate f and outputs SK f if C( f ) = 1,
Enc takes as input an attribute vector x and a message µ and outputs (x, CTx) and Dec takes SK f and (x, CTx) and
outputs µ if f (x) = 1. In an IB-PCE, the function f is restricted to be a vector y and we define f (x) = 1 iff x = y.

AJJM provide the first constructions of PCE – they build AB-PCE for point constraints (i.e. Cx∗( f ) = 1 iff
f (x∗) = 0) and IB-PCE for general constraints C from the Learning With Errors (LWE) assumption. Both these
constructions cleverly use the “punctured” proof technique of the ABE scheme by Boneh et al. [BGG+14] to puncture
the master key in the constructions.

To construct AB-PCE for general circuit constraints, they rely on the strong primitive of witness encryption (WE)
together with NIZK proofs with perfect soundness. Additionally, they construct PCE for general constraints using
indistinguishability obfuscation (iO) and NIZKs with perfect soundness. Moreover, they show that the usage of strong
primitives like iO and WE is inherent since AB-PCE for general circuit constraints implies WE for NP while PCE for
general circuit constraints implies iO for P/poly.

2



Self-Detecting Encryption. Another closely related primitive is self-detecting encryption defined by Alamati et al.
[ABD+21]. A self-detecting encryption scheme is similar to a regular public-key encryption with the key difference
that it is possible to detect whether the underlying message of a given ciphertext belongs to a database of certain illegal
messages. Moreover, such a check can be performed just by knowing the database values, as opposed to the system’s
secret key – this enables the feature that illegal contents in encrypted messages can be flagged even without knowing the
secret key, without compromising the privacy of honest messages.

Formally, SDE, similar to PKE allows to generate a key pair (pk, sk). There is a hash algorithm which computes a
hash value hDB and state information st from a database DB. A user can then generate a ciphertext ctm of m by using hDB
and pk. The secret key holder can decrypt ctm. In addition, it has a detection algorithm that can recover m from ctm and st
(without sk) if m ∈ DB. Observe that DB has no relation to (pk, sk). The security against the authority of self-detecting
encryption guarantees (pk, (hDB, st), Enc(pk, hDB, m0))

c≈ (pk, (hDB, st), Enc(pk, hDB, m1)) if m0, m1 /∈ DB.
The notion of self detecting encryption is philosophically similar to that of PCE with a database constraint – the

state information st can be seen as a constrained key which only allows the authority to learn m if it belongs to an illegal
set. However, the constructions of SDE use a CRS generated honestly by a Prm algorithm, hence only achieve security
against a semi-honest authority1. Also, the database constraint, while clearly useful, is nevertheless restrictive and it is
useful to study a broader class of constraints.

Set Pre-Constrained Encryption and Group Signatures. Bartusek et al. [BGJP23] defined the notion of set pre-
constrained (SPC) encryption where setup is provided a database D and outputs a public and secret key. The public key
can be used to encrypt a message (x, m) while the secret key can be used to decrypt a ciphertext to recover m so long as
x ∈ D. Similar to SDE, this notion is similar to PCE for the database constraint. However, the precise definitions of
security considered are different in the two works. In terms of constructions, the authors provided a concretely efficient
scheme from Decision Diffie Hellman (DDH). Further, they defined the notion of set pre-constrained (SPC) group
signatures, which enable tracing of users in messaging systems who sign predefined illegal content while providing
security against malicious group managers. They also provided concretely efficient protocols for Set Pre-Constrained
(SPC) group signatures from DDH, and an implementation to demonstrate practical efficiency.

1.2 Our Approach
In this work, we extend the study of pre-constrained encryption (PCE) as defined by Ananth et al. [AJJM22] (AJJM).
We provide new definitions as well as new constructions, summarized next.

1.2.1 Definitions.

We provide the following new definitions in the context of PCE.

Weaker Notion for General Constraints. As discussed above, AJJM shows that in the context of general constraints,
the reliance of PCE on strong notions like witness encryption and obfuscation is inherent. This is discouraging – real
world applications may require support for arbitrary constraints and using such strong primitives creates barriers to
deployment. As an example, consider their own motivating example of spam filtering, where the secret key should
open ciphertexts containing spam – here the functionality “is-spam?” is formalized by some constraint C, which could
be arbitrarily complex. If the stated definition for general constraints necessitates usage of strong assumptions, is it
possible to weaken the definition in a meaningful way?

Taking a step back, we observe that the applications envisaged by AJJM can be realized using a weaker variant of
PCE which removes the dynamic key delegation functionality required by their definition and where the constraint acts
on the data rather than on the keys. In more detail, we define a weaker notion of PCE, which we call static PCE (denoted
by sPCE) as a PKE scheme where a constraint C is embedded in the secret key created during setup, the encryptor
computes a ciphertext for any message x and decryption succeeds to recover x if and only if C(x) = 1. More generally,
we may embed a set of constraints C1, . . . , CQ in the public key and allow decryption to recover {Ci(x)}i∈[Q]. As in the
AJJM PCE, even the authority cannot learn unauthorized functions on the data – the difference is that these functions

1The authors do consider maliciously constructed ciphertexts, but not maliciously generated CRS.
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are now fixed and provided to setup, without allowing dynamic choice during key generation. Similarly to AJJM, we
ask that the public key does not reveal information about C – constraint-hiding and that the secret key holder cannot
learn any leakage on x if C(x) = 0 – security against authority. Also, as in [AJJM22], we envisage the deployment of
pre-constrained encryption in conjunction with an end-to-end encryption scheme so that user data is encrypted twice,
once under each scheme. The former is used for accountability to the authority, while the latter is used for regular
communication. Standard cryptographic tools are used to ensure that the data encrypted under both schemes is the same
– please see [AJJM22] for a discussion.

Applications. Our notion of sPCE provides a simpler way to realize several applications that were studied by [AJJM22].
For instance, they motivate their notion of identity-based PCE via the example of a “no-fly list” where the public key
contains a list (say S) of suspected individuals who should not be allowed to fly. The encryption and function keys
are with respect to identities (possibly user public keys). The master key which encodes S can be used to derive the
secret key for any identity in S via a key derivation procedure, which in turn can be used to decrypt any ciphertext
associated with an identity in S. In sPCE too, the public key can encode a no-fly list as a constraint C and the ciphertext
can encode the identity x. If C(x) = 1, the ciphertext can be decrypted. Thus, the difference is that we do not explicitly
provide a key derivation procedure, but the constrained master secret key suffices for decryption as desired above. We
remark that there may be other applications which require the full power of IB-PCE, and we also study this notion below.
The primary reason for considering the weaker static notion is for supporting general constraints.

On account of acting directly on data, our notion of sPCE also enables new applications:

1. Checking Data Sanitization: Consider a constraint C which encodes some program that checks the content for
illegal or undesirable attributes such as violence or racial biases. Now, the setup provides a secret key that encodes
C, the encryptor computes a ciphertext for some input x and the authority can recover x if and only if C(x) = 1.

2. Crime Investigation: During a crime investigation, it is desirable for the authority to have a key encoding some
constraint that checks for names of suspects (or such other material) in encrypted chat conversations, and allows
them to only decrypt the matching chat messages. Here, the user’s message x is encrypted in ciphertext CTx and
recovered by the key if and only if C(x) = 1.

Relation with reusable 2 round 2 party secure computation. The above notion of sPCE is arguably natural – indeed,
it is closely connected with reusable 2 round 2 party secure computation, which has been studied extensively in the
literature [BL20, AJJM20, BGMM20, BJKL21, AJJM21, BGSZ22, IKSS23]. In more detail, PCE can be seen as a
special case of reusable 2PC by collapsing the setup and decrypt algorithms of PCE into the same (first) party with input
C and by considering encrypt as the second party with input x. However, we believe that it is meaningful to study PCE
as a separate notion for the following reasons:

1. The fundamental security property in PCE is against authority without relying on trusted setup – this renders 2PC
protocols with trusted setup (such as CRS) or satisfying only semi-malicious security, ill-suited for our setting.

2. Since reusable 2PC security definitions are simulation based, 4 rounds are optimal for malicious security in the
plain model [KO04]. However, PCE generalizes PKE so we cannot admit protocols which incur more than 2
rounds. To the best of our knowledge, 2 round maliciously secure reusable MPC in the plain model relies on
super-polynomial-time simulation and strong assumptions such as iO [FJK23]. In contrast, our receiver-side
security definition is game-based and admits constructions from standard assumptions.

Laconic Pre-Constrained Encryption. The main notion we study in this work is that of laconic (or succinct) sPCE,
where the public key is sublinear in the size as well as the number of constraints embedded in it. We study laconic PCE
both in the static setting for general constraints, as well as in AJJM’s dynamic setting for special cases like AB-PCE and
IB-PCE.
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Pre-Constrained Input Obfuscation. We introduce a natural dual of sPCE which we term pre-constrained input
obfuscation. In this primitive, the setup algorithm hides a set of inputs in the public key, the obfuscate algorithm
produces an obfuscated program and the evaluation algorithm allows to compute the output of the program on the
hidden inputs. To see the motivation for this notion, say that a user/prover claims they have an algorithm for a difficult
problem. To check this without leaking the algorithm, the verifier chooses several large random inputs and programs
them into the public key. The prover obfuscates her code using this key (note that the inputs remain hidden) and sends
this to the verifier, who can test whether the correct output is produced in reasonable time.

1.2.2 Constructions.

We provide new constructions from simple, standard assumptions.

Warmup: Non Laconic, General Constraints. As a warm-up, we provide a simple construction of sPCE for general
constraints, which relies on two-message statistically sender-private oblivious transfer (SSP-OT) as well as garbled
circuits and achieves security against a malicious authority. Note that SSP-OT can be based on diverse assumptions
such as DDH [AIR01, NP01], QR and DCR [HK12], LWE [BD18, DGI+19, ADD+23], LPN and Nisan-Wigderson
style derandomization [BF22]. This construction bears similarities to constructions of reusable 2PC that have appeared
in the literature [GSW23], though the details are quite different. In more detail, we obtain the following theorem.

Theorem 1.1. Assuming DDH or (QR and DCR) or LWE or (LPN and Nisan-Wigderson style derandomization), there
exists a sPCE scheme, for general circuits, satisfying security against a malicious authority (Definition 3.5).

Next we provide a construction which supports general constraints and relies on malicious circuit-private fully
homomorphic encryption (FHE)[OPP14], which can be instantiated from the LWE assumption. This construction
satisfies unconditional security against a malicious authority, and can be conjectured post-quantum secure. In contrast,
the constructions of AB-PCE and PCE for general constraints, even while relying on strong primitives like WE or iO, do
not achieve unconditional security even against a semi-malicious authority.

Theorem 1.2. Assuming LWE, there exists a sPCE scheme, for general circuits, satisfying unconditional security
against a malicious authority (Definition 3.6).

Laconic, General Constraints. In the laconic setting, we first show that sPCE is impossible to achieve against a
malicious authority. Relaxing the security to semi-malicious, we provide the first construction of laconic sPCE from
LWE in the random oracle model.

Theorem 1.3. There exists a laconic sPCE scheme for general constraints that satisfies security against a semi-malicious
authority (as defined in Definition 3.4) in the random oracle model, under the LWE assumption, achieving a succinct
master public key with |mpk| = poly(λ).

Laconic AB-PCE and IB-PCE. For AB-PCE and IB-PCE, we use the definitions of AJJM supporting dynamic key
generation and achieve the following.

Theorem 1.4. There exists a laconic attribute-based pre-constrained encryption (AB-PCE) scheme for point-constraints
that satisfies semi-malicious security (as defined in Definition 2.2), under the LWE assumption, achieving a succinct
master public key of size |mpk| = poly(λ, d), where d denotes the maximum depth of the function class supported by
the scheme.

In contrast, AJJM constructed a AB-PCE scheme for point-constraints satisfying semi-malicious security assuming
LWE and achieving |mpk| = poly(λ, d, ℓ), where d denotes the maximum depth of the function class supported by the
scheme and ℓ denotes the attribute length.

Theorem 1.5. There exists a laconic identity-based pre-constrained encryption (IB-PCE) scheme for general constraints
that satisfies semi-malicious security (as defined in Definition 2.2), under the LWE assumption, achieving a succinct
master public key of size |mpk| = poly(λ).

The prior work by [AJJM22] constructed a IB-PCE scheme for general constraints satisfying semi-malicious security
assuming LWE and achieving |mpk| = poly(λ, ℓ), where ℓ denotes the constraint size.
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Pre-Constrained Group Signatures. Using our sPCE, we make the following advances in pre-constrained group
signatures (PCGS). We provide the first construction supporting general constraints, achieving unconditional anonymity
and unlinkability against malicious authorities. The only other construction by Bartusek et al. [BGJP23] supports the
restricted set/database membership constraint, and achieves computational security. Our construction relies on the LWE
assumption while theirs relies on DDH – thus, our construction has the advantage of being plausibly post-quantum
secure. Additionally, our construction achieves a stronger security notion, namely unlinkability as compared to theirs.
On the other hand, their construction enjoys concrete efficiency and comes with an implementation, whereas ours does
not.

In Appendix D.2 we show that the PCGS compiler by [BGJP23] can be adapted to use our sPCE scheme and we
have the following implications.

1. Using a sPCE scheme as in Theorem 1.1, we achieve a PCGS scheme for general constraints achieving anonymity
and unlinkability against a malicious authority for general constraints. For constraints in NC1, we can achieve
unconditional anonymity and unlinkability against a malicious authority.

2. Using a sPCE scheme as in Theorem 1.2, we achieve a PCGS scheme for general constraints achieving
unconditional anonymity and unlinkability against a malicious authority for general constraints.

3. Using a laconic sPCE scheme as in Theorem 1.3, we achieve a succinct PCGS scheme for general constraints
achieving security guarantees against a semi-malicious PPT authority.

Pre-Constrained Input Obfuscation. We provide a construction of pre-constrained input obfuscation (PCIO) scheme
from a sPCE scheme. This lets us instantiate PCIO from the same assumptions as those used to instantiate sPCE.

1.3 Technical Overview
We proceed to outline the technical ideas used in our constructions.

Static Pre-Constrained Encryption. We define a static pre-constrained encryption (sPCE) scheme consisting of
three algorithms: Setup, Enc, Dec. Here, Enc and Dec are encryption and decryption algorithms of standard FE. Setup
takes as input a security parameter and functions ( f1, . . . , fQ), and outputs a public key and functional decryption
keys (sk f1 , . . . , sk fQ). As discussed above, this notion simplifies the notion of PCE defined by Ananth et al. [AJJM22]
and can also be seen as a natural generalization of the notion of set pre-constrained encryption by Bartusek et
al. [BGJP23]. We remark that our security notions are game-based, similar to Ananth et al. [AJJM22] in contrast
to the ideal-functionality-based security notions of Bartusek et al. [BGJP23]. We make this choice to separate the
authentication of constraints from the schemes.

There are three security requirements for sPCE. One is the standard indistinguishability against adversaries who
do not have functional decryption keys. Another is function-hiding, which ensures that public keys do not reveal
information about the functions embedded during the setup phase. The third is security against authority – this can
be semi-honest, semi-malicious or malicious, which are increasingly stronger. We focus on malicious authority in
this section, which allows the authority to behave arbitrarily during the setup phase. The requirement imposed by this
notion of security is very strong – a ciphertext of x does not provide any information beyond ( f1(x), . . . , fQ(x)) even
if the malicious authority generates a possibly malformed public key p̃k where ( f1, . . . , fQ)← Ext(1λ, p̃k) and Ext
is a possibly inefficient extractor. When security holds against a computationally unbounded authority, we say that it
satisfies unconditional security. It is easy to show that security against semi-honest/semi-malicious/malicious authority
and constraint-hiding imply the standard indistinguishability – we do not discuss this in the remainder of this overview.

Warmup: Construction based on OT. As discussed above, Ananth et al. [AJJM22] provide constructions by
using the punctured proof technique of Boneh et al. [BGG+14]. This technique is very well suited for constructing
pre-constrained encryption since it naturally lends itself to constraining the master key, providing constructions for
the restricted primitives of IB-PCE for general constraints and AB-PCE for point constraints. However, this technique
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is highly specific to LWE-based ABE constructions and appears very hard to generalize (even to punctured proofs in
pairing-based ABE constructions, for instance).

From broader assumptions, it appears very challenging to guarantee confidentiality against a malicious authority.
This task seems even more difficult when considering security against an unbounded authority. To tackle this difficulty,
we take advantage of our simpler definition, which does not require key delegation. In this setting, we then leverage
two-message secure two-party computation between an authority with input C (constraint) and a sender with input x
(plaintext). The authority obtains x · C(x) (and the sender obtains nothing). If C(x) = 0, the authority cannot obtain
information about x.

To implement this idea, we make use of two-message statistically sender-private oblivious transfer (SSP-OT) [HK12,
BD20]. This primitive satisfies the following two requirements: (1) computational indistinguishability between ot1(0)
and ot1(1) where ot1(β) is the receiver’s message with choice bit β, and (2) statistical indistinguishability between the
sender message generated from (µ0, µ1, ot1) and one generated from (µβ′ , µβ′ , ot1) where β′ ← Ext(ot1), Ext is a
possibly inefficient extractor, and ot1 is the receiver’s message. We can instantiate this primitive with many standard
assumptions [HK12, BD20] such as the DDH, QR, and LWE assumptions.

Our sPCE scheme can be constructed as follows. For simplicity we consider that setup is constrained on one
function f . The setup algorithm generates an SSP-OT receiver’s message ot1,i with choice bit βi := f [i] for all i ∈ [ℓ]
where | f | = ℓ and f is the constraint function. The public key is {ot1,i}i∈[ℓ]. The encryption algorithm generates a
garbled circuit P̃ and its labels {lbi,b}i∈[ℓ],b∈{0,1} of a circuit P[x] that takes as input a circuit f and outputs f (x). It
also generates an SSP-OT sender’s message ot2,i of (lbi,0, lbi,1) for all i ∈ [ℓ]. A ciphertext consists of (P̃, {ot2,i}i∈[ℓ]).
The authority can recover {lbi, f [i]}i∈[ℓ] from {ot2,i}i∈[ℓ] and P[x]( f ) = f (x) from P̃ and the labels. The receiver
security of SSP-OT guarantees constraint-hiding. The statistical sender security (against malicious receiver) and the
garbled circuit security guarantee security against malicious authority since the (inefficient) extractor can extract C from
{ot1,i}i∈[ℓ] and we can simulate the SSP-OT sender’s message and the garbled circuit using only {lbi,C[i]}i∈[ℓ] and f (x).

To extend this construction to support Q functions, the setup algorithm uses more SSP-OT instances. That is, it
generates Q× ℓ SSP-OT receiver’s messages where Q is the number of functions and ℓ is the size of functions. The
rest of the construction follows a similar outline as above. The public key size is linear in Q.

Although we use statistical sender privacy for security against malicious authority, the constructions do not achieve
unconditional security since we use garbled circuits in the ciphertext. If we restrict the constraint/function class to NC1,
these constructions achieve unconditional security since an information-theoretic version of Yao’s garbled circuit exists
for NC1 circuits [IK02]. Please see Section 3.2 for details.

Unconditionally secure sPCE based on FHE. To obtain unconditional security in sPCE, we need to use other tools
that support all functions since information-theoretically secure garbled circuits for all circuits do not exist so far. Our
next idea is using circuit private fully homomorphic encryption (FHE) to implement the two-message secure two-party
computation. The setup algorithm generates a key pair (fhe.pk, fhe.sk)← FHE.Gen(1λ) and a ciphertext fhe.ct f of
constraint f and outputs (fhe.pk, fhe.ct f ) as a public key. The encryption algorithm applies the evaluation algorithm
of FHE to fhe.ct and a circuit P[x] above. The evaluated ciphertext should be statistically indistinguishable from
FHE.Enc(fhe.pk, f (x)) due to the circuit privacy of FHE. The authority can recover f (x) and nothing beyond that.
Constraint-hiding follows from the indistinguishability of FHE.

The big issue in this idea is that a malicious authority may generate a malformed public key (and ciphertext),
and the circuit privacy of FHE is not guaranteed. Hence, we use maliciously circuit private FHE by Ostrovsky,
Paskin-Cherniavsky, and Paskin-Cherniavsky [OPP14], which guarantees statistical circuit privacy even when the
adversary generates a pair of malformed public key and ciphertext. This security notion perfectly fits our setting. Let
(f̃he.pk, f̃he.ct) be a pair of adversarially generated public key and ciphertext. A simulator of maliciously circuit
private FHE is given (f̃he.pk, f̃he.ct, G(m)) and can output a ciphertext which is statistically indistinguishable from
Eval(f̃he.pk, G, f̃he.ct) (i.e., a circuit G is applied to f̃he.ct). Here, m is a plaintext extracted from f̃he.ct. Hence, the
unbounded authority obtains f (x) and nothing beyond if we set m := f and G := P[x]. It is easy to extend this
construction to sPCE for Q functions. The resultant public key is linear in Q. Please see Section 3.3 for details.
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Implications and Lower bounds for Laconic sPCE. It is not hard to observe that achieving sPCE for general
constraints with succinct ciphertexts is as hard as achieving indistinguishability obfuscation. Succinct ciphertexts
mean the ciphertext size is sublinear in Q or the maximum constraint size. If sPCE has succinct ciphertexts, we can
transform such a sPCE into a single-key succinct standard FE, which implies indistinguishability obfuscation [BV18]
by using known transformations [KNT21, BV18, LPST16a, LPST16b]. Although sPCE does not have a delegation
mechanism, its absence does not prevent the use of these transformations. We then consider laconic sPCE, namely we
require that the public key size is sublinear in Q as well as the (maximum) length s of any function. First, we show that
it is impossible to achieve maliciously secure laconic sPCE via an incompressibility style argument inspired by the
impossibility of simulation-based secure FE [AGVW13]. Here, we sketch this argument for the case |pk| = O(Q1−γ) –
the argument for the case |pk| = O(s1−ϵ) is similar. Let ui be a uniformly random string. Suppose that we generate
(pk, sk1, . . . , skQ) from Q functions (g[u1], . . . , g[uQ]) where g[ui] is a constant function that outputs ui for any input
and |pk| = O(Q1−γ) or O(s1−ϵ) for some 0 < γ, ϵ < 1. If a sPCE scheme satisfies security against malicious
authority, there exists a possibly inefficient extractor Ext that extracts (g[u1], . . . , g[uQ]) from pk. That is, Ext can
recover (u1, . . . , uQ) only from pk. This extraction is information theoretically impossible since |pk| = O(Q1−γ),
but ∑Q

i=1 |ui| = O(Q). See Section 3.4 for the details. Hence, the best security we can achieve for laconic public key
constructions is semi-malicious security against authority.

Laconic Semi-Malicious sPCE. We now turn to the question of constructing laconic sPCE in the semi-malicious
setting. To begin, we consider the simpler security requirement of semi-honest security against the authority – recall
that in this notion, the setup algorithm is run honestly, but the adversary is allowed to see the random coins used for the
execution.

Our starting point is the idea that to achieve laconic public key in a pre-constrained static FE scheme, we can
leverage any FE scheme where the running times of setup and key generation algorithms are independent of the number
of collusions supported. Hopefully, encryption and decryption can work as in the underlying FE scheme, yielding the
desired functionality, and we can then try to adapt the scheme to obtain semi-malicious security.

A construction of bounded key ciphertext policy functional encryption by Agrawal et al. [AMVY21] enjoys the
above feature and serves as a useful starting point. At a high level, their construction works as follows. They make
use of a reusable dynamic MPC (RDMPC) protocol [AV19], an identity-based encryption (IBE) scheme and a garbled
circuits scheme. An RDMPC consists of a single client and N servers where the client offloads an apriori bounded
number of computations Q to the N servers in two phases: (i) an offline phase, in which the secret circuit C held by the
client is encoded into N shares (via a circuit encoding algorithm), and one share is provided to each of the N servers,
(ii) An online phase, in which the client runs an input encoding algorithm on each of its Q inputs and provides this to all
the servers. Each server now performs some local computation on its circuit encoding and the given input encodings,
after which, any subset S of servers of some minimum size (say n) can combine their partial outputs to obtain the final
output of the computation.

To leverage an RDMPC to build FE, [AMVY21] do the following: the setup algorithm runs the setup of an IBE
scheme and outputs a public and master secret key. The key generator, given an input f 2, computes its input encoding
using the RDMPC scheme. It then samples a random set of servers ∆ and provides an IBE secret key corresponding
to this set of servers and the given input encoding. The encryptor computes garbled circuits for the RDMPC local
computation circuit for each share of the circuit encoding, and encrypts the labels of these garbled circuits using IBE
encryption. To decrypt, the user first performs IBE decryption to obtain the labels corresponding to the input encodings
and chosen servers, then executes the garbled circuit to perform the RDMPC local computation and then performs the
RDMPC final evaluation to recover the desired output.

For our setting of sPCE, we first observe that it is beneficial to use the simpler primitive of hash encryption
[DGHM18] in place of IBE for our purposes. A hash encryption scheme is similar to a witness encryption scheme and
is specified as follows: there is a hash algorithm that hashes an input x to some short value h, an encryption algorithm,
which given the hash, encrypts a message µ against h, a position i ∈ [|x|] and a bit b, and a decrypt algorithm which,
given the preimage x to h, recovers µ if and only if xi = b. While hash encryption is known to imply IBE [DGHM18],
it is far better for us as a building block since we desire security against a semi-malicious authority. In more detail, the

2Although the construction of [AMVY21] is ciphertext-policy, it will be more useful for us to swap the role of the circuit and the input
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construction of HE from LWE by Döttling et al. has a random matrix as its public key and does not have any master
secret! Thus, it is immediate that this HE is secure against semi-honest authority in the standard model and against
semi-malicious authority in the ROM (simply by using the RO to generate the public matrix). This is in stark contrast to
an IBE, which also has an MSK and is much harder to secure against a semi-malicious authority.

The careful reader may object that using HE to build IBE does not really help with security against authority since
the resultant IBE must nevertheless have some master key. Here, we use a second trick – instead of using IBE, we
leverage the static setting of our FE to directly use HE to construct FE. In more detail, we collapse the setup and keygen
of [AMVY21] into setup for our sPCE where the functions are pre-specified. We use the RDMPC input encoding to
encode the Q functions f1, . . . , fQ, then hash the concatenation of these encodings using the hash algorithm of the HE
scheme. Since the hash is compressing, the public key is laconic. This hash h is now provided to the encryptor, who
computes the shares of the circuit encoding, garbles the local computation circuit and uses HE encryption to encode the
labels of the garbled circuits. Decryption proceeds by recovering the garbled circuit labels using HE decryption, and
executing the garbled circuits to get the RDMPC partial outputs, which are then combined using the RDMPC combine
procedure. The next challenge that is encountered is that the construction obtained via the above route does not satisfy
function hiding. We then provide a generic way to lift a construction without function hiding to one with function hiding.
Please see Section 3.5 for details.

In the above construction, the only randomness used by setup is in sampling the CRS or public key of the hash
encryption scheme. Hence, we immediately get security against authority in the semi-honest setting. Moreover, by
shifting to the ROM, we also obtain security against a semi-malicious authority.

Laconic Semi-Malicious IB-PCE and AB-PCE. Next, we provide constructions of laconic semi-malicious PCE with
dynamic key generation as defined by AJJM, for the special cases of AB-PCE and IB-PCE . Towards this, we leverage
lattice-based techniques and avoid general-purpose tools – as in AJJM we focus specifically on AB-PCE for point
constraints and IB-PCE for general constraints. In line with the general template proposed by Ananth et al. [AJJM22],
our constructions are based on security reductions for selectively secure advanced cryptographic systems. A security
reduction embeds the instance of a hard problem into public parameters, simulates key queries, and breaks the problem
using an adversary distinguishing a challenge ciphertext simulated by the reduction. The reduction holds a constrained
(a.k.a. punctured) master secret key, allowing it to simulate all decryption keys except those that satisfy certain predicates.
These constrained master secret keys correspond naturally to pre-constrained decryption keys required by PCE. See
Ananth et al. [AJJM22] for a detailed overview. While our constructions fit this template, we go further by explicitly
instantiating and analyzing the underlying constructions in a non-black-box manner. This enables us to obtain laconic
public key, strictly improving the corresponding constructions by AJJM. Below, we outline our key technical insights.

Our laconic AB-PCE for point constraints builds on on Wee’s ABE scheme [Wee25].3 The public parameter and
master secret key consist of matrices (B, W, T, B1) and TB, respectively, where W and B1 are uniformly random
matrices, B is sampled along with a trapdoor TB, and T is a matrix such that [I2m2 ⊗B W] ·T = (I2m2 ⊗G), where G
is the gadget matrix. The ciphertext w.r.t. an attribute x is (sB + e0, s(B1 + Cx) + e1), where Cx is a commitment to
an attribute x4 – we describe how to mask the plaintext later. A decryption key is D such that [B A f ]D = 0, where A f is
computed from A and a policy f via the well-known key-homomorphic property [BGG+14], A = −B1Vℓ, and Vℓ is a
public verification matrix for commitment Cx. Following the template of Ananth et al., we can use the reduction algorithm
by Wee [Wee25] to implement a constrained master secret key. We set B1 = BU−Cx∗ , where x∗ is the constraint point,

and can sample D above without TB if f (x∗) ̸= 1 since [B A f ]

(
(Zx∗ + UVℓ) ·HA, f ,x∗

Im

)
= f (x∗)G holds by the

property of the commitment and HA, f ,x∗ , where Zx∗ is a decommitment for Cx∗ and HA, f ,x∗ is computed from A, f ,
and x∗ via the well-known key-homomorphic property [BGG+14] (see Section 4 for the detail). To prevent adversaries
from using the trapdoor TB and achieve semi-malicious security, following [AJJM22], we set B to a structured matrix[

B̄
SB · B̄ + EB

]
which is guaranteed to have no trapdoor. Hence the encoding of form sB + noise is lossy for s, ensuring

that s retains sufficient min-entropy, and we can hide the plaintext using a randomness extractor seeded by s.
3The scheme described below is slightly different from the original scheme [Wee25], but sufficient for our purpose.
4Although we refer to some values of the commitment below (Cx, Zx, and Vℓ), the detail of the commitment is not critical here.
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However, Wee’s scheme introduces additional structure to achieve succinctness, which requires special care in our
adaptation. Specifically, Wee’s scheme uses the additional matrix W to compress public parameters and ciphertexts
alongside base matrices B and B1. His scheme needs to sample the pre-image matrix T using a trapdoor of B. This
poses a challenge in our setting setting: We cannot safely use TB to sample a public parameter and punctured master
secret key, as this would violate semi-malicious security. Our key insight is that we can instead use a trapdoor of W
to sample the required pre-image matrix. Importantly, revealing a trapdoor of W does not compromise security, as
W serves solely for parameter compression, not for security. Proving the constraint-hiding property follows from the
standard LWE assumption and the leftover hash lemma. We switch B above into a uniformly random B by the LWE
assumption. Then, we can use TB to sample D, and BU is uniformly random by the leftover hash lemma. Hence, B1
hide information about x∗. As a result, we can adapt Wee’s reduction into a constrained master secret key generation
algorithm, achieving AB-PCE for point constraints with laconic public keys and ciphertexts. Similar to [AJJM22], we
note that with appropriate modifications to our AB-PCE scheme, we can achieve a laconic IB-PCE scheme for general
constraints satisfying security against a semi-malicious authority. We refer the readers to Section 4 and Appendix C for
details.

Pre-Constrained Group Signatures. Bartusek et al. [BGJP23] define the notion of set pre-constrained group
signatures which can be implemented in an end-to-end secure messaging application. This primitive allows to encode a
set of predefined illegal content into the public key of a group signature scheme. The main idea is that if a user signs a
message that belongs to the predefined illegal set, then the user can be de-anonymized by the group manager. On the
contrary, signers of messages outside this set remain anonymous even to the group manager.

We generalize the notion of pre-constrained group signatures (PCGS) to support general constraints beyond set
membership. Our definitions for PCGS are game-based instead of ideal-functionality-based definitions of [BGJP23].
We improve the PCGS constructed by [BGJP23] by (i) supporting general constraints, (ii) achieving unconditional
anonymity and unlinkability against authority, (iii) obtaining plausible post-quantum security. The construction by
Bartusek et al. [BGJP23] designs an SPC group signature scheme from an SPC encryption scheme plus standard
cryptographic tools, namely, a one-way function, a digital signature scheme, and a zero-knowledge non-interactive
argument of knowledge. Our construction follows the same broad outline except that we use our general PCE and
dual-mode NIZK instead of SPC encryption and standard NIZK argument of knowledge, respectively. Additional
details need care to handle – for instance, we must use a dual-mode NIZK to achieve unconditional security against
malicious authority. In the end, we obtain a PCGS for general constraints against unbounded authorities from the LWE
assumption. We refer the reader to Appendix D for the details.

Pre-Constrained Input Obfuscation. We define the notion of pre-constrained input obfuscation and provide a
construction. A PCIO has three algorithms, namely (Setup,O, Eval). Setup takes as input a security parameter and an
input-set X := (x1, . . . , xQ), and outputs a public key and evaluation key ek. O takes pk and a circuit C and outputs an
obfuscated circuit C̃. Eval takes ek, C̃, and x′, and outputs y. Correctness posits that if x′ ∈ X , y = C(x′).

We observe that PCIO is the dual of sPCE. We can obtain PCIO from sPCE if we set fi := U[xi] where U[xi] is a
universal circuit that takes a circuit C and outputs C(xi), ek := (sk f1 , . . . , sk fQ), and encrypt C in sPCE. PCIO should
have input-set-hiding and virtual black-box security against malicious authority. The former and latter correspond to
function-hiding and security against malicious authority, respectively. On the other side, we can also obtain sPCE from
PCIO via a universal circuit. Please see Appendix E for details.

Other Related Work. Next we discuss additional notions related to pre-constrained cryptography.

Privacy Preserving Blueprints. The recent work of Kohlweiss et al. [KLN23] also addresses the question of pre-
constraining in the context of anonymous credentials. Their primary motivating example is in anonymous e-cash – here,
there is a bank that issues e-coins, users who withdraw and spend these coins, and vendors who verify and accept e-coins
as payment. Suppose we want an authority to be able to “watch” suspected users for financial fraud. We would like to
have a mechanism which will enable an auditor to trace the transactions of these suspected users (on a “watchlist”)
without revealing the contents of the watchlist or violating the privacy of honest users.
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Kohlweiss et al. suggest to enhance the anonymous transaction between the user and verifier with a “privacy
preserving blueprint” which allows the user, engaging in a transaction with the verifier, to compute an “escrow” Z
which can convince the auditor that s/he is not on the (secret) watchlist without revealing anything else. The watchlist is
encoded in a parameter PKA which is published by the auditor in advance. The verifier verifies that the escrow Z is
consistent with the credentials embedded in the e-coins being provided by the user, and rejects the transaction otherwise.
At a high level, privacy preserving blueprints can be seen as embedding accountability into a proof system, where there
is a user/prover, a vendor/verifier and an auditor who must learn some constrained function about the user’s anonymous
credentials. On the other hand, PCFE and SDE embed accountability into encryption.

Kohlweiss et al. also consider security against authority, the auditor in this case, and take care to ensure that even a
malicious auditor cannot create a blueprint that corresponds to an unauthorized input – for instance, an honest user who
is not in the real watchlist. However, their definition relies on trusted parameters generated by an honest setup algorithm
– in particular, if the auditor generates the parameters, then security against a malicious auditor cannot be guaranteed5.
Thus, the reliance on a trusted party is crucial in their notion.

Conditional disclosure of secrets. We mention the related primitive of conditional disclosure of secrets (CDS). While
CDS bears some similarities in syntax to PCE, it is a fundamentally different primitive. In particular, PCE generalizes
basic PKE by setting constraint C as the constant function that always outputs 1. It is not known how to achieve PKE
only from CDS.

In more detail, in conditional disclosure of secrets [GIKM00], Alice and Bob have access to a joint source of
randomness r and secret s, and compute F1(x, s, r) and F2(y, s, r) from inputs x and y, respectively. Here, x and y
are public. They can send some secret s to Carol if f (x, y) = 1 using their joint randomness. If f (x, y) = 0, Carol
cannot obtain any information about s (and r). In PCE, the two parties, i.e., parties running Setup and Enc, do not have
common randomness. Setup has input a constraint C (unlike CDS, this must be hidden) and outputs pk and sk, Enc
has input x and message m and uses pk to generate ct, and Dec uses sk to recover m if U(C, x) = 1 (where U is the
universal circuit). Here, the output pk of the first party can be used an unbounded number of times for encryption of
different (xi, mi) whereas CDS is a one-time primitive. CDS can be seen as a weak symmetric key, one time attribute
based encryption scheme and does not satisfy any of the scenarios targeted by our work (or by the work of Ananth et
al. [AJJM22]).

Group signature with Message-Dependent Opening (GS-MDO). We also compare our pre-constrained group signatures
to the notion of group signature with message-dependent opening (GS-MDO). As discussed in [BGJP23], in a GS-MDO
scheme [OSEH13], the trust is divided between two entities : the group manager and the admitter. Both entities need
to pool their private information in order to trace a user from a signature. We note that in this notion, if the group
manager and the admitter collaborate in a malicious way, they can open any signature to reveal the user’s identity. In our
pre-constrained group signature scheme, even a malicious group manager cannot open any signature if the underlying
message does not satisfy the constraint which was committed to during the setup phase.

Exceptional Access for Law Enforcement. A line of work [Sav18, GKVL21, GSW23] has provided approaches to
allowing law enforcement agencies exceptional and controlled access to private user data. As noted by [AJJM22], the
work of Green et al. [GKVL21] can be seen as an IB-PCE scheme. We also mention the work of [GP17, FPS+18]
which seeks to enforce accountability on secret laws. These works study questions in the domain of privacy versus
accountability but use very different assumptions and techniques than ours.

2 Preliminaries
In this section we define the notation and preliminaries used in our work.

5Indeed, there is an attack against the scheme if the auditor generates the trusted parameters. Concretely, they use Pedersen commitment (in
Definition 1) to instantiate the commitment scheme and cpar includes group elements for Pedersen commitment. If the auditor knows the discrete log
of the group elements, it can easily break the soundness of the blueprint scheme since the adversary can generate a fake commitment that can be
opened to an arbitrary value by using the discrete log.
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Notation. We use bold letters to denote vectors and the notation [a, b] to denote the set of integers {k ∈N | a ≤ k ≤ b}.
We use [n] to denote the set [1, n]. Concatenation is denoted by the symbol ∥. We say a function f (n) is negligible if it is
O(n−c) for all c > 0, and we use negl(n) to denote a negligible function of n. We say f (n) is polynomial if it is O(nc)
for some constant c > 0, and we use poly(n) to denote a polynomial function of n. We use the abbreviation PPT for
probabilistic polynomial-time. We say an event occurs with overwhelming probability if its probability is 1− negl(n).
Let Z be the set of all integers. For any integer q, denote Zq = Z/qZ. For any discrete distributions P and Q, we
let SD(P, Q) denote the statistical distance between P and Q, i.e., SD(P, Q) = ∑i |Pr[P = i]− Pr[Q = i]|/2. We
use P ≈c Q (resp., P ≈s Q) denotes that they are computationally indistinguishable for any PPT algorithm (resp.,
statistically indistinguishable). For any random variables X and Y, we let H∞(X) = − log2(mini Pr[P = i]) denote
the min-entropy of X, and let H̃∞(X|Y) = − log

(
Ey [maxx Pr[X = x | Y = y]]

)
denote the average conditional

min-entropy.

Extractors. An algorithm Ext : {0, 1}n × {0, 1}r → {0, 1}ℓ is a seeded strong average-case (k, ε)-extractor, if for
any random variables X over {0, 1}n and Z with H̃∞(X|Z) ≥ k, then SD((Ext(X, r), r, Z), (u, r, Z)) < ε, where
u← {0, 1}ℓ and r← {0, 1}r are sampled uniformly at random.

2.1 Attribute-Based PCE and Identity-Based PCE
Here we provide the definition of an attribute-based pre-constrained encryption scheme (AB-PCE) and identity-based
pre-constrained encryption scheme (IB-PCE) adapting the syntax from [AJJM22].

Attribute-Based PCE An AB-PCE scheme for constrained family C, an attribute universe X , and a function family
F consists of four algorithms (Setup, KeyGen, Enc, Dec) defined as follows

Setup(1λ, C) → (mpk, msk[C]). The setup algorithm takes a security parameter 1λ and a constraint C ∈ C, and
outputs a master public key mpk and punctured master secret key msk[C]6.

KeyGen(msk[C], f )→ sk f . The key generation algorithm takes as input mpk, msk[C] and a function f . It produces a
secret key sk f if C( f ) = 1 else it outputs ⊥.

Enc(mpk, x, m) → ct. The encryption algorithm takes as input the master public key mpk, an attribute x and a
message m, and outputs a ciphertext ct.

Dec(sk f , x, ct)→ m′. The decryption algorithm takes as input a secret key sk f , an attribute x and a ciphertext ct, and
outputs a value m′.

Definition 2.1 (Correctness). An AB-PCE scheme is said to be correct if for all C ∈ C and every f ∈ F such that
C( f ) = 1, (mpk, msk[C])← Setup(1λ, C) and f (x) = 0, the following holds

Pr[Dec(KeyGen(msk[C], f ), x, Enc(mpk, x, m)) = m] ≥ 1− negl(λ).

Definition 2.2 (Security Against Semi-Malicious Authority). An AB-PCE scheme is said to satisfy indistinguishability
against a semi-malicious authority if for any admissible PPT adversary A, the following holds

Pr

 A(ctβ) = β :

C, r ∈ {0, 1}λ ← A(1λ);
(mpk, msk[C])← Setup(1λ, C; r);
(m0, m1)← A(mpk, msk[C]);
β← {0, 1}; ctβ ← Enc(mpk, x, mβ)

 ≤ 1
2
+ negl(λ).

Here A is admissible if for all f ∈ F satisfying C( f ) = 1, it holds that f (x) = 1.
6we assume mpk is implicitly contained in msk.
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Definition 2.3 (Constraint Hiding). An AB-PCE scheme is said to satisfy constraint hiding if for any admissible PPT
adversary A,

Pr

 b← {0, 1}, (C0, C1)← A(1λ),
(mpk, msk[Cb])← Setup(1λ, Cb)

AKeyGen(msk[Cb ],·)(mpk) = b

 <
1
2
+ negl(λ),

where A is said to be admissible if |C0| = |C1|, C0, C1 ∈ C, and every function key query f it issues to the key
generation oracle satisfies C0( f ) = C1( f ).

Identity-Based PCE An IB-PCE scheme is defined with respect to a constraint family C and an identity universe
I . Here the messages are encrypted under identities and the constraint C determines which identities are authorized
for decryption, i.e., only if C(id) = 1 can the authority generate a decryption key for identity id. The syntax and the
security definitions of a IB-PCE scheme are the same as that of an AB-PCE scheme.

2.2 Reusable, Dynamic MPC Protocol
Here we provide the definition of a reusable, dynamic multi-party computation (RDMPC) protocol, adapting the syntax
from [AMVY21], for circuit class Cinp consisting of circuits with input length inp = inp(λ). The protocol is further
associated with polynomial functions N = N(λ, Q), n = n(λ, Q), and t = t(λ, Q).

CktEnc(1λ, 1Q, 1inp, C)→ (Ĉ1, . . . , ĈN). The circuit encoding algorithm takes as input the security parameter λ, the
number of sessions Q, input length of circuit inp, and a circuit C ∈ Cinp. It then outputs an encoding (Ĉ1, . . . , ĈN)
of the circuit C.

InpEnc(1λ, 1Q, 1inp, x)→ x̂. The input encoding algorithm takes as input the security parameter λ, the number of
sessions Q, input length of circuit inp, and an input x ∈ {0, 1}inp. It then outputs an encoding x̂ of the input x.

Local(Ĉu, x̂)→ ŷu. The local computation algorithm takes as input the u-th encoding Ĉu of C and an encoding x̂ of x
and outputs ŷu. We assume that this algorithm is deterministic.

Decode({ŷu}u∈S, S)→ z. The decoding algorithm takes as input a set of encodings {ŷu}u∈S and a set S ⊆ [N] and
outputs z.

Definition 2.4 (Correctness). An RDMPC protocol with parameter (N, n, t) is correct if for all inp ∈N, x ∈ {0, 1}inp,
C ∈ Cinp, and set S ⊂ [N] of size n, we have

Pr

 (Ĉ1, . . . , ĈN)← CktEnc(1λ, 1Q, 1inp, C),
x̂← InpEnc(1λ, 1Q, 1inp, x),

Decode
({

Local(Ĉu, x̂)
}

u∈S
, S

)
= C(x)

 = 1

where probability is taken over the random coins of CktEnc, InpEnc and Decode.

Definition 2.5 (Security). For a RDMPC protocol for the circuit family Cinp with parameter (N, n, t), a stateful
PPT adversary A, a simulator Sim = (Sim0, Sim1), and a coin β ∈ {0, 1} consider the following experiment
ExptRDMPC

β,A (1λ):

1. Setup phase: On input 1λ, A submits the query bound 1Q and input length 1inp of the circuits to the challenger.
Note that this defines the total number of parties N = N(λ, Q), number of parties n = n(λ, Q) participating
in any session, threshold t = t(λ, Q). The adversary A also chooses Scrr ⊂ [N] of size at most t and sets
∆(1), . . . , ∆(Q) ⊆ [N] such that |∆(i)| = n and submits it to the challenger.

2. Query phase: During the game, A is allowed to make a total of Q input encoding queries. First, it makes
R1 ≤ Q adaptive input encoding queries. Namely, when A makes the i-th input encoding query x(i) with i ≤ Q,
the challenger runs x̂(i) ← InpEnc(1λ, 1Q, 1inp, x(i)) and returns x̂(i) to A.
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3. Challenge phase: During the game, A is allowed to make single circuit encoding query. When A submits a
circuit C ∈ Cinp, the challenger proceeds as follows.

• Real World. If β = 0, the challenger runs (Ĉ1, . . . , ĈN) ← CktEnc(1λ, 1Q, 1inp, C) and returns({
Ĉj

}
j∈Scrr

,
{

Local(Ĉj, x̂(i))
}

i∈[R1],j∈∆(i)

)
to A .

• Ideal World. If β = 1, we define V as V = {C(x(i)), x(i)}i∈[R1]
. Then, the simulator is run as(

st,
{

Ĉj

}
j∈Scrr

,
{

ŷ(i)j

}
i∈[R1],j∈∆(i)

)
← Sim0(1|C|, Scrr,V) and the output is returned to A. Here, st is

the internal state of the simulator.

4. Query phase: A then makes R2 ≤ Q− R1 input encoding queries. When A submits an input x(i) ∈ {0, 1}inp,
the challenger proceeds as follows.

• Real World. If β = 0, the challenger runs x̂(i) ← InpEnc(1λ, 1Q, 1inp, x(i)) and returns
(

x̂(i),
{

Ĉj(x̂(i))
}

j∈∆(i)

)
to A.

• Ideal World. If β = 1, we run the simulator as
(

x̂(i),
{

ŷ(i)j

}
j∈∆(i)

)
← Sim1(st, ∆(i), C(x(i)), x(i)) and

returns the output to A.

5. Output phase: A outputs a guess bit β′ as the output of the experiment.

We say that an RDMPC protocol is secure if for every adversary A, there exists a PPT simulator Sim such that

AdvRDMPC
A (λ) =

∣∣∣Pr
[
ExptRDMPC

0,A (1λ) = 1
]
− Pr

[
ExptRDMPC

1,A (1λ) = 1
]∣∣∣ ≤ negl(λ).

Theorem 2.6 (Adapted from [AV19]). Assuming the existence of one-way functions, there exists an RDMPC protocol
with parameter N = Θ(Q2λ), t = Θ(Qλ), and n = Θ(t) for Cinp with any inp = poly(λ).

2.3 Hash Encryption
Here we provide the definition of a hash encryption (HE) scheme from [DGHM18].
A HE scheme consists of four algorithms (Gen, Hash, Enc, Dec) with the following syntax.

Gen(1λ, m)→ key. The generation algorithm takes as input the security parameter, input parameter m and outputs a
key key,

Hash(key, x)→ h. The hashing algorithm takes as input a key key, an input x ∈ {0, 1}m and outputs a hash value h
of λ bits.

Enc(key, (h, i, c), µ)→ ct. The encryption algorithm takes as input a key key, a hash value h, an index i ∈ [m], a bit
c ∈ {0, 1}, and a message µ ∈ {0, 1}∗ and outputs a ciphertext ct.

Dec(key, x, ct)→ µ′. The decryption algorithm takes as input a key key, an input x ∈ {0, 1}m, and a ciphertext ct
and outputs µ′ ∈ {0, 1}∗ ∪ {⊥}.

Definition 2.7 (Correctness). A HE scheme is said to be correct if for any input x ∈ {0, 1}m and index i ∈ [m], the
following holds

Pr[Dec(key, x, Enc(key, (Hash(key, x), i, xi), µ)) = µ] ≥ 1− negl(λ)

where xi denotes the i-th bit of x and the randomness is taken over key← Gen(1λ, m).

Definition 2.8 (Semi-Honest Security). For a HE scheme and an adversary A, we consider the following experiment
ExptHE

β,A(1
λ).
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1. A outputs an input x ∈ {0, 1}m.

2. The challenger generates key← Gen(1λ, m) using some randomness R and sends key to A.

3. A outputs an index i ∈ [m], c ∈ {0, 1}, such that xi ̸= c and two messages µ0, µ1.

4. The challenger samples β← {0, 1} and returns ctβ to A where ctβ ← Enc(key, Hash(key, x), i, c), µβ).

5. A outputs a guess bit β′ as the output of the experiment.

We define the advantage AdvHE
A (λ) of A in the above game as

AdvHE
A (λ) :=

∣∣∣Pr
[
ExptHE

0,A(1
λ) = 1

]
− Pr

[
ExptHE

1,A(1
λ) = 1

]∣∣∣ .

We say that a HE scheme is selectively secure if for any PPT adversary A, AdvHE
A (λ) ≤ negl(λ).

Definition 2.9 (Succinctness). We say that a HE scheme is succinct if |key| = poly(λ), where key ← Gen(1λ, m),
i.e., the size of key is independent of the size of input x ∈ {0, 1}m.
Definition 2.10 (Semi-Malicious security). We say that a HE scheme satisfies semi-malicious security if it is secure
in the above sense even if the random coins R used by the challenger to generate key in Step 2 are provided by the
adversary in Step 1.
Theorem 2.11 ([DGHM18]). There exists a HE scheme satisfying semi-honest security assuming learning with errors
(LWE).
Remark 2.12 (Multi-challenge Security). We note that a security game where an adversary can adaptively send
polynomially many challenge queries {i, µ

(i)
0 , µ

(i)
1 }, for a single challenge input string x, is implied by the single-

challenge query security game as defined above via a simple hybrid argument. In the argument we can consider
polynomially many single-challenge security sub-hybrids, one for each query.

2.4 Garbling Scheme
Here we provide the definition of a garbling scheme for circuit class C = {C : {0, 1}ℓin → {0, 1}ℓout}. A garbling
scheme for circuit class C consists of a pair of algorithms (Garble, Eval) with the following syntax.
Garble(1λ, C) → (C̃, lb). The garbling algorithm takes as input the security parameter λ and a circuit C ∈ C, and

outputs a garbled circuit C̃ and a set of labels lb = {lbi,b}i∈[ℓin],b∈{0,1}.

Eval(C̃, lbx)→ y. The evaluation algorithm takes as input the garbled circuit C̃ and labels corresponding to an input
x ∈ {0, 1}ℓin , lbx = {lbi,xi}i∈[ℓin] where xi denotes the i-th bit of x, and it outputs y ∈ {0, 1}ℓout .

A garbling scheme satisfies the following properties.
Definition 2.13 (Correctness). A garbling scheme is said to be correct if for any circuit C ∈ C and any input
x ∈ {0, 1}ℓin , the following holds

Pr
[

y = C(x) : (C̃, lb)← Garble(1λ, C); y← Eval(C̃, lbx)
]
= 1.

Definition 2.14 (Security). A garbling scheme is secure if there exists a PPT simulator SIM such that for any circuit
C ∈ C and any input x ∈ {0, 1}ℓin , the following holds

{(C̃, lbx) | (C̃, lb)← Garble(1λ, C)} ≈c {(C̄, ¯lb) | (C̄, ¯lb)← SIM(1λ, C(x))}

where lb = {lbi,b}i∈[ℓin],b∈{0,1} and lbx = {lbi,xi}i∈[ℓin].
Remark 2.15 (Multi-challenge Security). Similar to Remark 2.12, we note that the above security definition implies
multi-challenge security of a garbled circuit scheme, where the adversary can adaptively make polynomial number of
garbling queries to the challenger,i.e., adversary can query (C1, x) and receive (C̃1, lbx), then query (C2, y), and so
forth. All queries are answered by honestly using Garble algorithm in the real world whereas they are all simulated in
the ideal world.
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2.5 Lattice Preliminaries
Here, we recall some facts on lattices that are needed for the exposition of our construction. Throughout this section, n,
m, and q are integers such that n = poly(λ) and m ≥ n⌈log q⌉. Let

g = (1, 2, ....2⌊log q⌋)⊺ , G = In ⊗ g⊺

be the gadget vector and the gadget matrix. For p ∈ Zn
q , we write G−1(p) for the m-bit vector (bits(p[1]), . . . , bits(p[n]))⊺,

where bits(p[i]) are m/n bits for each i ∈ [n]. The notation extends column-wise to matrices and it holds that
GG−1(P) = P.

Trapdoors. Let us consider a matrix A ∈ Zn×m
q . For all V ∈ Zn×m′

q , we let A−1(V) be an output distribution
of SampZ(γ)m×m′ conditioned on A · A−1(V, γ) = V. A γ-trapdoor for A is a trapdoor that enables one to
sample from the distribution A−1(V, γ) in time poly(n, m, m′, log q) for any V. We slightly overload notation and
denote a γ-trapdoor for A by A−1

γ . The following properties had been established in a long sequence of works
[GPV08, CHKP10, ABB10a, ABB10b, MP12, BLP+13].

Lemma 2.16 (Properties of Trapdoors). Lattice trapdoors exhibit the following properties.

1. Given A−1
τ , one can obtain A−1

τ′ for any τ′ ≥ τ.

2. Given A−1
τ , one can obtain [A∥B]−1

τ and [B∥A]−1
τ for any B.

3. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A, A−1
τ0

) where A ∈ Zn×m
q for some

m = O(n log q) and is 2−n-close to uniform, where τ0 = ω(
√

n log q log m).

Useful Lemmata.

Lemma 2.17 (tail and truncation of DZ, γ ). There exists B0 ∈ Θ(
√

λ) such that

Pr[x ← DZ, γ : |x| > γB0(λ)] ≤ 2−λ for all γ ≥ 1 and λ ∈N.

Lemma 2.18 (Smudging Lemma [WWW22]). Let λ be a security parameter. Take any a ∈ Z where |a| ≤ B. Suppose
γ ≥ Bλω(1). Then the statistical distance between the distributions {z : z ← DZ,γ} and {z + a : z ← DZ,γ} is
negl(λ).

Lemma 2.19 (Leftover Hash Lemma). Fix some n, m, q ∈N. The leftover hash lemma states that if m ≥ 2n log q,
then for A ← Zn×m

q , x ← {0, 1}m and y ← Zn
q the statistical distance between (A, A · x) and (A, y) is negligible.

More concretely, it is bounded by qn
√

21−m.

Hardness Assumptions

Assumption 2.20 (The LWE Assumption). Let n = n(λ), m = m(λ), and q = q(λ) > 2 be integers and χ = χ(λ) be
a distribution over Zq. We say that the LWE(n, m, q, χ) hardness assumption holds if for any PPT adversaryA we have

|Pr[A(A, s⊺A + e⊺)→ 1]− Pr[A(A, v⊺)→ 1]| ≤ negl(λ)

where the probability is taken over the choice of the random coins by the adversary A and A ← Zn×m
q , s ← Zn

q ,
e← χm, and v← Zm

q .
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2.6 Homomorphic Computation on Matrices
In this section we define homomorphic evaluation matrices from [BGG+14, GSW13], adapting the syntax from [Wee25].

Lemma 2.21 (EvalF, EvalFX [BGG+14, GSW13]). Fix lattice parameters n, q and m ≥ 2n log q. Let Fℓ,d,s denote
the family of functions f : {0, 1}ℓ → {0, 1} computable by circuits of depth d and size s. There exist a pair of efficient
algorithms (EvalF, EvalFX) where:

− EvalF(A, f )→ A f : On input a matrix A ∈ Zn×ℓm
q and a function f ∈ Fℓ,d,s, outputs a matrix A f ∈ Zn×m

q .

− EvalFX(A, f , x) → HA, f ,x: On input a matrix A ∈ Zn×ℓm
q , a function f ∈ Fℓ,d,s, and an input x ∈ {0, 1}ℓ,

outputs a matrix HA, f ,x ∈ Zℓm×m.

For all A ∈ Zn×ℓm
q , f ∈ Fℓ,d,s, and x ∈ {0, 1}ℓ, the matrices A f ← EvalF(A, f ) and HA, f ,x ← EvalFX(A, f , x)

satisfy:

(x⊗G) ·HA, f ,x = A f − f (x)G (1)∥∥∥HA, f ,x

∥∥∥ = mO(d) · s.

2.7 Commitment to vectors
Here we define succinct commitment scheme for vectors, adapting the syntax from [Wee25].

Lemma 2.22 (Vector commitment). There exist efficient algorithms (Comvc, Vervc, Openvc) such that

• Comvc(pp, x ∈ Zℓ
q). On input x outputs C ∈ Zn×m

q ,

• Vervc(pp, 1ℓ). On input 1ℓ, outputs Vℓ ∈ Zm×ℓm
q ,

• Openvc(pp, x). On input x outputs Z ∈ Zm×ℓm
q .

For all pp, ℓ ∈N, and x ∈ Zℓ
q, the matrices C← Comvc(pp, x), Vℓ ← Vervc(pp, 1ℓ), Z← Openvc(pp, x) satisfy:

C ·Vℓ = x⊗G− B · Z, (2)

∥Vℓ∥ ≤ O(∥T∥ ·m4 log q), ∥Z∥ ≤ O(∥T∥ · log ℓ ·m7 log q).

2.8 Statistical Sender-Private Two-Message Oblivious Transfer
Here we provide the definition of a two-message statistically sender-private oblivious transfer (SSP-OT) scheme, adapted
from [BD18].
A two-message oblivious transfer scheme, for an input space I , consists of three algorithms (OTR, OTS, OTD) with
the following syntax.

OTR(1λ, β) → (ot1, st). This algorithm takes as input the security parameter λ and a choice bit β ∈ {0, 1} and
outputs a message ot1 and a secret state st.

OTS(1λ, (µ0, µ1), ot1)→ ot2. This algorithm takes as input the security parameter λ, two inputs µ0, µ1 ∈ I , and a
message ot1 and outputs a message ot2.

OTD(1λ, β, st, ot2)→ µ. This algorithm takes as input the security parameter λ, the bit β ∈ {0, 1}, the secret state
st, and the message ot2 and outputs µ ∈ I .

Next, we define the properties satisfied by a statistical sender-private two-message oblivious transfer scheme.
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Definition 2.23 (Correctness). A SSP-OT scheme is said to be correct if for any λ ∈ N, and inputs µ0, µ1 ∈ I the
following holds.

Pr

 µ = µβ :
β← {0, 1}; (ot1, st)← OTR(1λ, β);
ot2 ← OTS(1λ, (µ0, µ1), ot1);
µ = OTD(1λ, β, st, ot2)

 = 1.

Definition 2.24 (Receiver Privacy). A SSP-OT scheme is said to satisfy receiver privacy if the following two distributions
are computationally indistinguishable

{ot1 | (ot1, st)← OTR(1λ, 0)} ≈c {ot1 | (ot1, st)← OTR(1λ, 1)}.

Definition 2.25 (Statistical Sender Privacy). A SSP-OT scheme is said to satisfy statistical sender-privacy if there
exists an admissible unbounded extractor algorithm OT.Ext such that for any sequence of messages ot1 output by an
unbounded receiver and for any inputs µ0, µ1 ∈ I , the following two distributions are statistically indistinguishable

{ot2 | ot2 ← OTS(1λ, (µ0, µ1), ot1)} ≈s {ot2 | ot2 ← OTS(1λ, (µβ′ , µβ′), ot1)}

where β′ = OT.Ext(ot1). We say that OT.Ext is admissible if for any β ∈ {0, 1} and randomness r, we have β = β′

where (i) ot1 ← OTR(1λ, β; r) and (ii) β′ = OT.Ext(ot1).

SSP-OT can be based on a wide variety of assumptions – number-theoretic assumptions such as DDH [AIR01, NP01],
QR and DCR [HK12], LWE [BD18, DGI+19, ADD+23], LPN and Nisan-Wigderson style derandomization [BF22].

2.9 Maliciously Circuit-Private FHE
A fully homomorphic encryption (FHE) scheme, for circuit class Cn of all efficiently computable circuits of input length
n = n(λ), consists of four algorithms (KeyGen, Enc, Eval, Dec) with the following syntax.

KeyGen(1λ)→ (pk, sk). The key generation algorithm takes as input the security parameter and outputs a public key
pk and a secret key sk.

Enc(pk, m)→ ct. The encryption algorithm takes as input the public key pk and a message m ∈ {0, 1}, and outputs a
ciphertext ct.

Eval(pk, C, c1, . . . , cn)→ ĉt. The evaluation algorithm takes as input the public key pk, a circuit C ∈ Cn with input
size n and ciphertexts c1, . . . , cn, where ci ← Enc(pk, mi) for i ∈ [n], and outputs a ciphertext ĉt.

Dec(sk, c)→ m. The decryption algorithm takes as input the secret key sk and a ciphertext c and outputs a message m.

Definition 2.26 (Correctness). A FHE scheme for circuit class Cn is correct if, for any key-pair (pk, sk)← KeyGen(1λ),
any circuit C ∈ Cn, any plaintexts m ∈ {0, 1}, m1 ∈ {0, 1}, . . . , mn ∈ {0, 1}, the following two condition holds

Pr[m = Dec(sk, Enc(pk, m))] = 1

and
Pr[C(m1, . . . , mn) = Dec(sk, Eval(pk, C, Enc(pk, m1), . . . , Enc(pk, mn)))] = 1.

Definition 2.27 (Semantic Security). A FHE scheme is said to satisfy semantic security if for any PPT adversary A,
there exists a negligible function negl(·) such that for any two messages m0, m1 ∈ {0, 1}, the following holds

Pr

 β′ = β :
(pk, sk)← KeyGen(1λ);
β← {0, 1}; ctβ ← Enc(pk, mβ);
β′ ← A(pk, ctβ)

 ≤ 1
2
+ negl(λ).
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Definition 2.28 (Malicious Circuit Privacy). A FHE scheme is said to satisfy malicious circuit privacy if there exists
unbounded simulator Sim, a and an admissible deterministic extractor Ext, such that for all λ ∈N, all C ∈ Cn and any
adversary A, the following two distributions are statistically indistinguishable

Sim(pk∗, c∗1 , . . . , c∗n, C(m∗1 , . . . , m∗n)) ≈s Eval(pk∗, C, c∗1 , . . . , c∗n)

where (pk∗, c∗1 , . . . , c∗n)← A(1λ) and (m∗1 , . . . , m∗n) = Ext(pk∗, c∗1 , . . . , c∗n). We say that Ext is admissible if for any
(m1, . . . , mn) ∈ {0, 1}n, keygen randomness r and encryption randomness r̄, we have (m1, . . . , mn) = (m′1, . . . , m′n)
where (i) (pk, sk)← KeyGen(1λ; r), (ii) ci ← Enc(pk, mi; r̄) for all i ∈ [n] and (iii) m′i = Ext(pk, c1, . . . , cn).

Definition 2.29 (Compactness). A FHE scheme is compact if there exists a fixed polynomial bound p(·) such
that for any circuit C ∈ Cn and ciphertexts {ci}i∈[n] where ci ← Enc(pk, mi), we have |ĉt| ≤ p(λ) where
ĉt← Eval(pk, C, c1, . . . , cn), i.e., the size of the evaluated ciphertext is independent of the size of the evaluated circuit.

Definition 2.30 (Linear efficiency). A FHE scheme satisfies linear efficiency if the ciphertext size is linear in the
plaintext size. That is, |ct| = poly(λ) · |m| where ct← Enc(pk, m).

Ostrovsky et al. [OPP14] showed that any compact FHE scheme can be converted to one that satisfies malicious
circuit privacy using statistically sender private OT and Brakerski and Dottling [BD18] showed how to achieve
statistically sender private OT from the Learning With Errors (LWE) assumption. Also, the resulting scheme retains the
linear efficiency property of the underlying compact FHE scheme. Since compact FHE with linear efficiency can also
be constructed from LWE [GSW13], we obtain the following:

Theorem 2.31 ([OPP14, BD18, GSW13]). There exists a malicious circuit-private compact fully homomorphic
encryption scheme with linear efficiency from the polynomially hard learning with errors (LWE) assumption.

3 Static Pre-Constrained Encryption
As discussed in Section 1, we introduce static pre-constrained encryption (sPCE). This notion is a relaxation of PCE
introduced by Ananth et al. [AJJM22]. The big difference is that our sPCE does not have a delegation mechanism.
Although we can generate functional decryption keys, all functions are fixed at the setup phase.

3.1 Definition
A static pre-constrained encryption scheme (sPCE) for a function family F = { f : X → Y} with input space X and
output space Y consists of three algorithms (Setup, Enc, Dec) defined as follows.

Setup(1λ, { f1, . . . , fQ}) → (pk, sk f1 , . . . , sk fQ). The setup algorithm takes as input the security parameter λ, and
functions f1, . . . , fQ ∈ F , and returns the public key pk and secret keys sk f1 , . . . , sk fQ .

Enc(pk, x) → ct. The encryption algorithm takes as input the public key pk and an input x ∈ X , and outputs a
ciphertext ct.

Dec(sk, ct)→ y. The decryption algorithm takes as input a secret key sk and a ciphertext ct, and outputs y ∈ Y .

Definition 3.1 (Correctness). A sPCE scheme is said to be correct if for any f ∈ F and x ∈ X , the following holds

Pr
[
Dec(sk fi

, Enc(pk, x)) = fi(x)
]
≥ 1− negl(λ)

where i ∈ [Q] and (pk, sk f1 , . . . , sk fQ)← Setup(1λ, { f1, . . . , fQ}).

If correctness holds with probability 1, the scheme is said to be perfectly correct.
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Definition 3.2 (Function-Hiding). A sPCE scheme is said to satisfy function-hiding security if for any PPT adversary
A, the following holds

Pr

 A(pkβ) = β :
{( f 0

1 , f 1
1 ), . . . , ( f 0

Q, f 1
Q)} ← A;

β← {0, 1};
(pkβ, skβ

f1
, . . . , skβ

fQ
)← Setup(1λ, { f β

1 , . . . , f β
Q});

 ≤ 1
2
+ negl(λ)

where A is admissible if | f 0
i | = | f

1
i | and f 0

i , f 1
i ∈ F for all i ∈ [Q].

Definition 3.3 (SIM Security Against Semi-Malicious Authority). For a sPCE scheme, an adversary A and a PPT
simulator SIM we define the experiment for security against semi malicious authority ExptSMS

β,A (1λ) as follows.

1. A outputs functions { f1, . . . , fQ} and randomness r ∈ {0, 1}λ.

2. On input 1λ, { f1, . . . , fQ} and randomness r, the challenger generates (pk, sk f1 , . . . , sk fQ)← Setup(1λ, { f1, . . . , fQ}; r).
It sends the public key pk to A.

3. A outputs x. the challenger samples β ← {0, 1}. If β = 0, it computes ct0 ← Enc(pk, x) else if β = 1, it
computes ct1 ← SIM(pk, 1|x|, { f1(x), . . . , fQ(x)}). It sends ctβ to A.

4. A outputs a guess bit β′ as the output of the experiment.

We define the advantage AdvSMS
A (λ) of A in the above game as

AdvSMS
A (λ) :=

∣∣∣Pr
[
ExptSMS

0,A (1λ) = 1
]
− Pr

[
ExptSMS

1,A (1λ) = 1
]∣∣∣ .

We say that a sPCE scheme satisfies security against a semi malicious authority if there exists a PPT simulator SIM
such that for every PPT adversary A, we have AdvSMS

A (λ) ≤ negl(λ).

Definition 3.3 is slightly strong compared with the simulation-based security of standard FE [GVW12] in the
sense that Sim takes only ( f1(x), . . . , fQ(x)). In the standard simulation-based security [GVW12], Sim can take
( f1(x), . . . , fQ(x)), ( f1, . . . , fQ), and (sk f1 , . . . , sk fQ). We consider this variant as a relaxed definition.

Definition 3.4 (Relaxed-SIM Security against a Semi-Malicious Authority). We define relaxed-SIM security
against a semi-malicious authority exactly as above except that the simulator SIM takes as input (pk, 1|x|,V) where
V =

{
fi(x), fi, sk fi

}
i∈[Q]

.

This relaxed definition is also meaningful since Sim does not use information about x beyond { fi(x)}i∈[Q] (and |x|).
Definition 3.5 (SIM Security against Malicious Authority). For a sPCE scheme, an adversary A and a PPT simulator
Sim we define the experiment for security against malicious authority ExptMS

β,A(1
λ) as follows.

1. A outputs a public key pk and an input x.

2. The challenger samples a random bit β ← {0, 1}. If β = 0, it computes ct0 ← Enc(pk, x) else if β = 1, it
computes ct1 ← Sim(pk, 1|x|, f1(x), . . . , fQ(x)), where ( f1, . . . , fQ)← Ext(1λ, pk). It sends ctβ to A. Here
Ext is an extractor algorithm.

3. A outputs a guess bit β′ as the output of the experiment.

We define the advantage AdvMS
A (λ) of A in the above game as

AdvMS
A (λ) :=

∣∣∣Pr
[
ExptMS

0,A(1
λ) = 1

]
− Pr

[
ExptMS

1,A(1
λ) = 1

]∣∣∣ .

We say that a sPCE scheme satisfies security against a malicious authority if there exists a PPT simulator Sim and an
admissible (possibly inefficient) extractor Ext such that for every PPT adversary A, we have AdvMS

A (λ) ≤ negl(λ).
We say that Ext is admissible if for every ( f1, . . . , fQ) and randomness r, we have that ( f1, . . . , fQ) = ( f ′1, . . . , f ′Q),
where (i) (pk, sk f1 , . . . , sk fQ)← Setup(1λ, { f1, . . . , fQ}; r) and (ii) ( f ′1, . . . , f ′Q)← Ext(1λ, pk).
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Definition 3.6 (Unconditional SIM Security against Malicious Authority). We say that a sPCE scheme satisfies
unconditional simulation security against a malicious authority if there exists a PPT simulator Sim such that for any
(unbounded) adversary A, the advantage of AdvMS

A (λ) of A (as defined in Definition 3.5) is negligible in the security
parameter.

Definition 3.7 (Security against Outsiders). A sPCE scheme for function family F is said to satisfy security against
outsiders if for any PPT adversary A, any x0, x1 ∈ X , { f1, . . . , fQ} ∈ F , the following holds

Pr
[
A(pk, ctβ) = β : (pk, sk f1 , . . . , sk fQ)← Setup(1λ, { f1, . . . , fQ});

β← {0, 1}; ctβ ← Enc(pk, xβ)

]
≤ 1

2
+ negl(λ).

Lemma 3.8. If a sPCE scheme satisfies function-hiding and is secure against a (semi-malicious/malicious) authority,
then it is also secure against outsiders.

Proof. Recall that in the security against outsiders we prove that Enc(pk, x0) ≈c Enc(pk, x1) where pk ←
Setup(1λ, f1, . . . , fQ) for any functions ( f1, . . . , fQ) and inputs x0, x1 ∈ {0, 1}L. To prove this, we define the
first hybrid game as follows. We change functions fi to f0 for all i where f0(x) = 0 for any x ∈ {0, 1}L. By
function-hiding property of the sPCE scheme, the first hybrid game is indistinguishable from the original game where x0
is encrypted. Next we define the second hybrid game as follows. We encrypt x1 instead of x0. By the simulation security
against the malicious authority, it holds that Enc(pk, x0) ≈c Sim(pk, 1|x0|, { f0(x0), . . . , f0(x0)}). Since |x0| = |x1|
and f0(x0) = f0(x1) = 0, we have Sim(pk, 1|x0|, { f0(x0), . . . , f0(x0)}) = Sim(pk, 1|x1|, { f0(x1), . . . , f0(x1)}).
Again using the simulation security against the authority, we have Sim(pk, 1|x1|, { f0(x1), . . . , f0(x1)}) ≈c Enc(pk, x1).
The second hybrid game is indistinguishable from the original game where x1 is encrypted due to the function-hiding
property. Thus, we obtain the lemma.

Definition 3.9 (Laconic sPCE). A laconic sPCE scheme is the same as a sPCE scheme with an additional property that
the size of the public key is sublinear in the number of functions Q input to setup as well as the (maximum) length s of
any function, that is |pk| = O(Q1−γs1−ε) for some 0 < γ, ε < 1.

On non-trivial sPCE. We observe that the notion of sPCE is trivially achievable if both of the following properties
hold.

1. The public key size |pk| is linear in Q (i.e., non-succinct public keys).

2. The public key pk reveals the information about ( f1, . . . , fQ) (i.e., non-function-hiding).

We can easily achieve non-function-hiding sPCE that does not have succinct public keys. The public key consists of
( f1, . . . , fQ), and the encryptor computes and sends ( f1(x), . . . , fQ(x)) as the ciphertext. The notion is primarily
meaningful when the public key hides the functions, or (ideally) is sublinear in Q.

3.2 sPCE from SSP-OT and Garbled Circuits
We construct a single-key static pre constrained encryption scheme sPCE = (Setup, Enc, Dec) for function family
F = { f : X → Y}. We consider the boolean representation of the functions in F using an ℓ bit string.

Building Blocks. We use the following ingredients for our construction.

1. A garbling scheme GC = (Garble, GCEval) for universal circuit U[x], with x ∈ M hardwired, that takes as input
a function from function family F . This can be instantiated from Yao’s scheme [Yao82], which can be based on
any one way function.

2. A two-message SSP-OT scheme OT = (OTR, OTS, OTD) with input space as the space of labels of the above
garbled circuit scheme. This can be instantiated from a wide variety of assumptions as discussed in Section 2.8.
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Construction. We describe our construction below.

Setup(1λ, f )→ (pk, sk). The setup algorithm does the following.

− Parse f as an ℓ bit string and let f [i] denote the i-th bit of f . For i ∈ [ℓ], compute (ot1,i, sti)← OTR(1λ, f [i]).
− Output pk = {ot1,i}i∈[ℓ] and sk f = { f [i], sti}i∈[ℓ].

Enc(pk, x)→ ct. The encryption algorithm does the following.

− Define the circuit U[x], with x hardwired, as follows : On input a function f , U[x]( f ) = f (x).
− Compute (Ũ, {lbi,b})← Garble(1λ, U[x]) for i ∈ [ℓ], b ∈ {0, 1}.
− Parse pk = {ot1,i}i∈[ℓ] and compute ot2,i ← OTS(1λ, lbi,0, lbi,1, ot1,i) for all i ∈ [ℓ].

− Output ct = (Ũ, {ot2,i}i∈[ℓ]).

Dec(sk, ct)→ {m/⊥}. The decryption algorithm does the following.

− Parse sk = { f [i], sti}i∈[ℓ] and ct = (Ũ, {ot2,i}i∈[ℓ]).

− For each i ∈ [ℓ], compute lbi,j ← OTD(1λ, f [i], sti, ot2,i) where j ∈ {0, 1}.
− Compute and output y← GCEval(Ũ, {lbi,j}i∈[ℓ]).

Correctness. We show that the above construction satisfies correctness via the following theorem.

Theorem 3.10. Suppose the OT scheme and the GC scheme satisfy correctness as defined in Definition 2.23
and Definition 2.13, respectively. Then the above construction satisfies perfect correctness as defined in Definition 3.1.

Proof. We note that for any ct← Enc(pk, x), we have ct = (Ũ, {ot2,i}i∈[ℓ]), where (Ũ, {lbi,b})← Garble(1λ, U[x])
and ot2,i ← OTS(1λ, lbi,0, lbi,1, ot1,i) for i ∈ [ℓ]. By the correctness OT scheme we have for all i ∈ [ℓ], lbi, f [i] =

OTD(1λ, f [i], sti, ot2,i) with probability 1. Also, from the correctness of the GC scheme it follows that f (x) =
U[x]( f )← GCEval(Ũ, {lbi, f [i]}i∈[ℓ]) with probability 1.
So we get Dec(sk, ct) = f (x) with probability 1. Hence the above scheme is perfectly correct.

Function-hiding. This follows directly from the receiver privacy of the underlying OT scheme.

Theorem 3.11. Suppose the OT scheme satisfies receiver privacy (Definition 2.24). Then the above construction of the
sPCE scheme satisfies function-hiding (Definition 3.2).

Proof. Recall that to show function-hiding, we want

{pk | (pk, sk)← Setup(1λ, f0)} ≈c {pk | (pk, sk)← Setup(1λ, f1)}

for any functions f0, f1 ∈ F . The proof proceeds via the following sequence of hybrid games between the challenger
and a PPT adversary A.

Hyb0. This is the real world with bit β = 0, i.e., the challenge public key is computed using the function f0. We write
the complete game to set up the notations and easy reference in the later hybrids.

1. A outputs two functions f0, f1 ∈ F where | f0| = | f1|.
2. The challenger computes (ot1,i, sti)← OTR(1λ, f0[i]) for all i ∈ [ℓ] where C[i] denotes the i-th bit of C.

It returns pk = {ot1,i} to A.
3. In the end A outputs a bit β′.
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Hybk;1≤k≤ℓ. This hybrid is same as the previous hybrid except that the challenger computes (ot1,i, sti) ←
OTR(1λ, f1[i]) for 1 ≤ i ≤ k and (ot1,i, sti) ← OTR(1λ, f0[i]) for k + 1 ≤ i ≤ ℓ, where fb[i] denotes
the i-th bit of the function fb for b ∈ {0, 1}.
Note that Hybℓ is the real world with bit β = 1, i.e., the challenge public key is computed using the function f1.

We note that it is sufficient to argue Hybk−1 ≈c Hybk, k ∈ [ℓ], to complete the proof. We show that if there exists a
PPT adversary A who can distinguish between the two hybrids with non-negligible advantage ϵ, then there exists a
PPT adversary B against the receiver privacy of the OT scheme with the same advantage ϵ. The reduction is as follows.

1. B first runs A. A outputs the challenge functions f0, f1 such that f0, f1 ∈ F .

2. B parses f0 and f1 as ℓ bit strings and forwards f0[k] and f1[k] to the OT challenger, where fb[k] denotes
the k-th bit of the function fb for b ∈ {0, 1}. The OT challenger samples a bit β ← {0, 1} and computes
(ot1,k, st1,k)← OTR(1λ, fβ[k]) and returns otk,1 to B.

3. B computes (ot1,i, st1,i) ← OTR(1λ, f1[i]) for 1 ≤ i ≤ k− 1 and (ot1,i, sti) ← OTR(1λ, f0[i]) for k + 1 ≤
i ≤ ℓ, sets pk = {ot1,i}i∈[ℓ] and forwards it to A.

4. In the end A outputs a bit β′. B forwards β′ to the OT challenger.
We observe that if the OT challenger samples β = 0, then B simulated the distribution Hybk−1 , else Hybk with A.
Hence, advantage of B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hybk−1)− Pr(β′ = 1|Hybk)| = ϵ
(by assumption).

SIM security against malicious authority. This follows from the statistical sender security of the underlying OT
scheme and the simulation security of GC scheme.
Theorem 3.12. Suppose the OT scheme satisfies statistical sender-privacy (Definition 2.25) and the GC scheme satisfies
simulation security (Definition 2.14). Then the above construction of the sPCE scheme satisfies SIM security against a
malicious authority (Definition 3.5).
Proof. To prove the theorem, we first construct the simulator Sim for the security against malicious authority of the
sPCE scheme. Note that the simulator is given pk, 1|x|, f (x), where pk = {ot1,i}i∈[ℓ] as input. We now provide the
description of the simulator Sim.
On input pk = {ot1,i}i∈[ℓ], 1|x|, f (x)

1. Compute (Ũ, {lbi}i∈[ℓ])← GC.Sim(1λ, f (x)).

2. Compute ot2,i ← OTS(1λ, lbi, lbi, ot1,i) for all i ∈ [ℓ].

3. Output ct = (Ũ, {ot2,i}i∈[ℓ]).
To prove the security, we consider the following sequence of hybrids.
Hyb0. This is the real world, i.e., challenge ct is computed by honestly running the Enc algorithm. We write the

complete game here to set up the notations and easy reference in later hybrids.

1. A outputs a public key pk and an input x.
2. The challenger defines the circuit U[x] as in the construction and computes (Ũ, {lbi,b}i∈[ℓ],b∈{0,1}) ←

GC.Garble(1λ, U[x]). It parses pk = {ot1,i}i∈[ℓ] and computes ot2,i ← OTS(1λ, lbi,0, lbi,1, ot1,i) for all
i ∈ [ℓ]. It sets ct = (Ũ, {ot2,i}) and returns ct to A.

3. A outputs a guess bit β′.

Hyb1. This hybrid is same as the previous hybrid except that the challenger computes ot2,i differently, i.e., ot2,i ←
OTS(1λ, lbi,b, lbi,b, ot1,i) for all i ∈ [ℓ], where b← OT.Ext(ot1,i).

Hyb2. This hybrid is same as the previous hybrid except that the challenger computes the garbled circuit and the
labels differently using GC.Sim, i.e., (Ũ, {lbi}i∈[ℓ]) ← GC.Sim(1λ, f (x)) where f = f [1] . . . f [ℓ]; f [i] ←
OT.Ext(ot1,i) for i ∈ [ℓ]. This is the ideal world.
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Indistinguishability of hybrids. We now prove that the consecutive hybrids are indistinguishable.

Claim 3.13. Assume that OT satisfies statistical sender privacy, then Hyb0 ≈s Hyb1.

Proof. To prove the claim we consider sub hybrids Hyb0.k for k = 0 to ℓ, where Hyb0.k is same as Hyb0 except that ot2,i
is generated differently for all i ≤ k, i.e., ot2,i ← OTS(1λ, lbi,b, lbi,b, ot1,i), where b = OT.Ext(ot1,i) for 1 ≤ i ≤ k
and ot2,i ← OTS(1λ, lbi,0, lbi,1, ot1,i) for k + 1 ≤ i ≤ ℓ. We note that Hyb0 = Hyb0.0 and Hyb0.ℓ = Hyb1.
To prove the above claim it suffices to show that Hyb0.k−1 ≈ Hyb0.k for k ∈ [ℓ]. We show that if there exists an
unbounded adversary A who can distinguish between Hyb0.k−1 and Hyb0.k with non-negligible advantage ϵ, then there
exists an unbounded adversary B against the statistical sender privacy security of OT scheme with the same advantage
ϵ. The reduction is as follows.

1. B first runs A. A outputs a public key pk and input x.

2. B parses pk = {ot1,i}i∈[ℓ], defines the circuit U[x] as in the construction and computes (Ũ, {lbi,b}) ←
GC.Garble(1λ, U[x]) for all i ∈ [ℓ] and b ∈ {0, 1}.

3. B sends (lbk,0, lbk,1), ot1,k to the OT challenger. The challenger samples a bit β ← {0, 1} and computes
ot2,k ← OTS(1λ, lbk,0, lbk,1, ot1,k) if β = 0, else if β = 1, it computes ot2,k ← OTS(1λ, lbk,b, lbk,b, ot1,k) where
b = OT.Ext(ot1,k). It returns ot2,k to B.

4. B computes ot2,i ← OTS(1λ, lbi,b, lbi,b, ot1,i), where b = OT.Ext(ot1,i) for 1 ≤ i ≤ k − 1 and ot2,i ←
OTS(1λ, lbi,0, lbi,1, ot1,i) for k + 1 ≤ i ≤ ℓ. It sets ct = (Ũ, {ot2,i}i∈[ℓ]) and returns ct to A.

5. A outputs a guess bit β′. B forwards β′ to the OT challenger.

We observe that if the OT challenger samples β = 0, then B simulated the distribution Hyb0.k−1 , else Hyb0.k with A.
Hence, advantage of B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hyb0.k−1)− Pr(β′ = 1|Hyb0.k)| =
ϵ (by assumption).

Claim 3.14. Assume that GC satisfies simulation security, then Hyb1 ≈c Hyb2.

Proof. We show that if there exists a non-uniform PPT A who can distinguish between Hyb1 and Hyb2 with non-
negligible advantage ϵ, then there exists a non-uniform PPT adversary B against the security of GC scheme with the
same advantage ϵ. The reduction is as follows.

1. B first runs A. A outputs a public key pk and input x.

2. B parses pk = {ot1,i}i∈[ℓ] and computes f = f [1] . . . f [ℓ] where f [i] = OT.Ext(ot1,i) for i ∈ [ℓ].

3. B defines the circuit U[x] as in the construction and sends U[x] and f to the GC challenger as the challenge
circuit and challenge input. The challenger chooses a bit β← {0, 1} and does the following:

• If β = 0, it computes (Ũ, {lbi,b}i∈[ℓ],b∈{0,1})← GC.Garble(1λ, U[x]). It sets U′ = Ũ and lbi = {lbi, f [i]}
for i ∈ [ℓ].

• If β = 1, it computes (Ũ, {lbi}i∈[ℓ])← GC.Sim(1λ, U[x]( f )). It sets U′ = Ũ.

The GC challenger returns (U′, {lbi}i∈[ℓ]) to B.

4. B computes ot2,i ← OTS(lbi, lbi, ot1,i) for all i ∈ [ℓ]. It returns ct = (U′, {ot2,i}i∈[ℓ]).

5. In the end, A outputs a bit β′. B sends β′ to the GC challenger.

We observe that if the GC challenger samples β = 0, then B simulated Hyb1, else Hyb2 with A. Hence, advantage of B
= |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hyb1)− Pr(β′ = 1|Hyb2)| = ϵ (by assumption).
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Security against outsiders. This follows from Lemma 3.8.

Unconditional security for NC1. We note that by using an information theoretic version of Yao’s garbled circuit
[IK02], efficient for NC1, in the above construction we can achieve a sPCE scheme, for class NC1, with unconditional
security against a malicious authority.

Bounded key setting. We observe that it is easy to extend the construction above to bounded multi-key construction
by simply preparing more OT instances for fi. Note that this makes |pk| linear in the number of functions for which we
generate the secret keys.

Instantiating the underlying two-message SSP-OT as discussed in Section 2.8, we get the following.

Theorem 3.15. Assuming DDH / (QR and DCR) / LWE / (LPN and Nisan-Wigderson style derandomization), there
exists a sPCE scheme, for general circuits, satisfying security against a malicious authority (Definition 3.5).

Theorem 3.16. Assuming DDH / (QR and DCR) / LWE / (LPN and Nisan-Wigderson style derandomization), there
exists a sPCE scheme, for NC1 , satisfying unconditional security against a malicious authority (Definition 3.6).

3.3 sPCE with Unconditional Security from FHE
In this section we see that by using a slightly stronger assumption we can achieve unconditional security against a
malicious authority. We construct a single-key sPCE scheme for function family F = { f : X → Y}. We consider the
boolean representation of the functions in F using an ℓ bit string.

Building block. We use a FHE scheme FHE = FHE.(KeyGen, Enc, Eval, Dec) satisfying malicious circuit privacy.
This can be instantiated from LWE (Theorem 2.31).

Construction. We describe our sPCE construction below.

Setup(1λ, f )→ (pk, sk). The setup algorithm does the following.

− Generate (FHE.pk, FHE.sk) ← FHE.Gen(1λ). Parse f as an ℓ bit string and compute FHE.ct f ←
FHE.Enc(FHE.pk, f ).

− Output pk = (FHE.pk, FHE.ct f ) and sk = FHE.sk.

Enc(pk, x)→ ct. The encryption algorithm does the following.

− Define the circuit G[x], with x hardwired, as follows: On input a function f , G[x]( f ) = f (x).
− Parse pk = (FHE.pk, FHE.ct f ) and compute FHE.ct← FHE.Eval(FHE.pk, G[x], FHE.ct f ).
− Output ct = FHE.ct.

Dec(sk, ct)→ y. The decryption algorithm parses sk = FHE.sk, ct = FHE.ct and returns FHE.Dec(FHE.sk, FHE.ct).

Succinct Ciphertexts. We note that due to the sub-linearity of the underlying FHE scheme, our scheme achieves
succinct ciphertexts.

Theorem 3.17. The construction of sPCE from maliciously circuit private FHE is correct and satisfies function-hiding,
unconditional security against a malicious authority and security against outsiders.

Proof. The correctness and function-hiding of the construction follows immediately from the correctness and semantic-
security of the underlying FHE scheme, respectively.
We prove the security against the authority. First, we construct a simulator Sim for the security against malicious
authority of the sPCE scheme. Note that the simulator is given pk, 1|x|, f (x), where pk = (FHE.pk, FHE.ct f ) as inputs.
The simulator proceeds as follows:
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1. Runs the FHE simulator to compute FHE.ct← FHE.Sim(FHE.pk, FHE.ct f , f (x)).

2. Output ct = FHE.ct.
To prove the security, we consider the following sequence of hybrids.

Hyb0. This is the real world, i.e., challenge ct is computed by honestly running the Enc algorithm, using the possibly
malformed public key pk.

Hyb1. This hybrid is same as the previous hybrid except that the challenger computes FHE.ct as

FHE.ct← FHE.Sim(FHE.pk, FHE.ct f , G[x]( f ))

where f = FHE.Ext(FHE.pk, FHE.ct f ). We note that this is the ideal world.

The indistinguishability of the above two hybrids follows from the malicious circuit private security of the underlying
FHE scheme. Recall that maliciously circuit-private FHE ensures that even for possibly malformed FHE.pk, FHE.ct,
FHE.Eval(FHE.pk, G[x], FHE.ct f ) is statistically indistinguishable from
FHE.Sim(G[x]( f )) = FHE.Sim( f (x)).
Also, the security against outsiders follows from Lemma 3.8.

Instantiating the underlying malicious circuit private FHE as in Theorem 2.31, we get the following.

Theorem 3.18. Assuming LWE, there exists a sPCE scheme, for general circuits, satisfying unconditional security
against a malicious authority (Definition 3.6).

3.4 Implications and Lower Bounds
We present lower bounds of sPCE in this section. These lower bounds hold even for a weaker IND style security
definition provided below.

Definition 3.19 (IND Security against Malicious Authority). A sPCE scheme is said to satisfy indistinguishability
against a malicious authority if for any PPT and admissible adversary A, the following holds

Pr
[
A(ctβ) = β : pk, (x0, x1)← A;

β← {0, 1}; ctβ ← Enc(pk, xβ)

]
≤ 1

2
+ negl(λ)

A is admissible if (i) f1, . . . , fQ ∈ F where ({ f1, . . . , fQ})← Ext(1λ, pk), where Ext is an extractor algorithm and
(ii) fi(x0) = fi(x1) for all i ∈ [Q].

We observe that for an indistinguishability-based security definition, if |ct| is sublinear in Q or s (we call it
weakly CT-collusion-succinct and weakly CT-succinct, respectively, in this paper), sPCE implies IO by known results
(via [LPST16b]). In addition, this holds even for security against semi-honest authority since the transformation from
single-key weakly succinct PKFE to IO needs the indistinguishability-based security for standard FE. Thus, we can say
achieving sPCE with succinct ciphertexts is as hard as achieving IO. We formalise it using the following lemma.

Lemma 3.20. If there exists a sPCE scheme that supports all polynomial size circuits, satisfies indistinguishability
against semi-honest authority and the succinct ciphertexts property (i.e., |ct| is O(Q1−γ) or O(s1−ϵ) of for some
0 < γ, ϵ < 1), there exists IO for all polynomial size circuits.

Proof. To prove the lemma, it suffices to show that a sPCE scheme with succinct ciphertext satisfying IND security
implies IO. We observe that

1. We can construct single-key weakly CT-succinct PKFE from Q-key weakly CT-collusion-succinct sPCE via
the transformation by [KNT21, Section 4] (almost the same as [BV18, Section 4.2]). This transformation
works since weakly selective security for standard FE (both target plaintexts and functions are fixed at the
beginning of the game) is sufficient for our purpose. Note that the syntax of single-key PKFE by Bitansky and
Vaikuntanathan [BV18] is the same as single-key sPCE. Although the transformation by Kitagawa et al. or
Bitansky and Vaikuntanathan is for weakly succinct schemes (i.e., the encryption circuit is weakly succinct), it
works for weakly CT-succinct schemes if the goal is weakly CT-succinct.)
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2. We can construct single-key weakly succinct PKFE from single-key weakly CT-succinct and PKFE and the LWE
assumption via the transformation by [LPST16a]. This implies IO [BV18]. Or we can use output compressing
randomized encoding in the CRS model in [LPST16b]. We can construct weakly sublinear compact randomized
encoding scheme for Turing machines in the CRS model from single-key weakly CT-succinct and PKFE (note
that [LPST16b] calls weakly CT-succinct as weakly sublinear compact).

We also show that it is impossible to achieve sPCE with succinct public key which is secure against a malicious authority,
using a natural incompressibility style argument inspired from [AGVW13]. Moreover, in our setting, the impossibility
holds even for the indistinguishability-based definition of sPCE. We prove it using the following theorem.

Theorem 3.21. There does not exist a sPCE scheme that supports all polynomial size circuits, satisfies indistinguishability
against malicious authority, and whose public key size is O(Q1−γ) or O(s1−ϵ) for some 0 < γ, ϵ < 1 where Q is the
number of the functions used in the setup algorithm and s is the maximum length of the functions.

Proof. First, we focus on the case |pk| = O(Q1−γ). We consider the following constant function C[ρ] where a
uniformly random string ρ← {0, 1}λ is hardwired. The function C[ρ] takes x ∈ {0, 1}λ/2 as as input, and outputs ρ.
Let Fc := {C[ρ] : {0, 1}λ/2 → {0, 1}λ}. Assume that there exists a sPCE scheme that is indistinguishable against
malicious authority and has succinct public keys for all polynomial size circuits. Then, there also exists such a sPCE
scheme that supports the function family Fc above. This implies that there exists an adversary A that outputs a public
key pk and two inputs (x0, x1) ∈ ({0, 1}λ/2)2. There also exists a (possibly inefficient) extractor Ext that takes pk
and outputs (C[ρ1], . . . , C[ρQ]). Note that it holds that C[ρi](x0) = C[ρi](x1) for all i ∈ [Q]. The extractor can also
compute ρi = C[ρi](x′) for all i ∈ [Q] where x′ is an arbitrary input. Here, |pk| = O(Q1−γ) holds due the succinct
public key property. That is, A compressed a uniformly random Q× λ bit string into an O(Q1−γ) bit string since
the extractor can recover a uniformly random Q× λ bit string from pk, which is an O(Q1−γ) bit string. O(Q1−γ) is
asymptotically smaller than Q× λ. This compression is information theoretically impossible since the Kolmogorov
complexity of a uniformly random Q× λ string is at least Q× λ by the definition.

In the case |pk| = O(s1−ϵ), a similar argument works. We consider only one function C[ρ1]. Then, |pk| = O(λ1−ϵ)
holds since s ≥ |ρ1| = λ. However, the extractor can recover a uniformly random λ bit string from pk. This compression
is also impossible as above.

Thus, the proof is concluded.

3.5 Laconic sPCE for General Constraints
In this section we provide a two-step construction for laconic sPCE, as follows.

1. First we provide a sPCE construction, with laconic public key, that does not achieve function-hiding (and
consequently security against outsiders).

2. Next, we show how to compile the above sPCE into a function-hiding sPCE.

We consider semi-malicious security to achieve laconic public keys due to the impossibility result in Section 3.4.

3.5.1 Construction without Function-Hiding.

Building blocks. We use the following ingredients for our construction.

1. A reusable, dynamic MPC protocol RDMPC = (CktEnc, InpEnc, Local, Decode) with N = Θ(R2λ), t =

Θ(Rλ), and and n = Θ(t). This can be instantiated from one way functions (Theorem 2.6). We use ℓ̂ to denote
the size of the output of InpEnc algorithm. We also denote the size of the circuit Local(Ĉj, ·) by ŝ(λ, |C|), where
Ĉj is the output of CktEnc on input a circuit C.
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2. A garbled circuit scheme GC = (GC.Garble, GC.Eval) for circuit class C
ℓ̂
, where C

ℓ̂
is the set of all polynomial

size circuits with input length ℓ̂. 7

3. A hash encryption scheme HE = (HE.Gen, HE.Hash, HE.Enc, HE.Dec) for hash domain {−1, 0, 1}ℓ satisfying
succinctness and semi-malicious security. This can be instantiated using LWE in ROM (Appendix B.1).

Construction. We describe the construction of the laconic sPCE scheme below.

Setup(1λ, { f1, . . . , fQ}). The setup algorithm does the following.

1. For each fi, where i ∈ [Q], do the following.
(a) Parse fi as an ℓ bit string.
(b) Compute f̂i ← InpEnc(1λ, 1ℓ, fi) and let | f̂i| = ℓ̂.

2. For each i ∈ [Q], sample random set ∆(i) ⊂ [N] such that |∆(i)| = n.
If
∣∣∣⋃i,i′∈[Q],i ̸=i′

(
∆(i) ∩ ∆(i′)

)∣∣∣ > t, abort.

3. For i ∈ [Q], let Si = {(i, j, k, f̂i[k])}j∈∆(i),k∈[ℓ̂], where f̂i[k] is the k-th bit of f̂i. Set S := ∥i∈[Q]Si.

4. Let str be a binary string of length with ℓ = Q · N · ℓ̂, indexed as (i, j, k), for i ∈ [Q], j ∈ [N] and k ∈ [ℓ̂],
where

stri,j,k =


1, if (i, j, k, 1) ∈ S
0, if (i, j, k, 0) ∈ S
−1, if j /∈ ∪i∈[Q]∆(i)

5. Generate key← HE.Gen(1λ, ℓ) and compute hstr ← HE.Hash(key, str).
6. Output pk = (key, hstr) and for i ∈ [Q],

sk fi
=

(
i, ∆(i), f̂i

)
. (3)

Enc(pk, x, 1Q). On input the public key pk = (key, hstr), an input x and the query bound 1 ≤ Q ≤ 2λ in unary form,
do the following.

1. Define circuit Cx, which on input a function f , outputs f (x).

2. Compute (Ĉi,1, . . . , Ĉi,N)← CktEnc(1λ, 1λ, 1ℓ, Cx) for i ∈ [Q].

3. Define the circuit Li,j(·) := Local(Ĉi,j, ·) with input length ℓ̂.
For all i ∈ [Q] and j ∈ [N], do the following.

(a) Run the garbling algorithm
({

labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
← GC.Garble(1λ, Li,j).

(b) For all k ∈ [ℓ̂] and b ∈ {0, 1}, compute 8

HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), labi,j,k,b).

4. Output

ct =
{

HE.cti,j,k,b

}
i∈[Q],j∈[N],k∈[ℓ̂],b∈{0,1}

. (4)
7For the ease of notations, we will use the syntax of the garbling scheme by [AMVY21], where the output of the Garble algorithm and the input to

the Eval algorithm consists of only labels. This can be shown equivalent to the standard syntax (Section 2.4), by including the garbled circuit into a
label.

8Note that we do not generate any ciphertext for b = −1, as it is not required for the functionality of our scheme. We want to recover the labels
labi,j,k,b when stri,j,k = b using the secret key as generated in the setup phase and we set stri,j,k = −1 only when j /∈ ∪i∈[Q]∆(i), i.e., for those
j ∈ [N] which is not a part of any of the secret keys. So, we do not need HE.ct corresponding to b = −1.
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Dec(ct, sk, 1Q). On input a secret key sk, a ciphertext ct, and the query bound 1 ≤ Q ≤ 2λ in unary form, do the
following.

1. Parse the secret key as Eq. (3) and the ciphertext as Eq. (4).
2. For all j ∈ ∆(i), do the following.

(a) Compute lab′i,j,k := HE.Dec(key, (hstr, i, j, k, f̂i[k]), HE.cti,j,k, f̂i [k]
), for all k ∈ [ℓ̂], where f̂i[k] is the

k-th bit of f̂i.
(b) Compute ŷ′i,j := GC.Eval({lab′i,j,k}k∈[ℓ̂]).

3. Compute and output zi = Decode({ŷ′i,j}j∈∆(i) , ∆(i)).

Laconic Public Key. We note that in the above construction pk = (key, hstr), where key ← HE.Gen(1λ, ℓ) and
hstr ← HE.Hash(key, str). For the laconic public keys we instantiate the underlying HE scheme as described in
Appendix B.1, where |key| = λ and |hstr| = λ. So it follows that |pk| = 2λ, which is independent of the number of
functions(Q) in the setup phase and the size of the function ℓ. Hence the above construction achieves full succinctness.

Theorem 3.22 (Correctness). Suppose the HE scheme, GC and RDMPC scheme satisfies correctness as defined in
Definition 2.7, 2.13 and 2.4 respectively. Then the above construction of sPCE is correct.

Proof. By the correctness of HE scheme, we have labi,j,k, f̂ [k] = HE.Dec(key, (Hash(key, str), i, j, k, f̂ [k]), HE.cti,j,k, f̂ [k])

with all but negligible probability, since stri,j,k = f̂ [k] by the definition of str. So, lab′i,j,k = labi,j,k, f̂ [k] holds for
all lab′i,j,k recovered in Step 2a of the decryption algorithm. Next, by the correctness of GC scheme, we have
Li,j( f̂i) = GC.Eval(L̃i,j, {labi,j,k, f̂ [k]}k∈[ℓ̂]). So, ŷ′i,j = Li,j( f̂i) = Local(Ĉi,j, f̂i) for all ŷ′i,j recovered in Step 2b of the
decryption algorithm.

Finally, since |∆(i)| = n we have Cx( fi) = Decode({Local(Ĉi,j, f̂i)}j∈∆(i) , ∆(i)) by the correctness of the RDMPC
scheme. So, zi = Cx( fi) = fi(x) for zi recovered in Step 3 of the decryption algorithm.

3.5.2 Security

Here, we show that our construction satisfies relaxed-SIM security against a semi-malicious authority.

Theorem 3.23. Assume that HE scheme is secure against a semi malicious setup , GC is a secure garbled circuit scheme,
and RDMPC is secure as per Definition 2.8, 2.14, and 2.5 respectively. Then the above construction of laconic sPCE
scheme satisfies security against a semi malicious authority Definition 3.4.

Proof. To prove the theorem, we first construct the simulator Sim for the security against malicious authority of the sPCE
scheme. Note that the simulator is given pk = (key, hstr), 1|x|, and V , where V =

{
fi(x), fi, sk fi

=
(

i, ∆(i), f̂i

)}
i∈[Q]

.

We begin with setting up few notations. We define sets Scrr and Sdis as follows.

Scrr :=
⋃

i,i′∈[Q],i ̸=i′

(
∆(i) ∩ ∆(i′)

)
, Sdis :=

 ⋃
i∈[Q]

∆(i)

 \Scrr.

We now describe the sPCE ciphertext simulator SIM. On input pk = (key, hstr), 1|x|, and V , it runs as follows.

1. For each i ∈ [Q], run({
Ĉi,j

}
j∈Scrr

,
{

ŷi,j
}

i∈[Q],j∈∆(i)

)
← RDMPC.Sim0

(
1|Cx |, Scrr, { fi(x), fi}i∈[Q]

)
where Cx is the universal circuit with x hardwired.
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2. For all i ∈ [Q] and j ∈ [N], do the following.

− If j ∈ Scrr, do the following.

(a) Set Li,j(·) := Local(Ĉi,j, ·) and compute
(

L̃i,j,
{

labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
← GC.Garble(1λ, Li,j).

(b) For all k ∈ [ℓ̂] and b ∈ {0, 1}, compute HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), labi,j,k,b).

− If j ∈ Sdis, then there exists an unique i such that j ∈ ∆(i). Retrieve the corresponding i ∈ [Q] and do the
following.

(a) Compute
(

L̃i,j, {labi,j,k}k∈[ℓ̂]

)
← GC.Sim(1λ, ŷi,j).

(b) For all k ∈ [ℓ̂] and b ∈ {0, 1}, compute HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), labi,j,k).

− If j /∈ Scrr ∪ Sdis, do the following.

(a) Set Li,j to be a dummy circuit of input length ℓ̂, which always outputs 0ŝ and compute
(

L̃i,j,
{

labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
←

GC.Garble(1λ, Li,j).

(b) For all k ∈ [ℓ̂] and b ∈ {0, 1}, compute HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), 0len) where len is
the length of the labels.

3. Output the ciphertext ct =
({

L̃i,j

}
i∈[Q],j∈[N]

,
{

HE.cti,j,k,b

}
i∈[Q],j∈[N],k∈[ℓ̂],b∈{0,1}

)
.

To prove the security, we consider following hybrids.

Hyb0. This is the real world. We write the complete game here to set up notations and for easy reference in the later
hybrids.

1. The adversary outputs the functions f1, . . . , fQ and the randomness ∆(1), . . . , ∆(Q), r. Abort and output ⊥
if either of the following is true.

−
∣∣∣∆(i)

∣∣∣ ̸= n, for i ∈ [Q].

− |Scrr| =
∣∣∣⋃i,i′∈[Q],i ̸=i′

(
∆(i) ∩ ∆(i′)

)∣∣∣ > t.

2. The challenger computes Si = {(i, j, k, f̂i[k])}j∈∆(i),k∈[ℓ̂], and defines S and string str as in the construction.

It lets the key = r and computes hstr ← Hash(key, str). It sets pk = (key, hstr) and sk fi
=

(
i, ∆(i), f̂i

)
and returns pk and {sk fi

}i∈[Q] to A.
3. A outputs the challenge input x. The challenger defines Cx and computes

ct =
({

L̃i,j

}
i∈[Q],j∈[N]

,
{

HE.cti,j,k,b

}
i∈[Q],j∈[N],k∈[ℓ̂],b∈{0,1}

)
as in the construction. It returns ct to A.

4. In the end, A outputs a guess bit β′.

Hyb1. In this hybrid we change the way ciphertext is generated. In particular, we change the way HE.cti,j,k,b is
computed in the following cases.

− If j ∈ Sdis, the challenger computes HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), labi,j,k, f̂i [k]
), where i is the

unique index such that j ∈ ∆(i).
− If j /∈ Scrr ∪ Sdis, the challenger computes HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), 0len), where len is

the length of the labels.
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Hyb2. In this hybrid, we further change the way ciphertext is generated. In particular, we change the way L̃i,j and
labi,j,k,b is computed in the following cases.

− If j ∈ Sdis, then there exists an unique i such that j ∈ ∆(i). Retrieve the corresponding i ∈ [Q] and compute
(L̃i,j, {labi,j,k}k∈[ℓ̂]) ← GC.Sim(1λ, ŷi,j) where ŷi,j = Local(Ĉi,j, f̂i). Then it sets labi,j,k, f̂i [k]

:= labi,j,k for

k ∈ [ℓ̂].

− If j /∈ Scrr ∪ Sdis, the challenger sets Li,j to be a dummy circuit of input length ℓ̂, which always outputs 0ŝ and

computes
(

L̃i,j,
{

labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
← GC.Garble(1λ, Li,j).

Hyb3. In this hybrid, we further change the way ciphertext is generated. In particular, we change the way the circuit
encoding Ĉi,j and local output encodings ŷi,j are generated as follows. For each i ∈ [Q], run({

Ĉi,j

}
j∈Scrr

,
{

ŷi,j
}

i∈[Q],j∈∆(i)

)
← RDMPC.Sim0

(
1|Cx |, Scrr, { fi(x), fi}i∈[Q]

)
where Cx is the universal circuit with x hardwired. We note that we only have Ĉi,j for all j ∈ Scrr and this suffices
for the ciphertext generation due to the changes made in Hyb0 and Hyb1.
We also note that this is the ideal world with the simulator SIM defined above.

Next, we show the indistinguishability of consecutive hybrids for Theorem 3.23.

Claim 3.24. Assume HE is a semi malicious secure hash encryption scheme, then Hyb0 ≈c Hyb1.

Proof. We show that if there exists a PPT adversaryA who can distinguish between Hyb0 and Hyb1 with non-negligible
advantage ϵ, then there exists an adversary B against the semi malicious secure hash encryption scheme with the same
advantage ϵ. The reduction is as follows.

1. The HE challenger samples a bit β← {0, 1} and initiates the multi challenge HE security game with B.

2. B first runs A. A outputs the functions f1, . . . , fQ and the randomness ∆(1), . . . , ∆(Q), r. B aborts and output ⊥
if
∣∣∣∆(i)

∣∣∣ ̸= n or |Scrr| > t.

3. B computes f̂i for i ∈ [Q], defines the set S and the string str as in the construction. It sends the string str and the
randomness r to the HE challenger and gets back the hash key key.

4. B computes hstr = Hash(key, str). It sets pk = (key, hstr) and sk fi
=

(
i, ∆(i), f̂i

)
and returns pk and {sk fi

}i∈[Q]

to A.

5. A outputs the challenge input x. B computes
(

L̃i,j,
{

labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
for all i ∈ [Q] and j ∈ [N] as in

the construction.

6. B computes
{

HE.cti,j,k,b

}
i∈[Q],j∈[N],k∈[ℓ̂],b∈{0,1}

as follows

− If j ∈ Sdis and b ̸= f̂i[k], it first retrieves i such that j ∈ ∆(i) and then sends the index (i, j, k) and two
messages (labi,j,k,1− f̂i [k]

, labi,j,k, f̂i [k]
) to the HE challenger. The challenger computes

HE.cti,j,k,b ←
{

HE.Enc(key, (Hash(key, str), (i, j, k), b), labi,j,k,1− f̂i [k]
) if β = 0

HE.Enc(key, (Hash(key, str), (i, j, k), b), labi,j,k, f̂i [k]
) if β = 1

and returns HE.cti,j,k,b to B.
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− If j /∈ Scrr ∪ Sdis, for each b ∈ {0, 1}, it sends the index (i, j, k) and two messages (labi,j,k,b, 0len) to the HE
challenger, where len is the length of the labels. The challenger computes

HE.cti,j,k,b ←
{

HE.Enc(key, (Hash(key, str), (i, j, k), b), labi,j,k,b) if β = 0
HE.Enc(key, (Hash(key, str), (i, j, k), b), 0len) if β = 1

and returns HE.cti,j,k,b to B.
− Else, it computes HE.cti,j,k,b as in the construction.

7. B sends ct =
({

L̃i,j

}
i∈[Q],j∈[N]

,
{

HE.cti,j,k,b

}
i∈[Q],j∈[N],k∈[ℓ̂],b∈{0,1}

)
to A.

8. A outputs a guess bit β′.

We observe that if the HE challenger samples β = 0, then B simulated the distribution Hyb0, else Hyb1 with A.
Hence, the advantage of B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hyb0)− Pr(β′ = 1|Hyb1)| = ϵ
(by assumption).

Claim 3.25. Assume GC is a secure garbled circuit scheme, then Hyb1 ≈c Hyb2.

Proof. We show that if there exists a PPT adversaryA who can distinguish between Hyb1 and Hyb2 with non-negligible
advantage ϵ, then there exists an adversary B against the security of GC scheme with the same advantage ϵ. The
reduction is as follows.

1. The GC challenger samples a bit β← {0, 1} and initiates the multi challenge GC security game with B.

2. B first runs A. A outputs the functions f1, . . . , fQ and the randomness ∆(1), . . . , ∆(Q), r. B aborts and output ⊥
if
∣∣∣∆(i)

∣∣∣ ̸= n or |Scrr| > t.

3. B computes f̂i for i ∈ [Q], defines the set S and the string str as in the construction. B generates key ←
HE.Gen(1λ, r) and computes hstr = Hash(key, str). It sets pk = (key, hstr) and sk fi

=
(

i, ∆(i), f̂i

)
and returns

pk and {sk fi
}i∈[Q] to A.

4. A outputs the challenge input x. B defines the circuit Cx as in the construction and computes (Ĉi,1, . . . , Ĉi,N)←
CktEnc(1λ, 1λ, 1ℓ, Cx) for i ∈ [Q].

5. For all i ∈ [Q] and j ∈ [N], B does the following.

− If j ∈ Scrr, set Li,j(·) := Local(Ĉi,j, ·) and compute(
L̃i,j,

{
labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
← GC.Garble(1λ, Li,j).

− If j ∈ Sdis, it first retrieves i such that j ∈ ∆(i) and then sends the circuit Li,j(·) := Local(Ĉi,j, ·) and input f̂i
to the GC challenger. The challenger computes(

L̃i,j,
{

labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
← GC.Garble(1λ, Li,j) if β = 0

or (
L̃i,j,

{
labi,j,k

}
k∈[ℓ̂]

)
← GC.Sim(1λ, Local(Ĉi,j, f̂i)) if β = 1

and returns
(

L̃i,j,
{

labi,j,k, f̂i [k]

}
k∈[ℓ̂]

)
to B, where labi,j,k, f̂i [k]

= labi,j,k for β = 1.
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− If j /∈ Scrr ∪ Sdis, set Li,j to be a dummy circuit of input length ℓ̂, which always outputs 0ŝ and compute(
L̃i,j,

{
labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
← GC.Garble(1λ, Li,j).

6. For all i ∈ [Q] and j ∈ [N], B does the following.

− If j ∈ Scrr, it computes {HE.cti,j,k,b}k∈[ℓ̂],b∈{0,1} as in the construction.

− If j ∈ Sdis, it computes HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), labi,j,k, f̂i [k]
) for all k ∈ [ℓ̂] and b ∈

{0, 1}.
− If j /∈ Scrr ∪Sdis, then for all k ∈ [ℓ̂] and b ∈ {0, 1}, it computes HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), 0len),

where len is the length of the labels.

7. B sends ct =
({

L̃i,j

}
i∈[Q],j∈[N]

,
{

HE.cti,j,k,b

}
i∈[Q],j∈[N],k∈[ℓ̂],b∈{0,1}

)
to A.

8. A outputs a guess bit β′.

First, we note that for j /∈ Scrr ∪ Sdis, the way B generates
(

L̃i,j,
{

labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
does not effect the adversary’s

view because of the change we introduced in Hyb1. In particular, we do not use the labels labi,j,k,b generated for
j /∈ Scrr ∪ Sdis anywhere in Hyb1 or Hyb2 and hence the adversary does not have sufficient information to compute on the
garbled circuit L̃i,j for the corresponding set of labels. Next, we observe that if the GC challenger samples β = 0, then B
simulated the distribution Hyb1 , else Hyb2 withA. Hence, advantage of B = |Pr(β′ = 1|β = 0)−Pr(β′ = 1|β = 1)|
= |Pr(β′ = 1|Hyb1)− Pr(β′ = 1|Hyb2)| = ϵ (by assumption).

Claim 3.26. Assume RDMPC is a secure reusable dynamic MPC scheme, then Hyb2 ≈c Hyb3.

Proof. We show that if there exists a PPT adversaryA who can distinguish between Hyb2 and Hyb3 with non-negligible
advantage ϵ, then there exists an adversary B against the security of RDMPC scheme with the same advantage ϵ. The
reduction is as follows.

1. The RDMPC challenger samples a bit β← {0, 1} and initiates the multi challenge RDMPC security game with
B.

2. B first runs A. A outputs the functions f1, . . . , fQ and the randomness ∆(1), . . . , ∆(Q), r. B aborts and output ⊥
if
∣∣∣∆(i)

∣∣∣ ̸= n or |Scrr| > t.

3. B sends the query bound 1Q, input length 1ℓ, where | fi| = ℓ to the challenger. Note that this defines the
total number of parties N = (λ, Q), number of parties n = n(λ, Q) participating in any session, threshold
t = t(λ, Q). It also sends Scrr, ∆(1), . . . , ∆(Q) to the challenger.

4. B sends the functions f1, . . . , fQ as the input encoding query to the RDMPC challenger. The challenger computes
and returns f̂i ← InpEnc(1λ, 1ℓ, fi) for each fi, where i ∈ [Q], to B.

5. B generates key← HE.Gen(1λ, ℓ) and computes hstr ← HE.Hash(key, str), where the string str is as defined in
the construction. It sends pk = (key, hstr) and sk fi

=
(

i, ∆(i), f̂i

)
, for i ∈ [Q], to the adversary A.

6. A outputs the challenge input x. B does the following.

(a) It defines the circuit Cx as in the construction and sends the circuit Cx as the challenge for all the input
encoding queries to the RDMPC challenger. For each i ∈ [Q], the challenger does the following:
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- If β = 0, it computes (Ĉi,1, . . . , Ĉi,N) ← CktEnc(1λ, 1λ, 1ℓ, Cx) for each i ∈ [Q] and yi,j :=
Local(Ĉi,j, f̂i) for all i ∈ [Q] and j ∈ ∆(i).

- If β = 1, it computes({
Ĉi,j

}
j∈Scrr

,
{

ŷi,j
}

i∈[Q],j∈∆(i)

)
← RDMPC.Sim0

(
1|Cx |, Scrr, { fi(x), fi}i∈[Q]

)
- It returns

({
Ĉi,j

}
j∈Scrr

,
{

ŷi,j
}

i∈[Q],j∈∆(i)

)
to B.

(b) For all i ∈ [Q] and j ∈ [N],

- if j ∈ Scrr, sets Li,j(·) := Local(Ĉi,j, ·) and computes (L̃i,j, {labi,j,k,b}k∈[ℓ̂],b∈{0,1}) and {HE.cti,j,k,b}k∈ℓ̂,b∈{0,1}
honestly as in the construction.

- if j ∈ Sdis, then there exists an unique i such that j ∈ ∆(i). Retrieve the corresponding i ∈ [Q] and

computes
(

L̃i,j,
{

labi,j,k

}
k∈[ℓ̂]

)
← GC.Sim(1λ, ŷi,j). Then for all k ∈ [ℓ̂] and b ∈ {0, 1}, it computes

HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), labi,j,k).

- if j /∈ Scrr ∪ Sdis, set Li,j to be a dummy circuit of input length ℓ̂, which always outputs 0ŝ and compute(
L̃i,j,

{
labi,j,k,b

}
k∈[ℓ̂],b∈{0,1}

)
← GC.Garble(1λ, Li,j).

Then for all k ∈ [ℓ̂] and b ∈ {0, 1}, it computes

HE.cti,j,k,b ← HE.Enc(key, (hstr, (i, j, k), b), 0len)

where len is the length of the labels.

(c) B sends ct =
({

L̃i,j

}
i∈[Q],j∈[N]

,
{

HE.cti,j,k,b

}
i∈[Q],j∈[N],k∈[ℓ̂],b∈{0,1}

)
to A.

7. A outputs a guess bit β′.

We observe that if the RDMPC challenger samples β = 0, then B simulated the distribution Hyb2 , else Hyb3 with A.
Hence, advantage of B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hyb2)− Pr(β′ = 1|Hyb3)| = ϵ (by
assumption).

3.6 Laconic sPCE with Function-Hiding
In this section we provide a compiler to convert a semi-malicious sPCE without function-hiding and security against
outsiders into a laconic sPCE with function-hiding and security against outsiders using a maliciously circuit-private
FHE with linear efficiency. We also show that the resulting scheme retains the succinctness and security against a
semi-malicious authority property of the underlying sPCE scheme.

Building Blocks. We use the following ingredients for our construction.

1. A sPCE scheme SFE = (SFE.Setup, SFE.Enc, SFE.Dec) satisfying (SIM/relaxed-SIM) security against a
semi-malicious authority with succinct public keys.

2. A compact maliciously circuit-private FHE scheme with linear efficiency FHE = (FHE.KeyGen, FHE.Enc, FHE.Dec).
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Construction. Below we provide the description of our compiler.

Setup(1λ, f1, . . . , fQ). The setup algorithm does the following.

1. Generate (FHE.pk, FHE.sk)← FHE.KeyGen(1λ) and
(SFE.pk, SFE.sk f1 , . . . , SFE.sk fQ)← SFE.Setup(1λ, f1, . . . , fQ).

2. Compute FHE.ct← FHE.Enc(FHE.pk, SFE.pk).
3. Output pk = (FHE.pk, FHE.ct) and sk fi

= (FHE.sk, SFE.sk fi
) for i ∈ [Q].

Enc(pk, x). The encryption algorithm does the following.

1. Parse pk = (FHE.pk, FHE.ct).
2. Choose encryption randomness r for SFE.Enc.
3. Let G[x, r] be a circuit that on input key evaluates SFE.Enc(key, x; r) (this notation means encryption

randomness is r).
4. Compute FHE.ĉt← FHE.Eval(FHE.pk, G[x, r], FHE.ct).
5. Output ct = FHE.ĉt.

Dec(sk, ct). The decryption algorithm does the following.

1. Parse sk = (FHE.sk, SFE.sk fi
) for some i ∈ [Q] and ct = FHE.ĉt.

2. Compute y← FHE.Dec(FHE.sk, FHE.ĉt).
3. Output SFE.Dec(SFE.sk fi

, y).

Succinct public keys. First we note that |SFE.pk| = O(Q1−γ) since SFE has succinct public keys. Also, it is easy to
see that |FHE.pk| is independent of Q and |FHE.ct| = poly(λ) · |SFE.pk| = poly(λ) ·O(Q1−γ) due to the linear
efficiency of FHE. Hence, we have |pk| = O(Q1−γ).

Correctness. We show that the above construction is correct via the following theorem.

Theorem 3.27. Assume that the FHE scheme and the SFE scheme satisfies correctness. Then the above construction is
correct.

Proof. For any sk = (FHE.sk, SFE.sk fi
) and ct = FHE.ĉt = FHE.Eval(FHE.pk, G[x, r], FHE.ct), where FHE.ct←

FHE.Enc(FHE.pk, SFE.pk), we have

FHE.Dec(FHE.sk, FHE.ĉt) = G[x, r](SFE.pk) = SFE.Enc(SFE.pk, x; r)

with probability 1 by the correctness of the underlying FHE scheme. So we have y = SFE.Enc(SFE.pk, x; r) in Step 2
of the decryption algorithm. Next, by the correctness of the underlying SFE scheme, we have

SFE.Dec(SFE.sk fi
, y) = SFE.Dec(SFE.sk fi

, SFE.Enc(SFE.pk, x)) = fi(x)

with all but negligible probability. Hence, the correctness follows.

35



Function-hiding. This follows from the semantic security of underlying FHE scheme. We prove it using the following
theorem.

Theorem 3.28. Assume that the FHE scheme satisfies semantic security (Definition 2.27). Then the above construction
of the sPCE scheme satisfies function-hiding (Definition 3.2).

Proof. Recall that to show constraint hiding, we want

{pk|pk← Setup(1λ, f 0
1 , . . . f 0

Q)} ≈c {pk|pk← Setup(1λ, f 1
1 , . . . f 1

Q)}

where f b
i ∈ F for i ∈ [Q] and b ∈ {0, 1}. We show that if there exists a PPT adversaryA who can distinguish between

the above two distributions with non-negligible advantage ϵ, then there exists a PPT adversary B against the semantic
security of the FHE scheme with the same advantage ϵ. The reduction is as follows.

1. B first runs A. A outputs the challenge functions {( f 0
1 , f 1

1 ), . . . , ( f 0
Q, f 1

Q)}.

2. B computes (SFE.pkb, SFE.skb
f1

, . . . , SFE.skb
fQ
)← SFE.Setup(1λ, f b

1 , . . . , f b
Q) for b ∈ {0, 1}.

3. B sends (SFE.pk0, SFE.pk1) to the FHE challenger. The challenger generates (FHE.pk, FHE.sk)← FHE.KeyGen(1λ),
samples a bit β← {0, 1}, computes FHE.ct← FHE.Enc(FHE.pk, SFE.pkβ), and returns FHE.pk, FHE.ct to B.

4. B sets pk = (FHE.pk, FHE.ct) and forwards it to A.

5. In the end A outputs a bit β′. B forwards β′ to the FHE challenger.

We observe that if the FHE challenger samples β = 0, then B simulated the distribution D0 = {pk|pk ←
Setup(1λ, f 0

1 , . . . f 0
Q)} , else D1 = {pk|pk← Setup(1λ, f 1

1 , . . . f 1
Q)}withA. Hence, advantage ofB = |Pr(β′ = 1|β = 0)−

Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|D0)− Pr(β′ = 1|D1)| = ϵ (by assumption).

Security against semi-malicious authority. This follows from the security of the underlying maliciously circuit
private FHE and the semi-malicious secure SFE scheme.

Theorem 3.29. Assume that FHE is maliciously circuit-private (Definition 2.28) and SFE is (SIM/relaxed-SIM)
secure against a semi malicious authority (Definition 3.4). Then the above construction of sPCE scheme satisfies
(SIM/relaxed-SIM) security against a semi malicious authority (Definition 3.4).

Proof. To prove the theorem, we first construct the simulator SIM for the security against the semi-malicious authority
of the sPCE scheme. Note that the simulator takes as input (pk, 1|x|,V) where

V9 =
{

fi(x), fi, sk fi

}
i∈[Q]

.

We now provide the description of the simulator SIM. On input (pk, 1|x|,V), do the following.

1. Parse pk = (FHE.pk, FHE.ct) and sk fi
= (FHE.sk, SFE.sk fi

) for i ∈ [Q].

2. Let V ′ =
{

fi(x), fi, SFE.sk fi

}
i∈[Q]

.

3. Compute SFE.pk← FHE.Dec(FHE.sk, FHE.ct).

4. Compute SFE.ct← SFE.Sim(SFE.pk, 1|x|,V ′).

5. Compute FHE.ĉt← FHE.Sim(FHE.pk, FHE.ct, SFE.ct).

6. Output ct = FHE.ĉt.
9If the underlying SFE scheme satisfies SIM security against a semi-malicious authority, then we have V = { fi(x)}i∈[Q]
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To prove the security, we consider the following sequence of hybrids.

Hyb0. This is the real world. We write the complete game here to set up notations and for easy reference in the later
hybrids.

1. The adversary outputs the functions f1, . . . , fQ and the randomness FHE.r1, FHE.r2, and SFE.r correspond-
ing to the randomness used in the FHE.KeyGen, FHE.Enc and SFE.Setup algorithms respectively.

2. The challenger computes (FHE.pk, FHE.sk)← FHE.KeyGen(1λ; FHE.r1), (SFE.pk, SFE.sk f1 , . . . , SFE.sk fQ)←
SFE.Setup(1λ, f1, . . . , fQ; SFE.r), and FHE.ct ← FHE.Enc(FHE.pk, SFE.pk; FHE.r2). It returns pk =
(FHE.pk, FHE.ct) and sk fi

= (FHE.sk, SFE.sk fi
) for i ∈ [Q] to the adversary.

3. The adversary outputs the challenge input x. The challenger computes ct = FHE.ĉt as in the construction
and returns ct to the adversary.

4. In the end, the adversary outputs a guess bit β′.

Hyb1. In this hybrid we change the way ciphertext is generated. In particular, we change the way FHE.ĉt is computed.
The challenger computes FHE.ĉt← FHE.Sim(FHE.pk, FHE.ct, SFE.ct), where SFE.ct← SFE.Enc(pk, x).

Hyb2. In this hybrid we further change the way ciphertext is generated. In particular, we change the way SFE.ct is com-
puted. The challenger computes SFE.ct← SFE.Sim(SFE.pk, 1|x|,V ′), where V ′ =

{
fi(x), fi, SFE.sk fi

}
i∈[Q]

.

We also note that this is the ideal world with the simulator SIM defined above.

Indistinguishability of hybrids. We now show that the consecutive hybrids are indistinguishable.

Claim 3.30. Assume that FHE satisfies malicious circuit privacy, then Hyb0 ≈s Hyb1.

Proof. We show that if there exists an unbounded adversary A who can distinguish between Hyb0 and Hyb1 with
non-negligible advantage ϵ, then there exists an unbounded adversary B against the malicious circuit privacy security of
FHE scheme with the same advantage ϵ. The reduction is as follows.

1. B first runs A. A outputs the functions f1, . . . , fQ and the randomness FHE.r1, FHE.r2, and SFE.r.

2. B computes (FHE.pk, FHE.sk)← FHE.KeyGen(1λ; FHE.r1), (SFE.pk, SFE.sk f1 , . . . , SFE.sk fQ)← SFE.Setup(1λ, f1,
. . . , fQ; SFE.r), and FHE.ct ← FHE.Enc(FHE.pk, SFE.pk; FHE.r2). It returns pk = (FHE.pk, FHE.ct) and
sk fi

= (FHE.sk, SFE.sk fi
) for i ∈ [Q] to A.

3. A outputs the challenge input x. B defines the circuit G[x, r] as in the construction and sends FHE.pk, FHE.ct,
and G[x, r] to the FHE challenger. The FHE challenger computes SFE.pk = FHE.Ext(FHE.pk, FHE.ct),
samples β ← {0, 1} and returns FHE.ĉtβ to B, where FHE.ĉt0 ← FHE.Eval(FHE.pk, G[x, r], FHE.ct) and
FHE.ĉt1 ← FHE.Sim(FHE.pk, FHE.ct, SFE.Enc(SFE.pk, x)) (since G[x, r](SFE.pk) = Enc(SFE.pk, x; r)).

4. B sets and forwards ct = FHE.ĉtβ to A.

5. In the end, A outputs a bit β′. B sends β′ to the FHE challenger.

We observe that if the FHE challenger samples β = 0, then B simulated Hyb0, else Hyb1 with A. Hence, advantage of
B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hyb0)− Pr(β′ = 1|Hyb1)| = ϵ (by assumption).

Claim 3.31. Assume that SFE satisfies relaxed-SIM security against a semi malicious authority. Then Hyb1 ≈c Hyb2.

Proof. We show that if there exists a PPT adversaryA who can distinguish between Hyb1 and Hyb2 with non-negligible
advantage ϵ, then there exists a PPT adversary B against the malicious circuit privacy security of SFE scheme with the
same advantage ϵ. The reduction is as follows.

1. B first runs A. A outputs the functions f1, . . . , fQ and the randomness FHE.r1, FHE.r2, and SFE.r.
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2. B sends the functions f1, . . . , fQ and the randomness SFE.r to the SFE challenger and gets back (SFE.pk, SFE.sk f1 , . . . , SFE.sk fQ).

3. B generates (FHE.pk, FHE.sk)← FHE.KeyGen(1λ; FHE.r1), and computes FHE.ct← FHE.Enc(FHE.pk, SFE.pk; FHE.r2).
It returns pk = (FHE.pk, FHE.ct) and sk fi

= (FHE.sk, SFE.sk fi
) for i ∈ [Q] to A.

4. A outputs the challenge input x. B forwards x to the SFE challenger as the challenge ciphertext. The SFE
challenger samples a bit β ← {0, 1} and returns SFE.ctβ to B where SFE.ct0 ← SFE.Enc(SFE.pk, x) and
SFE.ct1 ← SFE.Sim(SFE.pk, 1|x|,V ′) where V ′ =

{
fi(x), fi, SFE.sk fi

}
i∈[Q]

.

5. B computes FHE.ĉt← FHE.Sim(FHE.pk, FHE.ct, SFE.ctβ) and forwards ct = FHE.ĉt to A.

6. In the end, A outputs a bit β′. B sends β′ to the SFE challenger.

We observe that if the SFE challenger samples β = 0, then B simulated Hyb1, else Hyb2 with A. Hence, advantage of
B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| = |Pr(β′ = 1|Hyb1)− Pr(β′ = 1|Hyb2)| = ϵ (by assumption).

Security against the outsiders. This follows from Lemma 3.8.
We summarize the result of this section using the following theorem.

Theorem 3.32. There exists a laconic sPCE scheme for general constraints that satisfies security against a semi-malicious
authority ( Definition 3.4), under the LWE assumption, achieving a succinct master public key with |mpk| = poly(λ).

4 Laconic Attribute-Based PCE for Point Constraints
In this section we give a construction of an attribute-based pre-constrained encryption scheme for point constraints for
function family F : {0, 1}ℓ → {0, 1} with a succinct master public key. Our construction achieves the definition of
AJJM and supports dynamic key generation – please see Section 2.1.

4.1 Construction
We use the following ingredients.

• Ext(X, r): a seeded strong extractor, where X is a random variable with sufficient min-entropy, and r← {0, 1}λ

is uniformly at random.

• A vector commitment scheme VC = (Com, Open, Ver) as defined in Lemma 2.22.

• We let m, n, q denote the LWE parameters such that n = d1/ϵ · poly(λ, log ℓ, log s), m = nd · poly(λ), where
0 < ϵ < 1 and d is the maximum depth of the functions in F . We set σ′ = σ2nm2λ · 2ω(log λ), σ1 = md·log λ.

Let the pre-constrained point be x∗ ∈ {0, 1}ℓ. For simplicity, in setup we write the point constraint as x∗ instead of Cx∗

and let Cx∗( f ) = 1 if f (x∗) = 1. We construct a laconic pre-constrained ABE scheme for point constraints as follows.

Setup(1λ, x∗)→ (mpk, mskx∗).

− Sample B̄← Z
n
2×m
q , SB ← D

n
2×

n
2

Z,σ , EB ← D
n
2×m
Z,σ and define

B :=

[
B̄

SB · B̄ + EB

]
∈ Zn×m

q .

− Sample (W, TW)← TrapGen(12m2n, 1m, q) and compute T← [I2m2 ⊗ B W]−1(I2m2 ⊗G) using TW.
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− Set pp := (B, W, T), compute Cx∗ := Com(pp, x∗) and Zx∗ := Open(pp, x∗).
− Sample U← {0, 1}m×m, and compute B1 := B ·U− Cx∗ ∈ Zn×m

q .

− Output mpk := (B, B1, W, TW, T) and mskx∗ := (x∗, Cx∗ , Zx∗ , U).

KeyGen(mskx∗ , f )→ sk f . If f (x∗) ̸= 1, abort, else

− Compute Vℓ = Ver(pp, ℓ), where pp = (B, W, T) and set A := −B1Vℓ.
− Compute A f := EvalF(A, f ) and HA, f ,x∗ := EvalFX(A, f , x∗).

− Sample D← SamplePre
(
[B A f ],

(
(Zx∗ + UVℓ) ·HA, f ,x∗

Im

)
, 0, σ1

)
.

Here, we use the fact that [B A f ]

(
(Zx∗ + UVℓ) ·HA, f ,x∗

Im

)
= f (x∗)G to apply SamplePre.

− Output sk f := D.

Enc(mpk, x, m)→ ct.

− Sample S1 ← D
n× n

2
Z,σ′ , S2 ← D

n× n
2

Z,σ , E0 ← Dn×m
Z,σ′ , E1 ← Dn×m

Z,σ′ , r← {0, 1}λ.

− Set S = [S1 S2] and compute Cx = Com(pp, x).
− Output ciphertext ct := (C0, C1, C2, r) where C0 := S · B + E0, C1 := S · (B1 + Cx) + E1, C2 :=

Ext(S2, r)⊕m.

Dec(mpk, skid, ct)→ m′.

− Parse mpk = (B, B1, W, TW, T), sk f = D, and ct = (C0, C1, C2, r). Set pp = (B, W, T).
− Compute Vℓ = Ver(pp, ℓ), Zx = Open(pp, x), A = −B1Vℓ and HA, f ,x := EvalFX(A, f , x).

− Compute C f ,x := [C0 C1 ]

(
−Zx
−Vℓ

)
·HA, f ,x.

− Compute E f ,x by solving the equation: E f ,x ·D = [C0 C f ,x ] ·D mod q.

− Compute S by solving: S · [B A f ] = [C0 C f ,x ]− E f ,x mod q.

− Parse S = [S1 S2], and output m′ = C2 ⊕ Ext(S2, r).

Succinct Master Public key. We have |mpk| = poly(λ, d), which is independent of the length of the punctured
attribute.

Correctness We show that our scheme is correct for any function f such that f (x∗) = 1 and attribute x such
that f (x) = 0, with secret key sk f = D and ciphertext ct = (C0, C1, C2, r) ← Enc(mpk, x, m). In the decryption
algorithm we have

C f ,x = [C0 C1 ] ·
(
−Zx
−Vℓ

)
·HA, f ,x

= (S [B B1 + Cx] + [E0 E1]) ·
(
−Zx
−Vℓ

)
·HA, f ,x

= S [B B1 + Cx] ·
(
−Zx
−Vℓ

)
·HA, f ,x + E′f ,x

(using Equation (2)) = S(−B1Vℓ︸ ︷︷ ︸
A

−x⊗G) ·HA, f ,x + E′f ,x

(using Equation (1)) = S(A f − f (x)G) + E′f ,x

39



Since f (x) = 0, the above implies C f ,x = SA f + E′f ,x. Using this we have [C0 C f ,x] = S[B A f ] + [E0 E′f ,x]. Set
E f ,x = [E0 E′f ,x]. Next, note that [C0 C f ,x] ·D = S[B A f ] ·D + E f ,x ·D = E f ,x ·D. Assuming D is full rank
with all but negligible probability 10 , we solve for E f ,x from [C0 C f ,x] ·D = E f ,x ·D and for S from [C0 C f ,x] =
S[B A f ] + E f ,x. Parse S = [S1 S2] and compute Ext(S2, r)⊕ C2 = Ext(S2, r)⊕ Ext(S2, r)⊕m = m, and hence
the correctness.

4.2 Security
Theorem 4.1. (Security Against Authority) The above construction is secure against a semi-malicious authority
(Definition 2.2).

Proof. Consider an adversary A that outputs the master public key mpk, randomness r, point constraint x∗, such that
f (x∗) = 1 for all f ∈ F , challenge attribute x, and two messages m0, m1. We consider the non-trivial scenario where
x∗ = x. To prove unconditional security against the authority we need to show Enc(mpk, x∗, m0) ≈s Enc(mpk, x∗, m1).
We prove the above via the following sequence of hybrids.

Hyb0. This is the real world where the challenger encrypts the message m0.

Hyb1. This hybrid is same as the previous hybrid except the following changes

− Rewrite C0 = S · B + E0 as

C0 := [S1 + S2SB]B̄ + [S2EB + E0].

− Rewrite C1 = S · (B1 + Cx∗) + E1, as

C1 := [S1 + S2SB]B̄U + [S2EBU + E1].

Hyb0 is identical to Hyb1, since we only substitute B with
(

B̄
SB · B̄ + EB

)
and B1 + Cx∗ with BU.

Hyb2. In this hybrid we substitute [S1 + S2SB] with a freshly sampled secret matrix S′ ← Dn×n/2
Z,σ′ . Similarly

we substitute [S2EB + E0] with E′0 ← Dn×m
Z,σ′ and [S2EBU + E1] with E′1 ← Dn×m

Z,σ′ . Hyb1 ≈s Hyb2

using the noise flooding lemma (Lemma 2.18). To see this we note that ∥S2SB∥ ≤ ∥S2∥∥SB∥ ≤ n2σ2λ.
Similarly, ∥S2EB∥ ≤ nmσ2λ, ∥S2EBU∥ ≤ nm2σ2λ. We set σ′ = σ2nm2λ · 2ω(log λ) and thus we have
SD((S1 + S2SB), S′), SD((S2EB + E0), E′0), SD((S2EBU + E1), E′1) ≤ negl(λ). Hence, Hyb1 ≈s Hyb2. We
get

C0 = S′B̄ + E′0, C1 = S′B̄U + E′1, C2 := Ext(S2, r)⊕m0.

Hyb3. Here we modify the way C2 is computed by replacing Ext(S2, r) with an independently uniform random string
u← {0, 1}λ. Note that S2 does not appear elsewhere in the ciphertext and is not used anywhere else in Hyb2.
So we have C2 = u⊕m0, which is a uniformly random bit due the randomness of u.
Next we unroll the hybrids to get to the real world where we encrypt the message m1.

Constraint Hiding Next, we show that our construction satisfies constraint hiding.

Theorem 4.2. The above construction satisfies constraint hiding Definition 2.3.

Proof. Let the point constraints chosen by the adversary be x0, x1 such that f (x0) = f (x1). We want to prove

(mpk0 : (mpk0, msk0)← Setup(1λ, x0)) ≈c (mpk1 : (mpk1, msk1)← Setup(1λ, x1)) (5)

where the adversary also has the oracle access to KeyGen(msk0, ·) in the L.H.S of Equation (5) and to KeyGen(msk1, ·)
in the R.H.S of Equation (5). We prove the theorem using the following sequence of hybrids.

10We let the KeyGen sample a D such that it is full rank.
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Hyb0. This is the real world where we run the setup using x0.

Hyb1. This hybrid is same as the previous hybrid, except that in the key generation algorithm we abort if f (x1) ̸= 1.
Hyb1 is identical to Hyb2 since f (x0) = f (x1).

Hyb2. This hybrid is same as the previous hybrid except that in the setup we sample B ← Zn×m
q . Hyb1 ≈c Hyb2

using LWE assumption (Assumption 2.20). To see this, we note that using LWE we can replace SB · B̄ + EB

with a uniformly sampled matrix from B′ ← Z
n
2×m
q . Thus we have B = (B̄ B′) where B̄, B′ ← Z

n
2×m
q .

Hyb3. This hybrid is same as the previous except that we sample B with a trapdoor, (B, TB)← TrapGen(1n, 1m, q).
Hyb2 ≈s Hyb3 due to the properties of the trapdoor sampling (Lemma 2.16).

Hyb4. This hybrid is same as the previous hybrid except that in the key generation, we sample D differently
as D ← SamplePre

(
[B A f ], TB, 0, σ1

)
. Hyb3 ≈s Hyb4 due to the properties of the trapdoor sampling

(Lemma 2.16). In this hybrid, sampling D is independent of x0 and x1.

Hyb5. This hybrid is same as the previous hybrid except that in the setup algorithm we sample B1 uniformly
as B1 ← Zn×m

q . Hyb4 ≈s Hyb5 by Leftover Hash Lemma (Lemma 2.19). Note that in Hyb4, we had
B1 := B ·U− Cx0 , where Cx0 = Com(pp, x0). By leftover hash lemma B ·U is statistically close to a random
matrix sampled from Zn×m

q . Thus B ·U− Cx0 is statistically close to a random matrix sampled from Zn×m
q .

Henceforth we unroll the hybrids as above starting by computing B1 as B1 := B · U − Cx1 , where Cx1 =
Com(pp, x1), and so on to get back to the real world where we run setup using x1. This completes the proof.

We summarize the result of this section using the following theorem.

Theorem 4.3. There exists a laconic pre-constrained attribute-based encryption (AB-PCE) scheme for point-constraints
that satisfies semi-malicious security (as defined in Definition 2.2), under the LWE assumption with |mpk| = poly(λ, d),
where d denotes the maximum depth of the function class supported by the scheme.

The prior work by [AJJM22] constructed a AB-PCE scheme for point-constraints satisfying semi-malicious security
assuming LWE and achieving |mpk| = poly(λ, d, ℓ), where d denotes the maximum depth of the function class
supported by the scheme and ℓ denotes the attribute length.
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APPENDIX

A Additional Preliminaries
A.1 Dual-Mode Non-Interactive Zero-Knowledge Proof Systems
Let L be a language in NP, and let R be the associated binary relation such that for every x ∈ {0, 1}∗, x ∈ L if and
only if there exists a witness w such that (x, w) ∈ R. A dual-mode non-interactive proof system for R consists of the
following probabilistic polynomial-time algorithms.

Hsetup(1λ)→ crs. This algorithm takes as input the security parameter λ and outputs a hiding common reference
string crs.

Bsetup(1λ) → (crs, tdext). This algorithm takes as input the security parameter λ and outputs a binding common
reference string crs and an extraction trapdoor tdext.

Prove(crs, x, w)→ π. This algorithm takes as input a crs, a statement x, and a witness w, and outputs a proof π.

Verify(crs, x, π) → 0/1. The verification algorithm takes as input a crs, a statement x, and a proof π, and outputs
either 1 (accept) or 0 (reject).

We require the dual mode NIZK proof system to satisfy the following properties.

Definition A.1 (Perfect completeness in both modes). A dual-mode NIZK proof system for the language L and
the associated binary relation R is said to satisfy perfect completeness if for any λ ∈ N, any statement x ∈ L and
corresponding witness w, the following holds

Pr[Verify(crs, x, Prove(crs, x, w)) = 1] = 1

where crs← Hsetup(1λ) or (crs, tdext)← Bsetup(1λ) .

Definition A.2 (CRS indistinguishability). A dual-mode NIZK proof system for the language L and the associated
binary relation R is said to satisfy CRS indistinguishability if there exists a negligible function negl(·) such that for any
adversary A, the following two distribution ensembles are computationally indistinguishable

{crs | crs← Hsetup(1λ)} ≈c {crs | (crs, tdext)← Bsetup(1λ)}.

Definition A.3 (Statistical zero-knowledge in hiding mode). A dual-mode NIZK proof system for the language L and
the associated binary relation R is said to satisfy statistical zero-knowledge if there exists a probabilistic polynomial-time
simulator Sim such that for any (x, w) ∈ R, the following two distribution ensembles are statistically indistinguishable
for any λ ∈N

{(crs, π) : (crs, π)← Sim(1λ, x)} ≈s {(crs, Prove(crs, x, w)) : crs← Hsetup(1λ)}.

Definition A.4 (Common random string). If crs output by Hsetup (resp. Bsetup) is uniformly random, we call it
common random string in the hiding (resp. binding) mode.

Definition A.5 (Knowledge extraction in the binding mode). A dual-mode NIZK proof system for the language L and
the associated binary relation R is said to satisfy knowledge extraction if there exists an extractor Ext, such that for any
PPT adversary A, the following holds

Pr

 Verify(crs, x, π) = 0∨ (x, w) ∈ R :
(crs, tdext)← Bsetup(1λ);
(x, π)← A(crs);
w← Ext(tdext, x, π)

 ≥ 1− negl(λ).

Remark A.6. In the standard definition of dual-mode NIZK, we do not require that the CRS is a uniformly random string
in the hiding mode. However, the construction based on the LWE assumption [CCH+19, PS19] has this property.
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The dual-mode NIZK by Canetti et al. [CCH+19] satisfies the following adaptive soundness instead of Definition A.5
(in the binding mode).

Definition A.7 (Adaptive Soundness). A dual-mode NIZK proof system for the language L and the associated binary
relation R is said to satisfy adaptive soundness if for any PPT adversary A, the following holds

Pr
[

Verify(crs, x, π) = 1∧ x /∈ L : (crs, tdext)← Bsetup(1λ);
(x, π)← A(crs)

]
≤ negl(λ).

We can upgrade adaptive soundness to knowledge extraction by the following theorem.

Theorem A.8 ([KNYY19]). If a NIZK proof system is adaptively sound, and there exists PKE, we can convert the
NIZK proof system into a NIZK that has the knowledge extraction property.

It is easy to see that this conversion preserves the dual-mode property and the uniformly random CRS property in
the hiding mode if we use lossy PKE [PVW08, BHY09, KN08] with uniformly random lossy public keys [CCH+19] for
the conversion. This is because the conversion adds a public key to the NIZK CRS, appends a ciphertext of a witness to
a NIZK proof for proving the knowledge and the ciphertext is an encryption of the witness.

Theorem A.9 ([Reg09]). The Regev PKE is lossy encryption with uniformly random lossy public keys under the LWE
assumption.

Theorem A.10 ([CCH+19, PS19]). There exists a dual-mode non-interactive zero-knowledge proof system for any
NP language, based on the plain LWE problem with (small) polynomial approximation factors, satisfying statistical
zero-knowledge with common random string in the hiding mode and adaptive soundness in the binding mode.

We can obtain the following corollary from the theorems above.

Corollary A.11. There exists a dual-mode non-interactive zero-knowledge proof system for any NP language, based
on the plain LWE problem with (small) polynomial approximation factors, satisfying statistical zero-knowledge with
common random string in the hiding mode and knowledge extraction in the binding mode.

A.2 One-Way Relation
Next, we provide the definition of one-way relation.

A one-way relation for a relationR consists of two algorithms (Gen, Sample) with the following syntax.

Gen(1λ)→ pp. The generation algorithm takes as input the security parameter and outputs the public parameter pp.

Sample(pp)→ (x, w). The sample algorithm outputs an instance witness pair (x, w).

A one-way relation satisfies the following properties.

Definition A.12 (Correctness). A one-way relation for a relationR is said to be correct if for any pp← Gen(1λ), the
following holds

Pr[(pp, x, w) ∈ R | (x, w)← Sample(pp)] ≥ 1− negl(λ).

Definition A.13 (Security). A one-way relation for a relationR is said to be secure if for any PPT adversary A, the
following holds

Pr

 (pp, x, w′) ∈ R :
pp← Gen(1λ);
(x, w)← Sample(pp);
w′ ← A(pp, x)

 ≤ negl(λ).
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A.3 Digital Signatures
A digital signature scheme for a message spaceM consists of three algorithms (Gen, Sign, Verify) with the following
syntax.

Gen(1λ)→ (vk, sk). The key generation algorithm takes as input the security parameter λ and outputs a verification
key vk and a signing key sk.

Sign(sk, m) → σ. The signing algorithm takes as input the signing key sk and a message m ∈ M, and outputs a
signature σ.

Verify(vk, m, σ) → 0/1. The verification algorithm takes as input a verification key vk, a message m ∈ M and a
signature σ, and outputs either 1 (accept) or 0 (reject).

A digital signature scheme satisfies the following properties.

Definition A.14 (Correctness). A digital signature scheme is sad to be correct if for any (vk, sk)← Gen(1λ), and any
m ∈ M, the following holds

Pr[Verify(vk, m, Sign(sk, m)) = 1] = 1.

Definition A.15 (EUF-CMA Security). A digital signature scheme is existentially unforgeable under chosen message
attacks if for any PPT adversary A, the following holds

Pr
[

m /∈ Q ∧ Verify(vk, m, σ) = 1 : (vk, sk)← Gen(1λ);
(m, σ)← ASign(sk,·)(vk)

]
≤ negl(λ)

where Q ⊂M is the set of messages for which A makes the signing queries to Sign(sk, ·).

B Missing details from Section 3
B.1 Succinct Hash Encryption with Semi-Malicious security in ROM.
In this section, we provide a construction of hash encryption satisfying semi-malicious security. To begin, we observe
that the construction of HE from LWE by Döttling et al. [DGHM18] already satisfies semi-honest security. To make it
succinct and semi-malicious secure in the ROM, we make the following two modifications:

1. Succinctness: We use a pseudorandom generator PRG to generate key.

2. Semi-malicious security: Let H be a hash function modelled as the random oracle. Let R be the (potentially bad)
randomness sampled by the adversary in the semi-malicious game. Then, the key of HE is set R, using which the
parties compute H(PRG(R)).

We also note that for our purpose we need a hash encryption scheme with hash domain {−1, 0, 1}m satisfying
semi-malicious security. We use the HE scheme for binary hash domain from [DGHM18] as a black box to construct
our hash encryption scheme with hash domain {−1, 0, 1}m satisfying semi-malicious security.

Building blocks. We use the following ingredients for our construction.

1. A pseudorandom generator PRG : {0, 1}λ → {0, 1}∗.

2. A random oracle H : {0, 1}∗ → Z2m×λ
p .

3. A hash encryption scheme HE = (HE.Gen, HE.Hash, HE.Enc, HE.Dec) satisfying semi-honest security for the
hash domain {0, 1}2m and message spaceM. This can be instantiated from LWE assumption (Theorem 2.11).

4. A mapping ϕ : X → {0, 1}2m, where, X ⊆ {−1, 0, 1}m and ϕ(x1 . . . xm) = y1 . . . y2m where y2i−1 = y2i = 0
if xi = 0, y2i−1 = y2i = 1 if xi = 1, and y2i−1 = 1, y2i = 0 if xi = −1.
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Construction. We describe our construction below.

Gen(1λ, m)→ key. The setup algorithm does the following.

1. Sample r ← {0, 1}λ.
2. Compute A = H(PRG(r)) and set HE.key = A.
3. Output key = r and set the CRS as HE.key.

Hash(key, x ∈ {−1, 0, 1}m)→ h. The hash algorithm does the following.

1. Parse key = r and compute HE.key := H(PRG(r)).
2. Let ϕ(x) = y and compute HE.hash← HE.Hash(HE.key, y).
3. Output h = HE.hash.

Enc(key, (h, i ∈ [m], c ∈ {−1, 0, 1}), µ). The encryption algorithm does the following.

1. Parse key = r, h = HE.hash and compute HE.key := H(PRG(r)).
2. Sample random s0 ←M and set s1 = µ⊕ s0.
3. Let ϕ(c) = c0c1 and compute HE.ct0 ← HE.Enc(HE.key, (HE.hash, 2i − 1, c0), s0) and HE.ct1 ←

HE.Enc(HE.key, (HE.hash, 2i, c1), s1).
4. Output ct = (HE.ct0, HE.ct1).

Dec(key, x, ct)→ {0, 1}. The decryption algorithm does the following.

1. Parse key = r and compute HE.key := H(PRG(r)).
2. Let ϕ(x) = y.
3. Parse ct = (HE.ct0, HE.ct1) and compute s′0 ← HE.Dec(HE.key, y, HE.ct0) and s′1 ← HE.Dec(HE.key, y, HE.ct1).
4. Output µ′ = s0 ⊕ s1.

Collusion resistance. First we note that ϕ is a one to one mapping, i.e. if x1 ̸= x2 =⇒ ϕ(x1) ̸= ϕ(x2). This along
with the fact that HE.Hash is a collusion resistant hash, implies that the Hash algorithm in the above construction is a
collusion resistant hash for hash domain {−1, 0, 1}m.

Correctness. For any Enc(key, (h, i, c), µ) = ct = (HE.ct0, HE.ct1), where HE.ct0 ← HE.Enc(HE.key, (HE.hash, 2i−
1, c0), s0) and HE.ct1 ← HE.Enc(HE.key, (HE.hash, 2i, c1), s1) and for any x such that Hash(key, x) = h =
HE.Hash(HE.key, y), where y = ϕ(x), we observe that with all but negligible probability

1. if y2i−1 = c0,

HE.Dec(HE.key, y, HE.ct0) = HE.Dec(HE.key, y, HE.Enc(HE.key, (HE.hash, 2i− 1, c0), s0)) = s0

2. and if y2i = c1

HE.Dec(HE.key, y, HE.ct1) = HE.Dec(HE.key, y, HE.Enc(HE.key, (HE.hash, 2i, c1), s1)) = s1

by the correctness of the underlying HE scheme. Now, if xi = c, it implies that ϕ(xi) = ϕ(c) =⇒ y2i−1y2i = c0c1.
So we recover s0, s1 in Step 3 of the decryption algorithm and s0 ⊕ s1 = µ in the Step 4 by the correctness of secret
sharing. Hence, the correctness follows.
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Semi-malicious security. We show that the above construction of a hash encryption scheme is secure via following
theorem.

Theorem B.1. Assume that HE is a secure hash encryption scheme for hash domain {0, 1}2m in the semi-honest setting
(Definition 2.8). Then the above construction is a secure hash encryption scheme in the semi-malicious setting for hash
domain {−1, 0, 1}m.

Proof. Recall that to prove the security we need to show that

Enc(key, (h, i, ci), µ0) ≈c Enc(key, (h, i, ci), µ1)

where h = Hash(key, x) for some x ∈ {−1, 0, 1}m and xi ̸= ci for some ci ∈ {−1, 0, 1}.
We consider the following sequence of hybrid games.

Hyb0. This is the real world where the ciphertext is computed for message µ0, We write the complete game to setup
notations and for easy reference in the later hybrids.

1. The adversary outputs x ∈ {−1, 0, 1}m and a randomness r.
2. The challenger computes y = ϕ(x), generates A← HE.Gen(HE.key, 12m) and sets A := H(PRG(r)). It

sets key = r.
3. The adversary outputs an index i ∈ [m], two messages µ0, µ1 and a ci ∈ {−1, 0, 1} such that xi ̸= ci. The

challenger does the following.
(a) It computes ϕ(ci) = d2i−1d2i, where d2i−1, d2i ∈ {0, 1}.
(b) It samples s(2i−1)

0 , s(2i−1)
1 ← M and sets s(2i)

0 = µ0 ⊕ s(2i−1)
0 , s(2i)

1 = µ1 ⊕ s(2i−1)
1 (s(ind)

b denotes
the share of message µb at position ind ).

(c) It computes HE.ct(2i−1) ← HE.Enc(HE.key, (HE.Hash(HE.key, y), 2i− 1, d2i−1), s(2i−1)
0 ) and HE.ct(2i) ←

HE.Enc(HE.key, (HE.Hash(HE.key, y), 2i, d2i), s(2i)
0 ).

4. The challenger returns ct = (HE.ct(2i−1), HE.ct(2i)) to the adversary.
5. The adversary outputs a guess bit β.

Hyb1. In this hybrid we change the way the ciphertext is generated. In particular for j ∈ {2i− 1, 2i} such that yj ̸= dj
(since xi ̸= ci, then by the definition of ϕ, it implies there exists such an index j), the challenger computes
HE.ct(j) ← HE.Enc(HE.key, (HE.Hash(HE.key, y), j, dj, s(j)

1 ).

Hyb2. This hybrid is same as the previous hybrid except that we set s(j′)
0 := s(j)

1 ⊕ µ1, where j′ ∈ {2i− 1, 2i} such
that j′ ̸= j.
We note that this hybrid is the real world where the ciphertext is computed for message µ1.

Indistinguishability of hybrids. Now we show that the above consecutive hybrids are indistinguishable.

Claim B.2. Assume that HE is a secure hash encryption scheme in the semi-honest setting. Then Hyb0 ≈c Hyb1.

Proof. We show that if there exists a PPT adversaryA who can distinguish between the two hybrids with non-negligible
advantage ϵ, then there exists a PPT adversary B against the semi-honest security of the underlying HE scheme with
the same advantage ϵ. The reduction is as follows.

1. B first runs A. The adversary outputs x ∈ {−1, 0, 1}m and a randomness r.

2. B computes y = ϕ(x) and sends y to the HE challenger. The challenger generates A← HE.Gen(HE.key, 12m)
and returns the HE.key = A to B.

3. B sets the H(PRG(r)) = A and returns A to the adversary A.
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4. A outputs an index i ∈ [m], two messages µ0, µ1 and a ci ∈ {−1, 0, 1} such that xi ̸= ci. B does the following.

− It computes ϕ(ci) = d2i−1d2i, where d2i−1, d2i ∈ {0, 1}.

− It samples s(2i−1)
0 , s(2i−1)

1 ←M and sets s(2i)
0 = µ0 ⊕ s(2i−1)

0 , s(2i)
1 = µ1 ⊕ s(2i−1)

1 .

− For j ∈ {2i− 1, 2i} such that yj ̸= dj, B sends (j, (s(j)
0 , s(j)

1 ), dj) as the ciphertext challenge to the HE chal-
lenger. The HE challenger samples a bit β← {0, 1} and computes HE.ct(j) ← HE.Enc(HE.key, (HE.Hash
(HE.key, y), j, dj), s(j)

β ) and returns HE.ct(j) to B.

− Let j′ ∈ {2i− 1, 2i} s.t j′ ̸= j. B computes HE.ct(j′) ← HE.Enc(HE.key, (HE.Hash(HE.key, y), j′, dj′), s(j′)
0 ).

− B sets ct = (HE.ct(j), HE.ct(j′)) if j = 2i− 1, else it sets ct = (HE.ct(j′), HE.ct(j)) and sends ct to A.

5. In the end A outputs a bit β′. B forwards β′ to the HE challenger.

We observe that if the HE challenger samples β = 0, then B simulated the real world where µ0 is encrypted , else
the real world where µ1 is encrypted with A. Hence, advantage of B = |Pr(β′ = 1|β = 0)− Pr(β′ = 1|β = 1)| =
|Pr(β′ = 1|Hyb0)− Pr(β′ = 1|Hyb1)| = ϵ (by assumption).

Claim B.3. Hyb1 and Hyb2 are statistically indistinguishable.

Proof. We note that s(j′)
0 is a uniformly random string, since each share of µ0 is distributed uniformly at random. Also,

since the other share of µ0, which is s(j)
0 , does not appear in Hyb1 and Hyb2, we can set s(j′)

0 = s(j)
1 ⊕ µ1, which is

again a uniformly random string due to the randomness of s(j)
1 and the guarantee of secret sharing. We also note that

now HE.ct(j′) encrypts the message s(j)
1 ⊕ µ1.

C Laconic Identity-Based PCE for General Constraints
In this section we present a construction for a IB-PCE scheme for general constraints. Following [AJJM22], we also
note that with simple modifications to the AB-PCE construction in Section 4.1, we can achieve a IB-PCE scheme for
general constraints. Moreover, our construction achieves a succinct master public key.

We describe our construction below.

Setup(1λ, C)→ (mpk, mskC). The setup algorithm parses the constraint C as an ℓ bit string and does the following.

− Sample B̄← Z
n
2×m
q , SB ← D

n
2×

n
2

Z,σ , EB ← D
n
2×m
Z,σ and define

B :=

[
B̄

SB · B̄ + EB

]
∈ Zn×m

q .

− Sample (W, TW)← TrapGen(12m2n, 1m, q) and compute T← [I2m2 ⊗ B W]−1(I2m2 ⊗G) using TW.
− Set pp := (B, W, T), compute CC := Com(pp, C) and ZC := Open(pp, C).
− Sample U← {0, 1}m×m, and compute B1 := B ·U− CC ∈ Zn×m

q .

− Output mpk := (B, B1, W, TW, T) and mskC := (C, CC, ZC, U).

KeyGen(mskC, id)→ skid. The key generation algorithm constructs a universal circuit U[id] ,with id hardwired, and
does the following.

− Parse mskC = (C, CC, ZC, U). If C(id) ̸= 1, abort.
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− Compute Vℓ = Ver(pp, ℓ), where pp = (B, W, T) and set A := −B1Vℓ.
− Parse C as an ℓ bit string and compute Aid := EvalF(A, U[id]) and HA,U[id],C := EvalFX(A, U[id], C).

− Sample D← SamplePre
(
[B Aid],

(
(ZC + UVℓ) ·HA,U[id],C

Im

)
, 0, σ1

)
.

It is easy to note that
(
(ZC + UVℓ) ·HA,U[id],C Im

)⊺
is a gadget trapdoor for [B Aid].

− Output skid := D.

Enc(mpk, id, m)→ ct. The encryption algorithm constructs a universal circuit U[id] ,with id hardwired, and does the
following.

− Compute Vℓ = Ver(pp, ℓ), where pp = (B, W, T) and set A := −B1Vℓ. Compute Aid := EvalF(A, U[id]).

− Sample S1 ← D
n× n

2
Z,σ′ , S2 ← D

n× n
2

Z,σ , E0 ← Dn×m
Z,σ′ , E1 ← Dn×m

Z,σ′ , r← {0, 1}λ.

− Set S = [S1 S2] and output ciphertext ct := (C0, C1, r) where

C0 := S · [B Aid] + E0, C1 := Ext(S2, r)⊕m.

Dec(mpk, skid, ct)→ m′.

− Parse mpk = (B, B1, W, TW, T), sk f = D, and ct = (C0, C1, r). Set pp = (B, W, T).
− Compute Eid by solving the equation:

Eid ·D = C0 ·D mod q.

− Compute S by solving:
S · [B Aid ] = C0 − Eid mod q.

− Parse S = [S1 S2], and output m′ = C1 ⊕ Ext(S2, r).

Succinct Master Public Key. We have mpk = poly(λ), which is independent of the constraint size.

The correctness, unconditional security against semi-malicious authority and the constraint hiding are simple
adaptations of the respective proofs in Section 4.1, hence omitted. We summarize the result of this section using the
following theorem.

Theorem C.1. There exists an identity-based pre-constrained encryption (IB-PCE) scheme for general constraints that
satisfies semi-malicious security (as defined in Definition 2.2), under the LWE assumption, and achieves a succinct
master public key of size |mpk| = poly(λ).

The prior work by [AJJM22] constructed a IB-PCE scheme for general constraints satisfying semi-malicious security
assuming LWE and achieving |mpk| = poly(λ, ℓ), where ℓ denotes the constraint size.

D Pre-Constrained Group Signatures
In this section, we provide our definition and construction for pre-constrained group signatures. Our definition largely
follows the definition of [BGJP23] except that we generalize the constraint of database membership to arbitrary
constraints, and favour simpler game based definitions for security against authorities as compared to the simulation style
definitions of [BGJP23]. Another difference is that their definition also includes the step of authorizing the database
while ours does not. We note that such an authorization can be performed via a separate protocol (using zero-knowledge
or multiparty computation protocols).
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D.1 Definition
A pre-constrained group signature (PCGS) scheme for a circuit family C = {C : {0, 1}n → {0, 1}} for n = n(λ), a
message spaceM = {0, 1}n, an identity space ID consists of five algorithms (Setup, KeyGen, Sign, Verify, Open)
with the following syntax.

Setup(1λ, C)→ (mpk, msk). The setup algorithm, run by the group manager GM, takes as input the security parameter
λ and a circuit C ∈ C, and outputs a master public key mpk and a master secret key msk.

KeyGen⟨GM(msk), U⟩ → (id, skid). This is an interactive protocol between the group manager GM with msk and the
user U. It delivers an identity id ∈ ID to both GM and U and a user secret signing key skid to U.

Sign(mpk, skid, m)→ σ. The signing algorithm takes as input the master public key mpk, the user signing key skid
and a message m, and outputs a signature σ.

Verify(mpk, m, σ)→ {0, 1}. The verification algorithm takes as input the master public key mpk, a message m and a
signature σ, and outputs a bit indicating accept or reject.

Open(msk, σ)→ {id,⊥}. The opening algorithm on input the master secret key msk and a signature σ outputs either
an identity id ∈ ID or ⊥.

Definition D.1 (Correctness). A PCGS scheme is said to be correct if for any C ∈ C, m ∈ M, the following holds

Pr[Verify(mpk, m, Sign(mpk, skid, m)) = 1] ≥ 1− negl(λ)

where (mpk, msk)← Setup(1λ, C) and (id, skid)← KeyGen⟨GM(msk), U⟩.

Definition D.2 (Constraint-Hiding). A PCGS scheme is said to satisfy constraint-hiding security if for any PPT
adversary A, the following holds

Pr

 β′ = β :
C0, C1 ← A;
β← {0, 1}; (mpkβ, msk)← Setup(1λ, Cβ);
β′ ← A(mpkβ)

 ≤ 1
2
+ negl(λ)

where A is admissible if |C0| = |C1| and C0, C1 ∈ C.

Definition D.3 (Traceability). For a PCGS scheme and an adversary A, let us define the traceability experiment as
follows.

1. A outputs a challenge circuit C.

2. The challenger generates (mpk, msk)← Setup(1λ, C). It sends mpk to A.

3. A can make the following queries to the challenger.

(a) H-KeyGen. A can request the joining of an user U to the group. The challenger executes the KeyGen
protocol where it acts both as the group manager and the user. The challenger receives an id ∈ ID and the
respective signing key skid. It forwards id to A and maintains a set of these identities Hid. It also maintains
a list Hkey of the identity and the respective signing key pair (id, skid) for the queried identities.

(b) C-KeyGen. A can request to join the group as an user U. Then the challenger and the adversary executes
the KeyGen protocol where the challenger acts as the group manager and A as the user U. The challenger
andA receives an id ∈ ID andA additionally receives the signing key skid. The challenger maintains a set
of these identities Cid.

(c) Sign. A can request a signature on message m. It sends (m, id) to the challenger, where the id is the user
identity corresponding to some user in the group. If id /∈ Hid, the challenger outputs ⊥ else it returns
σ ← Sign(mpk, skid, m) to A. The challenger maintains a list Sid of (m, id) for which it returns the
signature to A.
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(d) Open. A can request to open a signature σ. The challenger runs Open(msk, σ) and forwards the output to
A.

4. A outputs a message m∗ and a signature σ∗.

A wins if the following conditions hold

1. Verify(mpk, m, σ) = 1 and C(m) = 1.

2. id← Open(msk, σ) ∧ ((m, id) /∈ Sid) ∧ (id /∈ Cid).

We say that a PCGS scheme is traceable if for any PPT adversary A, the probability that A wins the traceability
experiment is negl(λ).

Definition D.4 (Unframeability). For a PCGS scheme and an adversary A, let us define the unframeability experiment
as follows.

1. A outputs a circuit C ∈ C.

2. On input 1λ, C, the challenger generates (mpk, msk)← Setup(1λ, C). It sends (mpk, msk) to A.

3. A can make the H-KeyGen and Sign queries to the challenger as defined in Definition D.3. The challenger
maintains the list Hid and Sid for the respective queries.

4. A outputs a message m∗ and a signature σ∗.

A wins if the following conditions hold

1. Verify(mpk, m, σ) = 1.

2. id← Open(msk, σ) ∧ ((m, id) /∈ Sid) ∧ (id ∈ Hid).

We say that a PCGS scheme satisfies unframeability if for any PPT adversary A, the probability that A wins the
unframeability experiment is negl(λ).

Definition D.5 (Client-Authority Anonymity against Malicious Authority). For a PCGS scheme and an adversary A,
let us define the experiment for anonymity against malicious authority ExptCAA

β,A (1λ) as follows.

1. A outputs the challenge master public key mpk∗, a message m∗ and two identities (id∗0 , id∗1) and the respective
signing keys (sk∗id0

, sk∗id1
).

2. The challenger samples a bit β← {0, 1} and computes σβ ← Sign(mpk∗, sk∗idβ
, m∗) and returns σβ to A.

3. A outputs a bit β∗ as the output of the experiment.

We say that an adversary A is admissible if (i) C ∈ C where C ← Ext(1λ, mpk∗), and (ii) C(m∗) = 0.
We define the advantage of A in the above experiment as

AdvCAA
A (λ) =

∣∣∣Pr
[
ExptCAA

0,A (1λ) = 1
]
− Pr

[
ExptCAA

1,A (1λ) = 1
]∣∣∣ .

We say that a PCGS scheme satisfies anonymity against malicious authority if there exists an (possibly inefficient)
extractor Ext such that for any admissible PPT adversary A, AdvCAA

A (λ) ≤ negl(λ).

Definition D.6 (Unconditional Client-Authority Anonymity against Malicious Authority). We say that a PCGS
scheme satisfies unbounded anonymity against a malicious authority if for any (unbounded) admissible adversary A,
AdvCAA

A (λ) (as defined in Definition D.5) is negligible in the security parameter.

Definition D.7 (Client-Authority Unlinkability against Malicious Authority). For a PCGS scheme and an adversary
A, let us define the experiment for unlinkability against malicious authority ExptCAU

β,A (1λ) as follows.
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1. A outputs the challenge master public key mpk∗, two messages (m∗0 , m∗1) and two identities (id∗0 , id∗1) and the
respective signing keys (sk∗id0

, sk∗id1
).

2. The challenger computes σ0 ← Sign(mpk, sk∗id0
, m∗0), samples a bit β ← {0, 1} and computes σ1 ←

Sign(mpk∗, sk∗idβ
, m∗1) and returns (σ0, σ1) to A.

3. A outputs a bit β∗ as the output of the experiment.

We say that an adversary A is admissible if (i) C ∈ C where C ← Ext(1λ, mpk∗), and (ii) C(m∗0) = C(m∗1) = 0.
We define the advantage of A in the above experiment as

AdvCAU
A (λ) =

∣∣∣Pr
[
ExptCAU

0,A (1λ) = 1
]
− Pr

[
ExptCAU

1,A (1λ) = 1
]∣∣∣ .

We say that a PCGS scheme satisfies unlinkability against malicious authority if there exists an (possibly inefficient)
extractor Ext such that for any admissible PPT adversary A, AdvCAU

A (λ) ≤ negl(λ).

Definition D.8 (Unconditional Client-Authority Unlinkability against Malicious Authority). We say that a PCGS
scheme satisfies unbounded unlinkability against a malicious authority if for any (unbounded) admissible adversary A,
AdvCAU

A (λ) (as defined in Definition D.7) is negligible in the security parameter.

Definition D.9 (Client-Client Anonymity). For a PCGS scheme and an adversary A, let us define the experiment for
client-client anonymity ExptCCA

β,A (1λ) as follows.

1. A outputs a circuit C ∈ C.

2. The challenger generates (mpk, msk)← Setup(1λ, C). It sends the master public key mpk to A.

3. A can make the H-KeyGen, C-KeyGen and Sign queries to the challenger as defined in Definition D.3. The
challenger maintains the list Hid, Hkey, Cid and Sid for the respective queries.

4. A outputs a message m∗ and two user identities (id0, id1). If id0 ∨ id1 ∈ Cid then abort, else the challenger
samples β← {0, 1} and computes σβ ← Sign(mpk, skidβ

, m∗), where skidβ
is the signing key corresponding to

idβ from the list Hkey, and returns this to the adversary.

5. A outputs a bit β′ as the output of the experiment.

We define the advantage of A in the above experiment as

AdvCCA
A (λ) =

∣∣∣Pr
[
ExptCCA

0,A (1λ) = 1
]
− Pr

[
ExptCCA

1,A (1λ) = 1
]∣∣∣ .

We say that a PCGS scheme satisfies client-client anonymity if for any PPT adversary A, AdvCCA
A (λ) ≤ negl(λ).

Definition D.10 (Client-Client Unlinkability). For a PCGS scheme and an adversary A, let us define the experiment
for client-client unlinkability ExptCCU

β,A (1λ) as follows.

1. A outputs a circuit C ∈ C.

2. The challenger generates (mpk, msk)← Setup(1λ, C). It sends the master public key mpk to A.

3. A can make the H-KeyGen, C-KeyGen and Sign queries to the challenger as defined in Definition D.3. The
challenger maintains the list Hid, Hkey, Cid and Sid for the respective queries.

4. A outputs messages m0, m1 and two user identities id0, id1. If id0 ∈ Cid or id1 ∈ Cid then abort, else the challenger
computes σ0 ← Sign(mpk, skid0 , m0), samples β ← {0, 1} and computes σ1 ← Sign(mpk, skidβ

, m1), where
skidβ

is the signing key corresponding to idβ from the list Hkey. It returns (σ0, σ1) to A.
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5. A outputs a bit β′ as the output of the experiment.

We define the advantage of A in the above experiment as

AdvCCU
A (λ) =

∣∣∣Pr
[
ExptCCU

0,A (1λ) = 1
]
− Pr

[
ExptCCU

1,A (1λ) = 1
]∣∣∣ .

We say that a PCGS scheme satisfies client-client unlinkability if for any PPT adversary A, AdvCCU
A (λ) ≤ negl(λ).

D.2 Construction
Our construction of PCGS follows from the compiler provided by [BGJP23] and is secure in ROM. As we will see
below, we can use our LWE based sPCE scheme achieving unconditional security together with dual-mode NIZK to
obtain unconditional anonymity against malicious authority.

Building Blocks We use the following ingredients for our construction.

1. A sPCE scheme sPCE = sPCE.(Setup, Enc, Dec). This can be instantiated from a variety of assumptions as
described in Theorems 3.15, 3.18 and 3.32.

2. A dual-mode NIZK proof system ZK = (ZK.Hsetup, ZK.Bsetup, ZK.Prove, ZK.Verify) satisfying statistical
zero-knowledge in. This can be instantiated from LWE (Corollary A.11).

3. A one-way relationR = (R.Gen,R.Sample) for a set of tuplesR.

4. A digital signature scheme S = (S .Setup,S .Sign,S .Verify).

5. A random oracle H.

Construction. We now describe the construction of PCGS scheme, adapted from [BGJP23].

Setup(1λ, C)→ (mpk, msk). The setup algorithm does the following.

− GenerateR.pp← R.Gen(1λ) and (S .vk,S .sk)← S .Gen(1λ).
− Define circuit U[C] as follows: On input (m, id), U[C](m, id) = id if C(m) = 1, ⊥ otherwise. Compute

(sPCE.pk, sPCE.sk)← sPCE.Gen(1˘, U[C]) .
− Output mpk = (R.pp, sPCE.pk,S .vk) and msk = (sPCE.sk,S .sk).

KeyGen⟨GM(msk), U⟩ → (id, skid). The key generation protocol is as follows.

− The user U samples s ← {0, 1}r and computes an instance-witness pair (id, w) = R.Sample(R.pp; s). It
sends id to the group manager GM.

− The group manager parses msk = (sPCE.sk,S .sk) and computes σid ← S .Sign(S .sk, id) and returns it to
the user.

− The user sets skid = (s, σid).

Sign(mpk, skid, m)→ σ. The signing algorithm does the following.

− Parse mpk = (R.pp, sPCE.pk,S .vk) and skid = (s, σid).
− Compute (id, w) = R.Sample(R.pp; s).
− Sample r ← {0, 1}λ and compute sPCE.ct = sPCE.Enc(sPCE.pk, m, id; r).
− Let crs← H(m, sPCE.ct), and compute π ← ZK.Prove(crs, (R.pp, sPCE.pk,S .vk, m, sPCE.ct), (id, s, w, œid, r))

for the relation that checks that:
1. sPCE.ct = sPCE.Enc(sPCE.pk, m, id; r).
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2. (id, w) = R.Sample(R.pp; s).
3. S .Verify(S .vk, id, σid)

− Output σ = (sPCE.ct, crs, ß).

Verify(mpk, m, σ)→ {0, 1}. The verification algorithm does the following.

− Parse mpk = (R.pp, sPCE.pk,S .vk) and σ = (sPCE.ct, crs, ß).
− Check H(m, sPCE.ct) = crs. If true, output ZK.Verify(crs, (R.pp, sPCE.pk,S .vk, m, sPCE.ct), ß).

Open(msk, σ)→ {id,⊥}. The open algorithm does the following.

− Parse msk = (sPCE.sk,S .sk) and σ = (sPCE.ct, crs, ß).
− Output sPCE.Dec(sPCE.sk, sPCE.ct).

Correctness. We now show that the above construction is correct via the following theorem.

Theorem D.11. Suppose that S is a correct digital signature scheme and ZK satisfies completeness (Definition A.1).
Then the above construction of PCGS satisfies correctness (Definition D.1).

Proof. We observe that for σ = (sPCE.ct, crs, ß), we have sPCE.ct = sPCE.Enc(sPCE.pk, m, id; r), crs = H(m, sPCE.ct)
and π ← ZK.Prove(crs, (R.pp, sPCE.pk,S .vk, m, sPCE.ct), (id, s, w, œid, r)), where (id, w) = R.Sample(R.pp; s)
and σid ← S .Sign(S .sk, id).
By the correctness of the signature scheme, we have with all but negligible probability, S .Verify(S .vk, id, σid) = 1.
Hence, the completeness of ZK scheme implies ZK.Verify(crs, (R.pp, sPCE.pk,S .vk, m, sPCE.ct), ß) = 1 with all but
negligible probability.
So, Verify(mpk, m, σ) = (crs = H(m, sPCE.ct)) ∧ (ZK.Verify(crs, (R.pp, sPCE.pk,S .vk, m, sPCE.ct), ß)) = 1
with all but negligible probability . Hence the above construction satisfies correctness.

Instantiation Below we describe the properties inherited by the resulting PCGS scheme for each instantiation of
sPCE scheme that we construct.

1. If we use sPCE scheme as in Theorem 3.15, we achieve anonymity and unlinkability against a malicious authority
for general constraints. For constraints in NC1, we can achieve unconditional anonymity and unlinkability against
a malicious authority.

2. If we use sPCE scheme as in Theorem 3.18, we can achieve unconditional anonymity and unlinkability against a
malicious authority for general constraints.

3. If we use the succinct sPCE scheme as in Theorem 3.32, we achieve a succinct PCGS scheme achieving security
guarantees against a semi-malicious PPT authority.

Next, we prove the security properties of the above PCGS scheme.

Constraint-Hiding. This follows immediately from the constraint-hiding property of the underlying sPCE scheme.

Traceability. We show that the above scheme satisfies traceability using the following theorem.

Theorem D.12. Suppose that sPCE scheme satisfies perfect correctness (Definition 3.1) and security against outsiders
(Definition 3.7), ZK satisfies statistical zero-knowledge in the hiding mode (Definition A.3) and knowledge extraction in
the binding mode (Definition A.5), one way relationR is secure (Definition A.13) and the signature scheme S satisfies
EUF-CMA security. Then the above construction of PCGS satisfies traceability (Definition D.3) in the random oracle
model.

Proof. The proof is identical to the proof of traceability in Theorem 4, [BGJP23] and is hence omitted.
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Unframeability. We show that the above scheme satisfies unframeability using the following theorem.

Theorem D.13. Suppose that sPCE scheme satisfies perfect correctness (Definition 3.1) and security against outsiders
(Definition 3.7), ZK satisfies statistical zero-knowledge with common random string in the hiding mode (Definition A.3)
and knowledge extraction in the binding mode (Definition A.5), and the one way relationR is secure (Definition A.13).
Then the above construction of PCGS satisfies unframeability (Definition D.4) in the random oracle model.

Proof. The proof is identical to the proof of unframeability in Theorem 4, [BGJP23] and is hence omitted.

Client-Authority Anonymity against Malicious Authority.

Theorem D.14. Suppose that sPCE scheme satisfies (computational/unconditional) security against malicious authority
(Definition 3.6) and ZK satisfies statistical zero-knowledge with common random string in the hiding mode (Defini-
tion A.3). Then the above construction of PCGS satisfies (computational/unconditional) client-authority anonymity
against a malicious authority (Definition D.6) in the random oracle model.

Proof. Recall that in the client-authority anonymity against a malicious authority, we want to show that

Sign(mpk, skid0 , m) ≈s Sign(mpk, skid1 , m)

where C(m) = 0, for the circuit C associated with the, possibly malformed, master public key mpk.
Here we let the extractor Ext of PCGS scheme to be the extractor of the underlying sPCE scheme, say sPCE.Ext, which
is secure against a malicious authority. The proof proceeds via the following sequence of hybrid games between the
challenger and an unbounded adversary A.

Hyb0. This is the real world with β = 0, i.e., the challenge signature is computed using the signing key skid0 associated
with the identity id0. We write the complete game here to set up the notations and easy reference in later hybrids.

1. A outputs the challenge master public key mpk, a message m and two identities (id0, id1) and the respective
signing keys (skid0 , skid1).

2. The challenger parses mpk = (R.pp, sPCE.pk,S .vk) and skid0 = (s0, σid0). It computes sPCE.ct =
sPCE.Enc(sPCE.pk, m, id0; r0), crs ← H(m, sPCE.ct) and proof π ← ZK.Prove(crs, (R.pp, sPCE.pk,
S .vk, m, sPCE.ct), (id0, s0, w0, œid0 , r0)) as in the Sign algorithm of the construction. It returns σ =
(sPCE.ct, crs, ß) to A.

3. A outputs a bit β as the output of the experiment.

Hyb1. This hybrid is same as the previous hybrid except that the random oracle H is lazily sampled, i.e., the challenger
generates (crs, π) using ZK.Sim on the instance (R.pp, sPCE.pk,S .vk, m, sPCE.ct) and sets H(m, sPCE.ct) =
crs.
This hybrid is statistically indistinguishable from previous one due to statistical zero-knowledge in hiding mode
of the underlying ZK scheme.

Hyb2. This hybrid is same as the previous hybrid except that the challenger computes sPCE.ct differently as
sPCE.ct← sPCE.Enc(sPCE.pk, m, id1).
This hybrid is statistically indistinguishable from previous one due to the unconditional SIM security against
malicious authority of the underlying sPCE scheme.

Hyb3. This hybrid is same as the previous hybrid except that the challenger generates (crs, π) differently . It computes
crs← H(m, sPCE.ct) and the proof π ← ZK.Prove(crs, (R.pp, sPCE.pk,S .vk, m, sPCE.ct), (id1, s1, w1, œid1 , r1))
as in the Sign algorithm of the construction. This is the real world with β = 1.
This hybrid is statistically indistinguishable from previous one due to statistical zero-knowledge in hiding mode
of the underlying ZK scheme.
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Client-Authority Unlinkability against Malicious Authority.

Theorem D.15. Suppose that sPCE scheme satisfies (computational/unconditional) security against malicious authority
(Definition 3.6) and ZK satisfies statistical zero-knowledge with common random string in the hiding mode (Defini-
tion A.3). Then the above construction of PCGS satisfies (computational/unconditional) client-authority unlinkability
against a malicious authority (Definition D.7) in the random oracle model.

Proof. Recall that in the client-authority unlinkability against a malicious authority, we want to show that

Sign(mpk, skid0 , m0) ≈s Sign(mpk, skidb , m1)

where b ∈ {0, 1} and C(m0) = 0 = C(m1) , for the circuit C associated with the, possibly malformed, master public
key mpk.
Here we let the extractor Ext of PCGS scheme to be the extractor of the underlying sPCE scheme, say sPCE.Ext, which
is secure against a malicious authority. We prove the above for b = 0 and b = 1 separately.

1. Sign(mpk, skid0 , m0) ≈s Sign(mpk, skid0 , m1).
The proof proceeds via the following sequence of hybrid games between the challenger and an unbounded
adversary A.

Hyb0. This is the real world with β = 0, i.e., the challenge signature is computed for message m0 using the
signing key skid0 associated with the identity id0. We write the complete game here to set up the notations
and easy reference in later hybrids.
(a) A outputs the challenge master public key mpk, two messages m0, m1 and two identities (id0, id1) and

the respective signing keys (skid0 , skid1).
(b) The challenger parses mpk = (R.pp, sPCE.pk,S .vk) and skid0 = (s0, σid0).

It computes sPCE.ct = sPCE.Enc(sPCE.pk, m0, id0; r0), crs ← H(m0, sPCE.ct) and proof π ←
ZK.Prove(crs, (R.pp, sPCE.pk,S .vk, m0, sPCE.ct), (id0, s0, w0, œid0 , r0)) as in the Sign algorithm of
the construction. It returns σ = (sPCE.ct, crs, ß) to A.

(c) A outputs a bit β as the output of the experiment.
Hyb1. This hybrid is same as the previous hybrid except that the random oracle H is lazily sampled, i.e., the

challenger generates (crs, π) using ZK.Sim on the instance (R.pp, sPCE.pk,S .vk, m0, sPCE.ct) and sets
H(m0, sPCE.ct) = crs. We note that Hyb0 ≈s Hyb1 using the statistical zero-knowledge with common
random string of the underlying ZK scheme.

Hyb2. This hybrid is same as the previous hybrid except that the challenger computes sPCE.ct differently as
sPCE.ct← sPCE.Enc(sPCE.pk, m1, id0) and the corresponding proof using ZK simulator as (crs, π)←
ZK.Sim(R.pp, sPCE.pk,S .vk, m1, sPCE.ct). Hyb1 ≈s Hyb2 using the unconditional security of the
underlying sPCE scheme against a malicious authority

Hyb3. This hybrid is same as the previous hybrid except that the challenger generates (crs, π) differently. It
computes crs← H(m1, sPCE.ct) and the proof π ← ZK.Prove(crs, (R.pp, sPCE.pk,S .vk, m1, sPCE.ct),
(id0, s0, w0, œid0 , r0)) as in the Sign algorithm of the construction. This is the real world with β = 1. We
note that Hyb2 ≈s Hyb3 using the statistical zero-knowledge with common random string of the underlying
ZK scheme.

2. Sign(mpk, skid0 , m0) ≈s Sign(mpk, skid1 , m1). The indistinguishability of these two distribution follows from
the similar sequence of hybrids as above except the following changes:

• In Hyb2 we generate sPCE.ct differently as sPCE.ct← sPCE.Enc(sPCE.pk, m1, id1).
• In Hyb3 we generate the proof as π ← ZK.Prove(crs, (R.pp, sPCE.pk,S .vk, m1, sPCE.ct), (id1, s1, w1, œid1 , r1)).
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Client-Client Anonymity and Unlinkability.

Theorem D.16. Suppose that sPCE scheme satisfies security against outsiders (Definition 3.7) and ZK satisfies statistical
zero-knowledge in the hiding mode (Definition A.3). Then the above construction of PCGS satisfies client-client
anonymity (Definition D.9) and client-client unlinkability (Definition D.10) in the random oracle model.

Proof. The proof is identical to the proof of client-client anonymity and client-client unlinkability (Definition D.10) in
Theorem 4, [BGJP23] and is hence omitted.

E Pre-Constrained Input Obfuscation
We introduce the notion of pre-constrained input obfuscation (PCIO) in this section. This notion is a relaxation of
virtual black-box obfuscation or indistinguishability obfuscation. A notable difference is that we can compute outputs of
obfuscated circuits only for pre-determined polynomially many inputs.

E.1 Definition
A pre-constrained input obfuscation for circuit family C = {C : X → Y} with input space X and output space Y
consists of three algorithms (Setup,O, Eval) defined as follows.

Setup(1λ,S)→ (pk, ek). The setup algorithm takes as input a set of input S where S ⊂ X and |S| = poly(λ), and
outputs a public key pk and evaluation key ek.

O(pk, C)→ C̃. The obfuscation algorithm takes as input the public key pk and a circuit C, and outputs an obfuscated
circuit C̃.

Eval(ek, C̃, x)→ y. The evaluation algorithm takes as input the evaluation key ek, obfuscated circuit C̃, and an input
x ∈ X , and outputs an y ∈ Y .

Here, pk is reusable for multiple C.

Definition E.1 (Correctness). A PCIO scheme is correct if for any S ⊂ X , |S| = poly(λ), and (pk, ek) ←
Setup(1λ,S), the following holds

1. ∀x ∈ S , Pr[Eval(ek,O(pk, C), x) = C(x)] ≥ 1− negl(λ).

2. ∀x ∈ X \ S , Pr[Eval(ek,O(pk, C), x) = ⊥] ≥ 1− negl(λ).

Definition E.2 (Input-Set-Hiding). A PCIO scheme satisfies input-set-hiding security if for any PPT adversary A, the
following holds

Pr
[
A(pkβ) = β : (S0,S1)← A;

β← {0, 1}; (pkβ, ekβ)← Setup(1λ,Sβ)

]
≤ 1

2
+ negl(λ)

where A is admissible if Sb ⊂ X and Sb = poly(λ) for b ∈ {0, 1}.

Definition E.3 (Virtual Black-Box Security against Malicious Authority). For a PPT adversaryA and a PPT simulator
Sim, consider the following experiment ExpPC-VBB

β,A,Sim (1λ).

1. A outputs the public key pk and circuit C.

2. On input (pk, C), the challenger samples a random bit β uniformly and generates C̃ ← O(pk, C) if β =

0. Otherwise, the challenger generates C̃ ← Sim(1λ, 1|C|, pk, C(x1), . . . , C(xq)) where (x1, . . . , xq) ←
Ext(1λ, pk) and Ext is an (possibly inefficient) extractor. It returns C̃ to A.

3. A outputs a guess bit β′ as the output of the experiment.
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We say that a PCIO scheme satisfies the virtual black-box security against malicious authority if there exists an (possibly
inefficient) extractor Ext such that for any PPT adversary A,∣∣∣Pr

[
ExpPC-VBB

0,A,Sim (1λ) = 1
]
− Pr

[
ExpPC-VBB

1,A,Sim (1λ) = 1
]∣∣∣ = negl(λ).

Definition E.4 (Indistinguishability against Malicious Authority). A PCIO scheme satisfies input-set-hiding security
if there exists an admissible (possibly inefficient) extractor Ext such that for any PPT and admissible adversary A, the
following holds

Pr
[
A(ctβ) = β : pk, (C0, C1)← A;

β← {0, 1}; ctβ ← Enc(pk, Cβ)

]
≤ 1

2
+ negl(λ)

where A is admissible if (i) S ⊂ X and |S| = poly(λ) where S ← Ext(1λ, pk), and (ii) Cb ∈ C for b ∈ {0, 1},
|C0| = |C1|, and ∀x ∈ S , C0(x) = C1(x). We say that Ext is admissible if for every S = (x1, . . . , xQ) and randomness
r, we have that (x1, . . . , xQ) = (x′1, . . . , x′Q), where (i) (pk, ekx1 , . . . , ekxQ) ← Setup(1λ, {x1, . . . , xQ}; r) and (ii)
S ′ = (x′1, . . . , x′Q)← Ext(1λ, pk).
In addition, if A is unbounded, we say that PCIO is unconditional IND secure.

Definition E.5 (Succinct Public Key). We say that a PCIO scheme has succinct public keys when the size of the public
key is sublinear in S , that is |pk| = O(|S|1−γ) for some 0 < γ < 1 where (pk, ek)← Setup(1λ,S).

E.2 Construction and Implication
E.2.1 From sPCE to PCIO.

We construct a PCIO scheme, for circuit familyC = {C : X → Y}, from a sPCE = (sPCE.Setup, sPCE.Enc, sPCE.Dec)
scheme as defined in Section 3.

Setup(1λ,S)→ (pk, ek). The setup algorithm does the following.

− Parse S = (x1, . . . , xQ).
− Let U[x] be a universal circuit, which on input a circuit C, outputs C(x).
− Run (fe.pk, fe.sk1, . . . , fe.skQ)← sPCE.Setup(1˘, U[x1], . . . , U[xQ]).
− Output pk := fe.pk and ek := (fe.sk1, . . . , fe.skQ). (We assume that fe.ski includes xi.)

O(pk, C)→ C̃. The obfuscating algorithm does the following.

− Parse pk = fe.pk and run fe.ct← sPCE.Enc(fe.pk, C).
− Output C̃ := fe.ct.

Eval(ek, C̃, x)→ y. The evaluation algorithm does the following.

− Parse ek = (fe.sk1, . . . , fe.skQ) and C̃ = fe.ct.
− Find fe.ski corresponding to x. If there is no such ski, output ⊥.
− Otherwise, run and output y← sPCE.Dec(fe.ski, fe.ct).

Correctness. We show the correctness of our PCIO scheme via the following theorem.

Theorem E.6. Suppose sPCE satisfies correctness as defined in Definition 3.1. Then the above construction satisfies
correctness as defined in Definition E.1.

Proof. From the correctness of sPCE, it holds that y = U[xi](C) where y = sPCE.Dec(fe.ski, fe.ct). By the definition
of U[x], it holds that y = C(xi). Next, if x ∈ X \ S , there is no ski corresponding to x in ek. In this case, the
decryption algorithm outputs ⊥. Thus, the theorem holds.
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Input-set-hiding. We show that the above construction satisfies the input-set-hiding property.

Theorem E.7. Suppose sPCE satisfies the function-hiding property as defined in Definition 3.2. Then the above
construction satisfies input-set-hiding as defined in Definition E.2.

Proof. We construct an adversaryB of the function-hiding game for sPCE by using an adversaryA of the input-set-hiding
game for PCIO. B works as follows.

1. When A sends S0 = (x(0)1 , . . . , x(0)Q ) and S1 = (x(1)1 , . . . , x(1)Q ), B sets f (b)i := U[x(b)i ] for b ∈ {0, 1} and

sends := ( f (0)1 , f (1)Q ), . . . , ( f (0)Q , f (1)Q ) to its challenger.

2. B receives fe.pk from its challenger and it sends pk := fe.pk to A.

3. B outputs whatever A outputs.

B perfectly simulates the input-set-hiding game for A. Thus, if A breaks the input-set-hiding property, B also breaks
the function-hiding game. This completes the proof.

Security against malicious authority. We show that the above construction satisfies security against malicious
authority.

Theorem E.8. Suppose sPCE satisfies security SIM security (resp. indistinguishability) against malicious authority.
Then the above construction satisfies VBB security (resp. indistinguishability) against malicious authority. In addition,
if sPCE has unconditional (SIM or IND) security, the above construction also has unconditional (VBB or IND) security.

We focus on the proof for the simulation-based security. The proof for the indistinguishability-based definition is
similar to the simulation-based one, and we omit it.

Proof. We define Ext(1λ, pk) as follows.

− Parse pk = fe.pk and run ( f1, . . . , fQ)← sPCE.Ext(1˘, fe.pk).

− Interpret fi as a universal circuit U[x′i ] for all i ∈ [Q].

− Output (x′1, . . . , x′Q).

We also define Sim(1λ, 1|C|, pk, C(x′1), . . . , C(x′Q)) as follows.

− Parse pk = fe.pk and run fe.ct1 ← sPCE.Sim(fe.pk, 1|C|, C(x′1), . . . , C(x′Q)).

− Output C̃ := fe.ct1.

We construct an adversary B of the SIM security for sPCE by using an adversary A of the VBB security for PCIO.
B works as follows.

1. When A sends pk and C, B sends fe.pk := pk and x := C to its challenger.

2. B receives a challenge ciphertext fe.ct from its challenger and it sends C̃ := fe.ct to A.

3. B outputs whatever A outputs.

If β = 0, B receives fe.ct0 ← sPCE.Enc(fe.pk, C). If β = 1, B receives fe.ct1 ← sPCE.Sim(fe.pk, 1|C|, U[x′1](C),
. . . , U[x′Q](C)) where (U[x′1], . . . .U[x′Q])← sPCE.Ext(1˘, FE.pk). So, B perfectly simulates the VBB security game
for A. Thus, if A breaks the VBB security, B also breaks the SIM security. This completes the proof.
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From PCIO to sPCE. It is easy to see that we can construct a sPCE scheme from a PCIO scheme. Let PCIO :=
PCIO.(Setup,O, Eval) be a PCIO scheme.

Setup(1λ, f1, . . . , fQ)→ (pk, sk f1 , . . . , sk fQ). The setup algorithm does the following.

− Set S := ( f1, . . . , fQ) and run (PCIO.pk, PCIO.ek)← PCIO.Setup(1λ,S).
− Output pk := PCIO.pk and sk fi

:= (PCIO.ek, fi) for all i ∈ [Q].

Enc(pk, x)→ ct. The encryption algorithm does the following.

− Parse pk = PCIO.pk and run Ũ ← PCIO.O(PCIO.pk, U[x]) where U[x] is a universal circuit that takes as
input f , and outputs f (x).

− Output ct := Ũ.

Dec(sk fi
, ct)→ y. The decryption algorithm does the following.

− Parse sk fi
= (PCIO.ek, fi) and ct = Ũ.

− Compute and output PCIO.Eval(PCIO.ek, Ũ, fi).

Correctness. Correctness of the above scheme follows from the correctness of the sPCE scheme.

Theorem E.9. Suppose PCIO satisfies correctness as defined in Definition E.1. Then the above construction satisfies
correctness as defined in Definition 3.1.

Input-set-hiding. The input-set-hiding property of the above scheme follows from the function-hiding of the sPCE
scheme.

Theorem E.10. Suppose PCIO satisfies input-set-hiding as defined in Definition E.2. Then the above construction
satisfies the function-hiding property as defined in Definition 3.2.

Security against malicious authority. This follows from the security against malicious authority of the sPCE scheme.

Theorem E.11. Suppose PCIO satisfies VBB security (resp. indistinguishability) against malicious authority. Then the
above construction satisfies security SIM security (resp. indistinguishability) against malicious authority. In addition, if
PCIO has unconditional (VBB or IND) security, the above construction also has unconditional (SIM or IND) security.

The proofs of Theorems E.9 to E.11 are almost the same as those of Theorems E.6 to E.8, so we omit them.
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