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Abstract. Simulation-based formulation of security enables us to nat-
urally capture our intuition for security. However, since the simulation-
based formulation is rather complicated, it is convenient to consider al-
ternative simulation-free formulations which are easy to manipulate but
can be employed to give the same security as the simulation-based one.
So far the indistinguishability-based and comparison-based formulations
have been introduced as such ones. Regarding the security for public key
encryption, while these three formulations are shown equivalent in most
settings, some relations among these formulations of non-malleability
under the valid ciphertext condition, in which an adversary fails if it
outputs an invalid ciphertext, remain open. This work aims to help to
consider the appropriateness of the formulations of security by clarify-
ing the above open relations among the formulations of non-malleable
encryption.

1 Introduction

Simulation is one of the fundamental methods for formulating a cryptographic
primitive (see e.g. [20]). It compares the “real world” in which the primitive works
and an “ideal world” in which its desired properties follow by definition, and
requires that the two worlds are indistinguishable. For example, in formulating
security of a public key encryption scheme, it compares an adversary attacking
the scheme, given a real ciphertext called a challenge ciphertext, to its simulator
without the ciphertext (and access to the decryption oracle), and requires that
the adversary and simulator are indistinguishable in attacking the scheme. Since
the main difference between an adversary and its simulator is in whether a
challenge ciphertext is given or not, the above requirement ensures that the
ciphertext does not help to attack the scheme.

As can be seen above, simulation provides an intuitively natural formula-
tion of security, but it requires two parties, an adversary and its simulator.
Hence, it is convenient to introduce alternative simulation-free formulations
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which require only an adversary (and can be employed to give the same secu-
rity as the simulation-based one). As such simulation-free formulations, we have
the comparison-based and indistinguishability-based ones. Here, the simulation-
based and comparison-based formulations have the same goal but differ in the
baseline to which the adversary is compared, and the indistinguishability-based
one has a simple goal (different from that of the simulation-based one). To see
these formulations in more detail, let us consider public key encryption schemes.

The security of public key encryption schemes is commonly specified by the
security goal and the attack model. Here, the security goals formulate what type
of security of the scheme is intended to be protected from an adversary, and
the attack models formulate what type of external resources is assumed to be
available to an adversary. Definitions of security in the common framework [3]
are informally described as follows. An adversary A is a pair of algorithms,
A = (A1, A2), corresponding to two stages of an attack. At the first stage of
the attack, A1 takes as input the public key pk and outputs a distribution M
over messages (plaintexts). Next, a plaintext x is sampled according to M and
then encrypted to give a challenge ciphertext y. At the second stage of the at-
tack, A2 takes as input the challenge ciphertext y, and the success condition
for A is determined according to the security goal. Here, the standard security
goals are semantic security and non-malleability.1 Semantic security relates to
the secrecy that a ciphertext does not leak any partial information about its
plaintext. In the (simulation-based)2 semantic security (SSS) [16], an adversary
with y and its simulator without y are considered successful if they can com-
pute partial information about x described by a function F , and an encryption
scheme is considered secure if for any adversary and for any function F , there
exists a simulator such that the difference between their success probabilities is
“negligible.” In the indistinguishability-based semantic security [16], now called
(ciphertext) indistinguishability (IND), the distribution M is restricted to the
form M = {x0, x1}, and an encryption scheme is considered secure if any adver-
sary with y can guess whether x = x0 or x = x1 with probability only negligibly
larger than the baseline probability 1

2 .
In contrast, non-malleability relates to the resistance against ciphertext mod-

ifications that a ciphertext cannot be modified into other ciphertexts so that their
plaintexts are “meaningfully” related. In the simulation-based non-malleability
(SNM) [11], an adversary with y and its simulator without y are considered suc-
cessful if they can generate ciphertexts y of plaintexts x other than y so that
x and x satisfy a relation R, and an encryption scheme is considered secure if
for any adversary and for any relation R, there exists a simulator such that the
difference between their success probabilities is negligible. In the comparison-
based non-malleability (SNM) [3], an adversary with y is considered successful

1 In addition to encryption schemes, non-malleability has been formulated for various
primitives (see e.g. [6, 9, 11,12,17,26]).

2 The comparison-based semantic security (CSS) was introduced in [2] for private key
encryption. Semantic security not based on simulation may seem contrary to its
“spirit,” but it frees us from considering the encryption oracle for a simulator.
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as in SNM, but in this case, the relation R is output by the adversary and its
success probability is compared with that of “random guess” which corresponds
to the coincidence that a plaintext x′ independently sampled according to M
and x satisfy the relation R;3 and an encryption scheme is considered secure
if for any adversary, the difference in success probability between the adversary
and “random guess” is negligible. The indistinguishability-based non-malleability
(IND) [4] is described against non-standard attack models called parallel chosen-
ciphertext attacks. Here, the standard attack models are chosen plaintext attack
(CPA), non-adaptive chosen ciphertext attack (CCA1) [22] and adaptive chosen
ciphertext attack (CCA2) [25], where access to the decryption oracle is allowed
only to A1 in CCA1 and to both A1 and A2 in CCA2 (no access is allowed
in CPA). In the parallel chosen-ciphertext attacks, PCA0, PCA1 and PCA2,
an adversary has the same access to the decryption oracle as in CPA, CCA1
and CCA2, respectively, and can further make one parallel decryption query
after receiving the challenge ciphertext y. Then, in IND against PCAX with
PCAX∈ {PCA0,PCA1,PCA2}, an encryption scheme is considered secure if any
adversary with y can guess whether x = x0 or x = x1 with probability only
negligibly larger than the baseline probability 1

2 .
Now, we have nine formulations of non-malleability (depending on the three

formulations and three attack models), and each has its variant in which the
valid ciphertext condition is imposed, where under the valid ciphertext condi-
tion (below indicated by ∗ attached to the security goal), an adversary fails if
it outputs an invalid ciphertext. Among these definitions, the simulation-based
formulation under the valid ciphertext condition (SNM∗), introduced by the
original work [11], would be the most natural one at least from our intuition for
non-malleability.4 However, whether imposing the valid ciphertext condition is
more appropriate or not depends on applications, as mentioned in [4,19,23].5 So
far SNM, CNM and IND have been shown equivalent against the same level
of the attack models [4]; on the other hand, SNM∗, CNM∗ and IND∗ have
been shown equivalent only against the strongest attack model (CCA2/PCA2),
and the relations among them against the weaker attack models (CPA/PCA0
and CCA1/PCA1) remain open. This work clarifies the above open relations
among formulations of non-malleability by showing the separations between the
simulation-based and indistinguishability-based formulations and the simulation-
based and comparison-based formulations.

3 It may seem somewhat strange that the success probability of “random guess” is con-
sidered with respect to the ciphertexts y output by the adversary, in particular in
comparison with the simulation-based formulation in which the success probability
of a simulator is considered with respect to the ciphertexts y output by the simula-
tor itself. This difference is essential in the proof of SNM∗ ≠⇒ CNM∗, provided in
appendix A.

4 Katz and Yung [19] imposed the valid ciphertext condition to formulate non-
malleability for private-key encryption based on the consideration that “the current
definition more closely corresponds to our intuitive notion.”

5 An illustrative example (quorum voting application), in which a CNM adversary is
more advantageous than a CNM∗ adversary, was presented in [23].
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Fig. 1. Relations among formulations of non-malleability. The asterisk attached to the
security goals indicates that the valid ciphertext condition is imposed. The bold barred
arrows represent the separations shown by this paper. The bold security notions are
introduced in this paper, and the notions in each box are shown to be equivalent
by this paper. The separation CNM∗-CCA1 ≠⇒ CNM-CPA follows from the result
CNM∗-CPA ≠⇒ CNM-CPA shown by the full version of [18], together with the idea
mentioned in the full version of [4]. The other relations are consequences of [3,4,11,19].

1.1 Contributions and related works

Figure 1 summarizes the relations among formulations of non-malleable encryp-
tion shown in related works and this work, where the asterisk attached to the
security goals indicates that the valid ciphertext condition is imposed. The equiv-
alence among the notions against the strongest attack model (CCA2/PCA2)
readily follows from the equivalence SNM/CNM-CCA2 ⇐⇒ IND-CCA2 [3, 11].
The separation CNM-CCA1 ≠⇒ CNM-CCA2 was shown in [3] and it is straight-
forward to modify the proof of the separation CNM-CPA ≠⇒ IND-CCA1 [3]
to that of CNM-CPA ≠⇒ IND∗-PCA1. The separation CNM∗-CCA1 ≠⇒ CNM-
CPA follows from the result CNM∗-CPA ≠⇒ CNM-CPA shown by the full ver-
sion of [18], together with the idea mentioned in the full version of [4]. In
addition, the equivalence among CNM-ATK, SNM-ATK and IND-PCAX was
shown in [4] and the proof of the equivalence between CNM∗-ATK and IND†-
PCAX for private-key encryption [19] (see appendix D for the definition of
IND†-PCAX) straightforwardly applies to that for public-key encryption, where
(ATK,PCAX) ∈ {(CPA,PCA0),(CCA1,PCA1),(CCA2,PCA2)}.

This work (perhaps surprisingly) shows that SNM∗-CCA1 ≠⇒ CNM∗-CPA,
which answers the last open question mentioned in the full version of [4]. Fur-
thermore, this work also shows that IND∗-PCA1 ≠⇒ SNM∗-CPA. We note that
these separations complete Figure 1 and no relation remains open. The proofs
of these results follow the standard procedure to show the separation X ≠⇒ Y
for computational security notions X and Y , in which (a) the existence of an
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X-secure encryption scheme Π is assumed and then (b) Π is modified to Π ′ so
that Π ′ is still X-secure but not Y -secure. However, the modifications of encryp-
tion schemes and the estimation of adversaries’ advantages given in this paper
specifically are aimed at showing the separations; in particular, the modifications
are quite simple, which may help to clarify the appropriateness of the notions
appearing in the separations. In addition, motivated by the proof of the latter
separation, this paper introduces simulation-based and comparison-based formu-
lations of semantic security (SSS∗ and CSS∗) against parallel chosen-ciphertext
attacks and shows that SSS∗ and CSS∗ are equivalent to SNM∗ and CNM∗,
respectively. This, together with the latter separation, shows that semantic se-
curity and ciphertext indistinguishability, which have been shown equivalent in
various settings (see e.g. [2,13,15,16,21,27]), separate against the weaker parallel
chosen-ciphertext attacks under the valid ciphertext condition.

In the proof of the separation SNM∗ ≠⇒ CNM∗, an encryption scheme is
modified so that the decryption has an optional mode which allows an adver-
sary to make a successful ciphertext modification if and only if the plaintext
of the challenge ciphertext is 0. We may expect that an appropriate security
notion does not allow an adversary to take advantage from this modification,
but the proof shows that CNM∗ does. This indicates that CNM∗ is stronger
than expected at least under the valid ciphertext condition. In the proof of the
separation IND∗ ≠⇒ SNM∗(SSS∗), an encryption scheme is modified so that the
decryption has an optional mode which allows an adversary to make a successful
ciphertext modification with probability 1

2 . We may expect that an appropri-
ate security notion allows an adversary to take advantage from this modifica-
tion (by choosing a message space of cardinality more than 2), but the proof
shows that IND∗ (in which the cardinality of a message space is restricted to
2) does not. This indicates that IND∗ is weaker than expected at least under
the valid ciphertext condition. Here, we note that the valid ciphertext condition
is not introduced for showing the separations, but has been considered since
the initial work of non-malleability [11]. We also note that the simulation-free
notions (comparison-based non-malleability and ciphertext indistinguishability)
are now the first choice for analyzing the security of cryptosystems of interest
(see e.g. [1, 5, 7, 10, 23]). This may be because (i) they are simpler and easier
to manipulate, and (ii) they have been shown to be equivalent to the corre-
sponding simulation-based (intuitively secure) notions in various settings (see
e.g. [2,4,13,15,16,21,27]). Therefore, the results of this work suggest that it is of
importance to consider what a simulation-free notion of interest guarantees, in
particular by confirming its equivalence to the corresponding simulation-based
(intuitively secure) notion.

So far we have considered the security notions appearing in Figure 1, and we
now consider those out of Figure 1. One motivation to consider a weaker security
notion would be to provide a better construction of cryptosystems secure in
the sense of the weaker notion. For example, an NM-CPA encryption scheme
has a construction from an IND-CPA encryption scheme (without any other
assumptions) [23], while it has not been known that an IND-CCA2 encryption
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scheme has such a construction. For generalizing this result, the parallel chosen-
ciphertext attack PCA0 was extended to self-destruct attack (SDA) [8], and non-
malleability against self-destruct attack, NM-SDA, was introduced in [7]. Here,
in SDA, an adversary is allowed to make multiple parallel decryption queries up
to the point when the first invalid ciphertext is submitted. It was shown that
NM-SDA is strictly stronger than NM-CPA, and an NM-SDA encryption scheme
has a black-box construction from an IND-CPA encryption scheme [7].

Here, we mention possible applications of SSS∗/CSS∗-PCA0 encryption schemes6
introduced in this paper (see Definitions 4 and 5) in comparing with those of NM-
SDA encryption schemes. For this purpose, as in [7, 11], consider an electronic
auction in which the auctioneer publishes a public key and invites participants
to encrypt their bids under the public key. Then, since an NM-SDA adversary
is allowed to submit multiple parallel decryption queries up to the point when
it submits the first invalid ciphertext, this interprets that the auctioneer can
reuse the public key for subsequent auctions as long as all the encrypted bids
are valid. In contrast, since an SSS∗/CSS∗-PCA0 adversary is allowed to submit
only one parallel decryption query, this interprets that the auctioneer should
update the public key for each auction. Moreover, since the parallel decryp-
tion query containing the first invalid ciphertext is still fully answered for an
NM-SDA adversary, this interprets that the corresponding auction is valid. In
contrast, since an adversary submitting a decryption query containing an invalid
ciphertext fails under the valid ciphertext condition, this interprets that the cor-
responding auction should be discarded. Note that for IND-CCA2 encryption
schemes, the auctioneer can always reuse the public key, and all the auctions
are valid, regardless of whether an invalid bid is submitted or not; on the other
hand, as mentioned in [7], it has to be assumed that participants submitting
an invalid bid are penalized for SDA and SSS∗/CSS∗-PCA0 schemes. It may
be envisioned that SSS∗/CSS∗-PCA0 encryption schemes have applications il-
lustrated as above, under computational assumptions (potentially) weaker than
those for even SNM/CNM-CPA (and so NM-SDA) encryption schemes. We also
note that the CNM∗ formulation was employed for the (main) definition of non-
malleability in the theoretical work [19] which investigated the relations among
security notions for private key encryption.

We next consider slightly different simulation-based and indistinguishability-
based formulations of non-malleability, SIM-NME and IND-NME, respectively,
introduced in [24]. The main differences between SIM-NME and SNM∗ and be-
tween IND-NME and IND∗ are in that (i) the former notions consider multiple
messages, while the latter notions a single message, and (ii) outputting an invalid
ciphertext is prohibited in the former notions, while it is allowed but results in
failure of an attack in the latter notions.7 In contrast to the security notions

6 It follows from [7] that NM-SDA is strictly stronger than SSS∗/CSS∗-PCA0, but
NM-SDA and SSS∗/CSS∗-PCA1 seem incomparable.

7 As mentioned in [24], it is assumed in [4] that there is an efficient algorithm for
a simulator to generate an invalid ciphertext; however, under the valid ciphertext
condition, this assumption can simply be removed as follows. Namely, the simulator
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considered in this paper, for which IND∗ ≠⇒ SNM∗ against the weaker attack
models, the equivalence IND-NME ⇐⇒ SIM-NME against all attack models
was shown in [24]. This apparent contradiction is due to the difference (ii); if we
modify SNM∗ and IND∗ so that the difference (ii) will be eliminated, then the
equivalence between the modified SNM∗ and IND∗ readily follows from the re-
sults of [4], while even if we modify SNM∗ and IND∗ so that the difference (i) will
be eliminated, the proof of IND∗ ≠⇒ SNM∗ in this paper will straightforwardly
apply to the modified notions.

2 Preliminaries

Let A be a probabilistic algorithm. The result of running A on inputs x1, x2, . . .
and randomness r is denoted by A(x1, x2, . . . ; r). The notation y ← A(x1, x2, . . .)
denotes the experiment of choosing r at random and setting y = A(x1, x2, . . . ; r).
If S is a distribution (resp. a finite set), then S in the notation x ← S is
considered an algorithm which returns a sample drawn according to S (resp. the
uniform distribution over S). For an event E, the notation

Pr[x← A(a1, a2, . . .); y ← B(b1, b2, . . .); · · · : E]

denotes the probability that E occurs after ordered execution of the listed ex-
periments.

The length of a string s is denoted by |s|. The concatenation of strings s1 and
s2 is denoted by s1s2. A sequence is denoted in boldface. The length of a sequence
x is denoted by |x| and its i-th component by xi, so that x = (x1, · · · ,xl) with
l = |x|. The concatenation of sequences x and y is denoted by x||y. For an
operation F and a sequence x of length l whose components are in the domain
of F , we use the notation F (x) to denote

F (x) = (F (x1), · · · , F (xl)).

For a sequence x of length l1 whose components are sequences of length l2,

x = ((x11, · · · ,x1l2), · · · , (xl11, · · · ,xl1l2)),

we define a sequence x:j for j ∈ [l2] by

x:j = (x1j , · · · ,xl1j). (1)

For sequences a, b, c and d of the same length l, we introduce the notation
(c = d ? a : b) to denote the sequence of length l whose i-th component is given
by

(a = b ? c : d)i =

{
ci if ai = bi,

di otherwise,
(2)

can replace the symbol ⊥ in a message to be encrypted with any string of polynomial
length other than the challenge ciphertext (say, z in the proof of Lemma 1, provided
in appendix A), which does not disadvantage the simulator under the valid ciphertext
condition.
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with i ∈ [l].8 In this notation, a symbol x not in boldface is considered as the
sequence (x)l of length l whose components are all x; e.g.,

(a = b ? c : d) = ((a)l = b ? c : (d)l).

A function ϵ from N to R, ϵ : N → R, is called negligible if for all c > 0, there
exists an integer nc such that ϵ(n) ≤ n−c for all n ≥ nc.

A public key encryption scheme is a triple of algorithms, Π = (K, E ,D), such
that

– K, the key generation algorithm, is a probabilistic, polynomial-time algo-
rithm which takes as input a security parameter k ∈ N (in unary) and
returns a pair (pk, sk) of matching public and secret keys,

– E , the encryption algorithm, is a probabilistic, polynomial-time algorithm
which takes as input a public key pk and a plaintext x ∈ {0, 1}∗ and returns
a ciphertext y,

– D, the decryption algorithm, is a deterministic, polynomial-time algorithm
which takes as input a secret key sk and a ciphertext y and returns either
a plaintext x ∈ {0, 1}∗ or a special symbol ⊥ to indicate that the ciphertext
is invalid,

where the correctness condition Pr[Dsk(Epk(x)) = x] = 1 has to hold for all
k ∈ N, for all (pk, sk) which can be output by K(1k) and for all x ∈ {0, 1}∗.
In this paper, we assume that all algorithms have access to the key generation
algorithm K(1k) given the security parameter k.9

2.1 Formulations of non-malleability

We refer to section 1 for an informal explanation of the formulations of non-
malleability, and here make several remarks not described there. In the simulation-
based formulation of non-malleability, introduced in [11] and refined in [4], the
first stage adversary A1 outputs state information s1 for A2 and side information
s2 for R, in addition to a distribution M over plaintexts. Here, all plaintexts in
the support of M are of the same length. This is because a ciphertext inevitably
leaks information about the length of its plaintext (see e.g. [14]), and so without
restriction on the length of plaintexts, all encryption schemes would be insecure.
The relation R is computable in polynomial-time, and takes as input not only
the plaintexts x and x but also M and s2. The reason why R takes input M is
for a fair comparison between the adversary A and its simulator S; since a simu-
lator which outputs M consisting of a single plaintext can always be successful,
all encryption schemes would be secure if R did not take input M . In contrast,
it does not affect the strength of security whether or not R takes input s2; the
second stage adversary A2 can input side information s2 into R by concatenating
8 The notations x:j and (c = d ? a : b) are based on the notations for subarrays in

numpy and for the conditional operator in programming languages, respectively.
9 This is necessary in some proofs where a simulator (which is not explicitly given the

security parameter k in our definition) runs K(1k), and was also assumed e.g. in [4].
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an encryption of s2 to ciphertexts y, as in the proof of SNM =⇒ IND in [4].
We also note that A2 is prohibited from asking the challenge ciphertext y to the
decryption oracle for CCA2. A formal definition of SNM∗ is described below.10

Definition 1 (SNM∗-ATK [4, 11]). Let Π = (K, E ,D) be an encryption
scheme and R be a relation. Let A = (A1, A2) be an adversary attacking Π
and S = (S1, S2) be its simulator. For k ∈ N and ATK ∈ {CPA,CCA1,CCA2},
define the advantage of A against S by

AdvSNM∗-ATK
Π,R,A,S (k)

= Pr[ExptSNM∗-ATK-1
Π,R,A (k) : w = 1]− Pr[ExptSNM∗-ATK-0

Π,R,S (k) : w = 1],

where

Experiment ExptSNM∗-ATK-1
Π,R,A (k)

(pk, sk)← K(1k)
(M, s1, s2)← AO1

1 (pk)
x←M ; y ← Epk(x)
y ← AO2

2 (s1, y); x← Dsk(y)
if R(x,x,M, s2) = 1∧ ⊥/∈ x then w ← 1
else w ← 0

Experiment ExptSNM∗-ATK-0
Π,R,S (k)

(pk, sk)← K(1k)
(M, s1, s2)← S1(pk)
x←M
y ← S2(s1); x← Dsk(y)
if R(x,x,M, s2) = 1∧ ⊥/∈ x then w ← 1
else w ← 0

Here, O1 and O2 are oracles given by

O1 = ε(·) and O2 = ε(·) if ATK = CPA,

O1 = Dsk(·) and O2 = ε(·) if ATK = CCA1,

O1 = Dsk(·) and O2 = Dsk(·) if ATK = CCA2,

respectively, where ε(·) denotes the empty function which, on any input, outputs
the empty string ε, and it is supposed that (i) all strings in the support of M are
of the same length, (ii) y /∈ y and (iii) y /∈ query(A;O2) in the above experiment
ExptSNM∗-ATK-1

Π,R,A (k), where query(A;O2) denotes a sequence of queries from A
to O2 for the case of ATK = CCA2. An adversary A is called legitimate if its
outputs and queries satisfy the above conditions (i)–(iii). For a function f of k,
an adversary A (resp. a simulator S) is called bounded by time f(k) if A (resp.
S) runs in time f(k) and outputs M samplable in time f(k). Then, an encryption
scheme Π is called secure in the sense of SNM∗-ATK if for all polynomial p, all
probabilistic adversary A bounded by time p(k) and all relation R computable
in time p(k), there exist a polynomial p′(k) and a simulator S bounded by time
p′(k) such that AdvSNM∗-ATK

Π,R,A,S (k) is negligible.

In the comparison-based formulation introduced in [3], the first stage adver-
sary A1 outputs state information s1 for A2 and a distribution M over plaintexts.
10 It is now common to take the absolute value in the definition of the advantage.

The equivalence to this common definition for CNM∗ and IND∗ can be seen by
considering adversaries outputting inversions R̄ and d̄, respectively. The same holds
for SNM∗ if we may assume, e.g., the existence of an efficient algorithm to output an
invalid ciphertext, but it seems not so trivial to show the (in)equivalence for SNM∗.
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Then, two plaintexts x0 and x1, which correspond to x′ and x in section 1, re-
spectively, are independently sampled according to M . The relation R output by
A2 is computable in polynomial-time. We note that in the following definition,
ExptCNM∗-ATK-1

Π,A (resp. ExptCNM∗-ATK-0
Π,A ) denotes the experiment for an adversary

(resp. “random guess”). A formal definition of CNM∗ is described below.

Definition 2 (CNM∗-ATK [3]). Let Π = (K, E ,D) be an encryption scheme.
Let A = (A1, A2) be an adversary attacking Π. For k ∈ N and ATK ∈ {CPA,
CCA1,CCA2}, define the advantage of A by

AdvCNM∗-ATK
Π,A (k)

= Pr[ExptCNM∗-ATK-1
Π,A (k) : w = 1]− Pr[ExptCNM∗-ATK-0

Π,A (k) : w = 1],

where, for b ∈ {0, 1},

Experiment ExptCNM∗-ATK-b
Π,A (k)

(pk, sk)← K(1k); (M, s)← AO1
1 (pk); x0, x1 ←M

y ← Epk(x1); (R,y)← AO2
2 (s, y); x← Dsk(y)

if R(xb,x) = 1∧ ⊥/∈ x then w ← 1
else w ← 0

Here, A is supposed to be legitimate as in Definition 1, and O1 and O2 are defined
as in Definition 1. For a function f of k, an adversary A is called bounded by
time f(k) if A runs in time f(k) and outputs M samplable in time f(k) and
R computable in time f(k). Then, an encryption scheme Π is called secure in
the sense of CNM∗-ATK if for all polynomial p and all probabilistic adversary
A bounded by time p(k), AdvCNM∗-ATK

Π,A (k) is negligible.

In the indistinguishability-based formulation of non-malleability introduced
in [4], an adversary A is a triple of algorithms, A = (A1, A2, A3), corresponding
to three stages of an attack. The first stage adversary A1 takes as input the public
key pk and outputs two plaintexts x0 and x1 such that |x0| = |x1|, together with
state information s1 for A2. Next, one of the two plaintexts x0 and x1, say xb (b ∈
{0, 1}), is chosen at random and then encrypted to give a challenge ciphertext
y. The second stage adversary A2 takes as input the challenge ciphertext y
and the state information s1 and outputs a sequence y of ciphertexts such that
y /∈ y, together with state information s2 for A3. Then, y is decrypted to give
x. The third stage adversary A3 takes as input the sequence x and the state
information s2 and outputs d ∈ {0, 1}, where A is considered successful if d = b
and ⊥/∈ x hold. Also, A is supposed to have access to the decryption oracle Dsk(·)
depending on the attack model PCAX; namely, A has no access to Dsk(·) for
PCA0, only A1 has access to Dsk(·) for PCA1 and all A1, A2 and A3 have access
to Dsk(·) for PCA2, where A2 and A3 are prohibited from asking the challenge
ciphertext y to Dsk(·) for the last case. Note that queries to the decryption
oracle are more powerful than parallel chosen ciphertext queries because (i) the
former can be adaptive and (ii) the former including an invalid ciphertext does
not result in failure of an adversary even under the valid ciphertext condition.
A formal definition of IND∗-PCAX is described below.
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Definition 3 (IND∗-PCAX [4]). Let Π = (K, E ,D) be an encryption scheme
and A = (A1, A2, A3) be an adversary attacking Π. For k ∈ N and PCAX ∈
{PCA0,PCA1,PCA2}, define the advantage of A by

AdvIND∗-PCAX
Π,A (k) = 2Pr[ExptIND∗-PCAX

Π,A (k) : w = 1]− 1,

where

Experiment ExptIND∗-PCAX
Π,A (k)

(pk, sk)← K(1k); (x0, x1, s1)← AO1
1 (pk); b← {0, 1}; y ← Epk(xb)

(y, s2)← AO2
2 (x0, x1, s1, y); x← Dsk(y); d← AO2

3 (x, s2)
if d = b∧ ⊥/∈ x then w ← 1
else w ← 0

Here, A is supposed to be legitimate as in Definition 1, and O1 and O2 are
oracles given by

O1 = ε(·) and O2 = ε(·) if PCAX = PCA0,

O1 = Dsk(·) and O2 = ε(·) if PCAX = PCA1,

O1 = Dsk(·) and O2 = Dsk(·) if PCAX = PCA2,

respectively, where ε(·) denotes the empty function as before. Then, an encryption
scheme Π is called secure in the sense of IND∗-PCAX if for all polynomial p
and all probabilistic adversary A runnable in time p(k), AdvIND∗-PCAX

Π,A (k) is
negligible.

3 Separation between simulation-based and
comparison-based formulations

Let X and Y be security notions for encryption schemes. In order to show the
separation X ≠⇒ Y , it is necessary to show that there exists an encryption
scheme which is secure in the sense of X but not secure in the sense of Y . Since
the existence of computationally secure encryption schemes has not been proved,
it is standard to show the separation by modifying an encryption scheme Π to
another encryption scheme Π ′ so that if Π is X-secure, then Π ′ is still X-secure
but not Y -secure.11 The proofs in this paper follow this standard.

To prove the separation between SNM∗ and CNM∗, we modify an encryption
scheme Π = (K, E ,D) to Π ′ = (K′, E ′,D′) so that the modified decryption
algorithm D′ has an additional “option” which gives no (absolute) advantage to
an adversary and a simulator. More precisely, E ′ takes a plaintext x and outputs
a ciphertext (0, Epk(x)), and D′ takes a ciphertext (a, y) and outputs Dsk(y) if
a = 0 or x equals a specific string (say, 0), otherwise ⊥. It can be seen from

11 Since the existence of computationally secure private key encryption schemes is
equivalent to that of one-way functions, we may show separations for private key
encryption schemes by assuming the latter (see e.g. [19]).
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this definition of D′ that there is no advantage to choose the option a ̸= 0. An
SNM∗ simulator may not choose this option, while a CNM∗ adversary can force
the “random guess” to choose the option so as to take relative advantage against
it. We are now ready to show the separation between SNM∗ and CNM∗.

Theorem 1. SNM∗-CCA1 ≠⇒ CNM∗-CPA.

Proof. Let Π = (K, E ,D) be an encryption scheme. By using Π, let us construct
another encryption scheme Π ′ = (K′, E ′,D′) as

Algorithm K′(1k)
(pk, sk)← K(1k)
return (pk, sk)

Algorithm E ′pk(x)
y ← Epk(x)
return (0, y)

Algorithm D′
sk((a, y))

x← Dsk(y)
if a = 0 then return x
else if x = 0 then return x

else return ⊥

It can be seen from this definition that for a and x such that x ← D′
sk((a, y))

for some y,

x ̸=⊥ ∧a ̸= 0 ⇐⇒ x ̸=⊥ ∧a ̸= 0 ∧ x = 0. (3)

Then, the theorem follows from Lemmas 1 and 2, provided in appendix A. ⊓⊔

Lemmas 1 and 2 claim that (a) If Π is SNM∗-CCA1, then so is Π ′ and (b) Π ′

is not CNM∗-CPA, respectively. To show the first lemma (a), we construct an
adversary A attacking Π and a relation R for A by using an adversary A′ at-
tacking Π ′ and a relation R′ for A′, respectively. The construction of A from
A′ is straightforward except for the case where A′

2 outputs a sequence y′ of
ciphertexts which contains a component (a′, y) such that a′ ̸= 0 and y is a chal-
lenge ciphertext for A (we note that challenge ciphertexts for A′ have the form
(0, y)). In fact, A2 can generate a sequence y of ciphertexts by simply ignor-
ing the first component a′ of each component (a′, y′) of y′. On the other hand,
in the exceptional case mentioned above, the sequence y generated as above
contains the challenge ciphertext y, which violates the legitimate condition (ii)
(see Definition 1 for this condition). This violation can be avoided as follows.
Let a′ be a sequence given by simply ignoring the second component y′ of each
component (a′, y′) of y′. For i ∈ [|a′|], if a′

i ̸= 0, then A2 replaces yi with z
such that z ̸= y, and then concatenates an encryption Epk(a′) of the position
a′ of this replacement to the sequence y of ciphertexts. Then, the relation R
can replace Dsk(z) at the position of the above replacement with the specific
string 0. Here, note that (3) implies that a ciphertext (a, y) with a ̸= 0 is valid
only if x = Dsk(y) = 0. It thus follows that the advantage of A is no less than
that of A′. Furthermore, we can show the second lemma (b) by considering a
CNM∗-CPA adversary which simply transforms a challenge ciphertext (0, y) to
(1, y) and outputs it as a component of y. In fact, if the adversary outputs the
message distribution M = {0, 1} and the relation R defined by R(x,x) = 1 iff
x = (x), then the adversary is successful if and only if x1 = 0 (which occurs with
probability 1

2 ), while the “random guess” is successful if and only if x0 = x1 = 0
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(which occurs with probability 1
4 ), and so the former has the advantage 1

4 against
the latter. Detailed proofs of these lemmas are described in appendix A. We note
that the above proof of Theorem 1 applies to a larger message space M if and
only if its cardinality |M | is upper-bounded by a polynomial of k.

4 Separation between semantic security and ciphertext
indistinguishability

We begin with showing the separation between SNM∗ and IND∗. For this pur-
pose, we modify an encryption scheme Π = (K, E ,D) to Π ′ = (K′, E ′,D′) so that
the modified decryption algorithm D′ has an additional “option” which makes
an adversary and a simulator fail with probability at least 1

2 . More precisely, E ′
takes a plaintext x and outputs a ciphertext (0, Epk(ux)) with u being a random
bit, and D′ takes a ciphertext (a, y) and outputs x̂ if a = 0 or û = 0, otherwise
⊥, where we have introduced û and x̂ to denote the first bit and the remaining
bits of Dsk(y), respectively (i.e. Dsk(y) = ûx̂ with |û| = 1). It can be seen from
this definition of D′ that an adversary and a simulator fail with probability at
least Pr[û = 1] = 1

2 if they choose the option a ̸= 0. Hence, there is no advantage
for an IND∗ adversary with a message distribution whose support consists of two
elements x0 and x1 to choose this option, while an SNM∗ adversary may take
advantage from this option by choosing a message distribution M whose support
consists of more than two elements. We are now ready to show the separation
between SNM∗ and IND∗.

Theorem 2. IND∗-PCA1 ≠⇒ SNM∗-CPA.

Proof. Let Π = (K, E ,D) be an encryption scheme. By using Π, let us construct
another encryption scheme Π ′ = (K′, E ′,D′) as

Algorithm K′(1k)
(pk, sk)← K(1k)
return (pk, sk)

Algorithm E ′pk(x)
u← {0, 1}
y ← Epk(ux)
return (0, y)

Algorithm D′
sk((a, y))

x′ ← Dsk(y)
if |x′| = 0 then return ⊥
else parse x′ as ux with |u| = 1
if a = 0 then return x
else if u = 0 then return x

else return ⊥

Then, the theorem follows from Lemmas 3 and 4, provided in appendix B. ⊓⊔

Lemmas 3 and 4 claim that (a) If Π is IND∗-PCA1, then so is Π ′ and (b) Π ′ is not
SNM∗-CPA, respectively. To show the first lemma (a), we construct an adversary
A attacking Π by using an adversary A′ attacking Π ′ as before. Again, the
construction of A from A′ is straightforward except for the case where A′

2 outputs
a sequence y′ of ciphertexts which contains a component (a′, y) such that a′ ̸= 0
and y is a challenge ciphertext for A. Let us thus describe the construction for
the exceptional case. Receiving two plaintexts x0 and x1 from A′

1, A1 generates
two plaintexts vx0 and v̄x1 with v being a random bit, where v̄ denotes the
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inversion of v. Note that vx0 and v̄x1 can be expressed as vx0 = (v ⊕ 0)x0 and
v̄x1 = (v ⊕ 1)x1, respectively, and the distributions of (v ⊕ b)xb and uxb are
identical if b, v and u are independent random bits. If we consider v as a guess
of b, then (v⊕ b)xb has the form 0xb if the guess is correct (i.e. v = b), otherwise
it has the form 1xb and so D′

sk returns ⊥. Now, A2 generates a sequence y of
ciphertexts by simply ignoring the first component a′ of each component (a′, y′)
of y′. Next, A2 replaces y in y with z such that z ̸= y, and then includes
the position of this replacement in the state information s2 for A3. Finally, A3

replaces Dsk(z) at the position of the above replacement with xv. It can be
seen from this construction that A can completely simulate the view of A′ if the
guess is correct, while if the guess is not correct, then A′ always fails because
⊥∈ Dsk(y

′). It thus follows that the advantage of A′ is upper-bounded by that
of A. Furthermore, we can show the second lemma (b) by considering an SNM∗-
CPA adversary which simply transforms a challenge ciphertext (0, y) to (1, y)
and outputs it as a component of y. In fact, if the adversary outputs a message
distribution whose support consists of more than two (say, M = {0, 1}2), then
for the relation R given by R(x,x,M, s2) = 1 iff M = {0, 1}2 ∧ x = x1, the
adversary is successful if and only if u = 0 (which occurs with probability 1

2 ),
while the simulator is successful with probability at most 1

4 , and so the former
has the advantage at least 1

4 against the latter. Detailed proofs of these lemmas
are described in appendix B.

In the above proof, it is essential that an IND∗ adversary has to output a
message distribution whose support consists of exactly two elements, but an
SNM∗ adversary is free of such restriction on a message distribution. This may
motivate us to consider simulation-based and comparison-based formulations of
semantic security against parallel chosen-ciphertext attacks, SSS∗-PCAX and
CSS∗-PCAX, because semantic security is commonly formulated without such
restriction on a message distribution, and so may be (potentially) stronger than
IND∗-PCAX. We first provide a formulation of SSS∗-PCAX, which is just a com-
bination of the definitions of semantic security [16] and parallel chosen-ciphertext
attacks [4], and leave a formulation of CSS∗-PCAX in appendix C.

We refer to section 1 for an informal explanation of the formulations of se-
mantic security and to section 2.1 for remarks on the related formulations, and
here make a few remarks. In the formulation of SSS∗-PCAX, the function F is
computable in polynomial-time, and takes as input not only the plaintext x but
also M and s3. As before, the reason why F takes input M is for a fair compari-
son between the adversary A and its simulator S. We use that F can take input
side information s3 in the proof of Proposition 1, provided in appendix C. The
third stage adversary A3 and its simulator S3 output v and side information s3
for F , where A and S are considered successful if F (x,M, s3) = v and ⊥/∈ x
hold. A formal definition of SSS∗-PCAX is described below.

Definition 4 (SSS∗-PCAX). Let Π = (K, E ,D) be an encryption scheme
and F be a function. Let A = (A1, A2, A3) be an adversary attacking Π and S =
(S1, S2, S3) be its simulator. For k ∈ N and PCAX ∈ {PCA0,PCA1,PCA2},
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define the advantage of A against S by

AdvSSS∗-PCAX
Π,F,A,S (k)

= Pr[ExptSSS∗-PCAX-1
Π,F,A (k) : w = 1]− Pr[ExptSSS∗-PCAX-0

Π,F,S (k) : w = 1],

where

Experiment ExptSSS∗-PCAX-1
Π,F,A (k)

(pk, sk)← K(1k)
(M, s1)← AO1

1 (pk)
x←M ; y ← Epk(x)
(y, s2)← AO2

2 (s1, y); x← Dsk(y)
(v, s3)← AO2

3 (x, s2)
if F (x,M, s3) = v∧ ⊥/∈ x then w ← 1
else w ← 0

Experiment ExptSSS∗-PCAX-0
Π,F,S (k)

(pk, sk)← K(1k)
(M, s1)← S1(pk)
x←M
(y, s2)← S2(s1); x← Dsk(y)
(v, s3)← S3(x, s2)
if F (x,M, s3) = v∧ ⊥/∈ x then w ← 1
else w ← 0

Here, A is supposed to be legitimate as in Definition 1, and O1 and O2 are defined
as in Definition 3. Then, an encryption scheme Π is called secure in the sense of
SSS∗-PCAX if for all polynomial p, all probabilistic adversary A bounded by time
p(k) and all function F computable in time p(k), there exist a polynomial p′(k)
and a simulator S bounded by time p′(k) such that AdvSSS∗-ATK

Π,R,A,S (k) is negligible.

It turns out that SSS∗-PCAX and CSS∗-PCAX are equivalent to SNM∗-
ATK and CNM∗-ATK, respectively (see appendix C). Hence, it follows from
this equivalence, together with Theorem 2, that (simulation-based) semantic
security and ciphertext indistinguishability separate against the weaker parallel
chosen-ciphertext attacks under the valid ciphertext condition.

Corollary 1. IND∗-PCA1 ≠⇒ SSS∗-PCA0.

5 Concluding remarks

It may be natural to consider the possibility that the results of this work extend
to the private key setting. For this extension, it is necessary that a simulator
S has access to the encryption oracle (see the proof of Lemma 1, provided in
appendix A). It can be seen from the construction of S which runs the key
generation algorithm K (see e.g. the proof of CNM =⇒ SNM in [4]) that the
strength of security does not change even if S has access to the decryption
oracle. Hence, it would be of interest to consider the strength and validity of
the simulation-based non-malleability in which S has access to the encryption
oracle in the private key setting. Furthermore, the proof of SSS∗ =⇒ SNM∗ (see
Proposition 1, provided in appendix C) requires that the function F in semantic
security takes as input side information s3. We note that it does not affect the
strength of security whether or not the relation R in non-malleability takes as
input side information s2 (see e.g. the proof of SNM =⇒ IND in [4]). Hence,
it would also be of interest to consider the strength of the simulation-based
semantic security in which F is not given s2.
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A Proofs of lemmas for Theorem 1

Lemma 1. If Π is SNM∗-CCA1, then so is Π ′.

Proof. Let p be a polynomial of k. Let R′ be a relation computable in time
p(k) and A′ = (A′

1, A
′
2) be a legitimate SNM∗-CCA1 adversary attacking Π ′,

bounded by time p(k) (see Definition 1 for an adversary bounded by time p(k)).
By using A′ and R′, let us construct an SNM∗-CCA1 adversary A = (A1, A2)
attacking Π and a relation R as

Algorithm A
Dsk
1 (pk)

(M, s1, s2)← A
′D′

sk
1 (pk)

x′ ←M ;L← |x′|+ 1
z ← Epk(0L)
s′1 ← (s1, z, pk)
return (M, s′1, s2)

Algorithm A2(s
′
1, y)

y′ ← A′
2(s1, (0, y))

a′ ← y′
:1

y ← (a′ = 0 ? y′
:2 : z)

ŷ ← y||Epk(a′)
return ŷ

Relation R(x, x̂,M, s2)
if |x̂| is odd then return 0
parse x̂ as x||a′ with |x| = |a′|
x̃← (a′ = 0 ? x : 0)
return R′(x, x̃,M, s2)

(see (1) and (2) for the notations x:j and (c = d ? a : b), respectively), where
the length L is chosen so that |0L| > |x| for any output x of M (note that
M outputs messages of a fixed length), which ensures that Epk(0L) ̸= y with
probability 1. Since A′ is bounded by time p(k) (and so every string output by
A′ has a length bounded by p(k)), R′ is computable in time p(k) and Epk is
polynomial-time, it follows that M is samplable in time p(k) and A and R are
polynomial-time. Moreover, A can be seen legitimate as follows: the condition (i)
follows from that A′ is legitimate and the condition (iii) from that A2 has no
oracle access to Dsk; since (0, y) /∈ y′ and so ∀i((y′

:2)i = y =⇒ a′
i ̸= 0), we have

y /∈ y = (a′ = 0 ? y′
:2 : z), from which the condition (ii) follows. We note that

A1 can answer queries from A′
1 by using her own oracle Dsk to compute D′

sk.
It is now convenient to consider the experiment Expt1(k) defined by
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Experiment Expt1(k)

(pk, sk)← K(1k); (M, s1)← A
′D′

sk
1 (pk); x, x′ ←M ; y ← Epk(x)

L← |x′|+ 1; z ← Epk(0L); (y′, s2)← A′
2(s1, (0, y))

a′ ← y′
:1; y ← (a′ = 0 ? y′

:2 : z); x′ ← D′
sk(y

′); x← Dsk(y); x̃← (a′ = 0 ? x : 0)

and to introduce, for an event E, the short-hand notation p1(E) = Pr[Expt1(k) :
E]. Since x = (a′ = 0 ? x′ : 0L) and x̃ = (a′ = 0 ? x : 0), we have

⊥∈ x ⇐⇒ ⊥∈ x̃ =⇒ ⊥∈ x′. (4)

Moreover, since x̃ can be written as x̃ = (a′ = 0 ? x′ : 0), we have x′ = x̃ ⇐⇒
∀i(a′

i = 0 ∨ x′
i = 0). It thus follows from (3) that

⊥/∈ x′ ⇐⇒ ∀i(x′
i ̸=⊥ ∧(a′

i = 0 ∨ a′
i ̸= 0))

⇐⇒ ∀i(x′
i ̸=⊥ ∧(a′

i = 0 ∨ (a′
i ̸= 0 ∧ x′

i = 0)))

⇐⇒ ∀i(x′
i ̸=⊥ ∧(a′

i = 0 ∨ x′
i = 0))

⇐⇒ ⊥/∈ x′ ∧ x′ = x̃.

Therefore,

Pr[ExptSNM∗-CCA1-1
Π,R,A (k) : w = 1]

= p1(R(x,x,M, (s2)||a′) = 1∧ ⊥/∈ x)

= p1(R
′(x, x̃,M, s2) = 1∧ ⊥/∈ x̃)

≥ p1(R
′(x, x̃,M, s2) = 1∧ ⊥/∈ x′)

= p1(R
′(x, x̃,M, s2) = 1∧ ⊥/∈ x′ ∧ x′ = x̃)

= p1(R
′(x,x′,M, s2) = 1∧ ⊥/∈ x′ ∧ x′ = x̃)

= p1(R
′(x,x′,M, s2) = 1∧ ⊥/∈ x′)

= Pr[ExptSNM∗-CCA1-1
Π′,R′,A′ (k) : w = 1],

where the inequality follows from (4).
It follows from Definition 1 that if Π is secure in the sense of SNM∗-CCA1,

then there exist a polynomial p′ and a simulator S = (S1, S2) of the above
adversary A, bounded by time p′(k), such that AdvSNM∗-CCA1

Π,R,A,S (k) is negligible.
By using such S, let us next construct a simulator S′ = (S′

1, S
′
2) of A′ as12

Algorithm S′
1(pk

′)
(pk, sk)← K(1k); (M, s1, s2)← S1(pk)
ŷ ← S2(s1); x̂← Dsk(ŷ)
if |x̂| is odd then return (M, ((), ε))
parse x̂ as x||a′ with |x| = |a′|
x̃← (a′ = 0 ? x : 0); y′ ← Epk′(x̃)
return (M,y′)

Algorithm S′
2(y

′)
return y′

12 It can be seen from this construction that the strength of security does not change
even if S is given the secret key/decryption oracle, and S can be one stage. We note
that the construction of S which runs K was given in [4].
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Since S is bounded by time p′(k) and K, Epk′ and Dsk are polynomial-time, it
follows that M is samplable in time p′(k) and S′ is polynomial-time. It can also
be seen from the above construction of S′ and R that

Pr[ExptSNM∗-CCA1-0
Π′,R′,S′ (k) : w = 1] ≥ Pr[ExptSNM∗-CCA1-0

Π,R,S (k) : w = 1]

(where equality holds if and only if S′ always fails when |x̂| is odd), and so

AdvSNM∗-CCA1
Π′,R′,A′,S′ (k) ≤ AdvSNM∗-CCA1

Π,R,A,S (k).

Consequently, if Π is secure in the sense of SNM-CCA1, then AdvSNM∗-CCA1
Π,R,A,S (k)

is negligible, and so is AdvSNM-CCA1
Π′,R′,A′,S′(k). This completes the proof. ⊓⊔

Lemma 2. Π ′ is not CNM∗-CPA.

Proof. Let A = (A1, A2) be a CNM∗-CPA adversary attacking Π ′ defined by

Algorithm A1(pk)
return ({0, 1}, ε)

Algorithm A2(s, (0, y))
return (R, ((1, y)))

where the relation R output by A2 is given by

Relation R(x,x)
if x = (x) then return 1
else return 0

It can be seen from this definition that M is samplable in time O(1) and A is
polynomial-time; moreover, since |0| = |1| and (0, y) ̸= (1, y), A is legitimate.
Since ⊥/∈ x ⇐⇒ x1 = 0, it also follows that

Pr[ExptCNM∗-ATK-1
Π,A (k) : w = 1] = Pr[ExptCNM∗-ATK-1

Π,A (k) : x1 = x1 ∧ x1 = 0] =
1

2
,

Pr[ExptCNM∗-ATK-0
Π,A (k) : w = 1] = Pr[ExptCNM∗-ATK-0

Π,A (k) : x0 = x1 ∧ x1 = 0] =
1

4
,

and so

AdvCNM∗-ATK
Π,A (k) =

1

2
− 1

4
=

1

4
,

which is not negligible. This completes the proof. ⊓⊔

B Proofs of lemmas for Theorem 2

Lemma 3. If Π is IND∗-PCA1, then so is Π ′.

Proof. Let p be a polynomial of k. Let A′ = (A′
1, A

′
2, A

′
3) be a legitimate IND∗-

PCA1 adversary attacking Π ′, bounded by time p(k). By using A′, let us con-
struct an IND∗-PCA1 adversary A = (A1, A2, A3) attacking Π as
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Algorithm A
Dsk
1 (pk)

(x0, x1, s1)← A′
1
D′

sk (pk)
v ← {0, 1}; L← |x0|+ 1; z ← Epk(0L)
return (vx0, v̄x1, (s1, z, xv))

Algorithm A2(vx0, v̄x1, (s1, z, xv), y)
(y′, s2)← A′

2(s1, (0, y))
y ← (y′

:2 = y ? z : y′
:2)

return (y, (s2,y
′
:2, y, xv))

Algorithm A3(x, (s2,y
′
:2, y, xv))

x̃← (y′
:2 = y ? xv : x); d← A′

3(x̃, s2)
return d

where v̄ denotes the inversion of v. Since A′ is bounded by time p(k) and Epk
is polynomial-time, it follows that M is samplable in time p(k) and A and R
are also polynomial-time. Moreover, A can be seen legitimate as follows: the
condition (i) follows from that A′ is legitimate, the condition (ii) from that
y = (y′

:2 = y ? z : y′
:2), where every component y has been replaced by z, and

the condition (iii) from that A2 has no oracle access to Dsk. We note that A1

can answer queries from A′
1 by using her own oracle Dsk to compute D′

sk.
It is now convenient to consider the experiment Expt2(k) defined by

Experiment Expt2(k)

(pk, sk)← K(1k); (x0, x1, s1)← A′
1
D′

sk (pk); L← |x0|+ 1; z ← Epk(0L)
b, u, v ← {0, 1}; y ← Epk((v ⊕ b)xb); ŷ ← Epk(uxb)
y′ ← A′

2(s1, (0, y)); x
′ ← D′

sk(y
′); d′ ← A′

3(x
′, s2)

ŷ ← A′
2(s1, (0, ŷ)); x̂← D′

sk(ŷ); d̂← A′
3(x̂, s2)

y ← (y′
:2 = y ? z : y′

:2); x← Dsk(y); x̃← (y′
:2 = y ? xv : x); d← A′

3(x̃, s2)

where we have used that vx0 and v̄x1 can be expressed as vx0 = (v ⊕ 0)x0

and v̄x1 = (v ⊕ 1)x1, respectively, and to introduce the short-hand notation
p2(E) = Pr[Expt2(k) : E], as before. We first note that the distributions of
(v ⊕ b)xb and uxb are identical. Since x = (y′

:2 = y ? 0L : x′), we have

⊥∈ x =⇒ ⊥∈ x′.

It thus follows that

Pr[ExptIND∗-PCA1
Π,A (k) : w = 1] = p2(d = b∧ ⊥/∈ x)

≥ p2(d = b∧ ⊥/∈ x′)

= p2(d = b∧ ⊥/∈ x′ ∧ v = b)

+ p2(d = b∧ ⊥/∈ x′ ∧ v ̸= b ∧ y ∈ y′
:2)

+ p2(d = b∧ ⊥/∈ x′ ∧ v ̸= b ∧ y /∈ y′
:2).

We now estimate the above three terms in the right-hand side. To consider the
first term, we begin with expressing x as x = (y′

:2 = y ? 0L : x′). It can be seen
from this expression that x̃ = (y′

:2 = y ? xv : x) = (y′
:2 = y ? xv : x′), and so

v = b =⇒ x̃ = (y′
:2 = y ? xb : x

′) = x′ =⇒ d = d′.
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Hence, on noting that v = b ⇐⇒ v ⊕ b = 0 and p2(v ⊕ b = 0) = p2(u = 0) = 1
2 ,

we have

p2(d = b∧ ⊥/∈ x′ ∧ v = b) = p2(d
′ = b∧ ⊥/∈ x′ ∧ v = b)

= p2(d
′ = b∧ ⊥/∈ x′|v ⊕ b = 0)p2(v ⊕ b = 0)

= p2(d̂ = b∧ ⊥/∈ x̂|u = 0)p2(u = 0)

= p2(d̂ = b∧ ⊥/∈ x̂ ∧ u = 0).

To consider the second term, suppose that y ∈ y′
:2, and let i be an index such

that y′
i = (a, y). Then, since A′ is legitimate, we have (0, y) /∈ y′ and so a ̸= 0.

Note here that v ̸= b ⇐⇒ v ⊕ b = 1, and hence Dsk(y) = 1xb. It thus follows
from the definition of D′

sk that x′
i = D′

sk((a, y)) =⊥. Similarly, if ŷ ∈ ŷ:2 and
u ̸= 0, then ⊥∈ x̂. Therefore,

p2(d = b∧ ⊥/∈ x′ ∧ v ̸= b ∧ y ∈ y′
:2) = p2(d̂ = b∧ ⊥/∈ x̂ ∧ u ̸= 0 ∧ ŷ ∈ ŷ:2) = 0.

To consider the third term, we begin with

y /∈ y′
:2 =⇒ x̃ = (y′

:2 = y ? xv : x′) = x′ =⇒ d = d′.

Hence, on noting that v ̸= b ⇐⇒ v ⊕ b = 1, u ̸= 0 ⇐⇒ u = 1 and
p2(v ⊕ b = 1) = p2(u = 1) = 1

2 , we have

p2(d = b∧ ⊥/∈ x′ ∧ v ̸= b ∧ y /∈ y′
:2)

= p2(d
′ = b∧ ⊥/∈ x′ ∧ v ̸= b ∧ y /∈ y′

:2)

= p2(d
′ = b∧ ⊥/∈ x′ ∧ y /∈ y′

:2|v ⊕ b = 1)p2(v ⊕ b = 1)

= p2(d̂ = b∧ ⊥/∈ x̂ ∧ ŷ /∈ ŷ:2|u = 1)p2(u = 1)

= p2(d̂ = b∧ ⊥/∈ x̂ ∧ u ̸= 0 ∧ ŷ /∈ ŷ:2).

Having estimated the three terms, we now combine these terms to give

Pr[ExptIND∗-PCA1
Π,A (k) : w = 1] ≥ p2(d = b∧ ⊥/∈ x′)

= p2(d̂ = b∧ ⊥/∈ x̂)

= Pr[ExptIND∗-PCA1
Π′,A′ (k) : w = 1],

and hence

AdvIND∗-PCA1
Π′,A′ (k) ≤ AdvIND∗-PCA1

Π,A (k).

Consequently, if Π is secure in the sense of IND∗-PCA1, then AdvIND∗-PCA1
Π,A (k)

is negligible, and so is AdvIND∗-PCA1
Π′,A′ (k). This completes the proof. ⊓⊔

Lemma 4. Π ′ is not SNM∗-CPA.
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Proof. Let A = (A1, A2) be an SNM∗-CPA adversary attacking Π ′ defined by

Algorithm A1(pk)
return ({0, 1}2, ε, ε)

Algorithm A2(s1, (0, y))
return ((1, y))

and let R be a relation defined by

Relation R(x,x,M, s2)
if M = {0, 1}2 ∧ x = x1 then return 1
else return 0

It can be seen from the above definition of A that M is samplable in time O(1)
and A is polynomial-time; it also follows from |00| = |01| = |10| = |11| and
(0, y) ̸= (1, y) that A is legitimate. Now, it follows from the construction of A
that

Pr[ExptSNM∗-ATK-1
Π′,R,A (k) : w = 1] = Pr[ExptSNM∗-ATK-1

Π′,R,A (k) : u = 0] =
1

2
,

where u is the random variable introduced in the definition of E ′pk. On the other
hand, S is given no information about the plaintext x, and hence the outputs
from S are statistically independent of x. Consequently, since x is uniformly
distributed on {0, 1}2, we have

Pr[ExptSNM∗-ATK-0
Π′,R,S (k) : w = 1] = Pr[ExptSNM∗-ATK-0

Π′,R,S (k) : x = x1]

≤ 1

|{0, 1}2|
=

1

4

(where equality holds if and only if S outputs M = {0, 1}2 and y such that
Dsk′(y1) ∈ {0, 1}2), and so

AdvSNM∗-ATK
Π′,R,A,S (k) ≥ 1

4
,

which is not negligible. This completes the proof. ⊓⊔

C Semantic security against parallel chosen-ciphertext
attacks

In this appendix, we first provide a formal definition of comparison-based seman-
tic security against parallel chosen-ciphertext attacks under the valid ciphertext
condition, CSS∗-PCAX, which is just a combination of the definitions of se-
mantic security [16] and parallel chosen-ciphertext attacks [4], with reference to
the comparison-based formulation of semantic security for the private key en-
cryption [2] (see Definition 4 for the definition of the simulation-based semantic
security SSS∗-PCAX).
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Definition 5 (CSS∗-PCAX). Let Π = (K, E ,D) be an encryption scheme
and A = (A1, A2, A3) be an adversary attacking Π. For k ∈ N and PCAX ∈
{PCA0,PCA1,PCA2}, define the advantage of A by

AdvCSS∗-PCAX
Π,A (k)

= Pr[ExptCSS∗-PCAX-1
Π,A (k) : w = 1]− Pr[ExptCSS∗-PCAX-0

Π,A (k) : w = 1],

where

Experiment ExptCSS∗-PCAX-b
Π,A (k)

(pk, sk)← K(1k); (M, s1)← AO1
1 (pk); x0, x1 ←M ; y ← Epk(x1)

(y, s2)← AO2
2 (s1, y); x← Dsk(y); (f, v)← AO2

3 (x, s2)
if f(xb) = v∧ ⊥/∈ x then w ← 1
else w ← 0

Here, A is supposed to be legitimate as in Definition 1, and O1 and O2 are
defined as in Definition 3. Then, an encryption scheme Π is called secure in the
sense of CSS∗-PCAX if for all polynomial p and all probabilistic adversary A
runnable in time p(k), AdvCSS∗-PCAX

Π,A (k) is negligible.

Again, note that in the above definition, ExptCSS∗-PCAX-1
Π,A (resp. ExptCSS∗-PCAX-0

Π,A )
denotes the experiment for an adversary (resp. “random guess”).

Having provided formal definitions, we next show that SSS∗-PCAX and
CSS∗-PCAX are equivalent to SNM∗-ATK and CNM∗-ATK, respectively. Again,
the proof is rather straightforward, and we may refer to the proof of the equiv-
alence among SNM, CNM and IND in [4]; for example, in order for relation R
to run a probabilistic algorithm A(x1, . . . ; r), one can include the randomness
r for the algorithm A in the side information s2 for the relation R. A detailed
proof of the equivalence is described below. (Here, it should be noted that the
equivalence for (PCA2,CCA2) follows from the equivalence between IND-CCA2
and CNM-CCA2 [3].)

Proposition 1. SSS∗-PCAX ⇐⇒ SNM∗-ATK and CSS∗-PCAX ⇐⇒ CNM∗-
ATK for (PCAX,ATK)∈ {(PCA0,CPA), (PCA1,CCA1), (PCA2,CCA2)}.

Proof. (I) SSS∗-PCAX =⇒ SNM∗-ATK: Let p be a polynomial of k. Let R′ be a
relation computable in time p(k) and A′ = (A′

1, A
′
2) be a legitimate SNM∗-ATK

adversary attacking an encryption scheme Π = (K, E ,D), bounded by time p(k).
By using A′ and R′, let us construct an SSS∗-PCAX adversary A = (A1, A2, A3)
attacking Π and a function F as

Algorithm AO1
1 (pk)

(M, s1, s2)← A′O1
1 (pk)

return (M, (s1, s2))

Algorithm AO2
2 ((s1, s2), y)

y ← A′O2
2 (s1, y)

return (y, s2)

Algorithm AO2
3 (s2,x)

s← x||(s2)
return (1, s)

Function F (x,M, s)
if |s| = 0 then return 0
else parse s as x||(s) with |(s)| = 1
return R′(x,x,M, s)
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Since A′ is bounded by time p(k) and R′ is computable in time p(k), it follows
that M is samplable in time p(k) and A and F are also polynomial-time. More-
over, since A′ is legitimate, A is also legitimate. We note that A can answer
queries from A′ by using her own oracle. It is now straightforward to see from
the above construction of A and F that

Pr[ExptSNM∗-ATK-1
Π,R′,A′ (k) : w = 1] = Pr[ExptSSS∗-ATK-1

Π,F,A (k) : w = 1].

It follows from Definition 4 that if Π is secure in the sense of SSS∗-PCAX,
then there exist a polynomial p′ and a simulator S = (S1, S2, S3) of the above
adversary A, bounded by time p′(k), such that AdvSSS∗-PCAX

Π,F,A,S (k) is negligible.
By using such S, let us next construct a simulator S′ = (S′

1, S
′
2) of A′ as

Algorithm S′
1(pk

′)
(pk, sk)← K(1k); (M, s1)← S1(pk)
(y, s2)← S2(s1); x← Dsk(y); (v, s)← S3(x, s2)
if |s| = 0 then return (M, ((), ε))
else parse s as x′||(s) with |(s)| = 1
y′ ← Epk′(x′)
return (M,y′, s)

Algorithm S′
2(y

′)
return y′

Since S is bounded by time p′(k) and K, Epk′ and Dsk are polynomial-time, it
follows that M is samplable in time p′(k) and S′ is also polynomial-time. Then,
the above construction of S′ and F gives that

Pr[ExptSNM∗-ATK-0
Π,R′,S′ (k) : w = 1] ≥ Pr[ExptSSS∗-PCAX-0

Π,F,S (k) : w = 1]

(where equality holds if and only if S′ always fails when |s| = 0), and so

AdvSNM∗-ATK
Π,R′,A′,S′ (k) ≤ AdvSSS∗-PCAX

Π,F,A,S (k).

Consequently, if Π is secure in the sense of SSS∗-PCAX, then AdvSSS∗-PCAX
Π,F,A,S (k)

is negligible, and so is AdvSNM∗-ATK
Π,R′,A′,S′ (k). This completes the proof of (I).

(II) SNM∗-ATK =⇒ SSS∗-PCAX: Let p be a polynomial of k. Let F ′ be a
function computable in time p(k) and A′ = (A′

1, A
′
2, A

′
3) be a legitimate SSS∗-

PCAX adversary attacking an encryption scheme Π = (K, E ,D), bounded by
time p(k). By using A′ and F ′, let us construct an SSS∗-ATK adversary A =
(A1, A2) attacking Π and a relation R as13

Algorithm A
Dsk(·)
1 (pk)

(M, s1)← A
′Dsk(·)
1 (pk)

return (M, s1, ε)

Algorithm A
Dsk(·)
2 (s1, y)

(y, s2)← A
′Dsk(·)
2 (s1, y); x← Dsk(y)

(v, s3)← A
′Dsk(·)
3 (s2,x); y

′ ← Epk((v, s3))
return y′

13 In this R, x′ is parsed as x||(v)||(s3) (which always gives x = () for the output from
A) for consistency with the weaker attack models.
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Relation R(x,x′,M, s2)
if |x′| < 2 then return 0
else parse x′ as x||(v)||(s3) with |(v)| = |(s3)| = 1
if F ′(x,M, s3) = v then return 1
else return 0

for (PCAX,ATK) = (PCA2,CCA2), otherwise as

Algorithm AO1
1 (pk)

(M, s1)← A′O1
1 (pk)

return (M, s1, ε)

Algorithm A2(s1, y)
(y, s2)← A′

2(s1, y)
choose randomness r for A′

3

y′ ← y||Epk((r, s2))
return y′

Relation R(x,x′,M, s2)
if |x′| < 2 then return 0
else parse x′ as x||(r)||(s2) with |(r)| = |(s2)| = 1
(v, s3)← A′

3(s2,x; r)
if F ′(x,M, s3) = v then return 1
else return 0

Since A′ is bounded by time p(k), F ′ is computable in time p(k) and Dsk is
polynomial-time, it follows that M is samplable in time p(k) and A and R are
also polynomial-time. Moreover, since A′ is legitimate, A is also legitimate. We
note that A can answer queries from A′ by using her own oracle. It is now
straightforward to see from the above construction of A and R that

Pr[ExptSSS∗-ATK-1
Π,F ′,A′ (k) : w = 1] = Pr[ExptSNM∗-ATK-1

Π,R,A (k) : w = 1].

It follows from Definition 1 that if Π is secure in the sense of SNM∗-ATK,
then there exist a polynomial p′ and a simulator S = (S1, S2) of the above
adversary A, bounded by time p′(k), such that AdvSNM∗-ATK

Π,R,A,S (k) is negligible. By
using such S, let us next construct a simulator S′ = (S′

1, S
′
2, S

′
3) of A′ as

Algorithm S′
1(pk

′)
(pk, sk)← K(1k); (M, s1, s2)← S1(pk)
y′ ← S2(s1); x

′ ← Dsk(y
′)

if |x′| < 2 then return (M, ((), ε, ε))
else parse x′ as x||(v)||(s3) with |(v)| = |(s3)| = 1
y ← Epk′(x)
return (M, (y, v, s3))

Algorithm S′
2((y, v, s3))

return (y, (v, s3))

Algorithm S′
3((v, s3),x)

return (v, s3)

for (PCAX,ATK) = (PCA2,CCA2), otherwise as
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Algorithm S′
1(pk

′)
(pk, sk)← K(1k); (M, s1, s2)← S1(pk)
y′ ← S2(s1); x

′ ← Dsk(y
′)

if |x′| < 2 then return (M, ((), ε, ε))
else parse x′ as x||(r)||(s2) with |(r)| = |(s2)| = 1
(v, s3)← A′

3(s2,x; r); y ← Epk′(x)
return (M, (y, v, s3))

Algorithm S′
2((y, v, s3))

return (y, (v, s3))

Algorithm S′
3((v, s3),x)

return (v, s3)

Since S is bounded by time p′(k) and K, Epk′ and Dsk are polynomial-time, it
follows that M is samplable in time p′(k) and S′ is also polynomial-time. Then,
the above construction of S′ and R gives that

Pr[ExptSSS∗-PCAX-0
Π,F ′,S′ (k) : w = 1] ≥ Pr[ExptSNM∗-ATK-0

Π,R,S (k) : w = 1]

(where equality holds if and only if S′ always fails when |x′| < 2), and so

AdvSSS∗-PCAX
Π,F ′,A′,S′ (k) ≤ AdvSNM∗-ATK

Π,R,A,S (k).

Consequently, if Π is secure in the sense of SNM∗-ATK, then AdvSNM∗-ATK
Π,R,A,S (k)

is negligible, and so is AdvSSS∗-PCAX
Π,F ′,A′,S′ (k). This completes the proof of (II).

(III) CSS∗-PCAX =⇒ CNM∗-ATK: Let p be a polynomial of k. Let A′ =
(A′

1, A
′
2) be a legitimate CNM∗-ATK adversary attacking an encryption scheme

Π = (K, E ,D), bounded by time p(k). By using A′, let us construct an CSS∗-
PCAX adversary A = (A1, A2, A3) attacking Π as

Algorithm AO1
1 (pk)

(M, s1)← A′O1
1 (pk)

return (M, s1)

Algorithm AO2
2 (s1, y)

(y, R)← A′O2
2 (s1, y)

return (y, R)

Algorithm AO2
3 (R,x)

return (FR,x, 1)

where the function FR,x output by A3 is given by

Function FR,x(x)
return R(x,x)

Since A′ is bounded by time p(k), it follows that M is samplable in time p(k) and
A is also polynomial-time. Moreover, since A′ is legitimate, A is also legitimate.
We note that A can answer queries from A′ by using her own oracle. It is now
straightforward to see from the above construction of A that

AdvCNM∗-ATK
Π,A (k) = AdvCSS∗-PCAX

Π,A′ (k).

Consequently, if Π is secure in the sense of CSS∗-PCAX, then AdvCSS∗-PCAX
Π,A (k)

is negligible, and so is AdvCNM∗-ATK
Π,A′ (k). This completes the proof of (III).

(IV) CNM∗-ATK =⇒ CSS∗-PCAX: Let p be a polynomial of k. Let A′ =
(A′

1, A
′
2, A

′
3) be a legitimate CSS∗-PCAX adversary attacking an encryption

scheme Π = (K, E ,D), bounded by time p(k). By using A′, let us construct
an SSS∗-ATK adversary A = (A1, A2) attacking Π as
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Algorithm AO1
1 (pk)

(M, s1)← A′O1
1 (pk)

return (M, s1)

Algorithm A2(s1, y)
(y, s2)← A′

2(s1, y)
choose randomness r for A′

3

return (y, Rr,s2)

where the relation Rr,s2 output by A2 is given by

Relation Rr,s2(x,x)
(f, v)← A′

3(s2,x; r)
if f(x) = v then return 1
else return 0

Since A′ is bounded by time p(k), it follows that M is samplable in time p(k) and
A is also polynomial-time. Moreover, since A′ is legitimate, A is also legitimate.
We note that A can answer queries from A′ by using her own oracle. It is now
straightforward to see from the above construction of A and R that

AdvCSS∗-PCAX
Π,A′ (k) = AdvCNM∗-ATK

Π,A (k).

Consequently, if Π is secure in the sense of CNM∗-ATK, then AdvCNM∗-ATK
Π,A (k)

is negligible, and so is AdvCSS∗-PCAX
Π,A′ (k). This completes the proof of (IV), and

the proposition follows. ⊓⊔

D Indistinguishability-based formulation equivalent to
comparison-based non-malleability

In the private-key setting, a slightly modified indistinguishability-based formu-
lation of non-malleability, denoted as IND†-PCAX in this paper, was introduced
and shown to be equivalent to CNM∗-ATK [19]. The difference between IND∗-
PCAX and IND†-PCAX is that an IND∗ adversary always fails if ⊥∈ x, while
the success of an IND† adversary is determined at random if ⊥∈ x; namely, if
⊥∈ x, then an IND† adversary succeeds with probability 1

2 and fails with the
same probability. A formal definition of IND†-PCAX is described below.

Definition 6 (IND†-PCAX [19]). Let Π = (K, E ,D) be an encryption scheme
and A = (A1, A2) be an adversary attacking Π. For k ∈ N and PCAX ∈
{PCA0,PCA1,PCA2}, consider define the advantage of A by

AdvIND†-PCAX
Π,A (k) = 2Pr[ExptIND†-PCAX

Π,A (k) : w = 1]− 1,

where

Experiment ExptIND†-PCAX
Π,A (k)

(pk, sk)← K(1k); (x0, x1, s1)← AO1
1 (pk); b← {0, 1}; y ← Epk(xb)

(y, s2)← AO2
2 (x0, x1, s1, y); x← Dsk(y); d← AO2

3 (x, s2)
if ⊥∈ x then w ← {0, 1}
else if d = b then w ← 1

else w ← 0
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Here, A is supposed to be legitimate as in Definition 1, and O1 and O2 are
defined as in Definition 3. Then, an encryption scheme Π is called secure in the
sense of IND†-PCAX if for all polynomial p and all probabilistic adversary A

runnable in time p(k), AdvIND†-PCAX
Π,A (k) is negligible.

The proof of the equivalence between CNM∗ and IND† for the private key
setting given in [19] straightforwardly applies to the public key setting, yielding
the following proposition.

Proposition 2. IND†-PCAX⇐⇒ CNM∗-ATK for (PCAX,ATK)∈ {(PCA0,CPA),
(PCA1,CCA1), (PCA2,CCA2)}.


