
Blockchain Governance via Sharp Anonymous Multisignatures⋆

Wonseok Choi1, Xiangyu Liu2, and Vassilis Zikas3

1 DGIST
2 CISPA

3 Georgia Tech
wonseok@dgist.ac.kr, xiangyu.liu@cispa.de, vzikas@gatech.edu

Abstract. Electronic voting has occupied a large part of the cryptographic protocols literature. The
recent reality of blockchains—in particular, their need for online governance mechanisms—has brought
new parameters and requirements to the problem. We identify the key requirements of a blockchain
governance mechanism, namely correctness (including eliminative double votes), voter anonymity, and
traceability, and investigate mechanisms that can achieve them with minimal interaction and under
assumptions that fit the blockchain setting.
First, we define a signature-like primitive, which we term sharp anonymous multisignatures (in short,
♯AMS) that tightly meets the needs of blockchain governance. In a nutshell, ♯AMSs allow any set of
parties to generate a signature, e.g., on a proposal to be voted upon, which, if posted on the blockchain,
hides the identities of the signers/voters but reveals their number. This can be seen as a (strict)
generalization of threshold ring signatures (TRS).
We next turn to constructing such ♯AMSs and using them in various governance scenarios—e.g., single
vote vs. multiple votes per voter. In this direction, although the definition of TRS does not imply
♯AMS, one can compile some existing TRS constructions into ♯AMS. This raises the question: What is
the TRS structure that allows such a compilation? To answer the above, we devise templates for TRSs.
Our templates encapsulate and abstract the structure that allows for the above compilation—most of
the TRS schemes that can be compiled into ♯AMS are, in fact, instantiations of our template. This
abstraction makes our template generic for instantiating TRSs and ♯AMSs from different cryptographic
assumptions (e.g., DDH, LWE, etc.). One of our templates is based on chameleon hashes, and we explore
a framework of lossy chameleon hashes to understand their nature fully.
Finally, we turn to how ♯AMS schemes can be used in our applications. We provide fast (in some cases
non-interactive) ♯AMS-based blockchain governance mechanisms for a wide spectrum of assumptions
on the honesty (semi-honest vs malicious) and availability of voters and proposers.

1 Introduction

Since the emergence of Bitcoin [65] in 2009, the world of cryptocurrencies and blockchain platforms has wit-
nessed a surge in popularity. One of the distinguishing features of these blockchain platforms is their decen-
tralized nature, wherein decision-making authority is distributed among various actors within the ecosystem.

There are two basic governance mechanisms: off-chain governance, as seen in Bitcoin and Ethereum,
and on-chain governance, exemplified by projects like Algorand [22], Tezos [39], and EOS. While off-chain
governance allows core contributors to work more seamlessly, it contradicts the philosophy of decentralization.
Conversely, on-chain governance faces technical challenges, and this area of research is still relatively new
and in its early stages.

Regardless of the governance mechanism used, blockchain platforms face a common vulnerability: commu-
nity divisions, often resulting in hard forks. A hard fork arises when stakeholders disagree on a critical change,
leading to some sticking with the current chain while others adopt the new one. Alternatively, competing
updates may further fragment the community. These divisions can erode cohesion, devalue the platform, and
jeopardize security. Security concerns are paramount, as a reduced number of resources supporting a fork
can make it susceptible to attacks like 51% attacks.

⋆ This work was done when authors were at Purdue University.

On-Chain Governance and Voting Systems for Improvement Proposals. On-chain governance has emerged
as a solution to centralization issues associated with blockchain technology, involving all network nodes
in decision-making. However, ensuring decentralization and preventing domination by a limited faction of
developers and miners is crucial. The potential for conflicts and hard forks within the blockchain community
drives this vigilance. At the core of on-chain governance is the voting mechanism, where stakeholders decide
on improvement proposals for the ecosystem, potentially involving significant changes.

Generally, there are three periods for on-chain governance: the posting, voting, and announcement periods.
The developers submit their improvement proposals to the blockchain during the posting period. Then, in
the voting period, eligible voters participate in the voting protocol to vote for their preferred proposals.
Finally, the voting result is announced in the announcement period, and the most voted proposal is elected.

There are several foundational requirements for a robust voting system.

Correctness. The accuracy of the voting result is perhaps the most important property. A key goal here is
to prevent double-voting, wherein a voter casts more than one vote on the same or different proposals.
This act of multiple-voting contradicts the standard single-vote setting, wherein each voter is restricted
to voting only once, irrespective of the proposal chosen. We emphasize that the permissibility of multiple-
voting is contingent upon the specific application. In this context, double-voting includes instances where
a malicious voter attempts to cast more than one vote for a single proposal, and such duplications are
promptly nullified.

(Unconditional) Anonymity of Voters. A crucial factor to consider in blockchain systems is their im-
mutability. Once signatures are uploaded, they remain permanently etched in the system. This implies
that over time, the authorship of a linkable or traceable ring signature [58, 33] could potentially be
unveiled due to inadequacies in the underlying computational assumptions. Therefore, for optimal ap-
plicability in blockchain governance, the assurance of unconditional anonymity is one of the imperative
features of a voting system in blockchain.

Traceability. If a malicious voter attempts to vote twice, we need to have an efficient mechanism to trace
its identity. Note that this traceability property is a relaxation/fallback of the above strong correctness
to allow for more practical constructions. Indeed, traceability is irrelevant if double-voting is infeasible.

Receipt-freeness. It should be impossible to generate a proof that a voter indeed cast an intended vote for
others to see. This property has been widely studied [3, 4, 13, 27, 28, 42, 44, 46, 47, 53, 54, 55, 63, 66, 73].

Cryptographic Mechanisms for Blockchain Voting/Governance Systems. In pursuing our objective to design
a voting system that ensures traceability and unconditional anonymity, we encounter inherent challenges
when leveraging traditional cryptographic tools such as signature schemes or Multi-Party Computations
(MPC).

Linkable Ring Signatures (LRS). Linkable ring signatures (LRS) [58] are a prevalent tool in construct-
ing e-voting systems. In LRS, a user can sign a message on behalf of a group/ring while maintaining
anonymity, as their identity remains concealed within the signature. Moreover, if a user signs twice for
the same message and on behalf of the same group, these signatures are “linked”, making it evident
that they originate from a single actual signer. This inherent linkability property of LRS plays a vital
role in preventing double-voting. However, it’s important to note that the link algorithm in LRS does
not disclose the specific identity of the signer when two signatures are linked. Consequently, LRS does
not fulfill the traceability property, implying that a malicious voter engaging in double-voting may go
unpunished. This lack of traceability can undermine the system’s balance and fairness, necessitating
additional measures to ensure accountability and uphold the integrity of the voting process.

Traceable Ring Signature. An alternative approach is to employ traceable ring signatures [33], where
the link algorithm establishes the link between signatures and discloses the signer’s identity. However,
unconditional anonymity is compromised in traceable ring signatures, as proved in [23]. Striking a balance
between traceability and unconditional anonymity in ring signatures appears challenging, presenting a
fundamental trade-off within this cryptographic context.

Multi-Party Computation. Multi-party computation (MPC) [80, 38, 11, 20] appears to be the ultimate
solution to the above voting problem. MPC allows n parties to compute any given function on their

2

inputs securely so that no malicious party (or coalition) can learn the inputs of other parties (privacy),
and no party can affect the output any more than choosing their own input as such MPC can directly
be used to realize our voting functionality by having each voter submit their votes and output the
appropriate tally. MPC-privacy (which can be information-theoretic [11, 20, 70]) will ensure unconditional
anonymity; MPC-correctness (for the appropriate function) can ensure our above voting correctness
property. Traceability is a more elusive goal, but it can also be achieved by so-called identifiable MPC [45]
(which ensures that upon aborting the identity of a cheater is revealed).4

Unfortunately, despite its very general functionality, MPC is also not the right solution to our problem:
For starters, information-theoretic MPC needs an honest majority of the parties [38], an assumption
which is unrealistic in our setting.5 Even if one is willing to resort to security with (identifiable) abort
and no fairness,6 we still need to implement Byzantine broadcast—which requires in the worst case a
polylogarithmic in the party-set size—or use again several on-chain rounds. Even given broadcast, turning
an MPC protocol identifiable above into one with guaranteed output delivery (which is needed in our
application) would require restarting the computation whenever it aborts (and potentially removing the
identified cheater); this would again yield a larger number of rounds which is undesirable.

From Signature Schemes to an Interactive Structure. The above discussion highlights the inherent challenge
of satisfying all requirements simultaneously. However, despite this seemingly conflicting nature, there is a
way to address it. In this work, we provide a positive answer by proposing a structured approach embedded in
the signature generation process. We carefully define an interactive structure–—a simple protocol—–within
the signature generation. This structured approach is a key innovation that enables us to design a signature
scheme that simultaneously conceals individual identities while revealing the number of signers involved.
This dual property is a critical advancement for secure and reliable e-voting systems. We call this new
signature protocol Sharp Anonymous Multisignatures (♯AMS). The term “sharp” is used in analogy with
complexity theory, as in ♯P , indicating that our signatures output the number of valid signers rather than
a mere validity bit. Meanwhile, “anonymous” denotes that the signers’ identities remain hidden. Equipped
with these properties, ♯AMS is a perfect fit for e-voting systems, especially in the context of blockchain
governance. We discuss the details of our contributions below.

1.1 Our Contributions

♯ Anonymous MultiSignatures. Our first and major contribution is proposing and formalizing a new concept
of signing protocol, dubbed ♯AMS that tightly meets the needs of blockchain governance. The protocol allows
any set of parties to collaborate jointly and outputs unconditionally anonymous signatures. To compare with
threshold ring signatures (TRS), ♯AMS does not need the threshold and always generates a valid signature
regardless of the number of parties, and the verification algorithm reveals the number of parties. Regarding
the number of parties as a threshold, which varies every signing, this can be seen as a strict generalization
of TRS.

Generic Compiler from TRS with A Flexible Threshold. Despite the above separation of TRS and ♯AMS, it
turns out that several instantiations of TRS actually possess a flexible threshold property, i.e., these TRSs
can change the threshold depending on the actual number of signers.

To characterize the class of TRSs that admit such a lifting to ♯AMSs, we provide a generic template for
TRSs that (1) abstracts many such “liftable” schemes and (2) admits a generic compiler to transform to
♯AMS. Several existing TRS constructions can be seen as instantiations of our template, which implies that
those TRS schemes are more versatile than previously known.

4 In our blockchain governance application, we need a property which is stronger than identifiability, namely public
verifiability, which informally ensures that an abort provides a cheating certificate that can be verified even by a
non-MPC party later on, e.g., [5].

5 Although there are solutions which replace the honest majority of parties assumption with an assumption on the
resource distribution, e.g., honest majority of hashing-power or stake [34], they come at a high cost in terms of
blockchain utilization—multiple on-chain rounds—which renders them mainly of theoretical interest.

6 This is already a discount in security that should be avoided.

3

♯AMS Constructions from Chameleon Hashes. Using the above, we provide concrete ♯AMS schemes from
(lossy) chameleon hashes in a black-box model—which covers the post-quantum case. In a nutshell, we
propose the following types of constructions:

C1. A basic construction with three communication rounds. This construction achieves unconditional anonymity.
C2. A fault-tolerant variant of C1—for an arbitrary number of corruptions— without any overhead. This

construction achieves unconditional anonymity and public verifiability.

Voting Systems from ♯AMS Constructions. Since anyone can verify the number of signers from a ♯AMS signa-
ture, we can immediately turn the constructions into voting systems. Furthermore, we develop a conditioned
key generation paradigm to enable the single-vote setting.

V1. A basic system implemented by C2. This allows multiple voting. The system can tolerate malicious voters
(those who claimed to vote but later quit). Including the posting period and the announcement period,
voting can be completed within two on-chain blocks.

V2. A round-optimal system implemented by C1 in the multiple-vote setting by leveraging one-time key
generation. This system satisfies the “vote-and-go” property.

V3. A variant of V2 for the single-vote setting, based on the conditioned key generation paradigm. V3 requires
one additional on-chain round when there are malicious users. However, if the maximum number of
proposals is known in advance, the voting process still requires only two on-chain blocks, as in V1 and
V2.

Notably, our voting systems possess several desirable properties, which are discussed in depth in Section K.
We briefly introduce these properties here:

On-Chain. The vote will be uploaded on the blockchain and cannot be altered further. All our systems
achieve this property.

Vote-and-go. Voters can leave immediately after casting their vote (by sending their cryptographic infor-
mation on the vote) without any interaction. V2 and V3 achieve this property.

Vote-Count Concealment. Voters remain unaware of the current vote count (and therefore of the votes
of others) until the results are announced. V2 and V3 achieve this property.

Remark 1 (On receipt-freeness). We would like to mention that our protocols do not satisfy receipt-freeness
properties due to their simple structure. Any voting scheme that requires voters to choose their own ran-
domness, like ours, is vulnerable to a well-known generic receipt-freeness attack [44]. In such an attack, a
malicious voter can generate randomness using a one-way function and later provide the input to the one-way
function to prove the source of the randomness. To resolve this problem, one would need to rely on a much
more complex system (e.g., [44] assumes homomorphic encryption, an honest assumption on the authorities,
and many other assumptions). While this is an intriguing and interesting open problem, we are focusing on
proposing a new signature protocol, ♯AMS, and thus leave this problem for future research.

A Framework of Lossy Chameleon Hashes. As a by-product, we explore a framework of lossy chameleon
hashes, including its relationship with existing cryptographic primitives (e.g., lossy identification and lossy
encryption) and more concrete constructions from various assumptions. See Fig. 1 for details.

1.2 Related Works

We refer to Appendix J for more related works on multisignatures, threshold signatures, and ring signatures.
Threshold Ring Signatures. ♯AMS in this paper are highly related to threshold ring signatures (TRS) [16].
An (n, t)-TRS scheme allows t or more members to generate a ring signature together, and the actual signers
remain anonymous. The verification algorithm in TRS will output either 0 or 1, indicating the validity w.r.t.
the threshold t. Differently, by defining ♯AMS, we emphasize the property that the verification outputs
exactly the credibility of the signature, i.e., how many users have participated in the generation. This holds

4

Lossy
Chameleon Hashes

Lossy
Identification

Lossy
Public-Key Encryption

Re-Randomizable
Encryption

Concrete
Assumptions

LWE, SIS

DDH

etc.

+
commitment recoverity
strong special soundness

+ efficient opening

×

[43]
+ efficient

collis
ion

[21, 67]

Fig. 1. A framework for lossy chameleon hashes (solid arrows: shown in this work; dashed line: shown in previous
works).

even against malicious users who behave wantonly when signing. For example, a malicious user may quit at
the middle or contribute senseless results in the signing process. Therefore, ♯AMS is strictly stronger than
TRS.

There are many threshold ring signature schemes [57, 19, 78, 24] whose threshold t is changeable every
signing. By adding t into the message to be signed, a TRS scheme with a flexible threshold can be tuned to
a ♯AMS scheme.

Graded Signatures. Kiayias, Osmanoglu, and Tang [50] proposed the concept of graded signatures that
allow a combiner/user to combine a set of different signatures w.r.t. the same message to a “consolidated”
signature. Meanwhile, the consolidated signature leaks the actual number of signatures used to consolidate
the graded signature and nothing else, which is the same as a ♯AMS scheme. However, graded signatures [50]
have two phases in signing, which means that every participant has to sign by themselves and then pass
their signature share to someone for consolidation. Due to such a definition, graded signatures cannot achieve
unconditional anonymity (as we already discussed above, unconditional anonymity of voters is more desirable
in blockchain applications). Therefore, ♯AMS provides more robust security.

Meanwhile, a trusted authority is required in graded signatures for generating global key pairs. The
concrete instantiation in [50] relies on building blocks like structure-preserving signatures and Groth-Sahai
proofs [40] and consequently cannot achieve post-quantum security.

Blockchain Governance and E-voting. Beck et al. [6], Pelt et al. [69], and Kiayias and Lazos [49]
discussed core properties for blockchain governance in multiple disciplines. Khan et al. [48], Venugopalan
and Homoliak et al. [76], and Gersbach et al. [37] also focused on blockchain governance, especially based on
decision-making processes and voting in terms of game-theoretical analyses.

Many papers in various fields have studied e-voting systems that combine blockchain and cryptographic
primitives to realize distributed and decentralized voting systems. However, the cryptography community,
which is the one that can technically contribute the most, has less interest in the topic. A few papers introduce
e-voting systems derived from advanced cryptographic primitives such as linkable ring signatures. In terms
of ring signatures, Lyu et al. [59] and Russo et al. [72] present systems that use blockchain, smart contracts,
and ring signatures. Most of the other blockchains’ e-voting systems rely not only on simple cryptographic
primitives but also heavily on complex functionalities, e.g., smart contracts and zero-knowledge proofs. Note
that our proposed solutions can simplify their approaches much since ♯AMS provides not only privacy and
authenticity but also signatures with the corresponding number of signers in the primitive level.

5

1.3 Technical Overview

This subsection briefly overviews the techniques and concepts used in this paper.

Formalization of ♯AMS. We start from formalizing ♯Anonymous Multisignature (♯AMS) and its security
definitions. Suppose a group of t users, {Ui}i∈G, wants to sign a message msg together, and the resulting
signature σ reveals only the number of participants t and nothing else. We refer to t as the credibility of the
signature.

The first issue is the anonymity property, which means that the identities of the t actual signers are
hidden among the total of n users (n ≥ t). Besides, as a (group) signature scheme, ♯AMS should ensure
unforgeability; namely, any adversary controlling fewer than t users cannot forge a valid signature on a new
message that shows a credibility of t.

As we discussed above, if every signer Ui contributes their share using their own secret key and the
signature is simply a concatenation of different shares (as in linkable/traceable ring signatures), it seems
impossible to achieve both unconditional anonymity and traceability [23].7 Therefore, we focus on interactive
signing processes and introduce a moderator P in the signing protocol. To generate a ♯AMS signature, each
signer communicates only with P and not with other signers. It is P ’s responsibility to count the number
of participants and finally produce a ♯AMS signature. In this case, even a signer cannot de-anonymize a
♯AMS signature (i.e., they remain unaware of the other participants). P can be a member of G or not, and is
assumed to be honest. We believe this is a simple yet reasonable assumption; see more discussion in Sec. 3.
Even if a malicious P leaks the quorum of signers later, their own identity would be revealed at the same
time, and consequently, P would face punishment from the system.

Generic Compiler from Threshold Ring Signatures. A ♯AMS scheme directly implies a threshold ring signa-
ture (TRS) scheme since the verification algorithm Ver in ♯AMS returns the real number of participants in
the signing process, while Ver in TRS returns only a single bit. Therefore, the definition of ♯AMS is stronger
than that of TRS.

Nevertheless, we surprisingly notice that many TRS schemes (e.g., [57, 19, 18, 77, 41]) possess a flexible
threshold property. Namely, the threshold t does not need to be fixed when generating the public/secret key
pairs; it can be changed in every signing session. Motivated by this, we design a generic compiler that tunes
any TRS scheme with a flexible threshold into a ♯AMS scheme:

– A random participant P among the signers is selected as the moderator in ♯AMS.
– P knows the quorum of signers, hence the number t. To generate a ♯AMS signature on message msg, it

starts the TRS signing protocol on the message (msg||t) and outputs the TRS signature σ̃ and t as the
final ♯AMS signature.

– In the verification of ♯AMS, if σ̃ is valid in TRS, then the threshold t is returned.

Thanks to this compiler and the rich literature on TRS, we immediately obtain many ♯AMS schemes
from well-studied TRS schemes, based on the DL assumption [19], the RSA assumption [57], the SIS as-
sumption [18], the code assumption [26], and others.

C1: Construction from (Lossy) Chameleon Hashes. A chameleon hash (CH) function [52] is a special hash
function indexed by a hash key hk, which is associated with a trapdoor td. It takes as input two parts: a
message m8 and randomness r. On the one hand, given only the hash key, it is hard to find a collision. On
the other hand, with the help of the trapdoor, finding collisions becomes easy.

Chameleon hashes can be converted into signature schemes via the well-known Fiat-Shamir paradigm [31],
where hk and td serve as the public key and the signing key, respectively. To sign a message msg, the signer
first randomly samples dummy values m̄ and r̄, and then uses its trapdoor to find a randomness r for m so

7 In the application of voting systems, if double voting is feasible, then traceability is necessary.
8 Note that the message m in chameleon hashes is different from the message msg to be signed in signature schemes.
Here, we slightly abuse the notation to keep consistent with previous works.

6

that it collides with (m̄, r̄) on h, where m = H(msg, h) with H(·) a random oracle and h the chameleon hash
value of (m̄, r̄).

Now, we extend this idea to the ♯AMS setting. Suppose there are n users, and each user Ui has its own
hash key hki and trapdoor tdi. We borrow the idea of the t-out-of-n zero-knowledge proof from [25] by
Cramer, Damg̊ard, and Schoenmakers. That is, given n random values mi, the group of signers can find t
random values ri that create collisions. For the message msg, we design a ♯AMS signature in the form of
σ = (t,m1, . . . ,mn, r1, . . . , rn), where m1, . . . ,mn are required to satisfy the following linear equations.

a1,1m1 + a1,2m2 + ...+ a1,nmn = u1,
a2,1m1 + a2,2m2 + ...+ a2,nmn = u2,
...
at,1m1 + at,2m2 + ...+ at,nmn = ut.

(1)

Here, the coefficients (ai,j) are public parameters, and (u1, . . . , ut) are the random outputs of the hash
function H(h1, . . . , hn,msg, t), with (h1, . . . , hn) being the corresponding chameleon hash (CH) values. To
satisfy Eq. (1), at least t trapdoors are necessary to determine the corresponding randomness ri, thereby
proving that at least t users have participated in the signing process.

Instead of using the above linear equations, we can also set a polynomial g of degree at least n − t and
require that

g(0) = u, g(i) = mi for all i ∈ [n], where u = H(h1, . . . , hn,msg, t). (2)

The security of the CH-based signature scheme, as well as our ♯AMS scheme, is based on the collision-
resistance property of the underlying chameleon hash scheme. However, the reduction in the security proof is
not black-box since it relies on the forking lemma [8] to find a collision. Inspired by the ideas of lossy trapdoor
functions [68] and lossy encryption [7, 43], we define lossy chameleon hashes (LCH) in this work to enable a
black-box reduction in the security proof. An LCH scheme operates in two modes: the collision mode, which
behaves as a standard CH, and the lossy mode, where a lossy hash key is used instead of a normal hash key,
and the adversary (even if computationally unbounded) cannot find randomness for a random message that
hashes to a previously chosen hash value.

We present an efficient instantiation of LCH from the learning with errors (LWE) assumption and the
short integer solution (SIS) assumption. We also explore the relationship between LCH and other primitives,
including lossy identification schemes [1], re-randomizable encryption, and lossy encryption [7, 43]; see Fig. 1
and Appendix B.

C2: Fault-Tolerant Variant. For better application in blockchain governance, we consider a variant of the
above construction in the faulty signer setting. A faulty signer may quit in the middle of the protocol or
return malicious results to the moderator. To address this, we develop a fault-tolerant variant of our ♯AMS
scheme. This is possible because our (L)CH-based ♯AMS scheme has “backward compatibility”: namely, even
if a voter quits in the middle, by exposing the identity of the faulty voter, the moderator can still output
a signature with credibility (t − 1). More precisely, let F be the set of faulty signers. In the fault-tolerant
♯AMS scheme, we tailor the signature into the form

σ′ :=
(
t, F, {mi, ri}i∈[n]\F , {hi}i∈F

)
.

If there exists a solution {mi}i∈F for the linear equation (1) or (2), then the verification algorithm will output
(t− |F |) instead of t. Consequently, the voters in F will lose their anonymity as a cost of their malfeasance.

V1: Blockchain Governance via ♯AMS Schemes. ♯AMS directly implies a voting protocol since a ♯AMS
signature leaks the number of signers. The protocol consists of the following four periods using scheme C2:

1. The posting period, in which each developer publishes their improvement proposal on the blockchain.
2. The declaration period, in which each voter (a signer in ♯AMS) signals their willingness to support a

proposal by sending a hash value of a dummy message and randomness to the developer.

7

3. The signing period, in which the developer performs the signature algorithm based on the number of
supporters. Specifically, developers compute all mi values according to the received hi and Eq. (1) or (2).
They then return the mi values to the supporters, who use their trapdoors to find collisions ri and send
them back to the developer. This helps the developer complete the generation of the ♯AMS signature.

4. The announcement period, in which each developer uploads their ♯AMS signature to the blockchain. The
voting result is then included in the block and published across the network.

Our protocol enables multiple improvement proposals to compete for votes, and the proposal with the
most votes is elected.

To generate a ♯AMS signature, the developer needs three rounds of interaction with its supporters during
the signing period. This opens the door to faulty attacks by malicious voters: for instance, a voter may
send hi and claim to participate, but then abort or send incorrect randomness r′ after receiving m from
the developer. Thanks to our fault-tolerant ♯AMS scheme, such attacks do not compromise the entire voting
system, since a (fault-tolerant) ♯AMS signature always reveals the true number of (honest) participants.

V2: Round Optimization. Notice that in the protocol above, voters must wait for the message mi from
the developer after declaring their support. To achieve the “vote-and-go” property, we further optimize the
protocol to a single round. Our idea is to use ♯AMS in a one-time paradigm. That is, voters Ui, regardless

of whether they intend to vote for a proposal, generate a new hash key and trapdoor pair (hk
(j)
i , td

(j)
i) for

some proposal by developer Pj . Then, supporters of Pj secretly send their trapdoors to Pj using a standard
public-key encryption scheme. With knowledge of all secret keys, Pj can generate a ♯AMS signature without
further interaction with the supporters. To prevent a malicious developer from generating one-time hash
keys on their own, we additionally require every hash key to be accompanied by a signature proving the
authority of its owner.

V3: Single-Vote Setting via the Conditioned Key Generation Paradigm. We further extend the above protocol
to the single-vote setting, where each user in the voting system can vote for at most one proposal. Since there
are multiple developers Pj , each with their own proposal, every voter Ui now needs to generate multiple key

pairs {(hk(j)i , td
(j)
i)}, where the superscript (j) indicates the key pair is for the j-th proposal.

The protocol as previously described does not work in the single-vote setting because a malicious voter
could vote on different proposals using different trapdoors. We employ the same method used in constructing
♯AMS to prevent multiple votes. Recall that to vote on a proposal IP (j) (i.e., participate in the signing process

for that proposal), user Ui must possess the trapdoor td
(j)
i corresponding to the hash key hk

(j)
i specifically

designed for IP (j). Suppose there are p proposals (IP (j1), ..., IP (jp)), then Ui must generate p hash keys

(hk
(j1)
i , ..., hk

(jp)
i). We apply a so-called conditioned key generation paradigm, which sets a restriction among

the p hash keys so that the voter can know at most one trapdoor.

Let HK be the space of hash keys for (lossy) chameleon hashes, and let B = (bi,j) ∈ HK(p−1)×p be a

matrix of full rank. Define hk⊤
i = (hk

(j1)
i , ..., hk

(jp)
i)⊤. We require B · hki = ĥki, where ĥki ∈ HKp−1 is the

output of some hash function H(IP (j1), ..., IP (jp), i).

If H(·) behaves as a random oracle, then to satisfy the above equation, every user can know at most one
trapdoor among the total p hash keys. Consequently, the single-voting property is achieved.

1.4 Roadmap

This paper is organized as follows. In Section 2, we introduce the definitions of (lossy) chameleon hashes.
The definition and security properties of ♯AMS are formally described in Section 3. We provide a generic
transformation for most threshold ring signature (TRS) schemes in Section 4. In Section 5, we propose
an efficient construction of ♯AMS from (lossy) chameleon hashes ((L)CH). Section 6 presents three voting
systems and their applications in blockchain governance.

8

Due to the page limit, most technical details are provided in the appendices. In Appendices A and C, we
introduce additional cryptographic preliminaries and security notions for ♯AMS, respectively. Appendix B ex-
plores lossy chameleon hashes and another new primitive. In Appendix D, we further discuss the relationship
between TRS and ♯AMS.

For formal security proofs, we analyze strong unforgeability of ♯AMS under different adversarial models in
Appendices E and F, and analyze strong unforgeability based on standard chameleon hashes via the forking
lemma in Appendix H. Instantiations of constraint functions are shown in Appendix G. For the fault-tolerant
(C2 variant) scheme, we provide an additional security proof and discussion in Appendix I. We conclude
with further discussion in Appendix K.

2 Preliminaries

We refer to Appendix A for basic notations and cryptographic primitives like signatures.

Definition 1 (Chameleon Hashes [52]). A chameleon hash (CH) scheme consists of the following three
algorithms. Namely CH = (Gen,Hash,TdColl).

– (hk, td)← Gen(1λ): The key generation algorithm takes as input the security parameter 1λ, and outputs
a hash key hk and a trapdoor td. W.l.o.g., we assume hk implicitly determines the message space M,
the randomness space R, and the hash space H.

– h← Hash(hk,m, r): The hash algorithm takes as input hk, a message m ∈M and a randomness r ∈ R,
and outputs the hash value h := Hash(hk,m, r).

– r′ ← TdColl(td,m, r,m′): The trapdoor collision algorithm takes as input the trapdoor td, a message-
randomness pair (m, r) and another message m′, and outputs r′ such that Hash(hk,m, r) = Hash(hk,m′, r′).

Definition 2 (Lossy Chameleon Hashes). A lossy chameleon hash (LCH) scheme consists of four algo-
rithms, LCH = (Gen, LGen,Hash,TdColl), where Gen,Hash,TdColl are defined as in Definition 1, and LGen
is defined as follows.

– hk ← LGen(1λ): The lossy key generation algorithm takes as input the security parameter 1λ, and outputs
a lossy hash key hk.

We refer to Appendix B for the security notations and a detailed framework of LCH.

3 Sharp Anonymous Multisignatures

In this section we formally define sharp anonymous multisignatures and their security notions. Let n be the
total number of signers, and G ⊆ [n] be a group of signers that want to generate a ♯AMS signature together.
Let t = |G|.

Definition 3 (Sharp Anonymous Multisignatures (♯AMS)). A sharp anonymous multisignature (♯AMS)
scheme ♯AMS = (Gen,Sign,Ver) consists of the following three algorithms/protocols:

– (vk, sk1, ..., skn) ← Gen(1λ, n). The key generation algorithm Gen takes as input the security parameter
λ and the number of signers n, and outputs a verification key vk, and signing keys (sk1, ..., skn) for
different signers. W.l.o.g., we assume that vk is implicitly contained in every ski.

– σ ← Sign(msg, P,G ⊆ [n], {ski}i∈G). The signing protocol takes place between a moderator P and a group
of signers G ⊆ [n], where P takes as input vk and the message msg, and each signer Ui takes msg and
its own secret key ski as input. The moderator P can be a member of [n] or not. Finally, P outputs a
signature σ.
If we focus solely on the algorithmic properties of the signing process, we will ignore the moderator P by
denoting it as σ ← Sign(msg, G ⊆ [n], {ski}i∈G).

9

– t ← Ver(vk,msg, σ). The verification algorithm Ver takes as input the verification key vk, a message
msg and a signature σ, and outputs a number t ∈ [n] ∪ {0}, indicating the number of signers for this
signature.9

We say a signature σ (w.r.t. a message msg) is t-valid (resp., invalid), if Ver(vk,msg, σ) = t (resp.,
Ver(vk,msg, σ) = 0).

Correctness. For any (vk, sk1, ..., skn) ← Gen(1λ, n), any message msg, any group G ⊆ [n] of honest
signers, any honest moderator P , and σ ← Sign(msg, P, G, {ski}i∈G), it holds that Ver(vk,msg, σ) = |G|.

In the above definition, we assume all users’ keys are generated via a centralized algorithm Gen, which is
more generalized and covers the case where there is a trusted setup. In this work, we focus on the non-trusted
setup case, and each user samples its own key pair and then publishes the public key. Moreover, we focus
on cryptographic property of ♯AMS and do not consider the details of the signing protocol, e.g., adaptive
corruptions during the running, protocol rounds, and just provide a proof-of-concept use of ♯AMS.

We require the unforgeability and anonymity for the security of ♯AMS.

– Unforgeability. The adversary that controls less than t participants cannot forge a signature that is
t-valid.

– Anonymity. From a signature the adversary learns nothing about the quorum of the signers G that
contributed to the signature, except the size |G|.

We formalize the security definitions via the following security experiments.

Definition 4 (Unforgeability of ♯AMS). Consider the following unforgeability experiment Expunforg♯AMS,A(λ)
between the challenger C and the adversary A.

1. A sets the maximum number of signers n.
2. C generates (vk, sk1, ..., skn)← Gen(1λ, n) and passes vk to A.
3. A has access to two oracles O(·, ·, ·) and Ocorr(·). Here the signing oracle O(msg, P,G) returns σ ←

Sign(msg, P,G, {ski}i∈G) (with P the moderator) and adds (msg, σ) into the set S. The corruption oracle
Ocorr(i) returns ski.

4. Finally A outputs (msg∗, σ∗).

Let t∗ ← Ver(vk,msg∗, σ∗). Expunforg♯AMS,A(λ) outputs 1 if

(1) t∗ > t′, where t′ is the total number of queries to Ocorr(·); and
(2) A never asks O(msg∗, P,G) such that |G| = t∗.

Define by Advunforg♯AMS,A(λ) the probability that Expunforg♯AMS,A(λ) outputs 1. We say that ♯AMS is unforgeable, if

for all PPT adversary A, the advantage Advunforg♯AMS,A(λ) is negligible in λ.

Remark 2 (On the Formalization of Unforgeability). One might wonder why we require “A never asks
O(msg∗, P,G) s.t. |G| = t∗” at the end of the experiment. Intuitively, a more “reasonable” definition should
allow A to win, if it asks O(msg∗, P,G) with |G| = t∗, and later forges a t∗-valid signature σ∗ from a different
set G′ ̸= G. However, since the identities are hidden from the signature, the challenger cannot detect whether
σ∗ comes from a group G′ that is different from G (i.e., whether A wins in a non-trivial way). Therefore, to
prevent trivial attacks, in Definition 4, A is forbidden to query O(msg∗, P,G) with |G| = t∗.

Definition 5 (Strong Unforgeability). Consider the strong unforgeability experiment Exps-unforg♯AMS,A (λ),

which is defined as Expunforg♯AMS,A(λ) in Definition 4, except that condition (2) is replaced with

(2’) (msg∗, σ∗) /∈ S.
9 Note that vk contains information of [n] so we omit [n] from the input of Ver, which will be explicitly denoted for
TRS schemes because of consistency from previous works.

10

Define by Advs-unforg♯AMS,A (λ) the probability that Exps-unforg♯AMS,A (λ) outputs 1. We say that ♯AMS is strongly

unforgeable, if for all PPT adversary A, the advantage Advs-unforg♯AMS,A (λ) is negligible in λ.

We also define the weak unforgeability and (strong/weak) unforgeability under static corruptions, see
Appendix C.

Now we formally define the strong anonymity of ♯AMS.

Definition 6 ((Unconditionally) Strong Anonymity of ♯AMS). Consider the following strong anonymity
experiment Exps-anony♯AMS,A (λ) between C and A.

1. A sets the maximum number of signers n.
2. C generates (vk, sk1, ..., skn) ← Gen(1λ, n) and passes vk to A. Meanwhile, C randomly samples a bit

b
$← {0, 1}.

3. A has access to two oracles O(·, ·, ·, ·, ·) and Ocorr(·), where the signing oracle O(msg, P0, G0, P1, G1)
returns σ ← Sign(msg, Pb, Gb, {ski}i∈Gb

) if |G0| = |G1| and ⊥ otherwise, and the corruption oracle
Ocorr(i) returns ski.

4. Finally A outputs b′.

Exps-anony♯AMS,A (λ) outputs 1 if b′ = b. Let Advs-anony♯AMS,A (λ) := |Pr[Exps-anony♯AMS,A (λ)⇒ 1]− 1/2|. We say that ♯AMS
has strong anonymity (resp., unconditional and strong anonymity) if for all PPT (resp., computationally
unbounded) adversary A, the advantage Advs-anony♯AMS,A (λ) is negligible in λ.

The aforementioned definition requires that anonymity holds even if all secret keys are leaked (that is why
we formalize it as “strong” anonymity). In the above definition, if we restrict that A cannot ask Ocorr(i)
with i ∈ (G0 −C1)∪ (G1 −G0) for all (G0, G1) involved in O(·, ·, ·, ·, ·), then we define the anonymity where
it might be easy to decide whether a signer i has participated in the generation of a signature with the
knowledge of ski. This is somewhat similar to the so-called culpability property in [58]. In other words, one
signer is able to claim the authorship of some (ring) signature by revealing its secret key (and some other
private information, if necessary) to the public.

4 Generic Compiler of ♯AMS from TRS with A Flexible Threshold

In this section, we provide a generic transformation for threshold ring signature (TRS) schemes with flexible
threshold, which implies that such TRS schemes are more versatile than their original definitions. We refer
to Appendix D for the definition and security of TRS, and a detailed discussion for the relationship between
TRS and ♯AMS.

Generic compiler from TRS with flexible threshold to ♯AMS. Here, we show the most generalized
version of compilers without considering optimization. We will take a deeper look at specific cases in the next
section. Let TRS = (Gen,TSign,Ver) be a TRS scheme with a flexible threshold. We design ♯AMS scheme
♯AMS as follows.

– Gen(1λ, n). For i = 1, ..., n, invoke (pki, ski)← TRS.Gen(1λ). Return vk := (pk1, ..., pkn) and {ski}i∈[n].
– Sign(msg, P,G ⊆ [n], {ski}i∈G). Every signer Ui where i ∈ G first sends a HELLO message to the

moderator P so that P will know the number of signers t := |G|. Then, the t signers run the threshold
signing protocol TRS.TSign(msg||t, [n], vk,G, {ski}i∈G) with P works as a moderator. Let σ̃ be the output
of TRS.TSign. Finally, P outputs σ := (t, σ̃) as a ♯AMS signature.10

– Ver(vk,msg, σ). Parse σ = (t, σ̃). If TRS.Ver(t, [n], vk,msg, σ̃) = 1 then output t. Otherwise, output 0.

The security of ♯AMS constructed above inherits from the security of the underlying TRS scheme, and we
omit the detailed proof here.

10 If σ̃ itself already contains a threshold t then P just outputs σ := σ̃.

11

5 Constructions of ♯AMS from Lossy Chameleon Hashes

In this section we propose efficient constructions of ♯AMS from lossy chameleon hashes (LCH) in a black-box
mode.

5.1 Formalization of Constraint Functions

First we introduce the definition of constraint functions, an important tool in constructing the t-out-of-n
proofs [25].

Definition 7 (Constraint Functions). Let n, t be positive integers, n ≥ t ≥ 1, and M, U be two finite
sets. We call Fθ : (Z+ × Z+ ×Mn × U)→ {0, 1} a series of constraint functions indexed by θ, if it has the
following properties.

– Fθ(n, t,m1, ...,mn, u) is efficiently evaluated.
– There exists an efficient and deterministic algorithm f(·), such that f(n, t,m1, ...,mn) outputs the unique

u (if it exists) satisfying Fθ(n, t,m1, ...,mn, u) = 1.
– For any G ⊆ [n] and |G| = t, there exists two efficient sample algorithms sfwd and sback that both output

(m1, ...,mn, u), and the two distributions are identical.

• Forward sample algorithm sfwd(n, t,G) first randomly chooses {mi}i∈[n], and then computes/samples
{mi}i∈G and u according to Fθ.

• Backward sample algorithm sback(n, t,G) first randomly chooses {mi}i∈[n]\G and u, and then com-
putes {mi}i∈G according to Fθ.

– Interdependency.

• If Fθ(n, t,m1, ...,mn, u) = Fθ(n, t,m
′
1, ...,m

′
n, u) = 1, then either (m1, ..., mn) = (m′

1, ...,m
′), or

there are at least t different i ∈ [n] such that mi ̸= m′
i.

• For randomly sampled u and u′, if Fθ(n, t,m1, ...,mn, u) = Fθ(n, t,m
′
1, ..., m

′
n, u

′) = 1, then with
overwhelming probability there are at least t different i ∈ [n] such that mi ̸= m′

i.

– Randomness. Conditioned on Fθ(n, t,m1, ...,mn, u) = 1, if u distributes uniformly, then

• either there exist at least t different i ∈ [n] such that mi distribute uniformly, or
• for any i ∈ [n], mi distributes uniformly.

We refer to two instantiations of Fθ from linear equations and polynomial interpolation in Appendix G.

5.2 C1: Interactive ♯AMS

Now, we describe our generic construction of ♯AMS from (lossy) chameleon hashes ((L)CH) as follows.
We note that the underlying building blocks (LCH or CH) affect only the way of security proofs, not the
construction itself.

Construction. Let LCH = (Gen, LGen,Hash,TdColl) be a lossy chameleon hash scheme with message space
M a field. Let Fθ : (Z+×Z+×Mn×U)→ {0, 1} be a constraint function indexed by θ. H(·) : {0, 1}∗ → U
is a hash function that is modeled as a random oracle.

– (vk, sk1, ..., skn)← Gen(1λ, n). For i ∈ [n], invoke (hki, tdi)← LCH.Gen(1λ). Return vk := (hk1, ..., hkn)
and {ski}i∈[n] := {tdi}i∈[n].

– Sign(msg, P,G, {ski}i∈G).

• For every signer i ∈ G, it samples m̄i
$← M, r̄i

$← R, and sends hi ← Hash(hki, m̄i, r̄i) to the
moderator P .

• The moderator counts t := |G| from the received messages.

• For every user i ∈ [n] \G, P samples mi
$←M, ri

$← R and computes hi ← Hash(hki,mi, ri).

12

• P invokes u ← H(vk, h1, ..., hn,msg||t).11 Then it computes {mi}i∈G according to the backward
sample algorithm sback(·) of Fθ such that

Fθ(n, t,m1, ...,mn, u) = 1.

Then for i ∈ G, P sends mi to signer i.
• For every i ∈ G, signer i computes ri ← LCH.TdColl(tdi, m̄i, r̄i,mi) and sends ri to P .
• Finally P outputs the signature σ := (t, {mi}i∈[n], {ri}i∈[n]).

– Ver(vk,msg, σ). Parse σ = (t, {mi}i∈[n], {ri}i∈[n]). Compute hi ← Hash(hki, mi, ri) for all i ∈ [n]. Let
u← H(vk, h1, ..., hn,msg||t). Return t if Fθ(n, t,m1, ...,mn, u) = 1, and 0 otherwise.

Generality of the Construction. Our construction above exhibits strong generality. In Section 4, we
have already shown a generic compiler from TRS with a flexible threshold to ♯AMS. In fact, many ex-
isting TRS constructions can be categorized within the above framework due to the equivalence between
chameleon hashes and Sigma protocols (identification schemes) [9] and the result in this work (Appendix B).
For example, by instantiating with FA and the DL-based CH [52], we get the TRS scheme in [19], and
by instantiating with Fp and the DL-based CH, we get the TRS scheme in [57]. Thanks to this generic
construction, we immediately get more schemes of ♯AMS (also TRS) from lattices [36, 17], isogenies [30].

Theorem 1. If LCH is strongly secure (i.e., it has κ-uniformity, γ-random trapdoor collision, strong col-
lision resistance, indistinguishability, and ϵ-lossiness) and unique, and Fθ is a constraint function, then
♯AMS constructed above has strong unforgeability and unconditionally strong anonymity under static cor-
ruptions. More precisely, for any PPT adversary A, there exist PPT algorithms B1 and B2, such that
max(Time(B1), T ime(B2)) ≈ Time(A), and

Advs-unforg-sta-corr♯AMS,A (λ) ≤ n(Advs-crLCH,B1
(λ) + AdvindLCH,B2

(λ)) + n · ϵ+ 1

|M|
+

Qsign +QH

2nκ
+Qsignn · γ,

Advs-anony♯AMS,A (λ) ≤ Qsignn

2
· γ,

where Qsign and QH are the numbers of signing queries (in the strong unforgeability experiment or the strong
anonymity experiment) and hash queries, respectively.

We refer to Appendix E for the proof due to the page limitation.
Similarly, we get the following theorem for (regular) unforgeability.

Theorem 2. If LCH is secure (i.e., it has κ-uniformity, γ-random trapdoor collision, collision resistance, in-
distinguishability, and ϵ-lossiness) and Fθ is a constraint function, then ♯AMS constructed above has unforge-
ability and unconditional strong anonymity under static corruptions. More precisely, for any PPT adversary
A, there exist PPT algorithm B such that Time(B) ≈ Time(A), and

Advunforg-sta-corr♯AMS,A (λ) ≤ nAdvindLCH,B(λ) + n · ϵ+ 1

|M|
+

Qsign +QH

2nκ
+Qsignn · γ,

where Qsign and QH are the numbers of signing queries and hash queries, respectively.

Security under Adaptive Corruptions and the Tightness of Unforgeability. We prove the security of unforge-
ability in the static corruption model (Definition 29 in Appendix C). The proof can also be extended to
the adaptive model (Def. 4 and 5), but it suffers from a large loss factor 2n. We present the security bound
under adaptive corruptions in Appendix F. At a high level, to make use of the lossiness property of LCH,
the challenger has to make sure that all hash keys of non-corrupted users are generated in the lossy mode.
However, there is no corresponding trapdoor for a lossy hash key, which means that to deal with A’s adaptive
11 By including both msg and the threshold t into the hash input, the non-malleability is achieved in our signature

scheme.

13

corruptions, the challenger has to decide the way of key generation very carefully so that it can offer the
trapdoor of a user when a corruption happens on it.

We also give another proof based on normal chameleon hashes (Definition 1) in Appendix H, which has a
quadratic loss but relies on the forking lemma (Def. 1 in Appendix A). The reduction is tight in the algebraic
group model (AGM) [32], if we instantiate ♯AMS with DL-based chameleon hashes [52].

5.3 C2: The Fault-Tolerating Variant

In this subsection, we consider faulty signers, i.e., signers who quit in the middle of signing or return faulty
results to the moderator P . We propose a fault-tolerant variant of the (L)CH-based ♯AMS construction. In
this variant, even if there exist faulty signers who behave maliciously, the moderator P can still output a
♯AMS that is t-valid, where t is the number of honest signers in the generation of that signature. Besides,
the identities of those faulty signers are exposed, and anonymity holds only for the honest signers.

Faulty Attacks. We first introduce possible faulty attacks and then introduce a variant of (L)CH-based
♯AMS for tolerating faults while generating signatures in the following. Note that our constructions need
communication with a developer within a fixed period to ensure the number of total signers. This leads to
faulty attacks in the presence of a faulty node that declares to join the signing process but fails to generate
a partial signature. In other words, the signing process suffers from the following attack even if only one
faulty node exists: In the declaration period, the faulty node Uk faithfully follows the first two steps of the
interaction. Then after receiving mk from P , it aborts or sends a faulty rk.

Since P cannot compute rk without tdk, it cannot produce a t-valid ♯AMS signature. Furthermore,
since {mj}j∈G are determined by H(vk, h1, ..., hn,msg||t) from {hj}j∈[n] and t = |G|, P cannot generate a
signature of G \ {k} by simply discarding Uk.

Fault-Tolerant ♯AMS. We follow the same notion as the previous section. The Gen algorithm and the Sign
protocol are also essentially the same as the previous one, but only the following treatment is included:

– In the signing protocol, if a signer Ui does not response for P ’s message mi, or the signer Ui returns a
wrong ri such that Hash(hki,mi, ri) ̸= hi, then P include i into the set F . Here hi is the first message
Ui sens to P (if Ui does not send hi, then P would not include Ui into the signer group G).
Finally, P outputs the fault-tolerated signature

σ :=
(
t, F, {mi, ri}i∈[n]\F , {hi}i∈F

)
.

– t ← Ver(vk,msg, σ). Pause σ :=
(
t, F, {mi, ri}i∈[n]\F , {hi}i∈F

)
. Compute hi ← Hash(hki,mi, ri) for all

i ∈ [n] \F . Let u← H(vk, h1, ..., hn,msg||t). Return (t− |F |) if there exist a solution {mi}i∈F such that
Fθ(n, t,m1, ...,mn, u) = 1, and 0 otherwise.

We show that the fault-tolerant ♯AMS scheme has weak unforgeability (against malicious signers) and
unconditional strong anonymity (for honest signers).

Theorem 3. If LCH is secure (i.e., it has κ-uniformity, γ-random trapdoor collision, strong collision re-
sistance, indistinguishability, and ϵ-lossiness) and Fθ is a constraint function, then the fault-tolerant ♯AMS
scheme above has weak unforgeability and strong anonymity under static corruptions. More precisely, for any
PPT adversary A, there exist PPT algorithms B1 and B2, such that max(Time(B1), T ime(B2)) ≈ Time(A),

Advw-unforg-sta-corr
♯AMS,A (λ) ≤ n(Advs-crLCH,B1

(λ) + AdvindLCH,B2
(λ)) + n · ϵ+ 1

|M|
+

Qsign +QH

2nκ
+Qsignn · γ,

Advs-anony♯AMS,A (λ) ≤ Qsignn

2
· γ

where Qsign and QH are the numbers of signing queries (in the strong unforgeability experiment or the strong
anonymity experiment) and hash queries, respectively.

We refer to Appendix I for the proof sketch.

14

6 Applications: Blockchain Governance and the Beyond

♯AMS can be massively applied in the scenario of blockchain and privacy-preserving, where authenticity and
privacy are required simultaneously. The first and the most significant application of ♯AMS is blockchain
governance, especially about ranking improvement proposals, which is one of the most uprising topics in
the blockchain era. Our main goal is to implement a ranking – in other words, a voting – system on formal
on-chain blockchain governance. (E-)voting systems need a signature scheme to prevent double-voting or any
other possible exploitations related to confidentiality.

In this section, we give a generic treatment to achieve blockchain governance by developing a voting
system via ♯AMS. Note that our applications are simplified to give a showcase of using our ♯AMS. Applying
our scheme to more complex voting designs could be an interesting direction. However, our simple solutions
have already achieved many attractive properties, e.g., lightweight and publicly verifiable—thus, there is no
need for tallying authorities.

Note that in our schemes, anonymity does not hold for the moderator, meaning that the moderator
(whether honest or malicious) knows the identities of all signers. However, unforgeability still holds even
against a malicious moderator. Recall that in blockchain governance, a developer P who intends to propose
an improvement proposal will start the ♯AMS protocol as the moderator. P ’s goal is to gather as many
supporters as possible, and then generate a ♯AMS signature to demonstrate the credibility of the proposal
and thereby win the RFP. A malicious moderator P can do nothing except reduce t—which trivially harms
P ’s utility. For this reason, we assume the moderator is honest in the following analysis.

6.1 V1: Blockchain Governance via ♯AMS

As introduced in Section 3, the verification function of ♯AMS returns the number of the signers who partic-
ipated in the signature generation, which can turn into a voting protocol. In our concrete scheme of ♯AMS,
each participant generates their own keys and publishes them, which is a straightforward pre-processing step
in voting via blockchain. The voting protocol enables multiple improvement proposals to compete for votes,
and the one with the most votes is elected. Our on-chain governance voting protocol processes as follows:

1. A voting session implies the whole process of this protocol. For each RFP, the participants run a voting
session to evaluate proposals. Each session has four time periods: posting period, declaration period,
signing period, and announcement period. We denote [n] as the index set of voters while Ui implies an
i-th voter for i ∈ [n]. Similarly, for p < n, [p] is the index set of developers who propose an improvement
proposal while Pj stands for j-th developer and IP (j) stands for the proposal made by Pj . Note that
Pj = Uj for j ∈ [p], which means Pj is also eligible to vote and will lead the quorum of IP (j). Pj serves
a dual role as both the initiator of IP (j) and the representative of voters of that proposal, ensuring the
concealment of their identities during signature generation.

2. In the posting period, for all j ∈ [p], Pj submits IP (j). This can be done via the blockchain network
using a smart contract.

3. In the declaration period, for each i ∈ [n], Ui expresses their will to vote on IP (j) by generating a
random string pair (m̄i, r̄i) using their own randomness, which should be kept in secret, and sending
hi = Hash(hki, m̄i, r̄i) to Pj .

4. In the signing period, Pj sends mi to Ui and Ui sends ri to Pj , where mi and ri are defined in the
description of ♯AMS in Section 5.

5. In the announcement period, Pj generates a signature σ(j) from (mi, ri) pairs for each voter and uploads
it to the blockchain system. In the end, the most voted proposal is elected.

See Fig. 2 for the pictorial explanation of our voting system.

6.2 V2: Round Optimization

Recall that in the voting scheme above, after publishing the improvement proposal, each participant has to
execute three rounds of interaction before uploading the ♯AMS signature on the blockchain.

15

T0

Posting

Pj
IP (j)

−→ On-chain

T1

Declaration

Ui: sample (m̄i, r̄i)

Ui: compute hi

Ui
hi−→ Pj

T2

Signing

Pj : compute mi

Ui
mi←− Pj

Ui: compute ri

Ui
ri−→ Pj

T3

Announcement

Pj : compute σ(j)

Pj
σ(j)

−→ On-chain

T4

Fig. 2. Timeline of V1. Here Ui votes to IP (j).

– Round 1 (in the declaration period): Pj receives hi as a voting-claim from its supporter Ui.
– Round 2 (in the signing period): Pj computes mi according to the signing algorithm of ♯AMS and sends

mi to Ui.
– Round 3 (in the signing period): Ui returns ri such that Hash(hki,mi, ri) = hi.

After Round 3, Pj can finish signing and upload the signature σ on the blockchain. Now we come up
with the following question:

Can we reduce the round complexity? Namely, can we optimize the protocol such that the developer Pj

can generate the ♯AMS signature immediately after receiving the voting claims from its supporters?

The natural idea is to let the supporter, say Ui, send its secret key (the trapdoor of chameleon hash
schemes) directly to the developer Pj . With the knowledge of all secret keys, Pj can now generate a ♯AMS
signature without interaction with its supporters. However, this will totally expose users’ secret keys to the
developers in a single vote event, which is not the case users want.

Our idea is to use ♯AMS in a one-time paradigm. That is, for each proposal IP (j) proposed by the

developer Pj , the supporter Ui generates a new hash key and trapdoor pair (hk
(j)
i , td

(j)
i), and then sends the

key pair to Pj . For a user Uk who does not want to support IP (j), it also generates a key pair (hk
(j)
k , td

(j)
k),

but then sends only the hash key to Pj . This hash key is used for Pj to add Uk into the anonymous group
to hide the identities of the real voters. Moreover, we have the following two modifications.

1. To make sure that a hash key hk
(j)
i is generated from voter Ui but not from developer Pj (otherwise it

can always make an n-valid ♯AMS signature with n the total number of voters), Ui will sign a signature

on hk
(j)
i to show its authority. (See Appendix A for the syntax of signatures.)

2. The message from Ui to Pj is encrypted using Pj ’s public key, so that no eavesdropper except Pj will

know the corresponding trapdoor td
(j)
i . Meanwhile, the message, either hk

(j)
i or (hk

(j)
i , td

(j)
i), is padded

to the same length, preventing the side-leakage of anonymity.

Formally, the round-optimal protocol is described as follows. Let Sig = (Gen,Sign, Ver) be a (regular)
signature scheme with unforgeability, and PKE be a public key encryption scheme with CPA security. At the

beginning, we assume that every user Ui for i ∈ [n] has its own key pairs (ṽki, s̃ki) of Sig and (pki, ski) of
PKE.

1. In the posting period, developers P1, ..., Pp submit their improvement proposals IP (1), ..., IP (p) to the
blockchain network using a smart contract.

2. In the declaration & signing period, for all i ∈ [n] and j ∈ [p],

(a) Ui invokes (hk
(j)
i , td

(j)
i)← LCH.Gen(1λ) and cert

(j)
i ← Sign(s̃ki, hk

(j)
i);

(b) If Ui wants to vote IP (j), Ui computes cti→j ← Enc(pkj , hk
(j)
i ||cert

(j)
i ||td

(j)
i);

(c) If Ui does not want to vote IP (j), Ui computes cti→j ← Enc(pkj , hk
(j)
i ||cert(j)i ||0), where 0 is a

zero-string of length |td(j)i |;
(d) Ui sends cti→j to Pj .

16

3. In the announcement period, for each j ∈ [p], after decrypting cti→j for all i ∈ [n], the developer

Pj obtains a series of hash keys {hk(j)i }i∈[n] as well as their corresponding certificates {cert(j)i }i∈[n].

Meanwhile, Pj also gets a group of trapdoors {td(j)i } from users Ui who are willing to support IP (j). Pj

can check the validity of certificates using long-term verification keys. If the verification fails with respect
to user Ui, then Pj discards Ui from the anonymous group. Finally, Pj generates a ♯AMS signature σ(j)

for its proposal IP (j) and uploads the ♯AMS signature, all hash keys, and certificates concerning the
proposal IP (j) to the blockchain system.

Note that if a user Ui behaves in a Byzantine manner, for example, by failing to send cti→j to Pj , this
misbehavior will be easily detected after the announcement period ends. In such cases, all developers can
simply re-run the announcement period with the participant set updated to [n] \ i. This approach naturally
generalizes to tolerate any number of faulty users, with the only cost being an additional announcement
period for each round of fault recovery.

6.3 V3: Single-Vote Setting via the Conditioned Key Generation Paradigm

A voting system in the single-vote setting is desirable in many applications. For example, if two proposals
conflict, an unruly user voting on both will undoubtedly disrupt the normal voting process and outcomes.
However, in the protocols described above, users can vote on several proposals. More precisely, suppose there
are two distinct proposals, IP (j) by Pj and IP (k) by Pk with j ̸= k ∈ [p]. User Ui can generate two key

pairs (hk
(j)
i , td

(j)
i) and (hk

(k)
i , td

(k)
i), then vote on both proposals by sending the corresponding key pairs to

Pj and Pk, respectively. Due to the anonymity property of ♯AMS, the verifier cannot determine which users
have voted multiple times.

To prevent double voting, we introduce a new paradigm, dubbed the conditioned key generation paradigm.
Recall that to vote on a proposal IP (j) (i.e., to participate in the signing process for the proposal), user Ui

must have the trapdoor td
(j)
i corresponding to the hash key hk

(j)
i specifically designed for IP (j). User Ui

needs to generate p hash keys (hk
(1)
i , ..., hk

(p)
i) initially. Our idea is to enforce a restriction such that among

all p hash keys, the user can know at most one trapdoor.
The conditioned key generation paradigm is applying t-out-of-n proof strategy during the subkey gener-

ation. Assume the hash key space HK is a field. Let B = (bi,j) ∈ HK(p−1)×p be a public matrix of full rank.

Let hk⊤
i = ((hk

(1)
i , ..., hk

(p)
i)⊤. Now we require

B · hki = ĥki,

where ĥki ∈ HKp−1 is the output of some hash function H(IP (j1), ..., IP (jp), i).
If the hash key generated via Gen(1λ) is computationally indistinguishable from a uniform hash key

in HK, and H(·) is a random oracle, then to satisfy the aforementioned equation, each user has at most
one trapdoor of the p hash keys. Single-voting property is achieved as a result. See Fig. 3 for the pictorial
explanation of our round-optimal voting system in multiple and single-vote settings.

References

[1] Abdalla, M., Fouque, P., Lyubashevsky, V., Tibouchi, M.: Tightly-secure signatures from lossy identifica-
tion schemes. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology - EUROCRYPT 2012, Cam-
bridge, UK, April 15-19, 2012. Proceedings. vol. 7237, pp. 572–590. Springer (2012). https://doi.org/10.1007/
978-3-642-29011-4_34, https://doi.org/10.1007/978-3-642-29011-4_34

[2] Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Miller, G.L. (ed.) Proceedings
of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA,
May 22-24, 1996. pp. 99–108. ACM (1996). https://doi.org/10.1145/237814.237838, https://doi.org/10.
1145/237814.237838

17

https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838

T0

Posting

Pj
IP (j)

−→ On-chain

T1

Declaration & Signing

Ui: generates (hk
(j)
i , td

(j)
i)

Ui: computes cert
(j)
i ← Sign(s̃ki, hk

(j)
i)

cti→j ← Enc(pkj , hk
(j)
i ||cert

(j)
i ||td

(j)
i)

Ui

cti→j−→ Pj

T3

Announcement

Pj : compute σ(j)

Pj
σ(j)

−→ On-chain

T4

Fig. 3. Timeline of V2 and V3. Here Ui votes to IP (j). In V2, Ui also needs to compute and send cti→k =
Enc(pkk, hk

(k)
i ||cert

(k)
i ||td

(k)
i) or cti→k = Enc(pkk, hk

(k)
i ||cert

(k)
i ||0) to Pk for all k ∈ [p]. In V3, there should be a

unique j ∈ [p] for each i ∈ [n] such that Ui uniquely upvotes to IP (j). For all k ∈ [p] such that k ̸= j, Ui should

generate hk
(k)
i by following the rule described in the context.

[3] Alwen, J., Ostrovsky, R., Zhou, H.S., Zikas, V.: Incoercible multi-party computation and universally composable
receipt-free voting. In: Advances in Cryptology–CRYPTO 2015: 35th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II 35. pp. 763–780. Springer (2015)

[4] Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic voting protocols in the applied pi-
calculus. In: Proceedings of the 21st IEEE Computer Security Foundations Symposium, CSF 2008, Pittsburgh,
Pennsylvania, USA, 23-25 June 2008. pp. 195–209. IEEE Computer Society (2008). https://doi.org/10.1109/
CSF.2008.26, https://doi.org/10.1109/CSF.2008.26

[5] Baum, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient constant-round MPC with identifiable abort and
public verifiability. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Santa Barbara, CA, USA, Au-
gust 17-21, 2020, Proceedings, Part II. vol. 12171, pp. 562–592. Springer (2020). https://doi.org/10.1007/
978-3-030-56880-1_20, https://doi.org/10.1007/978-3-030-56880-1_20

[6] Beck, R., Müller-Bloch, C., King, J.L.: Governance in the blockchain economy: A framework and research agenda.
J. Assoc. Inf. Syst. 19(10), 1 (2018), https://aisel.aisnet.org/jais/vol19/iss10/1

[7] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryption and commitment se-
cure under selective opening. In: Joux, A. (ed.) Advances in Cryptology - EUROCRYPT 2009, Cologne,
Germany, April 26-30, 2009. Proceedings. vol. 5479, pp. 1–35. Springer (2009). https://doi.org/10.1007/
978-3-642-01001-9_1, https://doi.org/10.1007/978-3-642-01001-9_1

[8] Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: Juels,
A., Wright, R.N., di Vimercati, S.D.C. (eds.) CCS 2006. pp. 390–399. ACM (2006). https://doi.org/10.1145/
1180405.1180453, https://doi.org/10.1145/1180405.1180453

[9] Bellare, M., Ristov, T.: Hash functions from sigma protocols and improvements to VSH. In: Pieprzyk, J. (ed.)
Advances in Cryptology - ASIACRYPT 2008, Melbourne, Australia, December 7-11, 2008. Proceedings. vol. 5350,
pp. 125–142. Springer (2008). https://doi.org/10.1007/978-3-540-89255-7_9, https://doi.org/10.1007/
978-3-540-89255-7_9

[10] Bellare, M., Ristov, T.: A characterization of chameleon hash functions and new, efficient designs. J.
Cryptol. 27(4), 799–823 (2014). https://doi.org/10.1007/s00145-013-9155-8, https://doi.org/10.1007/
s00145-013-9155-8

[11] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant dis-
tributed computation (extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM Sym-
posium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA. pp. 1–10. ACM (1988). https:

//doi.org/10.1145/62212.62213, https://doi.org/10.1145/62212.62213
[12] Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to digital sinatures (extended

abstract). In: Advances in Cryptology - EUROCRYPT 1993. vol. 765, pp. 274–285. Springer (1993). https:
//doi.org/10.1007/3-540-48285-7_24, https://doi.org/10.1007/3-540-48285-7_24

[13] Benaloh, J.C., Tuinstra, D.: Receipt-free secret-ballot elections (extended abstract). In: Leighton, F.T., Goodrich,
M.T. (eds.) Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May
1994, Montréal, Québec, Canada. pp. 544–553. ACM (1994). https://doi.org/10.1145/195058.195407, https:
//doi.org/10.1145/195058.195407

[14] Bettaieb, S., Schrek, J.: Improved lattice-based threshold ring signature scheme. In: Gaborit, P. (ed.) PQCrypto
2013, Limoges, France, June 4-7, 2013. Proceedings. vol. 7932, pp. 34–51. Springer (2013). https://doi.org/
10.1007/978-3-642-38616-9_3, https://doi.org/10.1007/978-3-642-38616-9_3

18

https://doi.org/10.1109/CSF.2008.26
https://doi.org/10.1109/CSF.2008.26
https://doi.org/10.1109/CSF.2008.26
https://doi.org/10.1109/CSF.2008.26
https://doi.org/10.1109/CSF.2008.26
https://doi.org/10.1007/978-3-030-56880-1_20
https://doi.org/10.1007/978-3-030-56880-1_20
https://doi.org/10.1007/978-3-030-56880-1_20
https://doi.org/10.1007/978-3-030-56880-1_20
https://doi.org/10.1007/978-3-030-56880-1_20
https://aisel.aisnet.org/jais/vol19/iss10/1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/978-3-540-89255-7_9
https://doi.org/10.1007/978-3-540-89255-7_9
https://doi.org/10.1007/978-3-540-89255-7_9
https://doi.org/10.1007/978-3-540-89255-7_9
https://doi.org/10.1007/s00145-013-9155-8
https://doi.org/10.1007/s00145-013-9155-8
https://doi.org/10.1007/s00145-013-9155-8
https://doi.org/10.1007/s00145-013-9155-8
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1145/195058.195407
https://doi.org/10.1145/195058.195407
https://doi.org/10.1145/195058.195407
https://doi.org/10.1145/195058.195407
https://doi.org/10.1007/978-3-642-38616-9_3
https://doi.org/10.1007/978-3-642-38616-9_3
https://doi.org/10.1007/978-3-642-38616-9_3
https://doi.org/10.1007/978-3-642-38616-9_3
https://doi.org/10.1007/978-3-642-38616-9_3

[15] Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group
signature scheme. In: Desmedt, Y. (ed.) Public Key Cryptography - PKC 2003. vol. 2567, pp. 31–46. Springer
(2003). https://doi.org/10.1007/3-540-36288-6_3, https://doi.org/10.1007/3-540-36288-6_3

[16] Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.)
Advances in Cryptology - CRYPTO 2002, Santa Barbara, California, USA, August 18-22, 2002, Proceedings.
vol. 2442, pp. 465–480. Springer (2002). https://doi.org/10.1007/3-540-45708-9_30, https://doi.org/10.
1007/3-540-45708-9_30

[17] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: EUROCRYPT
2010, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings. vol. 6110, pp. 523–552. Springer (2010).
https://doi.org/10.1007/978-3-642-13190-5_27, https://doi.org/10.1007/978-3-642-13190-5_27

[18] Cayrel, P., Lindner, R., Rückert, M., Silva, R.: A lattice-based threshold ring signature scheme. In: Abdalla,
M., Barreto, P.S.L.M. (eds.) Progress in Cryptology - LATINCRYPT 2010, Puebla, Mexico, August 8-11,
2010, Proceedings. vol. 6212, pp. 255–272. Springer (2010). https://doi.org/10.1007/978-3-642-14712-8_16,
https://doi.org/10.1007/978-3-642-14712-8_16

[19] Chan, T.K., Fung, K., Liu, J.K., Wei, V.K.: Blind spontaneous anonymous group signatures for ad hoc
groups. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) Security in Ad-hoc and Sen-
sor Networks, First European Workshop, ESAS 2004, Heidelberg, Germany, August 6, 2004, Revised Se-
lected Papers. vol. 3313, pp. 82–94. Springer (2004). https://doi.org/10.1007/978-3-540-30496-8_8, https:
//doi.org/10.1007/978-3-540-30496-8_8

[20] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols (extended abstract). In:
Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA. pp. 11–19. ACM (1988). https://doi.org/10.1145/62212.62214, https://doi.org/
10.1145/62212.62214

[21] Chaum, D., Evertse, J., van de Graaf, J.: An improved protocol for demonstrating possession of discrete loga-
rithms and some generalizations. In: Chaum, D., Price, W.L. (eds.) Advances in Cryptology - EUROCRYPT
’87, Amsterdam, The Netherlands, April 13-15, 1987, Proceedings. vol. 304, pp. 127–141. Springer (1987).
https://doi.org/10.1007/3-540-39118-5_13, https://doi.org/10.1007/3-540-39118-5_13

[22] Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci. 777, 155–183
(2019). https://doi.org/10.1016/j.tcs.2019.02.001, https://doi.org/10.1016/j.tcs.2019.02.001

[23] Choi, W., Liu, X., Xia, L., Zikas, V.: K-linkable ring signatures and applications in generalized voting. IACR
Cryptol. ePrint Arch. p. 243 (2025), https://eprint.iacr.org/2025/243

[24] Chow, S.S.M., Hui, L.C.K., Yiu, S.: Identity based threshold ring signature. In: Park, C., Chee, S. (eds.) ICISC
2004, Seoul, Korea, December 2-3, 2004, Revised Selected Papers. vol. 3506, pp. 218–232. Springer (2004).
https://doi.org/10.1007/11496618_17, https://doi.org/10.1007/11496618_17

[25] Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding
protocols. In: Desmedt, Y. (ed.) Advances in Cryptology - CRYPTO ’94, Santa Barbara, California, USA, August
21-25, 1994, Proceedings. vol. 839, pp. 174–187. Springer (1994). https://doi.org/10.1007/3-540-48658-5_19,
https://doi.org/10.1007/3-540-48658-5_19

[26] Dallot, L., Vergnaud, D.: Provably secure code-based threshold ring signatures. In: Parker, M.G. (ed.) Cryptog-
raphy and Coding 2009, Cirencester, UK, December 15-17, 2009. Proceedings. vol. 5921, pp. 222–235. Springer
(2009). https://doi.org/10.1007/978-3-642-10868-6_13, https://doi.org/10.1007/978-3-642-10868-6_
13

[27] Delaune, S., Kremer, S., Ryan, M.: Coercion-resistance and receipt-freeness in electronic voting. In: 19th IEEE
Computer Security Foundations Workshop, (CSFW-19 2006), 5-7 July 2006, Venice, Italy. pp. 28–42. IEEE
Computer Society (2006). https://doi.org/10.1109/CSFW.2006.8, https://doi.org/10.1109/CSFW.2006.8

[28] Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic voting protocols: A taster. In:
Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.) Towards
Trustworthy Elections, New Directions in Electronic Voting. Lecture Notes in Computer Science, vol. 6000,
pp. 289–309. Springer (2010). https://doi.org/10.1007/978-3-642-12980-3_18, https://doi.org/10.1007/
978-3-642-12980-3_18

[29] Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with tight multi-user security. In:
Garay, J.A. (ed.) Public-Key Cryptography - PKC 2021, Virtual Event, May 10-13, 2021, Proceedings, Part II.
vol. 12711, pp. 1–31. Springer (2021). https://doi.org/10.1007/978-3-030-75248-4_1, https://doi.org/
10.1007/978-3-030-75248-4_1

[30] El Kaafarani, A., Katsumata, S., Pintore, F.: Lossy csi-fish: Efficient signature scheme with tight reduction
to decisional CSIDH-512. In: Public-Key Cryptography - PKC 2020. vol. 12111, pp. 157–186. Springer (2020).
https://doi.org/10.1007/978-3-030-45388-6_6, https://doi.org/10.1007/978-3-030-45388-6_6

19

https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-45708-9_30
https://doi.org/10.1007/3-540-45708-9_30
https://doi.org/10.1007/3-540-45708-9_30
https://doi.org/10.1007/3-540-45708-9_30
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-642-14712-8_16
https://doi.org/10.1007/978-3-642-14712-8_16
https://doi.org/10.1007/978-3-642-14712-8_16
https://doi.org/10.1007/978-3-540-30496-8_8
https://doi.org/10.1007/978-3-540-30496-8_8
https://doi.org/10.1007/978-3-540-30496-8_8
https://doi.org/10.1007/978-3-540-30496-8_8
https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/3-540-39118-5_13
https://doi.org/10.1007/3-540-39118-5_13
https://doi.org/10.1007/3-540-39118-5_13
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1016/j.tcs.2019.02.001
https://eprint.iacr.org/2025/243
https://doi.org/10.1007/11496618_17
https://doi.org/10.1007/11496618_17
https://doi.org/10.1007/11496618_17
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-642-10868-6_13
https://doi.org/10.1007/978-3-642-10868-6_13
https://doi.org/10.1007/978-3-642-10868-6_13
https://doi.org/10.1007/978-3-642-10868-6_13
https://doi.org/10.1109/CSFW.2006.8
https://doi.org/10.1109/CSFW.2006.8
https://doi.org/10.1109/CSFW.2006.8
https://doi.org/10.1007/978-3-642-12980-3_18
https://doi.org/10.1007/978-3-642-12980-3_18
https://doi.org/10.1007/978-3-642-12980-3_18
https://doi.org/10.1007/978-3-642-12980-3_18
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-45388-6_6
https://doi.org/10.1007/978-3-030-45388-6_6
https://doi.org/10.1007/978-3-030-45388-6_6

[31] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In:
Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings.
vol. 263, pp. 186–194. Springer (1986). https://doi.org/10.1007/3-540-47721-7_12, https://doi.org/10.
1007/3-540-47721-7_12

[32] Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva,
A. (eds.) Advances in Cryptology - CRYPTO 2018, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings,
Part II. vol. 10992, pp. 33–62. Springer (2018). https://doi.org/10.1007/978-3-319-96881-0_2, https://
doi.org/10.1007/978-3-319-96881-0_2

[33] Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.) Public Key Cryptography
- PKC 2007, Beijing, China, April 16-20, 2007, Proceedings. vol. 4450, pp. 181–200. Springer (2007). https:
//doi.org/10.1007/978-3-540-71677-8_13, https://doi.org/10.1007/978-3-540-71677-8_13

[34] Garay, J.A., Kiayias, A., Ostrovsky, R.M., Panagiotakos, G., Zikas, V.: Resource-restricted cryptography: Re-
visiting MPC bounds in the proof-of-work era. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology -
EUROCRYPT 2020, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II. vol. 12106, pp. 129–158. Springer
(2020). https://doi.org/10.1007/978-3-030-45724-2_5, https://doi.org/10.1007/978-3-030-45724-2_5

[35] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions.
IACR Cryptol. ePrint Arch. p. 432 (2007), http://eprint.iacr.org/2007/432

[36] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions.
In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, 2008. pp. 197–206. ACM (2008).
https://doi.org/10.1145/1374376.1374407, https://doi.org/10.1145/1374376.1374407

[37] Gersbach, H., Mamageishvili, A., Schneider, M.: Vote delegation and misbehavior. In: Caragiannis, I., Hansen,
K.A. (eds.) SAGT 2021, Aarhus, Denmark, September 21-24, 2021, Proceedings. vol. 12885, p. 411. Springer
(2021), https://link.springer.com/content/pdf/bbm%3A978-3-030-85947-3%2F1.pdf

[38] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols
with honest majority. In: Aho, A.V. (ed.) Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, New York, USA. pp. 218–229. ACM (1987). https://doi.org/10.1145/28395.
28420, https://doi.org/10.1145/28395.28420

[39] Goodman, L.: Tezos—a self-amending crypto-ledger white paper. URL: https://www. tezos.
com/static/papers/white paper. pdf 4, 1432–1465 (2014)

[40] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Advances in Cryptology–
EUROCRYPT 2008: 27th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings 27. pp. 415–432. Springer (2008)

[41] Haque, A., Scafuro, A.: Threshold ring signatures: New definitions and post-quantum security. In: Kiayias,
A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) Public-Key Cryptography - PKC 2020, Edinburgh, UK,
May 4-7, 2020, Proceedings, Part II. vol. 12111, pp. 423–452. Springer (2020). https://doi.org/10.1007/

978-3-030-45388-6_15, https://doi.org/10.1007/978-3-030-45388-6_15

[42] Heather, J., Schneider, S.A.: A formal framework for modelling coercion resistance and receipt freeness. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012: Formal Methods - 18th International Symposium, Paris, France,
August 27-31, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7436, pp. 217–231. Springer (2012).
https://doi.org/10.1007/978-3-642-32759-9_19, https://doi.org/10.1007/978-3-642-32759-9_19

[43] Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: Constructions from general assump-
tions and efficient selective opening chosen ciphertext security. In: Lee, D.H., Wang, X. (eds.) Advances in Cryp-
tology - ASIACRYPT 2011, Seoul, South Korea, December 4-8, 2011. Proceedings. vol. 7073, pp. 70–88. Springer
(2011). https://doi.org/10.1007/978-3-642-25385-0_4, https://doi.org/10.1007/978-3-642-25385-0_4

[44] Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption. In: International Conference
on the Theory and Applications of Cryptographic Techniques. pp. 539–556. Springer (2000)

[45] Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable abort. In: Garay, J.A.,
Gennaro, R. (eds.) Advances in Cryptology - CRYPTO 2014, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part II. vol. 8617, pp. 369–386. Springer (2014). https://doi.org/10.1007/978-3-662-44381-1_
21, https://doi.org/10.1007/978-3-662-44381-1_21

[46] Jonker, H.L., de Vink, E.P.: Formalising receipt-freeness. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S.,
Preneel, B. (eds.) Information Security, 9th International Conference, ISC 2006, Samos Island, Greece, August 30
- September 2, 2006, Proceedings. Lecture Notes in Computer Science, vol. 4176, pp. 476–488. Springer (2006).
https://doi.org/10.1007/11836810_34, https://doi.org/10.1007/11836810_34

[47] Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Chaum, D., Jakobsson, M.,
Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.) Towards Trustworthy Elections, New

20

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-030-45724-2_5
https://doi.org/10.1007/978-3-030-45724-2_5
https://doi.org/10.1007/978-3-030-45724-2_5
http://eprint.iacr.org/2007/432
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://link.springer.com/content/pdf/bbm%3A978-3-030-85947-3%2F1.pdf
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-030-45388-6_15
https://doi.org/10.1007/978-3-030-45388-6_15
https://doi.org/10.1007/978-3-030-45388-6_15
https://doi.org/10.1007/978-3-030-45388-6_15
https://doi.org/10.1007/978-3-030-45388-6_15
https://doi.org/10.1007/978-3-642-32759-9_19
https://doi.org/10.1007/978-3-642-32759-9_19
https://doi.org/10.1007/978-3-642-32759-9_19
https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/11836810_34
https://doi.org/10.1007/11836810_34
https://doi.org/10.1007/11836810_34

Directions in Electronic Voting. Lecture Notes in Computer Science, vol. 6000, pp. 37–63. Springer (2010).
https://doi.org/10.1007/978-3-642-12980-3_2, https://doi.org/10.1007/978-3-642-12980-3_2

[48] Khan, N., Ahmad, T., Patel, A., State, R.: Blockchain governance: An overview and prediction of optimal
strategies using nash equilibrium. CoRR abs/2003.09241 (2020), https://arxiv.org/abs/2003.09241

[49] Kiayias, A., Lazos, P.: Sok: Blockchain governance. In: Herlihy, M., Narula, N. (eds.) AFT 2022, Cambridge, MA,
USA, September 19-21, 2022. pp. 61–73. ACM (2022). https://doi.org/10.1145/3558535.3559794, https:
//doi.org/10.1145/3558535.3559794

[50] Kiayias, A., Osmanoglu, M., Tang, Q.: Graded signatures. In: Information Security - ISC 2015. vol. 9290,
pp. 61–80. Springer (2015). https://doi.org/10.1007/978-3-319-23318-5_4, https://doi.org/10.1007/

978-3-319-23318-5_4

[51] Komlo, C., Goldberg, I.: FROST: flexible round-optimized schnorr threshold signatures. In: Dunkelman, O., Jr.,
M.J.J., O’Flynn, C. (eds.) Selected Areas in Cryptography - SAC 2020, Halifax, NS, Canada (Virtual Event),
October 21-23, 2020, Revised Selected Papers. vol. 12804, pp. 34–65. Springer (2020). https://doi.org/10.
1007/978-3-030-81652-0_2, https://doi.org/10.1007/978-3-030-81652-0_2

[52] Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. IACR Cryptol. ePrint Arch. p. 10 (1998), http:
//eprint.iacr.org/1998/010

[53] Küsters, R., Truderung, T.: An epistemic approach to coercion-resistance for electronic voting protocols. In: 30th
IEEE Symposium on Security and Privacy (SP 2009), 17-20 May 2009, Oakland, California, USA. pp. 251–266.
IEEE Computer Society (2009). https://doi.org/10.1109/SP.2009.13, https://doi.org/10.1109/SP.2009.
13

[54] Küsters, R., Truderung, T., Vogt, A.: Verifiability, privacy, and coercion-resistance: New insights from a case
study. In: 32nd IEEE Symposium on Security and Privacy, SP 2011, 22-25 May 2011, Berkeley, California, USA.
pp. 538–553. IEEE Computer Society (2011). https://doi.org/10.1109/SP.2011.21, https://doi.org/10.
1109/SP.2011.21

[55] Küsters, R., Truderung, T., Vogt, A.: A game-based definition of coercion resistance and its applications. Journal
of Computer Security 20(6), 709–764 (2012)

[56] Li, X., Zheng, D., Chen, K.: Efficient linkable ring signatures and threshold signatures from linear feedback
shift register. In: Jin, H., Rana, O.F., Pan, Y., Prasanna, V.K. (eds.) ICA3PP 2007, Hangzhou, China, June
11-14, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4494, pp. 95–106. Springer (2007). https:
//doi.org/10.1007/978-3-540-72905-1_9, https://doi.org/10.1007/978-3-540-72905-1_9

[57] Liu, J.K., Wei, V.K., Wong, D.S.: A separable threshold ring signature scheme. In: Lim, J.I., Lee, D.H. (eds.)
Information Security and Cryptology - ICISC 2003, Seoul, Korea, November 27-28, 2003, Revised Papers.
vol. 2971, pp. 12–26. Springer (2003). https://doi.org/10.1007/978-3-540-24691-6_2, https://doi.org/
10.1007/978-3-540-24691-6_2

[58] Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups (extended
abstract). In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004, Sydney, Australia, July 13-15,
2004. Proceedings. vol. 3108, pp. 325–335. Springer (2004). https://doi.org/10.1007/978-3-540-27800-9_28,
https://doi.org/10.1007/978-3-540-27800-9_28

[59] Lyu, J., Jiang, Z.L., Wang, X., Nong, Z., Au, M.H., Fang, J.: A secure decentralized trustless e-voting system
based on smart contract. In: 18th IEEE International Conference On Trust, Security And Privacy In Computing
And Communications / 13th IEEE International Conference On Big Data Science And Engineering, Trust-
Com/BigDataSE 2019, Rotorua, New Zealand, August 5-8, 2019. pp. 570–577. IEEE (2019). https://doi.org/
10.1109/TRUSTCOM/BIGDATASE.2019.00082, https://doi.org/10.1109/TrustCom/BigDataSE.2019.00082

[60] Melchor, C.A., Cayrel, P., Gaborit, P.: A new efficient threshold ring signature scheme based on coding theory.
In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008, Cincinnati, OH, USA, October 17-19, 2008, Proceedings.
vol. 5299, pp. 1–16. Springer (2008). https://doi.org/10.1007/978-3-540-88403-3_1, https://doi.org/10.
1007/978-3-540-88403-3_1

[61] Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller. In: Pointcheval, D., Jo-
hansson, T. (eds.) Advances in Cryptology - EUROCRYPT 2012, Cambridge, UK, April 15-19, 2012. Pro-
ceedings. vol. 7237, pp. 700–718. Springer (2012). https://doi.org/10.1007/978-3-642-29011-4_41, https:
//doi.org/10.1007/978-3-642-29011-4_41

[62] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. In: 45th Sym-
posium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings.
pp. 372–381. IEEE Computer Society (2004). https://doi.org/10.1109/FOCS.2004.72, https://doi.org/10.
1109/FOCS.2004.72

21

https://doi.org/10.1007/978-3-642-12980-3_2
https://doi.org/10.1007/978-3-642-12980-3_2
https://doi.org/10.1007/978-3-642-12980-3_2
https://arxiv.org/abs/2003.09241
https://doi.org/10.1145/3558535.3559794
https://doi.org/10.1145/3558535.3559794
https://doi.org/10.1145/3558535.3559794
https://doi.org/10.1145/3558535.3559794
https://doi.org/10.1007/978-3-319-23318-5_4
https://doi.org/10.1007/978-3-319-23318-5_4
https://doi.org/10.1007/978-3-319-23318-5_4
https://doi.org/10.1007/978-3-319-23318-5_4
https://doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.1007/978-3-030-81652-0_2
http://eprint.iacr.org/1998/010
http://eprint.iacr.org/1998/010
https://doi.org/10.1109/SP.2009.13
https://doi.org/10.1109/SP.2009.13
https://doi.org/10.1109/SP.2009.13
https://doi.org/10.1109/SP.2009.13
https://doi.org/10.1109/SP.2011.21
https://doi.org/10.1109/SP.2011.21
https://doi.org/10.1109/SP.2011.21
https://doi.org/10.1109/SP.2011.21
https://doi.org/10.1007/978-3-540-72905-1_9
https://doi.org/10.1007/978-3-540-72905-1_9
https://doi.org/10.1007/978-3-540-72905-1_9
https://doi.org/10.1007/978-3-540-72905-1_9
https://doi.org/10.1007/978-3-540-72905-1_9
https://doi.org/10.1007/978-3-540-24691-6_2
https://doi.org/10.1007/978-3-540-24691-6_2
https://doi.org/10.1007/978-3-540-24691-6_2
https://doi.org/10.1007/978-3-540-24691-6_2
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1109/TRUSTCOM/BIGDATASE.2019.00082
https://doi.org/10.1109/TRUSTCOM/BIGDATASE.2019.00082
https://doi.org/10.1109/TRUSTCOM/BIGDATASE.2019.00082
https://doi.org/10.1109/TRUSTCOM/BIGDATASE.2019.00082
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00082
https://doi.org/10.1007/978-3-540-88403-3_1
https://doi.org/10.1007/978-3-540-88403-3_1
https://doi.org/10.1007/978-3-540-88403-3_1
https://doi.org/10.1007/978-3-540-88403-3_1
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1109/FOCS.2004.72

[63] Michels, M., Horster, P.: Some remarks on a receipt-free and universally verifiable mix-type voting scheme. In:
International Conference on the Theory and Application of Cryptology and Information Security. pp. 125–132.
Springer (1996)

[64] Munch-Hansen, A., Orlandi, C., Yakoubov, S.: Stronger notions and a more efficient construction of threshold
ring signatures. In: Progress in Cryptology - LATINCRYPT 2021. vol. 12912, pp. 363–381. Springer (2021).
https://doi.org/10.1007/978-3-030-88238-9_18, https://doi.org/10.1007/978-3-030-88238-9_18

[65] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (May 2009), http://www.bitcoin.org/bitcoin.
pdf

[66] Okamoto, T.: Receipt-free electronic voting schemes for large scale elections. In: Christianson, B., Crispo, B.,
Lomas, T.M.A., Roe, M. (eds.) Security Protocols, 5th International Workshop, Paris, France, April 7-9, 1997,
Proceedings. Lecture Notes in Computer Science, vol. 1361, pp. 25–35. Springer (1997). https://doi.org/10.
1007/BFB0028157, https://doi.org/10.1007/BFb0028157

[67] Pan, J., Wagner, B.: Lattice-based signatures with tight adaptive corruptions and more. In: Hanaoka, G., Shikata,
J., Watanabe, Y. (eds.) Public-Key Cryptography - PKC 2022, Virtual Event, March 8-11, 2022, Proceedings,
Part II. vol. 13178, pp. 347–378. Springer (2022). https://doi.org/10.1007/978-3-030-97131-1_12, https:
//doi.org/10.1007/978-3-030-97131-1_12

[68] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Dwork, C. (ed.) Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008.
pp. 187–196. ACM (2008). https://doi.org/10.1145/1374376.1374406, https://doi.org/10.1145/1374376.
1374406

[69] van Pelt, R., Jansen, S., Baars, D., Overbeek, S.: Defining blockchain governance: A framework for analysis
and comparison. Inf. Syst. Manag. 38(1), 21–41 (2021). https://doi.org/10.1080/10580530.2020.1720046,
https://doi.org/10.1080/10580530.2020.1720046

[70] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended ab-
stract). In: Johnson, D.S. (ed.) Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
May 14-17, 1989, Seattle, Washington, USA. pp. 73–85. ACM (1989). https://doi.org/10.1145/73007.73014,
https://doi.org/10.1145/73007.73014

[71] Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) Advances in Cryptology -
ASIACRYPT 2001, Gold Coast, Australia, December 9-13, 2001, Proceedings. vol. 2248, pp. 552–565. Springer
(2001). https://doi.org/10.1007/3-540-45682-1_32, https://doi.org/10.1007/3-540-45682-1_32

[72] Russo, A., Anta, A.F., Vasco, M.I.G., Romano, S.P.: Chirotonia: A scalable and secure e-voting framework
based on blockchains and linkable ring signatures. In: Xiang, Y., Wang, Z., Wang, H., Niemi, V. (eds.) 2021
IEEE International Conference on Blockchain, Blockchain 2021, Melbourne, Australia, December 6-8, 2021. pp.
417–424. IEEE (2021). https://doi.org/10.1109/BLOCKCHAIN53845.2021.00065, https://doi.org/10.1109/
Blockchain53845.2021.00065

[73] Sako, K., Kilian, J.: Receipt-free mix-type voting scheme - A practical solution to the implementation of a
voting booth. In: Guillou, L.C., Quisquater, J. (eds.) Advances in Cryptology - EUROCRYPT ’95, International
Conference on the Theory and Application of Cryptographic Techniques, Saint-Malo, France, May 21-25, 1995,
Proceeding. Lecture Notes in Computer Science, vol. 921, pp. 393–403. Springer (1995). https://doi.org/10.
1007/3-540-49264-X_32, https://doi.org/10.1007/3-540-49264-X_32

[74] Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) Advances in Cryptology - EUROCRYPT 2000,
Bruges, Belgium, May 14-18, 2000, Proceeding. vol. 1807, pp. 207–220. Springer (2000). https://doi.org/10.
1007/3-540-45539-6_15, https://doi.org/10.1007/3-540-45539-6_15

[75] Stinson, D.R., Strobl, R.: Provably secure distributed schnorr signatures and a (t, n) threshold scheme for
implicit certificates. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001, Sydney, Australia, July 11-13, 2001,
Proceedings. vol. 2119, pp. 417–434. Springer (2001). https://doi.org/10.1007/3-540-47719-5_33, https:
//doi.org/10.1007/3-540-47719-5_33

[76] Venugopalan, S., Homoliak, I.: Always on voting: A framework for repetitive voting on the blockchain. CoRR
abs/2107.10571 (2021), https://arxiv.org/abs/2107.10571

[77] Wei, B., Du, Y., Zhang, H., Zhang, F., Tian, H., Gao, C.: Identity based threshold ring signature from lattices. In:
Au, M.H., Carminati, B., Kuo, C.J. (eds.) NSS 2014, Xi’an, China, October 15-17, 2014, Proceedings. vol. 8792,
pp. 233–245. Springer (2014). https://doi.org/10.1007/978-3-319-11698-3_18, https://doi.org/10.1007/
978-3-319-11698-3_18

[78] Wong, D.S., Fung, K., Liu, J.K., Wei, V.K.: On the rs-code construction of ring signature schemes and a threshold
setting of RST. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003, Huhehaote, China, October 10-13,
2003, Proceedings. vol. 2836, pp. 34–46. Springer (2003). https://doi.org/10.1007/978-3-540-39927-8_4,
https://doi.org/10.1007/978-3-540-39927-8_4

22

https://doi.org/10.1007/978-3-030-88238-9_18
https://doi.org/10.1007/978-3-030-88238-9_18
https://doi.org/10.1007/978-3-030-88238-9_18
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/BFB0028157
https://doi.org/10.1007/BFB0028157
https://doi.org/10.1007/BFB0028157
https://doi.org/10.1007/BFB0028157
https://doi.org/10.1007/BFb0028157
https://doi.org/10.1007/978-3-030-97131-1_12
https://doi.org/10.1007/978-3-030-97131-1_12
https://doi.org/10.1007/978-3-030-97131-1_12
https://doi.org/10.1007/978-3-030-97131-1_12
https://doi.org/10.1145/1374376.1374406
https://doi.org/10.1145/1374376.1374406
https://doi.org/10.1145/1374376.1374406
https://doi.org/10.1145/1374376.1374406
https://doi.org/10.1080/10580530.2020.1720046
https://doi.org/10.1080/10580530.2020.1720046
https://doi.org/10.1080/10580530.2020.1720046
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/73007.73014
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1109/BLOCKCHAIN53845.2021.00065
https://doi.org/10.1109/BLOCKCHAIN53845.2021.00065
https://doi.org/10.1109/Blockchain53845.2021.00065
https://doi.org/10.1109/Blockchain53845.2021.00065
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/3-540-47719-5_33
https://arxiv.org/abs/2107.10571
https://doi.org/10.1007/978-3-319-11698-3_18
https://doi.org/10.1007/978-3-319-11698-3_18
https://doi.org/10.1007/978-3-319-11698-3_18
https://doi.org/10.1007/978-3-319-11698-3_18
https://doi.org/10.1007/978-3-540-39927-8_4
https://doi.org/10.1007/978-3-540-39927-8_4
https://doi.org/10.1007/978-3-540-39927-8_4

[79] Xu, F., Lv, X.: A new identity-based threshold ring signature scheme. In: Proceedings of the IEEE Interna-
tional Conference on Systems, Man and Cybernetics, Anchorage, Alaska, USA, October 9-12, 2011. pp. 2646–
2651. IEEE (2011). https://doi.org/10.1109/ICSMC.2011.6083996, https://doi.org/10.1109/ICSMC.2011.
6083996

[80] Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual Symposium on Foundations
of Computer Science, Chicago, Illinois, USA, 3-5 November 1982. pp. 160–164. IEEE Computer Society (1982).
https://doi.org/10.1109/SFCS.1982.38, https://doi.org/10.1109/SFCS.1982.38

23

https://doi.org/10.1109/ICSMC.2011.6083996
https://doi.org/10.1109/ICSMC.2011.6083996
https://doi.org/10.1109/ICSMC.2011.6083996
https://doi.org/10.1109/ICSMC.2011.6083996
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38

A Basic Notations and Additional Preliminaries

Let λ ∈ N denote the security parameter. For µ ∈ N, define [µ] := {1, 2, ..., µ}. Denote by x := y the operation

of assigning y to x. Denote by x
$← S the operation of sampling x uniformly at random from a set S. For a

distribution D, denote by x← D the operation of sampling x according to D. For an algorithm A, denote by
y ← A(x; r), or simply y ← A(x), the operation of running A with input x and randomness r and assigning
the output to y. For deterministic algorithms A, we also write as y := A(x) or y := A(x; r). “PPT” is short
for probabilistic polynomial-time.

Statistical distances and min-entropy. Let X and Y be two random variables (distributions) defined
over S. The min-entropy of X is defined as H∞(X) := − log(maxs∈S Pr[X = s]). The statistical distance
between X and Y is defined as ∆X,Y := 1/2

∑
s∈S |Pr[X = s]−Pr[Y = s]|. If ∆X,Y = ϵ, we also say X and

Y are ϵ-close.

A.1 Public key encryption

Definition 8 (Public-Key Encryption). A public key encryption (PKE) scheme consists of the following
three algorithms. Namely, PKE = (Gen,Enc,Dec).

– (pk, sk)← Gen(1λ). The key generation algorithm takes as input the security parameter 1λ, and outputs
an encryption public key pk and a decryption secret key sk.

– ct← Enc(pk, µ). The encryption algorithm takes as input pk and a message µ, and outputs a ciphertext
ct. If the randomness r is specific, then we also denote it as ct← Enc(pk, µ; r) or ct := Enc(pk, µ; r).

– µ′ ← Dec(sk, ct). The decryption algorithm takes as input sk and a ciphertext ct, and outputs the
decryption result µ′.

Correctness. For every (pk, sk)← Gen(1λ) and every message µ, it holds that Dec(sk,Enc(pk, µ)) = µ.

Definition 9 (CPA Security of PKE). A public key encryption scheme PKE is secure, if for every PPT
adversary A, its advantage

AdvcpaPKE,A(λ) := |Pr[(pk, sk)← Gen(1λ) : AO0(pk,·,·) = 1]− Pr[(pk, sk)← Gen(1λ) : AO1(pk,·,·) = 1]|

is negligible in λ, where oracle Ob(pk, µ0, µ1) returns ct← Enc(pk, µb).

Definition 10 (Min-Entropy of PKE). A PKE scheme PKE has κ-min-entropy, if for every (pk, sk)←
Gen(1λ), every µ, it holds that H∞(Enc(pk, µ; r)) ≥ κ, where r

$← R and R is the randomness space of PKE.

A.2 Signatures

Definition 11 (Signatures). A signature (SIG) scheme consists of the following three algorithms. Namely,
Sig = (Gen,Sign,Ver).

– (vk, sk)← Gen(1λ): The key generation algorithm takes as input the security parameter 1λ, and outputs
a verification key vk and a secret key sk.

– σ ← Sign(sk,msg): The signing algorithm takes as input sk and a message msg, and outputs a signature
σ.

– 1/0← Ver(vk,msg, σ): The verification algorithm Ver takes as input pk, a message msg and a signature
σ, and outputs a bit indicating the validity of σ.

Correctness. For any (vk, sk)← Gen(1λ), any msg and σ ← Sign(sk,msg), it holds that Ver(vk,msg, σ) = 1.

Definition 12 (Unforgeability of Signatures). Let Sig be a signature scheme. Consider the following

unforgeability experiment ExpunforgSig,A (λ) between the challenger C and the adversary A.

24

1. C generates (vk, sk)← Gen(1λ) and passes vk to A.
2. A has access to the signing oracle O(msg) that returns σ ← Sign(sk,msg).

3. Finally A outputs a forgery (msg∗, σ∗).

ExpunforgSig,A (λ) outputs 1 if Ver(vk,msg∗, σ∗) = 1 and A never asks O(msg∗).

Define by AdvunforgSig,A (λ) the probability that ExpunforgSig,A (λ) outputs 1. We say that Sig is unforgeable, if for

all PPT adversary A, the advantage AdvunforgSig,A (λ) is negligible in λ.

A.3 Forking Lemma

In this subsection, we review the forking lemma proposed by Bellare and Never [8], which is an important
tool for the security proof of the CH-based construction.

Lemma 1 (Forking Lemma [8]). Fix an integer Q and a set M. Let B be a randomized algorithm that
on input x, u(1), ..., u(Q) returns a pair (j, σ), where the first element is an integer in [Q] and the second
element is referred as a side output. Let X be a distribution. We define acc, the accepting probability of B in
the experiment as follows.

acc := Pr

[
x

$← X , u(1), ..., u(Q) $←M
(j, σ)← B(x, u(1), ..., u(Q))

: 1 ≤ j ≤ Q

]
.

The forking algorithm FB associated with B is a randomized algorithm that takes input x and proceeds as
follows.

Set random coins ρ for B
u(1), ..., u(Q) $←M
(j, σ)← B(x, u(1), ..., u(Q); ρ)
If j = 0 then return (0,⊥,⊥)
u(j)′ , ..., u(Q)′ $←M
(j′, σ′)← B(x, u(1), ..., u(j−1), u(j)′ , ..., u(Q)′ ; ρ)

If (j = j′ ∧ u(j) ̸= u(j)′) then return (j, σ, σ′)
Otherwise return (0,⊥,⊥)

Define

frk := Pr[x← X , (b, ·, ·)← FB(x) : b ̸= 0].

Then

frk ≥ acc · (acc/Q− 1/|M|).

B A Framework for Lossy Chameleon Hashes

In this section, we show a framework of lossy chameleon hashes defined in Definition 2, including the equiv-
alence with lossy identification schemes, some generic constructions, and some concrete constructions from
the DDH assumption and the LWE & SIS assumptions, see Fig. 1.

B.1 Security of (Lossy) Chameleon Hashes

Definition 13 (Security of CH). A chameleon hash scheme CH is secure (resp., strongly secure) if it has
uniformity, random trapdoor collision, and collision resistance (resp., strong collision resistance).

25

κ-uniformity. For any (hk, td) ← Gen(1λ), if (m, r) is distributed uniformly over M × R, then
H∞(Hash(hk,m, r)) ≥ κ. Specifically, if H∞(Hash(hk,m, r)) = log(|H|), we say that CH has perfect
uniformity.12

γ-random trapdoor collision (RTC). For any (hk, td)← Gen(1λ) and any m,m′, if r is uniformly dis-
tributed over R, then r′ ← TdColl(td,m, r,m′) has a statistical distance γ to the uniform distribution
over R. If γ = 0, we say that CH has perfect RTC.

Collision resistance (CR). For any PPT adversary A, it holds that

AdvcrCH,A(λ) := Pr

[
(hk, td)← Gen(1λ);

(m, r,m′, r′)← A(hk) :
Hash(hk,m, r) = Hash(hk,m′, r′)

∧ m ̸= m′

]
≤ negl(λ).

Strong collision resistance (S-CR). For any PPT adversary A, it holds that

Advs-crCH,A(λ) := Pr

[
(hk, td)← Gen(1λ);

(m, r,m′, r′)← A(hk) :
Hash(hk,m, r) = Hash(hk,m′, r′)

∧ (m, r) ̸= (m′, r′)

]
≤ negl(λ).

Remark 3 (Random Trapdoor Collision in Lattice-based Constructions). For lattice-based CH schemes (e.g.,
[17]), the randomness r is sampled according to a (non-uniform) distribution R̃ over R. In this case, we
modify the definition to the case over non-uniform distributions. Namely, for any m,m′, if r is sampled
according to R̃, then the output r′ ← TdColl(td,m, r,m′) enjoys a distribution which is γ-close to R̃.

Definition 14 (Security of LCH). A lossy chameleon hash LCH is secure (resp. strongly secure), if it has
uniformity, random trapdoor collision (RTC), collision resistance (resp., strong collision resistance), indis-
tinguishability, and lossiness. The first three properties are defined as in Definition 13 (note that uniformity
and RTC also hold for all hk ← LGen(1λ)), and the last two are defined as follows.

Indistinguishability. For any PPT adversary A, it holds that

AdvindLCH,A :=
∣∣Pr[(hk, td)← Gen(1λ) : A(hk) = 1] −Pr[hk ← LGen(1λ) : A(hk) = 1]

∣∣ ≤ negl(λ).

ϵ-Lossiness. For any (even information-theoretic) adversary A = (A1,A2), it holds that

Pr

[
hk ← LGen(1λ); (h, st)← A1(hk);

m
$←M; r ← A2(m, st)

: Hash(hk,m, r) = h

]
≤ ϵ.

Definition 15 (Uniqueness of (L)CH). We say CH or LCH is perfectly unique, if for every hk generated
from (hk, td) ← Gen(1λ) and hk ← LGen(1λ), every m, there do not exist two district r ̸= r′ such that
Hash(hk,m, r) = Hash(hk,m, r′).

B.2 Equivalence with Lossy Identification Schemes

Bellare and Ristov [9, 10] proved that chameleon hashes and 3-move Sigma protocols are equivalent, where
the hash value, the message, and the randomness of a chameleon hash corresponds to the commitment, the
challenge, and the response of a Sigma protocol, respectively. In this subsection, we extend the equivalence to
the lossy mode, by showing that lossy chameleon hashes and lossy identification schemes [1] are equivalent.

We first recall the definition and security properties of lossy identification schemes. By default, the lossy
identification scheme we consider here is a 3-move protocol (as that in Sigma protocols) which consists of a
commitment, a challenge, and a response as its transcript.

Definition 16 (Lossy Identification [1]). A lossy identification scheme consists of the following four
algorithms. Namely, LID = (Gen, LGen,Prove,Ver).

12 We relax the definition of uniformity by taking m’s randomness into the probability space. A stronger definition
guarantees the min-entropy for any (hk, td) and any m. As we will see, the relaxed definition here is sufficient for
the security proof in Section 5.

26

– (pk, sk) ← Gen(1λ). The normal key generation algorithm takes as input the security parameter λ and
outputs a verifier’s public key pk and a prover’s secret key sk.

– pk ← LGen(1λ). The lossy key generation algorithm takes as input the security parameter λ and outputs
a lossy public key pk.

– Prove. The prover algorithm takes as input the current conversation transcript and outputs the next
message to be sent to the verifier.

– Ver. The (deterministic) verification algorithm Ver takes the transcript as input and output a bit, where
1 indicates acceptance and 0 otherwise.

We assume by default, the commitment space, the challenge space CH, and the response space RP are
defined by the public key pk (either generated via normal or lossy way). Moreover, for every (pk, sk) ←
Gen(1λ), there is a transcript oracle that works as follows.

Otrans
pk,sk () :

(cmt, st)← Prove(sk)

ch
$← CH

resp← Prove(sk, st, ch)
output (cmt, ch, resp)

Definition 17. Let LID be an identification scheme. We say LID is secure if it satisfies the follow properties.

ρ-completeness for normal keys. For every (pk, sk) ← Gen(1λ), Ver(pk, cmt, ch, resp) = 1 holds with
probability at least ρ, where (cmt, ch, resp)← Otrans

pk,sk ().

Simulatability of transcripts (honest-verifier zero-knowledge). For every (pk, sk)← Gen(1λ), there
exists a PPT simulator Sim that takes only pk as input and outputs a simulated transcript (cmt, ch, resp)←
Simtrans

pk (), which distributes η-close to the output of Otrans
pk,sk ().

κ-min-entropy. For any (pk, sk) ← Gen(1λ), let (cmt, st) ← Prove(sk) and [·]1 be a function that maps
(cmt, st) to cmt, then

H∞([Prove(sk)]1) ≥ κ,

where the probability is taken over the randomness coin used in Prove.
Indistinguishability. For any PPT adversary A, the distinguish advantage

AdvindLID,A(λ) := |Pr[(pk, sk)← Gen(1λ) : A(pk) = 1]− Pr[pk ← LGen(1λ) : A(pk) = 1]|

is negligible in λ.
ϵ-lossiness. For any (even all-powerful) adversary A = (A1,A2), it holds that

Pr

[
pk ← LGen(1λ); (cmt, st)← A

Simtrans
pk ()

1 (pk);

ch
$← CH; r ← A2(ch, st)

: Ver(pk, cmt, ch, resp) = 1

]
≤ ϵ,

where Simtrans
pk () is the simulator described above.

Besides, we also need the following two properties for identification schemes when constructing lossy
chameleon hashes from them.

Definition 18 (Commitment Recoverability of LID). LCH is commitment recoverable if there exists a
deterministic algorithm Com that takes as inputs (pk, ch, resp) and outputs a recovered commitment cmt′,
and Ver(pk, cmt, ch, resp) = 1 if and only if cmt = Com(pk, ch, resp).

Moreover, there exists a special simulator Sim, which outputs an η-close simulated transcript by randomly
sampling (ch, resp) and then outputting (Com(pk, ch, resp), ch, resp), and (ch, resp) can be served as the
inner state st for cmt = Com(pk, ch, resp) in the Prove algorithm.

27

Definition 19 (Strong Special Soundness of LID [10]). LCH has strong special soundness, if for any
PPT adversary, its advantage

AdvsssLID,A(λ) := Pr

[
(pk, sk)← Gen(1λ)

(cmt, ch, resp, ch′, resp′)← A(pk) :
(ch, resp) ̸= (ch′, resp′)
∧ Ver(pk, cmt, ch, resp) = 1
∧ Ver(pk, cmt, ch′, resp′) = 1

]
is negligible in λ.

From LCH to LID. Let LCH = (Gen, LGen,Hash,TdColl) be a secure lossy identification scheme. We
construct a lossy identification scheme LID from LCH as follows.

Gen(1λ):

(hk, td)← LCH.Gen(1λ)
Output (pk, sk) := (hk, td)

LGen(1λ):

hk ← LCH.LGen(1λ)
Output pk := hk

Prove and Ver:
Prover Verifier
(hk, td) hk

m̄
$←M; r̄

$←R
h := Hash(hk, m̄, r̄)

cmt:=h−−−−−−−−−−→
ch:=m←−−−−−−−−−− m

$←M

r ← TdColl(td, m̄, r̄,m)
resp:=r−−−−−−−−−−→ If h = Hash(hk,m, r): output 1

Otherwise: output 0

Fig. 4. Construction of lossy identification schemes from lossy chameleon hashes.

Theorem 4. Let LCH be a strongly secure lossy chameleon hash scheme (i.e., it has κ-uniformity, γ-random
trapdoor collision, strong collision, indistinguishability and ϵ-lossiness), then LID constructed in Fig. 4 is a
secure lossy identification scheme with commitment recoverability.

Proof. We show that ID has completeness, simulatability of transcripts, min-entropy, indistinguishability,
lossiness, and commitment recoverability.

1-completeness. This is directly implied by the correctness of LCH.TdColl.
γ-simulatability of transcripts. We construct the PPT simulator Sim as follows.

Otrans
hk,td () :

m̄,m
$←M; r̄

$← R
h := Hash(hk,m, r)
r ← TdColl(td, m̄, r̄,m)
output (h,m, r)

Simpk() :

m
$←M; r

$← R
h := Hash(hk,m, r)
output (h,m, r)

Since h is totally determined by pk, m, and r, the only difference between the above two distribution
is the generation of r. Due to the γ-random trapdoor collision property of LCH, we know that Otrans

hk,td ()
and Simpk() have a statistical distance γ.

κ-min-entropy. Since the commitment cmt for Prove algorithm is just the hash value for random m̄ and
r̄, the κ-min-entropy directly follows from the κ-uniformity of LCH.

Indistinguishability. This is directly implied by the indistinguishability of LCH.
ϵ-lossiness. This is directly implied by the ϵ-lossiness of LCH.
Commitment recoverability. This is straightforward since the commitment is the hash value of m = ch

and r = resp.

From LID to LCH. Let LID = (LID.Gen, LID.LGen,Prove,Ver) be a secure lossy identification scheme with
commitment recoverability. We construct a lossy chameleon hash scheme LCH from LID as follows.

28

Gen(1λ):

(pk, sk)← LID.Gen(1λ)
Output (hk, td) := (pk, sk)

LGen(1λ):

pk ← LID.Gen(1λ)
Output hk := pk

Hash(pk, ch, resp):

cmt := Com(pk, ch, resp)
// Com is the deterministic algorithm defined in
// commitment recoverability
Output h := cmt

TdColl(sk, ch, resp, ch′):

cmt := Com(pk, ch, resp)
st := (ch, resp)
resp′ ← Prove(sk, st, ch′)

Fig. 5. Construction of lossy chameleon hashes schemes from lossy identification schemes.

Theorem 5. Let LID be a secure lossy identification scheme (i.e., it has ρ-completeness, η-simulatability,
κ-min-entropy, indistinguishability, ϵ-lossiness) with commitment recoverability and strong special soundness,
then LCH constructed in Fig. 5 is a secure lossy chameleon hash scheme.

Proof. We show that LCH constructed in Figure 5 has uniformity, random trapdoor collision, strong collision
resistance, indistinguishability, and lossiness.

Correctness of trapdoor collision. This is guaranteed by the η-simulatability and ρ-completeness of LID.
We notice that the correctness of LCH might be imperfect.

(κ+ log η)-uniformity. Due to the commitment recoverability and simulatability of LID, the simulated dis-
tribution (cmt = Com(pk, ch, resp), ch, resp) (for random ch and resp) is η-close to the normal protocol
transcript distribution (cmt′, ch′, resp′). Moreover, we know cmt′ has a min-entropy of κ. Therefore,
cmt := Com(pk, ch, resp) has a min-entropy at least (κ+ log η).

η-random trapdoor collision. According to the η-simulatability of LID, the simulated transcript (cmt, ch, resp)
(for random ch and resp) has a statistical distance η with the real transcript, which means that the dis-
tributions of resp and resp′ are η-close. The η-random trapdoor collision holds as a result.

Strong collision resistance. This is implied by the commitment recoverability and the strong special
soundness of LID. Recall that Ver(pk, cmt, ch, resp) returns 1 if and only if cmt = Com(pk, ch, resp), where
Com is the deterministic algorithm defined in Definition 18. Therefore, a tuple (cmt, ch, resp, ch′, resp)
that breaks the strong special soundness directly leads to a collision of the constructed LCH.

Indistinguishability. This is directly implied by the indistinguishability of LID.
ϵ-lossiness. This is directly implied by the ϵ-lossiness of LID.

B.3 Construction from Re-Randomizable Encryption

We first recall the definition of re-randomizable encryption.

Definition 20. A re-randomizable encryption (RPKE) scheme consists of four algorithms R-PKE = (Gen,Enc,Dec,ReRand),
where the first three algorithms are defined as normal PKE (Definition 8), and

– the re-randomize algorithm ReRand takes as input the public key pk, a ciphertext ct and a randomness
r′, and outputs a re-randomized ciphertext ct′ ← ReRand(pk, ct; r).

We require that for every (pk, sk) ← Gen(1λ), every message µ and r̄, the following two distributions are
identical,

{r $← R : Enc(pk, µ; r)} and {r $← R : ReRand(pk,Enc(pk, µ; r̄); r)},

where R is the randomness space of R-PKE.

Besides the re-randomize algorithm ReRand, we additionally require an efficient collision algorithm to
find our a randomness with which ReRand will re-randomize a ciphertext to a specific one.

29

Definition 21 (Efficient Collision of R-PKE). Let R-PKE = (Gen,Enc,Dec, ReRand) be an R-PKE
scheme. We say R-PKE has efficient collision, if there exists an efficient collision algorithm Coll that, for

any m, r0, r1, r
′
0

$← R, Coll(pk,m, r0, r1, r
′
0) outputs r′1 such that

ReRand(pk,Enc(pk,m; r0); r
′
0) = ReRand(pk,Enc(pk,m; r1); r

′
1).

Meanwhile, if r′0 is sampled according to some distribution R, then r′1 ← Coll(pk,m, r0, r1, r
′
0) also satisfies

the distribution R.

Some examples of R-PKE include ElGamal, Paillier, Regev, etc.
Now we describe our construction of LCH from R-PKE. The idea mainly follows the construction in [43],

but we additionally require an efficient collision algorithm so that the constructed LCH has correctness (i.e.,
there exists a trapdoor to find collisions efficiently in the collision mode).

Construction of LCH from R-PKE. Let R-PKE be a secure R-PKE scheme with efficient collision. Let
R be the randomness space of R-PKE. The construction of LCH is shown as follows, where the message space
isM = {0, 1}ℓ, and the randomness space is Rℓ.

– (hk, td)← Gen(1λ). (pk, sk)← R-PKE.Gen(1λ).

For i ∈ [ℓ]: r̄i,0, r̄i,1
$← R, ci,0 := Enc(pk, 0; r̄i,0), ci,1 := Enc(pk, 0; r̄i,1).

Return hk := (pk, c1,0, c1,1, ..., cℓ,0, cℓ,1) and td := (r̄1,0, r̄1,1, ..., r̄ℓ,0, r̄ℓ,1).
– hk ← LGen(1λ). (pk, sk)← R-PKE.Gen(1λ).

For i ∈ [ℓ]: r̄i,0, r̄i,1
$← R, ci,0 := Enc(pk, 0; r̄i,0), ci,1 := Enc(pk, 1; r̄i,1).

Return hk := (pk, c1,0, c1,1, ..., cℓ,0, cℓ,1).
– h← Hash(hk,m, r). Let m = (m1, ...,mℓ) ∈ {0, 1}ℓ and r = (r1, ..., rℓ) ∈ Rℓ.

For i ∈ [ℓ]: hi := ReRand(pk, ci,mi ; ri).
Return h := (h1, ..., hℓ).

– r′ ← TdColl(td,m, r,m′). Let m = (m1, ...,mℓ) ∈ {0, 1}ℓ, m′ = (m′
1, ...,m

′
ℓ) ∈ {0, 1}ℓ, and r =

(r1, ..., rℓ) ∈ Rℓ.
For i ∈ [ℓ]:
• If mi = m′

i, then r′i := ri.
• If mi ̸= m′

i, then r′i ← Coll(pk, 0, r̄i,0, r̄i,1, ri).
Return r′ := (r′1, ..., r

′
ℓ).

Theorem 6. If R-PKE is a secure R-PKE scheme with efficient collision and κ-min-entropy, then LCH
constructed above is a secure lossy chameleon hash scheme.

Proof. We prove the properties of LCH as follows.

Correctness and (perfect) random trapdoor collision. These two properties follow directly from the
efficient collision of R-PKE.

(ℓκ)-uniformity. For every i ∈ [ℓ], any r̄i, ReRand(pk,Enc(pk, 0; r̄i); ri) has a min-entropy κ if ri is uniformly
distributed. The (ℓκ)-uniformity holds as a result.

Indistinguishability. This follows from the CPA security of R-PKE. Namely, there exists a PPT algorithm
B such that

AdvindLCH,A(λ) ≤ AdvcpaR-PKE,B(λ).

Collision resistance. We first change the generation of hk from (hk, td) ← Gen(1λ) to hk ← LGen(1λ),
due to the indistinguishability property.
If the adversary A finds a collision (m, r,m′, r′) under the lossy key hk, then there exists at least one i
s.t. mi ̸= m′

i (w.l.o.g. we assume mi = 0), and

ReRand(pk,Enc(pk, 0; r̄i,0); ri) = hi = ReRand(pk,Enc(pk, 1; r̄i,1); r
′
i).

Due to the correctness of R-PKE, hi can be decrypted to exactly either 0 or 1. Therefore collision
resistance holds.

30

2−ℓ-lossiness. The analysis is the same as that in collision resistance. For any fixed h = (h1, ..., hℓ), the
message m̃ encrypted in h is uniquely determined, due to the correctness of R-PKE. Therefore, for a
randomm, as long asm ̸= m̃ (which happens with probability (1−2−ℓ)), there does not exist randomness
r such that Dec(sk,ReRand(pk, ci,mi

; ri)) = m̃i for all i.

B.4 Construction from Lossy PKE with Efficient Opening

We first recall the lossy encryption (L-PKE) as follows.

Definition 22. A lossy encryption (L-PKE) scheme consists of four algorithms L-PKE = (Gen,Enc,Dec, LGen),
where the first three algorithms are defined as normal PKE (Definition 8), and

– the lossy key generation algorithm LGen takes as input the security parameter λ and outputs a lossy
public key pk ← LGen(1λ).

We require that for every pk ← LGen(1λ), every µ0, µi, the following two distribution are γ-close,

{r ← R : Enc(pk, µ0, r)} and {r ← R : Enc(pk, µ1, r)},

where R is the randomness space of L-PKE.

Definition 23 (Efficient Openability of L-PKE). An L-PKE scheme L-PKE has efficient openability,
if for every pk ← LGen(1λ), there exists a trapdoor td generated along with pk in LGen and an efficient
algorithm Open, such that given any µ, µ′, r, Open(td, µ, r, µ′), with overwhelming probability it outputs a
randomness r′ such that Enc(pk, µ, r) = Enc(pk, µ′, r′). Namely, a lossy ciphertext can be opened to any
plaintext µ′.

Moreover, we require that the output r ← Open(td, µ, r, µ′) satisfies the same distribution as r except a
negligible probability.

Now we construct a lossy chameleon hash scheme from any lossy PKE scheme.

Construction of LCH from L-PKE. Let L-PKE be a secure L-PKE scheme with efficient openability,
and M and R be the message space and randomness space of R-PKE, respectively. At a high lever, the
injective/lossy mode in L-PKE corresponds to the lossy/collision mode in LCH.

– (hk, td)← Gen(1λ). pk ← L-PKE.LGen(1λ). Let td be the trapdoor used for efficient openability (Defini-
tion 23). Return hk := pk and td.

– hk ← LGen(1λ). (pk, sk)← L-PKE.Gen(1λ). Return hk := pk.
– h← Hash(hk,m, r). Let hk = pk. ct← Enc(pk,m; r). Return h := ct.
– r′ ← TdColl(td,m, r,m′). Let ct← Enc(pk,m; r). Return r′ ← Open(td,m, r,m′).

Theorem 7. If L-PKE is a secure L-PKE scheme with efficient openability and κ-min-entropy, then LCH
constructed above is a secure lossy chameleon hash scheme.

Proof. We prove the properties of LCH as follows.

Correctness. Recall that the collision hash key is actually a lossy public key of L-PKE. Due to the efficient
openability of L-PKE, the correctness of LCH holds with overwhelming probability.

κ-uniformity. This is directly implied by the κ-min-entropy of L-PKE.
Random trapdoor collision. This follows from the efficient openability of L-PKE.
Indistinguishability. This follows directly from the indistinguishability of L-PKE.
Collision resistance. To prove the collision resistance of LCH, we first change the generation of hk from

(hk, td)← Gen(1λ) to hk ← LGen(1λ), due to the indistinguishability property.
If the adversary A find a collision (m, r,m′, r′) under this lossy key hk (i.e., under the injective public
key pk), then m ̸= m′ and

Enc(pk,m; r) = Enc(pk,m′; r′).

Obviously this cannot happen due to the correctness of L-PKE.

31

1/|M|-lossiness. In the lossy mode of LCH (i.e., the injective mode of L-PKE), for any fixed h, the message
m̃ encrypted in h is uniquely determined due to the correctness of L-PKE. Therefore, for a random m, as
long as m ̸= m̃ (which happens with probability (1 − 1/|M|)), there does not exist randomness r such
that Enc(pk,m; r) = h.

B.5 Construction from LWE

In this subsection we show the LWE-based construction of LWE, which was presented as a dual-mode
commitment scheme by Pan and Wagner [67]. Here we provide the proof of collision resistance based on the
SIS assumption.

Let n,m, q be positive integers. For a matrix A ∈ Zm×m
q (m > n) and vector u ∈ Zn

q , define the n-

dimensional lattice Λ(A) := {y ∈ Rn|y = Ax,x ∈ Zm}, the orthogonal lattice Λ⊥
q (A) := {x ∈ Zm|Ax = 0n

mod q} and shifted lattice Λ⊥
u (A) := {x ∈ Zm|Ax = u mod q}.

The Gaussian function with parameter s and center c is defined as ρs,c : Rn → R, ρs,c(x) := exp(−π||x−
c||2/s2). For countable set S ∈ Rn, the discrete Gaussian distribution DS,s,c(x) parameterized with s and c
is defined as DS,s,c(x) := ρs,c(x)/

∑
x∈S ρs,c(x) for x ∈ S and DS,s,c(x) := 0 for x /∈ S. Usually we omit c

if c = 0.
We recall the following lemmas from [67], which are originally presented in [2, 62, 35, 36].

Lemma 2. Let n,m, q be positive integers and m ≥ 2n log q. Consider any ω(
√
logm) function and s ≥

ω(
√
logm). Then for all but negligible (in n) fraction of all A ∈ Zn×m

q the distribution {Ae|e← DΛ⊥
u (A),s}

is statisticalluy close to uniform distribution over Zn
q . Moreover, the conditional distribution of e ← DZm,s

given u = Ae mod q is exactly DΛ⊥
u (A),s.

Lemma 3. Let n,m, q be positive integers and m ≥ 2n log q. Consider any ω(
√
logm) function and s ≥

ω(
√
logm). Then for all but at most q−n fraction of A ∈ Zn×m

q and any vector u ∈ Zn
q , it holds that

Pr[||x|| > s
√
m|x← DΛ⊥

u (A),s] ≤ 2−m+1.

Let G be the gadget matrix defined in [61]. Let A ∈ Zn×m
q , n,m, q be positive integers and m ≥ n⌈log q⌉.

A matrix R ∈ Z(m−n⌈log q⌉)×n⌈log q⌉ is a trapdoor for A is A[−R⊤|In⌈log q⌉]
⊤ = G.

Lemma 4. There exist PPT algorithms GenTrap and SampleD and constants C0 > 0, C1 ≤ 3 such that for
positive integers n,m, q, q ≥ 2, m ≥ 3n log q, w := n⌈log q⌉, and any ω(

√
log n) function the following holds

with overwhelming probability over all random choices:

1. For any s ≥ ω(log n), the algorithm GenTrap(n,m, s, q) outputs matrices A ∈ Zn×m
q and R ∈ Z(m−w)×w

such that A is statistically close to uniform matrix over Zn×m
q , R is a trapdoor for A with entriex

sampled from DZ,s and s1(R) ≤ s · C0 · (
√
m− w +

√
w).

2. For any matrix A ∈ Zn×m
q with trapdoor R, for any u ∈ Zn

q and s ≥ C1 ·
√
s1(R)2 + 1ω(

√
log n), the

distribution {z|z← SampleD(A,R,u, s)} is statistically close to Dλ⊥
u (A),s.

Next we present two hardness assumptions on lattices.

Definition 24 (The LWE assumption). Let n = n(λ),m = poly(n), q be positive integers and x be an
error distribution over Z. The learning with errors (LWE) assumption states that for any PPT adversary A,
its advantage

Advlwe
[n,q,χ],A(λ) :=

∣∣∣Pr[A $← Zn×m
q ; s

$← Zn
q ; e← χm : A(A, s⊤A+ e⊤) = 1]

−Pr[A
$← Zn×m

q ;b
$← Zm

q : A(A,b⊤) = 1]
∣∣∣

is negligible in λ.

32

Definition 25 (The SIS assumption). Let n = n(λ),m, q be positive integers and β be a positive real.
The short integer solution (SIS) assumption states that for any PPT adversary A, the advantage

Advsis[n,q,β,m],A(λ) := Pr[A
$← Zn×m

q ;x← A(A) : Ax = 0n ∧ x ̸= 0m ∧ ||x|| ≤ β]

is negligible in λ.

Gen(1λ)

(A,TA)← TrapdoorGen()

Return (hk, td) := (A ∈ Z(n+ℓ)×m)
q ,TA)

LGen(1λ)

Ā
$← Zn×m

q

S
$← Zn×ℓ

q ; E← Dm×ℓ
Z,αq

A := S⊤A+E⊤

Return hk := A :=

[
Ā
A

]
∈ Z(n+ℓ)×m

q

Hash(hk,m ∈ {0, 1}ℓ, r)

z := Ar+

[
0

⌊q/2⌉ ·m

]
Return z
TdColl(td,m, r,m′)

z′ := Ar+

[
0

⌊q/2⌉ · (m−m′)

]
r′ ← Resample(A,TA, z′, s)
If ||r′|| > s

√
m: return ⊥

Return r′

Fig. 6. LCH construction from the LWE and SIS assumptions.

Theorem 8 (Security of the Lattice-based Construction [67]). Under the LWE assumption, the con-
struction in Fig. 6 has completeness, simulatability, min-entropy, indistinguishability, lossiness, and com-
mitment recoverability.

Theorem 9. Under the LWE and SIS assumptions, LCH in Fig. 6 is a secure lossy chameleon hash scheme.

Proof. Thanks to Theorem 5 and Theorem 8, it is sufficient to prove the collision resistance.

Recall that in the generation of hash key, A is statistically close to a random matrix over Z(n+ℓ)×m
q .

Under a random matrix A =

[
Ā
A

]
, a collision (m, r,m′, r′) such that

Ar+

[
0

⌊q/2⌉ ·m

]
= Ar′ +

[
0

⌊q/2⌉ ·m′

]
directly implies a SIS solution (r− r′) to Ā ∈ Zn×m

q .

B.6 Construction from DDH

In this subsection we present a construction of LCH from the DDH assumption, which is the well-known
DDH-based lossy identification scheme by Chaum et al. [21].

We first recall the background on the discrete logarithm assumption and the DDH assumption.
Let GGen be a group generation algorithm that outputs (G, q, g), where G is a cyclic group of prime order

q with generator g.

Definition 26 (The DL assumption). The discrete logarithm (DL) assumption states that, for any PPT
adversary A, its advantage

AdvdlG,A(λ) := Pr[x
$← Zq : A(G, q, g, gx) = x]

is negligible over λ.

33

Definition 27 (The DDH assumption). The decisional Diffie-Hellman (DDH) assumption states that,
for any PPT adversary A, its advantage

AdvddhG,A(λ) :=
∣∣∣Pr[x, y $← Zq : A(G, q, g, gx, gy, gxy) = 1] −Pr[x, y, z

$← Zq : A(G, q, g, gx, gy, gz) = 1]
∣∣∣

is negligible over λ.

Note that the DL assumption is implied by the DDH assumption.

Construction. Let (G, q, g)← G(1λ), and g̃ is another random generator of G. The DDH-based construction
of LCH [21] is shown in Fig. .

Gen(1λ)

α← Zq

Return td := x, hk := (X, X̃) := (gx, g̃x)

LGen(1λ)

x, x′ ← Zq s.t. x ̸= x′

Return hk := (X, X̃) := (gx, g̃x
′
)

Hash(hk,m, r)

Return h := (Xmgr||X̃mg̃r)

TdColl(td,m, r,m′)

Return r′ := x(m−m′) + r

Fig. 7. LCH construction from the LWE and SIS assumptions.

Theorem 10 ([21, 29]). Under the DDH assumption, LCH above is a strongly secure lossy chameleon hash
scheme.

C More Security Notions for ♯AMS

Definition 28 (Weak Unforgeability). Let ♯AMS be an ♯AMS scheme. Consider the weak unforgeability

experiment Expw-unforg
♯AMS,A (λ), which is defined as Expunforg♯AMS,A(λ) in Definition 4, except that condition (2) is

replaced with

(2”) A never asks O(msg∗, P,G) such that |G| ≥ t∗.

Define by Advw-unforg
♯AMS,A (λ) the probability that Expw-unforg

♯AMS,A (λ) outputs 1. We say that ♯AMS is weakly

unforgeable, if for all PPT adversary A, the advantage Advw-unforg
♯AMS,A (λ) is negligible in λ.

Remark 4 (On the meaning of weak unforgeability). Recall that the output t of the verification algorithm is
a metric to measure how “reliable” a signature is, i.e., how many different signers agree on the message and
participate in the signing process. Therefore, in many applications (e.g., the blockchain governance discussed
in Section 6), the adversary’s goal is to forge a t-valid signature with t as high as possible. To formalize this
kind of security, we define the above-mentioned weak unforgeability by strengthening the restriction of the
adversary.

Adaptive corruption endows a powerful attack capability for the adversary, which might be too strong to
realize. The static corruption model is enough for many applications such as applications: V2 and V3. We
formally define the (strong/weak) unforgeability under static corruptions.

Definition 29 ((Strong/Weak) Unforgeability under Static Corruptions). Let ♯AMS be an ♯AMS

scheme. Consider the following unforgeability experiment Expunforg-sta-corr♯AMS,A (λ) between the challenger C and
the adversary A.

1. A sets the maximum number of signers n and claims a group of signers G′ ⊆ [n] to be corrupted.

34

2. C generates (vk, sk1, ..., skn)← Gen(1λ, n) and passes (vk, {ski}i∈G′) to A.
3. A has access to the signing oracle O(·, ·, ·), which inputs (msg, P,G) and returns σ ← Sign(msg, G, {ski}i∈G)

and adds (msg, σ) into the set S.
4. Finally A outputs (msg∗, σ∗).

Let t∗ ← Ver(vk,msg∗, σ∗). Expunforg-sta-corr♯AMS,A (λ) outputs 1 if

(1) t∗ > t′, where t′ is the total number of queries to Ocorr(·); and
(2) A never asks O(msg∗, P,G) such that |G| = t∗.

Define by Advunforg-sta-corr♯AMS,A (λ) the probability that Expunforg-sta-corr♯AMS,A (λ) outputs 1. We say that ♯AMS

is unforgeable under static corruptions, if for all PPT adversary A, the advantage Advunforg-sta-corr♯AMS,A (λ) is
negligible in λ.

If condition (2) is replaced with

(2’) (msg∗, σ∗) /∈ S.
then we define the strong unforgeability of ♯AMS, the corresponding experiment and advantage are denoted
by Advs-unforg-sta-corr♯AMS,A (λ) and Advs-unforg-sta-corr♯AMS,A (λ).

If condition (2) is replaced with

(2”) A never asks O(msg∗, P,G) such that |G| ≥ t∗.

then we define the weak unforgeability of ♯AMS, the corresponding experiment and advantage are denoted by
Advw-unforg-sta-corr

♯AMS,A (λ) and Advw-unforg-sta-corr
♯AMS,A (λ).

D Discussion on the Relationship Between TRS and ♯AMS

D.1 Issues of Threshold Ring Signatures

We first recall the definition of threshold ring signatures (TRS) from [16] and [57].

Definition 30 (TRS). A threshold ring signature (TRS) scheme consists of three algorithms: TRS =
(Gen,TSign,Ver).

– (pk, sk) ← Gen(1λ, t): The key generation algorithm takes as input the security parameter 1λ and a
threshold t, and outputs a public key pk and a secret key sk.

– σ ← TSign(msg, R, {pki}i∈R, T, {ski}i∈T): The threshold signing algorithm/protocol takes as input a
message msg, a group of users R and their public keys {pki}i∈R, a group of real signers T and their the
secret key {ski}i∈T , and outputs a signature σ.

– 1/0← Ver(t, R, {pki}i∈R,msg, σ): The verification algorithm Ver takes as input t, a group of users R and
their public keys {pki}i∈R, a message msg and a signature σ, and outputs a bit indicating the validity of
σ.

Correctness. For any T ⊆ R such that |T | ≥ t, any msg and σ ← TSign(msg, R, {pki}i∈R, T, {ski}i∈T), it
holds that Ver(t, R, {pki}i∈R,msg, σ) = 1.

In many previous works [16, 57, 19, 24, 26], the threshold signing process TSign is just regarded as
an algorithm, but rather than an interactive protocol among at least t signers. Under such definitions, the
behavior of TRS becomes ambiguous: Does the signer know the threshold t? Does the anonymity hold among
the signer group T , i.e., whether a signer in T knows its cooperators’ identity?13

To address this issue, when defining ♯AMS we introduce a moderator in the signing process. We stress
that the moderator perceives the quorum of the signers (hence also t) during the signing process, and every
signer only needs to communicate with the moderator. Moreover, even if the moderator gets corrupted later
and is willing to reveal the quorum of real signers, it either cannot convince others about the disclosure in
our construction C1, or will leak its identity as well and consequently be penalized from the system in our
construction C2.
13 There are some works [64] that consider the anonymity even against the inner signers, as the strong anonymity

defined in Definition 6.

35

D.2 Relationship between TRS and ♯AMS

Our newly defined ♯AMS closely relates to TRS, though ♯AMS is a stronger primitive than TRS.

1. By the definition of TRS, a group of t signers can get together to sign a signature, and the threshold t
might be fixed (e.g., [56, 79]) or not (e.g., [57, 19, 14]) when generating the public/secret key pairs. But
in ♯AMS, any number of signers can cooperate and finally output a signature. That is, the creditability
t is flexible in every signing.

2. The output of the verification algorithm in TRS is a single bit indicating whether a signature w.r.t. a
message and a threshold is valid or not. While in ♯AMS, the output t is an integer indicating the real
number of signers who have participated in the signing process, which offers more information than that
in TRS.

Owing to the security concerns in ad-hoc networks, TRS has attracted increasingly widespread attention
for the past decades. In fact, for most existing TRS schemes [16, 57, 19, 60, 18, 14, 77, 41], the threshold t
is changeable every signing, though how to share information of t is ambiguous from the definition. We call
this kind of scheme TRS with flexible threshold.

Remark 5 (Why Sign the Threshold t Together with msg in the Generic Compiler?). A secure signature
should include all public information, e.g., a receiver’s address, side-channel information, and the threshold
t in our case, into the message to be signed. We show an unsafe counterexample of ♯AMS from linkable
ring signatures (LRS) [58] here. As introduced in the introduction, LRS allows a user to sign a message on
behalf of a ring, and its two signatures on the same message will be linked. A natural idea for constructing
♯AMS from LRS is to let every signer in the group contribute its own linkable ring signature, and the
verification algorithm just returns the count of unlinked and valid signatures. However, if the creditability t
is not included in the message to be signed, then unforgeability does not hold anymore. To see this, suppose
the forger now corrupts a signer Ui and gets its secret key. Then after seeing a t-valid ♯AMS signature σ
generated by a group excluding Ui, the forger can easily output a (t+1)-valid ♯AMS signature (σ||σi), where
σi is a linkable ring signature by Ui. Another example of such insecurity is shown in [78].

Remark 6 (Why Sign the Threshold t Together with msg in the Generic Compiler?). A secure signature
should include all public information, e.g., a receiver’s address, side-channel information, and the threshold
t in our case, into the message to be signed. We show an unsafe counterexample of ♯AMS from linkable
ring signatures (LRS) [58] here. As introduced in the introduction, LRS allows a user to sign a message on
behalf of a ring, and its two signatures on the same message will be linked. A natural idea for constructing
♯AMS from LRS is to let every signer in the group contribute its own linkable ring signature, and the
verification algorithm just returns the count of unlinked and valid signatures. However, if the creditability t
is not included in the message to be signed, then unforgeability does not hold anymore. To see this, suppose
the forger now corrupted a signer Ui and gets its secret key. Then after seeing a t-valid ♯AMS signature σ
generated by a group excluding Ui, the forger can easily output a (t+1)-valid ♯AMS signature (σ||σi), where
σi is a linkable ring signature by Ui. Another example of insecurity is shown in [78].

E Proof of Theorem 1

In this section we prove Theorem 1 (the strong unforgeability of ♯AMS).

Proof. For simplicity, we will model the signing process of ♯AMS as a algorithm and ignore the moderator
in the following proof.

First, we prove the strong unforgeability under static corruptions via hybrid games G0−G4. Before describ-
ing the hybrid games, we specify some notations used in the proof. Let (msg∗, σ∗ = (t′,m∗

1, ...,m
∗
n, r

∗
1 , ..., r

∗
n))

be A’s final forgery and t∗ ← Ver(vk,msg∗, σ∗). For A to win, it must hold that t′ = t∗. Therefore, in the
following proof we implicitly assume that t′ = t∗. Meanwhile, for i ∈ [n], let h∗

i ← Hash(hki,m
∗
i , r

∗
i), and let

H(vk, h∗
1, ..., h

∗
n,msg∗||t∗) = u∗.

36

Game G0. This is just the original strong unforgeability experiment.

Pr[G0 ⇒ 1] = Advs-unforg-sta-corr♯AMS,A (λ).

Game G1. If A never asks H(vk, h∗
1, ..., h

∗
n,msg∗||t∗) before outputting the final forgery, then G1 outputs 0

directly.
Since H works as a random oracle, if A never asks H(vk, h∗

1, ..., h
∗
n,msg∗||t∗) before, then u∗ is ran-

domly distributed over U . Recall that for every (n, t) and (m1, ...,mn), there exists only one u such that
F(n, t,m1, ...,mn, u) = 1. Therefore, the probability that A wins is at most 1/|U|, and we have

|Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ 1/|U| ≤ 1/|M|.

Game G2. In this game C changes the simulation of the signing oracle as follows. Upon receiving a signing
queryO(msg, G) (|G| = t), C randomly samplesmi and ri for all i ∈ [n], computes hi ← Hash(hki,mi, ri), and
reprograms the random oracle such that H(vk, h1, ..., hn,msg||t) = u, where u is computed according to the
forward sample algorithm sfwd(n, t,G) of Fθ. If C fails to reprogram, i.e., H(vk, h1, ..., hn,msg||t) has already
been defined before, then G2 outputs ⊥ and aborts. At last C returns the signature σ = (t, {mi}i∈[n], {ri}i∈[n])
to A.

First, we argue that G2 and G1 are statistically close if it does not abort. Notice that the outputs
(m1, ...,mn, u) of sfwd(n, t,G) and sback(n, t,G) satisfy the identical distribution, where u outputted by
sback(n, t,G) enjoys a random distribution. Meanwhile, the distribution of ri (i ∈ G) is γ-close to the
original signing algorithm in G1, due to the γ-random trapdoor collision property of LCH.

Then, we bound the abort probability in G2. Recall that LCH has κ-uniformity, i.e., for all i ∈ [n],
H∞(Hash(hki,mi, ri)) ≥ κ for randomly sampled mi and ri. Suppose A asks at most Qsign signing queries
and QH hash queries. By the union bound, we have

|Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ (Qsign +QH)/2nκ +Qsignn · γ.

Game G3. We add an extra abort rule in this game. Define by reuse the event that, A has ever asked
O(msg∗, G) with some |G| = t∗ and gets σ = (t∗,m1, ...,mn, r1, ..., rn) back, and

1. Hash(hki,mi, ri) = Hash(hki,m
∗
i , r

∗
i) for all i ∈ [n]; and

2. There exists i such that (m∗
i , r

∗
i) ̸= (mi, ri), and A never asks Ocorr(i).

If reuse happens, then G3 outputs ⊥ and aborts.
We can easily construct a reduction algorithm B1 that breaks the strong collision resistance of the

underlying uncorrupted hki if reuse happens. Via a standard hybrid argument, we know that

|Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1]| ≤ Pr[reuse] ≤ n · Advs-crLCH,B1
(λ).

Game G4. Let G′ ⊆ [n] be the corruption group by A and G̃ := [n] \ G′. In this game, C generates

hki ← LGen(1λ) instead of (hki, tdi)← Gen(1λ) for all i ∈ G̃. The simulations of H(·) and O(msg, G) are the

same as G3. Note that C can simulate a ♯AMS signature for group G that contains i ∈ G̃ without knowing a
trapdoor tdi.

We can easily construct a reduction algorithm B2 to reduce the indistinguishability between G3 and G4

into the indistinguishability of LCH. Therefore,

|Pr[G3 ⇒ 1]− Pr[G4 ⇒ 1]| ≤ n · AdvindLCH,B2
(λ).

Now we argue that in G4, even an all-powerful adversary A cannot win with a non-negligible probability
due to the ϵ-lossiness of LCH.

Let (msg∗, σ∗ = (t′,m∗
1, ...,m

∗
n, r

∗
1 , ..., r

∗
n)) be A’s forgery and t∗ ← Ver(vk, msg∗, σ∗). Let |G′| = t′.

Obviously we have t′ < t∗ ≤ n. Define by W4 the event that G4 outputs 1. We divide W4 into the following
three sub-events.

37

1. Event W 1
4 : H(vk, h∗

1, ..., h
∗
n,msg∗||t∗) was defined when A asking a query O(msg∗, G) with |G| = t∗ and

the response is σ = (t∗,m1, ...,mn, r1, ..., rn), and mi = m∗
i for all i ∈ [n].

2. Event W 2
4 : H(vk, h∗

1, ..., h
∗
n,msg∗||t∗) was defined when A asking a query O(msg∗, G) with |G| = t∗ and

the response is σ = (t∗,m1, ...,mn, r1, ..., rn), and there exists at least one i s.t. mi ̸= m∗
i .

3. Event W 3
4 : H(vk, h∗

1, ..., h
∗
n,msg∗||t∗) was defined upon some hash query by A.

We analyze W 1
4 first. Recall that we require A’s final forgery to be different from all signatures obtained

from the signing oracle. That is, there exists some i such that mi = m∗
i , ri ̸= r∗i , and Hash(hki,mi, ri) =

Hash(hki,m
∗
i , r

∗
i). Due to the uniqueness of LCH, it is impossible for i ∈ G′ (the corrupted group). Moreover,

W 1
4 cannot happen for i ∈ G̃ (the uncorrupted/lossy group) due to the extra abort rule reuse in G3. Therefore,

we have Pr[W 1
4] = 0.

Then we analyze W 2
4 . According to the interdependency of constraint function Fθ, if W

2
4 happens, then

there must exist at least one i ∈ G̃ such that mi ̸= m∗
i . Together with the extra abort rule reuse in G3, we

get that Pr[W 2
4] = 0.

Then we bound Pr[W 3
4] according to the ϵ-lossiness of LCH. Recall that if G5 does not abort, then all

hash keys {hki}i∈G̃=([n]−G′) are generated in the lossy mode. Under the hash query H(vk, h∗
1, ..., h

∗
n,msg||t∗),

a random u∗ is returned. According to the randomness property of Fθ, either there exist at least t different
i ∈ [n] such that mi distribute uniformly, or for any i ∈ [n], mi distributes uniformly. From the analysis
above we know, there exists at least one i s.t. hki is a lossy hash key. Then according to the ϵ-lossiness, given
hi, for a random mi, the probability that A can find a randomness ri with Hash(hki,mi, ri) = hi is at most
ϵ. By the union bound, we have

Pr[G4 ⇒ 1] ≤ (n− t∗ + 1)ϵ ≤ nϵ,

which finishes the proof of strong unforgeability.

It is still left to prove the unconditional strong anonymity. Recall that in the signing, mi for i /∈ G is
randomly distributed, and mi for i ∈ G is computed from {mi}i∈[n]\G and randomly sampled u according
to Fθ. Since the two sample algorithms sfwd and sback have identical distributions, mi for i ∈ G distributes
the same as mi for i /∈ G. Therefore, to prove the strong anonymity, it is sufficient to prove that for any
m,m′ ∈M, the following two distributions are indistinguishable:

{
(m, r)

∣∣∣r $← R
}

and

{
(m, r)

∣∣∣∣∣(hk, td)← LCH.Gen(1λ), r̄
$← R,

r ← LCH.TdColl(td, m̄, r̄,m)

}
.

Thanks to the γ-random trapdoor collision property, the above two distributions are γ-close, and uncon-
ditional and strong anonymity holds as a result.

Taking the above all together, we obtain the desired result.

F Unforgeability under Adaptive Corruptions

In this section, we analyze the (strong) unforgeability of LCH-based ♯AMS schemes in the adaptive corruption
model.

Theorem 11. If LCH is strongly secure (i.e., it has κ-uniformity, γ-random trapdoor collision, strong col-
lision resistance, indistinguishability, and ϵ-lossiness) and unique, and Fθ is a constraint function, then the
♯AMS scheme ♯AMS constructed in Section 5 has strong unforgeability and strong anonymity under adap-
tive corruptions. More precisely, for any PPT adversary A, we have another PPT algorithm B such that
Time(B) ≈ Time(A), and

Advs-unforg♯AMS,A (λ) ≤ n2nAdvs-crLCH(λ) + n2nAdvindLCH,B(λ) + n2n · ϵ+ 1

|M|
+

Qsign +QH

2nκ
+Qsignn · γ,

where Qsign and QH are the numbers of signing queries (in the strong unforgeability experiment or the strong
anonymity experiment) and hash queries, respectively.

38

Proof. Similar to that in the proof of Theorem 1, we prove the strong unforgeability via hybrid games
G0,G1,G2,G3, G̃3,G4. All hybrid games except G̃3 are defined the same, and we safely omit the details here.

Game G̃3. In this game C randomly samples a subgroup G̃ ⊆ [n] at the beginning, and wheneverA terminates

and outputs its forgery, C checks whether A asks Ocorr(i) for all i ∈ ([n] − G̃) exactly, i.e., whether G̃ is

exactly the subgroup of users that A does not corrupt. If not, G̃4 outputs ⊥ and aborts.
There are at most 2n different subgroups for [n]. Via a standard complexity argument, we have that

Pr[G3 ⇒ 1] ≤ 2n · Pr[G̃3 ⇒ 1].

Game G4. In this game, C generates hki ← LGen(1λ) instead of (hki, tdi)← Gen(1λ) for all i ∈ G̃. We have

|Pr[G̃3 ⇒ 1]− Pr[G4 ⇒ 1]| ≤ n · AdvindLCH,B′(λ).

Combined with hybrid games G1, ...,G4, we finish the proof.

Following the same proof steps in Theorem 1, we have the following theorem.

Theorem 12. If LCH is secure (i.e., it has κ-uniformity, γ-random trapdoor collision, collision resistance,
indistinguishability, and ϵ-lossiness) and Fθ is a constraint function, then ♯AMS constructed in Section 5 has
unforgeability under adaptive corruptions. More precisely, for any PPT adversary A, we have another PPT
algorithm B such that Time(B) ≈ Time(A), and

Advunforg♯AMS,A(λ) ≤ n2nAdvindLCH,B(λ) + n2n · ϵ+ 1

|M|
+

Qsign +QH

2nκ
+Qsignn · γ,

where Qsign and QH are the numbers of signing queries and hash queries, respectively.

G Instantiations of Constraint Functions

AssumeM be a finite field. We show two classical instantiations of constraint functions.

Constraint Function FA by Linear Equation Systems.
Let U := Mt. Let A = (ai,j)(i,j∈[n]) be an invertible matrix such that, for every t ∈ [n] and subset

G ⊆ [n] with |G| = t, elements (ai,j)(i∈[t],j∈G) form an invertible submatrix. For example, we can set A as a
Vandermonde matrix.

Define FA(n, t,m1, ...,mn, u = (u1, ..., ut)) = 1, if and only if the following linear equation system holds.
a1,1m1 + a1,2m2 + ...+ a1,nmn = u1,
a2,1m1 + a2,2m2 + ...+ a2,nmn = u2,
...
at,1m1 + at,2m2 + ...+ at,nmn = ut.

(3)

– The forward sample algorithm sfwd(n, t,G) first randomly samples mi for all i ∈ [n], then computes
(u1, ..., ut) according to (3).

– The backward sample algorithm sbck(n, t,G) first randomly samples mi for all i ∈ [n] \G, and ui for all
i ∈ [t], then computes {mi}i∈G according to (3).

Proof. Now we prove that FA defined above is a family of constraint functions.

– Given n, t,m1, ...,mn and u = (u1, ..., ut), it is easy to evaluate FA(n, t,m1, ...,mn, u) by checking the
above linear equation system.

– Given n, t,m1, ...,mn, one can compute the unique u that satisfies the above linear equation system.
– Since A is a full-rank matrix, the forward sample algorithm and the backward sample algorithm have

the identical distribution (m1, ...,mn, u).

39

– Interdependency.

• Assume FA(n, t,m1, ...,mn, u) = FA(n, t,m′
1, ...,m

′
n, u) = 1. Define ∆m = (m1 − m′

1, ...,mn −
m′

n)
⊤ ∈ Mn, and we have A∆m = 0. Suppose ∆m has less than t non-zero elements. Then we can

separate a vector ∆m̄ ∈ Mt and a full-rank submatrix Ā ∈ Mt×t such that Ā∆m̄ = A∆m = 0.
Thus, ∆m̄ = Ā−10 = 0, which means that (m1, ...,mn) = (m′

1, ...,m
′
n).

• Define ∆u := u−u′ and we have A∆m = ∆u. Divide A into two submatrices Ā ∈Mt×t of full rank
and Ã ∈ Mt×(n−t). Similarly, divide ∆m into two vectors ∆m̄ ∈ Mt and ∆m̃ ∈ Mn−t. Thus we
have Ā∆m̄+ Ã∆m̃ = ∆u. Since Ā has full rank, ∆m̄ = Ā−1(∆u− Ã∆m̃) is randomly distributed
over Mt if ∆u is randomly sampled. Therefore, with overwhelming probability, ∆m̄ contains no
zero-elements, which means that there are at least t different i ∈ [n] such that mi ̸= m′

i.

– Randomness. Following the same argument above, we rewrite FA(n, t,m1, ...,mn) = 1 as Ām̄+Ãm̃ = u,
where m̄ ∈ Mt, m̃ ∈ Mn−t, and u ∈ Mt. Then m̄ = Ā−1(u− Ãm̃) is randomly distributed overMt if
u is randomly sampled.

Constraint Function Fp by Polynomial Interpolation.
Let H :=M. Let (P0, ..., Pn) := ((0, u), (1,m1), ..., (n,mn)) be n+ 1 points of a polynomial.
Define Fp(n, t,m1, ...,mn, u) = 1, if and only if P0, ..., Pn form a polynomial of degree at least (n− t) by

polynomial interpolation.

– The forward sample algorithm sfwd(n, t,G) first randomly samples a polynomial of degree n− t, then it
computes u := g(0) and mi := g(i) for i ∈ [n].

– The backward sample algorithm sbck(n, t,G) first randomly samples mi for i ∈ [n] \G and u, then forms
a polynomial g from the (n−t+1) points ((0, u), {(i,mi)}i∈[n]\G) by polynomial interpolation. For i ∈ G,
it computes mi := g(i).

Proof. Now we prove that Fp defined above is a family of constraint functions.

– Given n, t,m1, ...,mn and u, we form an (n−t)-degree polynomial from P0, ..., Pn−t, and Fp(n, t,m1, ...,mt, u) =
1 if and only if Pn−t+1, ..., Pn are points on the polynomial.

– Given n, t,m1, ...,mn, if there exists u satisfying Fp(n, t,m1, ...,mn, u) = 1, then from (n− t+ 1) points
P1, ..., Pn−t+1, we can construct the polynomial via interpolation and then obtain the constant coefficient
u.

– The (n − t)-degree polynomial from the backward sample algorithm is randomly distributed as that in
the forward sample algorithm.

– Interdependency.

• Suppose Fp(n, t,m1, ...,mn, u) = Fp(n, t,m
′
1, ...,m

′
n, u) = 1. If there are at least t different i such

that mi ̸= m′
i (i.e., there are more than (n − t) positions i such that mi = m′

i), then more than
(n− t) points of the two polynomials g and g′ are the same. Along with P0 = (0, u), we know g = g′,
and consequently mi = m′

i for all i ∈ [n].
• Let g and g′ be two (n − t)-degree polynomials w.r.t. (m1, ...,mn, u) and (m′

1, ...,m
′
n, u

′). If there
are more than (n − t) different i such that mi = m′

i, then with these (n − t + 1) points one can
construct the same polynomial g and g′, and consequently u = u′. Since u, u′ are sampled randomly,
this happens with negligible probability.

– Randomness. The equation Fp(n, t,m1, ...,mn, u) = 1 indicates an (n − t)-degree polynomial g(X) =
u + a1X + a2X

2 + ... + an−tX
n−t for some coefficients a1, ..., an−t. If u distributes uniformly over M,

then for every i ∈ [n], mi = g(i) = u+
∑

j∈[n−t] aji
n−t is a uniform distribution overM.

H Security Proof for Standard Chameleon Hash Variants

Theorem 13. If CH is strongly secure (i.e., it has κ-uniformity, random trapdoor collision, and strong
collision resistance) and unique, and Fθ is a constraint function, then the ♯AMS scheme ♯AMS constructed

40

in Section 5 has strong unforgeability and strong anonymity under static corruptions. More precisely, for any
PPT adversary A, there exist PPT algorithms B1 and B2 such that Time(B1) ≈ Time(B2) ≈ Time(A), and

Advs-unforg-sta-corr♯AMS,A (λ) ≤
√

n(Qsign +QH)Advs-crCH,B1
(λ) + ϵ1 + nAdvs-crCH,B2

(λ) + ϵ2,

where ϵ1, ϵ2 are some negligible functions in λ, and Qsign and QH are the numbers of signing queries and
hash queries, respectively.

Proof. We mainly focus on the proof of strong unforgeability since proof of strong anonymity is the same as
that in Section 5.

The theorem is proved via four hybrid games G0 − G3, which are the same as those in the proof of
Theorem 1. We will use the forking lemma to bound the probability that A wins in G3.

Let (msg∗, σ∗ = (t′,m∗
1, ...,m

∗
n, r

∗
1 , ..., r

∗
n)) be A’s final forgery and t∗ ← Ver(vk,msg∗, σ∗). Obviously we

have t′ = t∗ if A wins. For i ∈ [n], let h∗
i ← Hash(hki,m

∗
i , r

∗
i), and let H(vk, h∗

1, ..., h
∗
n,msg∗||t∗) = u∗.

Game G0. This is just the original unforgeability experiment. We have

Pr[G0 ⇒ 1] = Advs-unforg♯AMS,A (λ).

Game G1. If A never asks H(vk, h∗
1, ..., h

∗
n,msg∗||t∗) before outputting the final forgery, then G1 outputs 0

directly. We have

|Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ 1/|M|.

Game G2. In this game C changes the way of signing oracle’s simulation as follows. Upon receiving a signing
queryO(msg, G) (|G| = t), C randomly samplesmi and ri for all i ∈ [n], computes hi ← Hash(hki,mi, ri), and
reprograms the random oracle such that H(vk, h1, ..., hn,msg||t) = u(j), where u(j) is computed according
to the constraint function F. If C fails to reprogram, i.e., H(vk, h1, ..., hn,msg||t) has already been defined
before, then G2 outputs ⊥ and aborts. At last C returns the signature σ := (t, {mi}i∈[n], {ri}i∈[n]) to A.

We have
|Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ (Qsign +QH)/2nκ.

Game G3. We add an extra abort rule in this game. Define by reuse the event that, A has ever asked
O(msg∗, G) with some |G| = t∗ and gets σ = (t∗,m1, ...,mn, r1, ..., rn) back, and

1. Hash(hki,mi, ri) = Hash(hki,m
∗
i , r

∗
i) for all i ∈ [n];

2. There exists i such that (m∗
i , r

∗
i) ̸= (mi, ri), and A never asks Ocorr(i).

If reuse happens, then G3 outputs ⊥ and aborts.
We have

|Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1]| ≤ Pr[reuse] ≤ n · Advs-crLCH,B1
(λ).

Next, we use the forking lemma to bound the probability that A wins in G3. The high level idea is
to construct an algorithm B that simulates G3 for the forger A, and outputs (j∗, (msg∗, σ∗)) as long as A
successfully outputs a forgery (msg∗, σ∗), where j denotes that for the j-th query to the random oracle A
asks H(vk, h∗

1, ..., h
∗
n,msg∗||t∗). Then, we show the forking algorithm FB associated to B that finds a collision

under some specific chameleon hash key, which completes the proof.
Following the same argument of W 1

5 and W 2
5 in G5 in the proof of Theorem 1, we know that if G3 does not

abort, then H(vk, h∗
1, ..., h

∗
n,msg∗||t∗) is defined upon some hash query by A. We construct algorithm B as

follows. Let (hk′, td′)← CH.Gen(1λ) and Q := Qsign +QH , where Qsign and QH are the numbers of signing
queries and hash queries, respective. Given the initial input (hk′, u(1), ..., u(Q)) and the randomness coin ρ, B
randomly samples i∗

$← [n], and let hki∗ := hk′. For other i ∈ [n] \ {i∗}, B invokes (hki, tdi)← CH.Gen(1λ).
Then it sets vk := (hk1, ..., hkn) and sends vk to A.
B simulates Ocorr(·) and O(·, ·) for A as follows.

41

– Simulation of corruption queries Ocorr(i). If i = i∗ then B aborts, otherwise it returns tdi.
– Simulation of the j-th query H(·). Return u(j) directly.
– Simulation of the j-th query O(msg, G). Let t := |G|. B randomly samples mi for i ∈ [n] \G, and com-

putes {mi}i∈G from {mi}i∈[n]\G and u(j) according to the forward sample algorithm of the constraint
function F. Obviously the distribution of {mi}i∈[n] is the same as that in G2. Then, it randomly sam-
ples ri for all i ∈ [n], computes hi ← Hash(hki,mi, ri), and reprograms the random oracle such that
H(vk, h1, ..., hn,msg||t) = u(j). Finally B returns the signature σ := (t, {mi}i∈[n], {ri}i∈[n]).

Finally, A outputs its forgery (msg∗, σ∗). If B does not abort in the simulation, and A’s forgery is valid
and related to the j-th query, then B outputs (j, (msg∗, σ∗)). In any other case B outputs (0,⊥).

For A to win in G3, at least one signer is not corrupted. Since i∗ is randomly chosen from [n] and totally
hidden from the adversary, B does not abort with probability at least 1/n. Therefore, the probability that
B outputs (j, (msg∗, σ∗)) is at least accB ≥ Pr[G3 ⇒ 1]/n.

According to the forking lemma, there exists a forking algorithm FB associated to B that takes in-
put hk′, and with probability frk ≥ accB · (accB/Q − 1/|M|) it outputs (j, (msg∗, σ∗), (msg∗′, σ∗′)) (re-
call that j indexes the forking point, i.e., u(j) ̸= u(j)′). Let σ∗ = (t∗,m∗

1, ...,m
∗
n, r

∗
1 , ..., r

∗
n) and σ∗′ =

(t∗′,m∗
1
′, ...,m∗

n
′, r∗1

′, ..., r∗n
′). Upon to the point of the j-th hash query, the environment of A provided

by B in the first and the second run are identical, since B uses the same inputs, random tape and values
u(1), ..., u(j−1) to generate A’s inputs and oracle responses. Therefore, the two executions of A are identical up
to this point, and the arguments of both hash queries must be the same, implying that msg∗||t∗ = msg∗′||t∗′,
and (h∗

1, ..., h
∗
n) = (h∗

1
′, ..., h∗

n
′), where H(vk, h∗

1, ..., h
∗
n,msg∗||t∗) and H(vk, h∗

1
′, ..., h∗

n
′,msg∗′||t∗′) are the j-th

queries in the first and the second run, respectively.
For the first running of FB, we have H(vk, h∗

1, ..., h
∗
n,msg∗||t∗) = u(j). For the second running of FB, we

have H(vk, h∗
1, ..., h

∗
n,msg∗||t∗) = u(j)′ . According to the interdependency of F, there exist at least t∗ pairs

(m∗
i ,m

∗
i
′) such that m∗

i ̸= m∗
i
′, h∗

i ← Hash(hki,m
∗
i , r

∗
i), and h∗

i ← Hash(hki,m
∗
i
′, r∗i

′). Since A can corrupt
up to t∗−1 signers, with probability at least 1/(n− t∗+1), we successfully find a collision under the specific
chameleon hash key hk′.

Taking all together, we obtain the desired result.

I Proof Sketch of Theorem 3 (Fault-Tolerant ♯AMS)

Proof Sketch. In the proof of weak unforgeability, the hybrid games G0−G4 are defined similarly, except that
G3 and events W 1

4 ,W
2
4 in G4 are skipped since we do not consider strong unforgeability. Let (msg∗, σ∗ =

(t∗, F, {m∗
i , r

∗
i }[n]\F , {h∗

i }i∈F)) be A’s final forgery. Let G′ be the corruption group and |G′| = t′. For A to
win in G4, it must hold that t′ < (t∗ − |F |). Recall that in G4, all (n − t′) non-corrupted hash keys are
generated in the lossy mode. Since t′ < (t∗− |F |) and t∗ > |F |, according to the randomness property of Fθ,
we know among G there exists at least one i s.t. hki is a lossy hash key. Then according to the ϵ-lossiness,
given hi, for a random mi, the probability that A can find a randomness ri with Hash(hki,mi, ri) = hi is at
most ϵ, and weak unforgeability holds as a result.

The proof of unconditional strong anonymity (for honest signers) follows directly from the random trap-
door collision property of LCH, i.e., from the statistical indistinguishability of the following distributions for
all m,m′ ∈M:

{
(m, r)

∣∣∣r $← R
}

and

{
(m, r)

∣∣∣∣∣(hk, td)← LCH.Gen(1λ), r̄
$← R,

r ← LCH.TdColl(td, m̄, r̄,m)

}
,

where the left distribution corresponds to users i ∈ [n] \G, and the right distribution corresponds to honest
users i ∈ G \ F .

Remark 7 (Why Does Fault-tolerant ♯AMS Schemes Achieve Weak Unforgeability Only?). Let F ⊂ F ′. It is
easy to see that if σ = (t, F, {mi, ri}i∈[n]\F , {hi}i∈F) is a (t− |F |)-valid ♯AMS signature, then

σ′ := (t, F ′, {mi, ri}i∈[n]\F ′ , {hi}i∈F ′)

42

is a (t− |F ′|)-valid ♯AMS signature. That says, a malicious leader can always decrease the “credibility” of a
valid ♯AMS signature. Therefore, the fault-tolerant ♯AMS scheme above can achieve weak unforgeability only.
However, we emphasize that in the application of blockchain governance, a malicious developer/moderator
P earns nothing meaningful from this kind of attacks. Furthermore, P will get punished due to a malicious
disclosure in the voting systems presented in the next section, since all transcript messages between P and
the signer are signed using their (regular) digital signatures.

J More Related Works of ♯AMS

Multisignatures. Multisignatures (MS) [15, 8] allow n different parties generate a single signature on a
common message, and the size of the signature is short. However, privacy is not considered in multisignatures,
and the identities of signers/authors are totally exposed in the signature.

Threshold Signatures. A (t, n)-threshold signature scheme enables a group of n parties to sign on a
message if more than t parties participate in the signing. Besides, the threshold t and the quorum of t
participants are hidden from the signature. Most threshold signatures [15, 74, 75, 51] are based on the secret
sharing schemes, and they all face a shortcoming that the threshold t needs to be fixed before generating
the key pairs.

Ring Signatures. In ring signatures (RS) [71] (a.k.a. spontaneous anonymous group signatures [19]), a
user can sign a message on behalf of a group without revealing its identity. Usually, ring signatures have
no group manager, and anonymity holds unconditionally. Linkable ring signatures (LRS) [58], which are
tailored to the voting systems, prevent a user votes/signs twice via introducing a Link algorithm to detect
double-voting. An LRS scheme naturally implies a ♯AMS scheme (like the construction by Munch-Hansen et
al. [64]), where the signature is just a union of different LRS shares. However, such a construction can only
achieve a “weaker” version of anonymity (cf. Def. 28 in Appendix C), and the signature size is quadratic in
the ring size n, if we pursue unconditional anonymity and do not involve an accumulator [12].

K Further Discussion and Other Applications

We discuss more about our e-voting system / our blockchain governance system and other possible applica-
tions of ♯AMS.

K.1 Further Discussion

We discuss more about our e-voting system / our blockchain governance system and other possible applica-
tions.

Infrastructure and authenticated transcription. We assume a (regular) signature scheme S that is
unforgeable, and each node in the network has published a public key of S. For each message to be
sent, the sender also generates a signature using their own secret key to prevent the message from being
intercepted during transmission.

On-chain. After generating a ♯AMS signature, the leader of the proposal will upload it on the blockchain
so that it cannot be altered further.

Vote-and-go. The (non-leader) voters are not involved in the announcement period, and they can leave the
system after completing their own part without any interaction during the signing period. In other words,
voters are required to participate in the voting process only once. Our round-optimal voting systems, V2
and V3, achieve this property.

Vote-count Concealment. Voters remain unaware of the current vote count (and therefore of the votes
of others) until the results are announced. Our round-optimal voting systems, V2 and V3, achieve this
property.

43

K.2 Other Applications of ♯AMS

Linked whistle-blowing [58]. Suppose now a citizen wants to reveal a scandal of the government. To
avoid the risk of malicious retaliation, he/she may resort to revealing it in anonymous ways, for example,
via using a ring signature. Unfortunately, media or journalists may not believe what the whistleblower
tells and think that he/she is telling lies. However, they may choose to believe the disclosure if quite a
number of citizens confirm it. In this situation, the whistleblower can first gather some supporters and
then generate a ♯AMS signature to announce the scandal to the public.

Ad-hoc networks. Ad-hoc network is a decentralized type of wireless network, which does not rely on
any preset infrastructure, such as routers or wireless access points. Instead, each node participates in
the network by forwarding data to other nodes. Our ♯AMS schemes constructed from chameleon hashes
and linkable ring signatures enjoy the advantage of spontaneity, and they are perfectly applicable for
the application where several spontaneous nodes (users) want to communicate secretly. By attaching a
♯AMS signature with the message sent out, the receiver is convinced of the authority of the message,
and senders remain anonymous.

44

Table of Contents

Blockchain Governance via Sharp Anonymous Multisignatures . 1
Wonseok Choi, Xiangyu Liu, and Vassilis Zikas

1 Introduction . 1
1.1 Our Contributions . 3
1.2 Related Works . 4
1.3 Technical Overview . 6
1.4 Roadmap . 8

2 Preliminaries . 9
3 Sharp Anonymous Multisignatures . 9
4 Generic Compiler of ♯AMS from TRS with A Flexible Threshold . 11
5 Constructions of ♯AMS from Lossy Chameleon Hashes . 12

5.1 Formalization of Constraint Functions . 12
5.2 C1: Interactive ♯AMS . 12
5.3 C2: The Fault-Tolerating Variant . 14

6 Applications: Blockchain Governance and the Beyond . 15
6.1 V1: Blockchain Governance via ♯AMS . 15
6.2 V2: Round Optimization . 15
6.3 V3: Single-Vote Setting via the Conditioned Key Generation Paradigm 17

A Basic Notations and Additional Preliminaries . 24
A.1 Public key encryption . 24
A.2 Signatures . 24
A.3 Forking Lemma . 25

B A Framework for Lossy Chameleon Hashes . 25
B.1 Security of (Lossy) Chameleon Hashes . 25
B.2 Equivalence with Lossy Identification Schemes . 26
B.3 Construction from Re-Randomizable Encryption . 29
B.4 Construction from Lossy PKE with Efficient Opening . 31
B.5 Construction from LWE . 32
B.6 Construction from DDH . 33

C More Security Notions for ♯AMS . 34
D Discussion on the Relationship Between TRS and ♯AMS . 35

D.1 Issues of Threshold Ring Signatures . 35
D.2 Relationship between TRS and ♯AMS . 36

E Proof of Theorem 1 . 36
F Unforgeability under Adaptive Corruptions . 38
G Instantiations of Constraint Functions . 39
H Security Proof for Standard Chameleon Hash Variants . 40
I Proof Sketch of Theorem 3 (Fault-Tolerant ♯AMS) . 42
J More Related Works of ♯AMS . 43
K Further Discussion and Other Applications . 43

K.1 Further Discussion . 43
K.2 Other Applications of ♯AMS . 44

	Blockchain Governance via Sharp Anonymous Multisignatures
	Introduction
	Our Contributions
	Related Works
	Technical Overview
	Roadmap

	Preliminaries
	Sharp Anonymous Multisignatures
	Generic Compiler of AMS from TRS with A Flexible Threshold
	Constructions of AMS from Lossy Chameleon Hashes
	Formalization of Constraint Functions
	C1: Interactive AMS
	C2: The Fault-Tolerating Variant

	Applications: Blockchain Governance and the Beyond
	V1: Blockchain Governance via AMS
	V2: Round Optimization
	V3: Single-Vote Setting via the Conditioned Key Generation Paradigm

	Basic Notations and Additional Preliminaries
	Public key encryption
	Signatures
	Forking Lemma

	A Framework for Lossy Chameleon Hashes
	Security of (Lossy) Chameleon Hashes
	Equivalence with Lossy Identification Schemes
	Construction from Re-Randomizable Encryption
	Construction from Lossy PKE with Efficient Opening
	Construction from LWE
	Construction from DDH

	More Security Notions for AMS
	Discussion on the Relationship Between TRS and AMS
	Issues of Threshold Ring Signatures
	Relationship between TRS and AMS

	Proof of Theorem 1
	Unforgeability under Adaptive Corruptions
	Instantiations of Constraint Functions
	Security Proof for Standard Chameleon Hash Variants
	Proof Sketch of Theorem 3 (Fault-Tolerant AMS)
	More Related Works of AMS
	Further Discussion and Other Applications
	Further Discussion
	Other Applications of AMS

